TUTORIAL: S32DS ISP VISUAL GRAPH TOOL

S32 DESIGN STUDIO 3.1 or higher with S32V2xx development package and Vision extension package for S32V2xx

NP

EXTERNAL USE

Interactive

Tutorial?

Welcome to S32 Design Studio for Vision, Version 2.0

GETTING STARTED DOCUMENTATION VIDEO SUPPORT

QUICK LINKS

Getting Started 83

-S32DS--VISION-NEW Application Project NEW Library Project NEW Project from Examp

-S32DS--VGT-NEW APEX2 Program Project NEW APEX2 Kernel Project NEW APEX2 Graph Project NEW ISP Data Flow Project

-S32DS- -DDR-NEW S32V DDR Configurati Project INTRODUCTION

Continue training with video. Use training video resources from the Getting Started with the S32DS for Vision 2.0 collection case studies, if you Browse real examples of successful device programming across the Platform of all Products using CONTRACT CONT

 You can view this tutorial as a video under the VIDEO tab of Getting Started page of S32 Design Studio

Create a New APEX2 Project Create an APEX2 Project from Example Debug an APEX2 Project using Emulator Debug an APEX2 Project using Lauterbach TRACE32

Debug an A53 Project using GDB PEMicro Interface Debug an A53 Project using GDB Remote Linux

Prerequisite to the tutorial

- Knowing the S32V234 product
- Have an understanding of the ISP architecture
- Be familiar with the vision SDK software

Agenda

- Tutorial Overview
- Make an ISP graph (project)
 - -Make a basic graph
 - Configure graph/block properties
 - Generate source code from graph
 - Validate graph
 - Generate source code
- Application code for ISP
 - Make an application
 - Compile
 - -Run

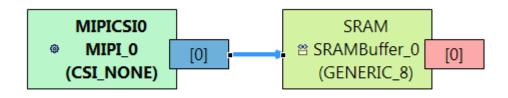
Tutorial Overview:

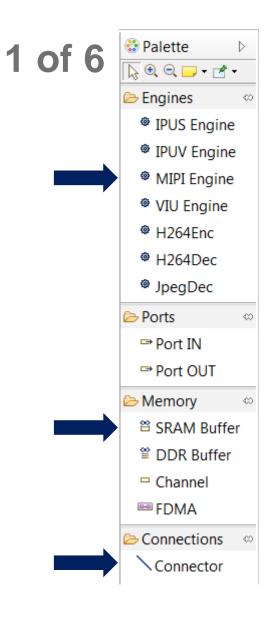
- 1. To start with, we will make an ISP graph using ISP Dataflow Project option
 - -Just to make it simple we will use the ISP kernels available in Vision SDK
 - Vision SDK provides many built-in Kernels readily available for user development
 - -Once graph is made we will autogenerate code for ISP engine
- 2. Moving forward, we will use the code derived above and make a Linux application project
 - This application will integrate ISP code with the host to run together smoothly.

Complete application will take an image from camera, processes it in ISP and put the processed image in DDR buffers. Once the image is in DDR buffer, host(A53 core running Linux) will direct the display control unit(DCU) to display it on screen

MAKE A GRAPH

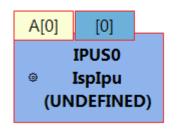
First of all we will simply connect different blocks to make a basic graph

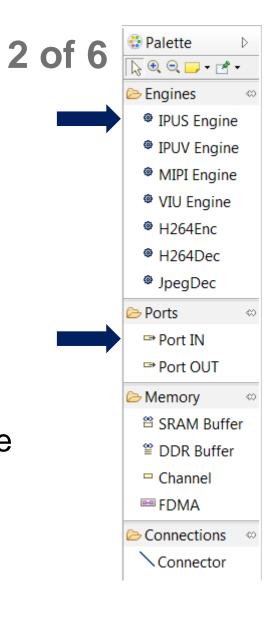



Make an ISP Dataflow Project

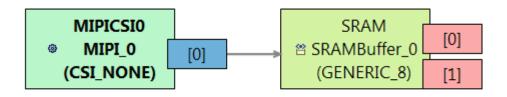
- We will make a simple graph that does following:
 - Grab an image from MIPI-CSI port >> Run Debayer kernel >> Transfer data to DDR buffer using Fast DMA
- Make a new ISP Dataflow Project named : ISP_VGT_test_graph

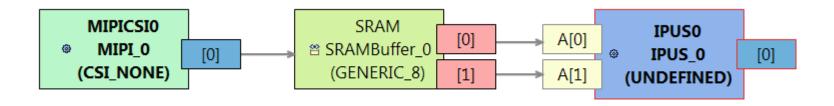
WorkspaceS32DS.3.1 - C/C++ - isp_so		3_src/main.cpp - S32 Design Studio						IV New ISP Data Flow Project	– 🗆 X		
File Edit Source Refactor Navigate		figTools Run Creation VDK Debug Window H	elp		🞬 New	– 🗆 X					
New Open File Open Projects from File System	Alt+Shift+N	 S32DS Project from Example S32DS Application Project S32DS Library Project 	Ctrl+Alt+E Ctrl+Alt+A Ctrl+Alt+L		Select a wizard	-		Create a new ISP Data Flow project Create a new ISP Data Flow project			
Close Close All	Ctrl+W Ctrl+Shift+W	Makefile Project with Existing Code C++ Project C Project			Create an ISP Dataflow project			Project ni me: ISP_VGT_test_graph			
Save Save As	Ctrl+S Ctrl+Shift+S	C/C++ Project			Wizards: type filter text			Use default location Location: C:\Users\nxa17459\workspaceS32DS.Vision.2018.	.R1\JSP_VGT_test_gri Browse		
Revert Move	Ctri+Snirt+S	 Convert to a C/C++ Project (Adds C/C++ Natu Source Folder 	re) **:		Visual Graph Tools	,	`	Choose file system: default \vee		Project Explorer 🛛 📴 Outline	₽\$₽ ▽ □ □
Move Rename Refresh Convert Line Delimiters To	F5	Source File Header File File from Template	ec. ayı		C APEX2 Graph Project		\rightarrow	Working sets Add project to working sets Working sets:	Ne <u>w</u>	ISP_VGT_test_graph ISP data flow : ISP_VGT_test_graph	
 Print Switch Workspace Restart 	Ctrl+P	G Class ☐ Evample ☐ Other	Ctrl+N		ISP Dataflow Project		~	Use default target project	Browse	🕨 🗁 model	
 Import Export 		<pre>int loomel, COMMON HeleMaccost(if(idxHelp < 0) { // print help message even if n</pre>	, beln option is t					Static Sequencer	D/ Official		
Properties 1 main.cpp [isp_sonyimx224_csi_dcu,		<pre>printf("%s", helpMsg_str); }</pre>	o neip option is p		? < <u>B</u> ack <u>N</u> ext >	Einish Cancel]				
2 ISP data flow : ISP_VGT_test_graph 3 ISP data flow : mipi_simple [resour		<pre>#ifndefSTANDALONE fflush(stdout); sleep(1);</pre>		I				(?) < <u>B</u> ack <u>N</u> ext >	Einish Cancel		
Exit		#endif // ifndefSTANDALONE									

