
EXTERNAL USE

S32 DESIGN STUDIO 3.1 or higher

with S32V2xx development package

and Vision extension package for S32V2xx

TUTORIAL: S32DS APEX VISUAL GRAPH TOOL

EXTERNAL USE1

Looking for
Interactive

Tutorial?

• You can view this tutorial as a video under the
VIDEO tab of Getting Started page of S32
Design Studio

WAIT!

EXTERNAL USE2

Prerequisite for tutorial

• Knowing the S32V234 SoC

• Have an understanding of the APEX architecture and APEX Core Framework(ACF)

− Refer UG-10267-03-14-ACF_User_Guide.pdf to learn about ACF

▪ Path:

s32ds_installation_directory\S32DS\software\VSDK_S32V2_RTM_1_3_0\s32v234_sdk\docs\ap

ex\acf

• Be familiar with the Vision SDK software

EXTERNAL USE3

Agenda

• Tutorial overview

• Make an APEX Graph (project)

• Make an APEX Program (project)

• Make a Linux application project

EXTERNAL USE4

WHAT ARE 3 OPTIONS AVAILABLE IN APEX GRAPH TOOL?

• APEX2 Kernel Project:
• Kernel project is useful to define user function that works as one of the building blocks of vision

pipeline

• APEX2 Graph Project:
• Here, user can define the vision pipeline using multiple kernels

• Vision SDK provides a broad library of built-in kernels

• Moreover, user can build custom kernels using APEX2 Kernel Project.

• The graph minimizes the data transfer between host and APEX, by launching multiple kernels

with single data transfer. In short takes advantages of pipelining and data localization.

• APEX2 Program Project:
• This project actually generates a source code for an APEX application

• Once vision pipeline is ready, user can
• Use multiple graphs to create complete APEX program flow (useful in case of dependencies between

graphs)

• Map different graphs to different APEX engines (useful if user want to run multiple graphs in parallel)

• Choose from different image buffers (useful to transfer data between host and APEX)

APEX2

Kernel Project

APEX2 Graph

Project

APEX2

Program

Project

EXTERNAL USE5

Tutorial Overview:

1. We will make an APEX graph using APEX2 Graph Project option

− Just to make it simple we will use the kernels available in Vision SDK

▪ Vision SDK provides many built-in Kernels readily available for user development.

− User may use the APEX2 Kernel Project option to create a brand new kernel as well

2. Moving forward, we will use the graph built above and make an APEX2 program

project

− As described previously, using the program project we will specify the image buffer type,

select APEX engine and generate the source code for APEX engines.

3. Lastly, we will use this source code into our Linux application program to

accelerate the performance using APEX engines.

Complete application will take a .png image, upscale and downscale

it using APEX engines and return processed images

EXTERNAL USE6

MAKE

AN

APEX GRAPH
First of all we will make an APEX graph using Vision SDK kernels

EXTERNAL USE7

Make an APEX2 Graph Project

• We will make a simple graph that

− Grabs an image >> Up-scales and down-scales it by factor of 2 >> Returns

processed images

• Make a new APEX2 graph project named : APEX_VGT_test_graph

EXTERNAL USE8

Make a graph

• Let’s start building a graph…

• From the Palette window (right side of the S32DS window):

− Select Add Kernels block

− Click in the workspace to drop the block and it will ask to select kernel for that block

− Select built-in kernel: apu_upsample (sample_resizing kernels)

EXTERNAL USE9

Make a graph

• Similarly, create a block for kernel: apu_downsample

(sample_resizing_kernels)

EXTERNAL USE10

Make a graph

• Select Output block and include it into the graph

• Using Connector, connect graph blocks to create the following graph

EXTERNAL USE11

Configure the Block Properties

• You do not need to configure any properties for the graph!

• APEX Core Framework (ACF) will take care of this!

− e.g. ACF extracts Image size description from image buffer automatically

• It is a generic graph and can be used in any application without any application

specific modification such as image size description.

EXTERNAL USE12

Change the Block Name

• For better readability, user may want to change the block names

• Select a Block from the graph and look at the Properties window (on your left)

• Change the Name here, try changing the INPUT block

EXTERNAL USE13

Change the Block Name

• Let’s do the same for both OUTPUT blocks

• Now graph should look like this…

Graph is

now

READY!

EXTERNAL USE14

Validate graph for correctness

• Save the graph

• Right Click anywhere in the white part of the graph

• Validate graph

− You will see a pop-up window showing status of validation.

or

EXTERNAL USE15

Validation Error

• Error will be indicated by red cross on the block and description can be seen in the Problems view

• Since there are no parameters to configure, there are only two type of errors

− Missing connections

− Duplicate names

• Block color will remain white in case of errors

• Correct the error, Save the graph and try to Validate again

EXTERNAL USE16

MAKE AN

APEX PROGRAM
Once APEX graph is ready, we will use this graph to make an APEX

program. Here, we will map this graph to one of the APEX engines,

define the image buffers and generate source code.

EXTERNAL USE17

Make a Linux application project with APEX program project

• We will make a program project but it requires interaction with Linux application project

• So, we will make a Linux application project

− the program project will be created automatically

1. Go to File –> New –> S32DS Application Project

2. Type the project name:

APEX_VGT_test_application

3. Select project type as shown

4. Hit Next

5. Since we are not using ISP, deselect

unnecessary options as shown

6. Hit Finish

EXTERNAL USE18

Make a Linux application project with APEX program project

• We can now see the project in the Project

Explorer

• Copy the picture “in_grey_256x256.png”

from

s32ds_installation_directory\S32DS\software

\VSDK_S32V2_RTM_1_3_0\s32v234_sdk\de

mos\data\common

to the project folder

We will stop here with application project and get back to “configure block properties”

Application

project is

READY!

