
© 2016 Freescale Semiconductors, Inc.

S32 SDK Release Notes

Version 0.9.0 BETA

© 2016 Freescale Semiconductors, Inc. 2

1. Description

The S32 Software Development Kit (S32 SDK) is an extensive suite of robust hardware
interface and hardware abstraction layers, peripheral drivers, RTOS, stacks and middleware
designed to simplify and accelerate application development on NXP S32K microcontrollers.

All software included in this release has BETA quality level in terms of features, testing and
quality documentation, according to NXP software release criteria.

This SDK can be used as is (see Documentation) or it can be used with S32 Design Studio
IDE.

Refer to License(License.txt) for licensing information and Software content register(SW-
Content-Register-S32-SDK.txt) for the Software contents of this product. The files can be
found in the root of the installation directory.

For support and issue reporting use the following ways of contact:

- Email to support@nxp.com
- NXP Community https://community.nxp.com/

2. New in this release

2.1 Examples

 Added new driver examples for FlexIO, Power Manager

 Moved examples to examples/S32K144 folder

 Added derivative name prefix to the examples

2.2 Drivers:

 All drivers
o Implemented common error codes, updated copyright and branding.
o Changes above noted are breaking the backwards compatibility of

existing projects.

 CPU
o Renamed linker files to reflect derivative memory size.

 LPUART
o Added support for 9 bits per character transfer

 eDMA
o Removed dynamic allocation for channels; applications must ensure the

channels are correctly allocated and pass channel numbers to other
drivers using these resources. Added checking in configuration
component for erroneous channel allocation.

 CSEc
o Added asynchronous API for encryption, decryption, MAC generation

and MAC verification

mailto:support@nxp.com
https://community.nxp.com/

© 2016 Freescale Semiconductors, Inc. 3

 Clock
o Improved CLOCK_SYS_GetFrequency API.

 FlexCAN
o Added Pretending Networking support
o Added option to configure frames as remote frames or data frames

 LPI2C
o Removed High-Speed and Ultra-Fast modes, since the pins do not

implement the current source pull-up required by the higher baudrate
specifications of I2C standard. Without this, High-speed mode can’t
achieve higher baud rates than standard/fast mode

 LPIT
o Modified driver configuration structure and made changes to enums
o Added support for setting timer period in Dual 16 mode in microseconds

and counter ticks.

 LPTMR
o Merged Timer and Pulse Counter configurations and adjusted API

functions accordingly.
o Updated PEx component to reflect those changes.

 PINS
o Added port gating off check

 LINSTACK
o Added support for slave node serial number
o Improved timing for signal transmission and reception
o Improved ld_receive_message to be non-blocking

© 2016 Freescale Semiconductors, Inc. 4

3. Software Contents

1. Drivers (HAL and PD)

 ADC

 CMP

 CRC

 CSEc

 DMA

 EWM

 EIM

 ERM

 FLASH

 FLEXCAN

 FLEXIO (I2C, SPI, I2S, UART profiles)

 FTM

 GPIO

 LIN

 LPI2C

 LPIT

 LPSPI

 LPTMR

 LPUART

 MCU (ClockManager, InterruptManager, PowerManager)

 MPU

 PDB

 PORT

 RTC

 TRGMUX

 WDOG

2. Middleware

 LIN stack - provides support for LIN2.1 and J2602 communication protocols

 SBC stack - provides support for UJA1169 System Basis Chips

3. RTOS

 FreeRTOS version 8.2.1

© 2016 Freescale Semiconductors, Inc. 5

4. Documentation

 Quick start guide available in “doc” folder

 User and integration manual available at “doc\Start_here.html”.

 Driver user manuals available in “doc” folder.

5. Examples

Type Name Description

D
riv

e
r e

x
a

m
p

le
s

ADC Hardware
Trigger

Uses PDB to trigger an ADC conversion with a configured delay
and sends the result to host via LPUART.

ADC Software
Trigger

Uses software trigger to periodically trigger an ADC conversion
and sends the result to host via LPUART.

CMP

Configures the analog comparator to compare the input from
the potentiometer with the internal DAC (configured to output
half of the reference voltage) and shows the result using the
LEDs found on the board.

CRC
The CRC is configured to generate the cyclic redundancy check
value using 16 and 32 bits wide result.

CSEc Key
Configuration

The example demonstrates how to prepare the MCU before
using CSEc(Key configuration, flash partitioning).

eDMA

Demonstrates the following eDMA use cases: single block
memory to memory transfer, a loop memory to memory
transfer, memory to memory transfer using scatter/gather,
LPUART transmission/reception using DMA requests.

EWM Shows the usage of the EWM driver.

FLASH Writes, verifies and erases data on Flash.

