
Freescale, Inc. 2014. All rights reserved. 

 
 
 
 
 
 
 

Magnetic Calibration 
(magnetic.c) 

 
Technical Note 

 

 

 

Document TBD 

Version: Draft 

Authors: Mark Pedley and Michael Stanley 

Date: September 2014 

 

 

 

 

 

 

 

 

  



2 Technical Note  
   

 

Table of Contents 

1 Introduction .............................................................................................................................................................................. 4 
1.1 Summary .................................................................................................................................................................................. 4 
1.2 Functions .................................................................................................................................................................................. 4 

2 Least Squares Optimization ....................................................................................................................................................... 5 
2.1 Linear Measurement Model ..................................................................................................................................................... 5 
2.2 Normal Equations Solution in Non-Homogeneous Case .......................................................................................................... 6 
2.3 Eigenvector Solution in Homogeneous Case ............................................................................................................................ 6 

3 Hard and Soft Iron Magnetic Model .......................................................................................................................................... 9 
3.1 General Linear Model ............................................................................................................................................................... 9 
3.2 Measurement Locus ................................................................................................................................................................. 9 
3.3 Example Calibration Surfaces ................................................................................................................................................. 10 

4 Magnetic Buffer ...................................................................................................................................................................... 12 
4.1 Introduction ............................................................................................................................................................................ 12 
4.2 Contents of the Magnetic Buffer ............................................................................................................................................ 12 
4.3 Update Algorithm ................................................................................................................................................................... 12 

5 Four Parameter Magnetic Calibration Model .......................................................................................................................... 14 
5.1 Construction of Four Parameter Linear Model ...................................................................................................................... 14 
5.2 Hard Iron Vector ..................................................................................................................................................................... 16 
5.3 Soft Iron Matrix ...................................................................................................................................................................... 16 
5.4 Geomagnetic Field Strength ................................................................................................................................................... 16 
5.5 Fit Error ................................................................................................................................................................................... 16 

6 Seven Parameter Magnetic Calibration Model ........................................................................................................................ 18 
6.1 Construction of Seven Parameter Linear Model .................................................................................................................... 18 
6.2 Ellipsoid Fit Matrix .................................................................................................................................................................. 20 
6.3 Hard Iron Vector ..................................................................................................................................................................... 20 
6.4 Inverse Soft Iron Matrix .......................................................................................................................................................... 20 
6.5 Geomagnetic Field Strength ................................................................................................................................................... 21 
6.6 Fit Error ................................................................................................................................................................................... 21 

7 Ten Parameter Magnetic Calibration Model ........................................................................................................................... 22 
7.1 Construction of the Ten Parameter Linear Model.................................................................................................................. 22 
7.2 Ellipsoid Fit Matrix .................................................................................................................................................................. 25 
7.3 Hard Iron Vector ..................................................................................................................................................................... 25 
7.4 Inverse Soft Iron Matrix .......................................................................................................................................................... 25 
7.5 Geomagnetic Field Strength ................................................................................................................................................... 26 
7.6 Fit Error ................................................................................................................................................................................... 26 

 
  



 Technical Note 3 

 

Glossary 

𝑨   Ellipsoid fit matrix 

𝐵   Geomagnetic field strength 

𝑩𝑐   Calibrated magnetometer measurement vector 

𝑩𝑟   Geomagnetic field in the reference (global) frame 

𝑩𝑝   Uncalibrated magnetometer measurement vector 

𝐸   Fit error function 

𝑀   Number of measurements 

𝑟[𝑖]   Error residual for i-th measurement 

𝒓   Vector of error residuals 

𝑹   Orientation matrix 

𝑽   Hard iron vector 

𝑾   Soft iron matrix 

𝑋𝑗[𝑖]   Independent variable j for i-th measurement 

𝑿   Matrix of independent variables 𝑋𝑗[𝑖]  

𝑌[𝑖]   Dependent variable for i-th measurement 

𝒀   Vector of dependent variables 𝑌[𝑖]  

𝛽𝑖   Element i of the solution vector 𝜷 

𝜷   Solution vector 

𝜀   Normalized fit error 

𝜆   Lagrange Multiplier and eigenvalue 
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1 Introduction 

1.1 Summary 

This Application Note documents the mathematics underlying the functions in the file magnetic.c which 
determine the calibration of the magnetometer sensor and the hard and soft iron magnetic interference from 
the circuit board. 

 

1.2 Functions 

 

void fInitMagCalibration(struct MagCalibration *pthisMagCal, struct MagneticBuffer *pthisMagBuffer); 
 

void iUpdateMagnetometerBuffer(struct MagneticBuffer *pthisMagBuffer, struct AccelSensor *pthisAccel, 
  struct MagSensor *pthisMag, int32 loopcounter); 
 

void fInvertMagCal(struct MagSensor *pthisMag, struct MagCalibration *pthisMagCal); 
Computes the calibrated magnetometer measurements from the uncalibrated measurements using the 
computed magnetic calibration. 
See section 3. 

void fUpdateCalibration4INV(struct MagCalibration *pthisMagCal, struct MagneticBuffer *pthisMagBuffer, struct 
MagSensor *pthisMag); 
See section 4. 

void fUpdateCalibration7EIG(struct MagCalibration *pthisMagCal, struct MagneticBuffer *pthisMagBuffer, struct 
MagSensor *pthisMag); 
See section 5. 

void fUpdateCalibration10EIG(struct MagCalibration *pthisMagCal, struct MagneticBuffer *pthisMagBuffer, 
struct MagSensor *pthisMag); 
See section 6. 
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2 Least Squares Optimization  

2.1 Linear Measurement Model 

The general linear model relating independent variables 𝑋𝑗[𝑖] to dependent variable 𝑌[𝑖] at measurement 𝑖 via 

fitted model parameters 𝛽𝑗 is: 

𝑌[𝑖] = 𝛽0𝑋0[𝑖] + 𝛽1𝑋1[𝑖] + ⋯+ 𝛽𝑁−1𝑋𝑁−1[𝑖] Eq 2.1.1 

The fit to the model will, in general, not be perfectly accurate and will result in an error term 𝑟[𝑖] defined as: 

𝑟[𝑖] = 𝑌[𝑖] − 𝛽0𝑋0[𝑖] − 𝛽1𝑋1[𝑖] − ⋯− 𝛽𝑁−1𝑋𝑁−1[𝑖] Eq 2.1.2 

For a series of 𝑀 measurements, equation 2.1.2 can be written in the form: 

(

𝑟[0]

𝑟[1]
…

𝑟[𝑀 − 1]

) = (

𝑌[0]

𝑌[1]
…

𝑌[𝑀 − 1]

) −(

𝑋0[0] 𝑋1[0] … 𝑋𝑁−1[0]

𝑋0[1] 𝑋1[1] … 𝑋𝑁−1[1]
… … … …

𝑋0[𝑀 − 1] 𝑋1[𝑀 − 1] … 𝑋𝑁−1[𝑀 − 1]

)(

𝛽0
𝛽1
…
𝛽𝑁−1

) Eq 2.1.3 

With the definitions that 𝒓 is the column vector of residuals: 

𝒓 = (

𝑟[0]
𝑟[1]
…

𝑟[𝑀 − 1]

) Eq 2.1.4 

𝒀 is the 𝑀 by 1 column vector of 𝑀 measurements on the dependent variable. 

𝒀 = (

𝑌[0]

𝑌[1]
…

𝑌[𝑀 − 1]

) Eq 2.1.5 

𝑿 is the 𝑀 by 𝑁 matrix of 𝑀 measurements of the independent variable: 

𝑿 = (

𝑋0[0] 𝑋1[0] … 𝑋𝑁−1[0]

𝑋0[1] 𝑋1[1] … 𝑋𝑁−1[1]
… … … …

𝑋0[𝑀 − 1] 𝑋1[𝑀 − 1] … 𝑋𝑁−1[𝑀 − 1]

) Eq 2.1.6 

𝜷 is the 𝑁 by 1 column vector of unknown model coefficients 𝛽0 to 𝛽𝑁−1 to be determined: 

𝜷 = (

𝛽0
𝛽1
…
𝛽𝑁−1

) Eq 2.1.7 

Then equation 2.1.3 can be written in the form: 

𝒓 = 𝒀 − 𝑿𝜷 Eq 2.1.8 

If there are more measurements 𝑀 than there are unknowns 𝑁 then the equations are typically solved in a 

least squares sense by minimizing an error function 𝐸 defined as the modulus squared of the error vector 𝒓 
defined in equation 2.1.5: 

𝐸 = ∑ 𝑟[𝑖]2
𝑀−1

𝑖=0

= 𝒓𝑇𝒓 = ‖𝒓‖2 = (𝒀 − 𝑿𝜷)𝑇(𝒀 − 𝑿𝜷) = ‖𝒀 − 𝑿𝜷‖2 

 Eq 2.1.9 

𝐸 is i) proportional to the number of measurements 𝑀 and ii) has dimensions of the square of the elements 𝑟[]. 
A more useful normalized error measure 𝜀 is: 
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𝜀 =
1

2
√
𝐸

𝑀
 

 Eq 2.1.10 

2.2 Normal Equations Solution in Non-Homogeneous Case 

If the measurement vector on the dependent vector 𝒀 is not zero, then the equations are termed non-
homogeneous. The error function 𝐸 will be a minimum when it is stationary with respect to any perturbation 𝛿𝜷 

about the optimal least squares solution 𝜷: 

𝑙𝑖𝑚𝛿𝜷→𝟎{𝐸(𝜷 + 𝛿𝜷)} − 𝐸(𝜷) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛿𝜷 Eq 2.2.1 

Substituting equation 2.1.8 into 2.2.1 and ignoring second order terms gives: 

(𝒀 − 𝑿(𝜷 + 𝛿𝜷))
𝑇
(𝒀 − 𝑿(𝜷 + 𝛿𝜷)) − (𝒀 − 𝑿𝜷)𝑇(𝒀 − 𝑿𝜷) = 0 Eq 2.2.2 

⇒ −𝒀𝑇𝑿𝛿𝜷+ (𝑿𝜷)𝑇𝑿𝛿𝜷 − (𝑿𝛿𝜷)𝑇 (𝒀 − 𝑿𝜷) = 0 Eq 2.2.3 

⇒ −𝒀𝑇𝑿𝛿𝜷+ (𝑿𝜷)𝑇𝑿𝛿𝜷 − 𝛿𝜷𝑇𝑿𝑇𝒀 + 𝛿𝜷𝑇𝑿𝑇𝑿𝜷 = 0 Eq 2.2.4 

Since 𝛿𝜷𝑇𝑿𝑇𝒀 and 𝛿𝜷𝑇𝑿𝑇𝑿𝜷 are scalars, their values are unchanged by the transpose operation and equation 
2.2.4 can be re-written as: 

(−𝒀𝑇𝑿+ 𝜷𝑇𝑿𝑇𝑿)𝛿𝜷 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛿𝜷 Eq 2.2.5 

⇒ 𝜷𝑇𝑿𝑇𝑿 = 𝒀𝑇𝑿 ⇒ 𝑿𝑇𝑿𝜷 = 𝑿𝑇𝒀 Eq 2.2.6 

⇒ 𝜷 = (𝑿𝑇𝑿)−1𝑿𝑇𝒀 Eq 2.2.7 

Equation 2.2.7 is termed the Normal Equations solution for 𝜷 in the non-homogeneous case. 

