
Embedded Beat 》(http://blogs.freescale.com/)

Internet of Things(http://blogs.freescale.com/category/iot/)

Automotive(http://blogs.freescale.com/category/automotive/)

Networking(http://blogs.freescale.com/category/networking/)

Microcontrollers(http://blogs.freescale.com/category/mcus/)

Processors(http://blogs.freescale.com/category/processors/)

Sensors(http://blogs.freescale.com/category/sensors/) Freescale.com(http://www.freescale.com)

ARCHIVED SITE (NOT VISIBLE TO PUBLIC)

(https://www.facebook.com/freescale)(https://twitter.com/freescale)(http://www.youtube.com/user/freescale)(https://plus.google.com/+freescale)(http://www.linkedin.com/company/freescale-

Search

January 23, 2013(http: //blogs.f reescale.com/sensors/2013/01/orientation-representat ions-

part-2/) Latest Posts

3 reasons why Kinetis MCUs offer a

smarter approach to security

Page 1 of 14Orientation Representations: Part 2 | ARCHIVED FREESCALE BLOGS (NOT VISIBLE TO PUBLIC)

4/3/2016http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/

Orientation Representations:
Part 2

In Orientation Representations: Part 1(http://blogs.freescale.com/iot/2012/10/orientation-

representations-part-1/), we explored the use of rotation matrices and Euler angles. At the

end of that discussion, I alluded to the fact that there might be more efficient ways of

describing rotations. Let’s start with the rotation of a simple rigid body (in this case a

cylinder) as shown in Figure 1. Here, the cylinder is rotated such that a point on its surface

originally at “A” is rotated to point “B” in space.

Figure 1: Rotation of a rigid body such that a reference point moves from “A” to “B”

For this simple case, I’ve kept the axis of rotation along the vertical axis of the cylinder as

shown in Figure 2. But that is not a requirement for the underlying mathematics to work.

So long as we have a rigid body, we can always describe the rotation in the manner that

follows.

(http://blogs.freescale.com/mcus/20

15/11/3-reasons-why-kinetis-mcus-

offer-a-smarter-approach-to-

security/)

Groove is in the wafer: The first-ever

silicon record debuts

(http://blogs.freescale.com/the-

embedded-beat/2015/11/groove-is-

in-the-wafer-the-first-ever-silicon-

record-debuts/)

Your next harsh environment

application deserves a more robust

solution

(http://blogs.freescale.com/mcus/20

15/11/your-next-harsh-environment-

application-deserves-a-more-robust-

solution/)

Get started with ARM Cortex-MF4

based FRDM-K22F dev board that’s

Arduino R3-pin compatible

(http://blogs.freescale.com/mcus/20

15/11/get-started-with-arm-cortex-

mf4-based-frdm-k22f-dev-board-

thats-arduino-r3-pin-compatible/)

Page 2 of 14Orientation Representations: Part 2 | ARCHIVED FREESCALE BLOGS (NOT VISIBLE TO PUBLIC)

4/3/2016http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/

Figure 2: Overlay of Cartesian Coordinates onto System of Figure 1

Figure 3 deals with the same rotation, but focuses on the fact that we have a rotation plane

that is perpendicular with the axis of rotation. The movement of the cylinder is a rotation

equal of angle α, about the axis of rotation, where the point of interest is constrained to lie

within the rotation plane.

Auto IoT: Beyond the car and into

the infrastracture (Part 3)

(http://blogs.freescale.com/automoti

ve/2015/11/auto-iot-beyond-the-car-

and-into-the-infrastracture-part-3/)

Breaking through the Wearable

Clutter: Design News

(http://blogs.freescale.com/iot/2015/

11/breaking-through-the-wearable-

clutter-design-news/)

New York Times and Google turn

cardboard into a new reality

(http://blogs.freescale.com/sensors/

2015/11/latest-sensor-fusion-

application/)

What’s next for your wearables

design? WaRP 7

(http://blogs.freescale.com/iot/2015/

11/whats-next-for-your-wearables-

design-warp-7/)

Focus on IoT with ARM mbed and

Freescale Freedom platforms

(http://blogs.freescale.com/mcus/20

15/11/focus-on-iot-with-arm-mbed-

and-freescale-freedom-platforms/)

Page 3 of 14Orientation Representations: Part 2 | ARCHIVED FREESCALE BLOGS (NOT VISIBLE TO PUBLIC)

4/3/2016http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/

Figure 3: Looking at Just the Rotation Plane and Axis of Rotation

The rotation is fully described by the three components of the normalized rotation axis and

the rotation angle α, which may be in radians or degrees, depending upon the system in

use. As an example, I recently did some OpenGL ES graphics programming. This system

is very popular on portable devices. I’m using it to program demos for Android, for later

porting to iOS. In OpenGL ES, you build up 3 dimensional objects as a collection of

triangles, which can then be offset and/or rotated to change perspective. As an example,

our cylinder might be crudely drawn as shown in Figure 4.

