
1 Introduction
This document describes the LSDK Yocto release, a Yocto layer with LSDK
components. This release provides recipes that integrate the latest LSDK
components into the most recent Yocto drop. The recipes will eventually make
their way into the next community Yocto version at www.yoctoproject.org.

2 Release notes

2.1 What’s new
The table below shows Yocto branches and corresponding Yocto versions.

Table 1. Available Yocto versions

Yocto branch Yocto version

Dunfell YP 3.1–LSDK 2004

Zeus YP 3.0–LSDK 1909

Warrior YP 2.7–LSDK 1906

Thud YP 2.6–LSDK 1809

Sumo YP 2.5–LSDK 1806

2.2 Feature support matrix
The tables below provide features of the current LSDK Yocto release and explain which feature is supported for which processor
in the current software release. For these tables, the legends are defined as follows:

• Y - Feature is supported by software

• / - Feature is not supported by software

• na - Hardware feature is not available

Table 2. Key software features

Feature

LS
10

12
A

LS
10

21
A

LS
10

28
A

LS
10

43
A

LS
10

46
A

LS
10

88
A

LS
20

88
A

LX
21

60
A

M
PC

85
48

P1
01

0

P1
02

0

P2
02

0

P2
04

1

P3
04

1

P4
08

0

P5
04

0

T1
02

4

T1
04

2

T2
08

0

T4
24

0

32-bit user space, BE / / / / / / / / Y Y Y Y Y Y Y Y Y Y / /

64-bit user space, BE / na / / / / / / na na na na na na na Y Y Y Y Y

Table continues on the next page...

Contents

1 Introduction.. 1

2 Release notes..1

3 Download Yocto layers.......................... 6

4 Build Yocto images................................ 7

5 Boot boards with Yocto image............... 7

6 Program TF-A binaries........................ 13

7 QorIQ memory layout.......................... 16

8 Prebuilt toolchains............................... 18

9 User space applications.......................19

10 Frequently asked questions.............120

11 Related resources............................120

LSDKYOCTOUG
Layerscape Software Development Kit User Guide for Yocto
Supports LSDK 20.04 Yocto 3.1 release
Rev. 3.1 — 07/2020 User's Guide

http://www.yoctoproject.org

Table 2. Key software features (continued)

Feature

LS
10

12
A

LS
10

21
A

LS
10

28
A

LS
10

43
A

LS
10

46
A

LS
10

88
A

LS
20

88
A

LX
21

60
A

M
PC

85
48

P1
01

0

P1
02

0

P2
02

0

P2
04

1

P3
04

1

P4
08

0

P5
04

0

T1
02

4

T1
04

2

T2
08

0

T4
24

0

32-bit user space, LE / Y / / / / / / na na na na na na na na na na na na

64-bit user space, LE Y na Y Y Y Y Y Y na na na na na na na na na na na na

36-bit physical memory Y Y na na na na na na Y Y Y Y Y Y Y Y Y na na na

40-bit physical memory Y na Y Y Y Y Y Y na na na na na na na na na na na na

AIOP service layer na na na na na Y Y na na na na na na na na na na na na na

ASF /

Data Plane
Development Kit
(DPDK)

Y / Y Y Y Y Y Y / / / / / / / / / / / /

EdgeScale - Edge
computing

/ / / / / / / / / / / / / / / / / / / /

Hugetlbfs Y

Management Complex na na na na na Y Y Y / / / / / / / / / / / /

Open Portable Trust
Execution Environment
(OP-TEE)

Y / Y Y Y Y Y Y / / / / / / / / / / / /

Secure boot Y Y Y Y Y Y Y Y / / / / / / / / / / / /

Time sensitive network
(TSN)

na na Y na na na na na na na na na na na na na na na na na

Unified Extensible
Firmware Interface
(UEFI)

/ / / Y Y / Y Y / / / / / / / / / / / /

USDPAA applications na na na / / na na na na na na na / / / / / / / /

Trusted Firmware-A
(TF-A)

Y / Y Y Y Y Y Y na na na na na na na na na na na na

Table 3. Virtualization features

Feature

LS
10

12
A

LS
10

21
A

LS
10

28
A

LS
10

43
A

LS
10

46
A

LS
10

88
A

LS
20

88
A

LX
21

60
A

M
PC

85
48

P1
01

0

P1
02

0

P2
02

0

P2
04

1

P3
04

1

P4
08

0

P5
04

0

T1
02

4

T1
04

2

T2
08

0

T4
24

0

KVM/QEMU Y

LXC Y Y Y Y Y Y Y Y / / / / / / / / / / / /

Libvirt Y Y Y Y Y Y Y Y / / / / / / / / / / / /

Network interface
direct assignment

na na na na na Y Y Y na na na na na na na na na na na na

Table continues on the next page...

NXP Semiconductors
Release notes

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 2 / 121

Table 3. Virtualization features (continued)

Feature

LS
10

12
A

LS
10

21
A

LS
10

28
A

LS
10

43
A

LS
10

46
A

LS
10

88
A

LS
20

88
A

LX
21

60
A

M
PC

85
48

P1
01

0

P1
02

0

P2
02

0

P2
04

1

P3
04

1

P4
08

0

P5
04

0

T1
02

4

T1
04

2

T2
08

0

T4
24

0

VFIO na na na na na Y Y Y na na na na na na na na na na na na

Docker Y / Y Y Y Y Y Y / / / / / / / / / / / /

Table 4. Linux kernel driver features

Feature

LS
10

12
A

LS
10

21
A

LS
10

28
A

LS
10

43
A

LS
10

46
A

LS
10

88
A

LS
20

88
A

LX
21

60
A

M
PC

85
48

P1
01

0

P1
02

0

P2
02

0

P2
04

1

P3
04

1

P4
08

0

P5
04

0

T1
02

4

T1
04

2

T2
08

0

T4
24

0

Audio - I2S, SAI Y Y Y na na na na na na na na na na na na na na na na na

CAAM DMA Y / / / / / / / / / / / / / / / / / / /

DCE na na na na na na Y Y na na na na na na na na na na na na

DCU na Y na na na na na na na na na na na na na na na na na na

Display - eDPNDP,
LCD

na na Y na na na na na na na na na na na na na na na na na

eLBC na na na na na na na na na na Y Y Y Y Y Y na na na na

DMA Y

DPAA1 - Ethernet,
FMan, QMan, BMan

na na na Y Y na na na na na na na Y Y Y Y Y Y Y Y

DPAA2 - Ethernet,
L2Switching, QBMan

na na na na na Y Y Y na na na na na na na na na na na na

DSPI / Y / Y Y na Y na na na na na na na na na na na na na

eSDHC Y Y Y Y Y Y Y Y na Y Y Y Y Y Y Y Y Y Y Y

eSPI na na na na na na na na na Y Y Y Y Y Y Y Y Y Y Y

ENETC na na Y na na na na na na na na na na na na na na na na na

FlexCAN na Y Y na na na na Y na na na na na na na na na na na na

FlexSPI na na Y na na na na Y na na na na na na na na na na na na

GPU na na Y na na na na na na na na na na na na na na na na na

I2C Y

IEEE1588, linuxptp / Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

IFC na Y na Y Y Y Y na na na na na na na na na Y Y Y Y

TSN Ethernet switch na na Y na na na na na na na na na na na na na na na na na

LPUART na Y / / / na na na na na na na na na na na na na na na

QSPI Y Y na Y Y Y Y na na na na na na na na na na na na na

Table continues on the next page...

NXP Semiconductors
Release notes

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 3 / 121

Table 4. Linux kernel driver features (continued)

Feature

LS
10

12
A

LS
10

21
A

LS
10

28
A

LS
10

43
A

LS
10

46
A

LS
10

88
A

LS
20

88
A

LX
21

60
A

M
PC

85
48

P1
01

0

P1
02

0

P2
02

0

P2
04

1

P3
04

1

P4
08

0

P5
04

0

T1
02

4

T1
04

2

T2
08

0

T4
24

0

PCIe root complex Y

PCIe endpoint / / / / Y / / Y / / / / / / / / / / / /

PFE Y na na na na na na na na na na na na na na na na na na na

Power management Y Y Y Y Y Y Y Y / Y Y Y Y Y Y Y Y Y Y Y

Preempt Real-Time /

SATA Y Y Y Y Y Y Y Y na na na na Y Y Y Y Y Y Y Y

SEC Y Y Y Y Y Y Y Y na Y Y Y Y Y Y Y Y Y Y Y

TDM (QE) na na na Y na na na na na na na na na na na na na na na na

TSN na na Y na na na na na na na na na na na na na na na na na

USB Y Y Y Y Y Y Y Y na Y Y Y Y Y Y Y Y Y Y Y

VeTSEC na Y na na na na na na na Y Y Y na na na na na na na na

VFIO for network
resources

na na na na na Y Y Y na na na na na na na na na na na na

Watchdog Y

2.3 Supported targets
The table below explains which processors and development boards are supported in different LSDK Yocto releases. In this table:

• 'Y' indicates that a development board is supported in an LSDK Yocto release

• 'N' indicates that a development board is not supported in an LSDK Yocto release

Processor Board YP 2.5–LSDK
1806

YP 2.6–LSDK
1809

YP 2.7–LSDK
1906

YP 3.0–LSDK
1909

YP 3.1–LSDK
2004

LS1012A (rev1.0 and
rev2.0)

LS1012ARDB Y Y Y Y Y

FRWY-LS1012A Y Y Y Y Y

LS1021A/LS1020A
(rev2.0)

TWR-LS1021A Y Y Y Y Y

LS1028A/LS1027A
(rev1.0)

LS1028ARDB-PA N N N Y Y

LS1043A/LS1023A
(rev 1.1)

LS1043ARDB-PC Y Y Y Y Y

LS1043ARDB-PD Y Y Y Y Y

LS1046A/LS1026A
(rev1.0)

LS1046ARDB-PB Y Y Y Y Y

FRWY-LS1046A N N Y Y Y

LS1088A (rev1.0) LS1088ARDB Y N N N N

Table continues on the next page...

NXP Semiconductors
Release notes

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 4 / 121

Table continued from the previous page...

Processor Board YP 2.5–LSDK
1806

YP 2.6–LSDK
1809

YP 2.7–LSDK
1906

YP 3.0–LSDK
1909

YP 3.1–LSDK
2004

LS1088ARDB-PB Y Y Y Y Y

LS2088A/LS2084A/
LS2081A (rev1.0 and
rev1.1)

LS2088ARDB Y Y Y Y Y

LX2160A (rev1.0 and
rev2.0)

LX2160ARDB N N Y (only rev1.0) Y (only rev1.0) Y (both)

MPC8548 (rev3.1) MPC8548CDS Y Y Y Y Y

P1010 (rev2.01) P1010RDB-PB N N N N Y

P1020 (rev1.1) P1020RDB-PD Y Y Y N Y

P2020 (rev2.1) P2020RDB-PCA Y Y Y Y Y

P2041 (rev2.0) P2041RDB-PC Y Y Y Y Y

P3041 (rev2.0) P3041DS-PC Y Y Y Y Y

P4080 (rev3.0) P4080DS Y Y Y Y Y

P5040 (rev2.1) P5040DS Y Y Y Y Y

T1024 (rev1.0) T1024RDB-PC Y Y Y Y Y

T1042 (rev1.1) T1042D4RDB-PA Y Y Y Y Y

T2080 (rev1.1) T2080RDB-PC Y Y Y Y Y

T4240 (rev2.0) T4240RDB-PB Y Y Y Y Y

2.4 Fixed, open, and closed issues
The table below lists the issues fixed in current LSDK Yocto release.

For the issues fixed in Linux, U-Boot, and other components, see "Fixed, open, and closed issues" section in
"Release Notes" chapter of Layerscape Software Development Kit User Guide available at the following link:

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-
software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

 NOTE

Table 5. Fixed issues

ID Description Disposition Opened in Fixed in

QYOCTO-583 crconf update command cannot finish by itself Fixed Yocto 3.0 Yocto 3.1

QYOCTO-629 There is no cmake command in Yocto 3.0 full rootfs,
XDP build on board failed

Fixed Yocto 3.0 Yocto 3.1

The table below lists the open issues in current LSDK Yocto release.

NXP Semiconductors
Release notes

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 5 / 121

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

For the open issues in Linux, U-Boot, and other components, see "Fixed, open, and closed issues" section in
"Release Notes" chapter of Layerscape Software Development Kit User Guide available at the following link:

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-
software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

 NOTE

Table 6. Open issues

ID Description Disposition Opened in Workaround

QUBOOT-5518 Optical XFI2 port does not work on
T2080RDB

Open Yocto 3.0

QYOCTO-586 guest rootfs boot failed on T2080RDB and
T4240RDB with ext2.gz on Yocto 2.6,
Yocto 2.7, Yocto 3.0, and Yocto 3.1

Open Yocto 3.0

3 Download Yocto layers
Before starting to download Yocto, prepare the build host for running and building Yocto. To prepare the build host environment,
follow the instructions provided at the link below:

https://www.yoctoproject.org/docs/3.1/brief-yoctoprojectqs/brief-yoctoprojectqs.html

The subsections that follow provide two methods for downloading Yocto layers. You can use one of these methods (preferably
Download Yocto layers from repo manifest) to download Yocto layers.

3.1 Download Yocto layers from repo manifest
Follow these steps to download all Yocto layers from repo manifest using repo utility:

1. Install the repo utility:

$: mkdir ~/bin
$: curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$: chmod a+x ~/bin/repo

2. Download the Yocto layers:

$: export PATH=${PATH}:~/bin
$: mkdir yocto-sdk
$: cd yocto-sdk
$: repo init -u https://source.codeaurora.org/external/qoriq/qoriq-components/yocto-sdk -b
dunfell
$: repo sync --no-clone-bundle

3.2 Download Yocto layers from community repository
As an alternative method, use the following steps to download Yocto layers from community repository:

1. Run the following git commands to download all Yocto layers from community repository:

$ mkdir yocto-sdk
$ cd yocto-sdk
$ mkdir sources
$ git clone git://git.yoctoproject.org/poky sources/poky
$ git clone git://git.yoctoproject.org/meta-cloud-services sources/meta-cloud-services
$ git clone git://git.yoctoproject.org/meta-freescale sources/meta-freescale
$ git clone git://git.yoctoproject.org/meta-security sources/meta-security

NXP Semiconductors
Download Yocto layers

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 6 / 121

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.yoctoproject.org/docs/3.1/brief-yoctoprojectqs/brief-yoctoprojectqs.html

$ git clone git://git.yoctoproject.org/meta-selinux sources/meta-selinux
$ git clone git://git.yoctoproject.org/meta-virtualization sources/meta-virtualization
$ git clone https://github.com/OSSystems/meta-browser sources/meta-browser
$ git clone https://github.com/kraj/meta-clang sources/meta-clang
$ git clone https://github.com/Freescale/meta-freescale-distro sources/meta-freescale-distro
$ git clone https://github.com/openembedded/meta-openembedded sources/meta-openembedded
$ git clone https://github.com/TimesysGit/meta-timesys sources/meta-timesys
$ git clone https://source.codeaurora.org/external/qoriq/qoriq-components/meta-qoriq sources/
meta-qoriq

2. Reset the revision of each Yocto layer as mentioned in the following manifest file:

https://source.codeaurora.org/external/qoriq/qoriq-components/yocto-sdk/tree/default.xml?h=dunfell

3. Finally, copy the setup script:

$ cp sources/meta-qoriq/tools/setup-env .

4 Build Yocto images
The steps for building Yocto images are same for all boards with board name being the only change. For example, the commands
for building Yocto images for LS2088ARDB are as follows:

$ cd yocto-sdk
$: . ./setup-env -m ls2088ardb
$: bitbake fsl-image-networking
$: bitbake fsl-image-networking-full

After running the above commands, you will get the LS2088ARDB Yocto images in the yocto-sdk/
build_ls2088ardb/tmp/deploy/images/ls2088ardb/ folder.

 NOTE

5 Boot boards with Yocto image

5.1 Prerequisites
Before initiating to boot a board with a Yocto image, ensure that:

• The TFTP server is set up for image download

• A serial cable is connected from your PC to UART1 port of the board

• An Ethernet cable is connected to the first Ethernet port on the board

5.2 Booting board with ramdisk rootfs image
Perform these steps to boot a board with ramdisk rootfs image:

For more information on a board, see "LSDK Quick Start Guide" section for the board in "Layerscape SDK user
guide" chapter of Layerscape Software Development Kit User Guide available at the following link:

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-
software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

 NOTE

1. Power up or reset the board.

2. Press a key on the keyboard when prompted on the terminal to enter into the U-Boot command line.

NXP Semiconductors
Build Yocto images

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 7 / 121

https://source.codeaurora.org/external/qoriq/qoriq-components/yocto-sdk/tree/default.xml?h=dunfell
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

3. Set up the environment in U-Boot:

=> setenv ipaddr <board_ipaddr>
=> setenv serverip <tftp_serverip>

The next command in setting up the environment in U-Boot is described for different boards in the table below.

Board Command

FRWY-LS1012A

LS1012ARDB

=> setenv bootargs root=/dev/ram0 rw console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500 ramdisk_size=0x10000000

TWR-LS1021A => setenv bootargs root=/dev/ram0 rw console=ttyS0,115200 ramdisk_size=0x1000000

LS1028ARDB =>setenv bootargs root=/dev/ram0 rw console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500 default_hugepagesz=2m hugepagesz=2m
hugepages=256 ramdisk_size=100000000 video=1920x1080-32@60 cma=256M

LS1043ARDB => setenv bootargs root=/dev/ram0 rw console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500 ramdisk_size=0x10000000

LS1046ARDB

FRWY-LS1046A

=> setenv bootargs root=/dev/ram0 rw console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500 ramdisk_size=0x10000000

LS1088ARDB-PB => setenv bootargs root=/dev/ram0 rw console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500 ramdisk_size=0x2000000 default_hugepagesz=2m
hugepagesz=2m hugepages=512

LS2088ARDB => setenv bootargs root=/dev/ram0 rw console=ttyS1,115200
earlycon=uart8250,mmio,0x21c0600 ramdisk_size=0x2000000 default_hugepagesz=1024m
hugepagesz=1024m hugepages=2

LX2160ARDB

(rev1.0 and rev2.0)

=> setenv bootargs console=ttyAMA0,115200 root=/dev/ram0 rw
earlycon=pl011,mmio32,0x21c0000 ramdisk_size=0x2000000 default_hugepagesz=1024m
hugepagesz=1024m hugepages=2 pci=pcie_bus_perf

MPC8548CDS => setenv bootargs root=/dev/ram rw console=ttyS1,115200 ramdisk_size=1000000
log_buf_len=128K

Other PPC targets => setenv bootargs root=/dev/ram rw console=ttyS0,115200 ramdisk_size=1000000
log_buf_len=128K

4. In case of LS1088ARDB-PB, LS2088ARDB, or LX2160ARDB, enable DPAA2 Ethernet in Linux using commands
described in the table below.

Board Commands

LS1088ARDB-PB => sf probe 0:0

=> sf read 0x80000000 0xA00000 0x200000

=> sf read 0x80200000 0xE00000 0x100000

=> fsl_mc start mc 0x80000000 0x80200000

=> sf read 0x80200000 0xd00000 0x100000

=> fsl_mc lazyapply dpl 0x80200000

Table continues on the next page...

NXP Semiconductors
Boot boards with Yocto image

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 8 / 121

Table continued from the previous page...

Board Commands

LS2088ARDB => fsl_mc start mc 0x580a00000 0x580e00000

=> fsl_mc lazyapply dpl 0x580d00000

LX2160ARDB => sf probe 0:0

=> sf read 0x80a00000 0xa00000 0x300000

=> sf read 0x80e00000 0xe00000 0x100000

=> fsl_mc start mc 0x80a00000 0x80e00000

=> sf read 0x80d00000 0xd00000 0x100000

=> fsl_mc lazyapply dpl 0x80d00000

5. Download images and boot up the board using commands described in the table below.

Board Commands

FRWY-LS1012A

LS1012ARDB

=> pci enum

=> tftp 0x84080000 Image-<board>.bin

=> tftp 0x88000000 fsl-image-networking-<board>.ext2.gz.u-boot

FRWY-LS1012A:

=> tftp 0x8f000000 fsl-ls1012a-frwy.dtb

LS1012ARDB:

=> tftp 0x8f000000 fsl-ls1012a-rdb.dtb

=> pfe stop

=> booti 0x84080000 0x88000000 0x8f000000

TWR-LS1021A => tftp 0x82000000 uImage-ls1021atwr.bin

=> tftp 0x88000000 fsl-image-networkingls1021atwr.ext2.gz.u-boot

=> tftp 0x8f000000 uImage-ls1021a-twr.dtb

=> bootm 0x82000000 0x88000000 0x8f000000

LS1028ARDB

LS1043ARDB

LS1046ARDB

FRWY-LS1046A

LS1088ARDB-PB

LS2088ARDB

LX2160ARDB

=> tftp 0x82000000 Image-<board>.bin

=> tftp 0xa0000000 fsl-image-networking-<board>.ext2.gz.u-boot

LS1028ARDB:

=> tftp 0x8f000000 fsl-ls1028a-rdb.dtb

LS1043ARDB:

=> tftp 0x8f000000 fsl-ls1043a-rdb-sdk.dtb

LS1046ARDB:

Table continues on the next page...

NXP Semiconductors
Boot boards with Yocto image

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 9 / 121

Table continued from the previous page...

Board Commands

=> tftp 0x8f000000 fsl-ls1046a-rdb-sdk.dtb

FRWY-LS1046A:

=> tftp 0x8f000000 fsl-ls1046a-frwy-sdk.dtb

LS1088ARDB-PB:

=> tftp 0x8f000000 fsl-ls1088a-rdb.dtb

LS2088ARDB:

=> tftp 0x8f000000 fsl-ls2088a-rdb.dtb

LX2160ARDB:

=> tftp 0x8f000000 fsl-lx2160a-rdb.dtb

=> booti 0x82000000 0xa0000000 0x8f000000

MPC8548CDS => tftpboot 0x01000000 uImage-mpc8548cds.bin

=> tftpboot 0x03000000 fsl-image-networkingmpc8548cds.ext2.gz.u-boot

=> tftpboot 0x02000000 uImagempc8548cds_32b.dtb

=> bootm 0x01000000 0x03000000 0x02000000

P1020RDB

P2020RDB

P2041RDB

P3041DS

P4080DS

P5040DS

=> tftpboot 0x01000000 uImage-<board>.bin

=> tftpboot 0x04000000 fsl-image-networking-<board>.ext2.gz.u-boot

=> tftpboot 0x02000000 uImage-<board>.dtb

=> bootm 0x01000000 0x04000000 0x02000000

T1024RDB

T1042D4RDB

T2080RDB (64-bit)

T4240RDB (64-bit)

=> tftpboot 0x01000000 uImage-<board>.bin

=> tftpboot 0x05000000 fsl-image-networking- <board>.ext2.gz.u-boot

=> tftpboot 0x02000000 uImage-<board>.dtb

=> bootm 0x01000000 0x05000000 0x02000000

For flashing separate firmware images on alternate bank, find memory details for different firmware in QorIQ
memory layout.

 NOTE

5.3 Booting board with full rootfs from large storage device
Perform these steps to boot a board with full rootfs from large storage device, such as SD card, USB mass storage device, or
SATA device:

NXP Semiconductors
Boot boards with Yocto image

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 10 / 121

For more information on a board, see "LSDK Quick Start Guide" section for the board in "Layerscape SDK user
guide" chapter of Layerscape Software Development Kit User Guide available at the following link:

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-
software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

 NOTE

1. Prepare the media (SD/USB/SATA) and format it to ext2 format.

2. Mount the ext2 partition, extract a full rootfs into this partition, and unmount the partition.

3. Power up or reset the board.

4. Press a key on the keyboard when prompted on the terminal to enter into the U-Boot command line.

5. Set up the environment in U-Boot using command described in the table below.

Board Command

FRWY-LS1012A

LS1012ARDB

LS1043ARDB

LS1046ARDB

FRWY-LS1046A

=> setenv bootargs root=/dev/sda* rootdelay=5 rw console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500

TWR-LS1021A => setenv bootargs root=/dev/sda* rootdelay=5 rw console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500

LS1028ARDB => setenv bootargs root=/dev/mmcblk0p4 rw rootdelay=5 console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500 video=3840x2160-32@60 cma=256M
default_hugepagesz=2m hugepagesz=2m hugepages=256

LS1088ARDB-PB => setenv bootargs root=/dev/sda* rootdelay=5 rw console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500 default_hugepagesz=2m hugepagesz=2m hugepages=512

LS2088ARDB => setenv bootargs root=/dev/sda* rootdelay=5 rw console=ttyS1,115200
earlycon=uart8250,mmio,0x21c0600 default_hugepagesz=1024m hugepagesz=1024m
hugepages=8

LX2160ARDB => setenv bootargs console=ttyAMA0,115200 root=/dev/sda* rw rootdelay=10
earlycon=pl011,mmio32,0x21c0000 ramdisk_size=0x2000000 default_hugepagesz=1024m
hugepagesz=1024m hugepages=2 pci=pcie_bus_perf

6. In case of LS1088ARDB-PB, LS2088ARDB, or LX2160ARDB, enable DPAA2 Ethernet in Linux using commands
described in the table below.