The error function 𝐸 at the optimum solution equals: 

𝐸 = 𝒓𝑇𝒓 = {𝒀 − 𝑿𝜷}𝑇{𝒀 − 𝑿𝜷} = (𝒀𝑇 − 𝜷𝑇𝑿𝑇)(𝒀 − 𝑿𝜷) = 𝒀𝑇𝒀 − 𝒀𝑇𝑿𝜷− 𝜷𝑇𝑿𝑇𝒀+ 𝜷𝑇𝑿𝑇𝑿𝜷 Eq 2.2.8 

= 𝒀𝑇𝒀 − 𝜷𝑇𝑿𝑇𝒀 − (𝜷𝑇𝑿𝑇𝒀)𝑇 + 𝜷𝑇𝑿𝑇𝑿𝜷 Eq 2.2.9 

Since each term of equation 2.2.9 is a scalar and equal to its transpose, the error function can be written as: 

𝐸 = 𝒀𝑇𝒀 − 2𝜷𝑇(𝑿𝑇𝒀) + 𝜷𝑇(𝑿𝑇𝑿)𝜷 Eq 2.2.10 

Substituting the expression for the solution vector 𝜷 into 2.2.10 gives: 

𝐸 = 𝒀𝑇𝒀 − 2((𝑿𝑇𝑿)−1𝑿𝑇𝒀)𝑇(𝑿𝑇𝒀) + ((𝑿𝑇𝑿)−1𝑿𝑇𝒀)𝑇(𝑿𝑇𝑿)(𝑿𝑇𝑿)−1𝑿𝑇𝒀 Eq 2.2.11 

= 𝒀𝑇𝒀 − 𝒀𝑇𝑿{(𝑿𝑇𝑿)−1}𝑇𝑿𝑇𝒀 Eq 2.2.12 

For the special case where the number of measurements equals the number of model parameters to be fitted, 
the matrix 𝑿 is square and the transpose and inversion operators commute: 

(𝑿𝑇𝑿)−1 = 𝑿−1(𝑿𝑇)−1 Eq 2.2.13 

In this special case: 

𝐸 = 𝒀𝑇𝒀 − 𝒀𝑇𝑿{𝑿−1(𝑿𝑇)−1}𝑇𝑿𝑇𝒀 = 𝒀𝑇𝒀 − 𝒀𝑇𝑿𝑿−1(𝑿−1)𝑇𝑿𝑇𝒀 = 𝒀𝑇𝒀 − 𝒀𝑇(𝑿𝑇)−1𝑿𝑇𝒀 = 0 Eq 2.2.14 

Equation 2.2.14 simply states the expected result that the error function is zero and the fit is perfect when the 
number of model parameters to be fitted equals the number of measurements. 

 

2.3 Eigenvector Solution in Homogeneous Case 

If the dependent measurement vector 𝒀 is zero, then the equations are termed homogeneous. The model 
being fitted in a least squares sense is now: 
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𝑿𝜷 = 0  Eq 2.3.1 

The error function 𝐸 to be minimised simplifies to: 

𝐸 = ‖𝒓‖2 = ‖𝑿𝜷‖2 = (𝑿𝜷)𝑇𝑿𝜷 = 𝜷𝑇𝑿𝑇𝑿𝜷 Eq 2.3.2 

Unfortunately, using the Normal Equations solution given by equation 2.2.7 for the non-homogeneous case 
simply gives the zero vector solution for 𝜷 when 𝒀 is the null vector. 

𝜷 = (𝑿𝑇𝑿)−1𝑿𝑇𝒀 = 0 Eq 2.3.3 

This is a valid solution but not terribly useful. A solution method is required which minimizes the error function 
𝐸 in equation 2.3.2 subject to the constraint that 𝜷 has non-zero magnitude. Since equation 2.3.1 is linear, we 

can scale the solution vector 𝜷 to have unit magnitude: 

1 − 𝜷𝑇𝜷 = 0 Eq 2.3.4 

The error function is unaffected by adding multiples of equation 2.3.4 and can be re-written as: 

 𝐸(𝜷) = (𝑿𝜷)𝑇𝑿𝜷+ 𝜆(1 − 𝜷𝑇𝜷) = 𝜷𝑇𝑿𝑇𝑿𝜷+ 𝜆(1 − 𝜷𝑇𝜷) Eq 2.3.5 

This is equivalent to method of Lagrange Multipliers for constrained optimization. Applying the stationary 
constraint that 𝐸(𝜷 + 𝛿𝜷) = 𝐸(𝜷) to equation 2.3.5 gives: 

(𝜷 + 𝛿𝜷)𝑇𝑿𝑇𝑿(𝜷 + 𝛿𝜷) + 𝜆(1 − (𝜷 + 𝛿𝜷)𝑇(𝜷 + 𝛿𝜷)) = 𝜷𝑇𝑿𝑇𝑿𝜷+ 𝜆(1 − 𝜷𝑇𝜷) Eq 2.3.6 

Ignoring second order terms gives: 

𝛿𝜷𝑇𝑿𝑇𝑿𝜷+ 𝜷𝑇𝑿𝑇𝑿𝛿𝜷− 𝜆(𝜷𝑇𝛿𝜷 + 𝛿𝜷𝑇𝜷) = 0 Eq 2.3.7 

Since each term in equation 2.3.7 is a scalar and equal to its transpose, the solution for the optimum 𝜷 which 
constrains the performance function is: 

𝛿𝜷𝑇(𝑿𝑇𝑿𝜷− 𝜆𝜷) = 0 Eq 2.3.8 

⇒ 𝑿𝑇𝑿𝜷 = 𝜆𝜷 Eq 2.3.9 

Equation 2.3.9 states that the required solution vector 𝜷 is an eigenvector of the product matrix 𝑿𝑇𝑿 

associated with eigenvalue 𝜆. 

Substituting equation 2.3.9 into equation 2.3.2 for the error function 𝐸𝑖 associated with eigenvalue 𝜆𝑖 and 
eigenvector 𝜷𝑖 gives: 

𝐸𝑖 = 𝜷𝑖
𝑇𝑿𝑇𝑿𝜷𝑖 = 𝜆𝑖𝜷𝑖

𝑇𝜷𝑖 = 𝜆𝑖 Eq 2.3.10 

The error function 𝐸𝑖 for the i-th eigenvector solution therefore equals the eigenvalue 𝜆𝑖 of 𝑿𝑇𝑿 and the 

minimum error function is equal to the smallest eigenvalue 𝜆𝑚𝑖𝑛. The required solution 𝜷 is then the 
eigenvector associated with the smallest eigenvalue 𝜆𝑚𝑖𝑛. 

 

2.4 Eigenvectors and Eigenvalues of Symmetric Matrices 

The measurement matrix 𝑿𝑇𝑿 in equation 2.3.9 is obviously symmetric since: 

(𝑿𝑇𝑿)𝑇 = 𝑿𝑇𝑿 Eq 2.4.1 

The eigenvectors of equation 2.4.1 satisfy: 

(𝜷𝑗)
𝑇
𝑿𝑇𝑿 𝜷𝑘 = 𝜆𝑘(𝜷𝑗)

𝑇
𝜷𝑘 Eq 2.4.2 

Transposing equation 2.4.2 gives: 

{(𝜷𝑗)
𝑇
𝑿𝑇𝑿 𝜷𝑘}

𝑇
= {𝜆𝑘(𝜷𝑗)

𝑇
𝜷𝑘}

𝑇
  Eq 2.4.3 

⇒ (𝜷𝑘)
𝑇𝑿𝑇𝑿𝜷𝑗 = 𝜆𝑘(𝜷𝑘)

𝑇𝜷𝑗 Eq 2.4.4 

⇒ 𝜆𝑗(𝜷𝑘)
𝑇𝜷𝑗 = 𝜆𝑘(𝜷𝑘)

𝑇𝜷𝑗 Eq 2.4.5 
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⇒ (𝜆𝑗 − 𝜆𝑘)(𝜷𝑘)
𝑇𝜷𝑗 = 0 Eq 2.4.6 

⇒ (𝜷𝑘)
𝑇𝜷𝑗 = 0 𝑖𝑓 𝜆𝑗 ≠ 𝜆𝑘 Eq 2.4.7 

The eigenvectors of a symmetric matrix are therefore orthogonal if the eigenvalues are distinct. Symmetric 

matrices occur in two places in Freescale's sensor fusion software: i) as the measurement matrix 𝑿𝑇𝑿 and ii) 

as the transposed product of the inverse soft iron matrix {𝑾−1}𝑇𝑾−1. In both cases the matrices are a function 
of noisy magnetometer measurements and the conditions that can lead to repeated eigenvalues (exactly zero 
soft iron interference for example) will simply not occur and therefore the eigenvectors will be orthogonal. 

The definition of a positive semi-definite matrix 𝑨 is that it satisfies for all non-zero vectors 𝒗𝑗: 

(𝒗𝑗)
𝑇
𝑨𝒗𝑗 ≥ 0 Eq 2.4.8 

Setting 𝑗 = 𝑘 in equation 2.4.2 gives: 

(𝜷𝑗)
𝑇
𝑿𝑇𝑿 𝜷𝑗 = 𝜆𝑗(𝜷𝑗)

𝑇
𝜷𝑗 Eq 2.4.9 

⇒ |𝑿 𝜷𝑗|
2
= 𝜆𝑗|𝜷𝑗|

2
 Eq 2.4.10 

The left hand side of equation 2.4.10 is obviously non-negative. For non-zero 𝜷𝑗 it therefore follows that i) 

symmetric matrices are positive semi-definite and ii) have non-negative eigenvalues if the associated 
eigenvector is non-zero. 
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3 Hard and Soft Iron Magnetic Model 

3.1 General Linear Model 

The calibrated magnetometer reading 𝑩𝑐 (where 'calibrated' means that hard and soft iron distortions have 
been removed) is simply the local geomagnetic field 𝑩𝑟 rotated by the orientation matrix 𝑹 describing the 
orientation of the magnetometer. The geomagnetic vector 𝑩𝑟 is a fixed vector in the global reference frame and 

the multiplication by the circuit board orientation matrix 𝑹 is an example of a vector transformation from the 
global coordinate frame to the sensor coordinate frame: 

𝑩𝑐 =  𝑹𝑩𝑟  Eq 3.1.1 

The most general linear model for the distortion of 𝑩𝑐 into the measurement magnetometer reading 𝑩𝑝 by hard 

and soft iron distortion is: 

𝑩𝑝 =  𝑾𝑩𝑐 + 𝑽 = 𝑾𝑹𝑩𝑟 + 𝑽  Eq 3.1.2 

𝑽 is a 3x1 vector and 𝑾 is a 3x3 matrix. The vector 𝑽 is termed the hard iron offset and the matrix 𝑾 is termed 
the soft iron matrix. Simplifying a complicated subject somewhat, the hard iron offset models the sensor's 
intrinsic zero field offset plus the effects of permanently magnetized components on the circuit board and the 
soft iron matrix models the directional effect of induced magnetic fields and differing sensitivities in the three 
axes of the magnetometer sensor. 

Equation 3.1.2 proves to be an excellent model for the magnetometer measurements but obviously becomes 
less accurate when the linearity assumption starts to break down. The most common reason for deviations 
from equation 3.1.2 is the presence of magnetic hysteresis which is, by definition, a non-linear path dependent 
magnetic distortion. 

