

1 of 16 NXP Motion Sensors MMA955xL

Technical Paper Rev 0.4

MMA955xL I2C / SPI Communication

Jacques Trichet
Sensor Applications Engineer

The MMA955xL intelligent motion sensor family has two independent serial communications ports.
The slave interface and the master interface. The slave interface connects to the system host
processor, the MMA955xL behaves as a slave device on the system bus. The master interface
connects to other downstream sensors, and the MMA955xL acts as a bus master on this I2C bus.

The MMA955x is controlled through the slave interface which can be configured as either a slave I2C
interface or a slave SPI interface.
I2C or SPI mode is configured at reset when the level of pin 8 “IO3/SDA1/SSB” is sampled. If pin 8 is
high, then I2C mode is selected. If pin 8 is low, then SPI mode is selected.
The master interface is an I2C interface. Because of pin sharing with the slave SPI interface, the
master I2C is only available when the slave I2C interface is configured. When the slave SPI interface
is configured, the master I2C bus is not available.

The MMA955xL has a set of 32 registers or mailboxes where commands and responses are
exchanged between the system host processor and the MMA955xL device. Writes and reads via the
slave serial interface mailboxes configure and control the MMA955xL, and are also used to read
status and data back from the MMA955xL.

This document describes the physical interfaces, and provide examples of communications and
control of the MMA955xL device.

The MMA955xL “Hardware Reference Manual” as well as the “Software Reference Manual” can be
consulted for further details.

There are 4 pins on the MMA955xL device that are used in the serial interfaces.

Pin # Pin Name I2C Function SPI Function Notes

4 SCL0 / RGPIO0 /
SCLK

Slave I2C CLOCK Slave SPI CLOCK

6 SDA0 / RGPIO1 /
SDI

Slave I2C DATA Slave SPI MOSI Master Out,
Slave In

7 RGPIO2 / SCL1 /
SDO

Master I2C CLOCK Slave SPI MISO Master In,
Slave Out

8 RGPIO3 / SDA1 /
SSB

Master I2C DATA Slave SPI SLAVE SELECT Sampled at reset
1 = selects Slave I2C
0 = selects Slave SPI

Table 1 Communication and Interface Pins

2 of 16 NXP Motion Sensors MMA955xL

Two Command Interpreters

There are two command interpreters (CI) in the MMA955xL device family. They are slightly
different. One is in the hardware ROM code, and the other is in the Flash Firmware. The MMA9559
device has the same ROM based CI, but the Firmware is user supplied, therefore the user application
defines the commands and responses for the flash firmware. Depending on boot options and
programming state, the MMA955xL will be running from ROM or running from FLASH. The ROM CI
has a very basic limited number of commands that are explained in the Hardware Reference Manual.
The FLASH based CI in the MMA9550L/51L/53L/55L devices has many more system and application
level commands and is described in the associated Software Reference Manual. The MMA9559L
device is fully user programmed, and will have a user specific command interface.

How to tell the difference
The two CIs respond in slightly different ways. The FLASH command interpreter has two bytes
prefixed to the response data. These two bytes in mailboxes 3 and 4 show the actual number of
data bytes that were returned, and the requested number of data bytes. The ROM CI does not
include the data count information.

One quick way is to request the device ID information. If the FLASH command interpreter were
running there would be two data bytes of 0x0C and 0x0C in mailboxes 3 and 4 because the ID
command response, the MMA955xL returns 12 bytes of data.

If you don’t get the “0C 0C” values in mailboxes 3 and 4 when reading version information, then you
are most likely running in ROM code. Note that there is a slim chance that the device ID could have
a 0x0C, 0x0C as the first bytes, so be sure to check the hardware and firmware versions also.

The ID command is described in detail further into this document.

Switching between Rom and FLASH
The host can control how the MMA955xL boots on its next boot cycle. The host can force the
MMA955xL to boot to ROM or to FLASH code by sending either of these commands.
The format of these commands will be described later in the document.

