
Copyright

Copyright © 2018 NXP Semiconductor ("NXP") All rights reserved.

This document contains information which is proprietary to NXP and may be used for non-commercial purposes within your organization in support
of NXP’s products. No other use or transmission of all or any part of this document is permitted without written permission from NXP, and must
include all copyright and other proprietary notices. Use or transmission of all or any part of this document in violation of any applicable Canadian or
other legislation is hereby expressly prohibited.

User obtains no rights in the information or in any product, process, technology or trademark which it includes or describes, and is expressly
prohibited from modifying the information or creating derivative works without the express written consent of NXP.

Disclaimer

NXP assumes no responsibility for the accuracy or completeness of the information presented which is subject to change without notice. In no
event will NXP be liable for any direct, indirect, special, incidental or consequential damages, including lost profits, lost business or lost data,
resulting from the use of or reliance upon the information, whether or not NXP has been advised of the possibility of such damages.

Mention of non-NXP products or services is for information purposes only and constitutes neither an endorsement nor a recommendation.

Uncontrolled Copy

The master of this document is stored on NXP’s document management system Docushare / Confluence. Viewing of the master electronically
ensures access to the current issue. Any hardcopies are considered uncontrolled copies.

ACF User Guide

UG-10267-03-16

UG-10267-03-16

NXP Confidential and Proprietary

 2/61

Revision History

Version Details of Change Authors Date

01 Initial release
CM

June 30, 2013

02
Removed mention of ICP_Image. Misc grammer/typo fixes. Minor
updates in autobuild process related to new perl scripts. Added
ACF_ATTR_IN_STATIC_GLB_FIXED to replace ACF_ATTR_CFG.

CM
Sept 30, 2013

03 Minor change to required tools section. CM Nov 12, 2013

04
Remove version information from required tool section to keep the
document more general; this information is captured elsewhere

CM
Nov 22, 2013

05

Fix documentation related to spatial dep (order should be left, right, top,
bottom).

Update port attribute and document advanced functionality.

CM

Feb 17, 2014

06 Misc edits. CM Feb 19, 2014

07 Added section on Flex license activation. SP, AO Aug 13, 2014

08

Fix typo in histogram kernel.

Make note of limitations associated with ConnectIndrectInput.

Updates to ek and sd sections.

Changes related to run-time chunk size selection.

CM

Oct 23, 2014

09
ROI section added.

Misc. edits and improvements.

CM
Jan 22, 2015

10
SelectApuConfiguration section added.

Misc edits and improvements.

CM
Oct 22, 2015

11

Add ACF_VAR_NUM_INPUT_ITERATIONS and
ACF_VAR_CU_ARRAY_WIDTH variable info.

Replace ICP_ContigDataDesc with DataDescriptor

Removed build details.

CM

May 2, 2016

12 Clarification added for ConnectIndirectInput CM Dec 12, 2016

13 Added section about interrupts CM May 3, 2017

14
Clean up attributes list + replace DataDescriptor with uMat + add caveat
related to explicit chunk size selection + misc. edits

CM
June 27, 2017

15 Misc. edits and clarifications related to known limitations CM Feb 16, 2018

16 Add section for ACF offline errors CM Dec 10, 2018

UG-10267-03-16

NXP Confidential and Proprietary

 3/61

Table of Contents

1 Document Purpose and Introduction ... 6

1.1 Acronyms ... 6
1.2 Scope ... 6
1.3 References ... 6

2 ACF Overview and Terminology ... 7

2.1 High Level Overview .. 7
2.2 Low Level Overview ... 7
2.3 Terminology: Kernel, Graph, Process .. 8

2.3.1 Kernel Definition .. 8
2.3.2 Graph Definition ... 9
2.3.3 Process Definition .. 9

3 Programming with ACF ... 10

3.1 Overview .. 10
3.2 Writing APU Kernels (Step 1) .. 11

3.2.1 Kernel Implementation ... 12
3.2.2 Kernel Metadata .. 14
3.2.3 Kernel ACF Wrapper ... 23
3.2.4 Filter Kernel Example (metadata and ACF wrapper) .. 25

3.3 Creating a Graph (Step 2).. 27
3.3.1 Creating a Graph Diagram ... 27
3.3.2 ACF Graph and Example ... 28
3.3.3 Known caveats and limitations .. 30

3.4 Specifying a Process Description (Step 3) .. 31
3.4.1 ACF Process Description and Example .. 31
3.4.2 Explicit Offline Chunk Size Specification (ADVANCED) ... 32

3.5 ACF Offline Process Resolution (Step 4) .. 35
3.5.1 Overview .. 35
3.5.2 ACF Offline Error Messages .. 36

3.6 Configuring and Launching a Process on the Host (Step 5) ... 41
3.6.1 ACF Host Interface and Example .. 41
3.6.2 Executing a Process with a Specific HW configuration (ADVANCED) ... 42
3.6.3 Explicit Scenario Selection (ADVANCED) ... 42

3.7 Advanced ACF Functionality and Use Cases .. 43
3.7.1 The Subdivision of Input Data: Vectorization vs. Tiling ... 43
3.7.2 Attributes .. 44
3.7.3 Understanding Attribute Combinations .. 44
3.7.4 Reduction Operations .. 47
3.7.5 Indirect Inputs .. 53
3.7.6 Region of Interest (ROI) Processing .. 55
3.7.7 Interrupt Support .. 59

UG-10267-03-16

NXP Confidential and Proprietary

 4/61

4 Appendix A (ed) ... 60

4.1 Element<d> .. 60
4.2 Example with e0, ek, and ed .. 60

UG-10267-03-16

NXP Confidential and Proprietary

 5/61

Table of Figures

Figure 1 - Minimizing data movement between host and APU .. 8
Figure 2 - ACF Kernel .. 9
Figure 3 - ACF Graph ... 9
Figure 4 - Example ADD kernel implementation .. 12
Figure 5 - ADD kernel metadata and ACF wrapper ... 14
Figure 6 - Decimate kernel (ek) .. 20
Figure 7 - Sobel 3x3 kernel with spatial dependencies ... 22
Figure 8 - FILTER kernel metadata and ACF wrapper .. 25
Figure 9 - ADD and FILTER kernel diagrams .. 27
Figure 10 - A graph diagram (processingTaskA) ... 27
Figure 11 – Offline resolution process ... 35
Figure 12 - Vectorization .. 43
Figure 13 - Tiling .. 43
Figure 14 - Tiling of 2D data... 45
Figure 15 - Tiling of 1D data... 45
Figure 16 - Histogram graph .. 47
Figure 17 - Histogram kernel.. 49
Figure 18 - Reduction kernel .. 51
Figure 19 – A region of interest (ROI) .. 55
Figure 20 – ROI edge padding ... 56
Figure 21 - Decimate kernel (ed) .. 60
Figure 22 - YUV422 split/combine graph ... 60
Figure 23 - YUV422 split/combine graph (ed) .. 61

Table of Tables

Table 1 - Acronyms .. 6
Table 2 - Kernel port characteristics .. 17
Table 3 - ACF variables (ACF_VAR) ... 48

UG-10267-03-16

NXP Confidential and Proprietary

 6/61

1 Document Purpose and Introduction

This document is an APEX Core Framework (ACF) user guide, and it contains all the information required for
an ACF user to begin mapping an application (or selected parts of an application) to the APEX platform. It will
outline the prerequisite software components, present a high-level design methodology, and present the
necessary programming interfaces.

1.1 Acronyms

Acronym Definition

ACF APEX Core Framework

ACP Array Controller Processor

APU Array Processor Unit

CU Computational Unit

DAG Directed Acyclic Graph

Table 1 - Acronyms

1.2 Scope

This document is targeted towards an audience interested in accelerating applications via NXP’s APEX and
ACF technology. The audience should have a general familiarity with parallel processing, and a basic
understanding of the APEX hardware architecture.

1.3 References

See document UG-10267-04-##-ACF_Reference_Guide.pdf for more information about ACF and ACF
interfaces.

UG-10267-03-16

NXP Confidential and Proprietary

 7/61

2 ACF Overview and Terminology

2.1 High Level Overview

At the highest level, ACF is an abstraction layer for the APEX hardware (HW), abstracting data movements
and execution beneath a high-level interface.

The purpose of ACF is to provide a programming model and the means for a user to implement and execute
common data processing tasks on the APEX without having to deal directly with the underlying hardware.
While this document discusses ACF in the context of APEX HW in general, it is primarily focused on the
mapping of processing tasks to the Array Processor Unit (APU).

2.2 Low Level Overview

At a slightly lower level (assuming the APU is the chosen processor), ACF is responsible for creating a
processing pipeline that manages the following three steps:

1. Transferring data from external/host memory to APU memory (ACF is responsible for managing APU
memory associated with the processing pipeline)

2. Process input data (residing in APU memory) with the APU processor to produce output data (also in
APU memory)

3. Transfer output data from APU memory back to external/host memory

On the surface these three steps appear relatively straightforward, but things can get complicated very quickly
when dealing with a SIMD array of processors (each with relatively small amounts of local memory), cascaded
processing tasks with spatial dependencies, padding, etc.

Much of the complexity associated with mapping a processing scenario to the APU relates to the need for
efficient data movement between external/host memory and APU memory. One of ACF’s main
responsibilities is to minimize the cost of such data movement. Typically, the input to a processing task is a
very large amount of data, like an image or a frame of video. Minimizing the cost associated with data
transfers is accomplished by:

• Pipelining data transfers with processing to hide the cost of moving data to and from APU memory.

• Combining multiple processing tasks into a single process, allowing the framework to take advantage
of data locality and local intermediate results. In this way, the required input data is transferred from
external memory to APU memory once. It is then fully processed, and the results are transferred back
to external memory once (see the two scenarios presented in Figure 1 below). This approach
significantly reduces the overhead and bandwidth associated with data movement.

UG-10267-03-16

NXP Confidential and Proprietary

 8/61

Input
Processing

Task 1

Processing

Task 2

Processing

Task 3

External

Memory
APU Memory

Temp 1

External

Memory

Output

Temp 2Temp 1

Temp 2

Input
Processing

Task 1

Processing

Task 2

Processing

Task 3

External

Memory
APU Memory

External

Memory

Output

Temp 1

Temp 2

Figure 1 - Minimizing data movement between host and APU

ACF is designed to abstract the tedious and time consuming tasks associated with mapping a processing
scenario to the APU. By allowing ACF to manage complex data transfers, pipelining, and sequencing, the
user is free to focus on defining their processing scenario at a high level and be sure that it is mapped to the
APU correctly and efficiently.

2.3 Terminology: Kernel, Graph, Process

The following concepts/definitions will be used frequently throughout this document, and it is important that
their meanings be clear and unambiguous.

2.3.1 Kernel Definition

A kernel is a well-defined unit of processing that executes on a specific processor. It takes well-defined inputs,
processes them, and produces well-defined outputs. Exactly what goes on inside a kernel is generally
unknown to the framework (i.e. it is more or less a black box), however, interface and meta-data requirements
must be adhered to by all kernels.

It is important to note that kernels are processor specific. Specific details regarding kernel authoring can be
found in section 3.2.

UG-10267-03-16

NXP Confidential and Proprietary

 9/61

(0) 8u1,1[1,1]

(1) 8u1,1[1,1]

(2) 16u1,1[1,1]ADD

Figure 2 - ACF Kernel

The diagram above depicts a simple addition kernel that takes two 8-bit inputs and produces one 16-bit
output.

2.3.2 Graph Definition

An ACF graph is a directed acyclic graph (DAG) comprised of kernels and the directed connections between
them. The information captured by a graph strictly relates to kernels and their interconnections.