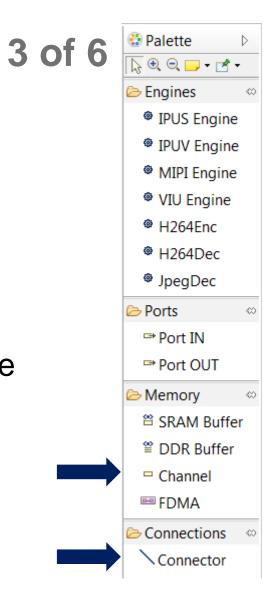

- From the **Palette** windows (right side of the S32DS window):
 - Camera is connected to MIPI-CSI interface. Hence, we will start our pipeline from MIPI interface
 - Select MIPI Engine block
 - Image lines fetched from MIPI-CSI will now go to SRAM
 - Select SRAM Buffer
 - Connect both using Connector



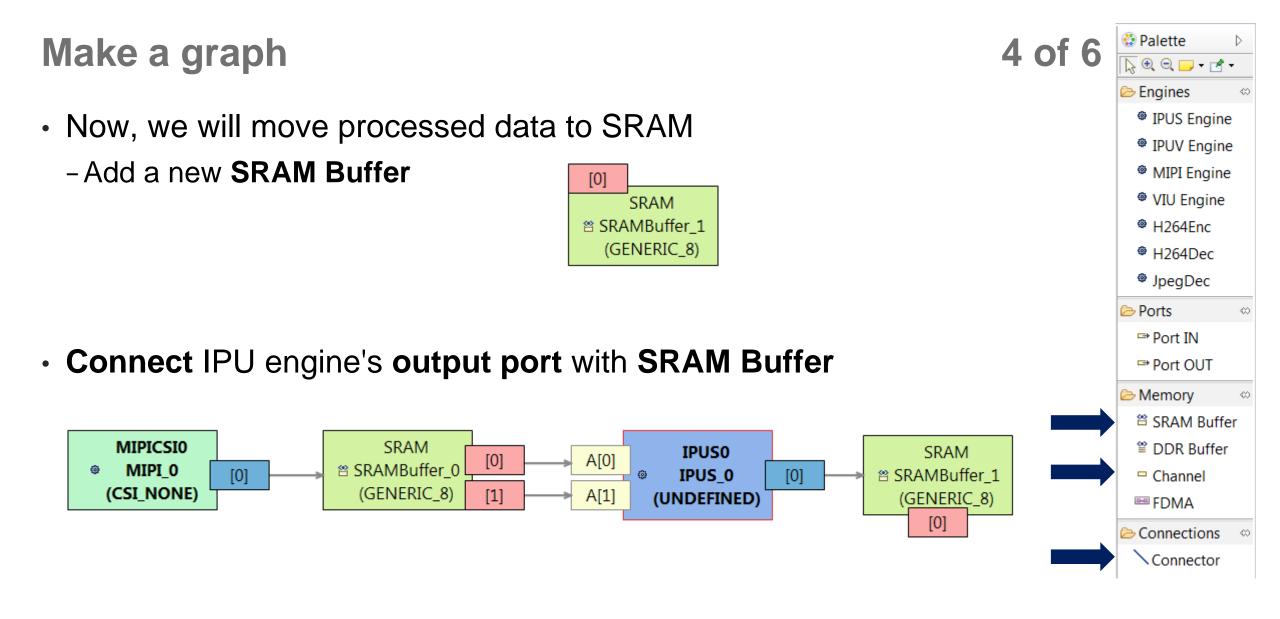
- Once necessary image lines are in SRAM, IPU(Image Processing Unit) engine grabs the image data and start processing it
 - So we will add IPUS Engine


- We will be using "debayering kernel: that requires 2 images lines from the SRAM buffer to start processing, so we will add one more input port
- Add a new input port to it: Port In

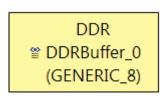




• For the same reason, add an output **Channel** to **SRAM Buffer**

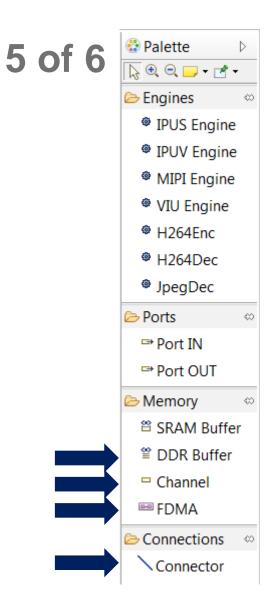


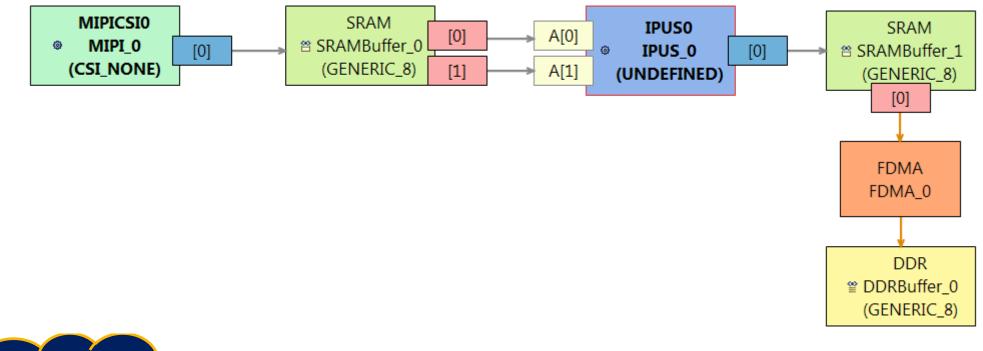
Connect each SRAM channel with each input port of IPU engine