The calibration algorithms derived in this document estimate the hard iron offset 𝑽 and the soft iron matrix 𝑾 
from magnetometer measurements stored in the magnetometer buffer and then invert equation 3.1.2 to give 
the calibrated magnetometer measurement as: 

𝑩𝑐 = 𝑾
−1(𝑩𝑝 − 𝑽) Eq 3.1.3 

 

3.2 Measurement Locus 

Under arbitrary rotation of the phone, the locus of the calibrated magnetometer reading 𝑩𝑐 = 𝑹𝑩𝑟 lies on the 
surface of a sphere with radius equal to 𝐵 the local geomagnetic field strength: 

(𝑩𝑐)
𝑇𝑩𝑐 = (𝑹𝑩𝑟)

𝑇𝑹𝑩𝑟 = 𝑩𝑟
𝑇𝑹𝑇𝑹𝑩𝑟 = 𝐵

2 Eq 3.2.1 

In the presence of hard and soft iron effects, the locus of uncalibrated magnetometer reading 𝑩𝑝 lies on the 

surface defined using equation 3.1.3 to be: 

{𝑾−1(𝑩𝑝 − 𝑽)}
𝑇
{𝑾−1(𝑩𝑝 − 𝑽)} = (𝑹𝑩𝑟)

𝑇𝑹𝑩𝑟 = 𝑩𝑟
𝑇𝑹𝑇𝑹𝑩𝑟 = 𝐵

2 Eq 3.2.2 

⇒ (𝑩𝑝 − 𝑽)
𝑇
(𝑾−1)𝑇𝑾−1(𝑩𝑝 − 𝑽) = 𝐵

2 Eq 3.2.3 

The general expression for the locus of a vector 𝒖 lying on the surface of an ellipsoid with center at 𝒖0 is:  

(𝒖 − 𝒖0)
𝑇𝑨(𝒖 − 𝒖0) = 𝑐𝑜𝑛𝑠𝑡 Eq 3.2.4 

where 𝑨 is a symmetric matrix defining the shape of the ellipsoid. 

Equations 3.2.3 and 3.2.4 are of the same form since it can be easily proved that the matrix 𝑨 = {𝑾−1}𝑇𝑾−1 is 
a symmetric matrix: 

𝑨𝑇 = {{𝑾−1}𝑇𝑾−1}𝑇 = {𝑾−1}𝑇{{𝑾−1}𝑇}𝑇 = {𝑾−1}𝑇𝑾−1 = 𝑨 Eq 3.2.5 

The hard and soft iron distortion therefore force the geomagnetic vector, as measured in the magnetometer 
reference frame, to lie on the surface on an ellipsoid centered at the hard iron offset 𝑽 with shape determined 

by the transposed product of the inverse soft iron matrix with itself {𝑾−1}𝑇𝑾−1. The precise point on the 
ellipsoid surface where any measurement falls is determined by the orientation of the magnetometer. 
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Once the hard iron offset 𝑽 and the soft iron matrix 𝑾 have been determined by the calibration algorithms, the 
mapping of the raw distorted magnetometer measurement 𝑩𝑝 onto the calibrated measurement 𝑩𝑐 using 

equation 3.1.3 equates to mapping measurements from the surface of the ellipsoid to the surface of a sphere 
with radius 𝐵. 

 

3.3 Example Calibration Surfaces 

Figure 3-1 shows measurements taken from a simple sensor demonstration board with uncalibrated 
measurements in red and calibrated measurements in blue. The soft iron matrix 𝑾 is close to the identity 
matrix and the hard iron vector is dominated by a 100uT offset in the z axis. This type of PCB could be 
calibrated for hard iron offset only using the algorithm described in section 5 although the more sophisticated 
soft iron algorithms of sections 6 and 7 could also be used although with little, if any, additional performance 
improvement. 

In this particular example, the calibration mapping is approximately the translation: 

𝑩𝑐 ≈ 𝑩𝑝 − 𝑉𝑧𝒌̂ ≈ 𝑩𝑝 − 100𝑢𝑇𝒌̂ Eq 3.3.1 

 

 

Figure 3-1: Uncalibrated (Red) and Calibrated (Blue) Measurements from a Simple Hard Iron Environment 
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Figure 3-2 shows measurements taken from an Android tablet with strong hard and soft iron distortions 
resulting from ferromagnetic components on the PCB. This type of distortion must be calibrated using the more 
sophisticated hard and soft iron algorithms described in sections 6 and 7. 

 

Figure 3-2: Uncalibrated (Red) and Calibrated (Blue) Measurements Taken in a Strong Hard and Soft Iron 
Environment 
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4 Magnetic Buffer 

4.1 Introduction 

The magnetic calibration algorithms described in sections 5 through 7 calculate the parameters of the hard and 
soft iron magnetic distortion by fitting the magnetometer measurements to the surface of an offset sphere or 
ellipsoid. The accuracy of the results depends on the availability of measurements whose distribution covers a 
reasonable proportion of the surface. Obviously 100 measurements all located in one corner of the surface will 
be more sensitive to magnetometer noise and give a poorer quality calibration than 100 measurements 
distributed throughout the surface. It would be fair to say that the careful selection of magnetometer 
measurements is of equal importance to the magnetic calibration algorithms in producing a high quality 
magnetic calibration. 

 

4.2 Contents of the Magnetic Buffer 

The default size of the magnetic buffer is 288 sets of x, y, z vector magnetometer measurements iBpFast 
organized as a two dimensional MAGBUFFSIZEX=12 by MAGBUFFSIZEY=24 element array. The name 
iBpFast denotes that the measurements are unaveraged and uncalibrated. It is not sensible to average the 
magnetometer measurements in an attempt to reduce noise since the averaged measurements will smear the 
distribution ellipsoid into a sphere and ultimate into a point giving a meaningless calibration. 

Each element is dated by a 32 bit index counter storing the iteration when the measurement was taken. Older 
measurements are deemed less valuable than more recent measurements and are eventually aged out of the 
buffer. 

The term iMagBufferCount contains the number of measurements in the buffer. 

tanarray is a pre-computed lookup table of trigonometric tangents used to map the magnetometer 
measurements into a specific bin. 

Only the most recent MAXMEASUREMENTS (default value 240) are used for the magnetic calibration. If 
MAXMEASUREMENTS were set to the full buffer size of 288, then a spurious measurement, perhaps caused 
by magnetic interference from a nearby magnet, would stay in the buffer affecting calibrations until the PCB is 
held at the same orientation and over-writes the spurious measurement with a new one. Setting 
MAXMEASUREMENTS to a value slightly less than the buffer size provides space for old measurements to be 
de-activated through age rather than being explicitly over-written. 

// magnetometer measurement buffer 

struct MagneticBuffer 

{ 

 int16 iBpFast[3][MAGBUFFSIZEX][MAGBUFFSIZEY]; // uncalibrated magnetometer readings 

 int32 index[MAGBUFFSIZEX][MAGBUFFSIZEY];  // array of time indices 

 int16 tanarray[MAGBUFFSIZEX - 1];   // array of tangents of (100 * angle) 

 int16 iMagBufferCount;    // number of magnetometer readings 

}; 

 

4.3 Update Algorithm 

The accelerometer is used to index the magnetic measurements as a function of the two 'pseudo angles' with 
tangents equal to the ratio of y to x and z to x accelerometer measurements. The accelerometer 
measurements lie of the 1g sphere and the magnetic measurements lie of the magnetic ellipsoid. The indexing 
by accelerometer angles therefore provides a convenient binning of the magnetic ellipsoid by PCB orientation. 

 

Case 1: 
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If the magnetic buffer is fully populated (iMagBufferCount == MAXMEASUREMENTS), and the current entry 
selected by the accelerometer pseudo-angles is populated, then the buffer entry is simply over-written with the 
new measurement. 

 

Case 2: 

If the magnetic buffer is fully populated and the current entry is empty, then the buffer entry is over-written and 
the oldest measurement is retired. 

 

Case 3: 

If the magnetic buffer is not yet full (iMagBufferCount < MAXMEASUREMENTS) and the current entry is 
empty, then the current measurement is simply stored. 

 

Case 4: 

If the magnetic buffer is not yet full (iMagBufferCount < MAXMEASUREMENTS) and the current entry is not 
empty then, in order to populate the buffer as quickly as possible after power on, the measurement is stored in 
an empty bin provided it differs significantly from all existing measurements. 
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5 Four Parameter Magnetic Calibration Model 

5.1 Construction of Four Parameter Linear Model 

This section documents the simplest magnetic calibration algorithm implemented in function 
fUpdateCalibration4INV which calculates the 4 parameters comprising the hard iron offset vector 𝑽 and 
geomagnetic field strength 𝐵. The soft iron matrix 𝑾 is assumed to be the identity matrix. This model provides 
fairly high performance with high simplicity on simple circuit boards which tend to have limited soft iron 
distortion. 

Equation 3.1.2 for the case of a PCB subject to hard iron interference only simplifies to: 

(𝑩𝑝 − 𝑽)
𝑇
(𝑩𝑝 − 𝑽) = 𝐵

2 Eq 5.1.1 

⇒ 𝑩𝑝
𝑇𝑩𝑝 − 2𝑩𝑝

𝑇𝑽 + 𝑽𝑇𝑽 − 𝐵2 = 0 Eq 5.1.2 

Equations 5.1.1 and 5.1.2 model the locus of the magnetometer measurements 𝑩𝑝 as lying on the surface of a 

sphere with radius 𝐵 offset from the origin by 𝑽. 

The residual error 𝑟[𝑖] for the i-th observation is: 

𝑟[𝑖] = 𝐵𝑝𝑥[𝑖]
2 + 𝐵𝑝𝑦[𝑖]

2 +𝐵𝑝𝑧[𝑖]
2 − 2𝐵𝑝𝑥[𝑖]𝑉𝑥 − 2𝐵𝑝𝑦[𝑖]𝑉𝑦 − 2𝐵𝑝𝑧[𝑖]𝑉𝑧 + 𝑉𝑥

2 + 𝑉𝑦
2 + 𝑉𝑧

2 − 𝐵2 Eq 5.1.3 

Simplifying and returning to matrix format gives: 

𝑟[𝑖] = (𝐵𝑝𝑥[𝑖]
2 + 𝐵𝑝𝑦[𝑖]

2 + 𝐵𝑝𝑧[𝑖]
2) −

(

 

𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑧[𝑖]

1 )

 

𝑇

(

 
 

2𝑉𝑥
2𝑉𝑦
2𝑉𝑧

𝐵2 − 𝑉𝑥
2 − 𝑉𝑦

2 − 𝑉𝑧
2

)

 
 

  Eq 5.1.4 

The dependent measurement variable 𝑦[𝑖] can be defined to be: 

𝑦[𝑖] = 𝐵𝑝𝑥[𝑖]
2 + 𝐵𝑝𝑦[𝑖]

2 + 𝐵𝑝𝑧[𝑖]
2 Eq 5.1.5 

and the solution vector 𝜷 as: 

𝜷 = (

𝛽0
𝛽1
𝛽2
𝛽3

) =

(

 
 

2𝑉𝑥
2𝑉𝑦
2𝑉𝑧

𝐵2 −𝑉𝑥
2 −𝑉𝑦

2 −𝑉𝑧
2
)

 
 

 Eq 5.1.6 

The error residual 𝑟[𝑖] is now given by: 

𝑟[𝑖] = 𝐵𝑝𝑥[𝑖]
2 + 𝐵𝑝𝑦[𝑖]

2 +𝐵𝑝𝑧[𝑖]
2 −

(

 

𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑧[𝑖]

1 )

 

𝑇

(

 
 

2𝑉𝑥
2𝑉𝑦
2𝑉𝑧

𝐵2 − 𝑉𝑥
2 − 𝑉𝑦

2 − 𝑉𝑧
2

)

