TUTORIAL: S32DS ISP VISUAL GRAPH TOOL

S32 DESIGN STUDIO 3.1 or higher
with S32V2xx development package

and Vision extension package for S32V2xx

x SECURE CONNECTIONS
FOR A SMARTER WORLD

EXTERNAL USE

WAIT!

Looking for e |
: « You can view this tutorial as a video under the
| N teraCt Ve VIDEO tab of Getting Started page of S32

TUtO r | aI ~ Design Studio

Prerequisite to the tutorial

- Knowing the S32V234 product
- Have an understanding of the ISP architecture
- Be familiar with the vision SDK software

2 EXTERNAL USE

h

P

Agenda

- Tutorial Overview
- Make an ISP graph (project)

- Make a basic graph
- Configure graph/block properties

- Generate source code from graph
= Validate graph
= Generate source code

- Application code for ISP

3

- Make an application
- Compile
- Run

EXTERNAL USE

h

P

Tutorial Overview:

1. To start with, we will make an ISP graph using ISP Dataflow Project option
-Just to make it simple we will use the ISP kernels available in Vision SDK
= Vision SDK provides many built-in Kernels readily available for user development
- Once graph is made we will autogenerate code for ISP engine

2. Moving forward, we will use the code derived above and make a Linux
application project
- This application will integrate ISP code with the host to run together smoothly.

Complete application will take an image from camera, processes it
in ISP and put the processed image in DDR buffers. Once the image
is in DDR buffer, host(A53 core running Linux) will direct the display

control unit(DCU) to display it on screen

4 EXTERNAL USE NOTE: This example project is identical to built-in example isp_sonyimx224 csi_dcu

h

P

MAKE A GRAPH

First of all we will simply connect different blocks to make a basic graph

Make an ISP Dataflow Project

- We will make a simple graph that does following:
- Grab an image from MIPI-CSI port >> Run Debayer kernel >>

Transfer data to DDR buffer using Fast DMA
- Make a new ISP Dataflow Project named : ISP_VGT test

workspaceS32DS.3.1 - C/C++ - isp_sonyims224_csi_deu/AS3_src/main.cpp - 532 Design Studio

File Edit Source Refactor Navigate Search Project Configlools Run Creation VDK Debug Window Help

New
Open File...

2 Open Projects from File System...
Close
Close All

Refresh
Convert Line Delimiters To

t
Switch Workspace
Restart

s Import

ts Export.
Properties
1 maincpp [lisp_sonyimx224_csi_dcur..]
215P data flow : ISP_VGT test_graph
3 ISP data flow : mipi simple [resour.]

AltsShiftsN> = $32D5 Project from Example Cul+AI+E
53205 Application Project Ctri+Alt+A
{ S32DS Library Project Ctrl+AltsL
Ctrl+W Makefile Project with Existing Code
Ctrl+Shift+ W C++ Project
C Project
3 C/C++ Project
) ! Project..

=)

Convert to a C/C++ Project (Adds C/C++ Nature)
Source Folder
(5 Folder

2 (@ Ssourcefile Fe
FS [l Header File by
> File from Template
wisp @ Class
Ciri+N
Fy o o helpH
if(idxHelp < @)
/ print help message even if no help option is |

Alt+Enter printf("%s", helpMsg str);

}

#ifndef _ STANDALONE__
#flush(stdout);
sleep(1);

#endif // ifndef _ STANI

6 EXTERNAL USE

—

Select a wizard

Create an ISP Dataflow project

Wizards:
type filter text

Visual Graph Tools
L£ APEX2 Graph Project
L8 APEX2 Kemel Project

@
2

Cancel

Mew ISP Data Flow Project O

Create a new ISP Data Flow project

Create a new ISP Data Flow project

srject W57V e D

Use default location

n.2018.R1\ISP_VGT testgr ows

Working sets

[C] Add project ta working sets Ne

&

Use default target project

[Static Sequencer

o |t Cmm D e

graph

[24 Project Explorer i | 52 Outline

‘ 4 2T ISP VGT test_graph
57 ISP data flow : ISP_VGT_test_graph

+ = model

h

P

Make a graph

- From the Palette windows (right side of the S32DS window):
- Camera is connected to MIPI-CSI interface. Hence, we will start our