Reboot to ROM: Write@00 : 17 20 01 01 80 // Reboot to ROM
Mail Box Data Description

MB0 0x17 App_ID = 0x17 (Reset Suspend Clear Application in NXP Firmware);

MB1 0x20

MB2 0x01

MB3 0x01

MB4 0x80

Reboot to FLASH: Write@00 : 29 00 // Reboot to flash

Mail Box Data Description

MB0 0x29 ROM Command Interpreter RESET command;

MB1 0x00

3 of 16 NXP Motion Sensors MMA955xL

I2C Interface
Here are the important parts of the I2C interfaces.

Figure 1 I2C Interface Schematic

Pin8 (RGPIO3/SDA1/SBB) must be pulled high at reset to select I2C mode Slave Interface. If the I2C
Master Interface is implemented, the I2C pull-up resistor R3 on the master data line is sufficient to
configure the I2C Slave Interface at reset.

Note that Pin8 (RGPIO3/SDA1/SBB) may be configured as a GPIO pin in a system. It is important to
make sure that Pin8 is stable high during reset to properly configure the slave interface to operate
into the I2C mode.

The MMA955xL device’s I2C address is 0x4C. In practice, this 7-bit value is shifted left by one bit
which gives an I2C write address of 0x98, and an I2C read address of 0x99. Bit 0 is the Read/Write
selection bit.

I2C - ID command:
Below is an example of a simple multi byte write where a 0x00 is written to mailbox0 and mailbox1.
This happens to be the command to request the device ID, software, and firmware version
information.
The host knows that it will transfer a total of two bytes to complete this command.

The “multi-byte” write I2C transaction proceeds like this:
 Host sends a START condition (S),
 Host sends I2C Device Write Address <0x98>,
 Host waits for Acknowledge from Slave (A)
 Host sends Sub address <0x00>,
 Host waits for Acknowledge from Slave (A)
 Host sends Data <0x00>,
 Host waits for Acknowledge from Slave (A)
 Host sends Data <0x00>,
 Host waits for Acknowledge from Slave (A)
 Host now has sent all the data (two byes), now the Host sends a STOP condition (P).

4 of 16 NXP Motion Sensors MMA955xL

Figure 2 Physical Bus - I2C Multi-Byte Write

I2C - ID ROM response:
Below is an example of the ROM response to the above request. This is a multi-byte I2C read where
the host reads back 17 bytes starting from mailbox 0. Note that 14 bytes would suffice.
This is the actual data read back showing the device ID, and version numbers for hardware, rom
code, and firmware.

 The read I2C transaction proceeds like this:
 Host sends a START condition,
 Host sends I2C Device Write Address (Bit 0 is clear),
 Slave sends ACK, Host waits for Acknowledge from Slave
 Host sends Sub address,
 Slave sends ACK, Host waits for Acknowledge from Slave
 Host sends a START condition (sometimes called RE-START)
 Host sends I2C Device READ Address (Bit 0 is set),
 Host waits for Acknowledge from Slave
 Slave Sends data to Host
 Host asserts Acknowledge so that Slave knows to continue, or
 When the host is done reading, it doesn’t send the ACK signal.
 Host sends a STOP condition.

Figure 3 Physical Bus - I2C Multi Byte Read from ROM command interpreter

The bytes sequence on the SDA line is: 98 00 99 00 80 1C DA 31 55 01 01 02 02 01 06 FF FF 00 00 00.
Highlighted section is the actual identification data read back from the device through ROM
Command Interpreter.

START
0x98 = I2C device address, Write to I2C device address 0x4C
0x00 = Sub Address, start reading from mailbox 0
RE-START
0x99 = I2C device address, Read from I2C device address 0x4C
0x00 = Sub Address, start reading from mailbox 0
0x80 = status, done w/ no error (COCO flag set to 1)

(*)NOTE: This example is running the ROM command interpreter.
If the FLASH command interpreter were running there would be two more data bytes inserted at this
location, 0x0C and 0x0C. These two bytes show the requested number of bytes and the actual
number of bytes of the I2C read transaction. The host could technically ask for more data than the
MMa955xL is ready to provide, the actual byte count should be used in reading back data.

