
Embedded Beat 》(http://blogs.freescale.com/)

Internet of Things(http://blogs.freescale.com/category/iot/)

Automotive(http://blogs.freescale.com/category/automotive/)

Networking(http://blogs.freescale.com/category/networking/)

Microcontrollers(http://blogs.freescale.com/category/mcus/)

Processors(http://blogs.freescale.com/category/processors/)

Sensors(http://blogs.freescale.com/category/sensors/) Freescale.com(http://www.freescale.com)

ARCHIVED SITE (NOT VISIBLE TO PUBLIC)

(https://www.facebook.com/freescale)(https://twitter.com/freescale)(http://www.youtube.com/user/freescale)(https://plus.google.com/+freescale)(http://www.linkedin.com/company/freescale-

Search

January 23,  2013(http: //blogs.f reescale.com/sensors/2013/01/orientation-representat ions-

part-2/) Latest Posts

3 reasons why Kinetis MCUs offer a 

smarter approach to security

Page 1 of 14Orientation Representations: Part 2 | ARCHIVED FREESCALE BLOGS (NOT VISIBLE TO PUBLIC)

4/3/2016http://blogs.freescale.com/sensors/2013/01/orientation-representations-part-2/



Orientation Representations: 
Part 2

In Orientation Representations: Part 1(http://blogs.freescale.com/iot/2012/10/orientation-

representations-part-1/), we explored the use of rotation matrices and Euler angles. At the 

end of that discussion, I alluded to the fact that there might be more efficient ways of 

describing rotations. Let’s start with the rotation of a simple rigid body (in this case a 

cylinder) as shown in Figure 1. Here, the cylinder is rotated such that a point on its surface 

originally at “A” is rotated to point “B” in space. 

Figure 1: Rotation of a rigid body such that a reference point moves from “A” to “B” 

For this simple case, I’ve kept the axis of rotation along the vertical axis of the cylinder as 

shown in Figure 2. But that is not a requirement for the underlying mathematics to work. 

So long as we have a rigid body, we can always describe the rotation in the manner that 

follows. 
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Figure 2: Overlay of Cartesian Coordinates onto System of Figure 1 

Figure 3 deals with the same rotation, but focuses on the fact that we have a rotation plane 

that is perpendicular with the axis of rotation. The movement of the cylinder is a rotation 

equal of angle α, about the axis of rotation, where the point of interest is constrained to lie 

within the rotation plane. 
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Figure 3: Looking at Just the Rotation Plane and Axis of Rotation 

The rotation is fully described by the three components of the normalized rotation axis and 

the rotation angle α, which may be in radians or degrees, depending upon the system in 

use. As an example, I recently did some OpenGL ES graphics programming. This system 

is very popular on portable devices. I’m using it to program demos for Android, for later 

porting to iOS. In OpenGL ES, you build up 3 dimensional objects as a collection of 

triangles, which can then be offset and/or rotated to change perspective. As an example, 

our cylinder might be crudely drawn as shown in Figure 4. 
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Figure 4: OpenGL ES Drawing of a Cylinder 

In this case, I’ve modeled the top and bottom of the cylinder with 6 triangles each, and the 

other side is modeled using a total of 16 triangles arranged in a strip. OpenGL ES is 

optimized to draw such structures efficiently, and it is possible to then “render” textures 

onto the drawn surfaces. What’s really neat is that once drawn, we get a reasonable 

approximation of the cylinder of Figure 1 simply by doing a -30 degrees rotation about the 

Z axis (presumed to be out of the page) using a single OpenGL ES instruction:

gl.glRotatef(-30.0f, 0.0f, 0.0f, 1.0f);

At this point, you’re probably thinking: “Yeah, that makes sense, but how does it work at 

the math level?” This is the where I need to introduce the concept of a quaternion. 