-

pipeline from MIPI interface
= Select MIPI Engine block

-Image lines fetched from MIPI-CSI will now go to SRAM

= Select SRAM Buffer

- Connect both using Connector

EXTERNAL USE

&

MIPICSIO
MIPI_O
(CSI_NONE)

[0

SRAM

| & SRAMBuffer 0

(GENERIC_8)

[0]

.2 Pal [+
1 0of 6 [thc.-

= Engines 0
@ IPUS Engine
@ IPUV Engine
‘ @ MIPI Engine
& VIU Engine
& H264Enc
® H264Dec
2 JpegDec
(= Ports 0
= Port [N
= Port OUT

(= Memory 40

- £ SRAM Buffer

2 DDR Buffer
= Channel

= EDMA

(= Connections <

)|\ Connector

\r
4\

Make a graph

- Once necessary image lines are in SRAM, IPU(Image Processing
Unit) engine grabs the image data and start processing it

- We will be using “debayering kernel: that requires 2 images lines

- So we will add IPUS Engine

A[0] 0]

IPUS0
@ Isplpu
(UNDEFINED)

2 of 6
)

from the SRAM buffer to start processing, so we will add one more

Input port

- Add a new input port to it: Port In

8

EXTERNAL USE

A[0] |

A[1]

IPUSO
& Isplpu
(UNDEFINED)

[0]

.« Palette I
heeaD--
= Engines 0
@ IPUS Engine
@ IPUV Engine
& MIPI Engine
& VIU Engine
& H264Enc
® H264Dec
2 JpegDec
(= Ports 0
= Port [N
= Port OUT
= Memory 0
& SRAM Buffer
£ DDR Buffer
= Channel

= EDMA

(= Connections <

AN Connector

h
P

Make a graph

- For the same reason, add an output Channel to SRAM Buffer

MIPICSIO
@ MIPLO
(CSI_NONE)

[0]

-

SRAM

SRAMBuffer_0 L

(GENERIC_8)

30f6

- Connect each SRAM channel with each input port of IPU engine

9

MIPICSIO
@ MIPLO
(CSI_NONE)

[0]

EXTERNAL USE

-

SRAM

SRAMBuffer_0 L

(GENERIC_8)

R IPUSO
Al0]

1@ IPUSLO
ALl ' (UNDEFINED)

L A

[0]

—

—

.« Palette I
=
= Engines 0
@ IPUS Engine
@ IPUV Engine
& MIPI Engine
& VIU Engine
& H264Enc
® H264Dec
2 JpegDec
(= Ports @0
= Port [N
= Port OUT
= Memory 0
& SRAM Buffer
£ DDR Buffer
= Channel

= FDMA

(= Connections <

AN Connector

\r
4\

Make a graph 40f 6 oasse

= Engines 0
Now, we will move processed data to SRAM e
- Add a new SRAM Buffer 0] @ MIPI Engine
SRAM 2 VIU Engine
= SRAMBuffer_1 & H264Enc
(GENERIC_8) ® Ho64Dec
2 JpegDec
(= Ports 4
= Port IN
- Connect IPU engine's output port with SRAM Buffer = Port OUT
(= Memory 40
B © SRAM Buffer
MIPICSIO SRAM | — B IPUSO SRAM £ DDR Buffer
@ MIPLO [0] »{ & SRAMBuffer_0 L = L AT I IPUS_0 [0] > & SRAMBuffer_1 ‘ = Channel
(CSLNONE)] (GENERIC_8) | 1] * A1l | (UNDEFINED) (GENERIC_8) == FDMA

| [0]

(= Connections <

)|\ Connector

A 4
10 EXTERNAL USE ‘ k

Make a graph 50f 6 fago
= Engines 4

- We will move processed line to DDR buffer via Fast DMA ® IPUS Engine

@ IPUV Engine
- Add a new Fast DMA block: FDMA ® MIPI Engine
& VIU Engine
& H264Enc
® H264Dec
JpegDec
- Add a new DDR Buffer block & Ports @
= Port [N
DDR = Port OUT

2 DDRBuffer_0 = Memory 0
(GENERIC_8)

FDMA
FDMA_O

& SRAM Buffer

£ DDR Buffer
= Channel
- Connect Output Channel of SRMA Buffer to FDMA 5 = FDMA

(= Connections <

and FDMA to DDR Buffer SN ENp—

\r
4\

11 EXTERNAL USE

Make a g

raph

- This is how your graph should now look like:

&

MIPICSIO
MIPI_O
(CSI_NONE)

[0]

The basic ISP

graph is READY!

