Apply NCK2912 and FXTH87xx to kit TPMS RX/TX Solution

JASON CHIANG

10th, 05,2016

SECURE CONNECTIONS FOR A SMARTER WORLD

Outline

- 1. Background
- 2. NCK2912 parameters description
- **3. Required H/W and S/W Components**
- 4. FXTH87xx H/W Environment Setup
- 5. NCK2912 H/W Environment Setup
- 6. Total TX/RX H/W Setup
- 7. FXTH87XX RF data format configuration
- 8. NCK2912 RX test results output to IREC Tool
- 9. Summary

Background

NCK2912 is a fully integrated single-chip receiver for use in an automotive environment. The device incorporated several commonly used building blocks including a crystal stabilized oscillator, a fractional-N based Phase Locked Loop(PLL) for a accurate frequency selection, Low Noise Amplifier(LNA), attenuator for Automatic Gain Control(AGC), I/Q down-mixer and two high resolution Analog to Digital Converters(ADC). By transforming signals in the digital domain in an early phase, one highly configurable RX channel is available including channel filter, ASK/FSK demodulator, clock-data recovery, bit processor and a micro-controller memory interface(DMA) allowing the micro-controller to complete the data handling and handshaking. NCK2912 has an embedded RISC micro-controller optimized for high performance and low power as well as an EROM for customer application.

The FXTH87XXX is a sensor for use in applications that monitor tire pressure and temperature. It contains the pressure and temperature sensors, an X-axis and a Z-axis accelerometer, a microcontroller, an LF receiver and an RF transmitter all within a single package.

Background(Cont')

Recently we got feedback from sales and customer, E-Lead, Oringe, Oro-technology. They are interested in FXTH87xx and NCK29xx for solution. This TPMS solution offer customers to quickly evaluate TPMS RX/TX solution by utilizing NXP's FXTH87XX as transmitter and NCK2912 as receiver to kit 315MHz, 433.92MHz TPMS transmitter and receiver solution. Customer can easily integrate NXP's FXTH87XX, NCK2912 to design their time-to-market TPMS product quickly.

NCK2912 Parameters

Set frequency

The frequency is set using three bit fields according to the following algorithm. A windows executable is available to assist in this calculation. AFC_MDES is required as input value for the FAC to calibrate the coarse frequency setting for the VCO calibration; LO_INTEGER and LO_FRATIONAL configure the fraction divider.

NCK2912 Parameters(Cont')

Pseudo code algorithm for bitfield values for AFC_MDES, LO_INTEGER, LO_FRACTIONAL

If Freq <= 4400000000 / 4 And Freq >= 3100000000 / 4 Then T_fix = 4; If Freg <= 4400000000 / 8 And Freg >= 3100000000 / 8 Then T fix = 8;

If Freq <= 440000000 / 12 And Freq >= 3100000000 / 12 Then T_fix = 12;

Freqx = 27600000;

Freq_sys = Freqx / (SYS_CLK_DIV + 1)

If (SYS_CLK_DIV == 0) Freqx_div = 64; /* corresponds to AFC_FREF_SEL = 0x5 */

If (SYS_CLK_DIV == 1) Freqx_div = 32; /* corresponds to AFC_FREF_SEL = 0x4 */

If (SYS_CLK_DIV == 3) Freqx_div = 16; /* corresponds to AFC_FREF_SEL = 0x3 */

N_fix = 8; /* Recommended VCO divider setting for AFC calibration for all bands */

Fvco = T_fix * Freq;

AFC_MDES = round((Fvco / N_fix) / (Freq_sys / Freqx_div));

IF T_fix = 4 /* 880MHz band, FD_DIV1_SELECT = 1, FD_DIV2_SELECT_SEL = 1 */

LO_INTEGER = floor(Freq / Freqx);

LO_FRACTIONAL = round(((Freq - Freqx * LO_INTEGER) / Freqx) * 524288);

END

```
IF T_fix = 8 /* 440MHz band, FD_DIV1_SELECT = 2, FD_DIV2_SELECT_SEL = 0 */
LO_INTEGER = floor( 2*Freq / Freqx );
LO FRACTIONAL = round(( ( 2*Freq - Freqx * LO INTEGER) / Freqx ) * 524288);
```

END

```
IF T_fix = 12 /* 330MHz band, FD_DIV1_SELECT = 2, FD_DIV2_SELECT_SEL = 0 */
LO_INTEGER = floor( 2*Freq / Freqx );
LO_FRACTIONAL = round(( ( 2*Freq - Freqx * LO_INTEGER) / Freqx ) * 524288);
END
```


NCK2912 Parameters (Cont')

Channel Filter

The channel filter performs the selection of the desired band of interest out of the wide Band IF signal. The filter cut-off frequency is selected by a configurable sample rate conversion Stage. For correct baseband operation, the maximum chip rate of the wanted signal must not Exceed a certain value.

