
EXTERNAL USE

TUTORIAL: S32DS ISP VISUAL GRAPH TOOL

S32 DESIGN STUDIO 3.1 or higher

with S32V2xx development package

and Vision extension package for S32V2xx

EXTERNAL USE1

Looking for
Interactive

Tutorial?

• You can view this tutorial as a video under the
VIDEO tab of Getting Started page of S32
Design Studio

WAIT!

EXTERNAL USE2

Prerequisite to the tutorial

• Knowing the S32V234 product

• Have an understanding of the ISP architecture

• Be familiar with the vision SDK software

EXTERNAL USE3

Agenda

• Tutorial Overview

• Make an ISP graph (project)

− Make a basic graph

− Configure graph/block properties

− Generate source code from graph

▪ Validate graph

▪ Generate source code

• Application code for ISP

− Make an application

− Compile

− Run

EXTERNAL USE4

Tutorial Overview:

1. To start with, we will make an ISP graph using ISP Dataflow Project option

− Just to make it simple we will use the ISP kernels available in Vision SDK

▪ Vision SDK provides many built-in Kernels readily available for user development

− Once graph is made we will autogenerate code for ISP engine

2. Moving forward, we will use the code derived above and make a Linux

application project

− This application will integrate ISP code with the host to run together smoothly.

Complete application will take an image from camera, processes it

in ISP and put the processed image in DDR buffers. Once the image

is in DDR buffer, host(A53 core running Linux) will direct the display

control unit(DCU) to display it on screen

NOTE: This example project is identical to built-in example isp_sonyimx224_csi_dcu

EXTERNAL USE5

MAKE A GRAPH
First of all we will simply connect different blocks to make a basic graph

EXTERNAL USE6

Make an ISP Dataflow Project

• We will make a simple graph that does following:

− Grab an image from MIPI-CSI port >> Run Debayer kernel >>

Transfer data to DDR buffer using Fast DMA

• Make a new ISP Dataflow Project named : ISP_VGT_test_graph

EXTERNAL USE7

Make a graph 1 of 6

• From the Palette windows (right side of the S32DS window):

− Camera is connected to MIPI-CSI interface. Hence, we will start our

pipeline from MIPI interface

▪ Select MIPI Engine block

− Image lines fetched from MIPI-CSI will now go to SRAM

▪ Select SRAM Buffer

− Connect both using Connector

EXTERNAL USE8

Make a graph 2 of 6

• Once necessary image lines are in SRAM, IPU(Image Processing

Unit) engine grabs the image data and start processing it

− So we will add IPUS Engine

• We will be using “debayering kernel: that requires 2 images lines

from the SRAM buffer to start processing, so we will add one more

input port

• Add a new input port to it: Port In

EXTERNAL USE9

Make a graph 3 of 6

• For the same reason, add an output Channel to SRAM Buffer

• Connect each SRAM channel with each input port of IPU engine

EXTERNAL USE10

Make a graph 4 of 6

• Now, we will move processed data to SRAM

− Add a new SRAM Buffer

• Connect IPU engine's output port with SRAM Buffer

EXTERNAL USE11

Make a graph 5 of 6

• We will move processed line to DDR buffer via Fast DMA

− Add a new Fast DMA block: FDMA

− Add a new DDR Buffer block

• Connect Output Channel of SRMA Buffer to FDMA

and FDMA to DDR Buffer

EXTERNAL USE12

Make a graph 6 of 6

• This is how your graph should now look like:

The basic ISP

graph is READY!

EXTERNAL USE13

CONFIGURE THE

BLOCKS

PROPERTIES
The basic graph is not able to process image unless it is directed. So,

we will configure graph blocks to process image information in

particular manner

EXTERNAL USE14

Graph properties

• Click on the white area of the graph and look at the Properties

• Look at (open if not visible) the properties window

Folder containing the ISP

kernels (assembly files)

Represents the space in SRAM

unused by the graph. Although

it covers all 4MBs of SRAM,

remember that only 1MB is

optimized for the ISP usage.