 
 

 Eq 5.1.7 

= 𝐵𝑝𝑥[𝑖]
2 + 𝐵𝑝𝑦[𝑖]

2 + 𝐵𝑝𝑧[𝑖]
2 −

(

 

𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑧[𝑖]

1 )

 

𝑇

(

 

𝛽0
𝛽1
𝛽2
𝛽3)

  Eq 5.1.8 

Equation 5.1.8 can be expanded to represent 𝑀 measurements as: 
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 (

𝑟[0]

𝑟[1]
…

𝑟[𝑀 − 1]

) =

(

 
 

𝐵𝑝𝑥[0]
2 + 𝐵𝑝𝑦[0]

2 + 𝐵𝑝𝑧[0]
2

𝐵𝑝𝑥[1]
2 + 𝐵𝑝𝑦[1]

2 + 𝐵𝑝𝑧[1]
2

…
𝐵𝑝𝑥[𝑀 − 1]2 + 𝐵𝑝𝑦[𝑀 − 1]2 + 𝐵𝑝𝑧[𝑀 − 1]2

)

 
 
− 

(

 
 

𝐵𝑝𝑥[0] 𝐵𝑝𝑦[0] 𝐵𝑝𝑧[0] 1

𝐵𝑝𝑥[1] 𝐵𝑝𝑦[1] 𝐵𝑝𝑧[1] 1

… … … 1
𝐵𝑝𝑥[𝑀 − 1] 𝐵𝑝𝑦[𝑀 − 1] 𝐵𝑝𝑧[𝑀 − 1] 1

)

 
 

(

 
 

2𝑉𝑥
2𝑉𝑦
2𝑉𝑧

𝐵2 − 𝑉𝑥
2 − 𝑉𝑦

2 − 𝑉𝑧
2

)

 
 

 Eq 5.1.9 

With the definitions of the error residual vector 𝒓 as: 

𝒓 = (

𝑟[0]
𝑟[1]
…

𝑟[𝑀 − 1]

)  Eq 5.1.10 

and 𝒀 the vector of dependent variables: 

𝒀 =

(

 
 

𝐵𝑝𝑥[0]
2 + 𝐵𝑝𝑦[0]

2 + 𝐵𝑝𝑧[0]
2

𝐵𝑝𝑥[1]
2 + 𝐵𝑝𝑦[1]

2 + 𝐵𝑝𝑧[1]
2

…
𝐵𝑝𝑥[𝑀 − 1]2 + 𝐵𝑝𝑦[𝑀 − 1]2 + 𝐵𝑝𝑧[𝑀 − 1]2

)

 
 

  Eq 5.1.11 

and 𝑿 the 𝑀 by 4 measurement matrix: 

𝑿 =

(

 
 

𝐵𝑝𝑥[0] 𝐵𝑝𝑦[0] 𝐵𝑝𝑧[0] 1

𝐵𝑝𝑥[1] 𝐵𝑝𝑦[1] 𝐵𝑝𝑧[1] 1

… … … 1
𝐵𝑝𝑥[𝑀 − 1] 𝐵𝑝𝑦[𝑀 − 1] 𝐵𝑝𝑧[𝑀 − 1] 1

)

 
 

 Eq 5.1.12 

then equation 5.1.9 can be written as: 

𝒓 = 𝒀 − 𝑿𝜷 Eq 5.1.13 

The model being fitted has the non-homogeneous form 𝒓 = 𝒀 − 𝑿𝜷 and can be solved using the Normal 
Equations method documented in section 2. 

The matrices 𝑿𝑇𝑿, 𝑿𝑇𝒀 and 𝒀𝑇𝒀 have values: 

𝑿𝑇𝑿 =

(

 
 

𝐵𝑝𝑥[0] 𝐵𝑝𝑦[0] 𝐵𝑝𝑧[0] 1

𝐵𝑝𝑥[1] 𝐵𝑝𝑦[1] 𝐵𝑝𝑧[1] 1

… … … 1
𝐵𝑝𝑥[𝑀 − 1] 𝐵𝑝𝑦[𝑀 − 1] 𝐵𝑝𝑧[𝑀 − 1] 1

)

 
 

𝑇

(

 
 

𝐵𝑝𝑥[0] 𝐵𝑝𝑦[0] 𝐵𝑝𝑧[0] 1

𝐵𝑝𝑥[1] 𝐵𝑝𝑦[1] 𝐵𝑝𝑧[1] 1

… … … 1
𝐵𝑝𝑥[𝑀 − 1] 𝐵𝑝𝑦[𝑀 − 1] 𝐵𝑝𝑧[𝑀 − 1] 1

)

 
 

 Eq 5.1.14 

 

= ∑

(

 
 

𝐵𝑝𝑥[𝑖]
2 𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖] 𝐵𝑝𝑥[𝑖]𝐵𝑝𝑧[𝑖] 𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖] 𝐵𝑝𝑦[𝑖]
2 𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖] 𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑥[𝑖]𝐵𝑝𝑧[𝑖] 𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖] 𝐵𝑝𝑧[𝑖]
2 𝐵𝑝𝑧[𝑖]

𝐵𝑝𝑥[𝑖] 𝐵𝑝𝑦[𝑖] 𝐵𝑝𝑧[𝑖] 1 )

 
 

𝑀−1

𝑖=0

 

 Eq 5.1.17 
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𝑿𝑇𝒀 =

(

 
 

𝐵𝑝𝑥[0] 𝐵𝑝𝑦[0] 𝐵𝑝𝑧[0] 1

𝐵𝑝𝑥[1] 𝐵𝑝𝑦[1] 𝐵𝑝𝑧[1] 1

… … … 1
𝐵𝑝𝑥[𝑀 − 1] 𝐵𝑝𝑦[𝑀 − 1] 𝐵𝑝𝑧[𝑀 − 1] 1

)

 
 

𝑇

(

 
 

𝐵𝑝𝑥[0]
2 + 𝐵𝑝𝑦[0]

2 + 𝐵𝑝𝑧[0]
2

𝐵𝑝𝑥[1]
2 + 𝐵𝑝𝑦[1]

2 + 𝐵𝑝𝑧[1]
2

…
𝐵𝑝𝑥[𝑀 − 1]2 + 𝐵𝑝𝑦[𝑀 − 1]2 + 𝐵𝑝𝑧[𝑀 − 1]2

)

 
 

 Eq 5.1.18 

= ∑

(

 
 

𝐵𝑝𝑥[𝑖](𝐵𝑝𝑥[𝑖]
2 + 𝐵𝑝𝑦[𝑖]

2 + 𝐵𝑝𝑧[𝑖]
2)

𝐵𝑝𝑦[𝑖](𝐵𝑝𝑥[𝑖]
2 + 𝐵𝑝𝑦[𝑖]

2 +𝐵𝑝𝑧[𝑖]
2)

𝐵𝑝𝑧[𝑖](𝐵𝑝𝑥[𝑖]
2 +𝐵𝑝𝑦[𝑖]

2 + 𝐵𝑝𝑧[𝑖]
2)

𝐵𝑝𝑥[𝑖]
2 + 𝐵𝑝𝑦[𝑖]

2 +𝐵𝑝𝑧[𝑖]
2

)

 
 

𝑀−1

𝑖=0

 

 Eq 5.1.19 

𝒀𝑇𝒀 =

(

 
 

𝐵𝑝𝑥[0]
2 + 𝐵𝑝𝑦[0]

2 + 𝐵𝑝𝑧[0]
2

𝐵𝑝𝑥[1]
2 + 𝐵𝑝𝑦[1]

2 + 𝐵𝑝𝑧[1]
2

…
𝐵𝑝𝑥[𝑀 − 1]2 + 𝐵𝑝𝑦[𝑀 − 1]2 + 𝐵𝑝𝑧[𝑀 − 1]2

)

 
 

𝑇

(

 
 

𝐵𝑝𝑥[0]
2 + 𝐵𝑝𝑦[0]

2 +𝐵𝑝𝑧[0]
2

𝐵𝑝𝑥[1]
2 + 𝐵𝑝𝑦[1]

2 +𝐵𝑝𝑧[1]
2

…
𝐵𝑝𝑥[𝑀 − 1]2 +𝐵𝑝𝑦[𝑀 − 1]2 + 𝐵𝑝𝑧[𝑀 − 1]2

)

 
 

 Eq 5.1.20 

= ∑(𝐵𝑝𝑥[𝑖]
2 + 𝐵𝑝𝑦[𝑖]

2 + 𝐵𝑝𝑧[𝑖]
2)
2

𝑀−1

𝑖=0

 

 Eq 5.1.21 

The solution vector 𝜷 is then given by equation 2.2.7 as: 

(

𝛽0
𝛽1
𝛽2
𝛽3

) =

{
 
 

 
 

∑

(

 
 

𝐵𝑝𝑥[𝑖]
2 𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖] 𝐵𝑝𝑥[𝑖]𝐵𝑝𝑧[𝑖] 𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖] 𝐵𝑝𝑦[𝑖]
2 𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖] 𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑥[𝑖]𝐵𝑝𝑧[𝑖] 𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖] 𝐵𝑝𝑧[𝑖]
2 𝐵𝑝𝑧[𝑖]

𝐵𝑝𝑥[𝑖] 𝐵𝑝𝑦[𝑖] 𝐵𝑝𝑧[𝑖] 1 )

 
 

𝑀−1

𝑖=0

}
 
 

 
 
−1

∑

(

 
 

𝐵𝑝𝑥[𝑖](𝐵𝑝𝑥[𝑖]
2 +𝐵𝑝𝑦[𝑖]

2 + 𝐵𝑝𝑧[𝑖]
2)

𝐵𝑝𝑦[𝑖](𝐵𝑝𝑥[𝑖]
2 + 𝐵𝑝𝑦[𝑖]

2 + 𝐵𝑝𝑧[𝑖]
2)

𝐵𝑝𝑧[𝑖](𝐵𝑝𝑥[𝑖]
2 + 𝐵𝑝𝑦[𝑖]

2 + 𝐵𝑝𝑧[𝑖]
2)

𝐵𝑝𝑥[𝑖]
2 + 𝐵𝑝𝑦[𝑖]

2 + 𝐵𝑝𝑧[𝑖]
2

)

 
 

𝑀−1

𝑖=0

 

 Eq 5.1.22 

 

5.2 Hard Iron Vector 

The hard iron solution vector is given directly by equation 5.1.6 as: 

(

𝑉𝑥
𝑉𝑦
𝑉𝑧

) = (
1

2
)(

𝛽0
𝛽1
𝛽2

) Eq 5.2.1 

 

5.3 Soft Iron Matrix 

The soft iron matrix 𝑾 is always the identity matrix in the 4 parameter magnetic calibration model. 

 

5.4 Geomagnetic Field Strength 

The geomagnetic field strength is computed from the last component of equation 5.1.6 as. 

