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1 Document Purpose and Introduction 

This document is an APEX Core Framework (ACF) user guide, and it contains all the information required for 
an ACF user to begin mapping an application (or selected parts of an application) to the APEX platform.  It will 
outline the prerequisite software components, present a high-level design methodology, and present the 
necessary programming interfaces. 

 

1.1 Acronyms 

 

Acronym Definition 

ACF APEX Core Framework 

ACP Array Controller Processor 

APU Array Processor Unit 

CU Computational Unit 

DAG Directed Acyclic Graph 

Table 1 - Acronyms 

1.2 Scope 

This document is targeted towards an audience interested in accelerating applications via NXP’s APEX and 
ACF technology.  The audience should have a general familiarity with parallel processing, and a basic 
understanding of the APEX hardware architecture. 

 

1.3 References 

See document UG-10267-04-##-ACF_Reference_Guide.pdf for more information about ACF and ACF 
interfaces. 
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2 ACF Overview and Terminology 

 

2.1 High Level Overview 

At the highest level, ACF is an abstraction layer for the APEX hardware (HW), abstracting data movements 
and execution beneath a high-level interface. 

The purpose of ACF is to provide a programming model and the means for a user to implement and execute 
common data processing tasks on the APEX without having to deal directly with the underlying hardware.  
While this document discusses ACF in the context of APEX HW in general, it is primarily focused on the 
mapping of processing tasks to the Array Processor Unit (APU). 

 

2.2 Low Level Overview 

At a slightly lower level (assuming the APU is the chosen processor), ACF is responsible for creating a 
processing pipeline that manages the following three steps: 

1. Transferring data from external/host memory to APU memory (ACF is responsible for managing APU 
memory associated with the processing pipeline) 

2. Process input data (residing in APU memory) with the APU processor to produce output data (also in 
APU memory) 

3. Transfer output data from APU memory back to external/host memory 

 

On the surface these three steps appear relatively straightforward, but things can get complicated very quickly 
when dealing with a SIMD array of processors (each with relatively small amounts of local memory), cascaded 
processing tasks with spatial dependencies, padding, etc.   

 

Much of the complexity associated with mapping a processing scenario to the APU relates to the need for 
efficient data movement between external/host memory and APU memory.  One of ACF’s main 
responsibilities is to minimize the cost of such data movement.  Typically, the input to a processing task is a 
very large amount of data, like an image or a frame of video.  Minimizing the cost associated with data 
transfers is accomplished by: 

• Pipelining data transfers with processing to hide the cost of moving data to and from APU memory. 

• Combining multiple processing tasks into a single process, allowing the framework to take advantage 
of data locality and local intermediate results.  In this way, the required input data is transferred from 
external memory to APU memory once.  It is then fully processed, and the results are transferred back 
to external memory once (see the two scenarios presented in Figure 1 below).  This approach 
significantly reduces the overhead and bandwidth associated with data movement. 
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Figure 1 - Minimizing data movement between host and APU 

 

ACF is designed to abstract the tedious and time consuming tasks associated with mapping a processing 
scenario to the APU.  By allowing ACF to manage complex data transfers, pipelining, and sequencing, the 
user is free to focus on defining their processing scenario at a high level and be sure that it is mapped to the 
APU correctly and efficiently. 

 

2.3 Terminology: Kernel, Graph, Process 

The following concepts/definitions will be used frequently throughout this document, and it is important that 
their meanings be clear and unambiguous. 

 

2.3.1 Kernel Definition 

A kernel is a well-defined unit of processing that executes on a specific processor. It takes well-defined inputs, 
processes them, and produces well-defined outputs.  Exactly what goes on inside a kernel is generally 
unknown to the framework (i.e. it is more or less a black box), however, interface and meta-data requirements 
must be adhered to by all kernels. 

It is important to note that kernels are processor specific.  Specific details regarding kernel authoring can be 
found in section 3.2. 
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(0) 8u1,1[1,1]

(1) 8u1,1[1,1]

(2) 16u1,1[1,1]ADD

 

Figure 2 - ACF Kernel 

The diagram above depicts a simple addition kernel that takes two 8-bit inputs and produces one 16-bit 
output. 

 

2.3.2 Graph Definition 

An ACF graph is a directed acyclic graph (DAG) comprised of kernels and the directed connections between 
them.  The information captured by a graph strictly relates to kernels and their interconnections. 

 

(0) 8u1,1[1,1]

(1) 8u1,1[1,1]

(2) 16u1,1[1,1]ADD
(0) 16u1,1[1,1]

sd(1,1,1,1)
FILTER (1) 16u1,1[1,1]

INPUT_0

INPUT_1
OUTPUT_0

 

Figure 3 - ACF Graph 

The diagram above depicts the same addition kernel seen in Figure 2 with the output connected to a filter 
kernel.  Note the presence of graph-level IOs INPUT_0, INPUT_1 and OUTPUT_0 in Figure 3. 

 

2.3.3 Process Definition 

A process represents a graph that has been mapped to a processor architecture.  This mapping is referred to 
as resolution (i.e. a graph was resolved to a process).  In order to generate a process, a graph must be 
selected, a processor must be selected, and any necessary processor specific configuration information must 
be provided. 

A process is the ‘ready-to-run’ form of the application/algorithm represented by a graph.  In a run-time setting, 
a process can be loaded, configured (i.e. I/O configuration), and executed. 
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3 Programming with ACF 

3.1 Overview 

Using ACF to accelerate a processing task requires the following 5 steps: 

 

1. Write required kernel(s) or select from pre-existing kernel(s) and/or a kernel library. 

2. Construct a graph using desired kernels by specifying connections between them 

3. Create a process description that links the graph created in step 2 to the APU, and provide any 
necessary processor specific configuration. 

4. Use the auto-build script to resolve the process description created in step 3; this produces the final 
ACF outputs (i.e. process binary and C++ object encapsulating the process) needed for host-side 
execution. 

5. Write host-side code to configure and execute the APU process created in step 4 (i.e. configure inputs 
and outputs, start execution, wait for completion).  This code then becomes part of the host-side 
application and must be compiled and linked into the final library/binary that will run on the host 
processor. 

 

Note that steps one through four are performed ‘offline’ in a PC environment.  Step five is performed at run-
time in a host processor environment. 

 

The following sections will discuss each of these five steps in detail. 
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3.2 Writing APU Kernels (Step 1) 

An APU kernel is a unit of processing meant to execute on the APU.  Kernels must be written in adherence to 
a set of rules related to kernel interface and port specification.  A kernel description typically consists of three 
parts: 

 

1) Kernel implementation: this is the kernel implementation in APU-C (i.e. C99 code with vector 
extensions) 

2) Kernel metadata: this is information that uniquely identifies the kernel and characterizes kernel inputs 
and outputs (referred to as ‘ports’).  Most of this information is quite general and makes sense for a 
wide variety of kernels.  Filling in this information for a kernel is a good way to determine if a kernel 
will comfortably fit within the ACF framework.  It is critical that the information provided in the port 
specification section accurately reflect kernel I/O requirements. 

3) Kernel wrapper for ACF: this is the method that wraps the kernel implementation so it can be used 
by ACF. 
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3.2.1 Kernel Implementation 

Figure 4 below presents an example implementation for an addition kernel ‘ADD’. 

 

#ifdef ACF_KERNEL_IMPLEMENTATION

#include "add_implementation.h"

void ADD (vec08u* lpvIn0, int16_t lStrideIn0,

          vec08u* lpvIn1, int16_t lStrideIn1,

          vec16u* lpvOut0, int16_t lStrideOut0,

          int16_t lChunkWidth, int16_t lChunkHeight)

{

   for (int16_t y=0; y<lChunkHeight; y++)

   {

      for (int16_t x=0; x<lChunkWidth; x++)

      {

         lpvOut0[y*lStrideOut0+x] = (vec16u)lpvIn0[y*lStrideIn0+x] +

                                    (vec16u)lpvIn1[y*lStrideIn1+x];

      }

   }

}

#endif //#ifdef ACF_KERNEL_IMPLEMENTATION

add_implementation.c

#ifndef _ADD_IMPLEMENTATION_H

#define _ADD_IMPLEMENTATION_H

#include <stdint.h>

void ADD (vec08u* lpvIn0, int16_t lStrideIn0,

          vec08u* lpvIn1, int16_t lStrideIn1,

          vec16u* lpvOut0, int16_t lStrideOut0,

          int16_t lChunkWidth, int16_t lChunkHeight);

#endif //_ADD_IMPLEMENTATION_H

add_implementation.h

 

Figure 4 - Example ADD kernel implementation 

For maximum flexibility, kernels should be written with variable processing loops that are inputs to the kernel.  
In this example a processing loop is set up based on the lChunkWidth and lChunkHeight input parameters.  
‘Chunk’ simply refers to the 1D or 2D region of data to be processed by the kernel. 

 

for (int16_t y=0; y<lChunkHeight; y++) 

{ 

   for (int16_t x=0; x<lChunkWidth; x++) 

   { 

      <core kernel processing goes here!> 

   } 

} 
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It is required that the kernel implementations always make use of the chunk width, chunk height, and 

stride information when setting up processing loops.  These are input parameters provided to the kernel 

by the framework and ACF is free to select values for these parameters to satisfy the processing pipeline 

requirements. 

 

Also note that kernel inputs must always be treated as read only (i.e. a kernel should never write back to 

a port it has defined as an input). 

 

The core processing of the ADD kernel is simply an addition of the two inputs to produce one output. 

 

lpvOut0[y*lStrideOut0+x] =  

         (vec16u)(lpvIn0[y*lStrideIn0+x] + lpvIn1[y*lStrideIn1+x]); 
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3.2.2 Kernel Metadata 

Figure 5 (below) depicts the metadata and ACF wrapper for the ADD kernel. 

 

 

#ifdef ACF_KERNEL_METADATA

static  KERNEL_INFO _kernel_info_add

(

   "ADD",

   3,

   __port(__index(0),

          __identifier("INPUT_0"),

          __attributes(ACF_ATTR_VEC_IN),

          __spatial_dep(0,0,0,0),

          __e0_data_type(d08u),

          __e0_size(1, 1),

          __ek_size(1, 1)),

   __port(__index(1),

          __identifier("INPUT_1"),

          __attributes(ACF_ATTR_VEC_IN),

          __spatial_dep(0,0,0,0),

          __e0_data_type(d08u),

          __e0_size(1, 1),

          __ek_size(1, 1)),

   __port(__index(2),

          __identifier("OUTPUT_0"),

          __attributes(ACF_ATTR_VEC_OUT),

          __spatial_dep(0,0,0,0),

          __e0_data_type(d16u),

          __e0_size(1, 1),

          __ek_size(1, 1))

);

#endif //#ifdef ACF_KERNEL_METADATA

#ifdef ACF_KERNEL_IMPLEMENTATION

#include "add_implementation.h"

void ADD (kernel_io_desc lIn0, kernel_io_desc lIn1, kernel_io_desc lOut0)

{

   vec08u* lpvIn0  = (vec08u*)lIn0.pMem;

   vec08u* lpvIn1  = (vec08u*)lIn1.pMem;

   vec16u* lpvOut0 = (vec16u*)lOut0.pMem;

   ADD(lpvIn0, lIn0.chunkSpan,

       lpvIn1, lIn1.chunkSpan,

       lpvOut0, lOut0.chunkSpan/2,

       lIn0.chunkWidth, lIn0.chunkHeight);

}

#endif //#ifdef ACF_KERNEL_IMPLEMENTATION

add_wrapped_for_acf.c

 

Figure 5 - ADD kernel metadata and ACF wrapper 

Note that this file includes a metadata section at the top, and the kernel wrapper method ‘ADD’ beneath the 
metadata.   The #defines surrounding each section (i.e. ACF_KERNEL_METADATA and 

ACF_KERNEL_IMPLEMENTATION respectively) are required and it is currently advised to put metadata and 

wrapper method in the same file for each kernel as shown in the example above. 
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The first field in the metadata for the ADD kernel is the kernel identifier “ADD”; this identifier is important 
because it will be used later to refer to this kernel when creating a graph.  This identifier must be unique as it 
is the only kernel ‘handle’ that exists and it must not clash with another kernel identifier.  Kernel identifier 
length should not exceed 64 characters. 