SRAM

o # SRAMBuffer_0 L

(GENERIC_8)

|
IPUSO
0 A0
& H.‘@ IPUS_0
[1] All] \ (UNDEFINED)
[

[0]

6 of 6

X

SRAM
= SRAMBuffer_1
(GENERIC_8)

[0]

FDMA
FDMA_O

DDR
2 DDRBuffer 0
(GENERIC_8)

h

P

CONFIGURE THE
BLOCKS
PROPERTIES

The basic graph is not able to process image unless it is directed. So,
we will configure graph blocks to process image information in

partiCUIar — m

Graph properties

- Click on the white area of the graph and look at the Properties
- Look at (open if not visible) the properties window

E Properties &3

= v =
||

B8
Graph ISP_VGT _test_graph Represent the space used
in SRAM by the graph. In
S / most cases, it should not
Appearance KBytes Used: 4 gO over 1024kB

KBytes Free: 4096
Kernels Root Directory: 5{532DS_VSDK_DIR} isp/kernels/generic| | ..

—— : Represents the space in SRAM
unused by the graph. Although
Headers it covers all 4MBs of SRAM,
& remember that only 1MB is

optimized for the ISP usage.

— Folder containing the ISP
kernels (assembly files)

h

14 EXTERNAL USE

P

Configure the Blocks Properties

- Select the MIPI Block
- Again, look at the properties window

1 of 13

[Project Explorer 53 Qutline EE Y= 0 & ISP data flow : ISP_VGT _test_graph 32 = O
1! ISP_VGT_test_graph si-fa-Mi-M- | B X% BT A% S s~ | b
J - -
(= Engines ks
@ IPUS Engine
@ IPUV Engine
& MIPI Engine
@ VIU Engine
@ H264Enc
@ H264Dec
[Properties &3 - = @ JpegDec
s = Port:
@ MIPI Engine MIPI_0 & Ports ®
= Port IN
Properties ~ Base = Port OUT
Appearance MIPICSIO SRAM SRAM — M o
Name: [MIPLO @ MIPLO £ SRAMBUffer_0 e i ey
— - i
(CSI_NONE) (GENERIC_8) (UNDEFINED) (GENERIC_8) & SRAM Buffer
~ Properties |—|D “ DDR Buffer
[]J = Channel
Camera Type: CSI_NONE “ == FDMA
Engine Type: MIPICSID (= Connections <
Attached Cameras: 1 FDMA ™\, Connector
FDMA_D
Input Image Lines: 0
Frame Done Channel Index: 0
DDR
“ DDRBuffer_0
(GENERIC_8)

ER /N 1 LININMN\L. U UL

Configure the Blocks Properties 2 of 13

- MIPI Block : Configure the properties like follow:

Select the type of camera

Choose the name that you you are using

want for the block (without Properties &7 #
space) .
& Engine MIPI_O
Properties
Appearance
Mame: MIPL_D
+ Properties
Camera Type: CSI_SONY224 v
Engine Type: MIPICSIO
Number of attached Attached Cameras: 1
cameras with this MIPl <« T — MIPI-CSI port, where you
port npHtimage Hnes ' have connected your
Frame Done Channel Index 1] \ camera. In this case,
camera is connected to
Number of lines to be MIPI-CSI_O

fetched my MIPI. Sony
camera sensor has

729 lines } {

16 EXTERNAL USE

Configure the Blocks Properties 3 of 13

- Select the Port OUT of MIPI Engine

MIPICSIO SR Choose datatype for pixel
@ MIPI 0 0] \ .| # SRAME data. In this case, pixels
(CSI_SONY2 (GENE coming from Sony camera

are 12 bit, so we will
choose 16 bit datatype

a
] Properties &3 4 ¥ = 0 H
i Corresponds to the virtual
= Port Out GENERIC_16 channel of MIPI-CSI
Properties ~ Hase

Appearance))
Data Type [Bits per pixel]: 16bits
* Properties

Index: 0 ~

_ _ Number of pixel per line
Pixels To Transfer Quantity: 1288 .