𝐵2 = 𝛽3 + 𝑉𝑥
2 + 𝑉𝑦

2 + 𝑉𝑧
2 ⇒  𝐵 = √𝛽3 + 𝑉𝑥

2 + 𝑉𝑦
2 + 𝑉𝑧

2 Eq 5.4.1 

 

5.5 Fit Error 
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The residuals 𝑟[𝑖] of equation 5.1.4 have dimensions of magnetic field strength squared. The error function 𝐸 is 
proportional to the number of measurements 𝑀 and has dimensions of the residuals squared or the fourth 

power of the geomagnetic field strength 𝐵. The dimensionless measure of fit error 𝜀 used is defined to be: 

𝜀 =
1

2𝐵2
√
𝐸

𝑀
 

 Eq 5.5.1 
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6 Seven Parameter Magnetic Calibration Model 

6.1 Construction of Seven Parameter Linear Model 

This section documents the magnetic calibration algorithm implemented in function fUpdateCalibration7EIG 
which extends the 4 parameters model of the previous section with the additional of three gain terms of the 
diagonal of the soft iron matrix giving a total of 7 magnetic calibration parameters. This model gives a 
significant improvement when either the magnetometer sensor has differing gains in its three channels or when 
the PCB has differing magnetic impedances along its three Cartesian axes. The diagonal form of 𝑾 means 
that the magnetic distribution ellipsoid is modeled as having its principal axes aligned with the PCB's Cartesian 
axes. 

The magnetometer measurement 𝑩𝑝 in the presence of arbitrary orientation and hard and soft iron interference 

is modeled as: 

𝑩𝑝 =  𝑾𝑹𝑩𝑟 + 𝑽  Eq 6.1.1 

where for the 7 parameter magnetic calibration model the soft iron matrix 𝑾 is diagonal. 

The locus of the magnetometer measurements is: 

{𝑾−1(𝑩𝑝 − 𝑽)}
𝑇
𝑾−𝟏(𝑩𝑝 − 𝑽) = (𝑩𝑝 − 𝑽)

𝑇
(𝑾−1)𝑇𝑾−1(𝑩𝑝 − 𝑽) = (𝑩𝑝 − 𝑽)

𝑇
𝑨(𝑩𝑝 − 𝑽) = 𝐵

2 Eq 6.1.2 

The manipulations which follow derive an expression for the error residual 𝑟[𝑖] from the i-th measurement 
defined as: 

𝑟[𝑖] = |𝑾−1(𝑩𝑝[𝑖] − 𝑽)|
2
− 𝐵2 = |𝑩𝑐[𝑖]|

2 − 𝐵2 Eq 6.1.3 

𝑟[𝑖] is defined as the difference between the squared modulus of the calibrated magnetometer measurement 

𝑩𝑐[𝑖] and the square of the radius of the geomagnetic sphere. 𝑟[𝑖] therefore has dimensions of 𝐵2 as was also 
the case for the four element calibration model. 

Expanding equation 6.1.3 gives: 

𝑟[𝑖] = 𝑩𝑝
𝑇𝑨𝑩𝑝 −𝑩𝑝

𝑇𝑨𝑽− 𝑽𝑇𝑨𝑩𝑝 + 𝑽
𝑇𝑨𝑽− 𝐵2 Eq 6.1.4 

Since 𝑩𝑝
𝑇𝑨𝑽 is a scalar: 

(𝑩𝑝
𝑇𝑨𝑽)

𝑇
= 𝑽𝑇𝑨𝑩𝑝 = 𝑩𝑝

𝑇𝑨𝑽  Eq 6.1.5 

Substituting equation 6.1.5 into equation 6.1.4 and re-arranging gives: 

𝑟[𝑖] = 𝑩𝑝
𝑇𝑨𝑩𝑝 − 2𝑩𝑝

𝑇𝑨𝑽+ 𝑽𝑇𝑨𝑽− 𝐵2 Eq 6.1.6 

Expanding equation 6.1.6 for the i-th measurement gives: 

𝑟[𝑖] = 𝐴𝑥𝑥𝐵𝑝𝑥[𝑖]
2 + 𝐴𝑦𝑦𝐵𝑝𝑦[𝑖]

2 + 𝐴𝑧𝑧𝐵𝑝𝑧[𝑖]
2−2𝐵𝑝𝑥[𝑖]𝐴𝑥𝑥𝑉𝑥 − 2𝐵𝑝𝑦[𝑖]𝐴𝑦𝑦𝑉𝑦 − 2𝐵𝑝𝑧[𝑖]𝐴𝑧𝑧𝑉𝑧 

+𝐴𝑥𝑥𝑉𝑥
2 + 𝐴𝑦𝑦𝑉𝑦

2 + 𝐴𝑧𝑧𝑉𝑧
2 − 𝐵2 Eq 6.1.7 

Simplifying and returning to matrix format gives: 

𝑟[𝑖] =

(

 
 
 
 
 

𝐵𝑝𝑥[𝑖]
2

𝐵𝑝𝑦[𝑖]
2

𝐵𝑝𝑧[𝑖]
2

𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑧[𝑖]

1 )

 
 
 
 
 

𝑇

(

 
 
 
 
 

𝐴𝑥𝑥
𝐴𝑦𝑦
𝐴𝑧𝑧

−2𝐴𝑥𝑥𝑉𝑥
−2𝐴𝑦𝑦𝑉𝑦
−2𝐴𝑧𝑧𝑉𝑧

𝐴𝑥𝑥𝑉𝑥
2 + 𝐴𝑦𝑦𝑉𝑦

2 + 𝐴𝑧𝑧𝑉𝑧
2 − 𝐵2)

 
 
 
 
 

 Eq 6.1.8 

Defining the right hand side of equation 6.1.8 to be the solution vector 𝜷 gives: 
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𝜷 =

(

 
 
 
 

𝛽0
𝛽1
𝛽2
𝛽3
𝛽4
𝛽5
𝛽6)

 
 
 
 

=

(

 
 
 
 
 

𝐴𝑥𝑥
𝐴𝑦𝑦
𝐴𝑧𝑧

−2𝐴𝑥𝑥𝑉𝑥
−2𝐴𝑦𝑦𝑉𝑦
−2𝐴𝑧𝑧𝑉𝑧

𝐴𝑥𝑥𝑉𝑥
2 +𝐴𝑦𝑦𝑉𝑦

2 +𝐴𝑧𝑧𝑉𝑧
2 −𝐵2)

 
 
 
 
 

 Eq 6.1.9 

Equation 6.1.7 for the error residual 𝑟[𝑖] whose squared sum is to be minimized is now: 

𝑟[𝑖] =

(

 
 
 
 
 

𝐵𝑝𝑥[𝑖]
2

𝐵𝑝𝑦[𝑖]
2

𝐵𝑝𝑧[𝑖]
2

𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑧[𝑖]

1 )

 
 
 
 
 

𝑇

(

 
 
 
 
 

𝛽0
𝛽1
𝛽2
𝛽3
𝛽4
𝛽5
𝛽6)

 
 
 
 
 

 Eq 6.1.10 

With the definition of the error residual vector 𝒓 from 𝑀 measurements as: 

𝒓 = (

𝑟[0]
𝑟[1]
…

𝑟[𝑀 − 1]

)  Eq 6.1.11 

and 𝑿 defined as is the 𝑀 by 7 measurement matrix: 

𝑿 =

(

 
 

𝐵𝑝𝑥[0]
2 𝐵𝑝𝑦[0]

2 𝐵𝑝𝑧[0]
2 𝐵𝑝𝑥[0] 𝐵𝑝𝑦[0] 𝐵𝑝𝑧[0] 1

𝐵𝑝𝑥[1]
2 𝐵𝑝𝑦[1]

2 𝐵𝑝𝑧[1]
2 𝐵𝑝𝑥[1] 𝐵𝑝𝑦[1] 𝐵𝑝𝑧[1] 1

… … … … … … 1
𝐵𝑝𝑥[𝑀 − 1]2 𝐵𝑝𝑦[𝑀 − 1]2 𝐵𝑝𝑧[𝑀 − 1]2 𝐵𝑝𝑥[𝑀 − 1] 𝐵𝑝𝑦[𝑀 − 1] 𝐵𝑝𝑧[𝑀 − 1] 1

)

 
 

 Eq 6.1.12 

then equation 6.1.8 can be expanded to represent 𝑀 measurements as: 

 𝒓 = 𝑿𝜷 Eq 6.1.13 

The model being fitted is the homogeneous model 𝑿𝜷 = 0 which can be solved for 𝜷 using the eigen-
decomposition approach described in section 2. 

The 7x7 product matrix 𝑿𝑇𝑿 whose eigenvectors and eigenvalues are to be determined evaluates to: 

𝑿𝑇𝑿 =

(

 
 
 
 
 

𝐵𝑝𝑥[0]
2 𝐵𝑝𝑥[1]

2 … 𝐵𝑝𝑥[𝑀 − 1]2

𝐵𝑝𝑦[0]
2 𝐵𝑝𝑦[1]

2 … 𝐵𝑝𝑦[𝑀 − 1]2

𝐵𝑝𝑧[0]
2 𝐵𝑝𝑧[1]

2 … 𝐵𝑝𝑧[𝑀 − 1]2

𝐵𝑝𝑥[0] 𝐵𝑝𝑥[1] … 𝐵𝑝𝑥[𝑀 − 1]

𝐵𝑝𝑦[0] 𝐵𝑝𝑦[1] … 𝐵𝑝𝑦[𝑀 − 1]

𝐵𝑝𝑧[0] 𝐵𝑝𝑧[1] … 𝐵𝑝𝑧[𝑀 − 1]

1 1 1 1 )

 
 
 
 
 

(

 
 

𝐵𝑝𝑥[0]
2 𝐵𝑝𝑦[0]

2 𝐵𝑝𝑧[0]
2 𝐵𝑝𝑥[0] 𝐵𝑝𝑦[0] 𝐵𝑝𝑧[0] 1

𝐵𝑝𝑥[1]
2 𝐵𝑝𝑦[1]

2 𝐵𝑝𝑧[1]
2 𝐵𝑝𝑥[1] 𝐵𝑝𝑦[1] 𝐵𝑝𝑧[1] 1

… … … … … … 1
𝐵𝑝𝑥[𝑀 − 1]2 𝐵𝑝𝑦[𝑀 − 1]2 𝐵𝑝𝑧[𝑀 − 1]2 𝐵𝑝𝑥[𝑀 − 1] 𝐵𝑝𝑦[𝑀 − 1] 𝐵𝑝𝑧[𝑀 − 1] 1

)

 
 

 

 Eq 6.1.14 
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= ∑

(

 
 
 
 
 
 

𝐵𝑝𝑥[𝑖]
4 𝐵𝑝𝑥[𝑖]

2𝐵𝑝𝑦[𝑖]
2 𝐵𝑝𝑥[𝑖]

2𝐵𝑝𝑧[𝑖]
2 𝐵𝑝𝑥[𝑖]

3 𝐵𝑝𝑥[𝑖]
2𝐵𝑝𝑦[𝑖] 𝐵𝑝𝑥[𝑖]

2𝐵𝑝𝑧[𝑖] 𝐵𝑝𝑥[𝑖]
2

𝐵𝑝𝑦[𝑖]
2𝐵𝑝𝑥[𝑖]

2 𝐵𝑝𝑦[𝑖]
4 𝐵𝑝𝑦[𝑖]

2𝐵𝑝𝑧[𝑖]
2 𝐵𝑝𝑦[𝑖]

2𝐵𝑝𝑥[𝑖] 𝐵𝑝𝑦[𝑖]
3 𝐵𝑝𝑦[𝑖]

2𝐵𝑝𝑧[𝑖] 𝐵𝑝𝑦[𝑖]
2

𝐵𝑝𝑧[𝑖]
2𝐵𝑝𝑥[𝑖]

2 𝐵𝑝𝑧[𝑖]
2𝐵𝑝𝑦[𝑖]

2 𝐵𝑝𝑧[𝑖]
4 𝐵𝑝𝑧[𝑖]

2𝐵𝑝𝑥[𝑖] 𝐵𝑝𝑧[𝑖]
2𝐵𝑝𝑦[𝑖] 𝐵𝑝𝑧[𝑖]