What you can do with Sensor Data

Analytics, from babies to horses

(http://blogs.freescale.com/sensors/

2015/11/babies-to-horses-what-you-

can-do-with-sensor-data-analytics/)

Page 4 of 14Orientation Representations: Part 2 | ARCHIVED FREESCALE BLOGS (NOT VISIBLE TO PUBLIC)

4/3/2016http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/

Figure 4: OpenGL ES Drawing of a Cylinder

In this case, I’ve modeled the top and bottom of the cylinder with 6 triangles each, and the

other side is modeled using a total of 16 triangles arranged in a strip. OpenGL ES is

optimized to draw such structures efficiently, and it is possible to then “render” textures

onto the drawn surfaces. What’s really neat is that once drawn, we get a reasonable

approximation of the cylinder of Figure 1 simply by doing a -30 degrees rotation about the

Z axis (presumed to be out of the page) using a single OpenGL ES instruction:

gl.glRotatef(-30.0f, 0.0f, 0.0f, 1.0f);

At this point, you’re probably thinking: “Yeah, that makes sense, but how does it work at

the math level?” This is the where I need to introduce the concept of a quaternion.

Conceptually, a quaternion encodes the same axis and angle as above. But for

mathematical reasons it deals with 1/2 of the rotation angle as shown below.

Page 5 of 14Orientation Representations: Part 2 | ARCHIVED FREESCALE BLOGS (NOT VISIBLE TO PUBLIC)

4/3/2016http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/

Figure 5: System of Figure 4 in Terms of Quaternion Components

Before overwhelming you with the underlying math, you should know that unless you are

planning to implement your own quaternion utility library, you only need to know a few key

points:

I will be presenting the mathematical definition first, and without proof. If you really,

REALLY want to know the underlying theory, let me suggest that you pick up a copy of

Jack Kuiper’s excellent text: Quaternions and Rotation Sequences. This appears to be (by

far) the most extensive treatment on the topic, even while remaining very readable.

Notice that rotation quaternions deal with α/2, not α. We can define a rotation quaternion

It takes four numbers to fully describe a quaternion (commonly q0 through q3).1)

Not all quaternions are rotation quaternions. Rotation quaternions have unit

length (q02 + q12 + q22 + q32 = 1). The discussion below will be restricted to

rotation quaternions.

2)

These same rotations can be described using Euler angles, rotation matrices, etc.

as discussed in the previous posting. It is possible (and common) to translate

between formats and use multiple formats. Rotation matrices have the advantage

of always being unique. Euler angles are subject to gimbal lock, and should not

be used for internal calculations (only input/output of results).

3)

You can rotate a vector V using a quaternion q using the equation: W = qVq*

(quaternion products and complex conjugates are defined later)

4)

A sequence of rotations represented by quaternions q1 followed by q2 can be

collapsed into a single rotation simply by computing the quaternion product

q=q2q1 and then appling the rotation operator as above.

5)

Page 6 of 14Orientation Representations: Part 2 | ARCHIVED FREESCALE BLOGS (NOT VISIBLE TO PUBLIC)

4/3/2016http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/

“q” in one of several equivalent fashions.

q = (q0, q1, q2, q3) (Eqn.1)

q = q0 + q, where q = iq1 + jq2 + kq3 (Eqn. 2)

q = cos(α/2) + u sin(α/2), where u is the vector axis of rotation (Eqn. 3)

I use the quaternion form where q0 = cos(α/2). Some texts will reorder the quaternion

components so that the vector portion q is contained in q0-2 and q3 = cos(α/2). Be sure

you understand which form your text/software library supports.

Quaternions are a form of hyper-complex number where instead of a single real and single

imaginary component, we have one real and THREE imaginary components (i, j & k).