NP

We will move processed line to DDR buffer via Fast DMA
 Add a new Fast DMA block: FDMA



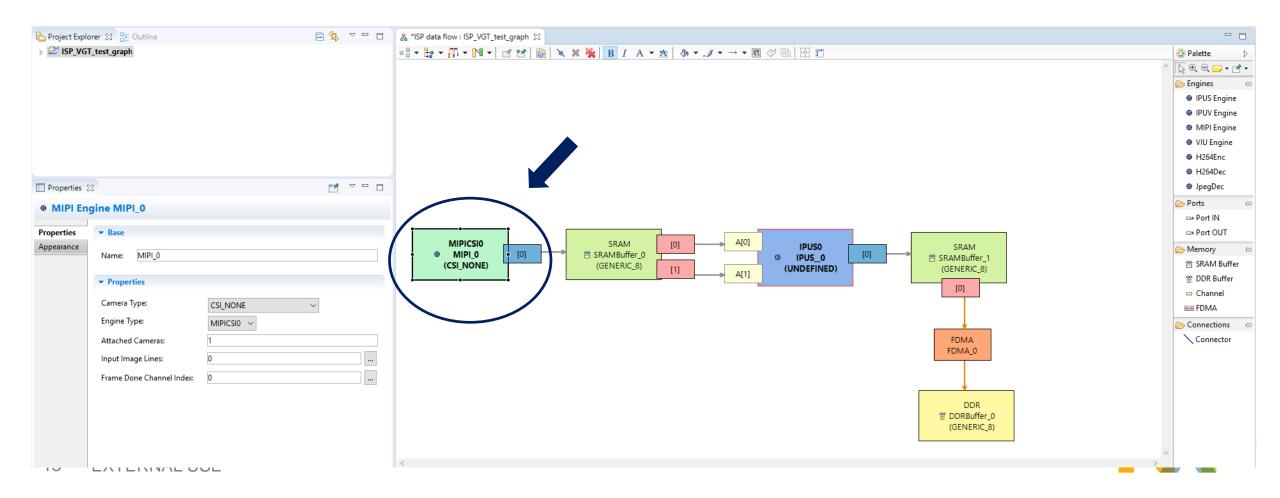

FDMA

FDMA 0

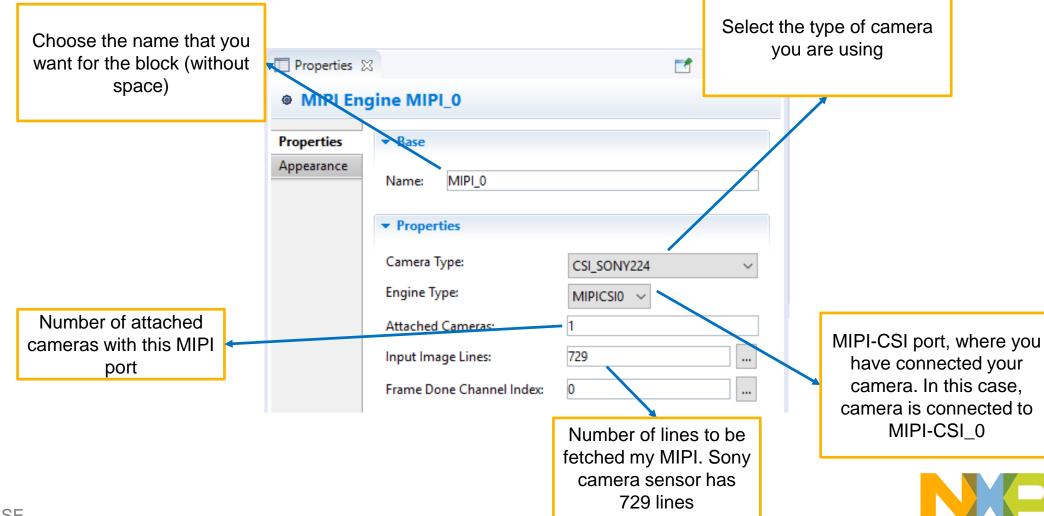
 Connect Output Channel of SRMA Buffer to FDMA and FDMA to DDR Buffer

CONFIGURE THE BLOCKS PROPERTIES

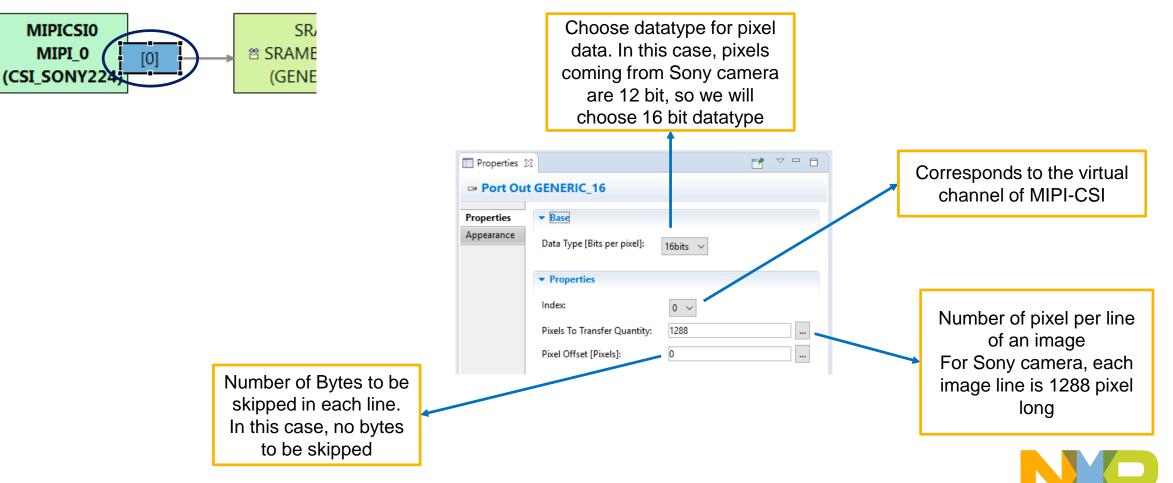
The basic graph is not able to process image unless it is directed. So, we will configure graph blocks to process image information in particular manner