0x1CDA3155 = Device ID, a unique value for each device
0x0101 = 01.01 ROM version

5 of 16 NXP Motion Sensors MMA955xL

0x0202 = 02.02 Flash version
0x0106 = 01.06 HW version
0xFFFF = reserved 2 bytes (always read as 0xFFFF)
0x000000 = those last 3 bytes are not relevant and are returned simply because the host read back
17 bytes total. The former content of those mailboxes was actually not altered by the command.

I2C - ID FLASH response:

Below is an example of the FLASH response to the above request. This is a multi-byte I2C read
where the host reads back 17 bytes starting from mailbox 0. Note that 16 bytes would suffice.
This is the actual data read back showing the device ID, and version numbers for hardware, ROM
code, and firmware.

 The read I2C transaction proceeds like this:
 Host sends a START condition,
 Host sends I2C Device Write Address (Bit 0 is clear),
 Slave sends ACK, Host waits for Acknowledge from Slave
 Host sends Sub address,
 Slave sends ACK, Host waits for Acknowledge from Slave
 Host sends a START condition (sometimes called RE-START)
 Host sends I2C Device READ Address (Bit 0 is set),
 Host waits for Acknowledge from Slave
 Slave Sends data to Host
 Host asserts Acknowledge so that Slave knows to continue, or
 when the host is done reading, it doesn’t send the ACK signal.
 Host sends a STOP condition.

Flash

The bytes sequence on the SDA line is: 98 00 99 00 80 0C 0C 1C DA 31 55 01 01 02 02 01 06 03 41 00.
Highlighted section is the actual identification data read back from the device through the Version
Application of NXP Flash Firmware.

START
0x98 = I2C device address, Write to I2C device address 0x4C
0x00 = Sub Address, start reading from mailbox 0
RE-START
0x99 = I2C device address, Read from I2C device address 0x4C
0x00 = Sub Address, start reading from mailbox 0
0x80 = status, done w/ no error
0x0C = Requested number of Bytes
0x0C = Actual number of bytes

(*)NOTE: This example is running the FLASH command interpreter.
If the ROM command interpreter were running these two count bytes would not be present.

0x1CDA3155 = Device ID, a unique value for each device
0x0101 = 01.01 ROM version
0x0202 = 02.02 Flash version
0x0106 = 01.06 HW version

6 of 16 NXP Motion Sensors MMA955xL

0x0341 = Build date code (this is the only an additional information compared to the ROM CI
response)
0x00 = this last byte is not relevant and is returned simply because the host reads back 17 bytes
total. The former content of this mailbox is actually not altered by the command.

7 of 16 NXP Motion Sensors MMA955xL

Generic I2C Information
The MMA955x I2C communication protocol follows the legacy Philips Semiconductors (now NXP
Semiconductors) standard. In this interface two bus lines are defined: a data line (SDA) and a clock
line (SCL). Both SDA and SCL are bidirectional lines, driven by open-collector buffers at every bus
connection point. Open collector buffers need a pull-up resistor to the positive supply voltage. The
recommended value is between 2.2kΩ - 4.7kΩ but this depends on bus loading and clock rates of the
specific application. Many ICs can share the I2C bus, the only limitation is the bus capacitance which
forms an RC circuit and limits clock and data signal rise times.

The following are five simple rules of the IIC bus to be aware of:
1. The SDA (data) and SCL (clock) cannot actively be driven high by any I2C device. I2C devices must
use open-drain drivers.
2. The information on the data line is only read on the high phase of the clock.
3. Changing the level of the data is only allowed in the low phase of the clock except during start or
stop conditions and this is how these events are signified.
4. When the bus is not busy SDA and SCL lines are pulled back to logic “1” by the external pull up
resistors.
5. A slave device may employ clock-stretching to signal the host to wait before sending more data.
The slave does this by holding the clock signal low. The host must check that the clock line did in fact
go high before attempting to drive the next data and clock cycle.