Rules for these imaginary components are:

i2 = j2 = k2 = ijk = -1 (Eqn. 4)

ij = k = -ji (Eqn. 5)

jk = i = -kj (Eqn. 6)

ki = j = -ik (Eqn. 7)

Two quaternions, p and q, are equal to one another only if the individual components are

equal. You add two quaternions by adding the individual components. If

p = p0 + ip1 + jp2 + kp3; and (Eqn. 8)

q = q0 + iq1 + jq2 + kq3 (Eqn. 9)

Then

p + q = (p0 + q0) + i(p1+q1) + j(p2+q2) + k(p3+q3) (Eqn. 10)

Page 7 of 14Orientation Representations: Part 2 | ARCHIVED FREESCALE BLOGS (NOT VISIBLE TO PUBLIC)

4/3/2016http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/

The addition operation commutes. That is p+q = q+p. Multiplication of a quaternion by a

scalar real number is trivial, just multiply each of the four components by the scalar.

Multiplication of two quaternions is NOT so trivial:

pq = p0q0 – p.q + p0q + q0p + p x q (Eqn. 11)

Multiplying one quaternion by another quaternion results in a third quaternion. Notice that

the 1st two components (p0q0 – p.q) makes up the scalar portion of the result, and the last

three (p0q + q0p + p x q) comprise the vector portion. The quaternion product operation is

not commutative pq≠qp. Order matters. Multiplication of two quaternions includes scalar,

cross product and dot product terms. Unless you are writing your own quaternion library,

you are likely never to use the expression above. Instead, you will use a function that does

the quaternion multiplication for you.

The complex conjugate of

q = q0 + iq1 + jq2 + kq3 is q* = q0 – iq1 – jq2 – kq3 (Eqn. 12)

Related to this, we have

(pq)* = q*p* (Eqn. 13)

q+q* = 2q0 (Eqn. 14)

q-1 = q* for any unit quaternion (Eqn. 15)

Eqn. 15 is interesting. If you think of a quaternion as a rotation operator, it says you can

reverse the sense of rotation by inverting the axis of rotation. Given our usual standard of

using the Right Hand Rule to describe the polarity of rotations, this makes perfect sense.

Reversing the direction of the axis is equivalent to reversing the direction of rotation.

Page 8 of 14Orientation Representations: Part 2 | ARCHIVED FREESCALE BLOGS (NOT VISIBLE TO PUBLIC)

4/3/2016http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/

Another interesting take on the above is that rotation quaternions are not unique:

q = -q (Eqn. 16)

Any rotation quaternion can be multiplied by -1 and still result in the same rotation! That’s

because we reversed both the angle AND the axis of rotation (which then cancel each

other). It is conventional therefore to remove the ambiguity by negating a rotation

quaternion if its scalar component is negative.

At this point, you are surely wondering why in the world you might, or might not, choose to

use quaternions instead of rotation matrices. Here’s a brief summary of the pros and cons:

Topic Quaternion Rotation Matrix

Storage Requires 16 bytes of storage in
single precision floating point (4
elements at 4 bytes each)

Requires 36 bytes of storage (9
elements at 4 bytes each)

Computation (for
2 sequential
rotations)

4 elements each requiring 4
multiplies and 3 additions = 28
operations

9 elements, each requiring 3
multiplies and 2 additions = 45
operations

Vector rotation Rotating a vector by pre- and
post-multiplication of quaternion
requires 52 operations

Rotating a vector via rotation
matrix requires 15 operations (3
elements each requiring 3
multiplies and 2 additions)

Discontinuities Generally, we force the scalar
part of the quaternion to be
positive, which can cause a
discontinuity in the rotation axis
(it flips).

None

Ease of
Understanding

Generally takes a lot of study to
understand the details

Easily understood by most
engineers

Page 9 of 14Orientation Representations: Part 2 | ARCHIVED FREESCALE BLOGS (NOT VISIBLE TO PUBLIC)

4/3/2016http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/

Topic Quaternion Rotation Matrix

Conversion From rotation matrix =

m11 m12 m13

m21 m22 m23

m31 m32 m33

we have:

q0 = 0.5 sqrt(m11 + m22 + m33
+ 1)

q1 = (m32 – m23) / (4q0)

q2 = (m13 – m31) / (4q0)

q3 = (m21 – m12) /
(4q0) (Eqn. 17)

RM =

2q02 – 1

+ 2q12
2q1q2 –
2q0q3

2q1q3
+2q0q2

2q1q2 +
2q0q3

2q02 – 1

+ 2q22
2q2q3 –
2q0q1

2q1q3 –
2q0q2

2q2q3 +
2q0q1

2q02 -1 +

2q32

(Eqn. 18)

Equations 17 and 18 are consistent with regards to direction of rotation. If instead of

rotating a vector in a fixed frame of reference, you rotate the frame of reference iteself, you

will need to use the transpose of Eqn. 18 and invert q1, q2 and q3 in Eqn. 17.