3 𝐵𝑝𝑧[𝑖]
2

𝐵𝑝𝑥[𝑖]
3 𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖]

2 𝐵𝑝𝑥[𝑖]𝐵𝑝𝑧[𝑖]
2 𝐵𝑝𝑥[𝑖]

2 𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖] 𝐵𝑝𝑥[𝑖]𝐵𝑝𝑧[𝑖] 𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑦[𝑖]𝐵𝑝𝑥[𝑖]
2 𝐵𝑝𝑦[𝑖]

3 𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖]
2 𝐵𝑝𝑦[𝑖]𝐵𝑝𝑥[𝑖] 𝐵𝑝𝑦[𝑖]

2 𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖] 𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑧[𝑖]𝐵𝑝𝑥[𝑖]
2 𝐵𝑝𝑧[𝑖]𝐵𝑝𝑦[𝑖]

2 𝐵𝑝𝑧[𝑖]
3 𝐵𝑝𝑧[𝑖]𝐵𝑝𝑥[𝑖] 𝐵𝑝𝑧[𝑖]𝐵𝑝𝑦[𝑖] 𝐵𝑝𝑧[𝑖]

2 𝐵𝑝𝑧[𝑖]

𝐵𝑝𝑥[𝑖]
2 𝐵𝑝𝑦[𝑖]

2 𝐵𝑝𝑧[𝑖]
2 𝐵𝑝𝑥[𝑖] 𝐵𝑝𝑦[𝑖] 𝐵𝑝𝑧[𝑖] 1 )

 
 
 
 
 
 

𝑀−1

𝑖=0

 

 Eq 6.1.15 

Since the eigenvalues of 𝑿𝑇𝑿 are equal to the fit errors associated with the seven candidate eigenvector 

solutions, the required solution vector 𝜷 is the eigenvector associated with the smallest eigenvalue 𝜆𝑚𝑖𝑛. 

 

6.2 Ellipsoid Fit Matrix 

The ellipsoid fit matrix 𝑨 is obtained directly from the first three rows of the solution vector 𝜷 in equation 6.1.9: 

𝑨 = (

𝐴𝑥𝑥 0 0
0 𝐴𝑦𝑦 0

0 0 𝐴𝑧𝑧

) = (

𝛽0 0 0

0 𝛽1 0

0 0 𝛽2

) Eq 6.2.1 

The solution eigenvector 𝜷 is undefined within a multiplicative factor of +/-1 (assuming it's normalized to unit 

magnitude). A test must therefore be performed on the determinant of the ellipsoid matrix 𝑨 defined in equation 
7.2.1 and the entire solution vector 𝜷 negated if the determinant is negative. Negating the solution vector 𝜷 

changes the sign of 𝑨 and ensures a positive determinant. 

The ellipsoid matrix 𝑨 is then normalized to have unit determinant: 

|

𝐴𝑥𝑥 0 0
0 𝐴𝑦𝑦 0

0 0 𝐴𝑧𝑧

| = 𝐴𝑥𝑥𝐴𝑦𝑦𝐴𝑧𝑧 = 1 Eq 6.4.2 

The justification for the normalization in equation 6.4.2 is that it's impossible to separate out the geomagnetic 

field strength 𝐵 from the soft iron magnetic matrix gain terms. A 25 uT geomagnetic field strength with no soft 
iron gain terms gives the same magnetometer measurement as a 50uT geomagnetic field strength attenuated 
50% by magnetic shielding. The solution taken in the Freescale software sets the determinant of the soft iron 
matrices to 1 and assigns the magnitude of the calibrated measurement to the geomagnetic field strength 𝐵. 

 

6.3 Hard Iron Vector 

The hard iron model is given by equation 6.1.9 as: 

(

−2𝐴𝑥𝑥𝑉𝑥
−2𝐴𝑦𝑦𝑉𝑦
−2𝐴𝑧𝑧𝑉𝑧

) = (

𝛽3
𝛽4
𝛽5

) ⇒ (

𝑉𝑥
𝑉𝑦
𝑉𝑧

) =

(

 
 
 
 
(
−𝛽3
2𝐴𝑥𝑥

)

(
−𝛽4
2𝐴𝑦𝑦

)

(
−𝛽5
2𝐴𝑧𝑧

)
)

 
 
 
 

=

(

 
 
 
 
 
(
−𝛽3
2𝛽0

)

(
−𝛽4
2𝛽1

)

(
−𝛽5
2𝛽2

)
)

 
 
 
 
 

 

 Eq 6.3.1 

6.4 Inverse Soft Iron Matrix 

The inverse soft iron matrix by easily be found from the square root of the diagonal ellipsoid matrix as: 
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𝑾−1 = (

𝑊𝑥𝑥 0 0
0 𝑊𝑦𝑦 0

0 0 𝑊𝑧𝑧

) = √𝑨 = (

√𝛽0 0 0

0 √𝛽1 0

0 0 √𝛽2

) Eq 6.4.1 

 

6.5 Geomagnetic Field Strength 

The geomagnetic field strength 𝐵 is given by the last component of equation 6.1.9: 

𝛽6 = 𝐴𝑥𝑥𝑉𝑥
2 + 𝐴𝑦𝑦𝑉𝑦

2 + 𝐴𝑧𝑧𝑉𝑧
2 − 𝐵2 Eq 6.5.1 

⇒ 𝐵2 = 𝐴𝑥𝑥𝑉𝑥
2 + 𝐴𝑦𝑦𝑉𝑦

2 + 𝐴𝑧𝑧𝑉𝑧
2 − 𝛽6 Eq 6.5.2 

Since the solution vector and ellipsoid matrix elements may be negated in software to force a positive 
determinant, it is necessary to compute the geomagnetic field from the absolute value of the right hand side of 
equation 6.5.2. 

𝐵 = √|𝐴𝑥𝑥𝑉𝑥
2 + 𝐴𝑦𝑦𝑉𝑦

2 + 𝐴𝑧𝑧𝑉𝑧
2 − 𝛽6| Eq 6.5.3 

 

6.6 Fit Error 

The error function 𝐸 equals the smallest eigenvalue 𝜆𝑚𝑖𝑛 of the product matrix 𝑿𝑇𝑿 but is not normalized to the 

number of measurement points 𝑀 nor is it normalized to the geomagnetic field strength 𝐵. Since 𝐸 = 𝒓𝑇𝒓 and 𝒓 

has 𝑀 elements with each element having dimensions 𝐵2, a suitable normalized calibration fit error measure 𝜀 
is: 

𝜀 =
1

2𝐵2
√
𝜆𝑚𝑖𝑛
𝑀

 

 Eq 6.6.1 
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7 Ten Parameter Magnetic Calibration Model 

7.1 Construction of the Ten Parameter Linear Model 

This section documents the magnetic calibration algorithm implemented in function fUpdateCalibration10EIG 
which extends the 7 parameters model of the previous section with the additional of 3 off-diagonal soft iron 
matrix terms to give a total of 10 magnetic calibration parameters. This model gives an improvement over the 7 
element model when the PCB's magnetic impedances steer the geomagnetic field in directions which are not 
aligned with the PCB's Cartesian axes giving a rotated magnetic ellipsoid. 

The magnetometer measurement 𝑩𝑝 in the presence of arbitrary orientation and hard and soft iron interference 

is modeled as: 

𝑩𝑝 =  𝑾𝑹𝑩𝑟 + 𝑽  Eq 7.1.1 

where for the 10 parameter magnetic calibration model the soft iron matrix 𝑾 is symmetric. 

The locus of the magnetometer measurements is: 

{𝑾−1(𝑩𝑝 − 𝑽)}
𝑇
𝑾−𝟏(𝑩𝑝 − 𝑽) = (𝑩𝑝 − 𝑽)

𝑇
(𝑾−1)𝑇𝑾−1(𝑩𝑝 − 𝑽) = (𝑩𝑝 − 𝑽)

𝑇
𝑨(𝑩𝑝 − 𝑽) = 𝐵

2 Eq 7.1.2 

Equation 7.1.2 model the locus of the magnetometer measurements 𝑩𝑝 as lying on the surface of an ellipsoid 

with arbitrary dimensions and directions of its axes and offset from the origin by the hard iron vector 𝑽.  

The manipulations which follow derive an expression for the error residual 𝑟[𝑖] from the i-th measurement 
defined as: 

𝑟[𝑖] = |𝑾−1(𝑩𝑝[𝑖] − 𝑽)|
2
− 𝐵2 = |𝑩𝑐[𝑖]|

2 − 𝐵2 Eq 7.1.3 

𝑟[𝑖] is defined as the difference between the squared modulus of the calibrated magnetometer measurement 

𝑩𝑐[𝑖] and the square of the radius of the geomagnetic sphere. 𝑟[𝑖] therefore has dimensions of 𝐵2. 

Expanding equation 7.1.3 gives: 

𝑟[𝑖] = 𝑩𝑝
𝑇𝑨𝑩𝑝 −𝑩𝑝

𝑇𝑨𝑽− 𝑽𝑇𝑨𝑩𝑝 + 𝑽
𝑇𝑨𝑽− 𝐵2 Eq 7.1.4 

Since 𝑩𝑝
𝑇𝑨𝑽 is a scalar: 

(𝑩𝑝
𝑇𝑨𝑽)

𝑇
= 𝑽𝑇𝑨𝑩𝑝 = 𝑩𝑝

𝑇𝑨𝑽  Eq 7.1.5 

Substituting equation 7.1.5 into equation 7.1.4 and re-arranging gives: 

𝑟[𝑖] = 𝑩𝑝
𝑇𝑨𝑩𝑝 − 2𝑩𝑝

𝑇𝑨𝑽+ 𝑽𝑇𝑨𝑽− 𝐵2 Eq 7.1.6 

Expanding equation 7.1.6 for the i-th measurement gives: 

𝑟[𝑖] = (

𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑧[𝑖]

)

𝑇

(

𝐴𝑥𝑥 𝐴𝑥𝑦 𝐴𝑥𝑧
𝐴𝑥𝑦 𝐴𝑦𝑦 𝐴𝑦𝑧
𝐴𝑥𝑧 𝐴𝑦𝑧 𝐴𝑧𝑧

)(

𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑧[𝑖]

) 

−2(

𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑧[𝑖]

)

𝑇

(

𝐴𝑥𝑥 𝐴𝑥𝑦 𝐴𝑥𝑧
𝐴𝑥𝑦 𝐴𝑦𝑦 𝐴𝑦𝑧
𝐴𝑥𝑧 𝐴𝑦𝑧 𝐴𝑧𝑧

)(

𝑉𝑥
𝑉𝑦
𝑉𝑧

) 

+(

𝑉𝑥
𝑉𝑦
𝑉𝑧

)

𝑇

(

𝐴𝑥𝑥 𝐴𝑥𝑦 𝐴𝑥𝑧
𝐴𝑥𝑦 𝐴𝑦𝑦 𝐴𝑦𝑧
𝐴𝑥𝑧 𝐴𝑦𝑧 𝐴𝑧𝑧

)(

𝑉𝑥
𝑉𝑦
𝑉𝑧

) − 𝐵2 Eq 7.1.7 

The first term in equation 7.1.7 expands to: 
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(

𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑧[𝑖]

)

𝑇

(

𝐴𝑥𝑥 𝐴𝑥𝑦 𝐴𝑥𝑧
𝐴𝑥𝑦 𝐴𝑦𝑦 𝐴𝑦𝑧
𝐴𝑥𝑧 𝐴𝑦𝑧 𝐴𝑧𝑧

)(

𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑧[𝑖]