(0) 8u1,1[1,1]

(1) 8u1,1[1,1]

(2) 16u1,1[1,1]ADD
(0) 16u1,1[1,1]

sd(1,1,1,1)
FILTER (1) 16u1,1[1,1]

INPUT_0

INPUT_1
OUTPUT_0

Figure 3 - ACF Graph

The diagram above depicts the same addition kernel seen in Figure 2 with the output connected to a filter
kernel. Note the presence of graph-level IOs INPUT_0, INPUT_1 and OUTPUT_0 in Figure 3.

2.3.3 Process Definition

A process represents a graph that has been mapped to a processor architecture. This mapping is referred to
as resolution (i.e. a graph was resolved to a process). In order to generate a process, a graph must be
selected, a processor must be selected, and any necessary processor specific configuration information must
be provided.

A process is the ‘ready-to-run’ form of the application/algorithm represented by a graph. In a run-time setting,
a process can be loaded, configured (i.e. I/O configuration), and executed.

UG-10267-03-16

NXP Confidential and Proprietary

 10/61

3 Programming with ACF

3.1 Overview

Using ACF to accelerate a processing task requires the following 5 steps:

1. Write required kernel(s) or select from pre-existing kernel(s) and/or a kernel library.

2. Construct a graph using desired kernels by specifying connections between them

3. Create a process description that links the graph created in step 2 to the APU, and provide any
necessary processor specific configuration.

4. Use the auto-build script to resolve the process description created in step 3; this produces the final
ACF outputs (i.e. process binary and C++ object encapsulating the process) needed for host-side
execution.

5. Write host-side code to configure and execute the APU process created in step 4 (i.e. configure inputs
and outputs, start execution, wait for completion). This code then becomes part of the host-side
application and must be compiled and linked into the final library/binary that will run on the host
processor.

Note that steps one through four are performed ‘offline’ in a PC environment. Step five is performed at run-
time in a host processor environment.

The following sections will discuss each of these five steps in detail.

UG-10267-03-16

NXP Confidential and Proprietary

 11/61

3.2 Writing APU Kernels (Step 1)

An APU kernel is a unit of processing meant to execute on the APU. Kernels must be written in adherence to
a set of rules related to kernel interface and port specification. A kernel description typically consists of three
parts:

1) Kernel implementation: this is the kernel implementation in APU-C (i.e. C99 code with vector
extensions)

2) Kernel metadata: this is information that uniquely identifies the kernel and characterizes kernel inputs
and outputs (referred to as ‘ports’). Most of this information is quite general and makes sense for a
wide variety of kernels. Filling in this information for a kernel is a good way to determine if a kernel
will comfortably fit within the ACF framework. It is critical that the information provided in the port
specification section accurately reflect kernel I/O requirements.

3) Kernel wrapper for ACF: this is the method that wraps the kernel implementation so it can be used
by ACF.

UG-10267-03-16

NXP Confidential and Proprietary

 12/61

3.2.1 Kernel Implementation

Figure 4 below presents an example implementation for an addition kernel ‘ADD’.

#ifdef ACF_KERNEL_IMPLEMENTATION

#include "add_implementation.h"

void ADD (vec08u* lpvIn0, int16_t lStrideIn0,

 vec08u* lpvIn1, int16_t lStrideIn1,

 vec16u* lpvOut0, int16_t lStrideOut0,

 int16_t lChunkWidth, int16_t lChunkHeight)

{

 for (int16_t y=0; y<lChunkHeight; y++)

 {

 for (int16_t x=0; x<lChunkWidth; x++)

 {

 lpvOut0[y*lStrideOut0+x] = (vec16u)lpvIn0[y*lStrideIn0+x] +

 (vec16u)lpvIn1[y*lStrideIn1+x];

 }

 }

}

#endif //#ifdef ACF_KERNEL_IMPLEMENTATION

add_implementation.c

#ifndef _ADD_IMPLEMENTATION_H

#define _ADD_IMPLEMENTATION_H

#include <stdint.h>

void ADD (vec08u* lpvIn0, int16_t lStrideIn0,

 vec08u* lpvIn1, int16_t lStrideIn1,

 vec16u* lpvOut0, int16_t lStrideOut0,

 int16_t lChunkWidth, int16_t lChunkHeight);

#endif //_ADD_IMPLEMENTATION_H

add_implementation.h

Figure 4 - Example ADD kernel implementation

For maximum flexibility, kernels should be written with variable processing loops that are inputs to the kernel.
In this example a processing loop is set up based on the lChunkWidth and lChunkHeight input parameters.
‘Chunk’ simply refers to the 1D or 2D region of data to be processed by the kernel.

for (int16_t y=0; y<lChunkHeight; y++)

{

 for (int16_t x=0; x<lChunkWidth; x++)

 {

 <core kernel processing goes here!>

 }

}

UG-10267-03-16

NXP Confidential and Proprietary

 13/61

It is required that the kernel implementations always make use of the chunk width, chunk height, and

stride information when setting up processing loops. These are input parameters provided to the kernel

by the framework and ACF is free to select values for these parameters to satisfy the processing pipeline

requirements.

Also note that kernel inputs must always be treated as read only (i.e. a kernel should never write back to

a port it has defined as an input).

The core processing of the ADD kernel is simply an addition of the two inputs to produce one output.

lpvOut0[y*lStrideOut0+x] =

 (vec16u)(lpvIn0[y*lStrideIn0+x] + lpvIn1[y*lStrideIn1+x]);

UG-10267-03-16

NXP Confidential and Proprietary

 14/61

3.2.2 Kernel Metadata

Figure 5 (below) depicts the metadata and ACF wrapper for the ADD kernel.

#ifdef ACF_KERNEL_METADATA

static KERNEL_INFO _kernel_info_add

(

 "ADD",

 3,

 __port(__index(0),

 __identifier("INPUT_0"),

 __attributes(ACF_ATTR_VEC_IN),

 __spatial_dep(0,0,0,0),

 __e0_data_type(d08u),

 __e0_size(1, 1),

 __ek_size(1, 1)),

 __port(__index(1),

 __identifier("INPUT_1"),

 __attributes(ACF_ATTR_VEC_IN),

 __spatial_dep(0,0,0,0),

 __e0_data_type(d08u),

 __e0_size(1, 1),

 __ek_size(1, 1)),

 __port(__index(2),

 __identifier("OUTPUT_0"),

 __attributes(ACF_ATTR_VEC_OUT),

 __spatial_dep(0,0,0,0),

 __e0_data_type(d16u),

 __e0_size(1, 1),

 __ek_size(1, 1))

);

#endif //#ifdef ACF_KERNEL_METADATA

#ifdef ACF_KERNEL_IMPLEMENTATION

#include "add_implementation.h"

void ADD (kernel_io_desc lIn0, kernel_io_desc lIn1, kernel_io_desc lOut0)

{

 vec08u* lpvIn0 = (vec08u*)lIn0.pMem;

 vec08u* lpvIn1 = (vec08u*)lIn1.pMem;

 vec16u* lpvOut0 = (vec16u*)lOut0.pMem;

 ADD(lpvIn0, lIn0.chunkSpan,

 lpvIn1, lIn1.chunkSpan,

 lpvOut0, lOut0.chunkSpan/2,

 lIn0.chunkWidth, lIn0.chunkHeight);

}

#endif //#ifdef ACF_KERNEL_IMPLEMENTATION

add_wrapped_for_acf.c

Figure 5 - ADD kernel metadata and ACF wrapper

Note that this file includes a metadata section at the top, and the kernel wrapper method ‘ADD’ beneath the
metadata. The #defines surrounding each section (i.e. ACF_KERNEL_METADATA and

ACF_KERNEL_IMPLEMENTATION respectively) are required and it is currently advised to put metadata and

wrapper method in the same file for each kernel as shown in the example above.

UG-10267-03-16

NXP Confidential and Proprietary

 15/61

The first field in the metadata for the ADD kernel is the kernel identifier “ADD”; this identifier is important
because it will be used later to refer to this kernel when creating a graph. This identifier must be unique as it
is the only kernel ‘handle’ that exists and it must not clash with another kernel identifier. Kernel identifier
length should not exceed 64 characters.

The second field contains the number of ports, which must correspond to the number of parameters in the
kernel function signature. The ADD kernel has 3 ports.

Next are the descriptions for each of the three kernel ports. For each port (i.e. each input/output), a set of
characteristics must be provided. Table 2 (below) outlines the various port characteristics.

Characteristic

Description

__index The index of the associated parameter in the kernel function signature. This index links
a conceptual port to a concrete function parameter. For example, the port characterized
with _index(0) in Figure 5 describes the first parameter lIn0 in the kernel function

signature. Likewise, the port characterized with _index(1) describes the second
parameter lIn1, etc. The maximum number of ports for a single kernel should not

exceed 32.

Usage:

__index(<kernel parameter index starting from 0>)

Example :

__index(0)

__identifier A string-based identifier that will be used to identify and refer to the port during graph
creation. Port identifier length should not exceed 64 characters.

Usage :

__identifier(<port identifier string>)

Example :

__identifier(“INPUT_0”)

__attributes This characteristic is responsible for relaying details about the port type to the
framework. See section 3.2.2.1 for an explanation of the port attribute nomenclature.

Possible values:

Vector input types:

ACF_ATTR_VEC_IN

ACF_ATTR_VEC_IN_FIXED

ACF_ATTR_VEC_IN_STATIC

ACF_ATTR_VEC_IN_STATIC_FIXED

Vector output types:

ACF_ATTR_VEC_OUT

ACF_ATTR_VEC_OUT_FIXED

ACF_ATTR_VEC_OUT_STATIC

ACF_ATTR_VEC_OUT_STATIC_FIXED

UG-10267-03-16

NXP Confidential and Proprietary

 16/61

Scalar input types:

ACF_ATTR_SCL_IN

ACF_ATTR_SCL_IN_FIXED

ACF_ATTR_SCL_IN_STATIC

ACF_ATTR_SCL_IN_STATIC_FIXED

Scalar output types:

ACF_ATTR_SCL_OUT

ACF_ATTR_SCL_OUT_FIXED

ACF_ATTR_SCL_OUT_STATIC

ACF_ATTR_SCL_OUT_STATIC_FIXED

Usage :

__ attributes (<attribute>)

Example :

__attributes(ACF_ATTR_VEC_IN)

__spatial_dep Specifies input spatial data dependencies (in units of e0) to the left, to the right, above,
and below assuming a 2D data organization (dependencies need not be symmetrical).
The framework performs replication padding for input border padding as required.
Note that this characteristic is only applicable to 2D, non-static, direct, vector inputs.
See section 3.2.2.3 for more information about spatial dependencies.

Usage:

__spatial_dep(<left>, <right>, <top>, <bottom>)

Example:

 __spatial_dep(1,1,1,1)

__e0_data_type Specifies the data type of element <0> (e0). See section 3.2.2.2.1 for more information
about element<0>.

Possible values:

• d08u – unsigned 8-bit data

• d08s – signed 8-bit data

• d16u – unsigned 16-bit data

• d16s – signed 16-bit data

• d32u – unsigned 32-bit data

• d32s – signed 32-bit data

Usage:

__e0_data_type (<data type>)

Example:

 __e0_data_type(d08u)

UG-10267-03-16

NXP Confidential and Proprietary

 17/61

__e0_size Specifies the size of element<0> (e0). See section 3.2.2.2.1 for more information about
element<0>.

 Usage:

__element_0(<width>, <height>)

Example:

 __element_0(1,1)

__ek_size Specifies the size of element <k> (ek). See section 3.2.2.2.2 for more information about
element<k>.

Usage:

__element_k(<width>, <height>)

Example:

 __element_k(1,1)

Table 2 - Kernel port characteristics

Based on the port specification in Figure 5, it should be clear that the ADD kernel has two 8-bit unsigned input
ports and one 16-bit unsigned output port. None of the ports have spatial dependencies. The smallest unit of
input data the kernel can operate on is a single 8-bit value (dictated by __e0_data_type, __e0_dim, and
__ek_dim).