D \ of an image

For Sony camera, each

Pinel Offset [Pixels]:
Number of Bytes to be image line is 1288 pixel
skipped in each line. long

In this case, no bytes
to be skipped ‘ '
4\

17 EXTERNAL USE

Configure the Blocks Properties

- Select the SRAM Buffer

SRAM
—n 8 SRAMBuffer 0
(GENERIC_8)

AL0]

~F

Al1]

18 EXTERNAL USE

&

IPUS!

Isplp
(UNDEFI

Since MIPI output port is

16 bit, we must choose 16
bit datatype again here

The Stride has to be equal
or superior to XSize. Itis
the number of bytes per

line. It can also be
incremented to extend the
lines with some black pixel
(0x0)

Appearance
SEAMBuffer_0

16bits ~

Producer:
Line Increment: 1

Stride [Bytes]: 2576
XSize [Pixels]: 1288

YSize [Lines]: 32

Fill Level: D\

MIPI_O out [0]

4 of 13

Number of Pixel per line

The size of the buffer in number of lines.

The size of the buffer doesn’t need to be
very big in particular in this case where only

h
P

one Fast DMA channel will be running

Configure the Blocks Properties 6 of 13

. Select the |IPU Engine The number of the engine

depends on what the

Select kernels from the kernel requires. In this case

= A[0] I IPUSO menu. This folder is the kernel can run on.any
@ debayer_rgb_si® o] | defined in the graph IPUS. VIVPeUaSre gelectlng
= A[ll|| mple_interlea... properties. Y-

[Properties 53

@ |IPUS Engine debNyer_rgb_simple_interleaved

Properties - fid
Appearance
MName: debayer_Nb_simple_interleaved

In this field, copy the following lines:

{D_IPUS_SYN_HOST_INACFG_OFF, 0x00000300 }, ~ Properties
D_IPUS_SYN_HOST_XCFG_OFF, (1280 << 16) | Ox1}, remet debayer rgh pnple inteiesved v
{D_IPUS_SYN_HOST_XCFG_OFF, ()10x1} Engine ndee — The type of IPU (Scalar or
{D_IPUS_SYN_HOST_OUTCFG_OFF, 0x00000100 }, Engine Types i | Vector) depends for which
{ D_IPUS_SYN_S_CHO_CFG_INA_OFF, 0x00058000 }, ocessing Steps Quantity: 720 T engine the kernel haS been
{D_IPUS_SYN_S_CH1_CFG_INA_OFF, 0x00058000 }, perameters | DIPUS-SYMQST HCFG, OFF (280 < 18 01 1 developed for
1 D_IPUS_SYN_H QUTCFG_OFF, 000000100 },
{D_IPUS_SYN_S_CH0_CFG_OUT_OFF, 0x10000000}, e

1 D_IPUS_5YM S_CHD_CFG:O FF, 010000000 },

Number of lines to be
processed by the IPU.

h
P

19 EXTERNAL USE

Configure the Blocks Properties 7/ of 13

- The description of the registers can be found in the RM

- The example configurations for different kernels could be found in another
graph(s32ds_installation_directory\S32DS\s32v234 sdk\isp\graphs)

- Here is its meaning:

{D_IPUS_SYN_HOST_INACFG_OFF, 0x00000300 },
=> Enable InA[0] and InA[1] inputs
{D_IPUS_SYN_HOST_ XCFG_OFF, (1280 << 16) | 0x1 },
=> 1280 pixels per lines, pixel processed one at a time (XPOS incremented by 1 with “pixel done” kernel instruction)
{D_IPUS SYN_ HOST OUTCFG_OFF, 0x00000100 },
=> Enable OUT[0] output
{D_IPUS SYN_S CHO_CFG_INA_OFF, 0x00058000 },

bord => InA[0] configuration: 16 bits, streamed pixel not repeated, every pixels of alines is used, no added padding on the image
order

{D_IPUS_SYN_S_CH1 CFG_INA_OFF, 0x00058000 },

=> InA[1] configuration: 16 bits, streamed pixel not repeated, every pixels of alines is used, no added padding on the image
border

{D_IPUS_SYN_S CHO_CFG_OUT_OFF, 0x10000000 },
=> OUT[0] configuration: 8bits (the frame will be in RGB888: R, G and B will be outputted one per one)

h
P

20 EXTERNAL USE

Explanations of debayer rgb simple interleaved kernel

- Debayering is used to get the RGB value

Line O

De-bayering

E——)

Line 1

Line 2

12b raw data RGB888 (24b data)

21 EXTERNAL USE x

Explanations of debayer rgb simple interleaved kernel

- Simple debayering scheme used here is copying neighbouring pixel value to find
RGB value of the one pixel

' .