Represent the space used

in SRAM by the graph. In

most cases, it should not

go over 1024kB

EXTERNAL USE15

Configure the Blocks Properties 1 of 13

• Select the MIPI Block

• Again, look at the properties window

EXTERNAL USE16

Configure the Blocks Properties 2 of 13

• MIPI Block : Configure the properties like follow:

Choose the name that you

want for the block (without

space)

Select the type of camera

you are using

MIPI-CSI port, where you

have connected your

camera. In this case,

camera is connected to

MIPI-CSI_0Number of lines to be

fetched my MIPI. Sony

camera sensor has

729 lines

Number of attached

cameras with this MIPI

port

EXTERNAL USE17

Configure the Blocks Properties 3 of 13

• Select the Port OUT of MIPI Engine

Choose datatype for pixel

data. In this case, pixels

coming from Sony camera

are 12 bit, so we will

choose 16 bit datatype

Corresponds to the virtual

channel of MIPI-CSI

Number of pixel per line

of an image

For Sony camera, each

image line is 1288 pixel

long

Number of Bytes to be

skipped in each line.

In this case, no bytes

to be skipped

EXTERNAL USE18

Configure the Blocks Properties 4 of 13

• Select the SRAM Buffer
The Stride has to be equal

or superior to XSize. It is

the number of bytes per

line. It can also be

incremented to extend the

lines with some black pixel

(0x0) Number of Pixel per line

The size of the buffer in number of lines.

The size of the buffer doesn’t need to be

very big in particular in this case where only

one Fast DMA channel will be running

Since MIPI output port is

16 bit, we must choose 16

bit datatype again here

EXTERNAL USE19

Configure the Blocks Properties 6 of 13

• Select the IPU Engine The number of the engine

depends on what the

kernel requires. In this case

the kernel can run on any

IPUS. We are selecting

IPUS_0.

The type of IPU (Scalar or

Vector) depends for which

engine the kernel has been

developed for

Select kernels from the

menu. This folder is

defined in the graph

properties.

Number of lines to be

processed by the IPU.

In this field, copy the following lines:

{ D_IPUS_SYN_HOST_INACFG_OFF, 0x00000300 },

{ D_IPUS_SYN_HOST_XCFG_OFF, (1280 << 16) | 0x1 },

{ D_IPUS_SYN_HOST_OUTCFG_OFF, 0x00000100 },

{ D_IPUS_SYN_S_CH0_CFG_INA_OFF, 0x00058000 },

{ D_IPUS_SYN_S_CH1_CFG_INA_OFF, 0x00058000 },

{ D_IPUS_SYN_S_CH0_CFG_OUT_OFF, 0x10000000 },

EXTERNAL USE20

Configure the Blocks Properties 7 of 13

• The description of the registers can be found in the RM

− The example configurations for different kernels could be found in another
graph(s32ds_installation_directory\S32DS\s32v234_sdk\isp\graphs)

• Here is its meaning:

{ D_IPUS_SYN_HOST_INACFG_OFF, 0x00000300 },

=> Enable InA[0] and InA[1] inputs

{ D_IPUS_SYN_HOST_XCFG_OFF, (1280 << 16) | 0x1 },

=> 1280 pixels per lines, pixel processed one at a time (XPOS incremented by 1 with “pixel done” kernel instruction)

{ D_IPUS_SYN_HOST_OUTCFG_OFF, 0x00000100 },

=> Enable OUT[0] output

{ D_IPUS_SYN_S_CH0_CFG_INA_OFF, 0x00058000 },

=> InA[0] configuration: 16 bits, streamed pixel not repeated, every pixels of a lines is used, no added padding on the image
border

{ D_IPUS_SYN_S_CH1_CFG_INA_OFF, 0x00058000 },

=> InA[1] configuration: 16 bits, streamed pixel not repeated, every pixels of a lines is used, no added padding on the image
border

{ D_IPUS_SYN_S_CH0_CFG_OUT_OFF, 0x10000000 },

=> OUT[0] configuration: 8bits (the frame will be in RGB888: R, G and B will be outputted one per one)

EXTERNAL USE21

Explanations of debayer_rgb_simple_interleaved kernel

• Debayering is used to get the RGB value

De-bayering

12b raw data RGB888 (24b data)

Line 0

Line 1

Line 2

…

EXTERNAL USE22

Explanations of debayer_rgb_simple_interleaved kernel

• Simple debayering scheme used here is copying neighbouring pixel value to find

RGB value of the one pixel

• With this scheme certain questions arise…

− What happens when computing the last pixel of a line?