Returning to the quaternion rotation operator W = qVq* , note that V needs to be

expressed as a quaternion of the form [0, vx, vy, vz], and the multiplications are quaternion

multiplies as defined in Eqn. 11. q* is the complex conjugate defined in Eqn. 12.

Page 10 of 14Orientation Representations: Part 2 | ARCHIVED FREESCALE BLOGS (NOT VISIBLE TO PUBLIC)

4/3/2016http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/

If you do a lot of graphics or sensor fusion work, you will probably find yourself constantly

switching between the various representations we’ve considered. You’ll find it useful to

remember a couple of identities from your high school geometry course:

The Dot
Product

u. v = | u | | v | cos α (Eqn.
19)

If both u and v are unit
vectors, then:

u. v = cos α (Eqn. 20)

The
Cross
Product

u x v = | u | | v | sin α n
(Eqn. 21)

where n is a unit vector
perpendicular to the plane
containing u and v (the
polarity of n follows the right
hand rule).

If both u and v are unit
vectors, then:

n = u x v / (sin α) (Eqn. 22)

If you’ve been paying attention, you will see that α is the rotation of u into v about the axis

Page 11 of 14Orientation Representations: Part 2 | ARCHIVED FREESCALE BLOGS (NOT VISIBLE TO PUBLIC)

4/3/2016http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/

of rotation defined by u x v. See! It’s simple! Axis and angle!

References:

Share this: (http://www.facebook.com/sharer.php?

u=http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/)

(https://plus.google.com/share?

url=http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/)

(http://www.tumblr.com/share/link?

url=http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/)

Quaternions and Rotation Sequences, Jack B. Kuipers, Princeton University

Press, 1999

1)

Euler Angles(http://demonstrations.wolfram.com/EulerAngles/) from the Wolfram

Demonstrations Project(http://demonstrations.wolfram.com/) by Frederick W.

Strauch

2)

Diversified Redundancy in the Measurement of Euler Angles Using

Accelerometers and Magnetometers, Chirag Jagadish and Bor-Chin Chang,

Proceedings of the 46th IEEE Conference on Decision and Control, Dec. 2007

3)

“Euler Angles” at Wikipedia(http://en.wikipedia.org/wiki/Euler_angles)4)

Orientation Representations: Part 1

(http://blogs.freescale.com/iot/2012/10/orientation-representations-part-1/),

Michael Stanley at the Embedded Beat, October 2012

5)

Page 12 of 14Orientation Representations: Part 2 | ARCHIVED FREESCALE BLOGS (NOT VISIBLE TO PUBLIC)

4/3/2016http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/

(http://twitter.com/share?

url=http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-

2/&text=Orientation+Representations%3A+Part+2+) (http://reddit.com/submit?

url=http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-

2/&title=Orientation Representations: Part 2)

(http://www.linkedin.com/shareArticle?

mini=true&url=http://blogs.freescale.com/sensors/2013/01/orientation-representations-

part-2/)

Sensors(http: //blogs.f reescale.com/category/sensors/), The Embedded Beat

(http: //blogs.f reescale.com/category/ the-embedded-beat/)

Leave a Reply
Your email address will not be published. Required fields are marked *

Name *

Email *

Page 13 of 14Orientation Representations: Part 2 | ARCHIVED FREESCALE BLOGS (NOT VISIBLE TO PUBLIC)

4/3/2016http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/

Terms of Use(http://www.freescale.com/webapp/sps/site/overview.jsp?code=TERMSOFUSE) | Privacy(http://www.freescale.com/webapp/sps/site/overview.jsp?code=PRIVACYPRACTICES)

© 2004-2015 Freescale Semiconductor, Inc. All rights reserved.

Website

Comment

Post Comment

Page 14 of 14Orientation Representations: Part 2 | ARCHIVED FREESCALE BLOGS (NOT VISIBLE TO PUBLIC)

4/3/2016http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/