Board Commands

LS1088ARDB-PB => sf probe 0:0

=> sf read 0x80000000 0xA00000 0x200000

=> sf read 0x80200000 0xE00000 0x100000

=> fsl_mc start mc 0x80000000 0x80200000

=> sf read 0x80200000 0xd00000 0x100000

=> fsl_mc lazyapply dpl 0x80200000

Table continues on the next page...

NXP Semiconductors
Boot boards with Yocto image

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 11 / 121

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

Table continued from the previous page...

Board Commands

LS2088ARDB => fsl_mc start mc 0x580a00000 0x580e00000

=> fsl_mc lazyapply dpl 0x580d00000

LX2160ARDB => sf probe 0:0

=> sf read 0x80a00000 0xa00000 0x300000

=> sf read 0x80e00000 0xe00000 0x100000

=> fsl_mc start mc 0x80a00000 0x80e00000

=> sf read 0x80d00000 0xd00000 0x100000

=> fsl_mc lazyapply dpl 0x80d00000

7. Download images and boot up the board using commands described in the table below.

Board Commands

FRWY-LS1012A

LS1012ARDB

=> pci enum

=> tftp 0x84080000 Image-<board>.bin

FRWY-LS1012A:

=> tftp 0x8f000000 fsl-ls1012a-frwy.dtb

LS1012ARDB:

=> tftp 0x8f000000 fsl-ls1012a-rdb.dtb

=> pfe stop

=> booti 0x84080000 - 0x8f000000

TWR-LS1021A => tftp 0x82000000 uImage-ls1021atwr.bin

=> tftp 0x8f000000 uImage-ls1021a-twr.dtb

=> bootm 0x82000000 - 0x8f000000

LS1028ARDB

LS1043ARDB

LS1046ARDB

FRWY-LS1046A

LS1088ARDB-PB

LS2088ARDB

LX2160ARDB

=> tftp 0x82000000 Image-<board>.bin

LS1028ARDB:

=> tftp 0x8f000000 fsl-ls1028a-rdb.dtb

LS1043ARDB:

=> tftp 0x8f000000 fsl-ls1043a-rdb-sdk.dtb

LS1046ARDB:

=> tftp 0x8f000000 fsl-ls1046a-rdb-sdk.dtb

FRWY-LS1046A:

=> tftp 0x8f000000 fsl-ls1046a-frwy-sdk.dtb

LS1088ARDB-PB:

Table continues on the next page...

NXP Semiconductors
Boot boards with Yocto image

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 12 / 121

Table continued from the previous page...

Board Commands

=> tftp 0x8f000000 fsl-ls1088a-rdb.dtb

LS2088ARDB:

=> tftp 0x8f000000 fsl-ls2088a-rdb.dtb

LX2160ARDB:

=> tftp 0x8f000000 fsl-lx2160a-rdb.dtb

=> booti 0x82000000 - 0x8f000000

5.4 Secure boot
To build the secure boot image, follow these steps:

1. Set the following variables in the local.conf file:

DISTRO_FEATURES_append = ' secure'
ROOTFS_IMAGE = 'fsl-image-mfgtool'

In case of an arm64 target, also set the following variable:

KERNEL_ITS ="kernel-all.its"

In case of an arm32 target, also set the following variable:

KERNEL_ITS = "kernel-arm32.its"

2. Run the following command to build the secure boot image:

$: bitbake secure-boot-qoriq

To enable secure boot on QorIQ platforms, see section 6.1 ("Secure boot") of Layerscape Software Development Kit User Guide
available at the following link:

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-
development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

6 Program TF-A binaries
The table below describes boot types supported for programming TF-A binaries in different Layerscape boards.

Table 7. Supported boot types

Board QSPI NOR flash FlexSPI NOR flash IFC NOR flash NAND flash SD card

FRWY-LS1012A Y

LS1012ARDB Y

LS1028ARDB Y Y

LS1043ARDB Y Y Y

Table continues on the next page...

NXP Semiconductors
Program TF-A binaries

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 13 / 121

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

Table 7. Supported boot types (continued)

Board QSPI NOR flash FlexSPI NOR flash IFC NOR flash NAND flash SD card

FRWY-LS1046A Y Y

LS1046ARDB Y Y

LS1088ARDB-PB Y Y

LS2088ARDB Y

LX2160ARDB Y Y

6.1 Program TF-A binaries on QSPI NOR flash
Follow these steps to program TF-A binaries on QSPI NOR flash:

1. Boot the board from QSPI NOR flash 0.

2. Program QSPI NOR flash 1:

=> sf probe 0:1

3. Flash bl2_qspi.pbl:

=> tftp 0xa0000000 bl2_qspi.pbl
=> sf erase 0x0 +$filesize && sf write 0xa0000000 0x0 $filesize

4. Flash fip_uboot.bin:

=> tftp 0xa0000000 fip_uboot.bin
=> sf erase 0x100000 +$filesize && sf write 0xa0000000 0x100000 $filesize

5. Boot the board from QSPI NOR flash 1. The board will boot with TF-A.

6.2 Program TF-A binaries on FlexSPI NOR flash
In LX2160A and LS1028A, FlexSPI NOR flash is used in place of QSPI NOR flash.

For LX2160A, the steps to program TF-A binaries on FlexSPI NOR flash are as follows:

1. Boot the board from FlexSPI NOR flash 0.

2. Program FlexSPI NOR flash 1:

=> sf probe 0:1

3. Flash bl2_flexspi_nor.pbl:

=> tftp 0xa0000000 bl2_flexspi_nor.pbl
=> sf erase 0x0 +$filesize && sf write 0xa0000000 0x0 $filesize

4. Flash fip_uboot.bin:

=> tftp 0xa0000000 fip_uboot.bin
=> sf erase 0x100000 +$filesize && sf write 0xa0000000 0x100000 $filesize

5. Boot the board from FlexSPI NOR flash 1. The board will boot with TF-A.

For LS1028A, the steps to program TF-A binaries on FlexSPI NOR flash are as follows:

NXP Semiconductors
Program TF-A binaries

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 14 / 121

1. Boot the board from FlexSPI NOR flash 0.

2. Program FlexSPI NOR flash 0 (LS1028A has only one bank):

=> sf probe 0:0

3. Flash bl2_flexspi_nor.pbl:

=> tftp 0x80000000 bl2_flexspi_nor.pbl
=> sf erase 0x0 +$filesize && sf write 0x80000000 0x0 $filesize

4. Flash fip_uboot.bin:

=> tftp 0x80000000 fip_uboot.bin
=> sf erase 0x100000 +$filesize && sf write 0x80000000 0x100000 $filesize

5. Flash DP firmware:

=> tftp 0x80000000 ls1028ardb/dp/ls1028a-dp-fw.bin
=> sf erase 0x900000 +$filesize && sf write 0x80000000 0x900000 $filesize

6. Boot the board from FlexSPI NOR flash 0. The board will boot with TF-A.

6.3 Program TF-A binaries on IFC NOR flash
Follow these steps to program TF-A binaries on IFC NOR flash:

1. Boot the board from default bank.

2. Flash bl2_nor.pbl to alternate bank:

=> tftp 0x82000000 $path/bl2_nor.pbl
=> pro off all;erase 0x584000000 +$filesize;cp.b 0x82000000 0x584000000 $filesize

3. Flash fip_uboot.bin to alternate bank:

=> tftp 0x82000000 $path/fip_uboot.bin;
=> pro off all;erase 0x64100000 +$filesize;cp.b 0x82000000 0x64100000 $filesize

4. Boot the board from alternate bank. The board will boot with TF-A.

6.4 Program TF-A binaries on NAND flash
Follow these steps to program TF-A binaries on NAND flash:

1. Boot the board from default bank.

2. Flash bl2_nand.pbl to NAND flash:

=> tftp 82000000 $path/bl2_nand.pbl
=> nand erase 0x0 $filesize;nand write 0x82000000 0x0 $filesize;

3. Flash fip_uboot.bin to NAND flash:

=> tftp 82000000 $path/fip_uboot.bin
=> nand erase 0x100000 $filesize;nand write 0x82000000 0x100000 $filesize;

4. Boot the board from NAND flash. The board will boot with TF-A.

NXP Semiconductors
Program TF-A binaries

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 15 / 121

6.5 Program TF-A binaries on SD card
Follow these steps to program TF-A binaries on SD card:

1. Boot the board from default bank.

2. Flash bl2_sd.pbl to SD card:

=> tftp 82000000 bl2_sd.pbl
=> mmc write 82000000 8 <blk_cnt>

where <blk_cnt> is the number of blocks in SD card that need to be written. It is calculated based on file size. For
example, if bl2_sd.pbl is loaded from the TFTP server and the number of bytes transferred is 82809 (14379 hex), then
<blk_cnt> is calculated as:

82809/512 = 161 (A1 hex)

For this example, mmc write command will be:

=> mmc write 82000000 8 A1

3. Flash fip_uboot.bin to SD card:

=> tftp 82000000 fip_uboot.bin
=> mmc write 82000000 800 <blk_cnt>

4. Boot the board from SD card. The board will boot with TF-A.

7 QorIQ memory layout
The following table shows the memory layout of various firmware stored in NOR/NAND/QSPI/XSPI flash device or SD card on
all QorIQ Reference Design Boards.

When the board boots from NOR flash, the NOR bank from which the board boots is considered as the "current
bank" and the other bank is considered as the "alternate bank". For example, if LS1043ARDB boots from NOR
bank 4, to update an image on NOR bank 0, you need to use the "alternate bank" address range, 0x64000000
- 0x64F00000.

 NOTE

Table 8. Unified 64MiB memory layout of NOR/QSPI/XSPI/NAND/SD media

Firmware definition Max size Flash Offset
(QSPI/XSPI/
NAND flash)

Absolute
address
(NOR current
bank on
LS1043ARD
B,
LS1021ATW
R)

Absolute
address
(NOR
alternate
bank on
LS1043AR
DB,
LS1021AT
WR)

Absolute
address
(NOR
current
bank on
LS2088AR
DB)

Absolute
address
(NOR
alternate
bank on
LS2088AR
DB)

SD start
block no.

RCW + PBI + BL2
(bl2_<boot_mode>.pbl)1

1MiB 0x00000000 0x60000000 0x6400000
0

0x5800000
00

0x5840000
00

0x00008

TF-A FIP image (BL31 +
TEE (BL32) + U-Boot/
UEFI (Bl33)) (fip.bin)2

4MiB 0x00100000 0x60100000 0x6410000
0

0x5801000
00

0x5841000
00

0x00800

Table continues on the next page...

NXP Semiconductors
QorIQ memory layout

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 16 / 121

Table 8. Unified 64MiB memory layout of NOR/QSPI/XSPI/NAND/SD media (continued)

Firmware definition Max size Flash Offset
(QSPI/XSPI/
NAND flash)

Absolute
address
(NOR current
bank on
LS1043ARD
B,
LS1021ATW
R)

Absolute
address
(NOR
alternate
bank on
LS1043AR
DB,
LS1021AT
WR)

Absolute
address
(NOR
current
bank on
LS2088AR
DB)

Absolute
address
(NOR
alternate
bank on
LS2088AR
DB)

SD start
block no.

Boot firmware
environment

1MiB 0x00500000 0x60500000 0x6450000
0

0x5805000
00

0x5845000
00

0x02800

Secure boot headers 2MiB 0x00600000 0x60600000 0x6460000
0

0x5806000
00

0x5846000
00

0x03000

Secure header or DDR
PHY FW

512KiB 0x00800000 0x60800000 0x6480000
0

0x5808000
00

0x5848000
00

0x04000

Fuse provisioning header 512KiB 0x00880000 0x60880000 0x6488000
0

0x5808800
00

0x5848800
00

0x04400

DPAA1 FMAN ucode 256KiB 0x00900000 0x60900000 0x6490000
0

0x5809000
00

0x5849000
00

0x04800

QE firmware or DP
firmware

256KiB 0x00940000 0x60940000 0x6494000
0

0x5809400
00

0x5849400
00

0x04A00

Ethernet PHY firmware 256KiB 0x00980000 0x60980000 0x6498000
0

0x5809800
00

0x5849800
00

0x04C00

Script for flashing image 256KiB 0x009C0000 0x609C0000 0x649C000
0

0x5809C00
00

0x5849C00
00

0x04E00

DPAA2-MC or PFE
firmware

3MiB 0x00A00000 0x60A00000 0x64A0000
0

0x580A000
00

0x584A000
00

0x05000

DPAA2 DPL 1MiB 0x00D00000 0x60D00000 0x64D0000
0

0x580D000
00

0x584D000
00

0x06800

DPAA2 DPC 1MiB 0x00E00000 0x60E00000 0x64E0000
0

0x580E000
00

0x584E000
00

0x07000

Device tree (needed by
UEFI)

1MiB 0x00F00000 0x60F00000 0x64F0000
0

0x580F000
00

0x584F000
00

0x07800

Kernel lsdk_linux_<arc
h>_LS_tiny.itb

16MiB 0x01000000 0x61000000 0x6500000
0

0x5810000
00

0x5850000
00

0x08000

Ramdis
k rfs

32MiB 0x02000000 0x62000000 0x6600000
0

0x5820000
00

0x5860000
00

0x10000

1. For any update in the BL2 source code or RCW binary, the bl2_<boot_mode>.pbl binary needs to be recompiled (see
Layerscape Software Development Kit User Guide for more information).

2. For any update in the BL31, BL32, or BL33 binaries, the fip.bin binary needs to be recompiled (see Layerscape Software
Development Kit User Guide for more information).

NXP Semiconductors
QorIQ memory layout

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 17 / 121

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

Table 9. 2MB memory layout of QSPI/SD media on LS1012AFRWY

Firmware definition Max size Location SD start block no.

RCW+PBI+BL2
(bl2_<boot_mode>.pbl)

64KB 0x0000_0000 - 0x0000_FFFF 0x00008

Reserved 64KB 0x0001_0000 - 0x0001_FFFF 0x00080

PFE firmware 256KB 0x0002_0000 - 0x0005_FFFF 0x00100

FIP (BL31+BL32+BL33) 1MB 0x0006_0000 - 0x000D_FFFF 0x00300

Environment varialbes 64KB 0x001D_0000 - 0x001D_FFFF 0x00E80

Reserved 64KB 0x001E_0000 - 0x001E_FFFF 0x00F00

Secureboot headers 64KB 0x001F_0000 - 0x001F_FFFF 0x00F80

8 Prebuilt toolchains

Download prebuilt toolchain binaries

Prebuilt toolchains for supported targets are available on NXP official image mirror. The table below provides links from NXP
official image mirror to download prebuilt toolchain binaries.

Table 10. Prebuilt toolchain download links

Target type Toolchain download link

ARM32 https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-cortexa7hf-neon-
toolchain-3.1.sh

ARM64 https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-aarch64-
toolchain-3.1.sh

PPCE500V2 https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce500v2-
toolchain-3.1.sh

PPCE500MC https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce500mc-
toolchain-3.1.sh

PPCE5500 https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce5500-
toolchain-3.1.sh

PPCE5500-6
4B

https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppc64e5500-
toolchain-3.1.sh

PPCE6500 https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce6500-
toolchain-3.1.sh

PPCE6500-6
4B

https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppc64e6500-
toolchain-3.1.sh

Install a prebuilt toolchain

You can install a prebuilt toolchain as follows:

$./fsl-qoriq-glibc-<host_arch>-fsl-toolchain-<core>-toolchain-<release>.sh

NXP Semiconductors
Prebuilt toolchains

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 18 / 121

https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-cortexa7hf-neon-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-cortexa7hf-neon-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-aarch64-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-aarch64-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce500v2-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce500v2-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce500mc-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce500mc-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce5500-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce5500-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppc64e5500-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppc64e5500-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce6500-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce6500-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppc64e6500-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppc64e6500-toolchain-3.1.sh

The default installation path for a prebuilt toolchain is /opt/fsl-qoriq/<release>/. If desired, you can specify a different
installation path during installation.

 NOTE

Use a prebuilt toolchain
To use a prebuilt toolchain after installation:

1. Go to the location where the toolchain is installed and source the environment-setup-<core> file. This sets up the
correct path to the build tools and also exports some environment variables that are relevant for development (for
example, $CC, $ARCH, $CROSS_COMPILE, $LDFLAGS, and so on).

2. Invoke the compiler using the $CC variable (for example, $CC <source files>).

This is a sysrooted toolchain. GCC needs option --sysroot=<path-to-target-sysroot> to find target
fragments and libraries (for example, crt*, libgcc.a) as the default sysroot is poisoned (made non-existent).
However, when invoking the compiler through the $CC variable, you do not need to pass the --sysroot parameter
as it is already included in the variable (you can verify it by running the echo $CC command).

 NOTE

9 User space applications
This section provides build and compile instructions related to these user space applications: Data Plane Development Kit (DPDK)
and QEMU.

9.1 DPDK

9.1.1 Introduction
DPDK is an user space packet processing framework.

This guide contains instructions for installing and configuring the user space Data Plane Development Kit (DPDK) v19.11 software.
Besides highlighting the applicable platforms, this guide describes steps for compiling and executing sample DPDK applications
in a Linux application (linuxapp) environment over Layerscape boards.

OVS-DPDK is a popular software switching package which uses DPDK as the underlying platform. The guide also detail methods
to execute ovs-dpdk in conjuction with DPDK over Layerscape boards.

9.1.1.1 Supported platforms and platform-specific details

DPDK supports LS1012A, LS1028A, LS1043A, LS1046A, LS1088A, LS2088A, and LX2160 family of SoCs. This section details
the architectural and port layout of their Reference Design Boards. Port layout information is especially relevant while executing
DPDK applications - to map DPDK port number to physical ports..

Refer to the following for board specific information:

9.1.1.1.1 LS1012A Reference Design Board (RDB)

LS1012A is a PPFE-based platform. For more information on LS1012ARDB, see www.nxp.com/LS1012ARDB

Hardware Specification of LS1012ARDB

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 19 / 121

http://www.nxp.com/LS1012ARDB

Figure 1. QorIQ LS1012A Reference Design

LS1012ARDB Port Layout

Figure 2. LS1012A Port Layout

Label on Case DPDK vdev Port Names

ETH1 eth_pfe0

Table continues on the next page...

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 20 / 121

Table continued from the previous page...

ETH2 eth_pfe1

9.1.1.1.2 LS1028A Reference Design Board (RDB)

The Layerscape LS1028A industrial applications processor includes a TSN-enabled Ethernet switch and Ethernet controllers to
support converged IT and OT networks. For more information on LS1028ARDB, http://www.nxp.com/LS1028ARDB.

Hardware specification

Figure 3. Layerscape LS1028A architecture

Figure 4. LS1028ARDB port layout

Label on Case PCI address of interface

Table continues on the next page...

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 21 / 121

http://www.nxp.com/LS1028ARDB

Table continued from the previous page...

1G MAC0 0000:00:00.0

1G SWP0 NA

1G SWP1 NA

1G SWP2 NA

1G SWP3 NA

9.1.1.1.3 LS1043A Reference Design Board (RDB)

LS1043A is a DPAA-based platform. For more information on LS1043ARDB, see www.nxp.com/LS1043ARDB

Hardware Specification of LS1043ARDB

Figure 5. QorIQ LS1043A Reference Design

LS1043ARDB Port Layout

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 22 / 121

http://www.nxp.com/LS1043ARDB

Figure 6. LS1043A Port Layout

Label on Case FMAN Port Names Userspace Ports Comment

QSGMII.P0 FM0-MAC1 0 1G Port

QSGMII.P1 FM0-MAC2 1 1G Port

RGMII1 FM0-MAC3 2 1G Port

RGMII2 FM0-MAC4 3 1G Port

QSGMII.P2 FM0-MAC5 4 1G Port

QSGMII.P3 FM0-MAC6 5 1G Port

10G FM0-MAC9 6 10G - Copper Port

Information provided in the "Userspace Ports" column above is conditional to default Device tree (DTB) provided
as part of Board Support Package. The ordering can change for a custom DTB.

 NOTE

9.1.1.1.4 LS1046A Reference Design Board (RDB) / LS1046A Freeway Board (FRWY)

LS1046A is a DPAA based platform. For more information on LS1046ARDB, see www.nxp.com/LS1046ARDB and for LS1046A
Freeway, see www.nxp.com/FRWY-LS1046A.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 23 / 121

http://www.nxp.com/LS1046ARDB
https://www.nxp.com/FRWY-LS1046A

Hardware specification of LS1046ARDB

Figure 7. QorIQ LS1046A reference design

LS1046ARDB port layout

Figure 8. LS1046ARDB port layout

Label on sase FMAN port names Userspace ports Comment

RGMII1 FM0-MAC3 0 1G Port

RGMII2 FM0-MAC4 1 1G Port

SGMII1 FM0-MAC5 2 1G Port

SGMII2 FM0-MAC6 3 1G Port

10G-Copper FM0-MAC9 4 10G – Copper Port

10G-SFP+ FM0-MAC10 5 10G – SFP+ Optical Port

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 24 / 121

Information provided in the "Userspace Ports" column above is conditional to default Device tree (DTB) provided
as part of LSDK. The ordering can change for a custom DTB.

 NOTE

FRWY-LS1046A port layout

Figure 9. FRWY-LS1046A port layout

Label on case FMAN port names Userspace ports Comment

1G PORT1 FM0-MAC1 0 1G Port

1G PORT2 FM0-MAC5 1 1G Port

1G PORT3 FM0-MAC6 2 1G Port

1G PORT4 FM0-MAC10 3 1G Port

9.1.1.1.5 LS1088A Reference Design Board (RDB)

LS1088A is a DPAA2 based platform. For more information on QorIQ LS1088A, see www.nxp.com/LS1088ARDB.

Hardware Specifications of LS1088ARDB

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 25 / 121

http://www.nxp.com/LS1088ARDB

Figure 10. QorIQ LS1088A Architecture

LS1088ARDB Port Layout

Figure 11. LS1088ARDB Port Layout

Label on Case Physical Ports Comment

ETH0 DPMAC.1 10G - Copper port

ETH1 DPMAC.2 10G – SFP+ (Optical port)

ETH2 DPMAC.7 QSGMII port (1G)

ETH3 DPMAC.8 QSGMII port (1G)

ETH4 DPMAC.9 QSGMII port (1G)

ETH5 DPMAC.10 QSGMII port (1G)

ETH6 DPMAC.3 QSGMII port (1G)

ETH7 DPMAC.4 QSGMII port (1G)

ETH8 DPMAC.5 QSGMII port (1G)

ETH9 DPMAC.6 QSGMII port (1G)

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 26 / 121

9.1.1.1.6 LS2088A Reference Design Board (RDB)

LS2088A is a DPAA2 based platform. For more information on QorIQ LS2088A, see www.nxp.com/LS2088ARDB.

Hardware specifications

LS2088A Reference Design Board

48 KB
I-Cache

32 KB
D-Cache

48 KB
I-Cache

512 KB Coherent L2 Cache

ARM® A57 Core

64-bit DDR4

Cache Coherent Interconnect

SA
TA

 3.
0

System Control

Internal BootROM

Security Fuses

Security Monitor

Power Management

Core Complex

Basic Peripherals and Interconnect

Accelerators and Memory Control

Networking Elements

SA
TA

 3.
0

8-lane 10 GHz SerDes 8-lane 10 GHz SerDes

48 KB
I-Cache

32 KB
D-Cache

48 KB
I-Cache

512 KB Coherent L2 Cache

ARM® A57 Core

512 KB Coherent L2 Cache

32 KB
D-Cache

48 KB
I-Cache

32 KB
D-Cache

48 KB
I-Cache

1 MB Coherent L2 Cache

ARM® A72 Core ARM® A72 Core

1 MB
Platform

Cache

32-bit DDR4
Memory

Controller

Memory
Controller

64-bit DDR4
Memory

Controller

PC
Ie

PC
Ie

PC
Ie

(S
R-

IO
V)

PC
Ie

SMMU SMMU SMMU

System Interfaces
IFC Flash

QuadSPI Flash

1x SDXC / eMMC

2x DUART

4x I2C

4x FlexTimer

2x USB 3.0 + PHY

 SPI

Service Processor

DCE Security
Engine

4 MB PEB
memory

WRIOP

Queue /
Buffer

Manager

PME

Advanced
IO

Processor
(AIOP)

Management
Complex

DPAA2 Hardware

Layer 2
Switch Assist

8x 1/10G + 8x 1G

9x WDOG

4x GPIO

QDMA

Figure 12. QorIQ LS2088A Architecture

LS2088ARDB Port Layout

Figure 13. LS2088ARDB Port Layout

Label on Case Physical Ports Comment

ETH0 DPMAC.5 10G - Copper port

ETH1 DPMAC.6 10G - Copper port

ETH2 DPMAC.7 10G - Copper port

ETH3 DPMAC.8 10G - Copper port

ETH4 DPMAC.1 10G – SFP+ (Optical port)

ETH5 DPMAC.2 10G – SFP+ (Optical port)

ETH6 DPMAC.3 10G – SFP+ (Optical port)

ETH7 DPMAC.4 10G – SFP+ (Optical port)

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 27 / 121

http://www.nxp.com/LS2088ARDB

9.1.1.1.7 LX2160A Reference Design Board (RDB)

LX2160A is a DPAA2 based platform. For more information on QorIQ LX2160A, see www.nxp.com/LX2160A.