The second field contains the number of ports, which must correspond to the number of parameters in the 
kernel function signature.  The ADD kernel has 3 ports. 

Next are the descriptions for each of the three kernel ports.  For each port (i.e. each input/output), a set of 
characteristics must be provided.  Table 2 (below) outlines the various port characteristics. 

 

 

Characteristic 

 

Description 

__index The index of the associated parameter in the kernel function signature.  This index links 
a conceptual port to a concrete function parameter.  For example, the port characterized 
with _index(0) in Figure 5 describes the first parameter lIn0 in the kernel function 

signature.  Likewise, the port characterized with _index(1) describes the second 
parameter lIn1, etc.  The maximum number of ports for a single kernel should not 

exceed 32.  

Usage:  

__index(<kernel parameter index starting from 0>) 

Example : 

__index(0) 

__identifier A string-based identifier that will be used to identify and refer to the port during graph 
creation.  Port identifier length should not exceed 64 characters. 

Usage : 

__identifier(<port identifier string>) 

Example : 

__identifier(“INPUT_0”) 

__attributes This characteristic is responsible for relaying details about the port type to the 
framework.  See section 3.2.2.1 for an explanation of the port attribute nomenclature.   

Possible values: 

Vector input types: 

ACF_ATTR_VEC_IN 

ACF_ATTR_VEC_IN_FIXED 

ACF_ATTR_VEC_IN_STATIC 

ACF_ATTR_VEC_IN_STATIC_FIXED 

 

Vector output types: 

ACF_ATTR_VEC_OUT 

ACF_ATTR_VEC_OUT_FIXED 

ACF_ATTR_VEC_OUT_STATIC 

ACF_ATTR_VEC_OUT_STATIC_FIXED 
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Scalar input types: 

ACF_ATTR_SCL_IN 

ACF_ATTR_SCL_IN_FIXED 

ACF_ATTR_SCL_IN_STATIC 

ACF_ATTR_SCL_IN_STATIC_FIXED   

 

Scalar output types: 

ACF_ATTR_SCL_OUT 

ACF_ATTR_SCL_OUT_FIXED 

ACF_ATTR_SCL_OUT_STATIC 

ACF_ATTR_SCL_OUT_STATIC_FIXED 

  

Usage : 

__ attributes (<attribute>) 

Example : 

__attributes(ACF_ATTR_VEC_IN) 

__spatial_dep Specifies input spatial data dependencies (in units of e0) to the left, to the right, above, 
and below assuming a 2D data organization (dependencies need not be symmetrical).  
The framework performs replication padding for input border padding as required.   
Note that this characteristic is only applicable to 2D, non-static, direct, vector inputs.  
See section 3.2.2.3 for more information about spatial dependencies. 

Usage: 

__spatial_dep(<left>, <right>, <top>, <bottom>) 

Example: 

 __spatial_dep(1,1,1,1) 

__e0_data_type Specifies the data type of element <0> (e0).  See section 3.2.2.2.1 for more information 
about element<0>. 

Possible values: 

• d08u – unsigned 8-bit data 

• d08s – signed 8-bit data 

• d16u – unsigned 16-bit data 

• d16s – signed 16-bit data 

• d32u – unsigned 32-bit data 

• d32s – signed 32-bit data 

Usage: 

__e0_data_type (<data type>) 

Example: 

 __e0_data_type(d08u) 
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__e0_size Specifies the size of element<0> (e0).  See section 3.2.2.2.1 for more information about 
element<0>. 

 Usage: 

__element_0(<width>, <height>) 

Example: 

 __element_0(1,1) 

__ek_size Specifies the size of element <k> (ek).  See section 3.2.2.2.2 for more information about 
element<k>. 

Usage: 

__element_k(<width>, <height>) 

Example: 

 __element_k(1,1) 

Table 2 - Kernel port characteristics 

 

Based on the port specification in Figure 5, it should be clear that the ADD kernel has two 8-bit unsigned input 
ports and one 16-bit unsigned output port.  None of the ports have spatial dependencies.  The smallest unit of 
input data the kernel can operate on is a single 8-bit value (dictated by __e0_data_type, __e0_dim, and 
__ek_dim). 

 

3.2.2.1 Port Attribute Nomenclature 

Port attribute definition follows a strict nomenclature comprised of various keywords, and this section will 
provide a means to translate and interpret this nomenclature.  Note that while this nomenclature strives to be 
as general as possible by design, specific details related to the APEX architecture and the ACF processing 
model will be provided for more advanced, architecturally aware port types for the purpose of improved clarity 

 

• IN / OUT 

o This port attribute is always explicitly expressed and indicates if a port is an input port (IN) or 

an output port (OUT). 

• VEC / SCL 

o This port attribute is always explicitly expressed and indicates whether data should be 

associated with vector or scalar memory. 

o VEC – Vector data will be distributed across or read from the local memories of the 

processors that comprise the SIMD vector processing array in the APU.  From a kernel point 

of view, data associated with a vector port should be interpreted as vector data (e.g. vec08u, 

vec16u, vec32u, etc.). 

o SCL - Scalar data will be written to or read from the local memory of the ACP processor in the 

APU.  From a kernel point of view, data associated with a scalar port should be interpreted as 

scalar data (e.g. int8_t, int16_t, int32_t, etc.). 

• STATIC / ( non-static) 
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o The STATIC port attribute indicates that there will only be a single instance of the memory 

associated with the port data, and that the framework will treat the memory associated with 

this port as monolithic and persistent during pipeline execution. 

o If the STATIC port attribute is not specified, it is assumed the memory associated with the port 

is NOT static.  In this case the framework is free to allocate memory to meet the requirements 

of the processing pipeline (e.g. n-degree buffering, circular buffering, etc.). 

• FIXED / ( non-fixed) 

o The FIXED port attribute indicates that the size of the data is specified exactly by __ek_dim 

(in units of e0) and shall not be scaled in any way by the framework. 

o If the FIXED port attribute is not specified, it is assumed that the size of the data associated 

with the port is NOT fixed, and the framework is free to scale the size of the data being 

processed (based on the guidelines set by __ek_dim) to coincide with the optimal processing 

pipeline. 

o Example: use a FIXED output port when kernel output size has no meaningful dependency on 

kernel input size.  For example, consider a kernel written to process a chunk of input data and 

output a single 32-bit value that contains the sum of all the values in the input chunk.  In such 

a use case, no matter the size of the input data (8x1, 4x4, 8x8, etc.), the output is always a 

single 32-bit value, and should therefore be specified as FIXED. 

 

For more information about port types and for a discussion of more advanced use cases, please see section 
3.7. 
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3.2.2.2 Element<0> (eo) and Element<k> (eK) 

The ‘element’ nomenclature exists to allow maximum flexibility when expressing the kind of data a kernel I/O 
can handle.  The two element types can be seen as a hierarchy where e0 is the base data type and ek is an 
array of e0’s. 

 

3.2.2.2.1 Element<0> 

Element<0> (or e0) represents the smallest meaningful data granularity for a kernel I/O.  For an 8-bit grayscale 
image this would be a single byte.  For a packed/interleaved YUV422 image this would be a YUYV sample 
‘pair’. 

 

Let e0 be written as: 

e0 = <element type><num element in x dim>,<num elements in y dim> 

 

where ‘element type’ can be 8u, 8s, 16u, 16s, 32u, or 32s. 

 

Examples: 

If your element is a single unsigned byte e0 = 8u1,1 

If your element is an 8x1 array of signed 8-bit values e0 = 8s8,1  

If your element is a 4x1 array of unsigned 16-bit values e0 = 16u4,1 

If your element is a 2x2 array of unsigned 8-bit values e0 = 8u2,2 

 

e0 is important because it is used for ‘type checking’ when trying to connect kernels and I/Os.  For example, if 
e0 specified by the output port of kernel A does not match e0 specified by the input port of kernel B, a 
connection cannot be made between these two ports. 
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3.2.2.2.2 Element<k> 

Element<k> (or ek) is meant to express the smallest 2D array of e0’s that make sense for a kernel IO based 
on the kernel implementation. 

 

Let ek be written as: 

ek = e0 [<num e0 in x dim>,<num e0 in y dim>] 

 

Examples: 

If the smallest unit of data a kernel can operate on is a single unsigned 8-bit value (i.e. e0 = 8u1,1) and there 
are no additional kernel-implementation related restrictions, ek will be ‘1’ in both the x and y dimensions.  
ek=[1,1]  is the most common case: 

ek = e0 [1,1] = 8u1,1 [1,1] 

 

If a kernel operates on unsigned 16-bit data (i.e. e0 = 16u1,1) but the kernel implementation requires a 2x2 
array of e0’s: 

ek = e0 [2,2] = 16u1,1 [2,2] 

 

If the smallest unit of data a kernel can operate on is a is a 4x1 array of 8-bit signed values (i.e. e0 = 8s4,1) and 
the kernel implementation requires a 2x1 array of e0’s: 

ek = e0 [2,1] = 8s4,1 [2,1] 

 

When possible, always try to write kernels with ek=e0[1,1].  This gives the kernel more flexibility and allows 
the framework to use the kernel in a wider variety of circumstances.  In most cases, ek will naturally be [1,1] 
since most kernel implementations don’t impose restrictions on the smallest unit of processing beyond that 
implied by e0. 

 

***Note that spatial dependencies should not be considered when defining ek.  It is completely valid to 
have (for example) ek=8u1,1 [1,1] and sd=(5,5,5,5), since ek and sd express different things. 

 

ek is especially important in kernels that deal with data rate changes.  In addition to characterizing the 
smallest chunk of data that can be accepted by a kernel I/O, ek can express data rate changes that may occur 
between kernel input and output.  Consider a kernel that decimates an input by 2 in the x and y directions.  It 
doesn’t make sense for this kernel to have an input ek = 8u1,1 [1,1] because such an input cannot be 
decimated (it is just a single 8-bit value).  Instead, the kernel I/O should be expressed as follows: 

 

(0) 8u1,1[2,2] (1) 8u1,1[1,1]DECIMATE

 

Figure 6 - Decimate kernel (ek) 
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By specifying ek=[2,2] for the input, it ensures that the kernel always receives at least a 2x2 chunk of e0’s at 
the input port.  The difference between input and output ek’s make it clear that a data rate change has 
occurred. 