8 of 16 NXP Motion Sensors MMA955xL

SPI Interface

Here are the important parts if the SPI interface.

Pin8 (IO3/SDA1/SBB) must be pulled low at reset to select SPI mode Slave Interface. Because of pin
sharing, the Master I2C bus is unavailable when the Slave SPI Interface is configured.

Note that Pin8 (IO3/SDA1/SBB) may be configured as a GPIO pin in the system. It is important to
make sure that Pin8 is stable low during reset to properly configure the slave interface to operate in
SPI mode.

The first byte transmitted in an SPI transaction consists of a W/R bit (1 for write, 0 for read), 6
address bits, and a don’t care bit. Subsequent bytes are all data bytes.

Below is an example of a simple multi byte write where a 0x00 is written to mailbox0 and mailbox1.
This happens to be the command to request the device ID, software, and firmware version
information.

The write SPI transaction proceeds like this:
 SSB=0, Write bit = 1, Address[5:0] = 0, Data, Data,…, SSB=1

9 of 16 NXP Motion Sensors MMA955xL

Figure 4 Physical Bus - SPI Multi Byte Write

The transaction bytes sequence is:
80 00 00

0x80 = Write transaction, starting at MailBox0 (Write Bit is Set, Address = 0)
0x00 = First Data (this value will be loaded into MB0)
0x00 = Second Data (this value will be loaded into MB1)

Below is an example of the ROM response to the above request. This is a multi-byte SPI read where
the host reads back 16 bytes starting from mailbox 0.
This is the actual data read back showing the device ID, and version numbers for hardware, rom
code, and firmware.

Clock happens to be running at about 2.4MHz

ROM

SPI READ TRANSACTION :: Starting MB = 00, Number of bytes read = 16

 Read : 00 80 1C DA 31 55 01 01 02 02 01 06 FF FF 00 00

Figure 5 Physical Bus - SPI Multi Byte Read from ROM command interpreter

The transaction bytes sequence is:
00 00 80 1C DA 31 55 01 01 02 00 01 01

0x00 = Read starting at mailbox address 0 (on MOSI line) (W/R Bit is Clear, Addr = 0)
0x00 = repeat of command (on MISO line)
0x80 = status, done w/ no error

0x1CDA3155 = Part Identifier pseudo unique value
0x0101 = 01.01 ROM version
0x0200 = 02.00 Flash version
0x0101 = 01.01 HW version

As expected, answer is the same as for the I2C transaction.

FLASH

10 of 16 NXP Motion Sensors MMA955xL

SPI READ TRANSACTION :: Starting MB = 00, Number of bytes read = 16

 Read : 00 80 0C 0C 1C DA 31 55 01 01 02 02 01 06 03 41

Generic SPI Information
In the MMA955x, slave SPI communication is implemented using these 4 signal lines:
 SSB (slave select active low)
 SPSCK (SPI serial clock)
 MOSI (master-output-slave-input, data from host to MMA955xL)
 MISO (master-input-slave-output, data from MMA955xL to host)

The system microprocessor is the bus master and it initiates all SPI data transfers. The master shifts
data out (on the MOSI pin) to the slave while simultaneously shifting data in on the MISO pin from
the slave (SDO).
The SPSCK signal is a clock output from the master and an input to the slave.
A slave device is selected or enabled, by a low level on the slave select input, SSB pin.

In an SPI bus transaction, the first bit that is sent is the W/R bit (Write/Read) a 1 indicates a write
transaction and a 0 indicates a read transaction. The next bits are the address of the targeted
register.

Note the SPI W/R bit polarity is opposite from the IIC R/W bit (In I2C, a 1 indicates read and a 0
indicates write.)

The MMA955xL device can respond to SPI clock rates up to 4MHz. This is set by the SPI clock rate
chosen in the MCU.

11 of 16 NXP Motion Sensors MMA955xL

Using Mailboxes – please see the Hardware Reference Manual and Software Reference Manual

for more detail and specifics on ROM and firmware applications and their use.