− What happens when computing the last line of the frame?

Ina2 Ina1 Ina0

Ina5 Ina4 Ina3

In
a
2

In
a
1

In
a
4

InA[0]

InA[1]

EXTERNAL USE23

Explanations of debayer_rgb_simple_interleaved kernel

• How to do on the border of the frame:

… … ?

… … ?

… … … … ?

… … … … ?

? ? ? ? ?

You cannot calculate the last pixel of

the row and the last line

… … ?

… … ?

… … … … ?

… … … … ?

? ? ? ? ?

EXTERNAL USE24

Explanations of debayer_rgb_simple_interleaved kernel

• Two solutions:

Solution 1: Use the Stream DMA to add lines (configuration in D_IPUS_SYN_S_CHx_CFG_INA_OFF)

You can calculate the last pixel

of the row and the last line

… … Val

… … Val

… … … … Val

… … … … Val

Val Val Val Val Val

EXTERNAL USE25

Explanations of debayer_rgb_simple_interleaved kernel

• Two solutions:

Solution 2: Not compute the last line and last row, decrease the resolution

In this example the solution 2 is chosen. The Sony camera has some extra lines and columns:
1296x726

… … ?

… … ?

… …
Last

pixel
… ?

… … … … ?

? ? ? ? ?

The last line and last

rows are sacrificed

EXTERNAL USE26

Configure the Blocks Properties 8 of 13

• Select the Port IN 0 of IPUS Engine

Port InA[0]

Go to next line when a

line has finished to be

processed(no jump)

Start line 0

1288 pixel per lines in

input for the Sony

camera

The kernel requires 2

lines to work

Start at the first

pixel of the line

The pixels coming

from the Sony

camera are 12b

EXTERNAL USE27

Configure the Blocks Properties 9 of 13

• Select the Port IN 1 of IPUS Engine

Port InA[1]

InA[1] is used to

get the line

below: start with

line 1

EXTERNAL USE28

Configure the Blocks Properties 10 of 13

• Select the Port OUT of IPUS Engine

The kernel outputs

R, G and B

successively to

create RGB888

pixels

We want the output to

be 1280 pixel wide

(3x1280=3840)

In this configuration we are cropping the

image by ignoring the right column. We

could add an offset to re-center the cropping

EXTERNAL USE29

Configure the Blocks Properties 11 of 13

• Select the other SRAM Buffer The Stride has to be equal

or superior to XSize. It is

the number of bytes per

line. It can also be

incremented to extend the

lines with some black pixel

(0x0) Number of Pixel per line

The size of the buffer in number of lines.

The size of the buffer doesn’t need to be

very big in particular in this case where only

one Fast DMA channel will be running

EXTERNAL USE30

Configure the Blocks Properties 12 of 13

• Select the FDMA (Fast DMA block)

EXTERNAL USE31

Configure the Blocks Properties 13 of 13

• Select the DDR Buffer

Number of lines of the final frame

Stride = 3840 =

1280*3*1byte for RGB

image

ISP graph is now

completely

READY!

EXTERNAL USE32

GENERATE SOURCE

CODE FROM GRAPH
Once graph is constructed completely, the graph tool allows us to

autogenerate source code from it. In this part, we will generate ISP source

code for Linux application

EXTERNAL USE33

Validate graph for correctness

• Save the graph

• Right Click anywhere in the white part of the graph

• Validate graph

− You will see a pop-up window showing status of validation.

or

EXTERNAL USE34

Validation Error 1 of 2

• Error will be indicated by red cross on the block and description can be seen in the Problems View

• Find the root cause of the error(s), correct it and Validate your graph.