Hardware specifications

LX2160A Reference Design Board

Figure 14. QorIQ LX2160A Architecture

LX2160ARDB Port Layout

Ethernet ports

Figure 15. LX2160ARDB Port Layout

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 28 / 121

http://www.nxp.com/LX2160A

Table 11. Port Layout

Label on Case Physical Ports Comment

40G MAC2 (*) dpmac.2 40G - Fiber port

10G MAC3 dpmac.3 10G - Copper port

10G MAC4 dpmac.4 10G - Copper port

25G MAC5 dpmac.5 25G - Fiber port

25G MAC6 dpmac.6 25G - Fiber port

10G MAC7 (*) dpmac.7 10G - Fiber port

10G MAC8 (*) dpmac.8 10G - Fiber port

10G MAC9 (*) dpmac.9 10G - Fiber port

10G MAC10 (*) dpmac.10 10G - Fiber port

1G MAC17 dpmac.17 1G - Copper port

1G MAC18 dpmac.18 1G - Copper port

(*) Only one configuration between 40G or 4x10G would be available - thus depending on SerDes configuration,
only one of {dpmac.2} port or {dpmac.7, dpmac.8, dpmac.9, dpmac.10} would be available. 4x10G is available by
using port-splitter on the 40G port (dpmac.2). For 4x10G configuration, use SerDes Protocol 18.

 NOTE

SerDes configuration

Following table shows the SerDes protocol configuration application for LX2160A boards. Based on the configuration of the
protocol, either 4x10G ports or 1x40G port is configured/visible.

For detailed configurations and protocol information, see "LSDK Quick Start Guide for LX2160ARDB" section in
"Layerscape SDK user guide" chapter of Layerscape Software Development Kit User Guide available at the
following link:

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-
software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

 NOTE

9.1.1.2 References

Table 12. DPDK Application References

Sample Applications DPDK Web Manual Link Description

Layer-2 Forwarding (l2fwd) l2fwd usage Layer 2 Forwarding sample application
setup and usage guide.

Layer-2 Forwarding with Crypto (l2fwd-
crypto)

l2fwd-crypto Layer 2 Forwarding with Crypto sample
application setup and usage guide.

Table continues on the next page...

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 29 / 121

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://doc.dpdk.org/guides-19.11/sample_app_ug/l2_forward_real_virtual.html
http://doc.dpdk.org/guides-19.11/sample_app_ug/l2_forward_crypto.html

Table 12. DPDK Application References (continued)

Layer-3 Forwarding (l3fwd) l3fwd usage Layer 3 Forwarding sample application
setup and usage guide.

IPSec Gateway (ipsec-secgw) ipsec-secgw usage IPSec Security Gateway sample
application setup and usage guide.

PMD Test Application (testpmd) testpmd usage Guide for test application which can be
used to test all PMD supported features.

DPDK Web Guide DPDK Documentation Link to DPDK Web Manual containing
information about all supported PMD and
Applications.

Table 13. Release References

Component Base Upstream Release Versions

DPDK 19.11.0

OVS 2.13.0

PKTGEN 19.12.0

9.1.2 DPDK Overview
Key goal of the DPDK is to provide a simple, complete framework for fast packet processing in data plane applications. Using
the APIs provided as part of the framework, applications can leverage the capabilities of underlying network infrastructure.

The framework creates a set of libraries for target environments, layered through an Environment Abstraction Layer (EAL) which
hides all the device glue logic beneath a set of consistent APIs. These environments are created through the use of configuration
files. Once the EAL library is created, the user may link with the library to create their own applications. Various other libraries,
outside of EAL, including the Hash, Longest Prefix Match (LPM) and rings libraries are also available for performing specific
operations. Sample applications are also provided to help understand various features and uses of DPDK framework.

DPDK implements a run-to-completion model for packet processing where all resources must be allocated prior to calling data
plane applications, running as execution units on logical processing cores. In addition, a pipeline model may also be used by
passing packets or messages between cores via rings. This allows work to be performed in stages, resulting in more efficient
use of code on cores.

More information on general working of DPDK can be found through DPDK website.

9.1.2.1 DPDK Platform Support

This section describes the NXP Data Path Acceleration Architecture, see the diagram below:

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 30 / 121

http://doc.dpdk.org/guides-19.11/sample_app_ug/l3_forward.html
https://doc.dpdk.org/guides-19.11/sample_app_ug/ipsec_secgw.html
http://doc.dpdk.org/guides-19.11/testpmd_app_ug/index.html
http://doc.dpdk.org/guides-19.11/index.html
http://dpdk.org/doc

Figure 16. DPDK Architecture with NXP Components

The NXP Data Path Acceleration Architecture comprises a set of hardware components which are integrated via a hardware
queue manager and use a common hardware buffer manager. Software accesses the DPAA via hardware components called
"Software Portals". These directly provide queue and buffer manager operations such as enqueues, dequeues, buffer allocations,
and buffer releases and indirectly provide access to all of the other DPAA hardware components via the queue manager.

NXP DPAA architecture based PMD (Poll Mode Drivers) has been added to DPDK infrastructure to support seamless working
on NXP platform. With the addition of these drivers, DPDK framework on NXP platforms permits Linux user space applications
to be build using standard DPDK APIs in a portable fashion. The drivers directly access the DPAA queue and buffer manager
software portals in a high performance manner and the internal details remains hidden from higher level DPDK framework.
Besides drivers for network interfaces, drivers (PMDs) for interfacing with Crypto (CAAM) block have also been included in the
DPDK source code.

Since this guide contains support for PPFE, DPAA2, ENETC and DPAA platforms, the following markers are used
throughout the guide:

• DPAA2 – This marker marks the steps/text applicable only for DPAA2 platforms, for example, LS2088

• DPAA – This marker marks the steps/text applicable only for DPAA platforms, for example, LS1043

• PPFE - This marker marks the steps/text applicable only for PPFE platforms, for example, LS1012

• ENETC - This marker marks the steps/text applicable only for ENETC platforms, for example, LS1028

All other steps which don’t have any marker are applicable for both the platforms.

 NOTE

See DPDK Performance Reproducibility Guide to tune the system for best DPDK performance on NXP platforms.

 NOTE

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 31 / 121

Multi-thread environment

DPDK was originally designed for Intel architectures, however efforts are underway to make it multiple architecture
friendly. There are still some restrictions which should be taken care when used on NXP platforms.

1. Multiple pthreads

DPDK usually pins one pthread per core to avoid the overhead of task switching. This allows for significant
performance gains, but lacks flexibility and is not always efficient. DPDK is comprised of several libraries
- some of the functions in these libraries can be safely called from multiple threads simultaneously, while
others cannot.

The run-time environment of the DPDK is typically a single thread per logical core. It is best to avoid sharing
data structures between threads and/or processes where possible. Where this is not possible, the execution
blocks must access the data in a thread-safe manner. Mechanisms such as atomic variables or locking
can be used to allow execution blocks to operate serially. However, this can effect the performance of the
application.

2. Fast-path APIs

Applications operating in the data plane are performance sensitive but certain functions within those
libraries may not be safe to call from multiple threads simultaneously.

The Hash, LPM, Mempool libraries and RX/TX in the PMD are examples of such multi-thread unsafe
functions. The RX/TX of the PMD are the most critical aspects of a DPDK application and it is recommended
that no locking be used with these paths as it will impact performance. However, these functions can be
safely used from multiple threads when each thread is performing I/O on a different NIC queue. If multiple
threads are to use the same hardware queue on the same NIC port, then locking or some other form of
mutual exclusion is necessary. In the NXP implementation, each thread has to use a software portal (DPIO)
instance to access the underlying DPAA hardware. Thus, it is recommended that only one thread per logical
core should be created for RX/TX and other I/O access to DPAA hardware.

 NOTE

9.1.2.2 DPAA: Supported DPDK Features

Following is the list of DPDK NIC features which DPAA driver support:

• Allmulticast mode

• Basic stats

• Extended stats

• Flow control

• Firmware Version information

• Jumbo frame

• L3 checksum offload

• L4 checksum offload

• Link status

• MTU update

• Promiscuous mode

• Queue start/stop

• Speed Capabilities

• Scattered RX

• Unicast MAC filter

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 32 / 121

• RSS Hash

• Packet type parsing

• ARMv8

9.1.2.3 DPAA2: Supported DPDK Features

Following is the list of DPDK NIC features which DPAA2 driver support:

• Allmulticast mode

• Basic stats

• Firmware Version information

• Flow control

• Jumbo frame

• L3 checksum offload

• L4 checksum offload

• Link Status

• Link Status Events

• MTU update

• Packet type parsing

• Promiscuous mode

• Queue start/stop

• RSS hash

• Unicast MAC filter

• VLAN offload

• VLAN filter

• Speed capabilities

• ARMv8

• Linux VFIO

• Extended stats

9.1.2.4 PPFE supported DPDK features

Following is the list of DPDK NIC features which PPFE driver support:

• ALLmulticast mode

• Basic Stats

• MTU update

• Promiscuous mode

• Packet type parsing

• ARMv8

9.1.2.5 ENETC supported DPDK features

Following is the list of DPDK NIC features which ENETC driver supports:

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 33 / 121

• Packet type information

• Basic stats

• Promiscuous

• Multicast

• Jumbo packets

• Queue Start/Stop

• Deferred Queue Start

• CRC offload

Note:

ENETC based DPDK features are not supported with Kernel 4.14.

9.1.3 Build DPDK
This section includes three subsections which detail:

1. Building DPDK binaries (libraries and sample applications) using the Yocto build system.

2. Building DPDK binaries as standalone package, through DPDK's own build system.

3. Building Pktgen application which can be used as a software packet generator using DPDK as underlying layer.

9.1.3.1 Build DPDK using Yocto

DPDK is one of the application packages of the Yocto build system. This section details method to build DPDK as a standalone
package within the Yocto environment. It is assumed that the Yocto environment has already been configured before executing
the commands below.

See Download Yocto layers for complete details of using the Yocto build system.

After the Yocto environment has been set up, the following commands can be used to build DPDK applications and libraries.
Generated files (libraries and binaries) would be available in the <yocto_sdk>/build_ls2088ardb/tmp/work/ls2088ardb-fsl-
linux/dpdk/ folder. After the rootfs (root filesystem) is generated, the binaries would be merged into it.

bitbake dpdk # it is assumed setup-env was run before running this command.

See Build Yocto images for packing these binaries into the target rootfs using the Yocto build system. Yocto environment by
default compiles DPDK and place it in the rootfs when bitbake fsl-image-networking is run.

Layout of DPDK binaries

Single image of DPDK binary supports DPAA, DPAA2, ENETC, and PPFE platforms. Once the DPDK package has been installed,
binaries would be available /usr/share/dpdk folder in the rootfs. Yocto system generates a single rootfs for all NXP platforms
it supports.

/usr/share/dpdk/examples/ # Contains the sample applications listed in Table 12

At various places in this document, above binaries would be referred for representing execution as well as other information. It
is assumed that execution is being done either using the PATH variable set, as explained above, or with absolute path to the
binaries.

Besides the above folders, another set of files are also available in rootfs to support DPDK application execution. These files are
available in the /usr/share/dpdk folder in the rootfs.

Table below depicts various DPDK artifacts which are available in the Yocto generated rootfs:

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 34 / 121

File/Image name relative to /usr/share/dpdk/ Description

./examples/l2fwd

./examples/l3fwd

./examples/l2fwd-crypto

./examples/ipsec-secgw

./examples/testpmd

DPAA, DPAA2, ENETC, and PPFE

DPDK Example applications and PMD test
application.

./dpaa/usdpaa_config_ls<PLAT>.xml

./dpaa/usdpaa_policy_hash_ipv4_1queue.xml

./dpaa/usdpaa_policy_hash_ipv4_2queue.xml

./dpaa/usdpaa_policy_hash_ipv4_4queue.xml

DPAA Only.

FMC Configurations and Policy files.

<PLAT> is platform name for DPAA platform,
for example ls1043 or ls1046.

Each Policy file for defining the number of
queues per port as mentioned in its name.

./dpaa2/dynamic_dpl.sh

./dpaa2/destroy_dynamic_dpl.sh
DPAA2 Only.

Dynamic DPL container creation and
teardown script.

../usertools/dpdk-setup.sh

../usertools/dpdk_devbind.py

PPFE only

DPDK NIC binding utility.

This is only applicable for executing DPDK
applications in VM.

./enable_performance_mode.sh

./disable_performance_mode.sh
When executing a Ubuntu OS over
Layerscape board, performance on core 0 can
become non-deterministic because of OS
services and threads.

These scripts allow a special setting wherein
the DPDK application, which would run after
running the enable script, would get real time
priorities.

These scripts should
not be used in general
cases. For detailed
use-case, refer to
Performance
Reproducibility Guide
section.

 NOTE

./examples/ipsec_secgw/ep0.cfg

./examples/ipsec_secgw/ep1.cfg

./ipsec/ep0_64X64.cfg

./ipsec/ep1_64X64.cfg

Configuration files for ipsec-gw example
application.

The ep0 and ep1 files are standard
configurations for 2 tunnels for encryption and

Table continues on the next page...

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 35 / 121

Table continued from the previous page...

./ipsec/ep0_64X64_proto.cfg

./ipsec/ep0_64X64_sha256.cfg

./ipsec/ep1_64X64_proto.cfg

./ipsec/ep1_64X64_sha256.cfg

decryption, each. The ep0_64X64 and
ep1_64X64 are for 64 tunnels for encryption
and decryption, each.

/usr/bin/pktgen Packet generation application

./debug_dump.sh Dumping the debug data for further analysis.

9.1.3.2 Build DPDK on host (native)

This section lists the steps required to build DPDK binaries (libraries and example applications) on the host environment. This
environment is host enabled for building directly on the Layerscape target board.

This section focuses on building of DPDK on a host machine for Layerscape boards as target. Notes are added
to enable the compilation of DPDK applications directly on a host machine.

 NOTE

Setup proxies

Depending on the environment you are working in, proxies setting might be required to have internet connectivity. Use the
following proxy commands:

$ export http_proxy=http://<proxy-server-name>.com:<port-number>
$ export https_proxy=https://<proxy-server-name>.com:<port-number>

Obtain the DPDK source code

The DPDK source code contains all the libraries for building example applications as well as test applications. The source code
includes configurations and scripts for supporting build and execution. Obtain the DPDK source code using the link below:

git clone https://source.codeaurora.org/external/qoriq/qoriq-components/dpdk -b github.qoriq-os/19.11-
qoriq

Once the above repository is cloned, DPDK source code will be available for compilation. This source is common for DPAA,
DPAA2, ENETC, and PPFE platforms.

Compiling DPDK

Follow the below steps to compile DPDK. In case of direct compilation on target boards, it is assumed that prerequisites would
be satisfied using the root filesystem. Execute the following command:

make T=arm64-dpaa-linuxapp-gcc install CONFIG_RTE_KNI_KMOD=n CONFIG_RTE_EAL_IGB_UIO=n -j 4

A directory named arm64-dpaa-linuxapp-gcc is created, binaries and libraries are also available in it.

The KNI and other kernel module compilation should be disabled as only limitation is kernel module like (KNI) native compilation
is not supported due to build dependencies not met by Root File System.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 36 / 121

DPDK arm64-dpaa-linuxapp-gcc folder contains .config file for storing the build configuration. Another way
of disabling or enabling support features, like KNI and software crypto drivers, is to edit this file before executing
the make command. If this method is adopted, parameters to command line for disabling the feature are not
required. There is one limitation that the kernel module (KNI) compilation is not supported because build
dependencies at native are not satisfactory.

 NOTE

If KNI or software crypto driver support is disabled using the make command line parameters, it would not modify
the configuration file for DPDK in the <target> folder. Every subsequent compilation of DPDK or example
application would need to include the same command line arguments to avoid failure because of missing features
which were not compiled. Or, edit the .config folder in the arm64-dpaa-linuxapp-gcc build folder.

 NOTE

Compiling DPDK example applications

Once the DPDK source code is compiled, the DPDK example applications can be built independently as required:

1. Before the example applications can be built, the path to DPDK SDK needs to be set which includes the DPDK source
code. This would be used by build system to look for compiled libraries and headers.

export RTE_SDK=<path to DPDK source code, where compilation was done>

2. Target should be set to same value as done for compilation of DPDK.

export RTE_TARGET=arm64-dpaa-linuxapp-gcc

3. Once the above variables are set, example applications can be compiled using the following commands:

Some applications like testpmd are generated as part of default build. These would be available in <build folder>/app/
folder.

For other example applications which are part of the examples/ folder, one of following is applicable:

make -C examples/l3fwd # for the L3 forwarding application
make -C examples/l2fwd # for the L2 forwarding application
make -C examples/ip_fragmentation # for the IP fragmentation application
make -C examples/ip_reassembly # for the IP reassembly application
make -C examples/ipsec-secgw # for the IPSec gateway application

Above are sample commands for a limited set of DPDK example applications. Other applications can be compiled using similar
command pattern.

make -C examples/<Name of examples directory>

All the example applications currently supported by DPDK are available as part of the DPDK source code in
the ./examples/ folder. Other examples can also be compiled using the pattern stated above.

 NOTE

9.1.3.3 Standalone build of DPDK libraries and applications

This section details steps required to build DPDK binaries (libraries and example applications) in a standalone environment. This
environment can either be on a host enabled for cross building for Layerscape boards or directly on the Layerscape target board.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 37 / 121

This section primarily focuses on standalone building of DPDK on a host machine using cross compilation for
Layerscape boards as target. Though, necessary notes have been added to enable compilation directly on target
boards. See Download Yocto layers for creating an environment suitable for building DPDK on Layerscape boards.

For instructions on how to build DPDK using Yocto system, see Build DPDK using Yocto.

 NOTE

Obtain the DPDK source code

The DPDK source code contains all the necessary libraries for build example applications as well as test applications. The source
code also includes various configuration and scripts for supporting build and execution. Obtain the DPDK source code using the
link below:

git clone https://source.codeaurora.org/external/qoriq/qoriq-components/dpdk -b github.qoriq-os/19.11-
qoriq

After the above repository has been cloned, DPDK source code is available for compilation. This source is common for both,
DPAA, DPAA2, ENETC, and PPFE platforms.

Prerequisites before compiling DPDK

Before compiling DPDK as a standalone build, following dependencies need to be resolved independently:

• Platform compliant and compiled Linux Kernel source code so that KNI modules can be built.

— This is optional and if KNI module support is not required, this can be ignored

— For details of compiling platform compliant Linux Kernel, see Download Yocto layers and Build Yocto images

— For disabling KNI module, see notes below

• OpenSSL libraries required for building software crypto driver (OpenSSL PMD).

— OpenSSL package needs to be separately compiled and libraries installed at a known path before DPDK build can
be done

— This is optional and if software crypto driver support is not required, this dependency can be ignored.

Follow the steps below to build OpenSSL as a standalone package.

git clone git://git.openssl.org/openssl.git # Clone the OpenSSL source code
cd openssl # Change into cloned directory
git checkout OpenSSL_1_1_1g # Checkout the specific tag supported by DPDK

Export the Cross Compilation tool chain for building OpenSSL for target. The following step for exporting cross
compilation toolchain is required only when compiling on Host. On a target board, it is assumed default build toolchain
would be used.

export CROSS_COMPILE=<path to uncompressed toolchain archive>/bin/aarch64-linux-gnu-

Configure the OpenSSL build system with following command. The --prefix argument specifies a path where
OpenSSL libraries would be deployed after build completes. This is also a path which would be provided to DPDK build
system for accessing the compiled OpenSSL libraries.

./Configure linux-aarch64 --prefix=<OpenSSL library path> shared

make depend
make
make install
export OPENSSL_PATH=<OpenSSL library path>

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 38 / 121

When building DPDK on target board, it is possible that OpenSSL libraries required by DPDK are already available
as part of the rootfs, in which case external compilation of OpenSSL package would not be required.

 NOTE

— For disabling OpenSSL PMD support, see notes below

Compiling DPDK

Follow the below steps to compile DPDK once the above prerequisites are resolved. These steps are common for DPAA and
DPAA2 targets and are needed only when cross compiling on a host for Layerscape boards as target. In case of direct
compilation on target boards, it is assumed that prerequisites would be satisfied using the root filesystem. In case root
filesystem doesn't contain necessary prerequisites, below steps would be required once prerequisites have been built/obtained
independently.

1. Setup the environment for compilation:

a. Setup Linux Kernel path. This is optional and required only for KNI and ixgb_uio module compilation. Skip it, if
ixgb_uio or KNI module or KNI example application is not required.

export RTE_KERNELDIR=<Path to compiled Linux kernel to compile KNI kernel module>

b. Setup cross compilation toolchain.

This step is required only on the host environment where default toolchain is not for target boards. When compiling
on a target board, this step can be skipped.

export CROSS=<path to cross-compile toolchain>

c. Setup OpenSSL path for software crypto drivers (OpenSSL PMD). This is optional and can be skipped in case
software crypto driver (OpenSSL PMD) support is not required.

export OPENSSL_PATH=<path to installed OpenSSL>

2. Use DPDK build system for compiling DPDK.

DPDK binaries generated using below steps are compatible for DPAA, DPAA2, ENETC, and PPFE platforms. This
is also valid when DPDK is build through Yocto build system.

 NOTE

a. Execute the following command:

make T=arm64-dpaa-linuxapp-gcc install DESTDIR=<location to install DPDK>

Where DESTDIR=<location to install DPDK> is an optional parameter to deploy all the DPDK binaries (libraries
and example applications) to a standard Linux package specific layout within a directory represented by this
parameter. Alternatively, a directory named arm64-dpaa-linuxapp-gcc is also created and binaries and libraries
are also available in it.

b. Disabling KNI and other kernel module compilation: In case DPDK kernel modules is not required (RTE_KERNELDIR
variable is not set), use the following command. DESTDIR can be added, as explained above, if required.

make T=arm64-dpaa-linuxapp-gcc CONFIG_RTE_KNI_KMOD=n CONFIG_RTE_EAL_IGB_UIO=n
CONFIG_RTE_EAL_IGB_UIO=n install

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 39 / 121

c. Enabling software crypto driver support: Software crypto driver (OpenSSL PMD) is disabled by default. If it is
required set OPENSSL_PATH variable, use the following command. DESTDIR can be added, as explained above, if
required.

make T=arm64-dpaa-linuxapp-gcc CONFIG_RTE_LIBRTE_PMD_OPENSSL=y EXTRA_CFLAGS="-I$
{OPENSSL_PATH}/include/" EXTRA_LDFLAGS="-L${OPENSSL_PATH}/lib/" install

d. In case KNI is not required and software crypto support is required, use the following command. DESTDIR can be
added, as explained above, if required.

make T=arm64-dpaa-linuxapp-gcc CONFIG_RTE_LIBRTE_PMD_OPENSSL=y EXTRA_CFLAGS="-I$
{OPENSSL_PATH}/include/" EXTRA_LDFLAGS="-L${OPENSSL_PATH}/lib/" CONFIG_RTE_KNI_KMOD=n
CONFIG_RTE_EAL_IGB_UIO=n install

e. In case of dpdk-pdump, an example of multiprocess application, following command pattern can be used after
replacing the EXTRA_* variables with apropriate path.

make T=arm64-dpaa-linuxapp-gcc CONFIG_RTE_LIBRTE_PMD_PCAP=y CONFIG_RTE_LIBRTE_PDUMP=y
EXTRA_LDFLAGS="-L/path/to/compiled/LIBPCAP/lib" EXTRA_CFLAGS="-I"-L/path/to/compiled/
LIBPCAP/include" CONFIG_RTE_KNI_KMOD=n CONFIG_RTE_EAL_IGB_UIO=n install

The LIBPCAP library and headers provided to above build command should have been cross-compiled for
aarch64 and should be copied over to the board before executing the binary.

 NOTE

Currently, dpdk-pdump is supported only with testpmd application compiled using same build steps. Other
applications would require modification for supporting packet capturing support before being run with dpdk-
pdump.

 NOTE

For more information about the DPDK build system, refer DPDK Documentation.

 NOTE

DPDK arm64-dpaa-linuxapp-gcc folder contains .config file for storing the build configuration. Another
way of disabling or enabling support features, like KNI and software crypto drivers, is to edit this file before
executing the make command. If this method is adopted, parameters to command line for disabling the feature
are not required.

 NOTE

If KNI or software crypto driver support is disabled using the make command line parameters, it would not modify
the configuration file for DPDK in the <target> folder. Every subsequent compilation of DPDK or example
application would need to include the same command line arguments to avoid failure because of missing features
which were not compiled. Or, edit the .config folder in the arm64-dpaa-linuxapp-gcc build folder.

 NOTE

Compiling DPDK example applications

Once the DPDK source code has been compiled, the DPDK example applications can be built independently as required.