FlexIO I2C Example
Demonstrates FlexIO I2C emulation. Use one instance of
FlexIO and one instance of LPI2C to transfer data on the same
board.

FlexIO SPI Example
Demonstrates FlexIO SPI emulation for both master and slave
configurations. Use one instance of FlexIO to instantiate master
and slave drivers to transfer data on the same board.

FlexIO I2S Example
Demonstrates FlexIO I2S emulation for both master and slave
configurations. Use one instance of FlexIO to instantiate master
and slave drivers to transfer data on the same board.

FlexIO UART
Example

Demonstrates FlexIO UART emulation for both TX and RX
configurations. Use one instance of FlexIO to instantiate UART
transmitter and receiver drivers to transfer data from/to the host.

FTM PWM
Uses FTM PWM functionality using a single channel to light a
LED on the board. The light's intensity is increased and
decreased periodically.

FTM Combined PWM
Uses FTM PWM functionality using two combined channels to
light two LEDs on the board with opposite pulse width. The
light's intensity is increased and decreased periodically.

FTM Timer
Uses FTM Timer functionality to trigger an interrupt at a given
period which toggles a LED.

© 2016 Freescale Semiconductors, Inc. 6

FTM Signal
Measurement

Using one FTM instance the example application generates a
PWM signal with variable frequency which is measured by
another FTM instance configured in signal measurement mode.

LPI2C Master
Example

Shows the usage of the LPI2C driver in Master configuration

LPI2C Slave
Example

Shows the usage of the LPI2C driver in Slave configuration

LPIT
Shows how to initialize the LPIT to generate an interrupt every
1 s. It is the starting point for any application using LPIT.

LPSPI
Uses one instance of the LPSPI as slave to send ADC data to
the master LPSPI instance which is on the same board. The
master uses data received to feed a FlexTimer PWM.

LPTMR Timer

Exemplifies to the user how to initialize the LPTIMER so that it
will generate an interrupt every 1 second. To make the interrupt
visible a LED is toggled every time it occurs.

LPTMR Pulse
Counter

Shows the LPTIMER pulse count functionality by generating an
interrupt every 4 rising edges.

LPUART Simple example of a basic echo using LPUART.

MPU
Configures MPU to protect a memory area and demonstrates
that read access is correctly restricted.

PDB

Configures the Programmable Delay Block to generate an
interrupt every 1 second. This example shows the user how to
configure the PDB timer for interrupt generation. The PDB is
configured to trigger ADC conversions in
ADC_HwTrigger_Example.

Power Manager
Demonstrates the usage of Power Manager by allowing the
user to switch to all power modes available.

RTC
Show the frequently used RTC use cases such as the
generation of an interrupt every second and triggering an alarm.

WDOG

Shows the basic usage scenario and configuration for the
Watchdog.

D
e
m

o
s

Blinking LED
This is a simple application created to show configuration for
supported compilers (GCC, IAR, GHS …).

Clock setup Start-up project with maximal clock settings for the platform.

FlexCAN

Uses two boards to demonstrate FlexCAN functionality with
Flexible Data Rate on. LEDs on a board are toggled depending
on the buttons actioned on the other board. Also demonstrates
the use of SBC driver to configure the CAN transceiver from
EVB board. The application is configured to use CSEc to
encrypt the data on security enabled parts.

FreeRTOS
This demo application demonstrates the usage of the SDK with
the included FreeRTOS. Uses a software timer to trigger a led
and waits for a button interrupt to occur.

LIN
This demo application shows the usage of LIN stack.
There are slave and master applications, both configuration
having baremetal and FreeRTOS variants.

© 2016 Freescale Semiconductors, Inc. 7

 ADC Low Power

This demo shows the user how to reduce CPU overhead and
power usage by triggering ADC conversions with the LPIT via
TRGMUX. The CPU is set in the STOP mode via the Power
Manager API, with the wakeup condition being the validity of
the ADC conversion result, the latter being a value greater than
half of the ADC reference voltage achieved by using the
hardware compare functionality. If the condition is met, the
value in the form of a graph is sent using LPUART and DMA to
further reduce the CPU usage.

 FreeMASTER BDM

This demo uses the FreeMASTER Run-Time Debugging Tool
to visualize ADC
conversions and allows the user to monitor the ADC sampling
rate for
different ADC configurations (ADC sampling time and resolution
can be
controlled through FreeMASTER Variable Watch).
The application uses BDM for communication.

FreeMASTER
SerialCommunication

This demo uses the FreeMASTER Run-Time Debugging Tool
to visualize ADC
conversions and allows the user to monitor the ADC sampling
rate for
different ADC configurations (ADC sampling time and resolution
can be
controlled through FreeMASTER Variable Watch).
The application uses FreeMASTER SCI driver for
communication.