3.2.2.1 Port Attribute Nomenclature

Port attribute definition follows a strict nomenclature comprised of various keywords, and this section will
provide a means to translate and interpret this nomenclature. Note that while this nomenclature strives to be
as general as possible by design, specific details related to the APEX architecture and the ACF processing
model will be provided for more advanced, architecturally aware port types for the purpose of improved clarity

• IN / OUT

o This port attribute is always explicitly expressed and indicates if a port is an input port (IN) or

an output port (OUT).

• VEC / SCL

o This port attribute is always explicitly expressed and indicates whether data should be

associated with vector or scalar memory.

o VEC – Vector data will be distributed across or read from the local memories of the

processors that comprise the SIMD vector processing array in the APU. From a kernel point

of view, data associated with a vector port should be interpreted as vector data (e.g. vec08u,

vec16u, vec32u, etc.).

o SCL - Scalar data will be written to or read from the local memory of the ACP processor in the

APU. From a kernel point of view, data associated with a scalar port should be interpreted as

scalar data (e.g. int8_t, int16_t, int32_t, etc.).

• STATIC / (non-static)

UG-10267-03-16

NXP Confidential and Proprietary

 18/61

o The STATIC port attribute indicates that there will only be a single instance of the memory

associated with the port data, and that the framework will treat the memory associated with

this port as monolithic and persistent during pipeline execution.

o If the STATIC port attribute is not specified, it is assumed the memory associated with the port

is NOT static. In this case the framework is free to allocate memory to meet the requirements

of the processing pipeline (e.g. n-degree buffering, circular buffering, etc.).

• FIXED / (non-fixed)

o The FIXED port attribute indicates that the size of the data is specified exactly by __ek_dim

(in units of e0) and shall not be scaled in any way by the framework.

o If the FIXED port attribute is not specified, it is assumed that the size of the data associated

with the port is NOT fixed, and the framework is free to scale the size of the data being

processed (based on the guidelines set by __ek_dim) to coincide with the optimal processing

pipeline.

o Example: use a FIXED output port when kernel output size has no meaningful dependency on

kernel input size. For example, consider a kernel written to process a chunk of input data and

output a single 32-bit value that contains the sum of all the values in the input chunk. In such

a use case, no matter the size of the input data (8x1, 4x4, 8x8, etc.), the output is always a

single 32-bit value, and should therefore be specified as FIXED.

For more information about port types and for a discussion of more advanced use cases, please see section
3.7.

UG-10267-03-16

NXP Confidential and Proprietary

 19/61

3.2.2.2 Element<0> (eo) and Element<k> (eK)

The ‘element’ nomenclature exists to allow maximum flexibility when expressing the kind of data a kernel I/O
can handle. The two element types can be seen as a hierarchy where e0 is the base data type and ek is an
array of e0’s.

3.2.2.2.1 Element<0>

Element<0> (or e0) represents the smallest meaningful data granularity for a kernel I/O. For an 8-bit grayscale
image this would be a single byte. For a packed/interleaved YUV422 image this would be a YUYV sample
‘pair’.

Let e0 be written as:

e0 = <element type><num element in x dim>,<num elements in y dim>

where ‘element type’ can be 8u, 8s, 16u, 16s, 32u, or 32s.

Examples:

If your element is a single unsigned byte e0 = 8u1,1

If your element is an 8x1 array of signed 8-bit values e0 = 8s8,1

If your element is a 4x1 array of unsigned 16-bit values e0 = 16u4,1

If your element is a 2x2 array of unsigned 8-bit values e0 = 8u2,2

e0 is important because it is used for ‘type checking’ when trying to connect kernels and I/Os. For example, if
e0 specified by the output port of kernel A does not match e0 specified by the input port of kernel B, a
connection cannot be made between these two ports.

UG-10267-03-16

NXP Confidential and Proprietary

 20/61

3.2.2.2.2 Element<k>

Element<k> (or ek) is meant to express the smallest 2D array of e0’s that make sense for a kernel IO based
on the kernel implementation.

Let ek be written as:

ek = e0 [<num e0 in x dim>,<num e0 in y dim>]

Examples:

If the smallest unit of data a kernel can operate on is a single unsigned 8-bit value (i.e. e0 = 8u1,1) and there
are no additional kernel-implementation related restrictions, ek will be ‘1’ in both the x and y dimensions.
ek=[1,1] is the most common case:

ek = e0 [1,1] = 8u1,1 [1,1]

If a kernel operates on unsigned 16-bit data (i.e. e0 = 16u1,1) but the kernel implementation requires a 2x2
array of e0’s:

ek = e0 [2,2] = 16u1,1 [2,2]

If the smallest unit of data a kernel can operate on is a is a 4x1 array of 8-bit signed values (i.e. e0 = 8s4,1) and
the kernel implementation requires a 2x1 array of e0’s:

ek = e0 [2,1] = 8s4,1 [2,1]

When possible, always try to write kernels with ek=e0[1,1]. This gives the kernel more flexibility and allows
the framework to use the kernel in a wider variety of circumstances. In most cases, ek will naturally be [1,1]
since most kernel implementations don’t impose restrictions on the smallest unit of processing beyond that
implied by e0.

***Note that spatial dependencies should not be considered when defining ek. It is completely valid to
have (for example) ek=8u1,1 [1,1] and sd=(5,5,5,5), since ek and sd express different things.

ek is especially important in kernels that deal with data rate changes. In addition to characterizing the
smallest chunk of data that can be accepted by a kernel I/O, ek can express data rate changes that may occur
between kernel input and output. Consider a kernel that decimates an input by 2 in the x and y directions. It
doesn’t make sense for this kernel to have an input ek = 8u1,1 [1,1] because such an input cannot be
decimated (it is just a single 8-bit value). Instead, the kernel I/O should be expressed as follows:

(0) 8u1,1[2,2] (1) 8u1,1[1,1]DECIMATE

Figure 6 - Decimate kernel (ek)

UG-10267-03-16

NXP Confidential and Proprietary

 21/61

By specifying ek=[2,2] for the input, it ensures that the kernel always receives at least a 2x2 chunk of e0’s at
the input port. The difference between input and output ek’s make it clear that a data rate change has
occurred.

3.2.2.3 Kernels and Spatial Dependencies

Spatial dependencies can be expressed for 2D non-static vector inputs. By allowing a kernel developer to
express spatial dependencies, it allows him/her to write a more generalized kernel that operates on an input
chunk with flexible dimensions.

Spatial dependency information is expressed as an array of 4 values as follows:

sd (<depleft>, <depright>, <deptop>, <depbottom>)

Note that this ‘sd’ shorthand notation corresponds to the metadata port characteristic ‘__spatial_dep’ in Table
2 and it should only be specified for input ports.

By specifying a spatial dependency on an input, the framework is being told that it must make data beyond
chunk boundaries locally available to the kernel for processing. For example, assume an 8x4 chunk of data is
fed into a kernel that specifies sd (1,2,3,4). In this scenario, the framework will invoke the kernel on a region
of memory that resembles the following:

e0

8x4 chunk

chunk ptr

21

3
4

***If a chunk coincides with an input edge/border ACF performs replication padding (e0 resolution) for
applicable edges. ACF will generate top edge padding for chunks that coincide with the top edge of an input,
replicating the first line of the chunk. Similarly, left edge padding will be generated for chunks that coincide
with the left edge of an input, replicating the first column of the chunk. Corner replication is based on the
associated corner value (e.g. the value in the top left corner of the chunk is replicated to fill in the top left
padding region).

UG-10267-03-16

NXP Confidential and Proprietary

 22/61

Dependencies are expressed in units of e0. A 3x3 filter would express spatial dependencies as sd
(1,1,1,1). A 5x5 filter would express spatial dependencies as sd (2,2,2,2).

Referring to the diagram above, the Sobel 3x3 filter would be fully characterized as follows:

8u1,1[1,1]

sd(1,1,1,1)
Sobel 3x3 8u1,1[1,1]

Figure 7 - Sobel 3x3 kernel with spatial dependencies

UG-10267-03-16

NXP Confidential and Proprietary

 23/61

3.2.3 Kernel ACF Wrapper

Figure 5 in section 3.2.2 depicts the ACF wrapper for the ADD kernel implementation (it can be found below
the metadata).

The ACF wrapper function signature must adhere to the following template:

void <kernel_name> (kernel_io_desc <param0>, kernel_io_desc <param1>, …)

{

 //kernel implementation

}

The wrapper must be a void function with a function name (kernel_name) that matches the identifier

expressed in the first field of the kernel metadata associated with this kernel (in this case it is ‘ADD’).

It must have a parameter list of type kernel_io_desc, where conceptually, each parameter corresponds to

a kernel port. kernel_io_desc is a simple descriptor that describes the chunk of data associated with the

port; it contains the address of the data in memory, in addition to a description of the data chunk (chunkWidth,
chunkHeight, and chunkSpan). It is defined as follows:

typedef struct _kernel_io_desc

{

 void* pMem; //pointer to the chunk of data

 int chunkWidth; //width of the chunk in units of e0

 int chunkHeight; //height of the chunk in units of e0

 int chunkSpan; //number of bytes to skip to get to the next line of bytes

} kernel_io_desc;

The typical first step in wrapping any kernel implementation is to ‘unpack’ the relevant address and chunk size
information from each parameter/port kernel_io_desc structure. This structure allows access to the input

and output data pointers, in addition to the necessary chunk size and span information needed for setting up
processing loops. In the ADD example the unpacking is done as follows:

vec08u* lpvIn0 = (vec08u*)lIn0.pMem;

vec08u* lpvIn1 = (vec08u*)lIn1.pMem;

vec16u* lpvOut0 = (vec16u*)lOut0.pMem;

ADD(lpvIn0, lIn0.chunkSpan,

 lpvIn1, lIn1.chunkSpan,

 lpvOut0, lOut0.chunkSpan/2,

 lIn0.chunkWidth, lIn0.chunkHeight);

A few notes about this ‘unpacking’ step:

• Ports specified as ACF_ATTR_VEC_IN and ACF_ATTR_VEC_OUT must be cast to the appropriate
vector type before use. In the above example this is seen here:

UG-10267-03-16

NXP Confidential and Proprietary

 24/61

const vec08u* lpvIn0 = (const vec08u*)lIn0.pMem;

const vec08u* lpvIn1 = (const vec08u*)lIn1.pMem;

vec16u* lpvOut0 = (vec16u*)lOut0.pMem;

• Ports specified as ACF_ATTR_IN_SCL should be cast to the appropriate scalar type before use. See
the filter kernel example in section 3.2.4 for an example.

• The stride of lOut0 above is calculated by dividing the chunk span by 2; this is because port 2 is
associated with 16-bit data and span is always in bytes.

UG-10267-03-16

NXP Confidential and Proprietary

 25/61

3.2.4 Filter Kernel Example (metadata and ACF wrapper)

Figure 8 (below) depicts the metadata and ACF wrapper for the FILTER kernel.