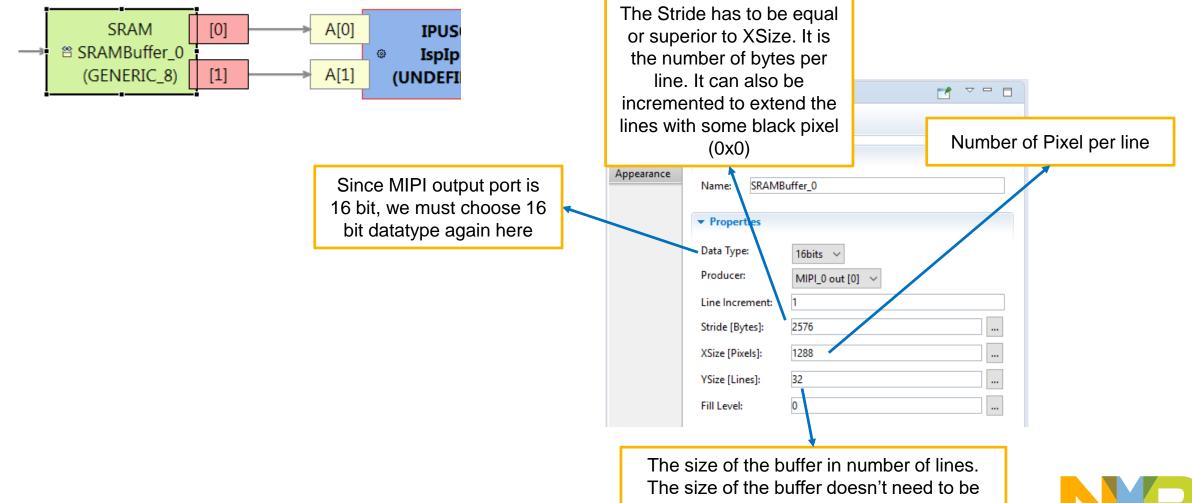
Graph properties


- Click on the white area of the graph and look at the Properties
- Look at (open if not visible) the properties window

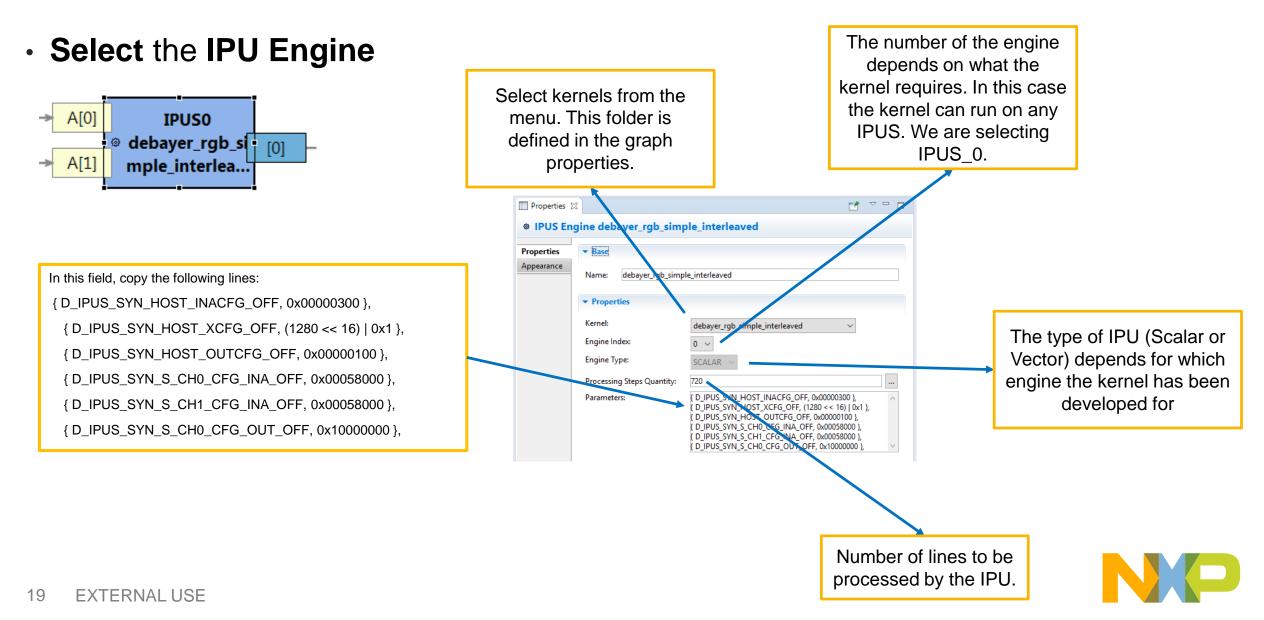
Properties Froperties Rulers & Grid Appearance	P_VGT_test_graph	0 4096 \${\$32DS_V\$DK_DIR}/isp/kernels/generic	Represent the space used in SRAM by the graph. In most cases, it should not go over 1024kB	
	Heart Beat Source: Variables Suffix: Headers		Represents the space in SRA unused by the graph. Althou it covers all 4MBs of SRAM remember that only 1MB is optimized for the ISP usag	igh 1, s
	Defines		Folder containing the ISP kernels (assembly files)	


- Select the MIPI Block
- Again, look at the properties window

• MIPI Block : Configure the properties like follow:


Select the Port OUT of MIPI Engine

۲


4 of 13

Select the SRAM Buffer

The size of the buffer doesn't need to be very big in particular in this case where only one Fast DMA channel will be running

6 of 13

- The description of the registers can be found in the RM
 - The example configurations for different kernels could be found in another graph(s32ds_installation_directory\S32DS\s32v234_sdk\isp\graphs)
- Here is its meaning:

{ D_IPUS_SYN_HOST_INACFG_OFF, 0x00000300 },

=> Enable InA[0] and InA[1] inputs

{ D_IPUS_SYN_HOST_XCFG_OFF, (1280 << 16) | 0x1 },

=> 1280 pixels per lines, pixel processed one at a time (XPOS incremented by 1 with "pixel done" kernel instruction)