6. Supported hardware and compatible software

CPUs

 S32K144_64 revision 2.0, maskset N47T

 S32K144_100 revision 2.0, maskset N47T

 S32K144_100_BGA revision 2.0, maskset N47T

The following processor reference manual has been used to add support:

 S32K14XRM Rev. 1, 08/2016

Boards

 S32K144-MB with mini module S32K144-100LQFP REV X1/X2

 S32K144-EVB_Q100

Compiler and IDE versions:

 GreenHills compiler v. 2015.1.4

 IAR compiler v. 7.50.3

 GCC compiler for ARM v. 4.9.3 20150529

 COSMIC Software CORTEX-M C Cross Compiler v4.3.9

 Wind River Diab Compiler v5.9.4.8

 S32 Design Studio v1.3 IDE

© 2016 Freescale Semiconductors, Inc. 8

Debuggers:

 SEGGER J-Link (with SEGGERGDB Server)

 P&E Multilink (with P&E GDB Server)

7. Known problems and limitations

1. Installer

 Due to an installer issue, before installing the new SDK, please make sure that the
S32SDK_PATH environment variable is empty. This can be done either manually or
by uninstalling the previous SDK version using the uninstall provided.

 The uninstaller does not delete configuration files copied in S32 DS build.

2. Drivers

ADC

 The trigger latch feature of the ADC is not supported in this release.

eDMA

 Doxygen documentation is not accessible from context menu for eDMA and
DMAMUX HAL components.

EIM

 If more than 2 bits are flipped in DATA_MASK or CHECKBIT_MASK bitfields in EIM
control registers that there is no guarantee in design that what type of error get
generated

FlexIO_I2C

 No STOP condition is generated when aborting a transfer due to NACK reception.

 No clock stretching when the application does not provide data fast enough, so Tx
underflows and Rx overflows are possible.

 There is a maximum limit of 13 bytes on the size of any transfer.

 The driver does not support multi-master mode. It does not detect arbitration loss
condition.

 Due to device limitations, it is not always possible to tell the difference between
NACK reception and receiver overflow.

Note: FLEXIO I2C issues described above are caused by Hardware limitations.

FlexIO_SPI

 The driver does not support back-to-back transmission mode for CPHA = 1
FTM

 Module can be used only in one mode. For example, this configuration is not
possible: 4 channel of FTM0 run in PWM and 4 channel of FTM0 run in input capture.

LPI2C

 LPI2C_DRV_MasterAbortTransferData function can’t abort a master receive transfer
because the module sees the whole receive as a single operation and will not stop it
even if the FIFO is reset.

LPSPI

 Continuous mode is not supported.

© 2016 Freescale Semiconductors, Inc. 9

 LPSPI Cannot transmit data between master and slave onboard

LPUART

 9th bit is not sent correctly when configured with 10 bits per char

 LPUART_HAL_SetTxSpecialChar function queues only break characters for
transmission; idle characters cannot be queued using this function.

OSIF

 Current implementation offers support only for FreeRTOS and bare-metal.

PORT

 Default state of several pins is not correct

 PinSettings component will not issue warnings when pins routed by default are
overwritten

3. Examples

 Running the FLASH driver example from the flash will secure the device. To
unsecure the MCU a mass erase of the flash needs to be done.

8. Compiler options

This release was developed and tested with:

 GreenHills compiler v. 2015.1.4

 IAR compiler v. 7.50.3

 GCC compiler for ARM v. 4.9.3 20150529

 COSMIC Software CORTEX-M C Cross Compiler v4.3.9

 Wind River Diab Compiler v5.9.4.8

The example projects are using the first level of optimizations (low optimizations).

8.1 IAR Compiler/Linker/Assembler Options

Table 8.1 IAR Compiler Options

Option Description

-On No optimization (best for debug)

-e Allow IAR extensions

--cpu=Cortex-M4 Selects target processor: Arm Cortex M4

--thumb Selects generating code that executes in Thumb
state.

--no_wrap_diagnostics Disable line wrapping of diagnostic messages

--debug Include debug information

-DCPU_S32K144HFT0VLLT Define a preprocessor symbol for MCU

© 2016 Freescale Semiconductors, Inc. 10

Table 8.2 IAR Assembler Options

Option Description

Not needed

Table 8.3 IAR Linker Options

Option Description

--map main.map Produce a linker memory map file

--entry Reset_Handler Make the symbol Reset_Handler be treated as a
root symbol and the start label of the

application

--no_wrap_diagnostics Keep diagnostic messages on single line

--config S32K144_100_ram.icf Use the specified linker file

8.2 GCC Compiler/Linker/Assembler Options

Table 8.4 GCC Compiler Options

Option Description

-mcpu=cortex-m4 Selects target processor: Arm Cortex M4

-mthumb Selects generating code that executes in Thumb
state.