) = (

𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑧[𝑖]

)

𝑇

(

𝐴𝑥𝑥𝐵𝑝𝑥[𝑖] + 𝐴𝑥𝑦𝐵𝑝𝑦[𝑖] + 𝐴𝑥𝑧𝐵𝑝𝑧[𝑖]

𝐴𝑥𝑦𝐵𝑝𝑥[𝑖] + 𝐴𝑦𝑦𝐵𝑝𝑦[𝑖] + 𝐴𝑦𝑧𝐵𝑝𝑧[𝑖]

𝐴𝑥𝑧𝐵𝑝𝑥[𝑖] + 𝐴𝑦𝑧𝐵𝑝𝑦[𝑖] + 𝐴𝑧𝑧𝐵𝑝𝑧[𝑖]

) Eq 7.1.8 

= 𝐴𝑥𝑥𝐵𝑝𝑥[𝑖]
2 + 𝐴𝑦𝑦𝐵𝑝𝑦[𝑖]

2 + 𝐴𝑧𝑧𝐵𝑝𝑧[𝑖]
2 + 2𝐴𝑥𝑦𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖] + 2𝐴𝑥𝑧𝐵𝑝𝑥[𝑖]𝐵𝑝𝑧[𝑖] + 2𝐴𝑦𝑧𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖] Eq 7.1.9 

The second term in equation 7.1.7 expands to: 

−2(

𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑧[𝑖]

)

𝑇

(

𝐴𝑥𝑥 𝐴𝑥𝑦 𝐴𝑥𝑧
𝐴𝑥𝑦 𝐴𝑦𝑦 𝐴𝑦𝑧
𝐴𝑥𝑧 𝐴𝑦𝑧 𝐴𝑧𝑧

)(

𝑉𝑥
𝑉𝑦
𝑉𝑧

) = −2(

𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑧[𝑖]

)

𝑇

(

𝐴𝑥𝑥𝑉𝑥 + 𝐴𝑥𝑦𝑉𝑦 + 𝐴𝑥𝑧𝑉𝑧
𝐴𝑥𝑦𝑉𝑥 + 𝐴𝑦𝑦𝑉𝑦 + 𝐴𝑦𝑧𝑉𝑧
𝐴𝑥𝑧𝑉𝑥 + 𝐴𝑦𝑧𝑉𝑦 + 𝐴𝑧𝑧𝑉𝑧

) Eq 7.1.10 

= −2𝐵𝑝𝑥[𝑖]𝐴𝑥𝑥𝑉𝑥 − 2𝐵𝑝𝑥[𝑖]𝐴𝑥𝑦𝑉𝑦 − 2𝐵𝑝𝑥[𝑖]𝐴𝑥𝑧𝑉𝑧 

−2𝐵𝑝𝑦[𝑖]𝐴𝑥𝑦𝑉𝑥 − 2𝐵𝑝𝑦[𝑖]𝐴𝑦𝑦𝑉𝑦 − 2𝐵𝑝𝑦[𝑖]𝐴𝑦𝑧𝑉𝑧 

−2𝐵𝑝𝑧[𝑖]𝐴𝑥𝑧𝑉𝑥 − 2𝐵𝑝𝑧[𝑖]𝐴𝑦𝑧𝑉𝑦 − 2𝐵𝑝𝑧[𝑖]𝐴𝑧𝑧𝑉𝑧 Eq 7.1.11 

The third term in equation 7.1.7 expands to: 

(

𝑉𝑥
𝑉𝑦
𝑉𝑧

)

𝑇

(

𝐴𝑥𝑥 𝐴𝑥𝑦 𝐴𝑥𝑧
𝐴𝑥𝑦 𝐴𝑦𝑦 𝐴𝑦𝑧
𝐴𝑥𝑧 𝐴𝑦𝑧 𝐴𝑧𝑧

)(

𝑉𝑥
𝑉𝑦
𝑉𝑧

) = (

𝑉𝑥
𝑉𝑦
𝑉𝑧

)

𝑇

(

𝐴𝑥𝑥𝑉𝑥 + 𝐴𝑥𝑦𝑉𝑦 + 𝐴𝑥𝑧𝑉𝑧
𝐴𝑥𝑦𝑉𝑥 + 𝐴𝑦𝑦𝑉𝑦 + 𝐴𝑦𝑧𝑉𝑧
𝐴𝑥𝑧𝑉𝑥 + 𝐴𝑦𝑧𝑉𝑦 + 𝐴𝑧𝑧𝑉𝑧

) Eq 7.1.12 

= 𝐴𝑥𝑥𝑉𝑥
2 + 𝐴𝑦𝑦𝑉𝑦

2 + 𝐴𝑧𝑧𝑉𝑧
2 + 2𝐴𝑥𝑦𝑉𝑥𝑉𝑦 + 2𝐴𝑥𝑧𝑉𝑥𝑉𝑧 + 2𝐴𝑦𝑧𝑉𝑦𝑉𝑧 Eq 7.1.13 

The full equation for the residual error 𝑟[𝑖] from the i-th observation is then: 

𝑟[𝑖] = 𝐴𝑥𝑥𝐵𝑝𝑥[𝑖]
2 + 𝐴𝑦𝑦𝐵𝑝𝑦[𝑖]

2 + 𝐴𝑧𝑧𝐵𝑝𝑧[𝑖]
2 

+2𝐴𝑥𝑦𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖] + 2𝐴𝑥𝑧𝐵𝑝𝑥[𝑖]𝐵𝑝𝑧[𝑖] + 2𝐴𝑦𝑧𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖] 

−2𝐵𝑝𝑥[𝑖]𝐴𝑥𝑥𝑉𝑥 − 2𝐵𝑝𝑥[𝑖]𝐴𝑥𝑦𝑉𝑦 − 2𝐵𝑝𝑥[𝑖]𝐴𝑥𝑧𝑉𝑧 

−2𝐵𝑝𝑦[𝑖]𝐴𝑥𝑦𝑉𝑥 − 2𝐵𝑝𝑦[𝑖]𝐴𝑦𝑦𝑉𝑦 − 2𝐵𝑝𝑦[𝑖]𝐴𝑦𝑧𝑉𝑧 

−2𝐵𝑝𝑧[𝑖]𝐴𝑥𝑧𝑉𝑥 − 2𝐵𝑝𝑧[𝑖]𝐴𝑦𝑧𝑉𝑦 − 2𝐵𝑝𝑧[𝑖]𝐴𝑧𝑧𝑉𝑧 

+𝐴𝑥𝑥𝑉𝑥
2 + 𝐴𝑦𝑦𝑉𝑦

2 + 𝐴𝑧𝑧𝑉𝑧
2 + 2𝐴𝑥𝑦𝑉𝑥𝑉𝑦 + 2𝐴𝑥𝑧𝑉𝑥𝑉𝑧 + 2𝐴𝑦𝑧𝑉𝑦𝑉𝑧 − 𝐵

2 Eq 7.1.14 

Simplifying and returning to matrix format gives: 

𝑟[𝑖] =

(

 
 
 
 
 
 
 
 
 

𝐵𝑝𝑥[𝑖]
2

2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖]

2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑧[𝑖]

𝐵𝑝𝑦[𝑖]
2

2𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖]

𝐵𝑝𝑧[𝑖]
2

𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑧[𝑖]

1 )

 
 
 
 
 
 
 
 
 

𝑇

(

 
 
 
 
 
 
 
 
 

𝐴𝑥𝑥
𝐴𝑥𝑦
𝐴𝑥𝑧
𝐴𝑦𝑦
𝐴𝑦𝑧
𝐴𝑧𝑧

−2𝐴𝑥𝑥𝑉𝑥 − 2𝐴𝑥𝑦𝑉𝑦 − 2𝐴𝑥𝑧𝑉𝑧
−2𝐴𝑥𝑦𝑉𝑥 − 2𝐴𝑦𝑦𝑉𝑦 − 2𝐴𝑦𝑧𝑉𝑧
−2𝐴𝑥𝑧𝑉𝑥 − 2𝐴𝑦𝑧𝑉𝑦 − 2𝐴𝑧𝑧𝑉𝑧

𝐴𝑥𝑥𝑉𝑥
2 + 2𝐴𝑥𝑦𝑉𝑥𝑉𝑦 + 2𝐴𝑥𝑧𝑉𝑥𝑉𝑧 + 𝐴𝑦𝑦𝑉𝑦

2 + 2𝐴𝑦𝑧𝑉𝑦𝑉𝑧 + 𝐴𝑧𝑧𝑉𝑧
2 − 𝐵2)

 
 
 
 
 
 
 
 
 

 Eq 7.1.15 

Defining the right hand side of equation 7.1.15 to be the solution vector 𝜷 gives: 
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𝜷 =

(

 
 
 
 
 
 
 
 

𝛽0
𝛽1
𝛽2
𝛽3
𝛽4
𝛽5
𝛽6
𝛽7
𝛽8
𝛽9)

 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 

𝐴𝑥𝑥
𝐴𝑥𝑦
𝐴𝑥𝑧
𝐴𝑦𝑦
𝐴𝑦𝑧
𝐴𝑧𝑧

−2𝐴𝑥𝑥𝑉𝑥− 2𝐴𝑥𝑦𝑉𝑦 − 2𝐴𝑥𝑧𝑉𝑧
−2𝐴𝑥𝑦𝑉𝑥− 2𝐴𝑦𝑦𝑉𝑦 − 2𝐴𝑦𝑧𝑉𝑧
−2𝐴𝑥𝑧𝑉𝑥 − 2𝐴𝑦𝑧𝑉𝑦 − 2𝐴𝑧𝑧𝑉𝑧

𝐴𝑥𝑥𝑉𝑥
2 + 2𝐴𝑥𝑦𝑉𝑥𝑉𝑦 + 2𝐴𝑥𝑧𝑉𝑥𝑉𝑧 +𝐴𝑦𝑦𝑉𝑦

2 + 2𝐴𝑦𝑧𝑉𝑦𝑉𝑧 +𝐴𝑧𝑧𝑉𝑧
2 −𝐵2)

 
 
 
 
 
 
 
 
 

 Eq 7.1.16 

 

=

(

 
 
 
 
 
 
 
 
 

𝐴𝑥𝑥
𝐴𝑥𝑦
𝐴𝑥𝑧
𝐴𝑦𝑦
𝐴𝑦𝑧
𝐴𝑧𝑧

−2𝛽0𝑉𝑥 − 2𝛽1𝑉𝑦 − 2𝛽2𝑉𝑧
−2𝛽1𝑉𝑥 − 2𝛽3𝑉𝑦 − 2𝛽4𝑉𝑧
−2𝛽2𝑉𝑥 − 2𝛽4𝑉𝑦 − 2𝛽5𝑉𝑧

𝐴𝑥𝑥𝑉𝑥
2 + 2𝐴𝑥𝑦𝑉𝑥𝑉𝑦 + 2𝐴𝑥𝑧𝑉𝑥𝑉𝑧 + 𝐴𝑦𝑦𝑉𝑦

2 + 2𝐴𝑦𝑧𝑉𝑦𝑉𝑧 + 𝐴𝑧𝑧𝑉𝑧
2 − 𝐵2)

 
 
 
 
 
 
 
 
 

 Eq 7.1.17 

Equation 7.1.15 for the error residual 𝑟[𝑖] whose squared sum is to be minimized is then: 

𝑟[𝑖] =

(

 
 
 
 
 
 
 
 
 