 

3.2.2.3 Kernels and Spatial Dependencies 

Spatial dependencies can be expressed for 2D non-static vector inputs.  By allowing a kernel developer to 
express spatial dependencies, it allows him/her to write a more generalized kernel that operates on an input 
chunk with flexible dimensions. 

 

Spatial dependency information is expressed as an array of 4 values as follows: 

 

sd (<depleft>, <depright>, <deptop>, <depbottom>) 

 

Note that this ‘sd’ shorthand notation corresponds to the metadata port characteristic ‘__spatial_dep’ in Table 
2 and it should only be specified for input ports. 

 

By specifying a spatial dependency on an input, the framework is being told that it must make data beyond 
chunk boundaries locally available to the kernel for processing.  For example, assume an 8x4 chunk of data is 
fed into a kernel that specifies sd (1,2,3,4).  In this scenario, the framework will invoke the kernel on a region 
of memory that resembles the following: 

 

e0

8x4 chunk

chunk ptr

21

3
4

 

 

***If a chunk coincides with an input edge/border ACF performs replication padding (e0 resolution) for 
applicable edges.  ACF will generate top edge padding for chunks that coincide with the top edge of an input, 
replicating the first line of the chunk.  Similarly, left edge padding will be generated for chunks that coincide 
with the left edge of an input, replicating the first column of the chunk.  Corner replication is based on the 
associated corner value (e.g. the value in the top left corner of the chunk is replicated to fill in the top left 
padding region). 
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Dependencies are expressed in units of e0.  A 3x3 filter would express spatial dependencies as sd 
(1,1,1,1).  A 5x5 filter would express spatial dependencies as sd (2,2,2,2). 

 

Referring to the diagram above, the Sobel 3x3 filter would be fully characterized as follows: 

 

8u1,1[1,1]

sd(1,1,1,1)
Sobel 3x3 8u1,1[1,1]

 

Figure 7 - Sobel 3x3 kernel with spatial dependencies 
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3.2.3 Kernel ACF Wrapper 

Figure 5 in section 3.2.2 depicts the ACF wrapper for the ADD kernel implementation (it can be found below 
the metadata). 

 

The ACF wrapper function signature must adhere to the following template: 

 

void <kernel_name> (kernel_io_desc <param0>, kernel_io_desc <param1>, … ) 

{ 

   //kernel implementation 

} 

 

The wrapper must be a void function with a function name (kernel_name) that matches the identifier 

expressed in the first field of the kernel metadata associated with this kernel (in this case it is ‘ADD’). 

 

It must have a parameter list of type kernel_io_desc, where conceptually, each parameter corresponds to 

a kernel port.  kernel_io_desc is a simple descriptor that describes the chunk of data associated with the 

port; it contains the address of the data in memory, in addition to a description of the data chunk (chunkWidth, 
chunkHeight, and chunkSpan).  It is defined as follows: 

 

typedef struct _kernel_io_desc 

{ 

   void* pMem;        //pointer to the chunk of data 

   int   chunkWidth;  //width of the chunk in units of e0 

   int   chunkHeight; //height of the chunk in units of e0 

   int   chunkSpan;   //number of bytes to skip to get to the next line of bytes 

} kernel_io_desc; 

 

The typical first step in wrapping any kernel implementation is to ‘unpack’ the relevant address and chunk size 
information from each parameter/port kernel_io_desc structure.  This structure allows access to the input 

and output data pointers, in addition to the necessary chunk size and span information needed for setting up 
processing loops.    In the ADD example the unpacking is done as follows: 

 

vec08u* lpvIn0  = (vec08u*)lIn0.pMem; 

vec08u* lpvIn1  = (vec08u*)lIn1.pMem; 

vec16u* lpvOut0 = (vec16u*)lOut0.pMem; 

 

ADD(lpvIn0, lIn0.chunkSpan, 

    lpvIn1, lIn1.chunkSpan, 

    lpvOut0, lOut0.chunkSpan/2, 

    lIn0.chunkWidth, lIn0.chunkHeight); 

 

A few notes about this ‘unpacking’ step: 

• Ports specified as ACF_ATTR_VEC_IN and ACF_ATTR_VEC_OUT must be cast to the appropriate 
vector type before use.  In the above example this is seen here: 
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const vec08u* lpvIn0  = (const vec08u*)lIn0.pMem; 

const vec08u* lpvIn1  = (const vec08u*)lIn1.pMem; 

vec16u* lpvOut0 = (vec16u*)lOut0.pMem; 

• Ports specified as ACF_ATTR_IN_SCL should be cast to the appropriate scalar type before use.  See 
the filter kernel example in section 3.2.4 for an example. 

• The stride of lOut0 above is calculated by dividing the chunk span by 2; this is because port 2 is 
associated with 16-bit data and span is always in bytes. 
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3.2.4 Filter Kernel Example (metadata and ACF wrapper) 

Figure 8 (below) depicts the metadata and ACF wrapper for the FILTER kernel. 

 

  

#ifdef ACF_KERNEL_METADATA

static  KERNEL_INFO _kernel_info_filter

(

   "FILTER",

   3,

   __port(__index(0),

          __identifier("INPUT_0"),

          __attributes(ACF_ATTR_VEC_IN),

          __spatial_dep(1,1,1,1),

          __e0_data_type(d08u),

          __e0_size(1, 1),

          __ek_size(1, 1)),

   __port(__index(1),

          __identifier("INPUT_COEF"),

          __attributes(ACF_ATTR_SCL_IN_STATIC_FIXED),

          __spatial_dep(0,0,0,0),

          __e0_data_type(d08u),

          __e0_size(1, 1),

          __ek_size(9, 1)),

   __port(__index(2),

          __identifier("OUTPUT_0"),

          __attributes(ACF_ATTR_VEC_OUT),

          __spatial_dep(0,0,0,0),

          __e0_data_type(d08u),

          __e0_size(1, 1),

          __ek_size(1, 1))

);

#endif //#ifdef ACF_KERNEL_METADATA

#ifdef ACF_KERNEL_IMPLEMENTATION

#include "filter_implementation.h"

void FILTER (kernel_io_desc lIn0, kernel_io_desc lInCoef, kernel_io_desc lOut0)

{

   const vec08u*  lpvIn0   = (const vec08u*) lIn0.pMem;

   const uint8_t* lpInCoef = (const uint8_t*) lInCoef.pMem;

   vec08u*        lpvOut0  = (vec08u*) lOut0.pMem;

   FILTER(lpvIn0, lIn0.chunkSpan,

          lpInCoef,

          lpvOut0, lOut0.chunkSpan,

          lIn0.chunkWidth, lIn0.chunkHeight);

}

#endif //#ifdef ACF_KERNEL_IMPLEMENTATION

filter_wrapped_for_acf.c

 

Figure 8 - FILTER kernel metadata and ACF wrapper 

 

Notable metadata differences compared to the previously discussed ADD kernel include: 

• port INPUT_0 specifies a non-zero spatial dependency : __spatial_dep(1,1,1,1) 
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• port INPUT_COEF specifies an ACF_ATTR_SCL_IN_STATIC_FIXED port type that allows the kernel 
to be configured with a 9-byte coefficient array (ek = 8u1,1 [9,1]). 

 

Also note the following difference in the ‘unpacking’ stage of the implementation: 

 

const vec08u* lpvIn0   = (const vec08u*)lIn0.pMem; 

const uint8_t* lpInCoef = (const uint8_t*)lInCoef.pMem; 

vec08u* lpvOut0  = (vec08u*)lOut0.pMem; 

 

The ACF_ATTR_VEC_IN and ACF_ATTR_VEC_OUT ports are cast to 8-bit vector types as seen in the ADD 
example, whereas the ACF_ATTR_SCL_IN_STATIC_FIXED port input is cast to an 8-bit scalar type. 
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3.3 Creating a Graph (Step 2) 

Once a set of kernels is available, graph construction is a simple matter of deciding which kernels to use and 
how to connect them. 

 

3.3.1 Creating a Graph Diagram 

If a graph is complicated or involves multiple kernels, it is a good idea to quickly create a graph diagram.  In 
this example, a graph will be created that uses the ADD and FILTER kernels discussed in the previous 
section. 

 

From an illustration point of view, the ADD and FILTER kernels can be expressed as follows: 

 

 

INPUT_0 (0)

8u1,1[1,1]

VEC_IN

INPUT_1 (1)

8u1,1[1,1]

VEC_IN

OUTPUT_0 (2)

16u1,1[1,1]

VEC_OUT
ADD

INPUT_0 (0)

8u1,1[1,1]

sd(1,1,1,1)

VEC_IN FILTER

OUTPUT_0 (2)

8u1,1[1,1]

VEC_OUT

INPUT_COEF (1)

8u1,1[9,1]

SCL_IN_STATIC_FIXED
 

Figure 9 - ADD and FILTER kernel diagrams 

 

The kernel diagrams above capture port details for each kernel that are relevant to graph construction.  As 
seen in Figure 9 above, each port expresses the identifier, index, ek, and spatial dependency information (if 
spatial dependency information is absent from a port it is assumed to zero).  The port details in the diagrams 
above are simply restatements of the information expressed by the kernel metadata (refer to section 3.2.2). 

 

Once each kernel is clearly expressed, the next step is to create a graph diagram that specifies graph-level 
ports and all desired connections. 

 

INPUT_0 (0)

8u1,1[1,1]

sd(1,1,1,1)

VEC_IN FILTER

(myFILTER_0)

OUTPUT_0 (2)

8u1,1[1,1]

VEC_OUT

INPUT_COEF (1)

8u1,1[9,1]

SCL_IN_STATIC_FIXED

INPUT_0 (0)

8u1,1[1,1]

sd(1,1,1,1)

VEC_IN FILTER

(myFILTER_1)

OUTPUT_0 (2)

8u1,1[1,1]

VEC_OUT

INPUT_COEF (1)

8u1,1[9,1]

SCL_IN_STATIC_FIXED

INPUT_0 (0)

8u1,1[1,1]

VEC_IN

INPUT_1 (1)

8u1,1[1,1]

VEC_IN

OUTPUT_0 (2)

16u1,1[1,1]

VEC_OUTADD

(myADD)

INPUT_0

INPUT_FLT_COEF_0

INPUT_1

INPUT_FLT_COEF_1

OUTPUT_0

 

Figure 10 - A graph diagram (processingTaskA) 

 

The graph diagram in Figure 10 makes it clear that two inputs (INPUT_0 and INPUT_1) are being filtered (the 
filters have configurable coefficients) and then added together to produce a single output (OUTPUT_0). 
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Note that five graph-level ports have been specified: 

• INPUT_0 

• INPUT_FLT_COEF_0 

• INPUT_1 

• INPUT_FLT_COEF_1 

• OUTPUT_0 

 

Graph-level ports are important because they represent the ports that will be configured in future steps (i.e. 
process description and host-side configuration). 