1. Before the example applications can be built, the path to DPDK SDK needs to be set which includes the DPDK source
code. This would be used by build system to look for compiled libraries and headers.

export RTE_SDK=<path to DPDK source code, where compilation was done>

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 40 / 121

http://dpdk.org/doc/guides/prog_guide/dev_kit_build_system.html

2. Target should be set to same value as done for compilation of DPDK.

export RTE_TARGET=arm64-dpaa-linuxapp-gcc

3. Once the above variables are set, example applications can be compiled using the following commands:

Some applications like testpmd, dpdk-procinfo and dpdk-pdump (last two being multiprocess examples), are generated
as part of default build. These would be available in <build folder>/app/ folder. Steps for these applications are defined
in the Compiling DPDK section above.

For other example applications which are part of the examples/ folder, one of following is applicable:

make -C examples/l3fwd # for the L3 forwarding application

make -C examples/l2fwd # for the L2 forwarding application

make -C examples/ip_fragmentation # for the IP fragmentation application

make -C examples/ip_reassembly # for the IP reassembly application

make -C examples/ipsec-secgw # for the IPSec gateway application

make -C examples/ipsec-secgw CONFIG_RTE_LIBRTE_PMD_OPENSSL=y EXTRA_CFLAGS="-I${OPENSSL_PATH}/
include/" EXTRA_LDFLAGS="-L${OPENSSL_PATH}/lib/" # for IPSec application with openssl PMD

make -C examples/l2fwd-crypto # for the L2 forwarding with crypto support application

make -C examples/l2fwd-crypto CONFIG_RTE_LIBRTE_PMD_OPENSSL=y EXTRA_CFLAGS="-I${OPENSSL_PATH}/
include/" EXTRA_LDFLAGS="-L${OPENSSL_PATH}/lib/" # for L2 forwarding crypto operations with
openssl PMD

Above are sample commands for a limited set of DPDK example applications. Other applications too be compiled using
similar command pattern.

make -C examples/<Name of examples directory>

All the example applications currently supported by DPDK are available as part of the DPDK source code in
the ./examples/ folder. Other examples can also be compiled using the pattern stated above.

 NOTE

testpmd is not supported on platforms with single core, for example LS1012 (PPFE). This is because testpmd
requires one core for its CLI or management (timer) threads.

 NOTE

4. Once the example application are compiled, the binaries would be available in the following folder within the DPDK source
code folder:

examples/<name of example application>/build/app/*

Besides the above example application, DPDK also provides a testpmd binary which can be used for comprehensive
verification of DPDK driver (PMD) features for available and compatible devices. This binary is compiled by default during
DPDK source compilation explained in Compiling DPDK section.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 41 / 121

Only a small set of DPDK example applications are currently deployed to root filesystem when compiling DPDK
through Yocto build system. These are: l2fwd, l3fwd, l2fwd-crypto, ipsec-gw, cmdif_demo,
ip_fragmentation, ip_reassembly, l2fwd-qdma, and testpmd.

 NOTE

9.1.3.4 DPDK based Packet Generator

Pktgen is a packet generator powered by DPDK. It requires DPDK environment for compilation and DPDK compliant infrastructure
for execution. DPAA and DPAA2 DPDK PMD (Poll Mode Drivers) can be used by Pktgen for building a packet generator using
the DPAA infrastructure.

Prerequisites for compiling Pktgen

For compiling Pktgen, libpcap library is required. If compiling Pktgen as a cross-compiled target, then compile libpcap also
against the same compiler. See Build Yocto images for more information.

For libpcap library compilation and deployment, refer Tcpdump and libpcap project pages. Libpcap current and
past releases can be obtained from this link. Documentation for libpcap is included in its source code. Also note
that libpcap should be compiled for target board if working in a cross compilation environment.

 NOTE

Obtaining the Pktgen source code

Fetch the Pktgen source code using the following clone command:

git clone http://dpdk.org/git/apps/pktgen-dpdk
git checkout pktgen-19.12.0

Compiling Pktgen

Compilation steps below assume that compiled DPDK binaries (libraries and headers) are available in build directory generated
by DPDK. Refer DPDK Build Steps for compiling DPDK and creating the build (arm64-dpaa-linuxapp-gcc) directory. Further,
it is expected that libpcap libraries and headers are also present in this build folder.

Export the path to DPDK build environment and build folder defined by the compilation target:

export RTE_SDK=<path to compiled DPDK source code containing build folder>

export RTE_TARGET=<arm64-dpaa-linuxapp-gcc or arm64-dpaa-linuxapp-gcc> # Select the build folder based
on required DPAA or DPAA2 target>

Build the source code:

make

Before executing the Pktgen application

For executing the Pktgen application, Pktgen.lua file and pktgen binary are needed on the execution environment.

If build was done using a cross compiled environment, transfer these binaries to the target environment from the build host. If
the compilation was done on the target board, skip this step.

cd <Pktgen compiled source code>
cp Pktgen.lua <target board>
cp app/app/arm64-dpaa-linuxapp-gcc/pktgen <target board>

9.1.3.5 Build OVS-DPDK using Yocto

OVS is a popular multilayer virtual switch for enabling massive network automation through programmatic extensions.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 42 / 121

http://www.tcpdump.org/#source
http://www.tcpdump.org/release/

OVS-DPDK is one of the application packages of the Yocto build system that uses DPDK as underlying framework. This section
explains the method to build OVS-DPDK as a standalone package within the Yocto environment. It is assumed that the Yocto
environment is configured before executing the commands mentioned below.

See Download Yocto layers for details about using the Yocto build system.

In the Yocto configurations, OVS-DPDK needs to be configured to 'y' for enabling packaging of OVS-DPDK in
Yocto generated root filesystem, if not already enabled. For more information, see Download Yocto layers.

 NOTE

After the Yocto environment has been set up, the following commands can be used to build OVS-DPDK package. Generated
files (libraries and binaries) would be available in the <yocto_sdk>/build_ls2088ardb/tmp/deploy/images/ls2088ardb/
folder. After the rootfs (root filesystem) is generated, the binaries would be merged into it.

$ bitbake ovs-dpdk

OVS-DPDK is dependent on DPDK package as it is used as its underlying framework. Yocto is designed to compile
DPDK before OVS-DPDK if not already built.

 NOTE

Layout of OVS-DPDK binaries

A OVS-DPDK binary image supports both the DPAA and DPAA2 platforms. After the OVS-DPDK package has been installed,
binaries are available in /usr/bin/ovs-dpdk folder in the rootfs. Yocto system generates a single rootfs for all NXP platforms it
supports.

OVS-DPDK binaries are deployed into the root filesystem as per the default layout of installation target for OVS-
DPDK build system.

 NOTE

The table below depicts various OVS-DPDK artifacts that are available in the Yocto generated rootfs.

File/image name related to /usr/bin/ovs-dpdk Description

• ./ovs-ofctl

• ./ovs-vsctl

• ./ovsdb-tool

• ./ovsdb-server

• ./ovs-vswitchd

• And various other binaries installed by OVS package by default

Various OVS binaries for both DPAA and
DPAA2 platforms

9.1.3.6 Virtual machine (VM or guest) images

This section describes steps for deploying a Virtual Machine and executing DPDK applications in it. Additionally, OVS-DPDK
package is used for deploying a software switch on the host machine through which virtual machines communicate with other
virtual machine or external network.

For obtaining necessary artifacts (kernel image, rootfs) for booting up a virtual machine on a Layerscape board,
see QEMU.

 NOTE

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 43 / 121

9.1.4 Executing DPDK Applications on Host
This section describes how to execute DPDK and related applications in both Host and VM environments.

IP_ADDR_BRD, IP_ADDR_IMAGE_SERVER, and TFTP_BASE_DIR are not U-Boot or Linux environment variables.
They are used in this document to represent:

1. IP_ADDR_BRD: IP address of target board in test setup.

2. IP_ADDR_IMAGE_SERVER: IP address of the machine where all the software images are kept. These
images are transferred to the board using either tftp or scp.

3. TFTP_BASE_DIR: TFTP base directory of TFTP server running on the machine where images are kept.

 NOTE

9.1.4.1 Booting up target board

Follow the instructions mentioned in "LSDK Quick Start" section of Layerscape Software Development Kit User Guide to get the
target board up and working.

While bringing up various platforms, use the following boot arguments to obtain best performance. This can be
done by appending the following string to the othbootargs environment variable in uboot. If othbootargs is not
present, create a new variable.While booting up, the boot scripts would append the othbootargs to the
bootargs variable.

 NOTE

For LS1012ARDB:
default_hugepagesz=2MB hugepagesz=2MB hugepages=256 iommu.passthrough=1

For LS1028ARB:
default_hugepagesz=2MB hugepagesz=2MB hugepages=256 isolcpus=1 iommu.passthrough=1

For LS1043ARDB:
default_hugepagesz=2MB hugepagesz=2MB hugepages=512 isolcpus=1-3 bportals=s0 qportals=s0
iommu.passthrough=1

For LS1046ARDB:
default_hugepagesz=2m hugepagesz=2m hugepages=448 isolcpus=1-3 bportals=s0 qportals=s0
iommu.passthrough=1

For LS1088ARDB:
default_hugepagesz=1024m hugepagesz=1024m hugepages=6 isolcpus=1-7 iommu.passthrough=1

For LS2088ARDB:
default_hugepagesz=1024m hugepagesz=1024m hugepages=8 isolcpus=1-7 iommu.passthrough=1

For LX2160ARDB:
default_hugepagesz=1024m hugepagesz=1024m hugepages=8 isolcpus=1-15 iommu.passthrough=1

Above setting insures that available number of hugepages are available with the application depending on the platform. isolcpus
insures that Linux Kernel doesn't use these CPUs for scheduling its tasks - that prevents context switching of any application
running on these cores. If the installed memory is lesser, lower number of hugepages can be used.

iommu.passthrough=1 is to disable SMMU configuration by kernel which is ignored in case of DPDK userspace application.
Though, this setting should does impact security context of enviroment and should be done after due-dilligence.

The bportals and qportals ensures that only 1 portal is available for kernel use (since only one core is for kernel), rest are
available for user space. This setting is needed only for DPAA1 platforms.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 44 / 121

Depend on the available memory, hugepage may be added to the system from command line as well.

echo 256 > /proc/sys/vm/nr_hugepages
Check it with:
cat /proc/meminfo

 NOTE

For UEFI, to update the boot arguments please refer to UEFI section in the user manual.

Update grub.cfg file for hugepage and isolcpus related changes.

On DPAA2 platforms: "rootwait=20 default_hugepagesz=1024m hugepagesz=1024m hugepages=8
isolcpus=1-7"

On DPAA1 platforms: "rootwait=20 default_hugepagesz=2MB hugepagesz=2MB hugepages=512
isolcpus=1-3 bportals=s0 qportals=s0"

 NOTE

Userspace mode for DPAA1: For the DPAA platform, DPDK specific Device Tree file (for example, fsl-ls1046a-
rdb-usdpaa.dtb for LS1046ARDB, fsl-ls1046a-frwy-usdpaa.dtb for LS1046AFRWY and fsl-
ls1043a-rdb-usdpaa.dtb for LS1043A) should be used for booting up the board.This Device tree file is
configured to provide userspace applications with network interfaces.

Also note that once the above mentioned Device Tree configuration is used, all FMAN ports would be available in
the userspace only. Changes to the Device Tree file would be required to assign some of the FMAN ports to Linux
Kernel.

 NOTE

Optionally follow the below instructions to assign one of the FMAN ports on LS104x (DPAA) RDB boards to Linux.

With standard Yocto generated dtb all interfaces will be assinged to either Linux or Userspace.
When using fsl-ls1043a-rdb-sdk.dtb or
fsl-ls1046a-rdb-sdk.dtb all network interfaces will be assigned to Linux. When using fsl-
ls1043a-rdb-usdpaa.dtb or fsl-ls1046a-rdb-usdpaa.dtb all network interfaces will be assigned
to user space.
The example below shows the changes that are required to assign one network interface to Linux and
configure FMAN to support DPDK applications.

Example: Modify fsl-ls1046a-rdb-usdpaa.dts file to assign FMAN ports to Linux by removing the following
ethernet node that corresponds to fm0-mac3 (RGMII-1).

ethernet@2 {
 compatible = "fsl,dpa-ethernet-init";
 fsl,bman-buffer-pools = <&bp7 &bp8 &bp9>;
 fsl,qman-frame-queues-rx = <0x54 1 0x55 1>;
 fsl,qman-frame-queues-tx = <0x74 1 0x75 1>;
 };

Then modify the file usdpaa_config_ls1046.xml (located in /usr/share/dpdk/dpaa) by removing the
corresponding port entry. For example the below entry needs to be removed for fm0-mac3 (RGMII-1):

<port type="MAC" number="3" policy="hash_ipsec_src_dst_spi_policy_mac3"/>

On DPAA1, the port numbers are decided in the sequence they are getting detected. In case one or more ports
is assigned to Linux kernel, the userspace port numbering will change. For example, once the above code change
is done, fm0-mac4 will become Port 0 in DPDK/Userspace.

 NOTE

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 45 / 121

9.1.4.2 Prerequisites for running DPDK applications

This section describes the procedures after the target platform is booted up and logged into the Linux shell. This section is
applicable to DPAA, DPAA2, ENETC, and PPFE platforms and is organized as follows:

• Generic setup contains common steps to be executed before executing any of DPDK sample application or external DPDK
applications. One of these sections would be relevant depending on the platform DPAA, DPAA2, ENETC, or PPFE being
used.

• Application-specific sections contain steps on how to execute the DPDK example and related applications.

For more details, see the following topics:

— Test Environment Setup

— Generic Setup - DPAA

— Generic Setup - DPAA2

— Generic Setup - PPFE

— Generic setup – ENETC

— DPAA2: Multiple parallel DPDK applications

9.1.4.2.1 Test Environment Setup

Test Environment Setup

Various sample application execution steps are detailed in the following sections. Figure below describes the setup containing
the DUT (Device Under Test) and the Packet Generator (Spirent, Ixia or any other software/hardware packet generator). This is
applicable for the commands provided in following section.

The setup includes a one-to-one link between DUT and Packet generator unit. DPDK application running on the DUT is expected
to forward the traffic from one port to another. The setup below and commands described in following sections can be scaled for
more number of ports.

Figure 17. Test Setup

9.1.4.2.2 Generic Setup - DPAA

This section details steps required to setup necessary environment for execution of DPDK applications on DPAA platform. This
section is applicable for sample as well as any external DPDK applications. For further details about the applicable configuration
file for DPAA platform, refer to Build OVS-DPDK using Yocto. For DPAA2 platform specific setup, refer to Generic Setup - DPAA2.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 46 / 121

DPAA Hardware Configuration files

For automatic or dynamic FMAN queue configuration, use the export DPAA_FMCLESS_MODE=1 environment
variable. If this environment variable is set, DPDK based DPAA driver would automatically configure the number
of queues as demanded by the application.

Default is non dynamic mode which requires user to run the fmc tool with exact queue configuration before running
a DPDK application. This section provides details about this mode.

 NOTE

DPAA platforms supports hardware acceleration of packet queues. These queues need to be configured in the Frame Manager
(FMan) prior to being used. This can be done by choosing the appropriate policy configuration file packaged along with Yocto
rootfs or DPDK source code.

Either of 1, 2, or 4 queue based policy files can be selected before application is executed. For example, 1 queue policy file would
define single queue per physical interface of DPAA. Similarly, 2 and 4 queue are for defining 2 or 4 queues for each defined
interface, respectively.

For switching between different number of queue configuration, fmc tool is required to be run each time with new
policy files. Before running fmc tool, fmc -x should be executed to clean old configuration.

 NOTE

Following are the available platform specific configuration files:

• usdpaa_config_ls1043.xml for LS1043ARDB board

• usdpaa_config_ls1046.xml for LS1046ARDB board

• usdpaa_config_ls1046_frwy.xml for LS1046AFRWY board

Following are the available policy files:

• usdpaa_policy_hash_ipv4_1queue.xml for 1 queue per port

• usdpaa_policy_hash_ipv4_2queue.xml for 2 queues per port

• usdpaa_policy_hash_ipv4_4queue.xml for 4 queues per port

It is important to execute the applications using the same queue configuration as per the policy file used. This is
because once the queue configuration is done, DPAA hardware would distribute packets across configured
number of queues. Not consuming packets from any queue would lead to queue buildup eventually stopping the
I/O.

 NOTE

Setting up the DPAA Environment

Configure number of queues using environment variable:

export DPAA_NUM_RX_QUEUES=<Number of queues>

Based on the number of queues defined in the above parameter, select the policy configuration file and execute the fmc binary:

fmc -x # Clean any previous configuration/setting
fmc -c <Configuration file> -p <Policy File> -a

For example, in case of LS1043 platform, using 1 queue, following would be the command to execute:

export DPAA_NUM_RX_QUEUES=1
fmc -x
fmc -c ./usdpaa_config_ls1043.xml -p ./usdpaa_policy_hash_ipv4_1queue.xml -a

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 47 / 121

It is important that value of DPAA_NUM_RX_QUEUES matches to the policy file being used. In case of mismatch,
DPDK application may show unexpected behavior.

 NOTE

LSDK 18.03 (or dpdk release 18.02) onwards DPAA platforms enables the push mode by default. That is, first 4
queues of an interface would be configured in Push mode, thereafter, all queues would use the default pull
configuration. Push mode queues support higher performance configuration than standard pull mode queues, but
are limited in numbers. To toggle the number of push mode queues, use the following environment variable:

#export DPAA_PUSH_QUEUES_NUMBER=0 <default value is 4>

Do note that configuring larger number of push mode queues than available (achievable), would lead to I/O failure.
Max possible value of DPAA_PUSH_QUEUES_NUMBER on DPAA (LS1043, LS1046) is 8.

 NOTE

Setup hugepages for DPDK application to use for packet and general buffers. This step can be ignored if hugepages are
already mounted. Use command mount | grep hugetlbfs to check if hugepages are already setup.

mkdir /dev/hugepages

mount -t hugetlbfs none /dev/hugepages

Hereafter, DPDK sample applications are ready to be executed on the DPAA platform.

Cleanup of the DPAA Environment

To remove the configuration done using the fmc tool, use the -x parameter. It is a good practice to cleanup the configuration
before setting up a new configuration. Even in cases where change of configuration is required, for example, increasing the
number of queues supported, following command can be used for cleaning up the previous configuration.

fmc -x

9.1.4.2.3 Generic Setup - DPAA2

This section details steps required to setup necessary environment for execution of DPDK applications over DPAA2 platform.
This section is applicable for sample as well as any external DPDK applications. For further details about the applicable
configuration file for DPAA2 platform, see Build OVS-DPDK using Yocto. For DPAA platform specific setup, see Generic Setup
- DPAA.

These steps must be performed before running any of the DPDK application on host.

Setting up the DPAA2 environment

For executing DPDK application on DPAA2 platform, a resource container needs to be created which contains all necessary
interfaces to the DPAA2 hardware blocks. Necessary configuration scripts are provided with DPDK package for creating and
destroying containers.

1. Configure the DPAA2 resource container with dynamic_dpl.sh script. This script is available under /usr/share/dpdk/
dpaa2 folder in the rootfs.

cd /usr/share/dpdk/dpaa2 # Or, any other folder if custom installation of DPDK is done
./dynamic_dpl.sh <DPMAC1.id> <DPMAC2.id> ... <DPMACn.id>

In the above command, <DPMAC1.id> refers to the DPAA2 MAC resource, for example, dpmac.1 or dpmac.2. Modify the
above command as per the number of physical MAC ports required by the application (constrained by availability and
connectivity on the DUT).

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 48 / 121

Output of dynamic_dpl.sh command shows the name of the container created. This name is passed to DPDK applications
using the DPRC environment variable. Following block shows sample output of the dynamic_dpl.sh command:

##################### Container dprc.2 is created ####################
Container dprc.2 have following resources :=>

 * 16 DPBP
 * 5 DPCON
 * 4 DPSECI
 * 3 DPNI
 * 10 DPIO
 * 10 DPCI

######################### Configured Interfaces #########################

Interface Name Endpoint Mac Address
============== ======== ==================
dpni.1 dpmac.1 -Dynamic-
dpni.2 dpmac.2 -Dynamic-

The MAC addresses are auto-assigned by the DPDK applications after fetching information from the firmware. These
would be same as the one programmed by u-boot. For creating flows, see the application output or note the MAC addresses
during board bootup. Testpmd application can also be used to find the MAC address assigned.

In case of using UEFI-ACPI as boot loader, run export BOARD_TYPE=2160 or 2088 before running
dynamic_dpl.sh.

 NOTE

It is possible to modify the number of interfaces (DPBP, DPCON, DPNI, etc) in a container. This can be done by
defining environment variable COMPONENT_COUNT=<number> before executing the script. For example, to set
number of DPBP to 4, use export DPBP_COUNT=4.

Though the flexibility has been provided to modify the interfaces in the container, note that resources need to be
balanced and changing any count will require corresponding changes to other interfaces. Incorrect changes can
render the DPDK application unable to execute.

 NOTE

2. Setup the environment variable using the container name reported by dynamic_dpl.sh command:

export DPRC=dprc.2

After the above setup is complete, DPDK application can be executed on the DPAA2 platform.

Teardown of DPAA2 environment

It might be required to change the configuration of the resource contain to modify the components included in it. As the number
of resources in the system are limited, number of containers which can be created as also limited. It is possible to remove an
existing container and create another.

Execute the following command to teardown a container:

cd /usr/share/dpdk/dpaa2 # Or, any other folder if custom installation of DPDK is done
./destroy_dynamic_dpl.sh <Container Name> # for example, "dprc.2"

9.1.4.2.4 Generic Setup - PPFE

This section provides steps required to setup necessary environment for execution of DPDK applications over PPFE platform.

These steps must be performed before running any of the DPDK application on host.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 49 / 121

Setting up the PPFE Environment

For executing DPDK application on PPFE platform, a kernel module pfe.ko must be loaded in user space mode which will do
the necessary initialization to run the DPDK applications. By default, pfe.ko will be loaded automatically during kernel bootup.
User must ensure the value of /sys/module/pfe/parameters/us is 1 to check pfe.ko module is loaded in user space mode.
If /sys/module/pfe/parameters/us is not 1, then user shall unload the module and then load again with module argument as
us=1.

rmmod pfe.ko
insmod pfe.ko us=1

Additionally, user must run the below commands to fulfill DPDK applications huge pages requirements.

mkdir /mnt/hugepages
mount -t hugetlbfs none /mnt/hugepages

9.1.4.2.5 Generic setup – ENETC

This section details steps required to set up necessary environment for execution of DPDK applications over ENETC platform.
This section is applicable for sample as well as any external DPDK applications.

These steps must be performed before running any of the DPDK application on host

Setting up ENETC environment

For executing DPDK application on ENETC platform, ethernet devices need to be bound to "vfio-pci" driver. Necessary
configuration script is provided with DPDK package.

This script is available under /usr/share/dpdk/enetc folder in the rootfs.

cd /usr/share/dpdk/enetc # Or, any other folder if custom installation of DPDK is done
./dpdk_configure_1028ardb.sh

This script enables two ethernet devices to be used by DPDK applications by binding them to "vfio_pci" driver. These devices on
case are labeled as "1G MAC0" and "1G SWP0".

9.1.4.2.6 DPAA2: Multiple parallel DPDK applications

This section describes steps for executing multiple parallel DPDK application on DPAA2 platform.

For executing multiple DPDK applications, each application instance should run with its own resource container (DPRC). This
constraint is because of the way DPDK framework is designed to use a given container for exclusive use, irrespective of resources
within, and bind it using VFIO layer. This design prevents parallel access to single resource container from multiple parallel
instances of a single DPDK application, multiple parallel execution of different DPDK applications.

Creating multiple DPRC instances

Using the resouce container script documented in this section, create multiple resource container instances on host. Following
command creates a resource container with 2 network interfaces (and all other resources necessary to run a DPDK application).

First DPRC: (assuming name as dprc.2 through rest of the document)

cd /usr/share/dpdk/dpaa2 # Or, any other folder if custom installation of DPDK is done
./dynamic_dpl.sh <DPMAC1.id> <DPMAC2.id> # For example, execute ./dynamic_dpl.sh dpmac.1 dpmac.2

Second DPRC: (assuming name as dprc.3 through rest of the document)

cd /usr/share/dpdk/dpaa2 # Or, any other folder if custom installation of DPDK is done
./dynamic_dpl.sh <DPMAC3.id> <DPMAC4.id> # For example, execute ./dynamic_dpl.sh dpmac.3 dpmac.4

Executing multiple DPDK Applications

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 50 / 121

Once the resource containers are created, on two separate terminals, execute the following commands to run l2fwd application,
bridging traffic between both interfaces available in the container:

export DPRC=dprc.2
cd /usr/share/dpdk/examples
./l2fwd -c 0x3 -n 1 --file-prefix=p1 --socket-mem=1024 -- -p 0x3 -q 1

Some of the arguments, which are deviations from general l2fwd command, are explained below:

--file-prefix: Each DPDK Application attempts to allocate some hugepages for DMA'd area. This allocation is done in the
hugepages through the use of hugepage mount, by creating and mapping a file. This arguments instructs the EAL to append a
string to the file name. This way, multiple instances, having different such arguments, wouldn't attempt to open same hugepage
mapping file.