Conceptually, a quaternion encodes the same axis and angle as above. But for 

mathematical reasons it deals with 1/2 of the rotation angle as shown below. 
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Figure 5: System of Figure 4 in Terms of Quaternion Components 

Before overwhelming you with the underlying math, you should know that unless you are 

planning to implement your own quaternion utility library, you only need to know a few key 

points: 

I will be presenting the mathematical definition first, and without proof. If you really, 

REALLY want to know the underlying theory, let me suggest that you pick up a copy of 

Jack Kuiper’s excellent text: Quaternions and Rotation Sequences. This appears to be (by 

far) the most extensive treatment on the topic, even while remaining very readable. 

Notice that rotation quaternions deal with α/2, not α. We can define a rotation quaternion 

It takes four numbers to fully describe a quaternion (commonly q0 through q3).1)

Not all quaternions are rotation quaternions. Rotation quaternions have unit 

length (q02 + q12 + q22 + q32 = 1). The discussion below will be restricted to 

rotation quaternions.

2)

These same rotations can be described using Euler angles, rotation matrices, etc. 

as discussed in the previous posting. It is possible (and common) to translate 

between formats and use multiple formats. Rotation matrices have the advantage 

of always being unique. Euler angles are subject to gimbal lock, and should not 

be used for internal calculations (only input/output of results).

3)

You can rotate a vector V using a quaternion q using the equation: W = qVq* 

(quaternion products and complex conjugates are defined later)

4)

A sequence of rotations represented by quaternions q1 followed by q2 can be 

collapsed into a single rotation simply by computing the quaternion product 

q=q2q1 and then appling the rotation operator as above.

5)
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“q” in one of several equivalent fashions. 

q = (q0, q1, q2, q3) (Eqn.1) 

q = q0 + q, where q = iq1 + jq2 + kq3 (Eqn. 2) 

q = cos(α/2) + u sin(α/2), where u is the vector axis of rotation (Eqn. 3) 

I use the quaternion form where q0 = cos(α/2). Some texts will reorder the quaternion 

components so that the vector portion q is contained in q0-2 and q3 = cos(α/2). Be sure 

you understand which form your text/software library supports. 

Quaternions are a form of hyper-complex number where instead of a single real and single 

imaginary component, we have one real and THREE imaginary components (i, j & k). 

Rules for these imaginary components are: 

i2 = j2 = k2 = ijk = -1 (Eqn. 4) 

ij = k = -ji (Eqn. 5) 

jk = i = -kj (Eqn. 6) 

ki = j = -ik (Eqn. 7) 

Two quaternions, p and q, are equal to one another only if the individual components are 

equal. You add two quaternions by adding the individual components. If 

p = p0 + ip1 + jp2 + kp3; and (Eqn. 8) 

q = q0 + iq1 + jq2 + kq3 (Eqn. 9) 

Then

p + q = (p0 + q0) + i(p1+q1) + j(p2+q2) + k(p3+q3) (Eqn. 10) 
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The addition operation commutes. That is p+q = q+p. Multiplication of a quaternion by a 

scalar real number is trivial, just multiply each of the four components by the scalar. 

Multiplication of two quaternions is NOT so trivial: 

pq = p0q0 – p.q + p0q + q0p + p x q (Eqn. 11) 

Multiplying one quaternion by another quaternion results in a third quaternion. Notice that 

the 1st two components (p0q0 – p.q) makes up the scalar portion of the result, and the last 

three (p0q + q0p + p x q) comprise the vector portion. The quaternion product operation is 

not commutative pq≠qp. Order matters. Multiplication of two quaternions includes scalar, 

cross product and dot product terms. Unless you are writing your own quaternion library, 

you are likely never to use the expression above. Instead, you will use a function that does 

the quaternion multiplication for you. 

The complex conjugate of

q = q0 + iq1 + jq2 + kq3 is q* = q0 – iq1 – jq2 – kq3 (Eqn. 12) 

Related to this, we have

(pq)* = q*p* (Eqn. 13) 

q+q* = 2q0 (Eqn. 14) 

q-1 = q* for any unit quaternion (Eqn. 15) 

Eqn. 15 is interesting. If you think of a quaternion as a rotation operator, it says you can 

reverse the sense of rotation by inverting the axis of rotation. Given our usual standard of 

using the Right Hand Rule to describe the polarity of rotations, this makes perfect sense. 