{ D_IPUS_SYN_HOST_OUTCFG_OFF, 0x00000100 },

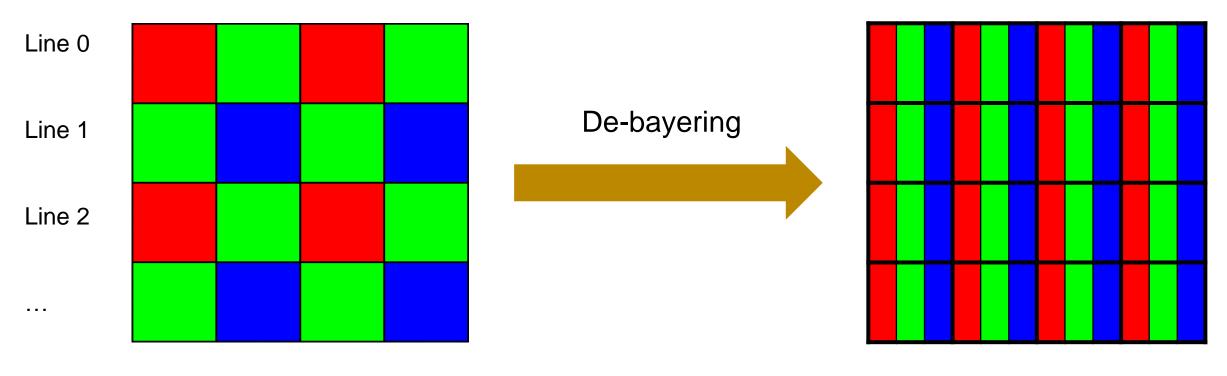
=> Enable OUT[0] output

{ D_IPUS_SYN_S_CH0_CFG_INA_OFF, 0x00058000 },

=> InA[0] configuration: 16 bits, streamed pixel not repeated, every pixels of a lines is used, no added padding on the image border

{ D_IPUS_SYN_S_CH1_CFG_INA_OFF, 0x00058000 },

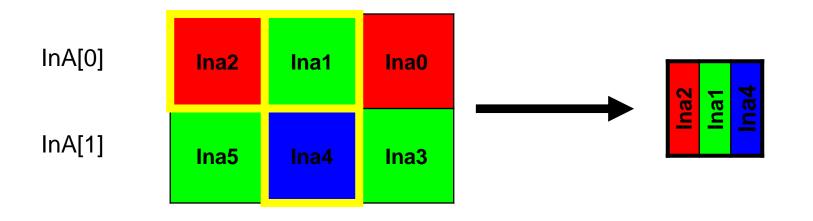
=> InA[1] configuration: 16 bits, streamed pixel not repeated, every pixels of a lines is used, no added padding on the image


border

{ D_IPUS_SYN_S_CH0_CFG_OUT_OFF, 0x10000000 },

=> OUT[0] configuration: 8bits (the frame will be in RGB888: R, G and B will be outputted one per one)

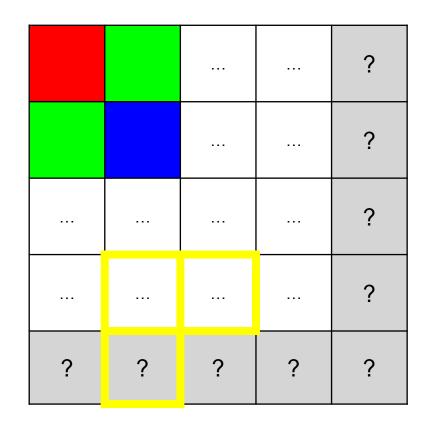
• Debayering is used to get the RGB value



12b raw data

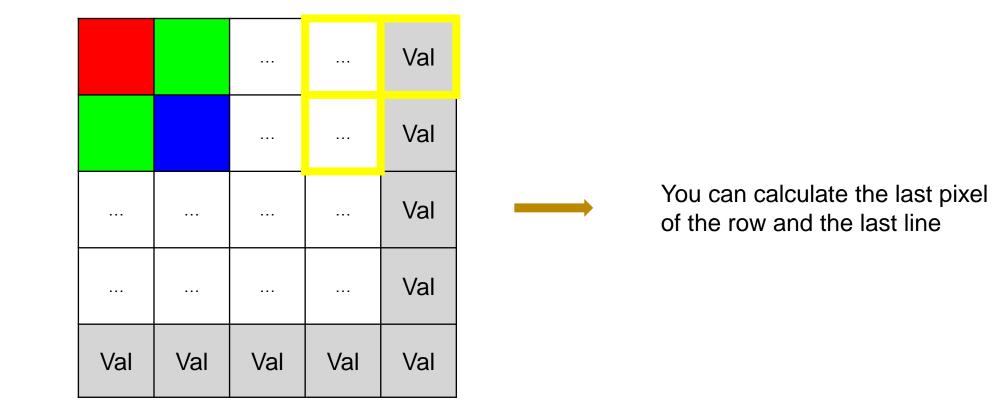
RGB888 (24b data)

 Simple debayering scheme used here is copying neighbouring pixel value to find RGB value of the one pixel

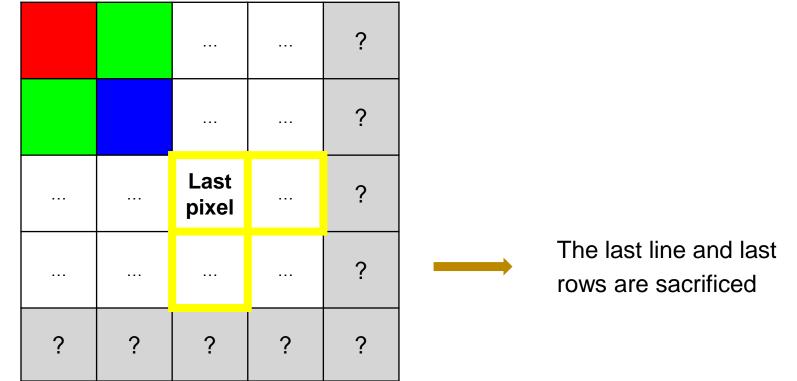


- With this scheme certain questions arise...
 - -What happens when computing the last pixel of a line?
 - -What happens when computing the last line of the frame?