--socket-mem: Passed to EAL, this instructs the EAL to allocate only specified amount of memory from the hugepages. By default,
if this is not provided, a DPDK application would acquire all possible hugepages (all free pages) available on the Linux system.

For the second instance, command like following can be executed:

export DPRC=dprc.3
cd /usr/share/dpdk/examples
./l2fwd -c 0xc -n 1 --file-prefix=p2 --socket-mem=1024 -- -p 0x3 -q 1

Note the difference of values for -c and --file-prefix between the first and second command.

9.1.4.3 DPDK example applications

DPDK example application binaries are available in the /usr/share/dpdk/examples folder in the Yocto generated rootfs.

Command snippets below assume that commands are executed while being present in /usr/share/dpdk/
examples or appropriate PATH variable has been set. Also, a DPDK binary can be executed on both, DPAA and
DPAA2, platform without any modifications.

 NOTE

Only a selected few DPDK example applications have been deployed in the root filesystem by default. For non-
deployed example application, compilation needs to be done using DPDK source code. See Standalone build of
DPDK libraries and applications for more details.

 NOTE

For PPFE platform, since LS1012ARDB has only 1 core, so -c with 0x1 is only acceptable core mask for all DPDK
applications. Additionally, user must provide the —vdev argument with value net_pfe to enable ethernet device
for DPDK applications.

 NOTE

For ENETC platform, LS1028A has 2 cores. For performance numbers, -c with 0x2 is the only supported core
mask for all supported DPDK applications. User can verify functionality on both cores.

 NOTE

Throughout the document below, -n 1 argument has been added to the commands. This argument represents
the splitting of buffers across the channels/ranks on DDR, if available. This is useful for NUMA cases. But, in non-
NUMA , as is the case with NXP SoCs, this might impact performance in case the channel/ranks of DDR vary from
standard/verified environment. Performance benchmarking should be done after analyzing the impact of this
configuration.

 NOTE

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 51 / 121

l2fwd – Layer 2 forwarding application

Sample application to show forwarding between multiple ports based on the Layer 2 information (switching).

l2fwd -c 0x2 -n 1 -- -p 0x1 -q 1 -T 0

In the above command: -c refers to the core mask for cores to be assigned to DPDK; -p is the port mask for ports to be used by
application; -q defines the number of queues to serve on each port. Other command line parameters may also be provided - for
a complete list, refer L2 Forwarding Sample Application (in Real and Virtualized Environments).

• isolcpus provided as boot argument to u-boot assures that isolated cores are not scheduled by Linux kernel.

Using Core 0 for DPDK application can lead to non-deterministic behavior, including drop in performance. It
is recommended that DPDK applicaton core mask values avoid using Core 0.

• L2fwd application periodically prints the I/O stats. To avoid CPU core to be interrupted because of these
scheduled prints, -T 0 option can be appended at the end of command line.

• Command to run l2fwd on LS1012ARDB:

./l2fwd -c 0x1 -n 1 --vdev 'net_pfe0' --vdev='net_pfe1' -- -p 0x3 -q 3

 NOTE

For best performance on LS1046ARDB, use the following command. This includes an option -b 7 which sets
optimal I/O burst size:

l2fwd -c 0x2 -n 1 -- -p 0x1 -q 1 -T 0 -b 7

 NOTE

l2fwd-event – Event based Layer 2 forwarding application

Sample application to show event based forwarding between multiple ports based on the Layer 2 information (switching).

l2fwd-event -c 0x2 -n 1 --vdev=event_dpaa2 -- -p 0x1 -q 1 -T 0 --mode=eventdev --eventq-sched=atomic

In the above command: -c refers to the core mask for cores to be assigned to DPDK; -p is the port mask for ports to be used by
application; -q defines the number of queues to serve on each port; change --vdev=event_dpaa1 for DPAA devices; --mode
can be poll or eventdev; --eventq-sched can be ordered, atomic or parallel. Other command line parameters may also be
provided - for a complete list, refer L2 Forwarding Eventdev Sample Application

l2fwd–qdma - Layer 2 forwarding application using QDMA (DPAA2 only)

Sample application to show forwarding between multiple ports based on the Layer 2 information (switching) using QDMA. In this
application, when a packet is Rx'd, a corresponding packet buffer is allocated for Tx. Data from the Rx packet is DMA copied
over to the Tx buffer using the QDMA block. Then, Rx buffer is released by the application; Tx buffer is transmitted out.

l2fwd-qdma -c 0x2 -n 1 -- -p 0x1 -q 1 -m 1 -T 0

In the above command: -c refers to the core mask for cores to be assigned to DPDK; -p is the port mask for ports to be used by
application; -q defines the number of queues to serve on each port. -m mode specifies HW (-m is 0) or Virtual (-m is 1) mode
for QDMA queues. Apart from -m parameter other parameters are similar to DPDK l2fwd application -refer L2 Forwarding Sample
Application (in Real and Virtualized Environments).

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 52 / 121

http://doc.dpdk.org/guides-19.11/sample_app_ug/l2_forward_real_virtual.html
http://doc.dpdk.org/guides-19.11/sample_app_ug/l2_forward_event.html
http://doc.dpdk.org/guides-19.11/sample_app_ug/l2_forward_real_virtual.html
http://doc.dpdk.org/guides-19.11/sample_app_ug/l2_forward_real_virtual.html

l3fwd – Layer 3 forwarding application

Sample application to show forwarding between multiple ports based on the Layer 3 information (routing).

l3fwd -c 0x6 -n 1 -- -p 0x3 --config="(0,0,1),(1,0,2)"

In the above command: -c refers to the core mask for cores to be assigned to DPDK; -p is the port mask for ports to be used by
application; --config is (Port, Queue, Core) configuration used by application for attaching cores to queues on each port. Other
command line parameters may also be provided - for a complete list, refer L3 Forwarding Sample Application.

Other variations of the above command described below change the configuration of ports, queue and cores services them.

1. 4 core - 2 Port, 2 queues per port:

l3fwd -c 0xF -n 1 -- -p 0x3 -P --config="(0,0,0),(0,1,1),(1,0,2),(1,1,3)"

2. 4 core - 2 Port with destination MAC address:

l3fwd -c 0xF -n 1 -- -p 0x3 -P --config="(0,0,0),(0,1,1),(1,0,2),(1,1,3)" --eth-
dest=0,11:11:11:11:11:11 --eth-dest=1,00:00:00:11:11:11

3. 8 core - 2 Port with 4 queues per port:

l3fwd -c 0xFF -n 1 -- -p 0x3 -P --config="(0,0,0),(0,1,1),(0,2,2),(0,3,3),(1,0,4),(1,1,5),(1,2,6),
(1,3,7)"

Although, above command snippets use the Core 0 for DPDK application, for best performance Core 0 use is not
recommended as Linux OS schedules its tasks on it. It is also recommended that isolcpus be used in Linux
boot argument to prevent Linux from scheduling tasks on other Cores.

 NOTE

Example command to run l3fwd on LS1012ARDB:

./l3fwd -c 0x1 --vdev='net_pfe0' --vdev='net_pfe1' -n 1 -- -p 0x3 --
config="(0,0,0),(1,0,0)" -P

 NOTE

For best performance on LS1046ARDB, use the following command. This includes an option -b 7 which sets
optimal I/O burst size:

l3fwd -c 0xF -n 1 -- -p 0x3 -P -b 7 --config="(0,0,0),(0,1,1),(1,0,2),(1,1,3)"

This is valid for any configuration of cores, queues and ports (i.e., --config option).

For LX2 Platform, while running on all available cores, the core mask parameters passed to l3fwd needs to be
adjusted for 16 available cores. Following is an example of using all 16 cores on LX2, 2 Ports, 8 queues per port:

l3fwd -c 0xffff -n 1 -- -p 0x3 -P --config="(0,0,0),(0,1,1),(0,2,2),(0,3,3),
(0,4,4),(0,5,5),(0,6,6),(0,7,7),(1,0,8),(1,1,9),(1,2,10),(1,3,11),(1,4,12),
(1,5,13),(1,6,14),(1,7,15)"

 NOTE

l2fwd-crypto – Layer 2 forwarding using SEC hardware

This variation of Layer 2 forwarding application uses SEC block for encryption of packets.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 53 / 121

http://doc.dpdk.org/guides-19.11/sample_app_ug/l3_forward.html

• Layer 2 forwarding with Cipher only support:

l2fwd-crypto -c 0x2 -n 1 -- -p 0x1 -q 1 --chain CIPHER_ONLY --cipher_algo aes-cbc --cipher_op
ENCRYPT --cipher_key 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10

• Layer 2 forwarding with Cypher-Hash support:

l2fwd-crypto -c 0x2 -n 1 -- -p 0x1 -q 1 --chain CIPHER_HASH --cipher_algo aes-cbc --cipher_op
ENCRYPT --cipher_key 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --auth_algo sha1-hmac --
auth_op GENERATE --auth_key_random_size 64

• Layer 2 forwarding with Hash only support:

l2fwd-crypto -c 0x2 -n 1 -- -p 0x1 -q 1 --chain HASH_ONLY --auth_algo sha1-hmac --auth_op
GENERATE --auth_key_random_size 64

For LS1028, --iova-mode=pa should also be added as command line parameter.

 NOTE

l2fwd-crypto – Layer 2 forwarding using OpenSSL software instructions

This variation of Layer 2 forwarding application uses OpenSSL library for performing software crypto operations. Internally, the
OpenSSL library would use the ARMCE instructions specific for Arm CPUs. For DPDK, this application uses the OpenSSL PMD
as its underlying driver.

This command requires support of OpenSSL package while building the DPDK applications. Refer this section of
this document, for details about toggling compilation of software crypto support, which includes the OpenSSL
driver.

 NOTE

In all the commands described below, -T 0 has been appended which disables output on the console/terminal.
This is important for performance reasons. Though, for debugging purposes or for knowing the number of packets
transacted, remove the arguments or set a higher value in seconds.

 NOTE

• Cipher_only

— For DPAA Platform

◦ 1 core: Depending on the platform being executed on, append the above blacklisting parameter to the end of this
command:

l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --chain CIPHER_ONLY --
cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x10 -T 0

◦ 2 core: Depending on the platform being executed on, append the above blacklisting parameter to the end of this
command:

l2fwd-crypto --vdev "crypto_openssl0" --vdev "crypto_openssl1" -c 0x6 -n 1 -- -p 0x3 -q 1
--chain CIPHER_ONLY --cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x30 -T 0

◦ 4 core: Depending on the platform being executed on, append the above blacklisting parameter to the end of this
command:

l2fwd-crypto --vdev "crypto_openssl0" --vdev "crypto_openssl1" --vdev "crypto_openssl2" --
vdev "crypto_openssl3" -c 0xf -n 1 -- -p 0xf -q 1 --chain CIPHER_ONLY --cipher_algo aes-

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 54 / 121

cbc --cipher_op ENCRYPT --cipher_key 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --
cryptodev_mask 0xF0 -T 0

— For DPAA2 Platform

◦ 1 core: Depending on the platform being executed on, append the above blacklisting parameter to the end of this
command:

l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --chain CIPHER_ONLY --
cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x100 -T 0

◦ 2 core: Depending on the platform being executed on, append the above blacklisting parameter to the end of this
command:

l2fwd-crypto --vdev "crypto_openssl0" --vdev "crypto_openssl1" -c 0x6 -n 1 -- -p 0x3 -q 1
--chain CIPHER_ONLY --cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x300 -T 0

◦ 4 core: Depending on the platform being executed on, append the above blacklisting parameter to the end of this
command:

l2fwd-crypto --vdev "crypto_openssl0" --vdev "crypto_openssl1" --vdev "crypto_openssl2" --
vdev "crypto_openssl3" -c 0xf -n 1 -- -p 0xf -q 1 --chain CIPHER_ONLY --cipher_algo aes-
cbc --cipher_op ENCRYPT --cipher_key 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --
cryptodev_mask 0xF00 -T 0

• Cipher_hash

— For DPAA Platform:

◦ 1 core: Append the above blacklisting parameter to the end of this command:

l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --chain CIPHER_HASH --
cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --auth_algo sha1-hmac --auth_op GENERATE --
cryptodev_mask 0x10 --auth_key_random_size 64 -T 0

— For DPAA2 Platform:

◦ 1 core: Append the above blacklisting parameter to the end of this command:

l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --chain CIPHER_HASH --
cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --auth_algo sha1-hmac --auth_op GENERATE --
cryptodev_mask 0x100 --auth_key_random_size 64 -T 0

In the above ccommands, for scaling to multiple cores or ports, toggle the -c and -p arguments as described above.

• Hash_cipher

— For DPAA Platform:

◦ 1 core: Append the above blacklisting parameter to the end of this command:

l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --chain HASH_CIPHER --
auth_algo sha1-hmac --auth_op GENERATE --cipher_algo aes-cbc --cipher_op ENCRYPT --
cipher_key 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x10 --
auth_key_random_size 64 -T 0

— For DPAA2 Platform:

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 55 / 121

◦ 1 core: Append the above blacklisting parameter to the end of this command:

l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --chain HASH_CIPHER --
auth_algo sha1-hmac --auth_op GENERATE --cipher_algo aes-cbc --cipher_op ENCRYPT --
cipher_key 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x100 --
auth_key_random_size 64 -T 0

In the above commands, for scaling to multiple cores or ports, toggle the -c and -p arguments.

• Hash_only

— For DPAA Platform:

◦ 1 core: Append the above blacklisting parameter to the end of this command:

l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --chain HASH_ONLY --
auth_algo sha1-hmac --auth_op GENERATE --cryptodev_mask 0x10 --auth_key_random_size 64 -T 0

— For DPAA2 Platform:

◦ 1 core: Append the above blacklisting parameter to the end of this command:

l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --chain HASH_ONLY --
auth_algo sha1-hmac --auth_op GENERATE --cryptodev_mask 0x100 --auth_key_random_size 64 -
T 0

— For scaling to multiple cores or ports, toggle the -c and -p arguments as described above.

For more information on L2fwd-crypto application, refer to L2 Forwarding with Crypto Sample Application

Example command to run l2fwd-crypto with openssl on LS1012ARDB (cipher only):

 NOTE

./l2fwd-crypto -c 0x1 --vdev='net_pfe0' --vdev='crypto_openssl' -n 1 -- -p 0x1 -q 1 --chain CIPHER_ONLY
--cipher_algo aes-cbc --cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f --cipher_op ENCRYPT
-T 0

ipsec-secgw – IPSec gateway using SEC hardware

For IPsec application, two DUTs need to be configured as endpoint 0 (ep0) and endpoint 1 (ep1). Assuming that endpoint
have 4 ports each:

• Connect Port 1 and Port 3 of the ep0 and ep1 to each other (back-to-back).

• Connect Port 0 and Port 2 of the ep0 and ep1 to packet generator (for example, Spirent).

The Stream generated by packet generator needs to have IP addresses in following pattern:

EP0:
 port 0: 32 flows with destination IP: 192.168.1.XXX,
192.168.2.XXX, ,192.168.31.XXX,192.168.32.XXX
 port 2: 32 flows with destination IP: 192.168.33.XXX,
192.168.34.XXX, ,192.168.63.XXX,192.168.64.XXX
EP1:
 port 0: 32 flows with destination IP: 192.168.101.XXX,
192.168.102.XXX, ,192.168.131.XXX,192.168.132.XXX
 port 2: 32 flows with destination IP: 192.168.133.XXX,
192.168.134.XXX, ,192.168.163.XXX,192.168.164.XXX

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 56 / 121

http://doc.dpdk.org/guides-19.11/sample_app_ug/l2_forward_crypto.html

Above represents default configurations for the endpoints in ep0_64X64.cfg and ep1_64X64.cfg. Custom port mappings,
SA/SP, and the routes can be configured in the corresponding configuration files, ep0.cfg and ep1.cfg, for respective endpoint.
These files are available in Yocto generated rootfs. For more details, see this table.

For more information, see IPsec Security Gateway Sample Application.

Endpoint 0 (ep0) configuration:

ipsec-secgw -c 0xf -n 1 -- -p 0xf -P -u 0xa --config="(0,0,0),(1,0,1),(2,0,2),(3,0,3)" -f ep0_64X64.cfg

Endpoint 1 (ep1) configuration:

ipsec-secgw -c 0xf -n 1 -- -p 0xf -P -u 0xa --config="(0,0,0),(1,0,1),(2,0,2),(3,0,3)" -f ep1_64X64.cfg

For LS1028, --iova-mode=pa should also be added as command line parameter.

 NOTE

Running IPSec gateway application with hardware protocol offload

The DPAA/DPAA2 SEC hardware also support IPSec protocol offload. The command and configurations are exactly same except
the cfg files. For protocol offload, the cfg files are ep0_64X64_proto.cfg and ep1_64X64_proto.cfg. Performance with protocol
offload would be much better than the standard case. In case of platforms which have 8 cores, the command for 8 core will also
be exactly same as non-offload case, except the name of the cfg files.

Endpoint 0 (ep0) configuration:

ipsec-secgw -c 0xf -n 1 -- -p 0xf -P -u 0xa --config="(0,0,0),(1,0,1),(2,0,2),(3,0,3)" -f
ep0_64X64_proto.cfg

Endpoint 1 (ep1) configuration:

ipsec-secgw -c 0xf -n 1 -- -p 0xf -P -u 0xa --config="(0,0,0),(1,0,1),(2,0,2),(3,0,3)" -f
ep1_64X64_proto.cfg

For LS1028, --iova-mode=pa should also be added as command line parameter.

 NOTE

Running IPSec gateway application with 8 cores

For running IPsec application with multiple queues using 64X64 tunnels and with 8 cores, following command and configuration
needs to be done:

Endpoint 0 (ep0) configuration: Sample configuration for this is available in ep0_64X64.cfg file available in /usr/share/dpdk/
dpaa2/ folder in root filesystem.

ipsec-secgw -c 0xFF -n 1 -- -p 0xf -P -u 0xa --config="(0,0,0),(0,1,1),(1,0,2),(1,1,3),(2,0,4),(2,1,5),
(3,0,6),(3,1,7)" -f ep0_64X64.cfg

Endpoint 1 (ep1) configuration: Sample configuration for this is available in ep1_64X64.cfg file available in /usr/share/dpdk/
dpaa2/ folder in root filesystem.

ipsec-secgw -c 0xFF -n 1 -- -p 0xf -P -u 0xa --config="(0,0,0),(0,1,1),(1,0,2),(1,1,3),(2,0,4),(2,1,5),
(3,0,6),(3,1,7)" -f ep1_64X64.cfg

Running IPSec gateway application with 16 cores on LX2 platform

For running IPsec application with multiple queues using 64X64 tunnels and with 16 cores, following command and configuration
needs to be done:

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 57 / 121

http://doc.dpdk.org/guides-19.11/sample_app_ug/ipsec_secgw.html

Endpoint 0 (ep0) configuration: Sample configuration for this is available in ep0_64X64_sha256_proto.cfg file available in /usr/
share/dpdk/dpaa2/ folder in root filesystem.

./ipsec-secgw -c 0xFFFF -n 1 -- -p 0xf -P -u 0xa --config="(0,0,0),(0,1,1),(0,2,2),(0,3,3),(1,0,4),
(1,1,5),(1,2,6),(1,3,7),(2,0,8),(2,1,9),(2,2,10),(2,3,11),(3,0,12),(3,1,13),(3,2,14),(3,3,15)" -f
ep0_64X64_sha256_proto.cfg

Endpoint 1 (ep1) configuration: Sample configuration for this is available in ep1_64X64_sha256_proto.cfg file available in /usr/
share/dpdk/dpaa2/ folder in root filesystem.

./ipsec-secgw -c 0xFFFF -n 1 -- -p 0xf -P -u 0xa --config="(0,0,0),(0,1,1),(0,2,2),(0,3,3),(1,0,4),
(1,1,5),(1,2,6),(1,3,7),(2,0,8),(2,1,9),(2,2,10),(2,3,11),(3,0,12),(3,1,13),(3,2,14),(3,3,15)" -f
ep1_64X64_sha256_proto.cfg

IPSec-secgw – IPSec gateway using OpenSSL PMD

The command, flow stream and port configuration is similar to the ipsec-secgw – IPSec gateway using SEC hardware command,
flow stream and port configuration, except that it uses OpenSSL PMD for crypto operations. Internally, the OpenSSL PMD uses
the ARMCE instructions for the Arm CPUs for performaning crypto operations.

• For DPAA Platform:

— Endpoint 0 configuration

ipsec-secgw -c 0xf -n 1 --vdev "crypto_openssl" -- -p 0xf -P -u 0xa --config="(0,0,0),(1,0,1),
(2,0,2),(3,0,3)" --cryptodev_mask 0x10 -f ep0_64X64.cfg

Endpoint 1 configuration

ipsec-secgw -c 0xf -n 1 --vdev "crypto_openssl" -- -p 0xf -P -u 0xa --config="(0,0,0),(1,0,1),
(2,0,2),(3,0,3)" --cryptodev_mask 0x10 -f ep1_64X64.cfg

• For DPAA2 Platform:

— Endpoint 0 configuration

ipsec-secgw -c 0xf -n 1 --vdev "crypto_openssl" -- -p 0xf -P -u 0xa --config="(0,0,0),(1,0,1),
(2,0,2),(3,0,3)" --cryptodev_mask 0x100 -f ep0_64X64.cfg

Endpoint 1 configuration

ipsec-secgw -c 0xf -n 1 --vdev "crypto_openssl" -- -p 0xf -P -u 0xa --config="(0,0,0),(1,0,1),
(2,0,2),(3,0,3)" --cryptodev_mask 0x100 -f ep1_64X64.cfg

Example command to run ipsec-secgw with openssl on LS1012ARDB:

./ipsec-secgw -c 0x1 -n 1 --vdev='net_pfe0' --vdev='net_pfe1' --
vdev='crypto_openssl' -- -p 0x3 -P -u 0x2 --config="(0,0,0),(1,0,0)" -f
ep0_64X64.cfg

 NOTE

KNI - Using Kernel Network Interface Module

The Kernel NIC Interface (KNI) is a DPDK control plane solution that allows userspace applications to exchange packets with
the kernel networking stack. For details please refer: http://dpdk.org/doc/guides/sample_app_ug/kernel_nic_interface.html

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 58 / 121

http://dpdk.org/doc/guides/sample_app_ug/kernel_nic_interface.html

Loading the KNI kernel module without any parameter. By default only one kernel thread is created for all KNI devices for packet
receiving in kernel side:

#insmod rte_kni.ko

Affine the kni task to a single core, for example, core number #1:

#taskset -pc 1 `pgrep -fl kni_single | awk '{print $1}'`

Run the kni application:

Command syntax:

kni [EAL options] -- -P -p PORTMASK --config="(port,lcore_rx,lcore_tx[,lcore_kthread,..])
[,port,lcore_rx,lcore_tx[,lcore_kthread,..]]"

Command used:

./kni -c 0xf -n 1 -- -p 0x3 -P --config="(0,0,1),(1,2,3)"

where config is port, kni lcore Rx core, or kni lcore Tx core.

Each core can either do Tx or Rx for one port only.

 NOTE

On another console, check the interfaces with:

#ifconfig -a

Enable the given interface and assign IP address (if any).

QDMA demo application (DPAA2 only)

qdma_demo application is not available as default in the LSDK rootfs. For compiling this application, refer
Compiling DPDK Example Applications

 NOTE

On DPAA2, DPDMAI block provides a generic DMA capability which has been exposed by DPDK for its application to use. qdma-
demo application in DPDK is a demonstration application which does a memory-to-memory or memory to pci memory or pci
memory to memory transaction using this QDMA block. It can be executed in following manner:

• For MEM-to MEM use case, run below command.

qdma_demo -c 0x3 -- --packet_size=512 --test_case=mem_to_mem

qdma_demo requires more than 1 core to perform because it consumes at least one core for printing the output.
Please refere to examples/qdma_demo/readme in dpdk source code for more details on usages.

 NOTE

This would print to screen an output similar to:

Time Spend :4000.005 ms rcvd cnt:1310720 pkt_cnt:0
Rate: 1342.176 Mbps OR 327.680 Kpps
processed on core 7 pkt cnt: 1310720

This output demonstrates the count of memory chunks which have been moved through QDMA block by the application. It also
shows the time spent and the performance achieved, and packets sent per-core.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 59 / 121

• For PCI-to-MEM and MEM-to-PCI, run following commands

End Point steps

1. If LX2-EP PCI card, boot it to u-boot prompt only

2. For standard PCI NIC card - nothing needs to be done.

HOST - LX2 Root complex steps

1. Boot LX2 to Linux prompt

2. run 'lspci -v' to check the address of BAR whose memory is targeted memory for test

$ lspci -v
 0000:01:00.0 Ethernet controller: Intel Corporation 82574L Gigabit Network Connection
 Subsystem: Intel Corporation Gigabit CT Desktop Adapter
 Flags: bus master, fast devsel, latency 0, IRQ 106
 Memory at 30460c0000 (32-bit, non-prefetchable) [size=128K]
 Memory at 3046000000 (32-bit, non-prefetchable) [size=512K]
 I/O ports at 1000 [disabled] [size=32]
 Memory at 30460e0000 (32-bit, non-prefetchable) [size=16K]
 Expansion ROM at 3046080000 [disabled] [size=256K]
Kernel driver in use: e1000e

3. Assign PCI device to userspace

- load the UIO module, if not loaded already

#modprobe uio_pci_generic

- assign the device to userspace

#/usr/share/dpdk/usertools/dpdk-devbind.py --bind=uio_pci_generic 0000:01:00.1

4. Run qdma_demo application

At least 2 cores are required to run the test, one core is used for printing results/stats, other cores for running test.