 

3.3.2 ACF Graph and Example 

Once a graph diagram exists, expressing the graph in a form that ACF understands is a straightforward 
exercise. 

 

The first step is to create a *.hpp file (e.g. myGraph_graph.hpp) based on the following template: 

 

#include <ACF_Graph.hpp> 

 

class <graph class name> : public ACF_Graph 

{ 

public: 

 

   void Create() 

   { 

      //set identifier for graph 

      SetIdentifier(<graph name>); 

 

      //add kernels 

      AddKernel(<local kernel identifier 0>, <kernel identifier 0>); 

      AddKernel(<local kernel identifier 1>, <kernel identifier 1>); 

      ... 

 

      //add graph ports 

      AddInputPort(<graph level input port 0>); 

      AddInputPort(<graph level input port 1>); 

      ... 

      AddOutputPort(<graph level output port 0>); 

      AddOutputPort(<graph level output port 1>); 

      ... 

 

      //specify connections 

      Connect(<port 0>, <port 1>); 

      Connect(<port 2>, <port 3>); 

      ... 

   } 

}; 
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Next, give the graph class a meaningful name and fill in the Create() method such that all kernels, ports, and 
connections are properly expressed.  The final ACF-ready graph code that represents the example in Figure 
10 is as follows: 

 
#include <ACF_Graph.hpp> 

 

class myGraph : public ACF_Graph 

{ 

public: 

 

   void Create() 

   { 

      //set identifier for graph 

      SetIdentifier("myGraph"); 

 

      //add kernels 

      AddKernel("myADD", "ADD"); 

      AddKernel("myFILTER_0", "FILTER"); 

      AddKernel("myFILTER_1", "FILTER"); 

 

      //add graph ports 

      AddInputPort("INPUT_0"); 

      AddInputPort("INPUT_1"); 

      AddInputPort("INPUT_FLT_COEF_0"); 

      AddInputPort("INPUT_FLT_COEF_1"); 

      AddOutputPort("OUTPUT_0"); 

 

      //specify connections 

      Connect(GraphPort("INPUT_0"),          KernelPort("myFILTER_0", "INPUT_0")); 

      Connect(GraphPort("INPUT_FLT_COEF_0"), KernelPort("myFILTER_0", "INPUT_COEF")); 

      Connect(GraphPort("INPUT_1"),          KernelPort("myFILTER_1", "INPUT_0")); 

      Connect(GraphPort("INPUT_FLT_COEF_1"), KernelPort("myFILTER_1", "INPUT_COEF")); 

 

      Connect(KernelPort("myFILTER_0", "OUTPUT_0"), KernelPort("myADD", "INPUT_0")); 

      Connect(KernelPort("myFILTER_1", "OUTPUT_0"), KernelPort("myADD", "INPUT_1")); 

 

      Connect(KernelPort("myADD", "OUTPUT_0"), GraphPort("OUTPUT_0")); 

   } 

}; 

 

The AddKernel(…) method takes two identifiers; the first is the identifier that is used throughout the graph 
specification to refer to that specific instance of the kernel, and the second is the unique kernel identifier 
specified in the kernel metadata.  The first identifier is essentially a handle on a kernel instance.  For example, 
‘myFILTER_0’ is a handle on the first instance of the ‘FILTER’ kernel, and ‘myFILTER_1’ is a handle on the 
second instance of the ‘FILTER’ kernel.  If you use the same kernel multiple times in a graph, you must 
add multiple instances of that kernel to the graph, each with a unique local identifier. 

 

For more detailed explanations of the various graph construction methods, see the ACF_Graph section of UG-
10267-04. 
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3.3.3 Known caveats and limitations 

1) The maximum number of kernels allowed per graph is 100. 

2) The maximum number of graph inputs is 100.  The maximum number of graph outputs is 100. 

3) A source port can be connected to a maximum of 100 destination ports in the case of multiple forward 
connections (e.g. kernel A output is connected to both kernel B input and kernel C input). 

4) If the only non-fixed graph input(s) are scalar, you must either fix them in kernel metadata or fix them 
via the method described in section 3.4.2.  ACF host run-time will not be able to perform scenario 
selection in this case and will return an error message indicating that a suitable scenario selection port 
could not be found. 
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3.4 Specifying a Process Description (Step 3) 

The purpose of a process description is to link a graph to a specific processor, and allow for the provision of 
any processor specific configuration that may be required prior to resolution. 

 

3.4.1 ACF Process Description and Example 

The first step is to create a *.hpp file (e.g. myProcess_proc_desc.hpp) based on the following template: 

 

#include <ACF_Process_Desc_APU.hpp> 

#include "<*.hpp graph file created in step 2>" 

 

class <process descriptor class name> : public ACF_Process_Desc_APU 

{ 

public: 

 

   void Create() 

   { 

      Initialize(mGraph, <process identifier>); 

   } 

 

   <graph class specified in graph *.hpp file> mGraph; 

}; 

 

Notes about this template: 

• ACF currently only supports the mapping of graphs to the APU processor, and the selection of the 
APU as the processor is done by deriving the process descriptor class from 
ACF_Process_APU, as seen above. 

• The class needs to contain a member (‘mGraph’ in this case) that is an instantiation of the graph to be 
mapped to the APU. 

• The ‘Initialize(…)’ method must be called with the graph object (e.g. mGraph) and a user-defined 
process identifier.  This identifier is important because it will be picked up by the build system 
and be used as a base handle/prefix for all generated output associated with the final resolved 
process. 

 

Filling in the template to map the graph specified in Figure 10 to the APU processor results in the following: 

 

#include <ACF_Process_Desc_APU.hpp> 

#include "myGraph_graph.hpp" 

 

class myProcess_apu_process_desc : public ACF_Process_Desc_APU 

{ 

public: 

 

   void Create() 

   { 

      Initialize(mGraph, "myProcess"); 

   } 

 



UG-10267-03-16 

NXP Confidential and Proprietary  

 32/61  

   myGraph mGraph; 

}; 

 

For more detailed explanations of the various process description methods, see the ACF_Process_Desc_APU 
section of UG-10267-04. 

 

3.4.2 Explicit Offline Chunk Size Specification (ADVANCED) 

Process chunk size information is normally abstracted/hidden from the user; chunk size selection requires 
awareness of APU specific details and a clear understanding of how the data is broken down for processing.  
In most circumstances, this selection is best left to ACF at run-time. 

 

In specific cases, it may be necessary to pre-select and ‘hard code’ the chunk sizes associated with non-fixed 
process inputs (for example, if you know you will be using the process to only deal with I/O’s of a specific size 
and you know you will be running the process on a specific APU configuration). 

 

!!! Explicit chunk size selection caveat: If chunk size is explicitly defined (either offline via the method 
described in this section, or at runtime using explicit scenario selection as described in section 3.6.3) AND 
chunk width/height does not divide evenly into IO widths/heights defined at run-time, then IO buffers must be 
allocated with the following properties: 

1) IO buffer must be allocated with at least (chunk width – (IO width % chunk width)) elements of 
overflow space to the right of the core data region (for best performance, it is recommended that 
buffer span in bytes also be 16-byte divisible) 

2) IO buffer must be allocated with at least (chunk height – (IO height % chunk height)) elements of 
overflow space below the core data region 

For example, if an output chunk size is forced to be 8x8 and the associated output size is 333x222, the 
minimum required output buffer allocation would be: 

 

If these requirements are not met, the data transfer to/from APEX memory may read/write beyond allocated 
buffer boundaries, resulting in undefined behavior. 
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Offline chunk size selection can be done using the following method: 

 

SetInputChunkSize(<graph input port identifier>, <chunk width>, <chunk height>); 

 

For example: 

 

#include <ACF_Process_Desc_APU.hpp> 

#include "myGraph_graph.hpp" 

 

class myProcess_8x2_apu_process_desc : public ACF_Process_Desc_APU 

{ 

public: 

 

   void Create() 

   { 

      Initialize(mGraph, "myProcess_8x2"); 

      SetInputChunkSize("INPUT_0", 8, 2); 

      SetInputChunkSize("INPUT_1", 8, 2); 

   } 

 

   myGraph_graph mGraph; 

}; 

 

If this approach is taken, ALL non-fixed input chunk sizes must be specified.  Furthermore, run-time I/O size 
flexibility will be reduced because only a single ‘scenario’ is analysed during the resolution phase.  In the 
typical use case (i.e. when chunk size is NOT explicitly specified) the framework will analyse and store 
information pertaining to multiple scenarios (a ‘scenario’ being characterized by a base chunk size), allowing 
the ideal scenario to be selected at run-time based on process I/O sizes. 

 

In the example above, the input chunk size above is chosen to be 8x2 for graph inputs ‘INPUT_0’ and 
‘INPUT_1’ (8x2 is chosen arbitrarily for demonstration purposes).  Typically for vector input types, the input 
chunk width choice should be made based on the following three factors: 

 

1) The number of CUs (computational units) in the APU CU array (depends on APU configuration) and 
the maximum size of the input(s) that will be ultimately processed on the host-side 

2) The worst case left and right spatial dependencies (if applicable).  Chunk width must be at least as 
wide as the worst case spatial dependency.  For example, if a graph contains a 3x3 kernel and a 
9x9 kernel, chunk width must be at least 4 to satisfy the requirements of the 9x9 filter since it requires 
4 samples beyond the left of the chunk and 4 samples beyond the right of the chunk. 

3) To satisfy HW requirements, chunk width (in bytes) must be one of the following values: 2, 4, 6, 8, 10, 
12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 36, 40, 44, 48, 52, 56, 60, 64, 72, 80, 88, 96, 104, 112, 120, 
128.  If using an ‘indirect’ input the chunk width (in bytes) must be one of the following values: 4, 8, 12, 
16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64. 
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ACF breaks input data down into tiles.  Tiles are further divided into chunks.  Each chunk maps to a CU in the 
APU.  Chunk width must be selected such that the width of the input, when divided into chunks, fits into the 
CUs available in the APU (see section 3.7.1 for more information about chunks and tiling). 

 

For example, if the input to the resolved process will ultimately be a 640x480 image and the APU consists of 
32 CUs, chunk width must be set to at least 20 (640/32=20); anything smaller than 20 and the input tile will not 
‘fit’ into the APU. 

 

The input chunk height choice relates primarily to CMEM utilization.  Larger chunk sizes mean more CMEM 
is consumed, especially as a graph gets complicated.  As a general recommendation, keep the chunk height 
as small as possible during early development (it can be as low as 1). 
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3.5 ACF Offline Process Resolution (Step 4)  

3.5.1 Overview 

Offline resolution refers to the scripted process that takes the user-created inputs from steps 1, 2, and 3: 

• kernel(s) + associated metadata (step 1) 

• graph (step 2) 

• process description (step 3) 

and produces the following outputs: 

• host-compatible ‘handle’ C++ class that encapsulates the resolved process and allows it to be 
instantiated, configured, and executed by a host-processor (see step 5) 

• run-time binary that encapsulates the architecture specific machine code representing the ACF-
generated processing pipeline.  This binary is captured in a header file (*_APU_LOAD.h) that is 
included by the aforementioned handle class.  