#ifdef ACF_KERNEL_METADATA

static KERNEL_INFO _kernel_info_filter

(

 "FILTER",

 3,

 __port(__index(0),

 __identifier("INPUT_0"),

 __attributes(ACF_ATTR_VEC_IN),

 __spatial_dep(1,1,1,1),

 __e0_data_type(d08u),

 __e0_size(1, 1),

 __ek_size(1, 1)),

 __port(__index(1),

 __identifier("INPUT_COEF"),

 __attributes(ACF_ATTR_SCL_IN_STATIC_FIXED),

 __spatial_dep(0,0,0,0),

 __e0_data_type(d08u),

 __e0_size(1, 1),

 __ek_size(9, 1)),

 __port(__index(2),

 __identifier("OUTPUT_0"),

 __attributes(ACF_ATTR_VEC_OUT),

 __spatial_dep(0,0,0,0),

 __e0_data_type(d08u),

 __e0_size(1, 1),

 __ek_size(1, 1))

);

#endif //#ifdef ACF_KERNEL_METADATA

#ifdef ACF_KERNEL_IMPLEMENTATION

#include "filter_implementation.h"

void FILTER (kernel_io_desc lIn0, kernel_io_desc lInCoef, kernel_io_desc lOut0)

{

 const vec08u* lpvIn0 = (const vec08u*) lIn0.pMem;

 const uint8_t* lpInCoef = (const uint8_t*) lInCoef.pMem;

 vec08u* lpvOut0 = (vec08u*) lOut0.pMem;

 FILTER(lpvIn0, lIn0.chunkSpan,

 lpInCoef,

 lpvOut0, lOut0.chunkSpan,

 lIn0.chunkWidth, lIn0.chunkHeight);

}

#endif //#ifdef ACF_KERNEL_IMPLEMENTATION

filter_wrapped_for_acf.c

Figure 8 - FILTER kernel metadata and ACF wrapper

Notable metadata differences compared to the previously discussed ADD kernel include:

• port INPUT_0 specifies a non-zero spatial dependency : __spatial_dep(1,1,1,1)

UG-10267-03-16

NXP Confidential and Proprietary

 26/61

• port INPUT_COEF specifies an ACF_ATTR_SCL_IN_STATIC_FIXED port type that allows the kernel
to be configured with a 9-byte coefficient array (ek = 8u1,1 [9,1]).

Also note the following difference in the ‘unpacking’ stage of the implementation:

const vec08u* lpvIn0 = (const vec08u*)lIn0.pMem;

const uint8_t* lpInCoef = (const uint8_t*)lInCoef.pMem;

vec08u* lpvOut0 = (vec08u*)lOut0.pMem;

The ACF_ATTR_VEC_IN and ACF_ATTR_VEC_OUT ports are cast to 8-bit vector types as seen in the ADD
example, whereas the ACF_ATTR_SCL_IN_STATIC_FIXED port input is cast to an 8-bit scalar type.

UG-10267-03-16

NXP Confidential and Proprietary

 27/61

3.3 Creating a Graph (Step 2)

Once a set of kernels is available, graph construction is a simple matter of deciding which kernels to use and
how to connect them.

3.3.1 Creating a Graph Diagram

If a graph is complicated or involves multiple kernels, it is a good idea to quickly create a graph diagram. In
this example, a graph will be created that uses the ADD and FILTER kernels discussed in the previous
section.

From an illustration point of view, the ADD and FILTER kernels can be expressed as follows:

INPUT_0 (0)

8u1,1[1,1]

VEC_IN

INPUT_1 (1)

8u1,1[1,1]

VEC_IN

OUTPUT_0 (2)

16u1,1[1,1]

VEC_OUT
ADD

INPUT_0 (0)

8u1,1[1,1]

sd(1,1,1,1)

VEC_IN FILTER

OUTPUT_0 (2)

8u1,1[1,1]

VEC_OUT

INPUT_COEF (1)

8u1,1[9,1]

SCL_IN_STATIC_FIXED

Figure 9 - ADD and FILTER kernel diagrams

The kernel diagrams above capture port details for each kernel that are relevant to graph construction. As
seen in Figure 9 above, each port expresses the identifier, index, ek, and spatial dependency information (if
spatial dependency information is absent from a port it is assumed to zero). The port details in the diagrams
above are simply restatements of the information expressed by the kernel metadata (refer to section 3.2.2).

Once each kernel is clearly expressed, the next step is to create a graph diagram that specifies graph-level
ports and all desired connections.

INPUT_0 (0)

8u1,1[1,1]

sd(1,1,1,1)

VEC_IN FILTER

(myFILTER_0)

OUTPUT_0 (2)

8u1,1[1,1]

VEC_OUT

INPUT_COEF (1)

8u1,1[9,1]

SCL_IN_STATIC_FIXED

INPUT_0 (0)

8u1,1[1,1]

sd(1,1,1,1)

VEC_IN FILTER

(myFILTER_1)

OUTPUT_0 (2)

8u1,1[1,1]

VEC_OUT

INPUT_COEF (1)

8u1,1[9,1]

SCL_IN_STATIC_FIXED

INPUT_0 (0)

8u1,1[1,1]

VEC_IN

INPUT_1 (1)

8u1,1[1,1]

VEC_IN

OUTPUT_0 (2)

16u1,1[1,1]

VEC_OUTADD

(myADD)

INPUT_0

INPUT_FLT_COEF_0

INPUT_1

INPUT_FLT_COEF_1

OUTPUT_0

Figure 10 - A graph diagram (processingTaskA)

The graph diagram in Figure 10 makes it clear that two inputs (INPUT_0 and INPUT_1) are being filtered (the
filters have configurable coefficients) and then added together to produce a single output (OUTPUT_0).

UG-10267-03-16

NXP Confidential and Proprietary

 28/61

Note that five graph-level ports have been specified:

• INPUT_0

• INPUT_FLT_COEF_0

• INPUT_1

• INPUT_FLT_COEF_1

• OUTPUT_0

Graph-level ports are important because they represent the ports that will be configured in future steps (i.e.
process description and host-side configuration).

3.3.2 ACF Graph and Example

Once a graph diagram exists, expressing the graph in a form that ACF understands is a straightforward
exercise.

The first step is to create a *.hpp file (e.g. myGraph_graph.hpp) based on the following template:

#include <ACF_Graph.hpp>

class <graph class name> : public ACF_Graph

{

public:

 void Create()

 {

 //set identifier for graph

 SetIdentifier(<graph name>);

 //add kernels

 AddKernel(<local kernel identifier 0>, <kernel identifier 0>);

 AddKernel(<local kernel identifier 1>, <kernel identifier 1>);

 ...

 //add graph ports

 AddInputPort(<graph level input port 0>);

 AddInputPort(<graph level input port 1>);

 ...

 AddOutputPort(<graph level output port 0>);

 AddOutputPort(<graph level output port 1>);

 ...

 //specify connections

 Connect(<port 0>, <port 1>);

 Connect(<port 2>, <port 3>);

 ...

 }

};

UG-10267-03-16

NXP Confidential and Proprietary

 29/61

Next, give the graph class a meaningful name and fill in the Create() method such that all kernels, ports, and
connections are properly expressed. The final ACF-ready graph code that represents the example in Figure
10 is as follows:

#include <ACF_Graph.hpp>

class myGraph : public ACF_Graph

{

public:

 void Create()

 {

 //set identifier for graph

 SetIdentifier("myGraph");

 //add kernels

 AddKernel("myADD", "ADD");

 AddKernel("myFILTER_0", "FILTER");

 AddKernel("myFILTER_1", "FILTER");

 //add graph ports

 AddInputPort("INPUT_0");

 AddInputPort("INPUT_1");

 AddInputPort("INPUT_FLT_COEF_0");

 AddInputPort("INPUT_FLT_COEF_1");

 AddOutputPort("OUTPUT_0");

 //specify connections

 Connect(GraphPort("INPUT_0"), KernelPort("myFILTER_0", "INPUT_0"));

 Connect(GraphPort("INPUT_FLT_COEF_0"), KernelPort("myFILTER_0", "INPUT_COEF"));

 Connect(GraphPort("INPUT_1"), KernelPort("myFILTER_1", "INPUT_0"));

 Connect(GraphPort("INPUT_FLT_COEF_1"), KernelPort("myFILTER_1", "INPUT_COEF"));

 Connect(KernelPort("myFILTER_0", "OUTPUT_0"), KernelPort("myADD", "INPUT_0"));

 Connect(KernelPort("myFILTER_1", "OUTPUT_0"), KernelPort("myADD", "INPUT_1"));

 Connect(KernelPort("myADD", "OUTPUT_0"), GraphPort("OUTPUT_0"));

 }

};

The AddKernel(…) method takes two identifiers; the first is the identifier that is used throughout the graph
specification to refer to that specific instance of the kernel, and the second is the unique kernel identifier
specified in the kernel metadata. The first identifier is essentially a handle on a kernel instance. For example,
‘myFILTER_0’ is a handle on the first instance of the ‘FILTER’ kernel, and ‘myFILTER_1’ is a handle on the
second instance of the ‘FILTER’ kernel. If you use the same kernel multiple times in a graph, you must
add multiple instances of that kernel to the graph, each with a unique local identifier.

For more detailed explanations of the various graph construction methods, see the ACF_Graph section of UG-
10267-04.

UG-10267-03-16

NXP Confidential and Proprietary

 30/61

3.3.3 Known caveats and limitations

1) The maximum number of kernels allowed per graph is 100.

2) The maximum number of graph inputs is 100. The maximum number of graph outputs is 100.

3) A source port can be connected to a maximum of 100 destination ports in the case of multiple forward
connections (e.g. kernel A output is connected to both kernel B input and kernel C input).

4) If the only non-fixed graph input(s) are scalar, you must either fix them in kernel metadata or fix them
via the method described in section 3.4.2. ACF host run-time will not be able to perform scenario
selection in this case and will return an error message indicating that a suitable scenario selection port
could not be found.

UG-10267-03-16

NXP Confidential and Proprietary

 31/61

3.4 Specifying a Process Description (Step 3)

The purpose of a process description is to link a graph to a specific processor, and allow for the provision of
any processor specific configuration that may be required prior to resolution.

3.4.1 ACF Process Description and Example

The first step is to create a *.hpp file (e.g. myProcess_proc_desc.hpp) based on the following template:

#include <ACF_Process_Desc_APU.hpp>

#include "<*.hpp graph file created in step 2>"

class <process descriptor class name> : public ACF_Process_Desc_APU

{

public:

 void Create()

 {

 Initialize(mGraph, <process identifier>);

 }

 <graph class specified in graph *.hpp file> mGraph;

};

Notes about this template:

• ACF currently only supports the mapping of graphs to the APU processor, and the selection of the
APU as the processor is done by deriving the process descriptor class from
ACF_Process_APU, as seen above.

• The class needs to contain a member (‘mGraph’ in this case) that is an instantiation of the graph to be
mapped to the APU.

• The ‘Initialize(…)’ method must be called with the graph object (e.g. mGraph) and a user-defined
process identifier. This identifier is important because it will be picked up by the build system
and be used as a base handle/prefix for all generated output associated with the final resolved
process.

Filling in the template to map the graph specified in Figure 10 to the APU processor results in the following:

#include <ACF_Process_Desc_APU.hpp>

#include "myGraph_graph.hpp"

class myProcess_apu_process_desc : public ACF_Process_Desc_APU

{

public:

 void Create()

 {

 Initialize(mGraph, "myProcess");

 }

UG-10267-03-16

NXP Confidential and Proprietary

 32/61

 myGraph mGraph;

};

For more detailed explanations of the various process description methods, see the ACF_Process_Desc_APU
section of UG-10267-04.

3.4.2 Explicit Offline Chunk Size Specification (ADVANCED)

Process chunk size information is normally abstracted/hidden from the user; chunk size selection requires
awareness of APU specific details and a clear understanding of how the data is broken down for processing.
In most circumstances, this selection is best left to ACF at run-time.

In specific cases, it may be necessary to pre-select and ‘hard code’ the chunk sizes associated with non-fixed
process inputs (for example, if you know you will be using the process to only deal with I/O’s of a specific size
and you know you will be running the process on a specific APU configuration).

!!! Explicit chunk size selection caveat: If chunk size is explicitly defined (either offline via the method
described in this section, or at runtime using explicit scenario selection as described in section 3.6.3) AND
chunk width/height does not divide evenly into IO widths/heights defined at run-time, then IO buffers must be
allocated with the following properties:

1) IO buffer must be allocated with at least (chunk width – (IO width % chunk width)) elements of
overflow space to the right of the core data region (for best performance, it is recommended that
buffer span in bytes also be 16-byte divisible)

2) IO buffer must be allocated with at least (chunk height – (IO height % chunk height)) elements of
overflow space below the core data region

For example, if an output chunk size is forced to be 8x8 and the associated output size is 333x222, the
minimum required output buffer allocation would be:

If these requirements are not met, the data transfer to/from APEX memory may read/write beyond allocated
buffer boundaries, resulting in undefined behavior.