 NOTE

$export DPDMAI_COUNT=48
$./dynamic_dpl.sh dpmac.3
$export DPRC=dprc.2

mem to pci (using a Gen2-x1 - 1G PCI NIC)

 $./qdma_demo -c 0x81 -- --pci_addr=0x3046000000 --packet_size=512 --test_case=mem_to_pci

The current QDMA demo code read/write only 4KB area, that yield best bandwidth number. To test read/write big
memory size, you can optionally pass --pci_size (size in byte) e.g for 2MB PCI use: --
pci_size=2147483648. Add "--latency_test" for testing latency

 NOTE

Pktgen – DPDK based software packet generator

Pktgen is a software packet generator based on DPDK. Refer DPDK based Packet Generator for steps required for building
Pktgen.

All the commands below assume that Pktgen application is either executed from current folder or appropriate path environment
variable has been set.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 60 / 121

1. 3 Port, 1 Core each

pktgen -l 0-3 -n 1 --proc-type auto --file-prefix pg --log-level 8 -- -T -P -m "[1].0, [2].1,
[3].2"

2. 1 Port, 2 Core

pktgen -l 0-3 -n 1 --proc-type auto --file-prefix pg --log-level 8 -- -T -P -m "[1:2].0"

3. To start or stop traffic on a specific port:

start 0 # start <port number>
stop 0 # stop <port number>

4. To start or stop traffic on all ports:

str
stp

9.1.4.4 Command interface (CMDIF) demo application

DPDK based Command interface (CMDIF) demo application demonstrates the communication between GPP and AIOP using
DPDK API’s and Command Interface library. Command Interface library is provided as a lib module within examples/cmdif/
(examples/cmdif/lib/librte_cmdif.a).

This application requires a corresponding process running on AIOP core/s, which will read and respond to CMDIF application.
CMDIF application is only supported on DPAA2 which will have AIOP.

.

Include the library librte_cmdif.a, when you are writing an application over DPAA2 CMDIF based raw device.

 NOTE

The application verifies the following:

1. CMDIF client (where GPP is the client and AIOP is the server)

2. CMDIF server (where GPP is the server and AIOP is the client)

CMDIF Client (GPP is client)

In the CMDIF client, the GPP is the client and the AIOP is the server. Requests are initiated by the GPP and are sent to the AIOP
core. The AIOP responds back with the response.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 61 / 121

The CMDIF client (demo) is responsible for the following:

• Opens a CI communication channel using a single DPCI device, defined in container used by application

• Sends multiple messages from GPP to AIOP using synchronous commands

• Sends and receive response for multiple messages from GPP to AIOP using asynchronous commands

• Application Validates the response received from the AIOP Server application and prints the result on console

• Closes the opened CI communication channels

CMDIF Server (GPP is server)

In the CMDIF server, the GPP is the server and the AIOP is the client. Requests are initiated by the AIOP and are sent to the
GPP core. The GPP responds back to the AIOP with success or error.

The CMDIF server (demo) is responsible for the following:

• Registers the server module

• Opens the Sever session

• Initiates the client open on the AIOP client

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 62 / 121

• Receives requests/commands from the AIOP

• Closes the server session

• Unregisters the module

Running demo application

The demo application showcases only a single thread or core use-case, thus supporting the coremask with single core.

dynamic_dpl.sh is not required to run along with cmdif_demo.

 NOTE

Executing demo application example also requires the following:

• Running dynamic_AIOP_dpl.sh (instead of dynamic_dpl.sh)

• Loading the cmdif_integ_dbg.elf (provided in AIOPSL - https://github.com/qoriq-open-source/aiopsl/tree/integration/
demos/images) using the aiop_tool which needs to run in background.

For example:

./dynamic_AIOP_dpl.sh
export DPRC = > dprc container created for GPP<
aiop_tool load -g dprc.3 -f cmdif_integ_dbg.elf &
cmdif_demo -c 0x2

Description about the command:

• dynamic_AIOP_dpl.sh – creates three containers

— First one for the AIOP

— Second one for the aiop_tool which loads the AIOP FW

— Third one for DPDK’s use (Use this container name as $DPRC export variable)

• The -c option enables cores 2

Expected output

The application should print below logs on console in case of CMDIF client:

• PASSED open commands

• PASSED synchronous send commands

• PASSED asynchronous send/receive commands

• PASSED: close commands

Also, verify that application prints below logs in console in case of CMDIF server:

• PASSED cmdif session open

• PASSED sync command

• PASSED Async commands

• PASSED Isolation context test

• PASSED cmdif session close

9.1.5 OVS-DPDK and DPDK in VM with VIRTIO Interfaces
DPDK example and DPDK-based applications can also run inside the virtual machine. This section describes steps to run these
applications inside the virtual machine on both DPAA and DPAA2 platforms.

The virtual machine runs inside the host Linux system and is launched by an application called QEMU.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 63 / 121

https://github.com/qoriq-open-source/aiopsl/tree/integration/demos/images
https://github.com/qoriq-open-source/aiopsl/tree/integration/demos/images

While using the virtual machine, the console logs for the guest Linux do not appear on the host Linux console (i.e
UART). The guest logs are exposed through telnet, and they can be accessed by doing telnet on the host
board's IP Address (IP_ADDR_BRD) and GUEST_CONSOLE_TELNET_PORT. Each Virtual machine that is run on
a single host is allocated a different GUEST_CONSOLE_TELNET_PORT, and this port number is specified by user
running virtual machine through the QEMU command line.

 NOTE

Following is the layout of the sub-sections of this chapter:

• Generic steps describing steps required for QEMU setup for both, DPAA and DPAA2 platforms.

• Configuring OVS describing steps necessary to launch OVS-DPDK on the host machine for switching traffic between VMs
and external network.

• Various sections for lauching a virtual machine and executing a DPDK application:

— Launch Virtual Machine for launching a virtual machine.

— Accessing virtual machine console for accessing a virtual machine console from a network connected machine over
telnet.

— Launching two virtual machines for launching more than one virtual machine.

— Running DPDK applications in VM for running DPDK applications in the virtual machine.

• Multi Queue VIRTIO support describes steps for DPDK application using multiple queues.

9.1.5.1 Generic steps

See QEMU for detailed information about deploying virtual machines using KVM/QEMU on Layerscape boards.

The reference above serves as base for deploying Virtual Machines and DPDK application in them. All following sections assume
that kernel image and virtual machine rootfs is available with DPDK sample application images in it.

Give IP Address to the board so that virtual machine consoile can be accessed using telnet.

ifconfig eth<x> <IP_ADDR_BRD>

 NOTE

9.1.5.2 Configuring OVS

OVS-DPDK application binary and configuration files are available in the /usr/bin/ovs-dpdk/ folder in the Yocto generated
rootfs.

It is assumed that before executing command snippets in this section, necessary steps mentioned in Generic steps have already
been executed.

Command snippets below assume that commands are executed while being present in /usr/bin/ovs-dpdk/
folder. Or, appropriate PATH variable has been set. As the OVS commands are spread across multiple folder, each
command snippet also shows the location of these binaries relative to above folder.

 NOTE

Command snippets below assume that commands are executed while being present in this folder or appropriate PATH variable
has been set.

OVS is used as a back-end for VHOST USER ports. The physical ports on the target platform and the vhost user ports (virtio
devices) are added to ovs-vswitch and the flows in OVS are programmed so as to establish traffic switching between physical
ports and vhost devices as follows:

• Incoming traffic Physical port1 => output to vhost-user port 1

• Incoming traffic on vhost-user port1 => output on physical port 1

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 64 / 121

• Incoming traffic on physical port 2 => output on vhost-user port 2

• Incoming traffic on vhost-user port 2 => output on physical port 2

The following steps must be followed to setup OVS as vhost switching back-end:

1. Reset the OVS environment.

pkill -9 ovs

rm /usr/local/etc/openvswitch/conf.db

rm -rf /usr/local/var/run/openvswitch/vhost-user-1

rm -rf /usr/local/var/run/openvswitch/vhost-user-2

2. Specify the initial Open vSwitch (OVS) database to use:

mkdir -p /usr/local/etc/openvswitch # If the folder doesn't already exist

mkdir -p /var/log/openvswitch # to ensure that OVS logging can be done

mkdir -p /usr/local/var/run/openvswitch

cd /usr/bin/ovs-dpdk/
./ovsdb-tool create /usr/local/etc/openvswitch/conf.db ./vswitch.ovsschema

./ovsdb-server --remote=punix:/usr/local/var/run/openvswitch/db.sock --
remote=db:Open_vSwitch,Open_vSwitch,manager_options --pidfile=/tmp/ovsdb-server.pid --detach --
log-file=/var/log/openvswitch/ovs-vswitchd.log

export DB_SOCK=/usr/local/var/run/openvswitch/db.sock

3. Configure the OVS to support DPDK ports:

./ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-init=true

4. Configure OVS to work with memory backed by hugepages:

• For DPAA platform: Configure OVS to work with 200M memory backed by hugepages:

export SOCK_MEM=200
./ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-socket-mem="$SOCK_MEM"

• For DPAA2 platform: Configure OVS to work with 1G (1024M) memory backed by hugepages:

export SOCK_MEM=1024
./ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-socket-mem="$SOCK_MEM"

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 65 / 121

5. Define Cores for OVS Operations

export OVS_SERVICE_MASK=0x1
export OVS_CORE_MASK=0x6

./ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-lcore-mask=$OVS_SERVICE_MASK

./ovs-vsctl --no-wait set Open_vSwitch . other_config:pmd-cpu-mask=$OVS_CORE_MASK

OVS_CORE_MASK should be chosen such as to not include Core 0. OVS_SERVICE_MASK should be any core which
is not already assigned to OVS_CORE_MASK. This way, OVS services threads (defined by OVS_SERVICE_MASK)
will not compete for CPU scheduling with OVS I/O threads (OVS_CORE_MASK). OVS_SERVICE_MASK can be set
to Core 0 as defined in example abov

 NOTE

6. Set Exact Match Cache (EMC) Insertion probability to 1 so that cache insertion is performed for every flow.

$ ovs-vsctl --no-wait set Open_vSwitch . other_config:emc-insert-inv-prob=1

7. Start the ovs-vswitchd daemon:

./ovs-vswitchd unix:$DB_SOCK --pidfile --detach

--detach option makes the daemon run in background. If this option is given same shell can be used to run
further commands, otherwise ssh to the target board and run further commands. Each time you reboot or there is
an OVS termination, you need to rebuild the OVS environment and repeat steps 1-6 of this section

 NOTE

8. Create an OVS bridge.

./ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev

9. Create DPDK port

For creating DPDK ports with OVS, platform specific port information needs to be provided to OVS.

• ./ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk options:dpdk-devargs=dpni.1

./ovs-vsctl add-port br0 dpdk1 -- set Interface dpdk1 type=dpdk options:dpdk-devargs=dpni.2

Above commands attach the DPAA2 ports dpni.1 and dpni.2 with OVS. In case different ports are required, above
command should be modified accordingly.

For DPAA ports, replace dpni.X with fm1-macX. For example, options:dpdk-devargs=fm1-mac3.

 NOTE

Another way to pass device names to OVS is to pass along with bus name. For example, for FSLMC/DPAA2
devices, options:dpdk-devargs=fslmc:dpni.1 can be used. For DPAA1, options:dpdk-
devargs=dpaa:fm1-mac3 can be used. DPDK would be able to parse either naming style, whether provided
with bus name or without.

 NOTE

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 66 / 121

10. Create vhost-user port

./ovs-vsctl add-port br0 vhost-user1 -- set Interface vhost-user1 type=dpdkvhostuser

./ovs-vsctl add-port br0 vhost-user2 -- set Interface vhost-user2 type=dpdkvhostuser

11. Commands to Configure Multi Queues

 ./ovs-vsctl set Interface dpdk0 options:n_rxq=4
 ./ovs-vsctl set Interface dpdk1 options:n_rxq=4
 ./ovs-vsctl set Interface dpdk0 options:n_txq=4
 ./ovs-vsctl set Interface dpdk1 options:n_txq=4

The above commands are required only in case of multi-queue use case(Four queues been used in above
reference commands). For single queue mode no commands needed as OVS by default configures single queue.

 NOTE

12. Delete OVS flow

./ovs-ofctl del-flows br0

13. Set OVS flow rules for external-to-external path:

The commands below configure a hard-coded bi-directional data path between Port 1 and Port 2. Use this step
only for OVS external-to-external testing. For OVS Host-to-VM configuration, skip and continue with next step.

 NOTE

./ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=1,actions=output:2

./ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=2,actions=output:1

14. Set OVS flow rules between Host to VM:

The steps below configure OVS such that Port 1 <=> Port 3 and Port 2 <=> Port 4 are connected to
each other. If a different configuration is required, the commands below should be altered as well as VM
configurations.

 NOTE

./ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=1,actions=output:3

./ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=3,actions=output:1

./ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=2,actions=output:4

./ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=4,actions=output:2

OVS Switch (ovs-vswitchd) must be run before launching the virtual machine using QEMU, otherwise the virtual
machine launch will fail.

 NOTE

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 67 / 121

15. Run the following command to enable emc-cache lookups in OVS. This helps in enhancing the lookup speed to ensure
better performance.

./ovs-vsctl --no-wait set Open_vSwitch . other_config:emc-insert-inv-prob=1

16. Verify the Flows inserted:

./ovs-ofctl dump-flows br0

Performance of OVS is highly dependent on the use-case - which includes the configuration of flows, the flows
being pumped, SMC or EMC configuration etc. It is important to analyze these dependencies before performance
measurement or benchmarking can be done. For performance benchmarking it is preferred that 256 flows are
configured in the environment. Distribution (RSS) maybe impacted when number of flows are low; at the same
time, if higher number of flows are used it would impact the cache usage.

 NOTE

9.1.5.3 Launch Virtual Machine

This section describes necessary environment setup and commands for launching a Virtual Machine (VM).

It is assumed that before executing command snippets in this section, necessary steps mentioned in Generic steps and
Configuring OVS have already been executed.

Setup the environment

For accessing the VM, telnet is used. This environment variable defines the telnet port to be used.

export GUEST_CONSOLE_TELNET_PORT=4446 # Telnet port to be used for accessing the virtual machine

export ROOTFS_IMG=<VM_ROOTFS_IMG>

Define other environment variables which are used by the QEMU command to configure the virtual machine environment:

export VM_MEM=2048M
export VM_CORES=2
export NUM_QUEUES=1

• VM_CORES are the number of cores to reserve for the virtual machine operation.

 NOTE

Export the following paths:

export VHOST1_PATH=/usr/local/var/run/openvswitch/vhost-user1
export VHOST2_PATH=/usr/local/var/run/openvswitch/vhost-user2

Launch QEMU and virtual machine

Launch the QEMU emulator using the following command.

qemu-system-aarch64 -nographic -object memory-backend-file,id=mem,size=$VM_MEM,mem-path=/mnt/
hugepages,share=on -cpu host -machine type=virt -kernel /boot/Image -enable-kvm -serial
tcp::$GUEST_CONSOLE_TELNET_PORT,server,telnet -append 'root=/dev/vda rw console=ttyAMA0,115200
rootwait earlyprintk' -m $VM_MEM -numa node,memdev=mem -chardev socket,id=char1,path=$VHOST1_PATH -
netdev type=vhost-user,id=hostnet1,chardev=char1,vhostforce,queues=$NUM_QUEUES -device virtio-net-
pci,disable-modern=false,addr=0x3,netdev=hostnet1,id=net1,mrg_rxbuf=off -chardev socket,id=char2,path=
$VHOST2_PATH -netdev type=vhost-user,id=hostnet2,chardev=char2,vhostforce,queues=$NUM_QUEUES -device
virtio-net-pci,disable-modern=false,addr=0x4,netdev=hostnet2,id=net2,mrg_rxbuf=off -smp $VM_CORES -S -
drive if=none,file=$ROOTFS_IMG,id=foo,format=raw -device virtio-blk-device,drive=foo

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 68 / 121

For best performance, Core 0 in the VM should not be used for DPDK I/O threads.

Also, to avoid system services from using GPUs scheduled for DPDK I/O threads, it is recommended that
isolcpus be used for isolating cores from Linux Kernel scheduling in VM. The exact configuration is dependent
on number of CPU assigned by QEMU to VM using the VM_CORES environment variable.

Append isolcpus=1-$VM_CORES to the 'root=/dev/vda rw console=ttyAMA0,115200 rootwait
earlyprintk' string in the qemu-system-aarch64 command given above.

 NOTE

Extra care should be taken for value assigned to mem-path variable. It should point to a valid mounted hugepage
filesystem. In case the value assigned to mem-path is not a valid hugepage filesystem, Qemu would create a
mmap'd file for its work which might negatively impact performance.

 NOTE

Following logs will appear on the host UART console:

QEMU 2.11.1 monitor - type 'help' for more information
(qemu) QEMU waiting for connection on: disconnected:telnet::4446,server

Complete QEMU logs are visible only when telnet is used for logging into the guest machine, as described in
Accessing virtual machine console.

 NOTE

The –S option mentioned in the qemu command stops the virtual machine bootup after initial setup. Run the info cpus command
on QEMU CLI interface to see the QEMU threads.

(qemu) info cpus
* CPU #0: thread_id=2559
 CPU #1: (halted) thread_id=2560

SSH on the board (telnet to IP address IP_ADDR_BRD) from other console and affine the threads to the cores using the taskset
command:

taskset -p 0x4 <tid1>
taskset -p 0x8 <tid1>

It is recommended to affine the VCPUs to the cores on which OVS threads are not running. For better performance
VCPU threads should be given one physical CPU each if possible.

 NOTE

Run the c command from the QEMU CLI to continue the VM boot-up:

(qemu) c

9.1.5.4 Launching two virtual machines

This section describes steps for launching 2 virtual machine simultaenously for multiple VM use case.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 69 / 121

• Memory assigned to each virtual machine should not exceed the total number of huge pages assigned on

system. In following example, 2048Mb to each virtual machine has been specified and verified to be working
correctly.

• Console telnet port of both virtual machine must be different. In the below example, VM1 has port 4446
and VM2 has port 4447 configured for telnet. Modify the command accordingly if different values are
required.

 NOTE

Launch VM1:

qemu-system-aarch64 -nographic -object memory-backend-file,id=mem,size=$VM_MEM,mem-path=/mnt/
hugepages,share=on -cpu host -machine type=virt -kernel /boot/Image -enable-kvm -serial
tcp::4446,server,telnet -append 'root=/dev/vda rw console=ttyAMA0,115200 rootwait earlyprintk' -m
$VM_MEM -numa node,memdev=mem -chardev socket,id=char1,path=$VHOST1_PATH -netdev type=vhost-
user,id=hostnet1,chardev=char1,vhostforce,queues=$NUM_QUEUES -device virtio-net-pci,disable-
modern=false,addr=0x3,netdev=hostnet1,id=net1,mrg_rxbuf=off -chardev socket,id=char2,path=
$VHOST2_PATH -netdev type=vhost-user,id=hostnet2,chardev=char2,vhostforce,queues=$NUM_QUEUES -device
virtio-net-pci,disable-modern=false,addr=0x4,netdev=hostnet2,id=net2,mrg_rxbuf=off -smp $VM_CORES -S -
drive if=none,file=$ROOTFS_IMG,id=foo,format=raw -device virtio-blk-device,drive=foo

Launch VM2:

qemu-system-aarch64 -nographic -object memory-backend-file,id=mem,size=$VM_MEM,mem-path=/mnt/
hugepages,share=on -cpu host -machine type=virt -kernel /boot/Image -enable-kvm -serial
tcp::4447,server,telnet -append 'root=/dev/vda rw console=ttyAMA0,115200 rootwait earlyprintk' -m
$VM_MEM -numa node,memdev=mem -chardev socket,id=char1,path=$VHOST1_PATH -netdev type=vhost-
user,id=hostnet1,chardev=char1,vhostforce,queues=$NUM_QUEUES -device virtio-net-pci,disable-
modern=false,addr=0x3,netdev=hostnet1,id=net1,mrg_rxbuf=off -chardev socket,id=char2,path=
$VHOST2_PATH -netdev type=vhost-user,id=hostnet2,chardev=char2,vhostforce,queues=$NUM_QUEUES -device
virtio-net-pci,disable-modern=false,addr=0x4,netdev=hostnet2,id=net2,mrg_rxbuf=off -smp $VM_CORES -S -
drive if=none,file=$ROOTFS_IMG,id=foo,format=raw -device virtio-blk-device,drive=foo

9.1.5.5 Running DPDK applications in VM

All the DPDK applications mentioned in this section have been tested in following configuration:

• Two Physical network interfaces.

• Two virtio-net devices in the virtual machine.

Following figure illustrates the test setup.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 70 / 121

Figure 18. DPDK virtionet test setup

Generic setup

DPDK example application binaries are available in the /usr/share/dpdk/examples folder in the Yocto generated rootfs.

• Set up Hugepages:

mkdir /dev/hugepages
mount -t hugetlbfs none /dev/hugepages
echo 512 > /proc/sys/vm/nr_hugepages ; for dpaa1 change change size as 256

For the below commands, it is assumed that they are executed from /usr/share folder. Modify the commands
for different path or PATH variable configuration.

 NOTE

• Set up the devices using DPDK scripts:

/usr/share/usertools/dpdk-devbind.py --status
/usr/share/usertools/dpdk-devbind.py -b uio_pci_generic 0000:00:03.0
/usr/share/usertools/dpdk-devbind.py -b uio_pci_generic 0000:00:04.0

Run DPDK applications

Using Core 0 for DPDK application can lead to non-deterministic behavior, including drop in performance. It is
recommended that DPDK applicaton core mask values avoid using Core 0.

 NOTE

l3fwd cannot work in VM with Virtio interfaces as offload mode for IP protocol is not supported by the DPDK Virtio
driver.

 NOTE

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 71 / 121

VM virtio is only functionally enabled and the performance is not comparable to the performance that we get on
host.

 NOTE

Executing l2fwd application:

bin/l2fwd -c 0x2 -n 1 -- -p 0x1 -q 1 -T 0

Executing testpmd application:

• For Tx only:

./bin/testpmd -c 0x3 -n 1 -- -i --nb-cores=1 --portmask=0x1 --nb-ports=1 --forward-mode=txonly --
disable-hw-vlan --port-topology=chained

• For Rx only:

./bin/testpmd -c 0x3 -n 1 -- -i --nb-cores=1 --portmask=0x1 --nb-ports=1 --forward-mode=rxonly --
disable-hw-vlan --port-topology=chained

9.1.5.6 Multi Queue VIRTIO support

To scale the performance against the number of VM cores, the VIRTIO devices need to be configured with multiple queues. This
section explains the steps required for setup multi queue VIRTIO devices.

See Generic Setup of DPAA platform including configuration necessary for defining multiple queues before DPDK application is
executed. No special setup is required for DPAA2 before DPDK application start. Further, refer Configuring OVS for setting OVS-
DPDK on the host. Steps defined below build upon the configurations and steps provided in these sections for multiqueue support.

QEMU commands for multiqueue vhost devices are different and are shown later in the section.

Additional steps for setup of OVS

Besides the steps mentioned in Configuring OVS, following changes are required to modify the number of supported queues in
the virtual machine.

Run following commands after adding DPDK and vhost-user ports to the bridge:

./ovs-vsctl set Interface dpdk0 options:n_rxq=2

./ovs-vsctl set Interface dpdk1 options:n_rxq=2

./ovs-vsctl set Interface dpdk0 options:n_txq=2

./ovs-vsctl set Interface dpdk1 options:n_txq=2

./ovs-vsctl set Interface vhost-user1 options:n_rxq=2

./ovs-vsctl set Interface vhost-user2 options:n_rxq=2

./ovs-vsctl set Interface vhost-user1 options:n_txq=2

./ovs-vsctl set Interface vhost-user2 options:n_txq=2

Launch VM with multiqueue VHOST devices

Similar to the steps mentioned in Launch Virtual Machine, following steps are required to start the virtual machine. Changes are
highlighted with bold:

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 72 / 121

Command snippets shown below are valid for DPAA2 platform. Replace dpaa2 with dpaa for equivalent command
on DPAA platform.