- With this scheme certain questions arise...
-What happens when computing the last pixel of a line?
-What happens when computing the last line of the frame?

h

22 EXTERNAL USE

P

Explanations of debayer rgb simple interleaved kernel

- How to do on the border of the frame: —) You cannot calculate the last pixel of
the row and the last line

? ?
? ?
? ? ? ? ? ? ? ? ‘ ? ?

PR 4
23 EXTERNAL USE ‘

Explanations of debayer rgb simple interleaved kernel

- Two solutions:

Solution 1: Use the Stream DMA to add lines (configuration in D_IPUS_SYN_S_CHx_CFG_INA_OFF)

Val

Val

Val

Val

Val

Val

Val

Val

Val

24 EXTERNAL USE

>

You can calculate the last pixel
of the row and the last line

Explanations of debayer rgb simple interleaved kernel

- Two solutions:

Solution 2: Not compute the last line and last row, decrease the resolution

?

?

?

?
L_ast 5
pixel

?

?

?‘?

In this example the solution 2 is chosen. The Sony camera has some extra lines and columns:

1296x726

25 EXTERNAL USE

—

The last line and last
rows are sacrificed

h

P

Configure the Blocks Properties 8 of 13

- Select the Port IN O of IPUS Engine

The pixels coming
from the Sony
camera are 12b

Al0] IPUSO

debayer rgb_si o | -
— All]l | mple_interlea...
|

] Properties &2

= Port In GENERIC_16

Port InA[O]

Properties - Base

Appearance

Data Type [Bits per pixel]: 16bits GO to next I|ne When a

line has finished to be

- Properties

processed(no jump)
Port Type: A “
Index o
Line Increment: 1 N The kernel reql.“res 2
Mumber of required lines to start processing: 2 : lines to work

Mumber of Read Pixels [Pixels]: 1288 ,
Line Offset:
Piel Offset [Phcelsl: 1288 pixel per lines in

Skipped Lines Quantity: InpUt for the Sony

camera
Start at the first Start line O
pixel of the line ‘ '

26 EXTERNAL USE ‘ k

Configure the Blocks Properties

- Select the Port IN 1 of IPUS Engine

27

EXTERNAL USE

= Port In GENERIC_16

]

Properties

Appearance

- Base

Data Type [Bits per pixel]:

= Properties
Port Type:
Index:

Line Increment:

Mumber of required lines to start processing:

MNumber of Read Pixels [Pixels]:
Line Offset:
Pixel Offcet [Pixels]:

Skipped Lines Cuantity:

O of 13

Port InA[1]

lliy
\

N
|
o]
I

p—

INA[1] is used to
get the line
below: start with
line 1

NX

Configure the Blocks Properties 10 of 13

- Select the Port OUT of IPUS Engine

— A[0] IPUSO
e debayer_rghé 0 i)
— A[1] '

mple_interlea’s——
| = Port Out GENERIC_8

The kernel outputs

Properties | v Has8 R,GandB
Appearance Data Type [Bits per pixel]: Bhits ~ — SucceSSIVer to
create RGB838
- Properties pixe|S
Indesx: 0 w

Pixels To Transfer Quantity: 3840

Pixel Offset [Pixels]: 0
In this configuration we are cropping the We want the output to
image by ignoring the right column. We be 1280 pixel wide
could add an offset to re-center the cropping (3x1280=3840)

\r

28 EXTERNAL USE ‘ k

Configure the Blocks Properties 11 of 13

- Select the other SRAM Buffer The Stride has to be equal

or superior to XSize. Itis
the number of bytes per
line. It can also be

SRAM incremented to extend the
[0] s & SRAMBuffer_1 lines with some black pixel _ _
. (GENERIC_8) (0x0) Number of Pixel per line

MBuffer_1

[U] = SRAM Buffer

Properties = Base

L

Appearance

Mame SRAMBuUffer_1

FDMA

+ Propertie:

Data Type: Bbite ~

Producer, debayer_rgb_simple jiterleaved out [0]
Line Increment:
Stride [Bytes]: 3340
KSize [Piels]: 3340

Y¥Size [Lines]: 16

Fill Level: D\

The size of the buffer in number of lines.
The size of the buffer doesn’t need to be
29 EXTERNAL USE very big in particular in this case wherg only
one Fast DMA channel will be running

h
P

Configure the Blocks Properties

- Select the FDMA (Fast DMA block)

30

!