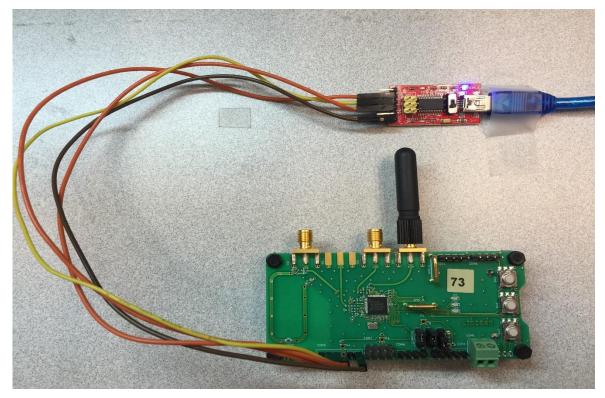
NCK2912 Parameters (Cont')

Name	Width (bits)	Access	Reset value	Description
RX_*_DIGIF_REDUCTION_ SELECT	4	R/W	0	Channel filter bandwidth selection 0 to 12: See previous table. 13 to 15: Reserved for future use
RX_*_DIGIF_CHANNEL_ FILTER_COEF_SET	1	R/W	0	Selection of channel filter coefficient set 0360kHz fundamental BW 1256kHz fundamental BW
RX_*_CD_REDUCTION_ SELECT	1	R/W	0	Optional additional decimation after the channel filter for power saving (RCD) 0no decimation (RCD=1) 1additional decimation by 2 (RCD = 2) Note: The additional decimation by 2 may only be enabled, if resulting SPS_RCF >= 16

Required H/W and S/W Components

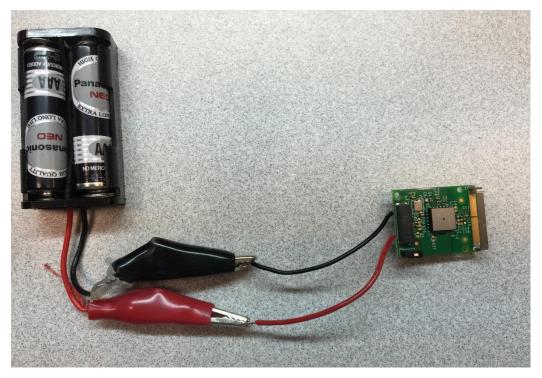
H/W :

- a. FXTH87xx TPMS transmitter
- b. NCK2912 EVB TPMS receiver
- c. FTDI USB/UART board Interface translation
- d. Multilink-Universal

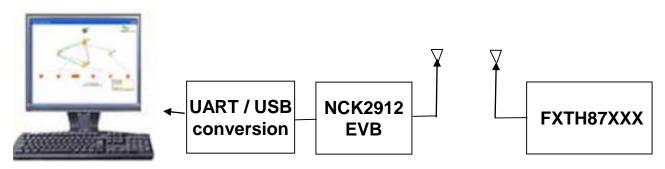

S/W :

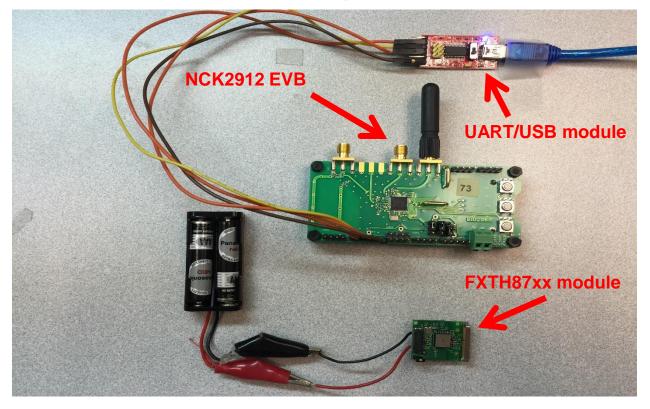
```
a. IREC 5.0.0 – NCK2912 PC Tool
```

b. CodeWarrior 10.6 – F/W code debugging and downloading

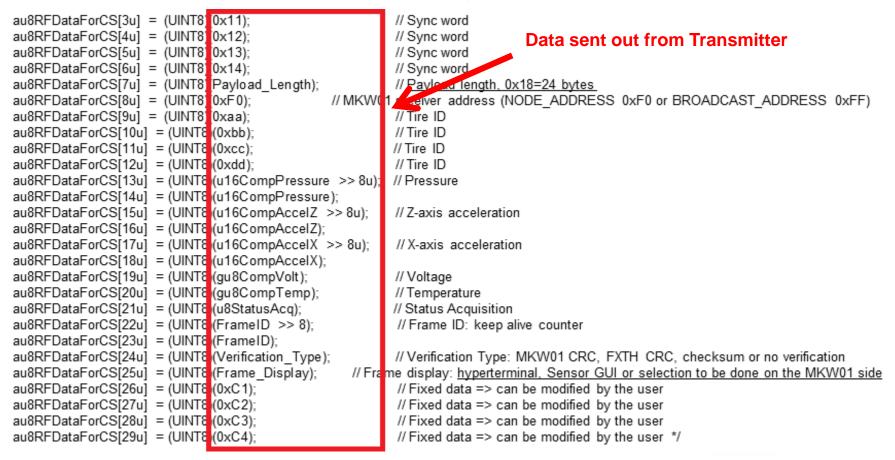


RX H/W Environment Setup – NCK2912


TX H/W Environment Setup – MPXY87xx


Total H/W Environment Setup

- 1. Prepare FXTH87XX EVB as Transmitter. FXTH87XX 's RF data buffer sends data packet every 40 mS.
- 2. Prepare one NCK2912 EVB as Receiver, and the Received data output to IREC through UART to USB interface.