UG-10267-03-16

NXP Confidential and Proprietary

 33/61

Offline chunk size selection can be done using the following method:

SetInputChunkSize(<graph input port identifier>, <chunk width>, <chunk height>);

For example:

#include <ACF_Process_Desc_APU.hpp>

#include "myGraph_graph.hpp"

class myProcess_8x2_apu_process_desc : public ACF_Process_Desc_APU

{

public:

 void Create()

 {

 Initialize(mGraph, "myProcess_8x2");

 SetInputChunkSize("INPUT_0", 8, 2);

 SetInputChunkSize("INPUT_1", 8, 2);

 }

 myGraph_graph mGraph;

};

If this approach is taken, ALL non-fixed input chunk sizes must be specified. Furthermore, run-time I/O size
flexibility will be reduced because only a single ‘scenario’ is analysed during the resolution phase. In the
typical use case (i.e. when chunk size is NOT explicitly specified) the framework will analyse and store
information pertaining to multiple scenarios (a ‘scenario’ being characterized by a base chunk size), allowing
the ideal scenario to be selected at run-time based on process I/O sizes.

In the example above, the input chunk size above is chosen to be 8x2 for graph inputs ‘INPUT_0’ and
‘INPUT_1’ (8x2 is chosen arbitrarily for demonstration purposes). Typically for vector input types, the input
chunk width choice should be made based on the following three factors:

1) The number of CUs (computational units) in the APU CU array (depends on APU configuration) and
the maximum size of the input(s) that will be ultimately processed on the host-side

2) The worst case left and right spatial dependencies (if applicable). Chunk width must be at least as
wide as the worst case spatial dependency. For example, if a graph contains a 3x3 kernel and a
9x9 kernel, chunk width must be at least 4 to satisfy the requirements of the 9x9 filter since it requires
4 samples beyond the left of the chunk and 4 samples beyond the right of the chunk.

3) To satisfy HW requirements, chunk width (in bytes) must be one of the following values: 2, 4, 6, 8, 10,
12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 36, 40, 44, 48, 52, 56, 60, 64, 72, 80, 88, 96, 104, 112, 120,
128. If using an ‘indirect’ input the chunk width (in bytes) must be one of the following values: 4, 8, 12,
16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64.

UG-10267-03-16

NXP Confidential and Proprietary

 34/61

ACF breaks input data down into tiles. Tiles are further divided into chunks. Each chunk maps to a CU in the
APU. Chunk width must be selected such that the width of the input, when divided into chunks, fits into the
CUs available in the APU (see section 3.7.1 for more information about chunks and tiling).

For example, if the input to the resolved process will ultimately be a 640x480 image and the APU consists of
32 CUs, chunk width must be set to at least 20 (640/32=20); anything smaller than 20 and the input tile will not
‘fit’ into the APU.

The input chunk height choice relates primarily to CMEM utilization. Larger chunk sizes mean more CMEM
is consumed, especially as a graph gets complicated. As a general recommendation, keep the chunk height
as small as possible during early development (it can be as low as 1).

UG-10267-03-16

NXP Confidential and Proprietary

 35/61

3.5 ACF Offline Process Resolution (Step 4)

3.5.1 Overview

Offline resolution refers to the scripted process that takes the user-created inputs from steps 1, 2, and 3:

• kernel(s) + associated metadata (step 1)

• graph (step 2)

• process description (step 3)

and produces the following outputs:

• host-compatible ‘handle’ C++ class that encapsulates the resolved process and allows it to be
instantiated, configured, and executed by a host-processor (see step 5)

• run-time binary that encapsulates the architecture specific machine code representing the ACF-
generated processing pipeline. This binary is captured in a header file (*_APU_LOAD.h) that is
included by the aforementioned handle class.

The following diagram depicts an offline resolution scenario assuming the identifier TEST:

Offline

Resolution

TEST_grap

h.hpp

TEST_apu_process

_desc.hpp

TEST.hpp

USER INPUT

FINAL

OUTPUT

kernel

src

files

To Host

Build

TEST_APU

_LOAD.h

Kernel.mak

Figure 11 – Offline resolution process

UG-10267-03-16

NXP Confidential and Proprietary

 36/61

ACF offline resolution is responsible for:

1. Kernel compilation and the generation of associated kernel libraries

2. Kernel metadata parsing and management

3. Graph resolution, and generation of the architecture-specific program encapsulating the processing
pipeline

4. Generation of the aforementioned host ‘handle’ (TEST.hpp in above example)

5. Compilation of generated program (linked with required kernel libraries) and generation of final
architecture specific binary load that encapsulates the processing pipeline (TEST_APU_LOAD.h in
above example)

3.5.2 ACF Offline Error Messages

This section lists the possible ACF offline error messages that may be sent to standard output. Additional
information is provided for those that are not deemed self-explanatory.

3.5.2.1 ACF_Process_Desc_APU::WalkGraphForBaseED -> Base ED calculation for graph <graph
identifier> is not stabilizing; aborting resolution

This is likely caused by having kernel port sizes specified in such a way that it is impossible for the recursive
base ED calculation to stabilize. E.g. Kernel A has two non-fixed outputs, one with ek(1,1) and one with
ek(2,2), and these are connected to kernel B non-fixed inputs with ek(1,1) and ek(1,1) respectively.

3.5.2.2 ACF_Process_Desc_APU::ConfigureLocalMemDesc(...) -> exceeded maximum number of
memory descriptors (<ACF_PROCESS_MAX_NUM_LOCALMEMDESC>)

At the time of writing ACF_PROCESS_MAX_NUM_LOCALMEMDESC is set to 500.

3.5.2.3 ACF_Process_Desc_APU::AnalyzeScenarios() -> Graph <graph identifier> port <port
identifier> is not fixed and the chunk size has not been set with SetInputChunkSize()

This error will be output if the user chooses to call ACF_Process_Desc::SetInputChunkSize in their process
descriptor for one non-fixed input port but neglects to call it for other non-fixed inputs. If any non-fixed inputs
are being set with SetInputChunkSize, ALL non-fixed inputs must be set with SetInputChunkSize.

3.5.2.4 ACF_Process_Desc_APU::AnalyzeScenarios() -> Issue encountered trying to calculate base
eD for graph <graph identifier>; aborting resolution

See 3.5.2.1.

UG-10267-03-16

NXP Confidential and Proprietary

 37/61

3.5.2.5 ACF_Process_Desc_APU::AnalyzeAndResolve() -> A viable scenario could not be found.
Please see the analysis log file (/out/<process identifier>_analysis_log.txt).

3.5.2.6 ACF_Process_Desc::Initialize(...) -> failed

3.5.2.7 ACF_Process_Desc::Initialize(...) -> 'lProcessIdentifier' is either empty or does not have a
meaningful value

The select process identifier must be a string that is not an empty string or “”.

3.5.2.8 ACF_Process_Desc::SetInputChunkSize(...) -> graph <graph identifier> input port <port
identifier> has a fixed size and cannot be changed from (<port ek.x, ek.y>)

3.5.2.9 ACF_Process_Desc::SetInputChunkSize(...) -> graph <graph identifier> input port <port
identifier> does not exist

3.5.2.10 ACF_Process_Desc::SetInputChunkSize(...) -> graph <graph identifier> input port <port
identifier> ChunkSize is out of range; size values must be in the range [1:65535]

3.5.2.11 ACF_Process_Desc::SetInputChunkSize(<port identifier>, ...) -> process has not been
successfully initialized

3.5.2.12 ACF_Process_Desc::FlagInputAsChunkBasedIndirect(...) -> graph <graph identifier> input
port <port identifier> is not compatible with indirect mode; valid candidate must be a non-
static vector port with no spatial dependencies

3.5.2.13 ACF_Process_Desc::FlagInputAsChunkBasedIndirect(...) -> graph <graph identifier> input
port <port identifier> does not exist

3.5.2.14 ACF_Process_Desc::FlagInputAsChunkBasedIndirect(<port identifier>, ...) -> process has not
been successfully initialized

3.5.2.15 ACF_Process_Desc::FlagInputAsVerticalSdOverlap(...) -> graph <graph identifier> input port
<port identifier> does not exist

3.5.2.16 ACF_Process_Desc::FlagInputAsVerticalSdOverlap(<port identifier>, ...) -> process has not
been successfully initialized

3.5.2.17 ACF_Process_Desc::CalcInputChunkSize(...) ChunkSize is out of range; size values must be
in the range [1:65535]

3.5.2.18 ACF_Graph::AddInputPort(<port identifier>) -> error detected (see ACF_Node specific error
above)

The related ACF_Node specific error (typically output before this one) should provide more detailed
information.

UG-10267-03-16

NXP Confidential and Proprietary

 38/61

3.5.2.19 ACF_Graph::AddOutputPort(<port identifier>) -> error detected (see ACF_Node specific error
above)

The related ACF_Node specific error (typically output before this one) should provide more detailed
information.

3.5.2.20 ACF_Graph::GraphPort(<port identifier>) -> <graph identifier> port <port identifier> cannot be
found

3.5.2.21 ACF_Graph::KernelPort(<kernel identifier>, <port identifier>) -> port doesn't exist

3.5.2.22 ACF_Graph::KernelPort(<kernel identifier>, <port identifier>) -> kernel doesn't exist

3.5.2.23 ACF_Graph::AddKernel(<kernel identifier>, <kernel database identifier>) -> if a kernel has a
non-fixed output (e.g. <non-fixed output port identifier>) it must have at least one non-fixed
input

3.5.2.24 ACF_Graph::AddKernel(<kernel identifier>, <kernel database identifier>) -> kernel couldn't be
found in the database

3.5.2.25 ACF_Graph::AddKernel(<kernel identifier>, <kernel database identifier>) -> unknown port
type encountered

3.5.2.26 ACF_Graph::AddKernel(<kernel identifier>, <kernel database identifier>) -> unknown port
data type encountered

3.5.2.27 ACF_Graph::AddKernel(<kernel identifier>, <kernel database identifier>) -> invalid e0/ek
dimension(s) detected (must be non-zero)

3.5.2.28 ACF_Graph::AddKernel(<kernel identifier>, <kernel database identifier>) -> exceeded
maximum allowable kernels per graph (<ACF_MAX_NUM_KERNELS_PER_GRAPH>)

At the time of writing ACF_MAX_NUM_KERNELS_PER_GRAPH is set to 100.

3.5.2.29 ACF_Graph::AddKernel(<kernel identifier>, <kernel database identifier>) -> memory
allocation failure (mKernelArray)

Internal memory allocation error.

3.5.2.30 ACF_Graph::Connect(...) -> detected multiple connections to kernel(graph) <kernel/graph
identifier> input(output) port <port identifier>; only a single connection is permitted

3.5.2.31 ACF_Graph::Connect(...) -> exceeded maximum number of connections per port

At the time of writing ACF_MAX_NUM_FWD_DIR_CONNECTIONS_PER_PORT is set to 100.