 

The following diagram depicts an offline resolution scenario assuming the identifier TEST: 

 

Offline

Resolution

TEST_grap

h.hpp

TEST_apu_process

_desc.hpp

TEST.hpp

USER INPUT

FINAL

OUTPUT

kernel

src 

files

To Host 

Build

TEST_APU

_LOAD.h

Kernel.mak

 

Figure 11 – Offline resolution process 



UG-10267-03-16 

NXP Confidential and Proprietary  

 36/61  

ACF offline resolution is responsible for: 

 

1. Kernel compilation and the generation of associated kernel libraries 

2. Kernel metadata parsing and management 

3. Graph resolution, and generation of the architecture-specific program encapsulating the processing 
pipeline 

4. Generation of the aforementioned host ‘handle’ (TEST.hpp in above example) 

5. Compilation of generated program (linked with required kernel libraries) and generation of final 
architecture specific binary load that encapsulates the processing pipeline (TEST_APU_LOAD.h in 
above example) 

 

3.5.2 ACF Offline Error Messages 

This section lists the possible ACF offline error messages that may be sent to standard output.  Additional 
information is provided for those that are not deemed self-explanatory. 

 

3.5.2.1 ACF_Process_Desc_APU::WalkGraphForBaseED -> Base ED calculation for graph <graph 
identifier> is not stabilizing; aborting resolution 

This is likely caused by having kernel port sizes specified in such a way that it is impossible for the recursive 
base ED calculation to stabilize.  E.g. Kernel A has two non-fixed outputs, one with ek(1,1) and one with 
ek(2,2), and these are connected to kernel B non-fixed inputs with ek(1,1) and ek(1,1) respectively. 

 

3.5.2.2 ACF_Process_Desc_APU::ConfigureLocalMemDesc(...) -> exceeded maximum number of 
memory descriptors (<ACF_PROCESS_MAX_NUM_LOCALMEMDESC>) 

At the time of writing ACF_PROCESS_MAX_NUM_LOCALMEMDESC is set to 500. 

 

3.5.2.3 ACF_Process_Desc_APU::AnalyzeScenarios() -> Graph <graph identifier> port <port 
identifier> is not fixed and the chunk size has not been set with SetInputChunkSize() 

This error will be output if the user chooses to call ACF_Process_Desc::SetInputChunkSize in their process 
descriptor for one non-fixed input port but neglects to call it for other non-fixed inputs.  If any non-fixed inputs 
are being set with SetInputChunkSize, ALL non-fixed inputs must be set with SetInputChunkSize. 

 

3.5.2.4 ACF_Process_Desc_APU::AnalyzeScenarios() -> Issue encountered trying to calculate base 
eD for graph <graph identifier>; aborting resolution 

See 3.5.2.1. 
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3.5.2.5 ACF_Process_Desc_APU::AnalyzeAndResolve() -> A viable scenario could not be found. 
Please see the analysis log file (/out/<process identifier>_analysis_log.txt). 

3.5.2.6 ACF_Process_Desc::Initialize(...) -> failed 

3.5.2.7 ACF_Process_Desc::Initialize(...) -> 'lProcessIdentifier' is either empty or does not have a 
meaningful value 

The select process identifier must be a string that is not an empty string or “”. 

 

3.5.2.8 ACF_Process_Desc::SetInputChunkSize(...) -> graph <graph identifier> input port <port 
identifier> has a fixed size and cannot be changed from (<port ek.x, ek.y>) 

3.5.2.9 ACF_Process_Desc::SetInputChunkSize(...) -> graph <graph identifier> input port <port 
identifier> does not exist 

3.5.2.10 ACF_Process_Desc::SetInputChunkSize(...) -> graph <graph identifier> input port <port 
identifier> ChunkSize is out of range; size values must be in the range [1:65535] 

3.5.2.11 ACF_Process_Desc::SetInputChunkSize(<port identifier>, ...) -> process has not been 
successfully initialized 

3.5.2.12 ACF_Process_Desc::FlagInputAsChunkBasedIndirect(...) -> graph <graph identifier> input 
port <port identifier> is not compatible with indirect mode; valid candidate must be a non-
static vector port with no spatial dependencies 

3.5.2.13 ACF_Process_Desc::FlagInputAsChunkBasedIndirect(...) -> graph <graph identifier> input 
port <port identifier> does not exist 

3.5.2.14 ACF_Process_Desc::FlagInputAsChunkBasedIndirect(<port identifier>, ...) -> process has not 
been successfully initialized 

3.5.2.15 ACF_Process_Desc::FlagInputAsVerticalSdOverlap(...) -> graph <graph identifier> input port 
<port identifier> does not exist 

3.5.2.16 ACF_Process_Desc::FlagInputAsVerticalSdOverlap(<port identifier>, ...) -> process has not 
been successfully initialized 

3.5.2.17 ACF_Process_Desc::CalcInputChunkSize(...) ChunkSize is out of range; size values must be 
in the range [1:65535] 

3.5.2.18 ACF_Graph::AddInputPort(<port identifier>) -> error detected (see ACF_Node specific error 
above) 

The related ACF_Node specific error (typically output before this one) should provide more detailed 
information. 
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3.5.2.19 ACF_Graph::AddOutputPort(<port identifier>) -> error detected (see ACF_Node specific error 
above) 

The related ACF_Node specific error (typically output before this one) should provide more detailed 
information. 

 

3.5.2.20 ACF_Graph::GraphPort(<port identifier>) -> <graph identifier> port <port identifier> cannot be 
found 

3.5.2.21 ACF_Graph::KernelPort(<kernel identifier>, <port identifier>) -> port doesn't exist 

3.5.2.22 ACF_Graph::KernelPort(<kernel identifier>, <port identifier>) -> kernel doesn't exist 

3.5.2.23 ACF_Graph::AddKernel(<kernel identifier>, <kernel database identifier>) -> if a kernel has a 
non-fixed output (e.g. <non-fixed output port identifier>) it must have at least one non-fixed 
input 

3.5.2.24 ACF_Graph::AddKernel(<kernel identifier>, <kernel database identifier>) -> kernel couldn't be 
found in the database 

3.5.2.25 ACF_Graph::AddKernel(<kernel identifier>, <kernel database identifier>) -> unknown port 
type encountered 

3.5.2.26 ACF_Graph::AddKernel(<kernel identifier>, <kernel database identifier>) -> unknown port 
data type encountered 

3.5.2.27 ACF_Graph::AddKernel(<kernel identifier>, <kernel database identifier>) -> invalid e0/ek 
dimension(s) detected (must be non-zero) 

3.5.2.28 ACF_Graph::AddKernel(<kernel identifier>, <kernel database identifier>) -> exceeded 
maximum allowable kernels per graph (<ACF_MAX_NUM_KERNELS_PER_GRAPH>) 

At the time of writing ACF_MAX_NUM_KERNELS_PER_GRAPH is set to 100. 

 

3.5.2.29 ACF_Graph::AddKernel(<kernel identifier>, <kernel database identifier>) -> memory 
allocation failure (mKernelArray) 

Internal memory allocation error. 

 

3.5.2.30 ACF_Graph::Connect(...) -> detected multiple connections to kernel(graph) <kernel/graph 
identifier> input(output) port <port identifier>; only a single connection is permitted 

3.5.2.31 ACF_Graph::Connect(...) -> exceeded maximum number of connections per port 

At the time of writing ACF_MAX_NUM_FWD_DIR_CONNECTIONS_PER_PORT is set to 100. 
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3.5.2.32 ACF_Graph::Connect(...) -> memory type (CMEM/DMEM) mismatch between <kernel/graph 
port identifier> port <src port identifier> and <kernel/graph port identifier> port <dst port 
identifier> 

3.5.2.33 ACF_Graph::Connect(...) -> e0 mismatch between <kernel/graph port identifier> port <src 
port identifier> and <kernel/graph port identifier>  port <dst port identifier> 

3.5.2.34 ACF_Graph::Connect(...) -> invalid input/output connection between <kernel/graph port 
identifier>  port <src port identifier> and <kernel/graph port identifier>  port <dst port 
identifier> 

3.5.2.35 ACF_Graph::Connect(...) -> 'lpSrcPort' and 'lpDstPort' are NULL 

3.5.2.36 ACF_Graph::Connect(...) -> 'lpSrcPort' is NULL 

3.5.2.37 ACF_Graph::Connect(...) -> 'lpDstPort' is NULL 

3.5.2.38 ACF_Process_Desc_APU::Resolve() -> Graph has no input ports 

3.5.2.39 ACF_Process_Desc_APU::Resolve() -> Graph has no output ports 

3.5.2.40 ACF_Graph::VerifyPortConnections() -> graph input port ‘<port identifier>’ is not connected 
to anything 

3.5.2.41 ACF_Graph::VerifyPortConnections() -> graph output port ‘<port identifier>’ is not connected 
to anything 

3.5.2.42 ACF_Graph::VerifyPortConnections() -> kernel ‘<kernel identifier>' input port '<port 
identifier>' is not connected to anything 

3.5.2.43 ACF_Graph::SetKernelPortOutputDelay(<kernel identifier>,<port identifier>) -> port doesn't 
exist 

3.5.2.44 ACF_Graph::SetKernelPortOutputDelay(<kernel identifier>, <port identifier>) -> kernel 
doesn't exist 

3.5.2.45 ACF_Node::AddInputPort(<port identifier>) -> the total number of ports (input + output) per 
node must not exceed (<ACF_MAX_NUM_PORTS_PER_NODE>) 

3.5.2.46 ACF_Node::AddInputPort(<port identifier>) -> port identifier is not unique 

3.5.2.47 ACF_Node::AddInputPort(<port identifier>) -> port identifier string is either empty or does not 
have a meaningful value 

3.5.2.48 ACF_Node::AddInputPort(<port identifier>) -> memory allocation failure (mInputPortArray) 

3.5.2.49 ACF_Node::AddOutputPort(<port identifier>) -> the total number of ports (input + output) per 
node must not exceed (<ACF_MAX_NUM_PORTS_PER_NODE>) 

At the time of writing ACF_MAX_NUM_PORTS_PER_NODE is set to 50. 
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3.5.2.50 ACF_Node::AddOutputPort(<port identifier>) -> port identifier is not unique 

3.5.2.51 ACF_Node::AddOutputPort(<port identifier>) -> port identifier string is either empty or does 
not have a meaningful value 

3.5.2.52 ACF_Node::AddOutputPort(<port identifier>) -> memory allocation failure 
(mOutputPortArray) 

Internal memory allocation error. 

 

3.5.2.53 ACF_Node::SetIdentifier() -> identifier string is either empty or does not have a meaningful 
value 

3.5.2.54 ACF_Node::InputPort(<port idx>) -> port doesn't exist. 

3.5.2.55 ACF_Node::OutputPort(<port idx>) -> port doesn't exist. 
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3.6 Configuring and Launching a Process on the Host (Step 5) 

The final step occurs in the host environment and involves configuring and launching a resolved ACF process 
on APEX hardware. 