FDMA
FDMA_O

EXTERNAL USE

= FDMA FDMA_0

Properties ~ Base

Appearance | ... FDMAO

- Propeties

Line Increment:

Mumber of required lines to start processing:

Line Offset:

1

0

12 of 13

Configure the Blocks Properties 13 of 13

- Select the DDR Buffer

¥ DDR Buffer DDRBuffer_0

: Properties ~ Hase
DDR Appearance
= DDRBUﬁEI’_G Mame: DDRBuffer_ 0

(GENERIC_8)

+ Properties

Data Type: Shits
Producer: FOMA D ~ d
Line Increment: 1 N Sirl *e =3840 =
» 1280*3*1byte for RGB
Stride [Bytes]: 3240 — image
XSize [Pixels]: 3240
YSize [Lines]: 720

\

Number of lines of the final frame

ISP graph is now
completely

READY!

h
P

GENERATE SOURCE
CODE FROM GRAPH

Once graph is constructed completely, the graph tool allows us to
autogenerate source code from it. In this part, we will generate ISP source

code for Linux application

Validate graph for correctness

- Save the graph

- Right Click anywhere in the white part of the graph

- Validate graph
-You will see a pop-up window showing status of validation.

MIPICSIO
@ MIPL O
(CSI_SONY224)

[0]

i

SRAM

= SRAMBuffer 0

| |
L0 | A0

Edit

<" Refresh

Unsynchronized

Export diagram as image
Show/Hide

Select

93 Layout

Reset Origin

Validate diagram

ws Emit As

Find
Quick search
Show Properties View

F5

Ctrl+Home

Ctrl+Alt+Shift+F
Cirl+0

>
¥

>

yer rgh o 01
bayer rgb_s
(GENERIC 16) | [1] |—— A[1] | mple_interlea..
L

SRAM
= SRAMBuffer_1
(GENERIC_8)
1

0]

FDMA
FDMA_O

1

DDR
2 DDRBuffer 0
(GENERIC_8)

@ Information X

'0 Validation passed successfully.

or
@ Err *
Validation failed with errors,
¥ See “Problems” view for details.

Validation Error 1 of 2

- Error will be indicated by red cross on the block and description can be seen in the Problems View

T pans
MIPICSIO SRAM
m & sRAMBuffer.0 L0 |— ALl
(CSI_SONY224) {GENERlc_16)| 1] }—>| Al

RAM
= SRANBuffer_1
NERIC_8)
1|

[0

FDMA
FDMA_O

1

DDR
= DDRBuffer_0
(GENERIC_8)

i Problems &
1 error, 0 warnings, 0 others
Description Resource Path Location Type
4 @ Errors (1 item)
@ The 'IspPortOut must have reference to IspBuffer' constraint is violated on TspPortOut’ ISP_VGT_test_graph.aird /ISP_VGT_test_graph/model ISP_VGT_test_graph:debaye.. Sirius diagram editor Plugin problems

- Find the root cause of the error(s), correct it and Validate your graph.

34 EXTERNAL USE

h
P

Validation Error 2 of 2

- Data type not matching

@ The 'data_type _must_be the same' constraintis violated on'<ISPGraphClass=

»The data type between an input port of the IPU and the SRAM buffer is different

« Name error

@ The 'name_has_to_start_with_alphabet_letter' constraintis violated on’

- DDR buffer configuration

@ The 'stride_must_be multiple_of 32' constraint is violated on

h

35 EXTERNAL USE

P

Make a Linux application project without an ISP graph

- So the next step is:

- Make a new application project named : ISP_test_application

1. Goto File —> New —> S32DS Application Project

2. Type the project name:
ISP_test_application

3. Select project type as shown

4. Hit Next

Once graph is validated, next step is to generate source code from graph
We will generate ISP code directly in this Linux application project