UG-10267-03-16

NXP Confidential and Proprietary

 39/61

3.5.2.32 ACF_Graph::Connect(...) -> memory type (CMEM/DMEM) mismatch between <kernel/graph
port identifier> port <src port identifier> and <kernel/graph port identifier> port <dst port
identifier>

3.5.2.33 ACF_Graph::Connect(...) -> e0 mismatch between <kernel/graph port identifier> port <src
port identifier> and <kernel/graph port identifier> port <dst port identifier>

3.5.2.34 ACF_Graph::Connect(...) -> invalid input/output connection between <kernel/graph port
identifier> port <src port identifier> and <kernel/graph port identifier> port <dst port
identifier>

3.5.2.35 ACF_Graph::Connect(...) -> 'lpSrcPort' and 'lpDstPort' are NULL

3.5.2.36 ACF_Graph::Connect(...) -> 'lpSrcPort' is NULL

3.5.2.37 ACF_Graph::Connect(...) -> 'lpDstPort' is NULL

3.5.2.38 ACF_Process_Desc_APU::Resolve() -> Graph has no input ports

3.5.2.39 ACF_Process_Desc_APU::Resolve() -> Graph has no output ports

3.5.2.40 ACF_Graph::VerifyPortConnections() -> graph input port ‘<port identifier>’ is not connected
to anything

3.5.2.41 ACF_Graph::VerifyPortConnections() -> graph output port ‘<port identifier>’ is not connected
to anything

3.5.2.42 ACF_Graph::VerifyPortConnections() -> kernel ‘<kernel identifier>' input port '<port
identifier>' is not connected to anything

3.5.2.43 ACF_Graph::SetKernelPortOutputDelay(<kernel identifier>,<port identifier>) -> port doesn't
exist

3.5.2.44 ACF_Graph::SetKernelPortOutputDelay(<kernel identifier>, <port identifier>) -> kernel
doesn't exist

3.5.2.45 ACF_Node::AddInputPort(<port identifier>) -> the total number of ports (input + output) per
node must not exceed (<ACF_MAX_NUM_PORTS_PER_NODE>)

3.5.2.46 ACF_Node::AddInputPort(<port identifier>) -> port identifier is not unique

3.5.2.47 ACF_Node::AddInputPort(<port identifier>) -> port identifier string is either empty or does not
have a meaningful value

3.5.2.48 ACF_Node::AddInputPort(<port identifier>) -> memory allocation failure (mInputPortArray)

3.5.2.49 ACF_Node::AddOutputPort(<port identifier>) -> the total number of ports (input + output) per
node must not exceed (<ACF_MAX_NUM_PORTS_PER_NODE>)

At the time of writing ACF_MAX_NUM_PORTS_PER_NODE is set to 50.

UG-10267-03-16

NXP Confidential and Proprietary

 40/61

3.5.2.50 ACF_Node::AddOutputPort(<port identifier>) -> port identifier is not unique

3.5.2.51 ACF_Node::AddOutputPort(<port identifier>) -> port identifier string is either empty or does
not have a meaningful value

3.5.2.52 ACF_Node::AddOutputPort(<port identifier>) -> memory allocation failure
(mOutputPortArray)

Internal memory allocation error.

3.5.2.53 ACF_Node::SetIdentifier() -> identifier string is either empty or does not have a meaningful
value

3.5.2.54 ACF_Node::InputPort(<port idx>) -> port doesn't exist.

3.5.2.55 ACF_Node::OutputPort(<port idx>) -> port doesn't exist.

UG-10267-03-16

NXP Confidential and Proprietary

 41/61

3.6 Configuring and Launching a Process on the Host (Step 5)

The final step occurs in the host environment and involves configuring and launching a resolved ACF process
on APEX hardware.

3.6.1 ACF Host Interface and Example

As mentioned in section 3.5, the host-ready APU process is represented by a pair of generated header files:

<process_identifier>.hpp

<process_identifier>_APU_LOAD.h

An example of a host test stub that configures and invokes the resolved process (associated with the ongoing
example ‘myProcess’) follows. The inputs to the function myProcess_teststub are of type vsdk::UMat.

#include <umat.hpp>

#include <myProcess.hpp>

int myProcess_teststub(vsdk::UMat lInput0,

 vsdk::UMat lInput1,

 vsdk::UMat lFilterCoef,

 vsdk::UMat lOutput0)

{

 int lRetVal = 0;

 myProcess lProcess;

 lRetVal |= lProcess.Initialize();

 lRetVal |= lProcess.ConnectIO("INPUT_0", lInput0);

 lRetVal |= lProcess.ConnectIO("INPUT_1", lInput1);

 lRetVal |= lProcess.ConnectIO("INPUT_FLT_COEF_0", lFilterCoef);

 lRetVal |= lProcess.ConnectIO("INPUT_FLT_COEF_1", lFilterCoef);

 lRetVal |= lProcess.ConnectIO("OUTPUT_0", lOutput0);

 lRetVal |= lProcess.Start();

 lRetVal |= lProcess.Wait();

 return lRetVal;

}

A few notes about the above test code:

• The identifiers used with ConnectIO (e.g. INPUT_0, INPUT_1, INPUT_FLT_COEF_0, etc.) are the

user-specified graph input/output identifiers selected during graph creation (see section 3.3).

• Always ensure that the Initialize() method Is called before a process is configured and launched for
the first time. Initialize() does not need to be called again for subsequent launches of the same
process as long as the process object has not been destroyed.

UG-10267-03-16

NXP Confidential and Proprietary

 42/61

• Start() is a non-blocking call and you may perform other host-side processing in parallel with the APU
process execution. Always make sure to (eventually) pair each call to Start() with a call to Wait().

Please see UG-10267-04 for a more detailed description of ACF_Process_APU.

3.6.2 Executing a Process with a Specific HW configuration (ADVANCED)

By default, a process will run on APU 0 with all available CUs, on APEX 0. The following method can be used
to override the default configuration and specify the APEX HW a process will execute on.

SelectApuConfiguration(<apu configuration>, <apex id>);

Please see UG-10267-04 for a more detailed description of this ACF_Process_APU method and the
configurations available.

3.6.3 Explicit Scenario Selection (ADVANCED)

If chunk size information is not specified offline in the process description (see section 3.4.2), the ACF offline
‘resolution’ phase will analyze and keep track of multiple scenarios (a scenario is uniquely identified by a base
chunk size). By having multiple valid scenarios to choose from at run-time, ACF is able to choose the ideal
scenario based on the actual I/O sizes and target APU configuration (information that is often only known at
run-time).

In certain use cases, it may be desirable to select a specific scenario at run-time. This can be done with the
following method. It forces the selection of the scenario whereby a specific port has a specified chunk size
(an error will be returned if such a scenario does not exist). !!!Note that when using SelectScenario(…), the
target port identifier must refer to a port with all of the following properties: non-fixed & direct (i.e. not
indirect) & non-static & vector.

SelectScenario(<graph port identifier>, <chunk width>, <chunk height>);

Furthermore, once a scenario has been successfully selected, it is possible to query other graph ports to
return the chunk size associated with each, if required.

QueryPortChunkSize(<graph port identifier>, <chunk width>, <chunk height>);

!!! Please review the ‘Explicit chunk size selection caveat’ in section 3.4.2 before using this
functionality.

Please see UG-10267-04 for a more detailed description of these ACF_Process_APU methods.

UG-10267-03-16

NXP Confidential and Proprietary

 43/61

3.7 Advanced ACF Functionality and Use Cases

This section discusses more advanced concepts and uses cases, with a focus on a high level understanding
of how various port attributes map to actual data transfers between external memory and APEX local memory.

3.7.1 The Subdivision of Input Data: Vectorization vs. Tiling

It is important that the differences between vectorization and tiling be clearly understood within the context
of ACF before proceeding with this section.

3.7.1.1 Vectorization

In the ACF context, vectorization refers to the subdivision of input data into smaller pieces (i.e. chunks) for
the purpose of distribution across multiple processors to be processed in parallel (i.e. data level parallelism).

External Memory APEX External Memory

processchunk

Figure 12 - Vectorization

3.7.1.2 Tiling

In the ACF context, tiling refers to the subdivision of input data into ‘tiles’ for sequential or iterative processing
(a tile is a grouping of one or more chunks in a row).

External Memory APEX External Memory

process (iteration 0)

process (iteration 1)

process (iteration 2)

process (iteration 3)

chunk

tile

Figure 13 - Tiling

The need for tiling is in part a consequence of limited local APEX memory. For example, the APU has
relatively small amounts of local memory. In typical use cases, input data sizes are much too large to fit
entirely into CMEM (e.g. a megapixel image), so input data must be subdivided into tiles and moved into APU
memory, processed, and moved out of APU memory in a producer/consumer fashion.

Tiling also improves parallelism and data locality. By breaking the processing into tiles and moving the
input/output data to/from APU memory, ACF minimizes the costs associated with memory access latencies
and data transfers by pipelining tile transfers with processing.

UG-10267-03-16

NXP Confidential and Proprietary

 44/61

3.7.2 Attributes

3.7.2.1 VEC

By flagging an input port as a vector input, the framework is being told that the input data is a candidate for
vectorization. This means that the framework is permitted to break associated input data into smaller pieces
(chunks) and distribute the input data chunks across multiple processors for parallel processing.

In the APU case specifically, input data flagged as VEC is subdivided into chunks and distributed across the
SIMD processing array.

3.7.2.2 SCL

By flagging an input port as a scalar input, the framework is being told that input data is not a candidate for
vectorization (i.e. the data cannot be split into smaller pieces and distributed across multiple processors).

In the APU case specifically, input data flagged as SCL is written to APU DMEM. Note that scalar data may
still be subject to tiling.

3.7.2.3 (non-static)

By flagging an input port as non-static, the framework is being told that input data is a candidate for tiling.

Input data transfers from external memory to local APEX memory occur tile by tile in an iterative fashion as
determined by the total input size and the user-selected chunk size. Note that the number of iterations (i.e.
the number of tiles) must be consistent across ALL non-static inputs.

Output data transfers from local APEX memory to external memory are handled in the same iterative fashion
as input transfers.

3.7.2.4 STATIC

By flagging an input port as static, the framework is being told that input data should not be tiled and that a
single local static APU buffer will be associated with this data (i.e. no circular buffering, dual or n-degree, will
take place).

Static input data transfers from external memory to local APU memory occur only once prior to the
commencement of any APU processing. Such inputs are treated as monolithic data transfers. A kernel
that has a static input can assume that the entirety of the static input data is available for reading at all times.

Static output data transfers from local APU memory to external memory occur only once following the
completion of all APU processing, and are treated as monolithic data transfers.

3.7.3 Understanding Attribute Combinations

It should now be clear what the VEC/SCL and (non-static)/STATIC attributes represent. This section will
further clarify the different combinations and how they should be understood and used in a practical sense.

UG-10267-03-16

NXP Confidential and Proprietary

 45/61

3.7.3.1 (non-static) VEC

The non-static vector attribute is used to indicate data that is both tileable and vectorizable. It should be used
for ‘large’ inputs (e.g. image data) that can benefit from vectorization and parallel processing. It gives the
framework maximum flexibility to take advantage of APEX processing resources.

Input data regions (and associated chunk sizes) can be 2D or 1D. In both cases the data will be subdivided
into chunks and tiles in a 2D or 1D raster fashion (i.e. left to right, top to bottom).

tile

chunk

In this example the 2D

input region is

subdivided into 4 tiles

spanning the width of

the input region, each

tile consisting of 6 2x2

chunks.

2D input data

e0

Figure 14 - Tiling of 2D data

tile

chunk

In this example the 1D

input region is

subdivided into 2 tiles,

each tile consisting of 6

8x1 chunks.

1D input data

e0

Figure 15 - Tiling of 1D data

3.7.3.2 (non-static) SCL

The non-static scalar attribute is tileable but not vectorizable and it can be used in the following situations:

• Bring in ‘tiles’ of data for scalar processing. Note that a tile will always consist of a single chunk in this
case.

UG-10267-03-16

NXP Confidential and Proprietary

 46/61

3.7.3.3 STATIC SCL

The static scalar attribute is used to indicate data that is neither tileable nor vectorizable. This type of port is
useful when dealing with smaller amounts of input configuration/initialiation data (e.g. filter coefficients) or
input/output ports that are associated with reduction operations. Please refer to section 3.7.4 for a more in-
depth discussion of the reduction use case.

3.7.3.4 STATIC VEC

The static vector attribute is used to indicate data that is vectorizable but not tileable. This is a more
advanced (and architecturally aware) use case, and it can be used in the following situations:

• Accumulate/preserve vector results between tiles as a means of partial reduction. A kernel is free to
read from and write to a static vector buffer during each iteration.