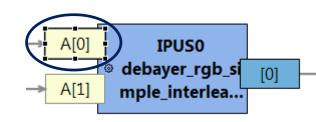
• How to do on the border of the frame:

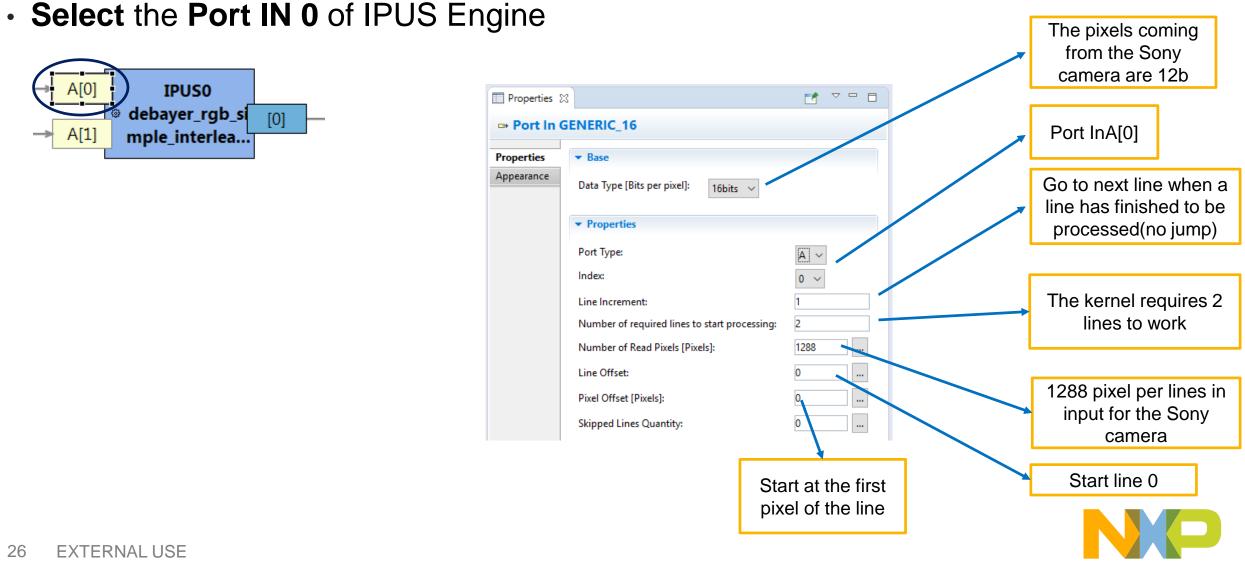

? ? ? ? ? ? ? ? ? You cannot calculate the last pixel of the row and the last line

• Two solutions:

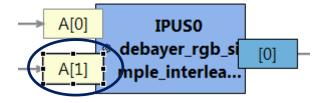

Solution 1: Use the Stream DMA to add lines (configuration in D_IPUS_SYN_S_CHx_CFG_INA_OFF)

• Two solutions:


Solution 2: Not compute the last line and last row, decrease the resolution



In this example the solution 2 is chosen. The Sony camera has some extra lines and columns: 1296x726



8 of 13

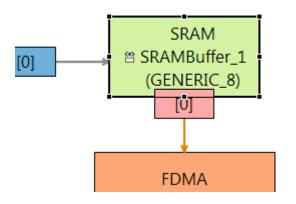
• Select the Port IN 1 of IPUS Engine

⇔ Port In (GENERIC_16			
Properties	▼ Base			
Appearance	Data Type [Bits per pixel]: 16bits 🗸		[
	▼ Properties			Port InA[1]
	Port Type:	Α ~		
	Index:	1 ~		
	Line Increment:	1		
	Number of required lines to start processing:	2		
	Number of Read Pixels [Pixels]:	1288		
	Line Offset:	1		
	Pixel Offset [Pixels]:	0		
	Skipped Lines Quantity:	0		
				InA[1] is used to

InA[1] is used to get the line below: start with line 1

10 of 13

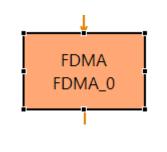
• Select the Port OUT of IPUS Engine



Properties	rt GENERIC_8 ▼ Base	The kernel outputs R, G and B
Appearance	Data Type [Bits per pixel]: 8bits ~	successively to create RGB888
	▼ Properties	pixels
	Index: 0 V	
	Pixels To Transfer Quantity: 3840	
	Pixel Offset [Pixels]: 0	
ima	his configuration we are cropping the ge by ignoring the right column. We add an offset to re-center the cropping	We want the output to be 1280 pixel wide (3x1280=3840)

11 of 13

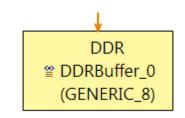
Select the other SRAM Buffer

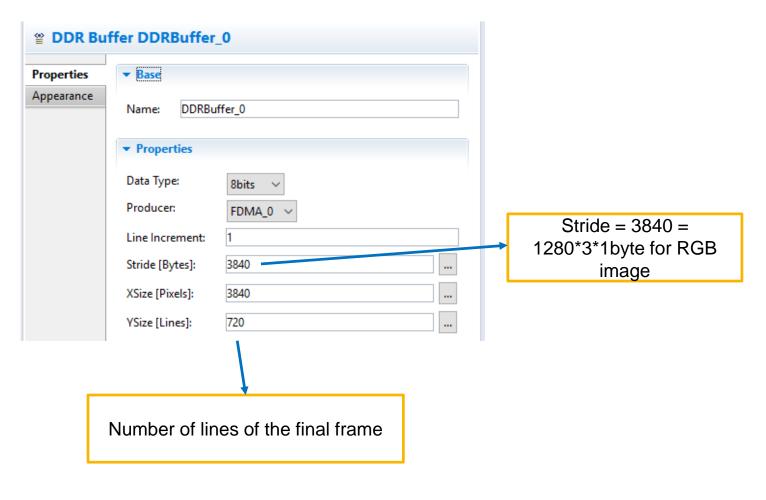

The Stride has to be equal or superior to XSize. It is the number of bytes per line. It can also be incremented to extend the lines with some black pixel (0x0)	Number of Pixel per line
암 SRAM Buffer SRAMBuffer_1	
Properties Appearance Name: SRAMBuffer_1 Properties Data Type: Bbits ~ Producer: debayer_rgk Line Increment: Stride [Bytes]: 3840 XSize [Pixels]: 3840 YSize [Lines]: 16 Fill Level: 0 	o_simple_interleaved out [0] ∨

The size of the buffer in number of lines. The size of the buffer doesn't need to be very big in particular in this case where only one Fast DMA channel will be running

12 of 13

• Select the FDMA (Fast DMA block)