EXTERNAL USE19

Make an APEX2 Program Project

• We will now make a program project and specify

− graph we want to use and its mapping on specific APEX engine

− image buffer type

• Open the APEX2 Program Diagram

EXTERNAL USE20

Make an APEX program

• From the Palette window (right side of the S32DS window):

− Select Process from Graph block

− Click in the workspace to drop the block and it will ask to select graph available in the current

workspace

− Select “APEX_VGT_test_graph” that we just created

EXTERNAL USE21

Make a program graph

• We will use a .png image for our application

• So, our input and output will be of image types

• Select and create one Image Inlet

• Select and create two Image Outlet

EXTERNAL USE22

Make a program graph

• Connect blocks to create the following program graph

EXTERNAL USE23

Configure the Blocks Properties 1 of 6

• Now we have Linux application project ready. We will get back to configuring block properties of program project

• Select the ImageInlet0 block

• Look at (open if not visible) the properties window

EXTERNAL USE24

Configure the Blocks Properties 2 of 6

• ImageInlet0 block : Configure the properties like follow:

Image color type

We will use grayscale

image

Image name(we will use

this image, more info on

coming slides)

Image type

Image path inside the

target OS, leave blank

for we will place the

image in same folder

as executable file

Inlet Name

EXTERNAL USE25

Configure the Blocks Properties 3 of 6

• Select ImageOutlet0 block

Outlet Name

Up-sampled image will take

this name

Image type

Image path inside the

workspace, again, we will

leave it blank

EXTERNAL USE26

Configure the Blocks Properties 4 of 6

• Similarly, select IMAGE_OUTLET_1 block

Outlet Name

Down-sampled image will

take this name

Image type

Image path inside the

workspace, leave it blank

EXTERNAL USE27

Configure the Blocks Properties 5 of 6

• Now, we will select on which APEX we want to run our graph

• Select APEX_VGT_test_graph_0 block

Select the APEX on

which you want to run the

graph

EXTERNAL USE28

Configure the Blocks Properties 6 of 6

• You do not need to configure the image_input properties

− But, if you want to optimize graph performance, you can hand-tune chunk size of the

input. (See APEX documents for more information)

− Otherwise, leave chunk size to “zero” and ACF will decide chunk size automatically

EXTERNAL USE29

Configure the Blocks Properties 6 of 6

• We will now specify the output image buffers size

• Select upsample_out and downsample_out of APEX_VGT_test_graph_0 block

• Modify its properties as shown below

APEX

program

project is

now READY!

EXTERNAL USE30

Validate graph for correctness

• Save the graph

• Right Click anywhere in the white part of the graph window

• Validate graph

• Validation errors are reported and can be taken care of in a same way as

explained before

EXTERNAL USE31

Select the destination of autogenerated source code 1 of 3

• By default all source code will be generated inside the APEX program project itself

• We can reconfigure the destination of source code to any other open projects.

− We will use this feature and generate the source code in Linux application project.

1. Select the Emit Configuration.. option.

EXTERNAL USE32

Select the destination of autogenerated source code 2 of 3

• Define a new configuration and specify where we want to generate our source

code.
1. Change the configuration as shown in the picture

2. Click on Apply to save the changes

EXTERNAL USE33

Select the destination of autogenerated source code 3 of 3

• Edit some more configuration
3. Go to Common tab.

4. Select the \APEX_VGT_test_application\.launches folder under “Shared files” option here.

5. Apply the settings and Hit Emit button to generate a source code at the designated location

EXTERNAL USE34

Emit the source code

• Auto generated code can be seen inside the project folder

− Note: If you can not see source code, please right click on the project and click on

Refresh from the menu.

EXTERNAL USE35

LINUX APPLICATION

PROJECT FOR APEX
Once APEX code is ready, we will now build our Linux application

EXTERNAL USE36

Application Code for APEX

• Basic, auto generated, application code template for APEX can be found in

A53_test/src/test_acf_host.cpp

• ACF_APP_CALL() inside the A53/src/main.cpp is just a place holder.

• User should copy/add/change code inside the A53_gen/acf_host.cpp and

A53/src/main.cpp according to his/her application needs or structure

• User should use build config TEST_A53 for this tutorial example, and during early

APEX graph development. Later, once host code is developed and added to

A53_gen/acf_host.cpp, the user should switch to build config A53. If you build

A53 without the host code, the project may build and execute on target without

error, but the application will not be run.

− Note: In this tutorial we will not change default structure as it is not necessary

EXTERNAL USE37

Application code for APEX: Compile

• In this tutorial, we do not need to add/change any default code

• Go to C/C++ perspective and compile the application for TEST_A53

Info: APU option does “Offline Process Resolution” as described in the ACF User Guide

EXTERNAL USE38

Execute your APEX_VGT_test_application.elf binary

on the target!

Application code for APEX: Run

Connect and Observe

− Do not forget to copy in_grey_256x256.png to the same

directory where you copied binary

− Run the application

− You can find 2 new image files generated in the same directory

− One will be doubled the size of the original image and the

other will be half the size of the original image