𝐵𝑝𝑥[𝑖]
2

2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖]

2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑧[𝑖]

𝐵𝑝𝑦[𝑖]
2

2𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖]

𝐵𝑝𝑧[𝑖]
2

𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑧[𝑖]

1 )

 
 
 
 
 
 
 
 
 

𝑇

(

 
 
 
 
 
 
 
 

𝛽0
𝛽1
𝛽2
𝛽3
𝛽4
𝛽5
𝛽6
𝛽7
𝛽8
𝛽9)

 
 
 
 
 
 
 
 

 Eq 7.1.18 

With the definition of the error residual vector 𝒓 from 𝑀 measurements as: 

𝒓 = (

𝑟[0]
𝑟[1]
…

𝑟[𝑀 − 1]

)  Eq 7.1.19 

and 𝑿 defined as the 𝑀 by 10 measurement matrix: 

𝑿 =

(

 
 

𝐵𝑝𝑥[0]
2 2𝐵𝑝𝑥[0]𝐵𝑝𝑦[0] … 𝐵𝑝𝑦[0] 𝐵𝑝𝑧[0] 1

𝐵𝑝𝑥[1]
2 2𝐵𝑝𝑥[1]𝐵𝑝𝑦[1] … 𝐵𝑝𝑦[1] 𝐵𝑝𝑧[1] 1

… … … … … 1
𝐵𝑝𝑥[𝑀 − 1]2 2𝐵𝑝𝑥[𝑀 − 1]𝐵𝑝𝑦[𝑀 − 1] … 𝐵𝑝𝑦[𝑀 − 1] 𝐵𝑝𝑧[𝑀 − 1] 1

)

 
 

 Eq 7.1.20 

then equation 7.1.18 can be expanded to represent 𝑀 measurements as: 
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𝒓 = 𝑿𝜷 Eq 7.1.21 

The model being fitted is the homogeneous model 𝑿𝜷 = 0 which can be solved for 𝜷 using the eigen-
decomposition approach described in section 2. 

The 10x10 product matrix 𝑿𝑇𝑿 whose eigenvectors and eigenvalues are to be determined evaluates to: 

𝑿𝑇𝑿 = ∑

(

 
 
 
 
 
 
 
 
 
 

𝐵𝑝𝑥[𝑖]
4 2𝐵𝑝𝑥[𝑖]

3𝐵𝑝𝑦[𝑖] 2𝐵𝑝𝑥[𝑖]
3𝐵𝑝𝑧[𝑖] … 𝐵𝑝𝑥[𝑖]

2𝐵𝑝𝑧[𝑖] 𝐵𝑝𝑥[𝑖]
2

2𝐵𝑝𝑥[𝑖]
3𝐵𝑝𝑦[𝑖] 4𝐵𝑝𝑥[𝑖]

2𝐵𝑝𝑦[𝑖]
2 4𝐵𝑝𝑥[𝑖]

2𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖] … 2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖] 2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖]

2𝐵𝑝𝑥[𝑖]
3𝐵𝑝𝑧[𝑖] 4𝐵𝑝𝑥[𝑖]

2𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖] 4𝐵𝑝𝑥[𝑖]
2𝐵𝑝𝑧[𝑖]

2 … 2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑧[𝑖]
2 2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑧[𝑖]

𝐵𝑝𝑥[𝑖]
2𝐵𝑝𝑦[𝑖]

2 2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖]
3 2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖]

2𝐵𝑝𝑧[𝑖] … 𝐵𝑝𝑦[𝑖]
2𝐵𝑝𝑧[𝑖] 𝐵𝑝𝑦[𝑖]

2

2𝐵𝑝𝑥[𝑖]
2𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖] 4𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖]

2𝐵𝑝𝑧[𝑖] 4𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖]
2 … 2𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖]

2 2𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖]

𝐵𝑝𝑥[𝑖]
2𝐵𝑝𝑧[𝑖]

2 2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖]
2 2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑧[𝑖]

3 … 𝐵𝑝𝑧[𝑖]
3 𝐵𝑝𝑧[𝑖]

2

𝐵𝑝𝑥[𝑖]
3 2𝐵𝑝𝑥[𝑖]

2𝐵𝑝𝑦[𝑖] 2𝐵𝑝𝑥[𝑖]
2𝐵𝑝𝑧[𝑖] … 𝐵𝑝𝑥[𝑖]𝐵𝑝𝑧[𝑖] 𝐵𝑝𝑥[𝑖]

𝐵𝑝𝑥[𝑖]
2𝐵𝑝𝑦[𝑖] 2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖]

2 2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖] … 𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖] 𝐵𝑝𝑦[𝑖]

𝐵𝑝𝑥[𝑖]
2𝐵𝑝𝑧[𝑖] 2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖]𝐵𝑝𝑧[𝑖] 2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑧[𝑖]

2 … 𝐵𝑝𝑧[𝑖]
3 𝐵𝑝𝑧[𝑖]

𝐵𝑝𝑥[𝑖]
2 2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑦[𝑖] 2𝐵𝑝𝑥[𝑖]𝐵𝑝𝑧[𝑖] … 𝐵𝑝𝑧[𝑖] 1 )

 
 
 
 
 
 
 
 
 
 

𝑀−1

𝑖=0

 

 Eq 7.1.22 

Since the eigenvalues of 𝑿𝑇𝑿 are equal to the fit errors associated with the 10 candidate eigenvector solutions, 

the required solution vector 𝜷 is the eigenvector associated with the smallest eigenvalue 𝜆𝑚𝑖𝑛. 

 

7.2 Ellipsoid Fit Matrix 

The ellipsoid fit matrix 𝑨 is obtained directly from the first six rows of the solution vector 𝜷: 

𝑨 = (

𝐴𝑥𝑥 𝐴𝑥𝑦 𝐴𝑥𝑧
𝐴𝑥𝑦 𝐴𝑦𝑦 𝐴𝑦𝑧
𝐴𝑥𝑧 𝐴𝑦𝑧 𝐴𝑧𝑧

) = (

𝛽0 𝛽1 𝛽2
𝛽1 𝛽3 𝛽4
𝛽2 𝛽4 𝛽5

) Eq 7.2.1 

The solution eigenvector 𝜷 is undefined within a multiplicative factor of +/-1 (assuming it's normalized to unit 

magnitude). A test must therefore be performed on the determinant of the ellipsoid matrix 𝑨 defined in equation 
7.2.1 and the entire solution vector 𝜷 negated if the determinant is negative. Negating the solution vector 𝜷 

changes the sign of 𝑨 and ensures a positive determinant. 

For the same reasons as for the 7 element calibration software, the determinant of 𝑨 is set to 1.0. 

 

7.3 Hard Iron Vector 

The last three rows of equation 7.1.16 can be written as: 

(

𝛽6
𝛽7
𝛽8

) = −2(

𝛽0 𝛽1 𝛽2
𝛽1 𝛽3 𝛽4
𝛽2 𝛽4 𝛽5

)(

𝑉𝑥
𝑉𝑦
𝑉𝑧

) = −2𝑨(

𝑉𝑥
𝑉𝑦
𝑉𝑧

) Eq 7.3.1 

The solution for the hard iron vector 𝑽 is then: 

𝑽 = (

𝑉𝑥
𝑉𝑦
𝑉𝑧

) = −(
1

2
)(

𝛽0 𝛽1 𝛽2
𝛽1 𝛽3 𝛽4
𝛽2 𝛽4 𝛽5

)

−1

(

𝛽6
𝛽7
𝛽8

) = −(
1

2
)𝑨−1(

𝛽6
𝛽7
𝛽8

) Eq 7.3.2 

The solution for the hard iron vector 𝑽 is independent of any sign change or other scaling of the solution vector 
𝜷 as a consequence of the multiplication by the inverse soft iron matrix which cancels the scaling. 

 

7.4 Inverse Soft Iron Matrix 
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The inverse soft iron matrix 𝑾−1 is computed from the square root of the symmetric matrix 𝑨 whose 
components are provided in elements 𝛽1 to 𝛽6 of the solution vector 𝜷: 

𝑾−1 = √𝑨 = (

𝐴𝑥𝑥 𝐴𝑥𝑦 𝐴𝑥𝑧
𝐴𝑥𝑦 𝐴𝑦𝑦 𝐴𝑦𝑧
𝐴𝑥𝑧 𝐴𝑦𝑧 𝐴𝑧𝑧

)

1

2

= (

𝛽0 𝛽1 𝛽2
𝛽1 𝛽3 𝛽4
𝛽2 𝛽4 𝛽5

)

1

2

 Eq 7.4.1 

The matrix square root is calculated using a further eigen-decomposition but this time of the 3x3 ellipsoid 
matrix 𝑨. By definition, the 3x3 matrix 𝑸 of the eigenvectors and the 3x3 diagonal matrix 𝚲 of the eigenvalues 

of 𝑨 are related by: 

𝑨𝑸 = 𝑸𝚲 ⇒ 𝑨 = 𝑸𝚲𝑸−1  ⇒ 𝚲 = 𝑸−1𝑨𝑸 Eq 7.4.2 

The matrix 𝑸√𝚲𝑸−1 can be shown to be the required square root of 𝑨 by simple multiplication and using the 
standard result that the eigenvectors of a symmetric matrix are orthonormal: 

(𝑸√𝚲𝑸−1)(𝑸√𝚲𝑸−1) = 𝑸√𝚲𝑸−1𝑸√𝚲𝑸−1 = 𝑸𝚲𝑸−1 = 𝑨 Eq 7.4.3 

The required square root solution for the inverse soft iron matrix is then: 

𝑾−1 = √𝑨 = 𝑸√𝚲𝑸−1 = 𝑸√𝚲𝑸𝑇 Eq 7.4.4 

 

7.5 Geomagnetic Field Strength 

The geomagnetic field strength can be computed from the last component of equation 7.1.16: 

𝐵2 = 𝐴𝑥𝑥𝑉𝑥
2 + 2𝐴𝑥𝑦𝑉𝑥𝑉𝑦 + 2𝐴𝑥𝑧𝑉𝑥𝑉𝑧 + 𝐴𝑦𝑦𝑉𝑦

2 + 2𝐴𝑦𝑧𝑉𝑦𝑉𝑧 + 𝐴𝑧𝑧𝑉𝑧
2 − 𝛽9 Eq 7.5.1 

Since the right hand side of equation 6.5.1 may be negated to force a positive determinant for 𝑨, it is important 
that the geomagnetic field calculation is taken from the absolute value of the right hand side. 

𝐵 = √|𝐴𝑥𝑥𝑉𝑥
2 + 2𝐴𝑥𝑦𝑉𝑥𝑉𝑦 + 2𝐴𝑥𝑧𝑉𝑥𝑉𝑧 + 𝐴𝑦𝑦𝑉𝑦

2 + 2𝐴𝑦𝑧𝑉𝑦𝑉𝑧 + 𝐴𝑧𝑧𝑉𝑧
2 − 𝛽9| Eq 7.5.2 

 

7.6 Fit Error 

The error function 𝐸 equals the smallest eigenvalue 𝜆𝑚𝑖𝑛 of the product matrix 𝑿𝑇𝑿 but is not normalized to the 

number of measurement points 𝑀 nor is it normalized to the geomagnetic field strength 𝐵. Since 𝐸 = 𝒓𝑇𝒓 and 𝒓 

has 𝑀 elements with each element having dimensions 𝐵2, a suitable normalized calibration fit error measure 𝜀 
is: 

𝜀 =
1

2𝐵2
√
𝜆𝑚𝑖𝑛
𝑀
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