Every write or read operation must be done through a specific structured command.
The communication interface allows the host to configure all gesture algorithms and the operation
modes of the device.

Mailbox Command Format
The command format used to write/read a gesture or application is shown below:

MB0 MB1 MB2 MB3 MB4-23

7:0 7 6 5 4 3 2 1 0 7:0 7:0 7:0

APP_ID 0 CMD OFFSET_H OFFSET_L COUNT WDATA

Table 2 Command Message Format (Write Command Structure)

MB0 (APP_ID): Identifies the application that the Host wants to write or read.

MB1 [6:4](CMD): Command Type to execute. Four different command types are available for use.

These commands are:

• FCI_VER – 0x00: Used to read version information of the device such as ROM,

 firmware and hardware versions.

• FCI_CONFIG_R – 0x01 : Used to read configuration data from a specific application within

the

 device.

• FCI_CONFIG_W – 0x02: Used to write configuration data from a specific application within

the

 device.

• FCI_DATA_R – 0x03: Command used to read data from a specific

 application within the device.

MB1 [3:0](OFFSET_H): High offset nibble. It is used to point to specific data from the requested

application.

MB2 (OFFSET_L): Low offset byte. It is used to point to specific data from the requested application.

MB3 (COUNT): Number of bytes the host intends to transfer.

MB4-MB23 (WDATA): Data to transfer. The length depends on the payload. These fields are not

used when sending a command to read data.

12 of 16 NXP Motion Sensors MMA955xL

Mailbox Response Format
Every time a command is sent, the response data will be presented to the host following the format

shown in Table 4.

MB0 MB1 MB2 MB3 MB4-23

7:0 7 6 5 4 3 2 1 0 7:0 7:0 7:0

APP_ID CC STATUS BYTES_XFER COUNT RDATA

Table 3 Command Response Format

MB0 (APP_ID): The Application identifier from where Host request data.

MB1 [7](CC): The Command Complete Bit is set by the MMA955x to 1 when the processing of the

previous command has completed. This bit signals a complete command has been processed. This

bit can be polled frequently by the host to see if the command has been processed.

MB1 [6:0](STATUS): Status result of the transaction. If no error is generated during command

processing, these bits will all be 0.

STATUS of 0 = no error. STATUS of = NON-Zero = error. Actual Error values are ROM and Firmware

specific.

MB2 (BYTES_XFER): This is the actual number of bytes transferred from the MMA955xL to the host.

This field is usually the same as MB3 (COUNT). There may be a difference between them if the host

tries to request more bytes than the size of the data structure requested.

MB3 (COUNT): Actual Number of bytes requested by the host to write/read. This number comes

from the command request.

MB4-23 (RDATA): Data bytes when a read command is processed. This field is only used when data

is read back. The number of read back bytes depends on the number of bytes to be read.

13 of 16 NXP Motion Sensors MMA955xL

Example on reading device ID and version information

ID COMMAND
Mail Box Data Command Description

MB0 0x00 App_ID = 0x00; ID

MB1 0x00 Command 0x00 = Version Information

ID RESPONSE from ROM CI

Mail Box Data Description

MB0 0x00 App_ID = 0x00; ID

MB1 0x80 Command Complete w/ no error codes.

MB2 0x1C Device ID = 0x1CDA3155

MB3 0xDA

MB4 0x31

MB5 0x55

MB6 0x01 = 0x0101

MB7 0x01

MB8 0x02 = 0x0202

MB9 0x02

MB10 0x01 = 0x0106

MB11 0x06

MB12 0xFF

MB13 0xFF

ID RESPONSE from FLASH CI

Mail Box Data Description

MB0 0x00 App_ID = 0x00; ID

MB1 0x80 Command Complete w/ no error codes.