EXTERNAL USE35

Validation Error 2 of 2

• Data type not matching

➢The data type between an input port of the IPU and the SRAM buffer is different

• Name error

• DDR buffer configuration

EXTERNAL USE36

Make a Linux application project without an ISP graph

• Once graph is validated, next step is to generate source code from graph

• We will generate ISP code directly in this Linux application project

• So the next step is:

− Make a new application project named : ISP_test_application

1. Go to File –> New –> S32DS Application Project

2. Type the project name:

ISP_test_application

3. Select project type as shown

4. Hit Next

2. Since we are developing separate ISP graph

project and not using APEX, deselect

unnecessary options as shown

3. Hit Finish

EXTERNAL USE37

Select the destination of autogenerated source code 1 of 3

• By default all source code will be generated inside the ISP dataflow project itself

• We can reconfigure the destination of source code to any other open projects.

− We will use this feature and generate the source code in Linux application project.

1. Select the Emit Configuration.. option.

EXTERNAL USE38

Select the destination of autogenerated source code 2 of 3

• Define a new configuration and specify where we want to generate our source

code.
2. Create new configuration as shown in the picture

3. Click on Apply to save the changes

EXTERNAL USE39

Select the destination of autogenerated source code 3 of 3

• Edit some more configuration
2. Go to Common tab.

3. Select the \ISP_test_application\.launches folder under “Shared files” option here.

4. Apply the settings and Hit Emit button to generate a source code at the designated location

EXTERNAL USE40

Emit the source code

• Auto generated code can be seen inside the project folder

− Note: If you can not see source code, please right clock on the project and click on

Refresh from the menu.

EXTERNAL USE41

LINUX APPLICATION

PROJECT FOR ISP
Now, we have everything to build an application.

Let’s start building Linux application.

EXTERNAL USE42

Application Code for ISP

• Basic, auto generated, application code template for ISP can be found in

isp_process.cpp in the function ISP_CALL()

• ISP_CALL() inside the main.cpp is just a place holder.

• User should move/add/change code inside the isp_process.cpp and main.cpp

according to his/her application needs or structure

− Note: In this tutorial we will not change default structure as it is not necessary

EXTERNAL USE43

Application code for ISP : Compile

• We need to make changes & add code into application according to our requirement

1. Our image is RGB888 type and by default DCU is configured to take YCbCr422 format. Hence, modify

A53_inc/isp_user_define.h with following…

2. Modify main.cpp to define DDR buffers that stores images coming from ISP.

▪ Do not forget to add a header file: #include "isp_vgt_test_graph_c.h"

• Go to C/C++ perspective and compile the application for A53 core

void io_config(sdi_grabber *lpGrabber)
{
/* Insert the code to initialize DDR buffers */

// *** prepare IOs ***
sdi_FdmaIO *lpFdma = (sdi_FdmaIO*)lpGrabber->IoGet(SEQ_OTHRIX_FDMA);

// modify DDR frame geometry to fit display output
SDI_ImageDescriptor lFrmDesc = SDI_ImageDescriptor(WIDTH_DDR, HEIGHT_DDR, RGB888);
lpFdma->DdrBufferDescSet(FDMA_IX_FDMA_0, lFrmDesc);

//*** allocate DDR buffers ***
lpFdma->DdrBuffersAlloc(FDMA_IX_FDMA_0, DDR_OUT_BUFFER_CNT);

}

Info: ISP option generates binary for KRAM

EXTERNAL USE44

Application Code for ISP: Run

Execute your ISP_test_application.elf binary on the

target!

Connect and Observe

− Do not forget to connect Sony camera to MIPI-A port

and HDMI output to display

− Run the application

− You can see camera captures streaming on the screen
− If no output image is shown and program exits instead of

continuous loop, user should check that all settings were

correctly entered in the graph diagram blocks

EXTERNAL USE45

Tips

• Don’t forget to save and re-generate the source code when you change your

graph

• Emit source code step validates graph first then generates source code. So, graph

validation is an optional step.