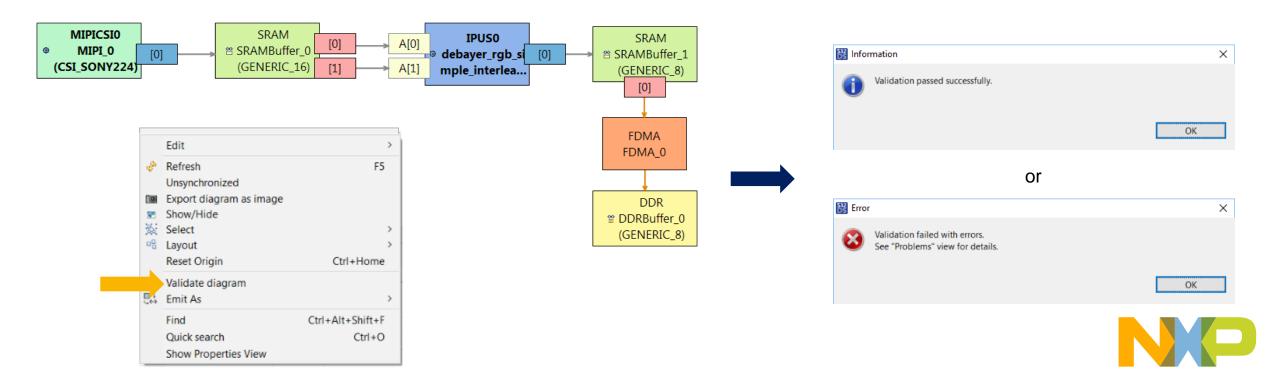



📼 FDMA F	0_AMC		
Properties	▼ Base		
Appearance	Name: FDMA_0		
	- Propeties		
	Line Increment:		1
	Number of required lines t	o start processing:	1
	Line Offset:		0

13 of 13

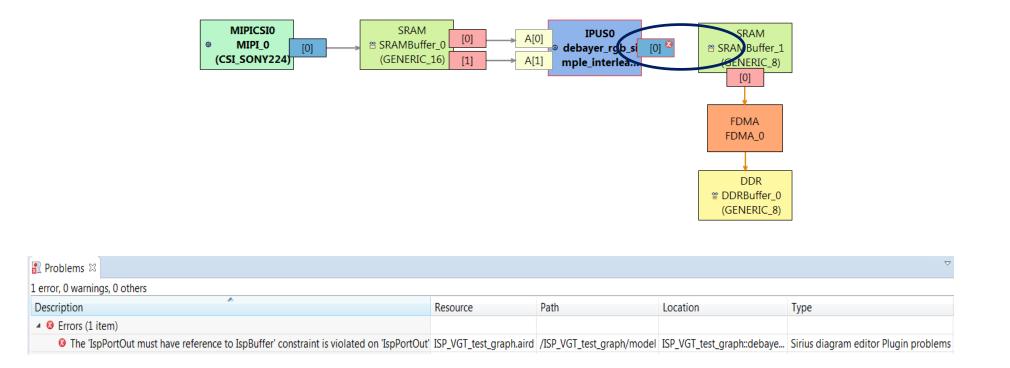
Select the DDR Buffer

ISP graph is now completely READY!


GENERATE SOURCE CODE FROM GRAPH

Once graph is constructed completely, the graph tool allows us to autogenerate source code from it. In this part, we will generate ISP source code for Linux application

Validate graph for correctness


- Save the graph
- Right Click anywhere in the white part of the graph
- Validate graph
 - -You will see a pop-up window showing status of validation.

Validation Error

1 of 2

• Error will be indicated by red cross on the block and description can be seen in the **Problems View**

• Find the root cause of the error(s), correct it and Validate your graph.

Validation Error

• Data type not matching

One 'data_type_must_be_the_same' constraint is violated on '<ISPGraphClass>

>The data type between an input port of the IPU and the SRAM buffer is different

• Name error

O The 'name_has_to_start_with_alphabet_letter' constraint is violated on '

DDR buffer configuration

One 'stride_must_be_multiple_of_32' constraint is violated on

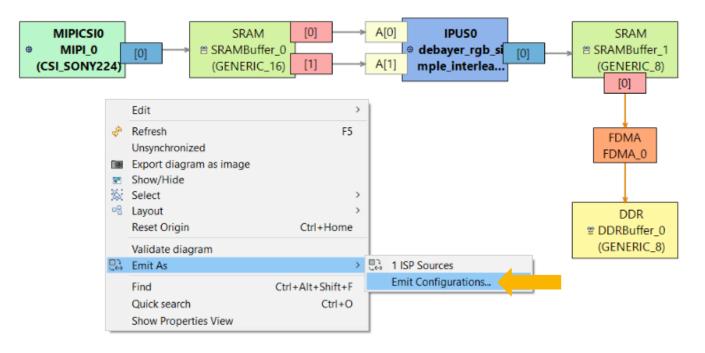
Make a Linux application project without an ISP graph

- Once graph is validated, next step is to generate source code from graph
- We will generate ISP code directly in this Linux application project
- So the next step is:
 - Make a new application project named : ISP_test_application

1. Go to File -> New -> S32DS Application Project

\$32 DS	works	paceS32[OS.3.1 - Vis	ual Graph To	ools - ISP	_test_app	olication/	A53_	src/ma	iin.cpp - S	32 Design Stud	lio	
File	Edit	Source	Refactor	Navigate	Search						VDK Debug	Window	Help
	New					Alt+S	Shift+N >	P			rom Example	Ctrl+Alt-	
	Open						Contract (1)	L.	\$32D	S Applicat	ion Project	GI+Alt+	
٥,	Open	Projects	from File S	ystem				-	3520	- Library I	i i je ti	Ctrl+Alt	+L
	Close						Ctrl+W		 APEX2 Graph Project ISP Dataflow Project APEX2 Kernel Project APEX2 Program Project Project 				
	Close	All				Ctrl+S	hift+W						
	Save						Ctrl+S						
Q.	Save /												
	Save /					Ctrl+	Shift+S	📑 Example					
									Other			Ctrl+	N
1	Move. Renar						F2	Г					
e S	Refres						F2						
_	Conve	rt Line D	elimiters To	0			>	E .					
<u>-</u>	Print						Ctrl+P	Ŀ					
	Switch	Worksp	ace				>						_
	Restar	t						Ŀ.					
è	Impor	t											
2	Expor	t						L .					
	Prope	rties				Alt	t+Enter						
	1 maii	n.cpp [IS	P_test_app	lication/A5	3_src]			Ŀ					
	2 ISP_	VGT_test	graph.aird	[ISP_VGT_	te]								
	3 ISP o	data flow	: ISP_VGT_	test_graph									
	4 maii	n.c [S328	276_K2TV	_Hello_Worl	d/src]								
	Exit												