• In a typical reduction use case a static vector output can be fed into a ‘reduction’ kernel for final
reduction/processing.

UG-10267-03-16

NXP Confidential and Proprietary

 47/61

3.7.4 Reduction Operations

This section will present a simple histogram use case in order to clearly demonstrate a vector reduction
operation. Note that the histogram could be calculated using a scalar input if desired (with no reduction step
necessary), but then it would not be taking advantage of APEX’s parallel processing capabilities. This
example focuses on an efficient non-static vector input + reduction scenario.

This section assumes the reader has a basic understanding of the histogram concept. For reference, an
image histogram describes the tonal distribution of an image. For example, in an 8-bit greyscale image, each
pixel can have a value that ranges from 0-255 (i.e. 256 possible values for each pixel). A 256-bit histogram
for such an image would keep track of how many pixels in the image correspond to each value in the 0-255
range.

In this example the histogram kernel will be tabulating the frequency of 8-bit values ranging from 0 to 255
resulting in a final output list containing 256 32-bit values.

The graph representing the histogram scenario is as follows:

(1) 32u1,1[256,1]

VEC_OUT_STATIC_FIXEDHISTOGRAM

REDUCTION

INPUT_0

OUTPUT_0

(0) 8u1,1[1,1]

VEC_IN

(0) 32u1,1[1,1]

VEC_IN_STATIC

(1) 32u1,1[1,1]

SCL_OUT_STATIC

Figure 16 - Histogram graph

The histogram kernel input is a non-static vector, and the histogram kernel output is a static vector with a fixed
size of 256x1. The output size is fixed because no matter what the input chunk size is, the output will always
consist of 256 32-bit values.

Histogram output is a vector because each vector processor keeps track of its own 256-bin histogram result
for the chunks of data that get assigned to it for processing (i.e. during each processing iteration, each vector
processor will update its local cumulative histogram result based on the chunk of data it has been assigned).

Once processing has been fully completed (i.e. all tiles have been processed by the histogram kernel), n 256-
bin results will exist across the vector processing array, where n is the tile width in chunks.

The final reduction step is required to reduce the n 256-bin results spread across the vector processing array
into a single 256-bin scalar output. Notice that the reduction kernel has a static vector input and a static scalar
output.

UG-10267-03-16

NXP Confidential and Proprietary

 48/61

ACF provides a method ACF_RET_VAR to retrieve a variety of variables that are useful for cases like
reduction (use of this method requires no additional #includes). See Table 3 below for a list of the variables
that can be queried.

int16_t ACF_RET_VAR(ACF_VAR lVar);

ACF_VAR_FIRST_TILE_FLAG Returns 1 if the chunk being processed belongs to the first tile, 0
otherwise.

ACF_VAR_LAST_TILE_FLAG Returns 1 if the chunk being processed belongs to the last tile, 0
otherwise.

ACF_VAR_TILE_WIDTH_IN_CHUNKS Returns the width of the current tile in chunks.

ACF_VAR_FIRST_CUID Returns the ID of the CU containing the first chunk of a tile (a tile is
mapped to an array of CUs with consecutive IDs). Note that from
the APU/kernel perspective, CU array indexing always starts at
0; this remains true even if you select a different APU configuration

as described in 3.6.2 (e.g. if you call SelectApuConfiguration(…)
with ACF_APU_CFG__APU_1_CU_32_63_SMEM_2_3, CU
array indexing from the APU’s perspective will still start at 0, not
32).

APU specific example: if ACF_VAR_TILE_WIDTH_IN_CHUNKS =
8 and ACF_VAR_FIRST_CUID = 1 then the tile is being processed
by CUs 1 through 8 (inclusive) of the SIMD processing array.

ACF_VAR_NUM_INPUT_ITERATIONS Returns the total number of input iterations (i.e. the number of input
tiles that will be processed).

ACF_VAR_CU_ARRAY_WIDTH Returns the width of the CU array. This may differ from ‘tile width in
chunks’ because a tile may not span the entire CU array (e.g. CU
array width = 64 and tile width in chunks = 60).

Table 3 - ACF variables (ACF_VAR)

The histogram kernel code can be found below. A few notes:

• The ACF_VAR_FIRST_TILE_FLAG variable is used to initialize the static vector output to zero only
once (i.e. during the first iteration).

• Results will be accumulated on a per tile basis, generating a running result that is already a ‘partial’
reduction (i.e. it is a tile reduction). The reduction kernel will handle the vector reduction.

UG-10267-03-16

NXP Confidential and Proprietary

 49/61

#ifdef ACF_KERNEL_METADATA

static KERNEL_INFO _kernel_info_histogram

(

 "HISTOGRAM",

 2,

 __port(__index(0),

 __identifier("INPUT_0"),

 __attributes(ACF_ATTR_VEC_IN),

 __spatial_dep(0,0,0,0),

 __e0_data_type(d08u),

 __e0_size(1, 1),

 __ek_size(1, 1)),

 __port(__index(1),

 __identifier("OUTPUT_0"),

 __attributes(ACF_ATTR_VEC_OUT_STATIC_FIXED),

 __spatial_dep(0,0,0,0),

 __e0_data_type(d32u),

 __e0_size(1, 1),

 __ek_size(256, 1))

);

#endif //#ifdef ACF_KERNEL_METADATA

#ifdef ACF_KERNEL_IMPLEMENTATION

void HISTOGRAM (kernel_io_desc lIn0, kernel_io_desc lOut0)

{

 vec08u* lpvIn0 = (vec08u*)lIn0.pMem;

 vec32u* lpvOut0 = (vec32u*)lOut0.pMem;

 int lStrideIn0 = lIn0.chunkSpan;

 int lStrideOut0 = lOut0.chunkSpan>>2;

 //initialize the static vector output buffer to zero

 if (ACF_RET_VAR(ACF_VAR_FIRST_TILE_FLAG))

 {

 for (int y=0; y<lOut0.chunkHeight; y++)

 for (int x=0; x<lOut0.chunkWidth; x++)

 lpvOut0[y*lStrideOut0+x] = 0;

 }

 for (int y=0; y<lIn0.chunkHeight; y++)

 {

 for (int x=0; x<lIn0.chunkWidth; x++)

 {

 vec08u lvBinIndex = lpvIn0[y*lStrideIn0+x];

 vec32u lvTmp = vload(lpvOut0, lvBinIndex);

 lvTmp += 1;

 vstore(lpvOut0, lvBinIndex, lvTmp);

 }

 }

}

#endif //#ifdef ACF_KERNEL_IMPLEMENTATION

histogram.cpp

Figure 17 - Histogram kernel

UG-10267-03-16

NXP Confidential and Proprietary

 50/61

The reduction kernel implementation can be found below. A few notes:

• Since the primary graph input is tileable (i.e. it is non-static) the framework will invoke multiple
processing iterations as required. Even though the reduction kernel will be invoked every iteration,
the use of the ACF_VAR_LAST_TILE_FLAG variable ensures that the reduction kernel only performs
the reduction operation on the final static histogram output vector once all other ‘iterative’ processing
has completed.

• A for loop is used to iterative over the relevant processors to gather up the individual elements that
comprise the vector result, making use of the ACF_VAR_FIRST_CUID and
ACF_VAR_TILE_WIDTH_IN_CHUNKS variables. Within this loop, the vector result stored across the
vector processing array (lpvIn0) is reduced to generate a final scalar result (lpOut0).

UG-10267-03-16

NXP Confidential and Proprietary

 51/61

#ifdef ACF_KERNEL_METADATA

static KERNEL_INFO _kernel_info_reduction

(

 "REDUCTION",

 2,

 __port(__index(0),

 __identifier("INPUT_0"),

 __attributes(ACF_ATTR_VEC_IN_STATIC),

 __spatial_dep(0,0,0,0),

 __e0_data_type(d32u),

 __e0_size(1, 1),

 __ek_size(1, 1)),

 __port(__index(1),

 __identifier("OUTPUT_0"),

 __attributes(ACF_ATTR_SCL_OUT_STATIC),

 __spatial_dep(0,0,0,0),

 __e0_data_type(d32u),

 __e0_size(1, 1),

 __ek_size(1, 1))

);

#endif //#ifdef ACF_KERNEL_METADATA

#ifdef ACF_KERNEL_IMPLEMENTATION

void REDUCTION (kernel_io_desc lIn0, kernel_io_desc lOut0)

{

 if (ACF_RET_VAR(ACF_VAR_LAST_TILE_FLAG))

 {

 vec32u* lpvIn0 = (vec32u*)lIn0.pMem;

 int32_t* lpOut0 = (int32_t*)lOut0.pMem;

 int lChunkWidth = lIn0.chunkWidth;

 int lChunkHeight = lIn0.chunkHeight;

 int lChunkStrideIn0 = lIn0.chunkSpan>>2;

 int lChunkStrideOut0 = lOut0.chunkSpan>>2;

 //initialize the static scalar output buffer to zero

 for (int y=0; y<lChunkHeight; y++)

 for (int x=0; x<lChunkWidth; x++)

 lpOut0[y*lChunkStrideOut0+x] = 0;

 int16_t lFirstCuId = ACF_RET_VAR(ACF_VAR_FIRST_CUID);

 int16_t lTileWidthInChunks = ACF_RET_VAR(ACF_VAR_TILE_WIDTH_IN_CHUNKS);

 for (int i=lFirstCuId;

 i<lFirstCuId+lTileWidthInChunks; i++)

 {

 for (int y=0; y<lChunkHeight; y++)

 {

 for (int x=0; x<lChunkWidth; x++)

 {

 lpOut0[y*lChunkStrideOut0+x] += vget(lpvIn0[y*lChunkStrideIn0+x], i);

 }

 }

 }

 }

}

#endif //#ifdef ACF_KERNEL_IMPLEMENTATION

Figure 18 - Reduction kernel

UG-10267-03-16

NXP Confidential and Proprietary

 52/61

Additional Notes:

• It is advisable to keep references to ACF specific variables restricted to the ACF wrapper layer of your
kernel implementations if possible (the above examples violate this recommendation for presentation
purposes). From a development point of view, you will likely want to test and verify your kernel
implementations (or at least as much of them as you can) alone in the APU simulator environment.
Kernel files with references to ACF specific variables will not compile or function as expected since
their meanings are tied to ACF.

UG-10267-03-16

NXP Confidential and Proprietary

 53/61

3.7.5 Indirect Inputs

This section describes the indirect input functionality provided by ACF. Indirect input can be employed for
those use cases where chunks of input of data residing in external memory do not adhere to a simple 1D or
2D raster pattern.

For reference, the following diagram illustrates a simple1D/2D raster data pattern where the chunks of data (a,
b, c… j, k, l) are contiguous in memory.

a b c d e f

g h i j k l

e0

source data region

src addr

tile

chunk

In contrast to the raster pattern above, indirect input functionality allows the framework to construct tiles from
chunks of data that are scattered throughout a source memory region. In addition to providing the source
data, the user must also specify a chunk offset array. This 1D or 2D offset array contains a list of byte offsets
(relative to the source data region starting point) that address the top left corners of the desired chunks.

Consider the following example scenario where a user wishes to process 2 tiles, each consisting of 6 non-
contiguous 2x2 chunks scattered throughout a source data region:

a

b

c

d

e

f

g

h

i

j

k

l

&a

e0

source data region chunk offset array (relative to src addr)

&b &c &d &e &f

&g &h &i &j &k &l

src addr

Once the above information (i.e. the source data region and the chunk offset array) is provided to ACF, the
‘effective’ input from ACF’s point of view would be as follows:

UG-10267-03-16

NXP Confidential and Proprietary

 54/61

tile

chunk

a b c d e f

g h i j k l

Note that indirect data transfer is only available for non-static vector inputs. Furthermore, the shape
and size of the input (and any associated outputs) is determined by the shape and size of the chunk offset
array and the associated chunk size. This can be seen in the example above - the chunk offset array is a 6x2
organization of chunk offsets, and the resulting ‘effective’ input is a 6x2 organization of 2x2 chunks.