-Wall Produce warnings about questionable constructs

-Wextra Produce extra warnings that -Wall

-Wstrict-prototypes Warn if a function is declared or defined without
specifying the argument types.

-pedantic Issue all the warnings demanded by strict ISO C

-Os Optimize for size

-funsigned-char Let the type char be unsigned, like unsigned char

-funsigned-bitfields Bit-fields are signed by default

-fshort-enums Allocate to an enum type only as many bytes as it
needs for the declared range of possible values.

-ffunction-sections Place each function into its own section in the
output file

-fdata-sections Place data item into its own section in the output file

-fno-jump-tables Do not use jump tables for switch statements

-std=gnu99 Use C99 standard

-save-temps=obj Store the usual “temporary” intermediate files
permanently

-g Generate debug information

-DCPU_S32K144HFT0VLLT Define a preprocessor symbol for MCU

© 2016 Freescale Semiconductors, Inc. 11

Table 8.5 GCC Assembler Options

Option Description

Not needed

Table 8.6 GCC Linker Options

Option Description

--specs=rdimon.specs Select library librdimon.a for system calls.

-lgcc Link libgcc.a

-lc Link libc.a

-lm Link libm.a

-lrdimon Link librdimon.a

-Wl,-Map=main.map Produce a linker map

8.3 GHS Compiler/Linker/Assembler Options

Table 8.7 GHS Compiler Options

Option Description

-cpu=cortexm4 Selects target processor: Arm Cortex M4

-mthumb Selects generating code that executes in Thumb
state.

-C99 Use C99 standard

--gnu_asm Enables GNU extended asm syntax support

-O0 No optimization (best for debug)

-gdwarf-2 Generate DWARF 2.0 debug information

-G Generate debug information

-DCPU_S32K144HFT0VLLT Define a preprocessor symbol for MCU

Table 8.8 GHS Assembler Options

Option Description

Not needed

Table 8.9 GHS Linker Options

Option Description

Not needed

8.4 COSMIC Compiler/Linker/Assembler Options

© 2016 Freescale Semiconductors, Inc. 12

Table 8.10 COSMIC Compiler Options

Option Description

-gsf Place each function into its own section in the
output file

-pc99 Use C99 standard

-dCPU_S32K144HFT0VLLT Define a preprocessor symbol for MCU

Table 8.11 COSMIC Assembler Options

Option Description

Not needed

Table 8.12 COSMIC Linker Options

Option Description

-m app.cxm.map Produce a linker map

-e Reset_Handler Make the symbol Reset_Handler be treated as a
root symbol and the start label of the

application

8.5 DIAB Compiler/Linker/Assembler Options

Table 8.13 DIAB Compiler Options

Option Description

-tARMCORTEXM4LV Selects target processor: Arm Cortex M4

-mthumb Selects generating code that executes in Thumb
state.

-Xdialect-c99 Use C99 standard

-DCPU_S32K144HFT0VLLT Define a preprocessor symbol for MCU

Table 8.14 DIAB Assembler Options

Option Description

-tARMCORTEXM4LV Selects target processor: Arm Cortex M4

-mthumb Selects generating code that executes in Thumb
state.

Table 8.15 DIAB Linker Options

Option Description

-tARMCORTEXM4LV Selects target processor: Arm Cortex M4

-Xremove-unused-sections Removes unused code sections

© 2016 Freescale Semiconductors, Inc. 13

-lc Link the standard C library to the project in order to
support elementary math operations that are used
by the drivers

-e Reset_Handler Make the symbol Reset_Handler be treated as a
root symbol and the start label of the

application

-m6 > app.map Produce a linker map

9. Acronyms

Acronym Description

EAR Early Access Release

JRE Java Runtime Environment

FRDM Freedom board

EVB Evaluation board

HAL Hardware Abstraction Layer

RTOS Real Time Operating System

PEx Processor Expert Configurator

PD Peripheral Driver

S32DS S32 Design Studio IDE

SDK Software Development Kit

SOC System-on-Chip

10. Version Tracking

Date
(dd-Mmm-YYYY)

Version Comments Author

30-Oct-2015 1.0 First version for EAR 0.8.0
Vlad

Baragan-
Stroe

18-Dec-2015 1.1 Added patch 1
Vlad

Baragan-
Stroe

1-Apr-2016 2.0
Added drivers, new in release section, updated
examples, known limitations for EAR 0.8.1

Vlad
Baragan-

Stroe

27-Oct-2016 3.0

Updated new in this release section, known limitations
and examples description for EAR 0.8.2 release.

Added “Compiler options” section.

Updated header, footer and front page with new logos

Rares Vasile

© 2016 Freescale Semiconductors, Inc. 14

21-Dec-2016 4.0 Updated Release Notes for 0.9.0 BETA release Rares Vasile