3.6.1 ACF Host Interface and Example 

As mentioned in section 3.5, the host-ready APU process is represented by a pair of generated header files: 

<process_identifier>.hpp 

<process_identifier>_APU_LOAD.h 

 

An example of a host test stub that configures and invokes the resolved process (associated with the ongoing 
example ‘myProcess’) follows.  The inputs to the function myProcess_teststub are of type vsdk::UMat. 

 

#include <umat.hpp> 

#include <myProcess.hpp> 

 

int myProcess_teststub(vsdk::UMat lInput0, 

                       vsdk::UMat lInput1, 

                       vsdk::UMat lFilterCoef, 

                       vsdk::UMat lOutput0) 

{ 

   int lRetVal = 0; 

 

   myProcess lProcess; 

 

   lRetVal |= lProcess.Initialize(); 

 

   lRetVal |= lProcess.ConnectIO("INPUT_0", lInput0); 

   lRetVal |= lProcess.ConnectIO("INPUT_1", lInput1); 

 

   lRetVal |= lProcess.ConnectIO("INPUT_FLT_COEF_0", lFilterCoef); 

   lRetVal |= lProcess.ConnectIO("INPUT_FLT_COEF_1", lFilterCoef); 

 

   lRetVal |= lProcess.ConnectIO("OUTPUT_0", lOutput0); 

 

   lRetVal |= lProcess.Start(); 

   lRetVal |= lProcess.Wait(); 

 

   return lRetVal; 

} 

 

A few notes about the above test code: 

• The identifiers used with ConnectIO (e.g. INPUT_0, INPUT_1, INPUT_FLT_COEF_0, etc.) are the 

user-specified graph input/output identifiers selected during graph creation (see section 3.3). 

• Always ensure that the Initialize() method Is called before a process is configured and launched for 
the first time.  Initialize() does not need to be called again for subsequent launches of the same 
process as long as the process object has not been destroyed. 
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• Start() is a non-blocking call and you may perform other host-side processing in parallel with the APU 
process execution.  Always make sure to (eventually) pair each call to Start() with a call to Wait(). 

 

Please see UG-10267-04 for a more detailed description of ACF_Process_APU. 

 

3.6.2 Executing a Process with a Specific HW configuration (ADVANCED) 

By default, a process will run on APU 0 with all available CUs, on APEX 0.  The following method can be used 
to override the default configuration and specify the APEX HW a process will execute on. 

 

SelectApuConfiguration(<apu configuration>, <apex id>); 

 

Please see UG-10267-04 for a more detailed description of this ACF_Process_APU method and the 
configurations available. 

 

3.6.3 Explicit Scenario Selection (ADVANCED) 

If chunk size information is not specified offline in the process description (see section 3.4.2), the ACF offline 
‘resolution’ phase will analyze and keep track of multiple scenarios (a scenario is uniquely identified by a base 
chunk size).  By having multiple valid scenarios to choose from at run-time, ACF is able to choose the ideal 
scenario based on the actual I/O sizes and target APU configuration (information that is often only known at 
run-time). 

 

In certain use cases, it may be desirable to select a specific scenario at run-time.  This can be done with the 
following method.  It forces the selection of the scenario whereby a specific port has a specified chunk size 
(an error will be returned if such a scenario does not exist). !!!Note that when using SelectScenario(…), the 
target port identifier must refer to a port with all of the following properties: non-fixed & direct (i.e. not 
indirect) & non-static & vector. 

 

SelectScenario(<graph port identifier>, <chunk width>, <chunk height>); 

 

Furthermore, once a scenario has been successfully selected, it is possible to query other graph ports to 
return the chunk size associated with each, if required. 

 

QueryPortChunkSize(<graph port identifier>, <chunk width>, <chunk height>); 

 

!!! Please review the ‘Explicit chunk size selection caveat’ in section 3.4.2 before using this 
functionality. 

 

Please see UG-10267-04 for a more detailed description of these ACF_Process_APU methods. 
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3.7 Advanced ACF Functionality and Use Cases 

This section discusses more advanced concepts and uses cases, with a focus on a high level understanding 
of how various port attributes map to actual data transfers between external memory and APEX local memory. 

 

3.7.1 The Subdivision of Input Data: Vectorization vs. Tiling 

 

It is important that the differences between vectorization and tiling be clearly understood within the context 
of ACF before proceeding with this section. 

 

3.7.1.1 Vectorization 

In the ACF context, vectorization refers to the subdivision of input data into smaller pieces (i.e. chunks) for 
the purpose of distribution across multiple processors to be processed in parallel (i.e. data level parallelism). 

 

External Memory APEX External Memory

processchunk

 

Figure 12 - Vectorization 

3.7.1.2 Tiling 

In the ACF context, tiling refers to the subdivision of input data into ‘tiles’ for sequential or iterative processing 
(a tile is a grouping of one or more chunks in a row). 
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process (iteration 0)

process (iteration 1)

process (iteration 2)

process (iteration 3)

chunk

tile

 

Figure 13 - Tiling 

The need for tiling is in part a consequence of limited local APEX memory.  For example, the APU has 
relatively small amounts of local memory.  In typical use cases, input data sizes are much too large to fit 
entirely into CMEM (e.g. a megapixel image), so input data must be subdivided into tiles and moved into APU 
memory, processed, and moved out of APU memory in a producer/consumer fashion. 

Tiling also improves parallelism and data locality.  By breaking the processing into tiles and moving the 
input/output data to/from APU memory, ACF minimizes the costs associated with memory access latencies 
and data transfers by pipelining tile transfers with processing. 



UG-10267-03-16 

NXP Confidential and Proprietary  

 44/61  

 

3.7.2 Attributes 

3.7.2.1 VEC 

By flagging an input port as a vector input, the framework is being told that the input data is a candidate for 
vectorization.  This means that the framework is permitted to break associated input data into smaller pieces 
(chunks) and distribute the input data chunks across multiple processors for parallel processing. 

In the APU case specifically, input data flagged as VEC is subdivided into chunks and distributed across the 
SIMD processing array. 

 

3.7.2.2 SCL 

By flagging an input port as a scalar input, the framework is being told that input data is not a candidate for 
vectorization (i.e. the data cannot be split into smaller pieces and distributed across multiple processors). 

In the APU case specifically, input data flagged as SCL is written to APU DMEM.  Note that scalar data may 
still be subject to tiling. 

 

3.7.2.3  (non-static) 

By flagging an input port as non-static, the framework is being told that input data is a candidate for tiling. 

Input data transfers from external memory to local APEX memory occur tile by tile in an iterative fashion as 
determined by the total input size and the user-selected chunk size.  Note that the number of iterations (i.e. 
the number of tiles) must be consistent across ALL non-static inputs. 

Output data transfers from local APEX memory to external memory are handled in the same iterative fashion 
as input transfers. 

 

3.7.2.4 STATIC 

By flagging an input port as static, the framework is being told that input data should not be tiled and that a 
single local static APU buffer will be associated with this data (i.e. no circular buffering, dual or n-degree, will 
take place).  

Static input data transfers from external memory to local APU memory occur only once prior to the 
commencement of any APU processing.  Such inputs are treated as monolithic data transfers.  A kernel 
that has a static input can assume that the entirety of the static input data is available for reading at all times. 

Static output data transfers from local APU memory to external memory occur only once following the 
completion of all APU processing, and are treated as monolithic data transfers. 

 

3.7.3 Understanding Attribute Combinations 

It should now be clear what the VEC/SCL and (non-static)/STATIC attributes represent.  This section will 
further clarify the different combinations and how they should be understood and used in a practical sense.    
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3.7.3.1 (non-static) VEC 

The non-static vector attribute is used to indicate data that is both tileable and vectorizable.  It should be used 
for ‘large’ inputs (e.g. image data) that can benefit from vectorization and parallel processing.  It gives the 
framework maximum flexibility to take advantage of APEX processing resources. 

Input data regions (and associated chunk sizes) can be 2D or 1D.  In both cases the data will be subdivided 
into chunks and tiles in a 2D or 1D raster fashion (i.e. left to right, top to bottom). 

 

tile

chunk

In this example the 2D 

input region is 

subdivided into 4 tiles 

spanning the width of 

the input region, each 

tile consisting of 6 2x2 

chunks.

2D input data

e0

 

Figure 14 - Tiling of 2D data 

 

tile

chunk

In this example the 1D 

input region is 

subdivided into 2 tiles, 

each tile consisting of 6 

8x1 chunks.

1D input data

e0

 

Figure 15 - Tiling of 1D data 

 

 

 

 

3.7.3.2 (non-static) SCL 

The non-static scalar attribute is tileable but not vectorizable and it can be used in the following situations: 

• Bring in ‘tiles’ of data for scalar processing.  Note that a tile will always consist of a single chunk in this 
case. 
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3.7.3.3 STATIC SCL 

The static scalar attribute is used to indicate data that is neither tileable nor vectorizable.  This type of port is 
useful when dealing with smaller amounts of input configuration/initialiation data (e.g. filter coefficients) or 
input/output ports that are associated with reduction operations.  Please refer to section 3.7.4 for a more in-
depth discussion of the reduction use case. 

 

3.7.3.4 STATIC VEC 

The static vector attribute is used to indicate data that is vectorizable but not tileable.  This is a more 
advanced (and architecturally aware) use case, and it can be used in the following situations: 

• Accumulate/preserve vector results between tiles as a means of partial reduction.  A kernel is free to 
read from and write to a static vector buffer during each iteration. 

• In a typical reduction use case a static vector output can be fed into a ‘reduction’ kernel for final 
reduction/processing. 
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3.7.4  Reduction Operations 

This section will present a simple histogram use case in order to clearly demonstrate a vector reduction 
operation.  Note that the histogram could be calculated using a scalar input if desired (with no reduction step 
necessary), but then it would not be taking advantage of APEX’s parallel processing capabilities.  This 
example focuses on an efficient non-static vector input + reduction scenario. 

 

This section assumes the reader has a basic understanding of the histogram concept.  For reference, an 
image histogram describes the tonal distribution of an image.  For example, in an 8-bit greyscale image, each 
pixel can have a value that ranges from 0-255 (i.e. 256 possible values for each pixel).  A 256-bit histogram 
for such an image would keep track of how many pixels in the image correspond to each value in the 0-255 
range. 

 

In this example the histogram kernel will be tabulating the frequency of 8-bit values ranging from 0 to 255 
resulting in a final output list containing 256 32-bit values. 

 

The graph representing the histogram scenario is as follows: 
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(0) 32u1,1[1,1]

VEC_IN_STATIC

(1) 32u1,1[1,1]

SCL_OUT_STATIC

 

Figure 16 - Histogram graph 

 

The histogram kernel input is a non-static vector, and the histogram kernel output is a static vector with a fixed 
size of 256x1.  The output size is fixed because no matter what the input chunk size is, the output will always 
consist of 256 32-bit values. 

Histogram output is a vector because each vector processor keeps track of its own 256-bin histogram result 
for the chunks of data that get assigned to it for processing (i.e. during each processing iteration, each vector 
processor will update its local cumulative histogram result based on the chunk of data it has been assigned). 