2. Since we are developing separate ISP graph

project and not using APEX, deselect
unnecessary options as shown

3. Hit Finish

workspace53205.3.1 - Visual Graph Tools - 15P_test_application/A33_src/main.cpp - 532 Design Studio

File Edit Source Refactor Navigate Search Project ConfigTools Run Creation VDK Debug Window Help

New Alt+Shift+N > = e @ple Ctrl+Al+E
Open File... .” 532DS Application Project LYI+AIt+A
» Open Projects from File System... = - Ctri+Alt+L §
Close ctrlsw T& APEX2 Graph Project
Clase All Cirl+Shift+W :l*_f ISP Dataflow Project
o (i APEX2 Kemel Project
iz Crri+s {# APEX2 Program Project
L s ™ Project.
Save A Ctrl+Shift+S
= Example..
1 Other... Ctrl+N
Rename.. F
Refresh Fs
Convert Line Delimiters To >
= Print.. Ctrl+P
Switch Workspace >
Restart
x Import..
i3 Export..
Properties Alt+Enter

1 maincpp [ISP_test_application/A53_src]
2 ISP_VGT_test_graph.aird [ISP_VGT_te..]

3 ISP data flow : ISP_YGT_test_graph

4 main.c [532K276_K2TV_Hello_World/src]

Exit

532D5 Application Project

Create a 532 Design Studio Project
New 53205 Application Project

Prai

| ISP_test_application)

Use default location

sers\nxa17459\workspace532D5.3.1\I5P_test_application

Processors: ToolChain Selection:
type filter text Core Kind Name Toolchain
v (= Family $32v2 AS3 Cortex-A53 ARM Linux 64-bit Target Binary Toolch: ~

B 532v232 Cortex-M4
S32v232 Cortex-AS3

<
B $32V232 Cortex-AS3 Linux Dewroton
B S32V234 Cortex-AS3 APEX2/ISP Linux | — oo
B 532234 Cortex-A53 Linux Cortex-A53 project with APEX2/1SP support for GCC 63
B 532v234 Cortex-A53 Linux toolchain
B 532v234 Cortex-M4
s
o e D

>

532DS Application Project m]
New S$32DS Project for $32V234 Cortex-A53 APEX2/ISP Linux

Select required cores and parameters for them.

Project Name ISP_test_application

Core Cortex-A53

SDKs VSDK_MODULE_WIN

Debugger emote Linux Debugger

APEXZ programming

ISP programming

ISP visual modeling

@ < Back Next > 1P Cancel

Select the destination of autogenerated source code 1 of 3

- By default all source code will be generated inside the ISP dataflow project itself

- We can reconfigure the destination of source code to any other open projects.
-We will use this feature and generate the source code in Linux application project.

1. Select the Emit Configuration.. option.

MIPICSI0 s | (0] Al | 1puso SRAM
@ MIPIL_O (0] # SRAMBuffer_0 = debayer_rgb_ 0] # SRAMBuffer_1
(CSI_SONY224) (GENERIC_16) ATl mple_interlea... (GENERIC_8)
' [0]
Edit >
< Refresh F5 FDMA
Unsynchronized FDMA_O
[Export diagram as image
¥ Show/Hide
B Select
595 Layout » DDR
Reset Origin Ctrl+Home = DDRBuffer 0
validate diagram (GENERIC_8)
O Emit As » 5% 11SP Sources
Find Ctrl+Alt+ Shift +F Emit Configurations...
Quick search Cirl+0

Show Properties View

h

37 EXTERNAL USE

P

Select the destination of autogenerated source code 20f 3

- Define a new configuration and specify where we want to generate our source
code.

2. Create new configuration as shown in the picture

3. Click on Apply to save the changes

[Emit Configurations X ‘
Create, manage, and run configurations I:l Rt
a [Commaon]: Please use shared configuration. Shared file should be [target_project_name]/launches l"—}<"°)
UEX| B3~ MName: - emit_to_application
type filter text B, Main < Refresh| B Common
| .
wes APEX2 Emitter Graph

«~ B3 ISP Emitter
B2 1P sources ISP_VGT_test_graph#ISP_VGT_ o0 ig o
52 New_configuration Output

JISP_VGT _test_graph/model/ISP_VGT_test_graph| Browse Workspace...