In order to utilize this functionality, the following two steps are required:

1. During the process description step (see section 3.4), flag the desired input(s) as indirect using the
following method:

int32_t FlagInputAsChunkBasedIndirect(std::string lInputPortIdentifier);

2. During the run-time IO configuration step (see section 3.6) use the ConnectIndirectInput method to
provide ACF with both source data and the associated chunk offset array.

int32_t ConnectIndirectInput(std::string lPortIdentifier,

vsdk::UMat& lSrcData,

vsdk::UMat& lChunkOffsetArray);

Please refer to UG-10267-04 for more detailed descriptions of each of the aforementioned methods.

Known Limitations

1) If the chunk offset array is 2D the width of the offset array must be a multiple of 4 (i.e. the width must
be a multiple of 4 offsets where each offset is associated with a chunk). If the chunk offset array is
1D, the size must be a multiple of 4. This limitation is related to the underlying HW.

2) To satisfy HW requirements, chunk width (in bytes) must be one of the following values: 4, 8, 12, 16,
20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64

UG-10267-03-16

NXP Confidential and Proprietary

 55/61

3.7.6 Region of Interest (ROI) Processing

3.7.6.1 Introduction

A region of interest (ROI) is defined as a 2D subset of data fully contained within a larger 2D ‘parent’ region.
The ROI use-case is unique because it requires padding to come directly from the source data region for
applicable edges.

Consider the following ROI:

ROI

Figure 19 – A region of interest (ROI)

In the ROI depicted in Figure 19, there is source data available on the top, bottom, and left edges of the ROI.
There is no source data available on the right edges of the ROI since it lines up with the edge of the parent
data region.

Due to the availability of source data around the edges of the ROI, and the desire to take this source data into
account during processing (especially important for ROI edges), special considerations need to be made
when deciding how to manage ROI edge padding.

Assume that the ROI depicted in Figure 19 is fed into a single filter kernel with spatial dependencies defined
as sd(3,3,3,3). ROI edge padding will then be managed as depicted in Figure 20 below.

UG-10267-03-16

NXP Confidential and Proprietary

 56/61

2D source

data

2D ROI

Generated edge padding

Actual region of source data that

needs to be considered to generate

correct border results for the ROI

Figure 20 – ROI edge padding

As seen in Figure 20, up to three additional samples beyond each ROI edge must be considered. This is a
direct result of the sd=(3,3,3,3) requirement. All ‘generated’ padding is handled by ACF (i.e. e0 replication) as
described in section 3.2.2.3.

• Left and bottom edge padding comes entirely from the source data.

• Top edge padding consists of a mixture of source data and generated data (since 3 lines of padding
are required but only two lines of source data are available).

• Right edge padding is entirely generated

3.7.6.2 Processing ROIs with ACF

From an interface point of view, configuring and connecting an ROI is managed at the host-level. You can
specify and connect an ROI by using the the ACF_Process::ConnectIO_ROI(…) method (see UG-10267-

04 for full interface details):

E.g. Assume we have a 640x480 input image, and that we want to process a 320x240 ROI that corresponds
to the top left quadrant of the 640x480 source region.

//specify 640x480 input and output source regions

vsdk::UMat lInput = vsdk::UMat(480, 640, VSDK_CV_8U);

vsdk::UMat lOutput = vsdk::UMat(480, 640, VSDK_CV_8U);

MyProcess lProcess;

lProcess.Initialize();

lProcess.ConnectIO_ROI("INPUT", lInput, 0, 0, 320, 240);

lProcess.ConnectIO_ROI("OUTPUT", lOutput, 0, 0, 320, 240);

lProcess.Start();

lProcess.Wait();

UG-10267-03-16

NXP Confidential and Proprietary

 57/61

3.7.6.3 Example ROI use Case

One practical use case for ROI functionality is related to splitting a large input into multiple smaller inputs (i.e.
multiple ROIs) and processing each ROI separately (while still producing the same result as if the original
input had been processed as a whole). This sort of subdivision may be necessary if the combination of chunk
size and input width results in an input tile that is too wide to fit into the available CU array.

Assume we want to process the following 32x16 input with myFilterProcess, which contains a single kernel
with non-zero spatial dependencies.

In this example, assume the above input is subdivided into four 16x8 ROIs A, B, C, and D as illustrated below.

ROI A ROI B

ROI C ROI D

The host-code to process all four 16x8 ROIs is as follows:

vsdk::UMat lInput = vsdk::UMat(16, 32, VSDK_CV_8U);

vsdk::UMat lOutput = vsdk::UMat(16, 32, VSDK_CV_8U);

myFilterProcess lProcess;

lProcess.Initialize();

UG-10267-03-16

NXP Confidential and Proprietary

 58/61

//top left 16x8 quadrant (i.e. ROI A)

lProcess.ConnectIO_ROI("INPUT", lInput, 0, 0, 16, 8);

lProcess.ConnectIO_ROI("OUTPUT ", lOutput, 0, 0, 16, 8);

lProcess.Start();

lProcess.Wait();

//top right 16x8 quadrant (i.e. ROI B)

lProcess.ConnectIO_ROI("INPUT", lInput, 16, 0, 16, 8);

lProcess.ConnectIO_ROI("OUTPUT ", lOutput, 16, 0, 16, 8);

lProcess.Start();

lProcess.Wait();

//bottom left 16x8 quadrant (i.e. ROI C)

lProcess.ConnectIO_ROI("INPUT", lInput, 0, 8, 16, 8);

lProcess.ConnectIO_ROI("OUTPUT ", lOutput, 0, 8, 16, 8);

lProcess.Start();

lProcess.Wait();

//bottom right 16x8 quadrant (i.e. ROI D)

lProcess.ConnectIO_ROI("INPUT", lInput, 16, 8, 16, 8);

lProcess.ConnectIO_ROI("OUTPUT ", lOutput, 16, 8, 16, 8);

lProcess.Start();

lProcess.Wait();

3.7.6.4 Limitations

• ROI functionality is limited to 2D non-static vector I/O port types.

• It is a requirement that both ROI coordinates and ROI size be divisible by the chunk size of the
associated input/output port.

For example, if the chunk size associated with the target input port is 8x4:

Allowable ROI x coordinates include 0, 8, 16, 24, 32, etc.

Allowable ROI y coordinates include 0, 4, 8, 12, 16, etc.

Allowable ROI sizes include things like 320x240 and 240x100, but 300x200 would not be supported
because 300 is not divisible by the chunk width of 8.

UG-10267-03-16

NXP Confidential and Proprietary

 59/61

3.7.7 Interrupt Support

ACF internally makes use of APEX hardware interrupts to determine when process execution has completed.
Assuming the target OS offers support for multi-threading (e.g. Linux), the default behaviour of
ACF_Process_APU::Wait() is to perform a non-busy wait on an appropriate synchronization object (e.g.

semaphore).

This default behaviour allows multiple ACF processes to be launched in multiple threads in parallel with ARM
processing to make efficient use of both APEX and ARM resources.

In the bare-metal/no-OS use case, ACF_Process_APU::Wait() is still interrupt-driven, but it will ultimately

be a polling wait.

Basic user-defined callback support is available via the overloaded ACF_Process_APU::Start(...)

function (see document UG-10267-04-##-ACF_Reference_Guide.pdf for details):

int32_t Start(void (*lpCallback)(void* lpParam, int32_t* lpRetVal),

 void* lpCallbackParam,

 int32_t* lpCallbackRetVal);

As a general guideline, because ACF_Process_APU::Wait() already provides an abstracted interrupt-

driven means of waiting for process completion, use of the user-defined callback should be reserved for more
advanced/specific use cases. Even if a callback is specified, a call to ACF_Process_APU::Start must still

be paired with a call to ACF_Process_APU::Wait().

UG-10267-03-16

NXP Confidential and Proprietary

 60/61

4 Appendix A (ed)

4.1 Element<d>

Note: An ACF user doesn’t need to configure Element<d>; this section is provided for the sake of a complete
explanation.

The final element of this notation is an extension that allows the framework to express a 2D array of ek’s.
Element<d> (or ed) represents the fully described data chunk that is selected for kernel I/O. ed is chosen by
the framework using ek as a guideline, to ultimately decide how input data will be broken up and fed into a
kernel for processing. Note that a kernel developer should ensure ek is as small as possible, because it
gives the framework more flexibility when choosing ed.

Let ed be written as:

ed = ek {<num ek in x dim>,<num ek in y dim>}

Based on the decimate example above, the framework can choose an input ed = 8u1,1 [2,2]{4,4} (an 8x8 block
of 8-bit data). As a consequence of this input selection, the decimated output ed = 8u1,1[1,1]{4,4} (a 4x4 block
of 8-bit data).

(0) 8u1,1[2,2]{4,4} (1) 8u1,1[1,1]{4,4}
Decimate

{4,4}

Figure 21 - Decimate kernel (ed)

4.2 Example with e0, ek, and ed

Consider the following graph with all kernel I/Os expressed in ek notation. Assume the user wants to process
an 8x4 chunk of 8u4,1 data. Such an input to the ‘YUV422 split’ kernel would be expressed as 8u4,1 [1,1]{8,4}.
The framework will set ed dimensions to {8,4} for the ‘YUV422 split’ kernel to satisfy this input requirement.
Based on this input requirement, how does the framework configure of ed for the remaining two kernels?

8u4,1[1,1]{8,4}

(Y) 8u1,1[2,1]
YUV422

split

{8,4}

(U) 8u1,1[1,1]

(V) 8u1,1[1,1]

8u1,1[1,1] 8u1,1[1,1]Sobel 3x3

8u4,1[1,1]

(Y) 8u1,1[2,1]

YUV422

combine
(U) 8u1,1[1,1]

(V) 8u1,1[1,1]

Figure 22 - YUV422 split/combine graph

The framework has already chosen ed dimensions to be {8,4} for the ‘YUV422 split’ kernel to satisfy the input
requirement. These same ed dimensions are propagated to all ‘YUV422 split’ kernel ports, resulting in a
luminance (Y) output ed = 8u1,1[2,1]{8,4} (for example).

UG-10267-03-16

NXP Confidential and Proprietary

 61/61

The most noteworthy part of this graph is how the luminance (i.e. Y) output of the ‘YUV422 split’ kernel is
being fed into the input of the ‘Sobel 3x3’ kernel. Note that even though the ek of the luminance output
(8u1,1[2,1]) does not match the ek of the Sobel input (8u1,1[1,1]), the connection is allowed because e0=8u1,1 for
both ports. While the difference in ek dimensions does not preclude a connection, it does require that the ed

dimensions for the ‘Sobel 3x3’ kernel be configured differently than the ‘YUV422 split’ kernel.

The Sobel filter cannot directly accept an input with ed = 8u1,1[2,1]{8,4} because the ek dimensions do not
match (it wants [1,1], not [2,1]). However, if the framework sets the ed dimensions of the Sobel filter to be
{16,4} everything matches up perfectly because 8u1,1[2,1]{8,4} is equivalent to 8u1,1[1,1]{16,4} from the e0 point
of view (i.e. both are 16x4 arrays of e0).

8u4,1[1,1]{8,4}

(Y) 8u1,1[2,1]{8,4}
YUV422

split

{8,4}

(U) 8u1,1[1,1]{8,4}

(V) 8u1,1[1,1]{8,4}

8u1,1[1,1]{16,4} 8u1,1[1,1]{16,4}
Sobel 3x3

{16,4}

8u4,1[1,1]{8x4}

(Y) 8u1,1[2,1]{8x4}
YUV422

combine

{8,4}

(U) 8u1,1[1,1]{8x4}

(V) 8u1,1[1,1]{8x4}

Figure 23 - YUV422 split/combine graph (ed)