Reversing the direction of the axis is equivalent to reversing the direction of rotation. 
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Another interesting take on the above is that rotation quaternions are not unique: 

q = -q (Eqn. 16) 

Any rotation quaternion can be multiplied by -1 and still result in the same rotation! That’s 

because we reversed both the angle AND the axis of rotation (which then cancel each 

other). It is conventional therefore to remove the ambiguity by negating a rotation 

quaternion if its scalar component is negative. 

At this point, you are surely wondering why in the world you might, or might not, choose to 

use quaternions instead of rotation matrices. Here’s a brief summary of the pros and cons: 

Topic Quaternion Rotation Matrix

Storage Requires 16 bytes of storage in 
single precision floating point (4 
elements at 4 bytes each) 

Requires 36 bytes of storage (9 
elements at 4 bytes each) 

Computation (for 
2 sequential 
rotations) 

4 elements each requiring 4 
multiplies and 3 additions = 28 
operations

9 elements, each requiring 3 
multiplies and 2 additions = 45 
operations

Vector rotation Rotating a vector by pre- and 
post-multiplication of quaternion 
requires 52 operations

Rotating a vector via rotation 
matrix requires 15 operations (3 
elements each requiring 3 
multiplies and 2 additions) 

Discontinuities Generally, we force the scalar 
part of the quaternion to be 
positive, which can cause a 
discontinuity in the rotation axis 
(it flips). 

None 

Ease of 
Understanding 

Generally takes a lot of study to 
understand the details 

Easily understood by most 
engineers 
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Topic Quaternion Rotation Matrix

Conversion From rotation matrix =

m11 m12 m13 

m21 m22 m23 

m31 m32 m33 

we have:

q0 = 0.5 sqrt(m11 + m22 + m33 
+ 1)

q1 = (m32 – m23) / (4q0)

q2 = (m13 – m31) / (4q0)

q3 = (m21 – m12) / 
(4q0)                    (Eqn. 17) 

RM =

2q02 – 1 

+ 2q12
2q1q2 – 
2q0q3 

2q1q3 
+2q0q2 

2q1q2 + 
2q0q3 

2q02 – 1 

+ 2q22
2q2q3 – 
2q0q1 

2q1q3 – 
2q0q2 

2q2q3 + 
2q0q1 

2q02 -1 + 

2q32

(Eqn. 18) 

Equations 17 and 18 are consistent with regards to direction of rotation. If instead of 

rotating a vector in a fixed frame of reference, you rotate the frame of reference iteself, you 

will need to use the transpose of Eqn. 18 and invert q1, q2 and q3 in Eqn. 17. 

Returning to the quaternion rotation operator W = qVq* , note that V needs to be 

expressed as a quaternion of the form [0, vx, vy, vz], and the multiplications are quaternion 

multiplies as defined in Eqn. 11. q* is the complex conjugate defined in Eqn. 12. 
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If you do a lot of graphics or sensor fusion work, you will probably find yourself constantly 

switching between the various representations we’ve considered. You’ll find it useful to 

remember a couple of identities from your high school geometry course: 

The Dot 
Product 

u. v = | u | | v | cos α (Eqn. 
19)

If both u and v are unit 
vectors, then:

u. v = cos α (Eqn. 20) 

The 
Cross 
Product 

u x v = | u | | v | sin α n
(Eqn. 21)

where n is a unit vector 
perpendicular to the plane 
containing u and v (the 
polarity of n follows the right 
hand rule).

If both u and v are unit 
vectors, then:

n = u x v / (sin α) (Eqn. 22) 

If you’ve been paying attention, you will see that α is the rotation of u into v about the axis 
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of rotation defined by u x v. See! It’s simple! Axis and angle! 
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