- 2. Type the **project name**: **ISP_test_application**
- 3. Select **project type** as shown
- 4. Hit Next


reate a S32 Design Studio Project						
New S32DS Application Project						
roject name						
ISP_test_application						
Use default location						
ocation: C:\Users\nxa17459\workspaceS32DS.3	3 1\ISP test appl	ication			Browse	
	sintion_test_appi	leation			DIOWSC	
Processors:	ToolChain Sel	lection:				
	Core Kind	Name	Toolchain			
type filter text	Core Kind	Name	Toolchain			
type filter text Comparison family S32V2	Core Kind A53	Name Cortex-A53	ARM Linux 64-bit	Target Bina	ry Toolci	ha v
71				Target Bina	ry Toolcl	h≀ ∨
✓ ➢ Family S32V2				Target Bina	ry Toolci	hi ∨
 Content Service Context - M4 S32V232 Cortext - M4 S32V232 Cortext - A53 S32V232 Cortext - A53 Linux 	A53 <			Target Bina	ry Toolch	
 Family S32V2 S32V232 Cortex-M4 S32V232 Cortex-A53 S32V232 Cortex-A53 Linux S32V234 Cortex-A53 APEX2/ISP Linux 	A53 < Description:	Cortex-A53	ARM Linux 64-bit			>
 Family S32V2 S32V232 Cortex-M4 S32V232 Cortex-A53 S32V232 Cortex-A53 Linux S32V234 Cortex-A53 APEX2/ISP Linux S32V234 Cortex-A53 	A53 < Description: Linux Cortex	Cortex-A53				
 Family S32V2 S32V232 Cortex-M4 S32V232 Cortex-A53 S32V232 Cortex-A53 Linux S32V234 Cortex-A53 APEX2/ISP Linux 	A53 < Description:	Cortex-A53	ARM Linux 64-bit			>

- Since we are developing separate ISP graph project and not using APEX, deselect unnecessary options as shown
- 3. Hit Finish

	maken far iken	
Select required cores and para	meters for them.	
Project Name	ISP_test_application	
Core	Cortex-A53	
SDKs	VSDK_MODULE_WIN	
Debugger	GDR Remote Linux Debugger	
APEX2 programming		
ISP programming		
ISP visual modeling		

Select the destination of autogenerated source code 1 of 3

- By default all source code will be generated inside the ISP dataflow project itself
- We can reconfigure the destination of source code to any other open projects.
 - -We will use this feature and generate the source code in Linux application project.

1. Select the **Emit Configuration..** option.

Select the destination of autogenerated source code 2 of 3

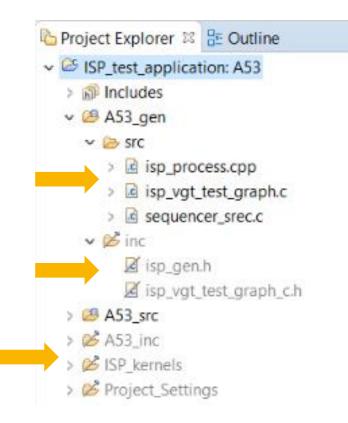
- Define a new configuration and specify where we want to generate our source code.
 - 2. Create new configuration as shown in the picture
 - 3. Click on **Apply** to save the changes

ICommon]: Please use shared configuration. Shared fi	le should be [target_project_name]/.launches
Image: Second system Image: Second system	Name: emit_to_application Image: Main Refresh Common Graph //SP_VGT_test_graph/model/ISP_VGT_test_graph Browse Workspace Output \${workspace_loc:/ISP_test_application} Browse File System Variables Dynamic sequencer sources folder: A53_gen Static sequencer Static sequencer Image: Static sequencer Revert Apply

38 EXTERNAL USE

Select the destination of autogenerated source code

- Edit some more configuration
 - 2. Go to **Common** tab.
 - 3. Select the **\ISP_test_application\.launches** folder under "Shared files" option here.
 - 4. Apply the settings and Hit Emit button to generate a source code at the designated location


-		
type filter text	Name: emit_to_application	n
	Save as O Local file O Shared file: \ISP_test_a	application\.launches <u>B</u> rowse
	Display in favorites menu □ E⇔Emit	Encoding Default - inherited (Cp1252) Other ISO-8859-1
	Standard Input and Output Image: Standard Input and Output Image: Allocate console (necessary Image: Imput File:	for input)
	Workspace	
	<u>W</u> orkspace	File <u>S</u> ystem Variables
	Launch in background	
Filter matched 4 of 4 items		Revert Apply

3 of 3

Emit the source code

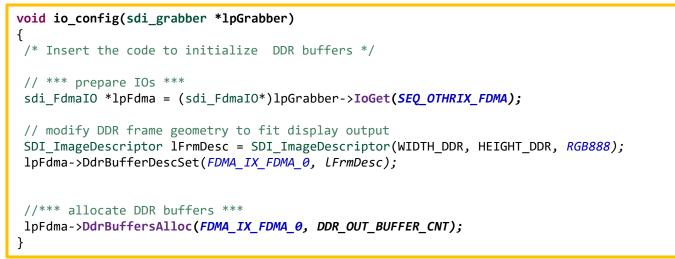
- Auto generated code can be seen inside the project folder
 - -Note: If you can not see source code, please right clock on the project and click on **Refresh** from the menu.

LINUX APPLICATION PROJECT FOR ISP

Now, we have everything to build an application. Let's start building Linux application.

Application Code for ISP

- Basic, auto generated, application code template for ISP can be found in isp_process.cpp in the function ISP_CALL()
- ISP_CALL() inside the **main.cpp** is just a place holder.
- User should move/add/change code inside the isp_process.cpp and main.cpp according to his/her application needs or structure
 - -Note: In this tutorial we will not change default structure as it is not necessary


Application code for ISP : Compile

- We need to make changes & add code into application according to our requirement
 - Our image is RGB888 type and by default DCU is configured to take YCbCr422 format. Hence, modify A53_inc/isp_user_define.h with following...

17 #define DCU_BPP DCU_BPP_24

٠

- 2. Modify main.cpp to define DDR buffers that stores images coming from ISP.
 - Do not forget to add a header file: #include "isp_vgt_test_graph_c.h"

Go to C/C++ perspective and compile the application for A53 core

Execute your ISP_test_application.elf binary on the target!

Connect and Observe

- Do not forget to connect Sony camera to MIPI-A port and HDMI output to display
- Run the application
- You can see camera captures streaming on the screen
 - If no output image is shown and program exits instead of continuous loop, user should check that all settings were correctly entered in the graph diagram blocks

44 EXTERNAL USE

Tips

- Don't forget to <u>save</u> and <u>re-generate</u> the source code when you change your graph
- Emit source code step validates graph first then generates source code. So, graph validation is an optional step.

SECURE CONNECTIONS FOR A SMARTER WORLD