Total H/W Environment Setup

FXTH87XX RF data format configuration

Output Results at IREC tool (NCK2912 Receiver)

ve	1																														
er	al Settings																														
0	sciallator 0:	152000	000		Hz	Т			Standby Time 0: 500 ms									D	ata	re	ce	ive	d t	frc	m	N	СК	29	12	cha	n
2	In 0; 0	14	(7) 18		1418										115					Data received from NCK2912 ch									ona		
3		are							Activ	e Time	0	500)			ms															
c	2912_Channel	1																. /											- 8	×	۱.
					_		_	-		_	11.22										_		_	10 44	19.291						
	equency (Hz):		0000											: 15											200	le: 1					
10	dulation:	FSK									De	Codin	ig Styl	e: NR	Z_NR	Z								inv	ert Da	sta: f	alse				
	09:46:50:38	11	12	13	14	16	f0	00	bb	cc	dd	01	01	54	d0	30	30	f1	35	50	1f	f9	Ze	f3	f5	88	89	09	^		1
	09:46:50:52	3 11	12	13	14	16	fO	aa	bb	cc	dd	01	01	55	10	30	30	f1	2c	c3	6f	b3	eb	e7	eb	11	12	13			
	09:46:50:63	3 11	12	13	14	16	fO	00	bb	cc	dd	02	02	aa	81	87	89	95	55	ff	e7	eb	11	12	13	14	16	fO			
	09:46:50:78	11	12	13	14	16	fO	aa	bb	cc	dd	01	01	55	70	30	30	f1	04	8a	3f	ff	fc	fd	62	22	42	62			
	09:46:50:92	11	12	13	14	16	fO	00	bb	cc	dd	01	01	55	b0	30	30	f1	0e	34	bf	fc	8d	e7	eb	11	12	13			
	09:46:51:071	11	12	13	14	16	fO	aa	bb	cc	dd	00	c0	55	78	18	78	8a	a3	lf	ef	3f	58	88	90	98	α0	ь7			
	09:46:51:215	11	12	13	14	16	fO	00	bb	cc	dd	01	01	56	20	61	eZ	19	03	cf	d6	22	24	26	28	2d	el	55			
	09:46:51:359	11	12	13	14	16	fO	aa	bb	cc	dd	01	01	56	50	30	30	f1	0a	dl	od	ff	df	cf	d6	22	24	26			
	09:46:51:502	11	12	13	14	16	fO	00	bb	cc	dd	01	01	56	α0	61	e2	68	d4	df	f7	fd	e7	eb	11	12	13	14			
	09:46:51:646	11	12	13	14	16	fO	aa	bb	cc	dd	01	01	56	d0	30	30	f1	Ze	3a	fe	fb	ec	13	f5	88	89	09			
	09:46:51:790	11	12	13	14	16	fO	aa	bb	cc	dd	01	01	57	10	30	30	f1	2b	7e	79	fa	c4	44	84	c5	05	bc			
	09:46:51:934	11	12	13	14	16	fO	aa	bb	cc	dd	01	01	57	40	c3	c4	d4	5a	cf	ff	fd	e7	eb	11	12	13	14			
	09:46:52:07		12	13	14	16	fO	00	bb	cc	dd	01	01	57	81	87	89	ec	6f	f3	cf	d6	22	24	26	28	Zd	el			
	09:46:52:25	11	12	13	14	16	fO	aa	bb	cc	dd	01	01	57	cO	c3	c4	37	ff	3f	58	88	90	98	٥0	ь7	85	55			
	09:46:52:39	11	12	13	14	16	fO	00	bb	cc	dd	01	01	58	18	78	89	40	77	ff	e7	eb	11	12	13	14	16	fO			
	09:46:52:54	11	12	13	14	16	fO	00	bb	cc	dd	01	01	58	30	30	30	f1	38	7c	ff	3f	fe	f3	f5	88	89	09	E		1
	09:46:52:68	11	12	13	14	16	fO	aa	bb	cc	dd	01	01	58	70	30															

Summary

From NCK2912 IREC Tool results, we saw NCK2912 can receive TPMS data sending from FXTH87xx, TPMS transmitter after parameters configuration at transmitter and receiver side are proper setup. Parameters need to be fine-tuned are summarized below.

FXTH87xx TX:

- a. TX_Speed_Fast timing
- b. Baud rate
- c. Transmit Frame size
- d. Transmit data buffer
- e. Operating Frequency
- f. Frequency Deviation
- g. Coding style format
- h. Modulation type

NCK2912 RX :

- a. Chip rate
- b. Decoding style format
- c. Demodulation type
- d. Decoding format
- e. Decoding packet size
- f. Frequency Deviation
- g. Decoding Frequency

SECURE CONNECTIONS FOR A SMARTER WORLD