$iworkspace_loc/ISP_test_application}

Browse Workspace..) Browse File System... Variables...

Dynamic sequencer sources folder: | AS53 gen

Static sequencer sources folder: |
[ZIEmit host codd
(] Static sequencer

Filter matched 4 of 4 items oo

.\'_} Emit Close

h

38 EXTERNAL USE

P

Select the destination of autogenerated source code

- Edit some more configuration

2. Goto Common tab.
3. Select the \ISP_test_application\.launches folder under “Shared files” option here.

4. Apply the settings and Hit Emit button to generate a source code at the designated location

39

EXTERNAL USE

W Emit Configurations

Create, manage, and run configurations

Create a configuration to emit ISP sources

=X|E 3
type filter text
24 APEX2 Emitter
~ B ISP Emitter
23 emit_to_application
75 ISP sources ISP_VGT _test_graph#ISP_\

Filter matched 4 of 4 items

| Name: | emit_to_application

»h [Common

Save as
O Local file
® Sﬂ e \ISP_test_application\launches Browse...
Display in favorites menu Encoding
153 Emit (®) Default - inherited (Cp1252)

() Other | 1SO-8859-1

Standard Input and Output

[Allocate console (necessary for input)

[JInput File:
Workspace.. File System... Variables...
] Qutput File:
Workspace... File System... Variables...
Append

Launch in background

feert

30f3

Emit the source code

- Auto generated code can be seen inside the project folder

- Note: If you can not see source code, please right clock on the project and click on
Refresh from the menu.

I(5 Project Explorer 2 g= Outline
v £ |SP_test_application: A53
s+ Includes
v (£ A53 _gen
v & SIC
£ ISp_process.cpp
o 1sp_vgt_test_graph.c
¢ sequencer_srec.c

3 AS53_src

40 EXTERNAL USE

h
P

LINUX APPLICATION
PROJECT FOR ISP

wwh verything to bId ppI
trtb ilding Linu ppl catio

Application Code for ISP

- Basic, auto generated, application code template for ISP can be found In

ISp_process.cpp in the function ISP_CALL()

- ISP_CALL() inside the main.cpp is just a place holder.
- User should move/add/change code inside the isp_process.cpp and main.cpp

42

according to his/her application needs or structure
- Note: In this tutorial we will not change default structure as it is not necessary

h

EXTERNAL USE

P

Application code for ISP : Compile

- We need to make changes & add code into application according to our requirement

1. Our image is RGB888 type and by default DCU is configured to take YCbCr422 format. Hence, modify
A53 inc/isp_user_define.h with following...

17 #define DCU_BPP DCU_BPP_24

2. Modify main.cpp to define DDR buffers that stores images coming from ISP.

= Do not forget to add a header file: #include "isp_vgt_test _graph_c.h"

void io_config(sdi_grabber *1pGrabber)

{
/* Insert the code to initialize DDR buffers */

// *** prepare IOs ***
sdi_FdmaIO *1pFdma = (sdi_FdmaIO*)lpGrabber->IoGet(SEQ _OTHRIX_FDMA);

// modify DDR frame geometry to fit display output
SDI_ImageDescriptor 1FrmDesc = SDI_ImageDescriptor(WIDTH_DDR, HEIGHT_DDR, RGB888);
1pFdma->DdrBufferDescSet(FDMA_IX FDMA O, LFrmDesc);

//*** allocate DDR buffers ***
1pFdma->DdrBuffersAlloc (FDMA_IX_FDMA_©, DDR_OUT_BUFFER_CNT);

}

- Go to C/C++ perspective and compile the application for A53 core

AR HL
v 1A53
215 ——— Info: ISP option generates binary for KRAM

Application Code for ISP: Run

Execute your ISP_test_application.elf binary on the

target!

— Do not forget to connect Sony camera to MIPI-A port
and HDMI output to display

— Run the application

— YOUu can see camera captures streaming on the screen
— If no output image is shown and program exits instead of
continuous loop, user should check that all settings were

correctly entered in the graph diagram blocks

h
P

44 EXTERNAL USE

Tips
- Don'’t forget to save and re-generate the source code when you change your

graph
- Emit source code step validates graph first then generates source code. So, graph
validation is an optional step.

h
P

45 EXTERNAL USE

SECURE CONNECTIONS
FOR A SMARTER WORLD