Once processing has been fully completed (i.e. all tiles have been processed by the histogram kernel), n 256-
bin results will exist across the vector processing array, where n is the tile width in chunks. 

The final reduction step is required to reduce the n 256-bin results spread across the vector processing array 
into a single 256-bin scalar output.  Notice that the reduction kernel has a static vector input and a static scalar 
output. 
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ACF provides a method ACF_RET_VAR to retrieve a variety of variables that are useful for cases like 
reduction (use of this method requires no additional #includes).  See Table 3 below for a list of the variables 
that can be queried. 

 

int16_t ACF_RET_VAR(ACF_VAR lVar); 

 

ACF_VAR_FIRST_TILE_FLAG Returns 1 if the chunk being processed belongs to the first tile, 0 
otherwise. 

ACF_VAR_LAST_TILE_FLAG Returns 1 if the chunk being processed belongs to the last tile, 0 
otherwise. 

ACF_VAR_TILE_WIDTH_IN_CHUNKS Returns the width of the current tile in chunks. 

ACF_VAR_FIRST_CUID Returns the ID of the CU containing the first chunk of a tile (a tile is 
mapped to an array of CUs with consecutive IDs).  Note that from 
the APU/kernel perspective, CU array indexing always starts at 
0; this remains true even if you select a different APU configuration 

as described in 3.6.2 (e.g. if you call SelectApuConfiguration(…) 
with ACF_APU_CFG__APU_1_CU_32_63_SMEM_2_3, CU 
array indexing from the APU’s perspective will still start at 0, not 
32). 

APU specific example: if ACF_VAR_TILE_WIDTH_IN_CHUNKS = 
8 and ACF_VAR_FIRST_CUID = 1 then the tile is being processed 
by CUs 1 through 8 (inclusive) of the SIMD processing array. 

ACF_VAR_NUM_INPUT_ITERATIONS Returns the total number of input iterations (i.e. the number of input 
tiles that will be processed). 

ACF_VAR_CU_ARRAY_WIDTH Returns the width of the CU array.  This may differ from ‘tile width in 
chunks’ because a tile may not span the entire CU array (e.g. CU 
array width = 64 and tile width in chunks = 60). 

Table 3 - ACF variables (ACF_VAR) 

 

The histogram kernel code can be found below.  A few notes: 

• The ACF_VAR_FIRST_TILE_FLAG variable is used to initialize the static vector output to zero only 
once (i.e. during the first iteration). 

• Results will be accumulated on a per tile basis, generating a running result that is already a ‘partial’ 
reduction (i.e. it is a tile reduction).  The reduction kernel will handle the vector reduction. 
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#ifdef ACF_KERNEL_METADATA

static KERNEL_INFO _kernel_info_histogram

(

   "HISTOGRAM",

   2,

   __port(__index(0),

          __identifier("INPUT_0"),

          __attributes(ACF_ATTR_VEC_IN),

          __spatial_dep(0,0,0,0),

          __e0_data_type(d08u),

          __e0_size(1, 1),

          __ek_size(1, 1)),

   __port(__index(1),

          __identifier("OUTPUT_0"),

          __attributes(ACF_ATTR_VEC_OUT_STATIC_FIXED),

          __spatial_dep(0,0,0,0),

          __e0_data_type(d32u),

          __e0_size(1, 1),

          __ek_size(256, 1))

);

#endif //#ifdef ACF_KERNEL_METADATA

#ifdef ACF_KERNEL_IMPLEMENTATION

void HISTOGRAM (kernel_io_desc lIn0, kernel_io_desc lOut0)

{

   vec08u* lpvIn0   = (vec08u*)lIn0.pMem;

   vec32u* lpvOut0  = (vec32u*)lOut0.pMem;

   int lStrideIn0   = lIn0.chunkSpan;

   int lStrideOut0  = lOut0.chunkSpan>>2;

   //initialize the static vector output buffer to zero

   if (ACF_RET_VAR(ACF_VAR_FIRST_TILE_FLAG))

   {

      for (int y=0; y<lOut0.chunkHeight; y++)

         for (int x=0; x<lOut0.chunkWidth; x++)

            lpvOut0[y*lStrideOut0+x] = 0;

   }

   for (int y=0; y<lIn0.chunkHeight; y++)

   {

      for (int x=0; x<lIn0.chunkWidth; x++)

      {

         vec08u lvBinIndex = lpvIn0[y*lStrideIn0+x];

         vec32u lvTmp = vload(lpvOut0, lvBinIndex);

         lvTmp += 1;

         vstore(lpvOut0, lvBinIndex, lvTmp);

      }

   }

}

#endif //#ifdef ACF_KERNEL_IMPLEMENTATION

histogram.cpp

 

Figure 17 - Histogram kernel 
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The reduction kernel implementation can be found below.  A few notes: 

 

• Since the primary graph input is tileable (i.e. it is non-static) the framework will invoke multiple 
processing iterations as required.  Even though the reduction kernel will be invoked every iteration, 
the use of the ACF_VAR_LAST_TILE_FLAG variable ensures that the reduction kernel only performs 
the reduction operation on the final static histogram output vector once all other ‘iterative’ processing 
has completed. 

• A for loop is used to iterative over the relevant processors to gather up the individual elements that 
comprise the vector result, making use of the ACF_VAR_FIRST_CUID and 
ACF_VAR_TILE_WIDTH_IN_CHUNKS variables.  Within this loop, the vector result stored across the 
vector processing array (lpvIn0) is reduced to generate a final scalar result (lpOut0). 
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#ifdef ACF_KERNEL_METADATA

static  KERNEL_INFO _kernel_info_reduction

(

   "REDUCTION",

   2,

   __port(__index(0),

          __identifier("INPUT_0"),

          __attributes(ACF_ATTR_VEC_IN_STATIC),

          __spatial_dep(0,0,0,0),

          __e0_data_type(d32u),

          __e0_size(1, 1),

          __ek_size(1, 1)),

   __port(__index(1),

          __identifier("OUTPUT_0"),

          __attributes(ACF_ATTR_SCL_OUT_STATIC),

          __spatial_dep(0,0,0,0),

          __e0_data_type(d32u),

          __e0_size(1, 1),

          __ek_size(1, 1))

);

#endif //#ifdef ACF_KERNEL_METADATA

#ifdef ACF_KERNEL_IMPLEMENTATION

void REDUCTION (kernel_io_desc lIn0, kernel_io_desc lOut0)

{

   if (ACF_RET_VAR(ACF_VAR_LAST_TILE_FLAG))

   {

      vec32u* lpvIn0 = (vec32u*)lIn0.pMem;

      int32_t* lpOut0 = (int32_t*)lOut0.pMem;

      int lChunkWidth = lIn0.chunkWidth;

      int lChunkHeight = lIn0.chunkHeight;

      int lChunkStrideIn0 = lIn0.chunkSpan>>2;

      int lChunkStrideOut0 = lOut0.chunkSpan>>2;

      //initialize the static scalar output buffer to zero

      for (int y=0; y<lChunkHeight; y++)

         for (int x=0; x<lChunkWidth; x++)

            lpOut0[y*lChunkStrideOut0+x] = 0;

      int16_t lFirstCuId         = ACF_RET_VAR(ACF_VAR_FIRST_CUID);

      int16_t lTileWidthInChunks = ACF_RET_VAR(ACF_VAR_TILE_WIDTH_IN_CHUNKS);

      for (int i=lFirstCuId;

               i<lFirstCuId+lTileWidthInChunks; i++)

      {

         for (int y=0; y<lChunkHeight; y++)

         {

            for (int x=0; x<lChunkWidth; x++)

            {

               lpOut0[y*lChunkStrideOut0+x] += vget(lpvIn0[y*lChunkStrideIn0+x], i);

            }

         }

      }

   }

}

#endif //#ifdef ACF_KERNEL_IMPLEMENTATION
 

Figure 18 - Reduction kernel 
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Additional Notes: 

• It is advisable to keep references to ACF specific variables restricted to the ACF wrapper layer of your 
kernel implementations if possible (the above examples violate this recommendation for presentation 
purposes).  From a development point of view, you will likely want to test and verify your kernel 
implementations (or at least as much of them as you can) alone in the APU simulator environment.  
Kernel files with references to ACF specific variables will not compile or function as expected since 
their meanings are tied to ACF. 
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3.7.5 Indirect Inputs 

This section describes the indirect input functionality provided by ACF.  Indirect input can be employed for 
those use cases where chunks of input of data residing in external memory do not adhere to a simple 1D or 
2D raster pattern. 

 

For reference, the following diagram illustrates a simple1D/2D raster data pattern where the chunks of data (a, 
b, c… j, k, l) are contiguous in memory. 

 

a b c d e f

g h i j k l

e0

source data region

src addr

tile

chunk

 

 

In contrast to the raster pattern above, indirect input functionality allows the framework to construct tiles from 
chunks of data that are scattered throughout a source memory region.  In addition to providing the source 
data, the user must also specify a chunk offset array.  This 1D or 2D offset array contains a list of byte offsets 
(relative to the source data region starting point) that address the top left corners of the desired chunks. 

 

Consider the following example scenario where a user wishes to process 2 tiles, each consisting of 6 non-
contiguous 2x2 chunks scattered throughout a source data region: 

 

a

b

c

d

e

f

g

h

i

j

k

l

&a

e0

source data region chunk offset array (relative to src addr)

&b &c &d &e &f

&g &h &i &j &k &l

src addr

 

 

Once the above information (i.e. the source data region and the chunk offset array) is provided to ACF, the 
‘effective’ input from ACF’s point of view would be as follows: 



UG-10267-03-16 

NXP Confidential and Proprietary  

 54/61  

 

tile

chunk

a b c d e f

g h i j k l

 

 

Note that indirect data transfer is only available for non-static vector inputs.  Furthermore, the shape 
and size of the input (and any associated outputs) is determined by the shape and size of the chunk offset 
array and the associated chunk size.  This can be seen in the example above - the chunk offset array is a 6x2 
organization of chunk offsets, and the resulting ‘effective’ input is a 6x2 organization of 2x2 chunks. 

 

 

In order to utilize this functionality, the following two steps are required: 

 

1. During the process description step (see section 3.4), flag the desired input(s) as indirect using the 
following method: 

 

int32_t FlagInputAsChunkBasedIndirect(std::string lInputPortIdentifier); 

 

2. During the run-time IO configuration step (see section 3.6) use the ConnectIndirectInput method to 
provide ACF with both source data and the associated chunk offset array. 

 

int32_t ConnectIndirectInput(std::string lPortIdentifier, 

vsdk::UMat& lSrcData, 

vsdk::UMat& lChunkOffsetArray); 

 

Please refer to UG-10267-04 for more detailed descriptions of each of the aforementioned methods. 

 

 

Known Limitations 

 

1) If the chunk offset array is 2D the width of the offset array must be a multiple of 4 (i.e. the width must 
be a multiple of 4 offsets where each offset is associated with a chunk).  If the chunk offset array is 
1D, the size must be a multiple of 4.  This limitation is related to the underlying HW. 