 NOTE

export GUEST_CONSOLE_TELNET_PORT=4446
export VM_MEM=2048M # For DPAA1 use VM_MEM=650M
export VM_CORES=2

export NUM_QUEUES=2

export ROOTFS_IMG=<VM_ROOTFS_IMG>

export VHOST1_PATH=/usr/local/var/run/openvswitch/vhost-user1
export VHOST2_PATH=/usr/local/var/run/openvswitch/vhost-user2

qemu-system-aarch64 -nographic -object memory-backend-file,id=mem,size=$VM_MEM,mem-path=/mnt/
hugepages,share=on -cpu host -machine type=virt -kernel /boot/Image -enable-kvm -serial
tcp::$GUEST_CONSOLE_TELNET_PORT,server,telnet -append 'root=/dev/vda rw console=ttyAMA0,115200
rootwait earlyprintk' -m $VM_MEM -numa node,memdev=mem -chardev socket,id=char1,path=$VHOST1_PATH -
netdev type=vhost-user,id=hostnet1,chardev=char1,vhostforce,queues=$NUM_QUEUES -device virtio-net-
pci,disable-modern=false,addr=0x3,netdev=hostnet1,mq=on,id=net1,mrg_rxbuf=off,vectors=6 -chardev
socket,id=char2,path=$VHOST2_PATH -netdev type=vhost-user,id=hostnet2,chardev=char2,vhostforce,queues=
$NUM_QUEUES -device virtio-net-pci,disable-
modern=false,addr=0x4,netdev=hostnet2,mq=on,id=net2,mrg_rxbuf=off,vectors=6 -smp $VM_CORES -S -drive
if=none,file=$ROOTFS_IMG,id=foo,format=raw -device virtio-blk-device,drive=foo

DPDK applications in VM

Connect to VM terminal as explained in Accessing virtual machine console. Once logged-in as Guest, DPDK applications using
multiple queues can be run in VM.

If the number of queues defined for DPDK application in VM is not equal to number of queues (NUM_QUEUES)
defined in QEMU command, the application may fail to start.

 NOTE

For the below commands, it is assumed that they are executed from /usr/share folder. Modify the commands
for different path or PATH variable configuration.

 NOTE

Besides the above steps, all steps are same as described in single queue VM usecase.

Set up the devices using DPDK scripts:

/usr/share/usertools/dpdk-devbind.py --status

/usr/share/usertools/dpdk-devbind.py -b uio_pci_generic 0000:00:03.0

/usr/share/usertools/dpdk-devbind.py -b uio_pci_generic 0000:00:04.0

Execute l3fwd application:

./examples/l3fwd -c 0x3 -n 1 -- -p 0x3 --config="(0,0,0),(0,1,0),(1,0,1),(1,1,1)" -P --parse-ptype

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 73 / 121

Execute testpmd application:

./bin/testpmd -c 3 -n 1 -- -i --nb-cores=1 --nb-ports=1 --total-num-mbufs=1025 --forward-mode=txonly --
disable-hw-vlan --rxq=2 --txq=2 --port-topology=chained

9.1.5.6.1 Accessing virtual machine console

Telnet to the IP_ADDR_BRD at port GUEST_CONSOLE_PORT from any machine, which can reach IP_ADDR_BRD over network:

telnet 192.168.1.141 4446
Trying 192.168.1.141...
Connected to 192.168.1.141.
Escape character is '^]'.
[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Initializing cgroup subsys cpuset
[0.000000] Initializing cgroup subsys cpu
[0.000000] Initializing cgroup subsys cpuacct
[0.000000] Linux version 4.4.65 (root@dash1) (gcc version 5.4.0 20160609 (Ubuntu/Linaro
5.4.0-6ubuntu1~16.04.4)) #1 SMP PREEMPT Fri Jun 23 07:34:43 IST 2017

Only a partial terminal output has been shown above.

9.1.5.7 OVS DPDK Performance Guide

OVS has a hierarchy of lookups. All the flows are initially added into the Openflow database (openflow block shown in below
figure). When a flow is received its entries get populated into EMC/SMC/Megaflow.

OVS Flow Table hierarchy

The exact-match cache (EMC) is the first and fastest mechanism Open vSwitch* (OVS) uses to determine what to do with an
incoming packet. If the action for the packet cannot be found in the EMC, the search continues in the SMC cache followed by
Megaflow classifier, and failing that the OpenFlow* flow tables are consulted. This can be thought of as similar to how a CPU
checks increasingly slower levels of cache when accessing data.

By default EMC cache is enabled and SMC cache is disabled and both of them can be enabled or disabled via command line only

EMC cache can support up to max of 8K flows at a time, whereas SMC cache can support up to 100K entries.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 74 / 121

Our recommendation w.r.t. flows for performance of OVS host cases:

• Use 256 flows for scenarios with 4 cores or less than 4 cores

• Use 2K flows for scenarios with more than 4 cores

• In case flows are more than 8K, disable EMC cache and enable SMC cache

To disable EMC cache and enable SMC cache:

ovs-vsctl --no-wait set Open_vSwitch . other_config:emc-insert-inv-prob=0
ovs-vsctl --no-wait set Open_vSwitch . other_config:smc-enable=true

To enable EMC cache and disable SMC cache:

ovs-vsctl --no-wait set Open_vSwitch . other_config:emc-insert-inv-prob=1
ovs-vsctl --no-wait set Open_vSwitch . other_config:smc-enable=false

It is also recommended to use per core memory pool using the below command:

ovs-vsctl set Open_vSwitch . other_config:per-port-memory=true

9.1.6 DPDK on Docker

9.1.6.1 Docker Overview

Docker provides an environment for a given image, over which any user space application can be executed. An image must
contain/expose all the tools which are required to run any application.

For more information on Docker, see https://docs.docker.com/engine/userguide/.

9.1.6.2 DPAA1-Platform

9.1.6.2.1 Running Docker Container on DPAA1

To execute Docker, make sure you have completed the following prerequisites:

1. The Docker daemon must be running. If not, follow the instructions given at the link below to execute the daemon.

https://docs.docker.com/engine/docker-overview/

2. The Docker tool must be installed, which will be working as the client to run the Docker container.

Download the required image, which should be run as an environment. Use the command below to get generic prebuilt images:

docker pull ubuntu:latest # Command template is 'docker pull <distribution>:<tag>'

All downloaded images can be verified using the command below:

docker images

Once images are downloaded, the Docker container can be started using the steps below. Below commands will execute a docker
container named as docker0:

docker run --privileged --interactive --env LD_LIBRARY_PATH=/usr/local/lib --name=docker0 --
hostname=docker0 --detach --volume=/usr:/usr --volume=/sys:/sys --volume=/dev:/dev ubuntu:latest

Arguments provided to the command above have been explained below:

-–privileged # It provides privilege to docker container to access host completely
--interactive # Docker container will be running state

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 75 / 121

https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/docker-overview/

--env LD_LIBRARY_PATH=/usr/local/lib # Exporting host environment variable to docker container*/
--name=docker0 --hostname=docker0 # User defined name to docker container
--detach # container will be detached once it is launched and host prompt will be available for use
--volume=/XXX:/YYY # Exporting host partitions /XXX to docker container's mount point /YYY

Finally, following command attaches to the docker console which was run in previous command:

docker exec -it docker0 bash

9.1.6.2.2 Running the DPDK Application

Once Docker is launched and connected, then execute the DPDK application by running the respective command. The command
below is a sample to run DPDK l3fwd:

export DPAA_FMCLESS_MODE=1
l3fwd -c 0x0C -n 1 – -p 0x30 --config="(4,0,2),(5,0,3)" -P

9.1.6.3 DPAA2-Platform

9.1.6.3.1 Traffic Multiplexer/De-Multiplexer

On the DPAA2 architecture, the MC provides various methods by which incoming traffic can be split of over the multiple DPNIs.
The sections below provide more information.

Using DPDMUX

MC provides an object (DPDMUX) which splits incoming traffic over the multiple DPNIs based on following parameters:

1. MAC based classification

2. VLAN based classification

3. MAC + VLAN base classification

4. User defined key based classification.

DPDMUX has its own filter table which consists of default filtering rules. Default filtering rules are a combination of MAC address
configured on DPNI and port information as a destination. Once the DPDMUX object is connected to a given DPNI, then the entry
for a particular DPNI will be added to the filtering table. All incoming default traffic will be distributed based on the destination
MAC address in the packet. The user may add more entries to the filtering table as per his/her requirement.

The diagram below shows a sample use case for DPDMUX and associated links for a single DPMAC object. It can be extended
up-to a maximum number of DPMACs, each having its own DPDMUX object.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 76 / 121

Using DPSW

MC also provides another object(DPSW) which internally implements DPAA2 H/W Switch. This Switch instance can also be used
for traffic forwarding to multiple hosts. On LS2088 there is only once instance of DPSW that can be created and required ports
will be connected to the same DPSW instance.

DPSW has its own filter table which populates dynamically with source MAC address and port which packet is received on. Default
incoming traffic will be flooded to all ports except ingress port and filtering rules will be learnt into filtering table. After learning,
same packet will be forwarded to the destined port only.

Below diagram shows a sample use case for DPSW and associated links for single DPMAC object. It can be extended up-to
maximum number of DPMACs with same DPSW instance.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 77 / 121

9.1.6.3.2 Single Docker Instance - Container Configuration (DPDMUX/DPSW)

For each Docker instance, a data path resource container (DPRC) needs to be created containing DPAA2 hardware blocks
necessary for the Docker container.

For more information on DPRCs, see "Data Path Resource Containers" section in "QorIQ networking technologies"
chapter of Layerscape Software Development Kit User Guide available at the following link:

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-
software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

 NOTE

A helper script dynamic_dpl.sh, part of the LSDK rootfs, can be used for creating such DPRC. For example, following command
snippet creates a DPRC containing 8 DPNI objects (logical network interfaces) which are not backed by any physical link (DPMAC)
and have MAC addresses starting from 00:00:00:00:05:00. For more details about creating DPRC, see "Creating DPRCs"
subsection of "DPAA2 Quick Start Guide" section of Layerscape Software Development Kit User Guide.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 78 / 121

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

Set the following environment variable which would be used by the dynamic_dpl.sh script:

export MAX_QOS=16
export DPNI_NORMAL_BUF=1 # This is optional

Execute the dynamic_dpl.sh script:

/usr/share/dpdk/dpaa2/dynamic_dpl.sh dpni dpni dpni dpni dpni dpni dpni dpni -b 00:00:00:00:05:00

The output of the above command would be similar to:

##################### Container dprc.2 is created ####################

Container dprc.2 have following resources :=>

 * 16 DPBP
 * 8 DPCON
 * 8 DPSECI
 * 8 DPNI
 * 10 DPIO
 * 2 DPCI

 ######################### Configured Interfaces #########################

Interface Name Endpoint Mac Address
============== ======== ==================
dpni.1 UNCONNECTED 00:00:00:00:05:01
dpni.2 UNCONNECTED 00:00:00:00:05:02
dpni.3 UNCONNECTED 00:00:00:00:05:03
dpni.4 UNCONNECTED 00:00:00:00:05:04
dpni.5 UNCONNECTED 00:00:00:00:05:05
dpni.6 UNCONNECTED 00:00:00:00:05:06
dpni.7 UNCONNECTED 00:00:00:00:05:07
dpni.8 UNCONNECTED 00:00:00:00:05:08

Each such DPRC would be assigned to a Docker container. Thus, multiple such DPRC would have to be created as per the use-
case and Docker instances required for it.

Resouces available on a DPAA2 system are limited and assigning them to DPRC can result error if requested
resources are not available. For the above script output, if the script doesn't return any error and all the DPNIs
have different MAC addresses, result can be considered success. In case of error or failure to assign MAC
addresses, resource assignment to the DPRCs need to be restructured.

 NOTE

Hereafter, based on whether DPDMUX or DPSW is being used, one of the below configuration is applicable:

Configuration using DPDMUX

Create DPDMUX objects with total number of required links i.e. downlinks and uplinks both. Here dpdmux.0 object is created

restool dpdmux create --num-ifs=3 --method DPDMUX_METHOD_MAC --max-dmat-entries=8 --max-mc-groups=8 --
manip=DPDMUX_MANIP_NONE

Connecting downlinks and uplinks with above created DPDMUX:

restool dprc connect dprc.1 --endpoint1=dpmac.x --endpoint2=dpdmux.0.0
restool dprc connect dprc.1 --endpoint1=dpni.y --endpoint2=dpdmux.0.1
restool dprc connect dprc.1 --endpoint1=dpni.z --endpoint2=dpdmux.0.2

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 79 / 121

Where, x, y and z are object indices created in resource containers.

Configuration using DPSW

Create DPSW object with total number of required links i.e. downlinks and uplinks both. Here dpsw.0 object is created:

restool dpsw create --num-ifs=3

Connecting downlinks and uplinks with above created DPSW:

restool dprc connect dprc.1 --endpoint1=dpmac.x --endpoint2=dpsw.0.0
restool dprc connect dprc.1 --endpoint1=dpni.y --endpoint2=dpsw.0.1
restool dprc connect dprc.1 --endpoint1=dpni.z --endpoint2=dpsw.0.2

Where, x, y and z are object indices created in resource containers.

9.1.6.3.3 Running Docker Container on DPAA2

Based on the explanation provided in the Running Docker Container on DPAA1, the command would be:

docker pull ubuntu:latest
export DPRC="dprc.<index>"
export VFIO_NO=`readlink /sys/bus/fsl-mc/devices/$DPRC/iommu_group | xargs basename`
docker run -–privileged --interactive --env DPRC=$DPRC --device=/dev/vfio/vfio:/dev/vfio/vfio --
device=/dev/vfio/$VFIO_NO:/dev/vfio/$VFIO_NO --name=docker0 --hostname=docker0 --detach --volume=/
usr:/usr --volume=/sys:/sys --volume=/dev:/dev ubuntu:latest
docker exec -it docker0 bash

In the above, following is the explanation for arguments not applicable for DPAA:

export DPRC="dprc.<index>" # Where <index> is the DPRC container number created by dynamic_dpl.sh
execution

--device=/XXX:/YYY # Exporting host device /XXX to docker container device /YYY

9.1.6.3.4 Running the DPDK Application

Once Docker is launched and connected, then execute the DPDK application by running the respective command. The command
below is a sample to run DPDK l3fwd:

l3fwd -c 0xFF -n 4 -- -p 0xFF -P --config="(0,0,0),(1,0,1),(2,0,2),(3,0,3),(4,0,4),(5,0,5),(6,0,6),
(7,0,7)" -P

9.1.6.3.5 Example Configuration for 2 Docker Instances: Using DPDMUX

Common Container settings:

export MAX_QOS=8
export DPNI_NORMAL_BUF=1

Create container for docker0:

./dynamic_dpl.sh dpni dpni dpni dpni dpni dpni dpni dpni -b 00:00:00:00:05:00

##################### Container dprc.2 is created ####################

Container dprc.2 have following resources :=>

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 80 / 121

 * 16 DPBP
 * 8 DPCON
 * 8 DPSECI
 * 8 DPNI
 * 10 DPIO
 * 2 DPCI
######################### Configured Interfaces #########################

Interface Name Endpoint Mac Address
============== ======== ==================
dpni.1 UNCONNECTED 00:00:00:00:05:01
dpni.2 UNCONNECTED 00:00:00:00:05:02
dpni.3 UNCONNECTED 00:00:00:00:05:03
dpni.4 UNCONNECTED 00:00:00:00:05:04
dpni.5 UNCONNECTED 00:00:00:00:05:05
dpni.6 UNCONNECTED 00:00:00:00:05:06
dpni.7 UNCONNECTED 00:00:00:00:05:07
dpni.8 UNCONNECTED 00:00:00:00:05:08

Create container for docker1:

./dynamic_dpl.sh dpni dpni dpni dpni dpni dpni dpni dpni -b 00:00:00:00:05:08

##################### Container dprc.3 is created ####################

Container dprc.3 have following resources :=>
 * 16 DPBP
 * 8 DPCON
 * 8 DPSECI
 * 8 DPNI
 * 10 DPIO
 * 2 DPCI
######################### Configured Interfaces #########################
Interface Name Endpoint Mac Address
============== ======== ==================
dpni.9 UNCONNECTED 00:00:00:00:05:09
dpni.10 UNCONNECTED 00:00:00:00:05:0a
dpni.11 UNCONNECTED 00:00:00:00:05:0b
dpni.12 UNCONNECTED 00:00:00:00:05:0c
dpni.13 UNCONNECTED 00:00:00:00:05:0d
dpni.14 UNCONNECTED 00:00:00:00:05:0e
dpni.15 UNCONNECTED 00:00:00:00:05:0f
dpni.16 UNCONNECTED 00:00:00:00:05:10

Create DPDMUX objects with downlinks and uplinks

restool dpdmux create --num-ifs=2 --method DPDMUX_METHOD_MAC --max-dmat-entries=8 --max-mc-groups=8 --
manip=DPDMUX_MANIP_NONE
restool dpdmux create --num-ifs=2 --method DPDMUX_METHOD_MAC --max-dmat-entries=8 --max-mc-groups=8 --
manip=DPDMUX_MANIP_NONE
restool dpdmux create --num-ifs=2 --method DPDMUX_METHOD_MAC --max-dmat-entries=8 --max-mc-groups=8 --
manip=DPDMUX_MANIP_NONE
restool dpdmux create --num-ifs=2 --method DPDMUX_METHOD_MAC --max-dmat-entries=8 --max-mc-groups=8 --
manip=DPDMUX_MANIP_NONE

Create uplink connections

restool dprc connect dprc.1 --endpoint1=dpdmux.0.0 --endpoint2=dpmac.1
restool dprc connect dprc.1 --endpoint1=dpdmux.1.0 --endpoint2=dpmac.2

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 81 / 121

restool dprc connect dprc.1 --endpoint1=dpdmux.2.0 --endpoint2=dpmac.3
restool dprc connect dprc.1 --endpoint1=dpdmux.3.0 --endpoint2=dpmac.4

Create downlink connections for docker0

restool dprc connect dprc.1 --endpoint1=dpni.1 --endpoint2=dpdmux.0.1
restool dprc connect dprc.1 --endpoint1=dpni.2 --endpoint2=dpdmux.1.1
restool dprc connect dprc.1 --endpoint1=dpni.3 --endpoint2=dpdmux.2.1
restool dprc connect dprc.1 --endpoint1=dpni.4 --endpoint2=dpdmux.3.1

Create downlink connections for docker1

restool dprc connect dprc.1 --endpoint1=dpni.5 --endpoint2=dpdmux.0.2
restool dprc connect dprc.1 --endpoint1=dpni.6 --endpoint2=dpdmux.1.2
restool dprc connect dprc.1 --endpoint1=dpni.7 --endpoint2=dpdmux.2.2
restool dprc connect dprc.1 --endpoint1=dpni.8 --endpoint2=dpdmux.3.2

The above commands are for 1G test. In case 10G port is to be used append the above commands to create
uplink and downlink with --committed-rate=10000 --max-rate=10000.

 NOTE

Running DPDK L2fwd on docker0

export DPRC="dprc.2"
export VFIO_NO=`readlink /sys/bus/fsl-mc/devices/$DPRC/iommu_group | xargs basename`
docker run --privileged --interactive --env DPRC=$DPRC --env LD_LIBRARY_PATH=/usr/local/lib --
device=/dev/vfio/vfio:/dev/vfio/vfio --device=/dev/vfio/$VFIO_NO:/dev/vfio/$VFIO_NO --name=docker0 --
hostname=docker0 --detach --volume=/usr:/usr --volume=/sys:/sys --volume=/dev:/dev ubuntu:latest
docker exec -it docker0 bash
l2fwd -c 0xF0 -n 1 --file-prefix=docker0 --socket-mem=2048 -- -p 0x0F -q 1

Running DPDK L2fwd on docker1

export DPRC="dprc.3"
export VFIO_NO=`readlink /sys/bus/fsl-mc/devices/$DPRC/iommu_group | xargs basename`
docker run --privileged --interactive --env DPRC=$DPRC --env LD_LIBRARY_PATH=/usr/local/lib --
device=/dev/vfio/vfio:/dev/vfio/vfio --device=/dev/vfio/$VFIO_NO:/dev/vfio/$VFIO_NO --name=docker1 --
hostname=docker1 --detach --volume=/usr:/usr --volume=/sys:/sys --volume=/dev:/dev ubuntu:latest
docker exec -it docker1 bash
l2fwd -c 0xF0 -n 1 --file-prefix=docker1 --socket-mem=2048 -- -p 0x0F -q 1

9.1.6.3.6 Example Configuration for 2 Docker Instances: Using DPSW

Common Container settings:

export MAX_QOS=8
export DPNI_NORMAL_BUF=1

Create container for docker0:

./dynamic_dpl.sh dpni -b 00:00:00:00:05:00

##################### Container dprc.2 is created ####################

Container dprc.2 have following resources :=>
 * 16 DPBP
 * 8 DPCON
 * 8 DPSECI

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 82 / 121

 * 1 DPNI
 * 10 DPIO
 * 2 DPCI

######################### Configured Interfaces #########################

Interface Name Endpoint Mac Address
============== ======== ==================
dpni.1 UNCONNECTED 00:00:00:00:05:01

Create container for docker1:

./dynamic_dpl.sh dpni -b 00:00:00:00:05:01

##################### Container dprc.3 is created ####################

Container dprc.3 have following resources :=>

 * 16 DPBP
 * 8 DPCON
 * 8 DPSECI
 * 1 DPNI
 * 10 DPIO
 * 2 DPCI

######################### Configured Interfaces #########################

Interface Name Endpoint Mac Address
============== ======== ==================
dpni.2 UNCONNECTED 00:00:00:00:05:02

Create DPSW objects

restool dpsw create --num-ifs=3
restool dprc connect dprc.1 --endpoint1=dpsw.0.0 --endpoint2=dpmac.1

Create downlink connections for docker0

restool dprc connect dprc.1 --endpoint1=dpni.1 --endpoint2=dpsw.0.1

Create downlink connections for docker1

restool dprc connect dprc.1 --endpoint1=dpni.2 --endpoint2=dpsw.0.2

Running DPDK L2fwd on docker0

export DPRC="dprc.2"
export VFIO_NO=`readlink /sys/bus/fsl-mc/devices/$DPRC/iommu_group | xargs basename`

docker run --privileged --interactive --env DPRC=$DPRC --env LD_LIBRARY_PATH=/usr/local/lib --
device=/dev/vfio/vfio:/dev/vfio/vfio --device=/dev/vfio/$VFIO_NO:/dev/vfio/$VFIO_NO --name=docker0 --
hostname=docker0 --detach --volume=/usr:/usr --volume=/sys:/sys --volume=/dev:/dev ubuntu:18.04

docker exec -it docker0 bash

cd /usr/share/dpdk/examples
./l2fwd -c 0x04 -n 1 --file-prefix=docker0 --socket-mem=2048 -- -p 0x01 -q 1

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 83 / 121

Running DPDK L2fwd on docker1

export DPRC="dprc.3"
export VFIO_NO=`readlink /sys/bus/fsl-mc/devices/$DPRC/iommu_group | xargs basename`

docker run --privileged --interactive --env DPRC=$DPRC --env LD_LIBRARY_PATH=/usr/local/lib --
device=/dev/vfio/vfio:/dev/vfio/vfio --device=/dev/vfio/$VFIO_NO:/dev/vfio/$VFIO_NO --name=docker1 --
hostname=docker1 --detach --volume=/usr:/usr --volume=/sys:/sys --volume=/dev:/dev ubuntu:18.04

docker exec -it docker1 bash

cd /usr/share/dpdk/examples
./l2fwd -c 0x08 -n 1 --file-prefix=docker1 --socket-mem=2048 -- -p 0x01 -q 1

9.1.7 Enabling DPAA2 direct assignment for DPDK
The DPAA2 architecture supports the assignment of direct dpaa2 resource access from the QEMU guest VM (Kernel or userspace
app). See Direct assigned devices.

This section describes necessary environment setup and commands for launching a Virtual Machine (VM) with VFIO device
passthrough or direct device assignment support.

Arm-V8 currently support VM to work in NO-IOMMU mode only. Which means that all HW access will use physical
address mode only. The default sdk code is build with virtual addressing mode only. You will need to rebuild the
the dpdk for arm64-dpaa-linuxapp-gcc, by manually setting
CONFIG_RTE_LIBRTE_DPAA2_USE_PHYS_IOVA=y in config/defconfig_arm64-dpaa-linuxapp-gcc
and then build DPDK and example applications through standard compilation steps.
CONFIG_RTE_LIBRTE_DPAA2_USE_PHYS_IOVA=y enables physical addressing mode (IOVA) which is required
for direct assignment functionality.

 NOTE

Then follow the instructions in Standalone build of DPDK libraries and applications section to build DPDK applications.

You can transfer the applications manually to the virtual machine using the host-vm connections as suggested to configure in
next section.

9.1.7.1 Launch Virtual Machine

1. Ensure that kernel is enabled for direct assignment mode (see "How to use DPAA2 direct assignment" in QEMU).

2. The default QEMU present in filesystem may not support the direct assignment feature (see QEMU).

Execute the following commands to build the QEMU 4.1 with VFIO passthrough support locally:

git clone https://source.codeaurora.org/external/qoriq/qoriq-components/qemu
cd qemu
git checkout qemu-4.1
git submodule update --init dtc

Ensure that your machine has the required packages to build QEMU. Refer the example below:

#update your ubuntu m/c with required packages.
apt-get install pkg-config
apt-get install libglib2.0-dev
apt-get install libpixman-1-dev
apt-get install libaio-dev
apt-get install libusb-1.0-0-dev

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 84 / 121

Now, build the QEMU:

./configure --prefix=/root/qemu-4.1 --target-list=aarch64-softmmu --enable-fdt --enable-kvm
make
make install

The new QEMU will be installed in /root/qemu-4.1 folder.