MB2 0x0C 12 Bytes Actually Transferred

MB3 0x0C 12 Bytes Requested to transfer

MB4 0x1C Device ID = 0x1CDA3155

MB5 0xDA

MB6 0x31

MB7 0x55

MB8 0x01 = 0x0101

MB9 0x01

MB10 0x02 = 0x0202

MB11 0x02

MB12 0x01 = 0x0106

MB13 0x06

MB14 0x03 = 0x0341

MB15 0x41

Example on setting up to read XYZ data – Normal Mode

To read some accelerometer data from the MMA955x part, first it must be commanded to
wake up, then it must be commanded to return the accelerometer data.

Wake up the part

14 of 16 NXP Motion Sensors MMA955xL

I2C_CLK
I2C_DAT
Bus Data

I2C_CLK
I2C_DAT
Bus Data

SPI_SS
SPI_CLK
SPI_MOSI
SPI_MISO
MOSIDATA
MISO DATA

SPI_SS
SPI_CLK
SPI_MOSI
SPI_MISO
MOSIDATA
MISO DATA

 Write : 12 20 06 01 00 // Disable sleep mode

Read : 12 80 01 01 // Confirms the command was executed successfully

Wake Up COMMAND

Mail Box Data Command Description

MB0 0x12 App_ID = 0x12; Power Controller Modes

MB1 0x20 Command 0x2 = write configuration; Offset = 0

MB2 0x06 Offset = 0x06

MB3 0x01 Count of Data to write

MB4 0x00 Actual Data Value

I2C Interface - Wake Up
Command

SPI Interface - Wake Up
Command

RESPONSE

Mail Box Data Description

MB0 0x12 App_ID = 0x12; Power Controller Modes

MB1 0x80 Command Complete w/ no error codes.

MB2 0x01 Bytes Actually Transferred

MB3 0x01 Bytes Requested to transfer

MB4 0x00 Actual Data Value;

I2C Waveform Response

SPI Waveform Response

Read Normalized (Stage 0) AFE data
 Write : 06 30 00 06 // Read normalized AFE data

Read : 06 80 06 06 00 C8 00 13 10 01

COMMAND

15 of 16 NXP Motion Sensors MMA955xL

I2C_CLK
I2C_DAT
Bus Data

SPI_SS
SPI_CLK
SPI_MOSI
SPI_MISO
MOSIDATA
MISO DATA

Mail Box Data Description

MB0 0x06 App_ID = 0x06; XYZ DATA

MB1 0x30 Command 0x3 = read data; Offset = 0

MB2 0x00 Offset

MB3 0x06 Bytes Requested to transfer

I2C Interface - Read Normalized XYZ
Command

SPI Interface - Read Normalized XYZ
Command

RESPONSE

Mail Box Data Description

MB0 0x06 App_ID = 0x06; XYZ DATA

MB1 0x80 Command Complete w/ no error codes.

MB2 0x06 Bytes Actually Transferred

MB3 0x06 Bytes Requested to transfer

MB4 0x00 Data X – MSB

MB5 0xC8 Data X-LSB

MB6 0x00 Data Y – MSB

MB7 0x13 Data Y-LSB

MB8 0x10 Data Z – MSB

MB9 0x01 Data Z- LSB

In this example the Accelerometer XYZ measurements normalized to 0x1000 = 1g are
presented to as the data payload in mailboxes MB4-MB9.
Each axis returned as a 16-bit number.
 X = 0x00C8
 Y = 0x0013
 Z = 0x1001

The MMA955x evaluation/test board was placed horizontally on a desk surface.
If the desk were perfectly level, the X and Y values would be 0x0000, and the Z value would
be 0x1000.

I2C Interface - Read Normalized XYZ
Response

16 of 16 NXP Motion Sensors MMA955xL

I2C_CLK
I2C_DAT
Bus Data

SPI_SS
SPI_CLK
SPI_MOSI
SPI_MISO
MOSIDATA
MISO DATA

 X = 0x00DE
 Y = 0x0017
 Z = 0x0FF3

SPI Interface - Read Normalized XYZ
Response

 X = 0x00D1
 Y = 0xFFEF
 Z = 0x0FF5