2) To satisfy HW requirements, chunk width (in bytes) must be one of the following values: 4, 8, 12, 16, 
20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64 
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3.7.6 Region of Interest (ROI) Processing 

3.7.6.1 Introduction 

A region of interest (ROI) is defined as a 2D subset of data fully contained within a larger 2D ‘parent’ region.  
The ROI use-case is unique because it requires padding to come directly from the source data region for 
applicable edges. 

 

Consider the following ROI: 

 

ROI

 

Figure 19 – A region of interest (ROI) 

 

In the ROI depicted in Figure 19, there is source data available on the top, bottom, and left edges of the ROI.  
There is no source data available on the right edges of the ROI since it lines up with the edge of the parent 
data region. 

 

Due to the availability of source data around the edges of the ROI, and the desire to take this source data into 
account during processing (especially important for ROI edges), special considerations need to be made 
when deciding how to manage ROI edge padding. 

 

Assume that the ROI depicted in Figure 19 is fed into a single filter kernel with spatial dependencies defined 
as sd(3,3,3,3). ROI edge padding will then be managed as depicted in Figure 20 below. 

 

 



UG-10267-03-16 

NXP Confidential and Proprietary  

 56/61  

2D source

data

2D ROI

Generated edge padding

Actual region of source data that 

needs to be considered to generate 

correct border results for the ROI

 

Figure 20 – ROI edge padding 

As seen in Figure 20, up to three additional samples beyond each ROI edge must be considered.  This is a 
direct result of the sd=(3,3,3,3) requirement.  All ‘generated’ padding is handled by ACF (i.e. e0 replication) as 
described in section 3.2.2.3. 

• Left and bottom edge padding comes entirely from the source data. 

• Top edge padding consists of a mixture of source data and generated data (since 3 lines of padding 
are required but only two lines of source data are available). 

• Right edge padding is entirely generated 

 

3.7.6.2 Processing ROIs with ACF 

From an interface point of view, configuring and connecting an ROI is managed at the host-level.  You can 
specify and connect an ROI by using the the ACF_Process::ConnectIO_ROI(…) method (see UG-10267-

04 for full interface details):                                                           

 

E.g. Assume we have a 640x480 input image, and that we want to process a 320x240 ROI that corresponds 
to the top left quadrant of the 640x480 source region. 

 

//specify 640x480 input and output source regions 

vsdk::UMat lInput = vsdk::UMat(480, 640, VSDK_CV_8U); 

vsdk::UMat lOutput = vsdk::UMat(480, 640, VSDK_CV_8U); 

  

MyProcess lProcess; 

lProcess.Initialize(); 

 

lProcess.ConnectIO_ROI("INPUT", lInput, 0, 0, 320, 240); 

lProcess.ConnectIO_ROI("OUTPUT", lOutput, 0, 0, 320, 240); 

lProcess.Start(); 

lProcess.Wait(); 
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3.7.6.3 Example ROI use Case 

One practical use case for ROI functionality is related to splitting a large input into multiple smaller inputs (i.e. 
multiple ROIs) and processing each ROI separately (while still producing the same result as if the original 
input had been processed as a whole).  This sort of subdivision may be necessary if the combination of chunk 
size and input width results in an input tile that is too wide to fit into the available CU array. 

 

Assume we want to process the following 32x16 input with myFilterProcess, which contains a single kernel 
with non-zero spatial dependencies. 

 

 

 

In this example, assume the above input is subdivided into four 16x8 ROIs A, B, C, and D as illustrated below. 

 

ROI A ROI B

ROI C ROI D

 

 

The host-code to process all four 16x8 ROIs is as follows: 

vsdk::UMat lInput = vsdk::UMat(16, 32, VSDK_CV_8U); 

vsdk::UMat lOutput = vsdk::UMat(16, 32, VSDK_CV_8U); 

 

myFilterProcess lProcess; 

lProcess.Initialize(); 
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//top left 16x8 quadrant (i.e. ROI A)  

lProcess.ConnectIO_ROI("INPUT", lInput, 0, 0, 16, 8); 

lProcess.ConnectIO_ROI("OUTPUT ", lOutput, 0, 0, 16, 8); 

lProcess.Start(); 

lProcess.Wait(); 

 

//top right 16x8 quadrant (i.e. ROI B) 

lProcess.ConnectIO_ROI("INPUT", lInput, 16, 0, 16, 8); 

lProcess.ConnectIO_ROI("OUTPUT ", lOutput, 16, 0, 16, 8); 

lProcess.Start(); 

lProcess.Wait(); 

 

//bottom left 16x8 quadrant (i.e. ROI C) 

lProcess.ConnectIO_ROI("INPUT", lInput, 0, 8, 16, 8); 

lProcess.ConnectIO_ROI("OUTPUT ", lOutput, 0, 8, 16, 8); 

lProcess.Start(); 

lProcess.Wait(); 

 

//bottom right 16x8 quadrant (i.e. ROI D) 

lProcess.ConnectIO_ROI("INPUT", lInput, 16, 8, 16, 8); 

lProcess.ConnectIO_ROI("OUTPUT ", lOutput, 16, 8, 16, 8); 

lProcess.Start(); 

lProcess.Wait(); 

 

3.7.6.4 Limitations 

• ROI functionality is limited to 2D non-static vector I/O port types. 

 

• It is a requirement that both ROI coordinates and ROI size be divisible by the chunk size of the 
associated input/output port. 

 

For example, if the chunk size associated with the target input port is 8x4: 

Allowable ROI x coordinates include 0, 8, 16, 24, 32, etc. 

Allowable ROI y coordinates include 0, 4, 8, 12, 16, etc. 

Allowable ROI sizes include things like 320x240 and 240x100, but 300x200 would not be supported 
because 300 is not divisible by the chunk width of 8. 
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3.7.7 Interrupt Support 

ACF internally makes use of APEX hardware interrupts to determine when process execution has completed.  
Assuming the target OS offers support for multi-threading (e.g. Linux), the default behaviour of 
ACF_Process_APU::Wait() is to perform a non-busy wait on an appropriate synchronization object (e.g. 

semaphore).   

This default behaviour allows multiple ACF processes to be launched in multiple threads in parallel with ARM 
processing to make efficient use of both APEX and ARM resources. 

In the bare-metal/no-OS use case, ACF_Process_APU::Wait() is still interrupt-driven, but it will ultimately 

be a polling wait. 

 

Basic user-defined callback support is available via the overloaded ACF_Process_APU::Start(...) 

function (see document UG-10267-04-##-ACF_Reference_Guide.pdf for details): 

 

int32_t Start(void (*lpCallback)(void* lpParam, int32_t* lpRetVal), 

                    void* lpCallbackParam, 

                    int32_t* lpCallbackRetVal); 

 

As a general guideline, because ACF_Process_APU::Wait() already provides an abstracted interrupt-

driven means of waiting for process completion, use of the user-defined callback should be reserved for more 
advanced/specific use cases.  Even if a callback is specified, a call to ACF_Process_APU::Start must still 

be paired with a call to ACF_Process_APU::Wait(). 
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4 Appendix A (ed) 

4.1 Element<d> 

Note: An ACF user doesn’t need to configure Element<d>; this section is provided for the sake of a complete 
explanation. 

The final element of this notation is an extension that allows the framework to express a 2D array of ek’s.  
Element<d> (or ed) represents the fully described data chunk that is selected for kernel I/O.  ed is chosen by 
the framework using ek as a guideline, to ultimately decide how input data will be broken up and fed into a 
kernel for processing.  Note that a kernel developer should ensure ek is as small as possible, because it 
gives the framework more flexibility when choosing ed. 

 

Let ed be written as: 

ed = ek {<num ek in x dim>,<num ek in y dim>} 

 

Based on the decimate example above, the framework can choose an input ed = 8u1,1 [2,2]{4,4} (an 8x8 block 
of 8-bit data).  As a consequence of this input selection, the decimated output ed = 8u1,1[1,1]{4,4} (a 4x4 block 
of 8-bit data). 

 

(0) 8u1,1[2,2]{4,4} (1) 8u1,1[1,1]{4,4}
Decimate

{4,4}
 

Figure 21 - Decimate kernel (ed) 

4.2  Example with e0, ek, and ed 

Consider the following graph with all kernel I/Os expressed in ek notation.  Assume the user wants to process 
an 8x4 chunk of 8u4,1 data.  Such an input to the ‘YUV422 split’ kernel would be expressed as 8u4,1 [1,1]{8,4}.  
The framework will set ed dimensions to {8,4} for the ‘YUV422 split’ kernel to satisfy this input requirement.  
Based on this input requirement, how does the framework configure of ed for the remaining two kernels? 

 

8u4,1[1,1]{8,4}

(Y) 8u1,1[2,1]
YUV422

split

{8,4}

(U) 8u1,1[1,1]

(V) 8u1,1[1,1]

8u1,1[1,1] 8u1,1[1,1]Sobel 3x3

8u4,1[1,1]

(Y) 8u1,1[2,1]

YUV422

combine
(U) 8u1,1[1,1]

(V) 8u1,1[1,1]

 

Figure 22 - YUV422 split/combine graph 

The framework has already chosen ed dimensions to be {8,4} for the ‘YUV422 split’ kernel to satisfy the input 
requirement.  These same ed dimensions are propagated to all ‘YUV422 split’ kernel ports, resulting in a 
luminance (Y) output ed = 8u1,1[2,1]{8,4} (for example). 
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The most noteworthy part of this graph is how the luminance (i.e. Y) output of the ‘YUV422 split’ kernel is 
being fed into the input of the ‘Sobel 3x3’ kernel.  Note that even though the ek of the luminance output 
(8u1,1[2,1]) does not match the ek of the Sobel input (8u1,1[1,1]), the connection is allowed because e0=8u1,1 for 
both ports.  While the difference in ek dimensions does not preclude a connection, it does require that the ed 

dimensions for the ‘Sobel 3x3’ kernel be configured differently than the ‘YUV422 split’ kernel. 

 

The Sobel filter cannot directly accept an input with ed = 8u1,1[2,1]{8,4} because the ek dimensions do not 
match (it wants [1,1], not [2,1]).  However, if the framework sets the ed dimensions of the Sobel filter to be 
{16,4} everything matches up perfectly because 8u1,1[2,1]{8,4} is equivalent to 8u1,1[1,1]{16,4} from the e0 point 
of view (i.e. both are 16x4 arrays of e0). 

 

8u4,1[1,1]{8,4}

(Y) 8u1,1[2,1]{8,4}
YUV422

split

{8,4}

(U) 8u1,1[1,1]{8,4}

(V) 8u1,1[1,1]{8,4}

8u1,1[1,1]{16,4} 8u1,1[1,1]{16,4}
Sobel 3x3

{16,4}

8u4,1[1,1]{8x4}

(Y) 8u1,1[2,1]{8x4}
YUV422

combine

{8,4}

(U) 8u1,1[1,1]{8x4}

(V) 8u1,1[1,1]{8x4}

 

Figure 23 - YUV422 split/combine graph (ed) 

 

 

 