3. Create DPAA2 resources for the VM guest kernel and VM guest userspace (dpdk) on the board.

The dynamic scripts to support the dpaa2 resource creation are available in (/usr/share/dpdk/dpaa2) for LSDK rootfs. It is
also part of the DPDK source code in "nxp" folder.

export DPDK_SCRIPTS=/usr/share/dpdk/dpaa2

Create a dpni based interface for file transfer and communication between host and VM guess kernel.

ls-addni -n
Output:---Created interface: eth0 (object:dpni.1, endpoint:)

Next create the VM guest kernel container. See How to use DPAA2 direct assignment chapters for further information.

A sample vm_linux conf file is provided in scripts to create the vm guest kernel container. In this, the number of resources
are good for 2 core VM. The previously created dpni object is also passed to connect it with guest kernel container.

source $DPDK_SCRIPTS/dynamic_dpl.sh -c $DPDK_SCRIPTS/vm_linux.conf <dpni.x>
 Where, <dpni.x> is dpni interface created by "ls-addni" command.

Next step is to create the container for VM guest userspace for DPDK

source $DPDK_SCRIPTS/dynamic_dpl.sh -c $DPDK_SCRIPTS/vm_dpdk.conf <dpmac.x> <dpmac.y>
 Where, <dpmac.x> & <dpmac.y> are required MAC interfaces.

Make sure to enter the created parent DPRC into vm_dpdk.conf

 NOTE

For the rest of the chapter, it is assumed that VM guest kernel container is dprc.2 and VM guest userspace child container
is dprc.3 (nested).

Create an Ethernet connect between host and VM for communication/transfer. This was already created and passed during
vm-linux container.

#assign IP to host interface created to communicate with VM (dprc.2, eth0)
ifconfig eth0 192.168.2.2

4. Create hugepages mount:

echo hugetlbfs /mnt/hugetlbfs hugetlbfs defaults,mode=0777 0 0 >> /etc/fstab
mkdir /mnt/hugetlbfs
mount /mnt/hugetlbfs

5. Launch QEMU (Version: 4.1.0) using following command:

For generating a root filesystem image, refer Creating a guest Linux root filesystem. Assign the ROOTFS_IMG in below
command with the absolute path to the generated image.

export ROOTFS_IMG=/ubuntu_bionic_arm64_rootfs.ext4.img # Telnet port to be used for accessing
this instance of virtual machine export GUEST_CONSOLE_TELNET_PORT=4446
export KERNEL_IMG=/root/Image-4.14 export KERNEL_IMG=/root/Image-4.14

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 85 / 121

Define other environment variables which are used by the QEMU command to configure the virtual machine environment:

export VM_MEM=4096M(2048M for LS1088ARDB)

1. Add the device command below (for the GUEST KERNEL DPRC to be assigned) to the QEMU command line:

-device vfio-fsl-mc,host=dprc.2

Also, make sure to specify the appropriate number of cores for the guest VM. It should match the number of dpio objects
created in the child container. In our case, 1 core.

-smp $VM_CORES

2. Start QEMU with -S option (the vcpu threads are not yet started). We need this in order for the Ethernet drivers in the guest
to correctly bind the objects to the cores.

single core VM launch /root/qemu-4.1/bin/qemu-system-aarch64 -smp $VM_CORES -m $VM_MEM -mem-
path /mnt/hugetlbfs -cpu host -machine type=virt,gic-version=3 -kernel $KERNEL_IMG -enable-kvm -
display none -serial tcp::$GUEST_CONSOLE_TELNET_PORT,server,telnet -drive if=none,file=
$ROOTFS_IMG,id=foo,format=raw -device virtio-blk-device,drive=foo -append 'root=/dev/vda rw
console=ttyAMA0 rootwait earlyprintk' -monitor stdio -device vfio-fsl-mc,host=dprc.2 -S

Two core VM launch (check the isolcpus for core #1 in bootargs).

• For best performance, Core 0 in the VM should not be used for DPDK I/O threads.

• To avoid system services from using GPUs scheduled for DPDK I/O threads, it is recommended that isolcpus
be used for isolating cores from Linux Kernel scheduling in VM. The exact configuration is dependent on
number of CPU assigned by QEMU to VM using the VM_CORES environment variable.

 NOTE

Append isolcpus=1-$VM_CORES to the 'root=/dev/vda rw console=ttyAMA0,115200 rootwait earlyprintk' string in the
qemu-system-aarch64 command given above.

/root/qemu-4.1/bin/qemu-system-aarch64 -smp $VM_CORES -m $VM_MEM -mem-path /mnt/hugetlbfs
-cpu host -machine type=virt,gic-version=3 -kernel $KERNEL_IMG -enable-kvm -display none
-serial tcp::$GUEST_CONSOLE_TELNET_PORT,server,telnet -drive
if=none,file=$ROOTFS_IMG,id=foo,format=raw -device virtio-blk-device,drive=foo -append
'root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk isolcpus=1' -monitor stdio
-device vfio-fsl-mc,host=dprc.2 -S

Make sure to specify the appropriate number of cores for the guest VM. It should match the number of dpio objects
created in. Also, make sure that the /mnt/hugetlbfs folder exists and is mounted when starting QEMU.

 NOTE

Following logs will appear on the host UART console:

QEMU 4.1.0 monitor - type 'help' for more information

(qemu) qemu-system-aarch64: -serial tcp::4446,server,telnet: QEMU waiting for connection on:
disconnected:telnet::4446,server

3. Launch VM using : telnet <Board ip addr> <GUEST_CONSOLE_TELNET_PORT> For example, telnet localhost 4446

Make sure to assign each vcpu thread to one physical CPU only.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 86 / 121

Get the VM thread IDs entering QEMU shell.

(qemu) info cpus
* CPU #0: thread_id=7211
CPU #1: (halted) thread_id=7212

Assign one vcpu thread to one core only. Also, apart from the first vcpu thread put all other threads in chrt priority for
performance.

$ taskset -p 0x1 7211
pid 7211's current affinity mask: ff
pid 7211's new affinity mask: 1
$ taskset -p 0x2 7212
pid 7212's current affinity mask: ff
pid 7212's new affinity mask: 2
$ chrt -p 90 7212

start the vcpu threads:

(qemu) c

9.1.7.2 Accessing the virtual machine console

root@ls2088ardb:~# telnet localhost 4446
Trying ::1...
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Linux version 4.14.16-00004-ga5a4b5d (b10814@bf-netperf1.idc) (gcc version 7.2.1
20171011 (Linaro GCC 7.2-2017.11)) #2 SMP PREEMPT Tue Apr 3 12:24:09 IST 2018
[0.000000] Boot CPU: AArch64 Processor [410fd082]
[0.000000] Machine model: linux,dummy-virt
[0.000000] efi: Getting EFI parameters from FDT:
[0.000000] efi: UEFI not found.
[0.000000] cma: Reserved 16 MiB at 0x00000000ff000000
[0.000000] NUMA: No NUMA configuration found
----\
Ubuntu 16.04.3 LTS localhost ttyAMA0
localhost login: root
Password:
Last login: Wed May 2 20:08:32 UTC 2018 on ttyAMA0
Welcome to Ubuntu 16.04.3 LTS (GNU/Linux 4.14.16-00004-ga5a4b5d aarch64)

Only a partial terminal output has been shown above.

Use "root" as login & password

Execute the following commands:

echo 1000 > /proc/sys/vm/nr_hugepages
child DPRC container for VM guest userspace
export DPRC=dprc.3
echo 1 > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode
echo vfio-fsl-mc > /sys/bus/fsl-mc/devices/$DPRC/driver_override
echo $DPRC > /sys/bus/fsl-mc/drivers/vfio-fsl-mc/bind

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 87 / 121

The Host core-index which is used as First Physical core in VM should be used as DPAA2_HOST_START_CPU to run DPDK
application. Where, core-index range is [0-7] for a 8 core platform.

E.g if you are running VM with two cores and Host core #4 and core #5 are given to VM, the first physical core for VM is core#4.
So, we should set the Start CPU core as follows:

export DPAA2_HOST_START_CPU=4

Setup Hugepages

echo hugetlbfs /mnt/hugetlbfs hugetlbfs defaults,mode=0777 0 0 >> /etc/fstab
mkdir /mnt/hugetlbfs
mount /mnt/hugetlbfs

configure the host connection for SCP, ssh and file transfer

ifconfig eth1 192.168.2.1

9.1.7.3 Running DPDK applications with direct device assignments

All the DPAA2 based dpdk application will work in VM similar to the host.

If the dpdk example applications are not present, you can bring them via scp/tftp using eth1 interface.

Using Core 0 for DPDK application can lead to non-deterministic behavior, including drop in performance. It is
recommended that DPDK applicaton core mask values avoid using Core 0.

 NOTE

Refer some example test commands below:

#one core VM (core #0 for dpdk)
./l3fwd -c 0x1 -n 1 --log-level=bus.fslmc,8 -- -p 0x1 -P --config="(0,0,0)"
./l2fwd-crypto -c 0x1 -n 1 --log-level=bus.fslmc,8 -- -p 0x1 -q 1 --chain HASH_ONLY
--auth_algo sha2-256-hmac --auth_op GENERATE --auth_key_random_size 64

#two core VM (core #1 for DPDK)

./l3fwd -c 0x2 -n 1 -- -p 0x1 -P --config="(0,0,1)"

./l3fwd -c 0x2 -n 1 -- -p 0x3 -P --config="(0,0,1),(1,0,1)"

./testpmd -c 0x3 -n 1 -- -i --portmask=0x3 --nb-cores=1 --forward-mode=txonly

9.1.8 Known Limitations and Future Work
Generic Limitations:

1. Currently only DPDK eal framework threads are supported for packet I/O. The threads created by other methods (e.g.
pthread_create) may not work. The DPAAx hardware internally uses the hardware access portals for each thread doing
packet I/O, this information is currently automatically assigned in thread local variable when using DPDK thread
framework.

Additionally, the number of maximum I/O thread using DPDK are limited to number of HW portals available. The number
of available portals is platform dependent.

2. Not all functionalities supported by DPDK framework have been implemented by PPFE, ENETC, DPAA and DPAA2
drivers (PMDs). For list of supported features, refer PPFE: Supported DPDK Features, ENETC supported DPDK
features, DPAA: Supported DPDK Features and DPAA2: Supported DPDK Features.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 88 / 121

3. Using Core 0 for I/O related work is known to impact performance - whether on host or in VM. Disabling services or RT
prioritization can result in optimal performance but the results are non-deterministic. Affining Core 0 to I/O should be
avoided as much as possible.

4. It has been observed that PCI NIC card events can lead to performance drop on certain platforms. The behavior is non-
deterministic across platforms. For peak performance numbers, PCI NIC cards should be disabled.

5. DPDK docker support is currently only available for DPAA2 and DPAA platforms.

6. DPDK multiprocess mode (i.e. using DPDK secondary processes) is not supported on DPAA1.

7. LS1088A platform have limited CTLU features. This limits the device hardware classification capabilities leading to
reduced number of field combinations for flow matching/classification.

DPAA2 Specific Limitations:

1. IPSec Direct assignment performance doesn’t scale beyond 4 cores.

DPAA Specific Limitations:

1. Ports assigned to user space cannot be assigned dynamically to kernel space or vice versa.

2. Default configuration for DPAA platform is to expect execution of FMC tools (see manual) before application can be run.
This adds a constraint on number of queues which would be initialized by application to be exactly same as the queues
which are configured by the FMC tool. In case, incorrect number of queues are used (lesser than configured by FMC tool),
RSS distribution can cause loss of packets or no I/O.

3. On LS1043ARDB platform, performance may be lower in case of 6G setup as compared to 10G setup.

PPFE (LS1012) Specific Limitations:

1. While using PPFE in user space, if the kernel mode PFE module is loaded before using the user space mode, the HIF
rings do not get cleaned sometimes and user need to restart the application again till the rings are cleaned.

2. Multiple buffer pools are not supported.

3. User defined Rx/Tx queue configuration is not supported. Driver configures queue with default attributes only.

ENETC(LS1028) Specific Limitations:

1. Link Negotiation and Link status update are not supported

2. Switch port should be connected and link should be up before booting linux.

9.1.9 Troubleshooting
Following are some common steps and suggestions outlined for best performance from DPDK Applications:

1. To obtain best performance, please ensure that the boot-up time command line arguments are similar to below:

For DPAA2:

console=ttyS1,115200 root=/dev/mmcblk0p3 earlycon=uart8250,mmio,0x21c0600
default_hugepagesz=1024m hugepagesz=1024m hugepages=8 isolcpus=1-7 iommu.passthrough=1
rcupdate.rcu_cpu_stall_suppress=1

In the above, change the isolcpus as required based on the cores which would be used by DPDK applications.

 NOTE

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 89 / 121

For DPAA:

console=ttyS0,115200 root=/dev/mmcblk0p3 earlycon=uart8250,mmio,0x21c0500 default_hugepagesz=2m
hugepagesz=2m hugepages=512 isolcpus=1-3 bportals=s0 qportals=s0 iommu.passthrough=1
rcupdate.rcu_cpu_stall_suppress=1

isolcpus in the above ensures that only Linux Kernel schedules its threads on Core 0 only. Core 1-x would be used for
DPDK application threads.

Hugepage count defined by hugepages should also be modified to maximum possible so as to allow DPDK applications
to have larger buffers.

The value of hugepages is dependent on the size of RAM available on the board. Value should be selected based
on specific use-case as any memory allocated for hugepage is not usable for Linux Kernel OS operations.

 NOTE

2. If there is issue with reception of transmission of packets, verify the following points:

a. Ensure that no error has been reported by DPDK application at startup. Generally the output is descriptive enough
for cause of problem.

b. Check the mapping of ports against the physical ports:

• In case of DPAA platform, ensure that the mapping of physical interfaces with DPDK ports is correct. Refer
LS1043ARDB Port Layout or LS1046ARDB Port Layout.

• In case of DPAA2 platform, ensure that correct dpni.X has been used in the dynamic_dpl.sh script while
creating the dprc containers. A common pitfall is to use an incorrect dpni as against the physical port being
used for IO.

c. Ensure that traffic generator to board connectivity is proper. You may run testpmd in tx_only mode to validate if
the packets are going out on specific interfaces. For information about testpmd application and its supported
arguments, refer the web documentation.

d. Ensure that the traffic generator stream settings are correct and enough streams are being generated for proper
distribution between DPDK application cores.

e. Ensure that the MAC address of stream generated by traffic generator matches that of the dpni port, or the interface
is in promiscous mode.

3. If the performance is not as expected:

a. Ensure that the stream configuration of the traffic generator is approrpriate and that it can generate multiple streams.
In case the streams have all same IP destination and/or source, the distribution of traffic across multiple cores
wouldn't happen.

For obtaining best performance, it is important to configure the number of streams from packet generator
adequately. If the number of streams generated by packet generator are not adequate, it would lead to improper
distribution across the queues defined (especially in case of multiple queue setup) and eventually lack of
performance.

 NOTE

b. Using standard process tools in Linux, for example ps, top, verify that all the DPDK application threads have been
started (as per application configuration on command line) and busy looping.

c. For DPAA2, in case any DPAA2 ports are assigned to Linux kernel, assure that the interrupt affinity is not on any
core which is assiged to DPDK. See the DPDK Performance Reproducibility Guide for details about how to check
and affine cores to such interrupts.

4. For DPAA2 Platform certain tuning parameters are available. User can enable them according to the requirements.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 90 / 121

http://dpdk.org/doc/guides-16.07/testpmd_app_ug/index.html

• To offload the RX error packet drop (parsing error) handling in hardware. Set,

#export DPAA2_PARSE_ERR_DROP=1

• To disable the TX congestion control - i.e. infinite size of TX queues, set:

#export DPAA2_TX_CGR_OFF=1

• To configure the TQ queue congestion control - taildrop size in byte (default is 64K bytes), set:

#export DPAA2_TX_TAILDROP_SIZE=<size>

5. System tuning parameters can be checked with "debug_dump.sh" script located in "/usr/share/dpdk" directory. You can
share the output with support team for further analysis.

6. DPAA2 port status can be checked from restool commands. (e.g. restool dpni info dpni.1)

7. DPAA2 - When using large number of buffers (> 1 Million), the application may get hang. This is due to maximum limit of
number of buffers configured by default for DPAA2 QBMAN. It is a configurable setting in DPC file. To configure number
of buffers, following node needs to be added or modified with the correct number of buffers.

{
 qbman {

 total_bman_buffers=<number of buffers in HEX>;
 };
};

9.1.10 DPDK Performance Reproducibility Guide
This chapter describes various cases and points which are important for obtaining best performance from DPDK software on the
NXP platforms. This is a suggestive list of best practices and optimal configurations which can help extract maximum performance
of the NXP DPAA hardware.

The practices mentioned in this chapter are based on tests in controlled environment. These are not intended for
production or deployment without adequate analysis of the impact on use-cases.

 NOTE

This document is divided into two broad sections: Steps required before booting up the Linux Kernel and steps required before
DPDK application execution.

Before booting up Linux

1. Use GCC toolchain 7.4.1 as recommended toolchain for compiling DPDK.

2. On kernel 5.4 and above, CONFIG_QORIQ_THERMAL flag is enabled by default which tracks temperature of the SOC.
In some cases like LS1043, the temperature may go up while running DPDK application which are CPU intensive and the
maximum CPU frequency is clamped to a lower value. This may result in lower performance numbers. To disable this
feature CONFIG_QORIQ_THERMAL flag should be disabled while compiling kernel Image.

3. Choosing Optimal Board Support Packages (BSP)

• Choosing a compatible board support package is critical for functionality as well as performance of DPDK application.

For DPAA and DPAA2 platforms, select the top frequency RCW/PBL binaries stably supported by boards. For
example, for LS2088ARDB DPAA2, Rev 1.1 boards with frequency of 2100x800x2133 is known to perform best. Other
frequency, though stable, would result in slower performance. Below table describes an indicative set of known BSP
files for DPDK supported SoC.

4. Disabling hardware prefetching through U-Boot

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 91 / 121

• For LS2088A DPAA2 platform, it is possible to disable hardware prefetching through U-Boot. This can enhance
performance in multicore scenario.

• For disabling hardware prefetching, following command should be used on U-Boot prompt:

setenv hwconfig 'fsl_ddr:bank_intlv=auto;core_prefetch:disable=0xFE'

Please change the disable= parameter based on the platform being used. For example, for LS1046/LS1043,
having 4 cores, use disable=0xE, and for LX2 having 16 cores, use disable=0xFFFE.

 NOTE

After executing the above command, board bank needs to be reset for the setting to take place. In the above
command, field disable=0xFE defines the mask for disabling prefetching on specific cores. For example, for disabling
prefetching on 3rd and 4th core, use disable=0x0C.

Also, it should be noted that disabling prefetching on Core 0 is not supported.

This setting doesn't have impact on single core case. Maximum performance gain is observed when all 8 cores
of LS2088 board are being used (of which 7 cores have prefetching disabled as Core 0 does not support this
feature).

 NOTE

5. Linux Boot Argument

• For DPAA platform, if the onboard memory is limited (e.g. LS1043 RDB), following configuration should be appended
to default boot arguments:

default_hugepagesz=2m hugepagesz=2m hugepages=512 isolcpus=1-3 bportals=s0 qportals=s0
iommu.passthrough=1 rcupdate.rcu_cpu_stall_suppress=1

Through the above boot arguments, 1024 Mbit of hugepages have been assigned for all DPDK applications (512
pages of 2M size each).

isolcpus isolates the CPUs 1, 2, 3 from Linux Kernel process schedulers' scheduling algorithm. All System Service
would be scheduled on Core 0 and that should be avoided in application configuration for I/O threads.

rcupdate.rcu_cpu_stall_suppress=1 is specifically for cases where Core 0 is also used for running DPDK I/O with
enable_performance_mode.sh script - where because of Real Time priority setting of the script, RCU stalls might be
observed. That leads to screen dump which might impact performance.

• For DPAA2 platform, following configuration should be appended to default boot arguments:

default_hugepagesz=1024m hugepagesz=1024m hugepages=8 isolcpus=1-7 iommu.passthrough=1
rcupdate.rcu_cpu_stall_suppress=1

It is recommended to use 1G huge page size for DPAA2 platform.

rcupdate.rcu_cpu_stall_suppress=1 is specifically for cases where Core 0 is also used for running DPDK I/O with
enable_performance_mode.sh script - where because of Real Time priority setting of the script, RCU stalls might be
observed. That leads to screen dump which might impact performance.

While running DPDK for all core cases, isolcpus parameter should not be set in bootargs.
enable_performance_mode.sh script reserves 99.6% CPU for DPDK application and the rest is given to kernel
on all cores, so isolcpus is not required. Make sure links are up for all interfaces before running DPDK as kernel
tasks may get slowed down.

 NOTE

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 92 / 121

Change the value of isolcpus parameter based on the platform being used. For example, for LX2 platform use
isolcpus=1-15

 NOTE

• In case UEFI based booting is used, the boot arguments are changed from grub.cfg. Please refer to UEFI section on
how to update the arguments.

It should be noted that CPU isolation configuration cannot be changed in a running Linux Kernel. Whereas, huge
page configuration can be changed from Linux prompt by writing to /proc/sys/vm/nr_hugepages file. Thus,
CPU isolation should be carefully decided before booting up Linux Kernel.

 NOTE

nousb can be appended to boot arguments to disable USB in Linux Kernel. This prevents any interrupts from USB
devices to be serviced by CPU cores. This is especially important when Core 0 is being used for DPDK I/O
performance. But, this option should only be used if there is no dependency of USB devices for system execution,
for example, a USB mass storage which contains either the root filesystem or extra filesystem containing data
necessary for execution.

 NOTE

6. For Best performance, use the data cores as isolated cpus and operate them in tickless mode on kernel version 4.4 above.
For this:

a. Compile the Kernel with CONFIG_NO_HZ_FULL=y

b. Add bootargs with 'isolcpus=1-7 rcu_nocbs=1-7 nohz_full=1-7' for 8 core platform and 'isolcpus=1-3
rcu_nocbs=1-3 nohz_full=1-3' for 4 core platform

The CONFIG_NO_HZ_FULL linux kernel build option is used to configure a tickless kernel. The idea is to configure
certain processor cores to operate in tickless mode and these cores do not receive any periodic interrupts. These
cores will run dedicated tasks (and no other tasks will be schedules on such cores obviating the need to send a
scheduling tick). A CONFIG_HZ based timer interrupt will invalidate L1 cache on the core and this can degrade
dataplane performance by a few % points (to be quantified, but estimated to be 1-3%). Running tickless typically
means getting 1 timer interrupt/sec instead of 1000/sec.

 NOTE

7. Setup of the Performance Validation Environment

• It is important that the environment for performance verification uses a balanced core loading approach. Each core
should be loaded with equal number of Rx/Tx queues, irrespective of their count. Images below describe some of the
I/O scenario using an example setup containing a target board and a packet generator. In all the cases shown, it is
assumed that each port has a single queue being serviced by a CPU core. Also, even though below images show 8
ports, it is a generic representation. DPAA boards may not have 8 equal ports (1G/10G) - this representation is
assuming traffic is always distributed across equal capacity ports.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 93 / 121

Image above describes 2 cases: One for single port and another for 4 ports. It can be noted that all the cores are
equally loaded (equal number of cores, irrespective numbers of ports being serviced). Further, the 4 port case shows
that there is more than one way to move stream of packets. (Note the direction of arrows in each case.)

Image above describes a case with 4 ports where the CPU cores are not equally loaded. This is not a recommended
combination as this would mean some streams being served (packet per second) slower than others. 8 port
combination shown in the image above extends the mapping of 4 ports shown in image before. Once again, it should
be noted that there are multiple ways to create a balanced set of streams. A performance setup should choose one
baseline and all performance reports should be based on that baseline.

For Performance measurement, performing I/O across non-equal capacity ports (1G=>10G, vice-verse) is not a
valid case. This would lead to build up of queues on higher capacity links eventually stopping traffic when hardware
is unable to obtain buffers for storing new incoming packets - eventually stopping traffic.

 NOTE

8. Uninstalling PCI Ethernet (e1000) NIC Cards

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 94 / 121

• It has been observed that when PCI Ethernet card (for example, on DPAA/DPAA2 RDB boards Intel e1000) are
installed, they have a tendency to poll frequently the CPU cores (Core 0, in case of isolation). This has adverse impact
on the application performance if DPDK I/O threads are scheduled on same cores which services these interrupts.

• For best performance, such PCI Ethernet cards should be uninstalled from the hardware. If un-installation is not
possible, see the comments mentioned in section below to disable the interface by unlinking it from the Linux Kernel.

nopci can be appended to boot arguments to completely disable PCI devices from being detected by Linux Kernel.
This prevents PCI interrupts from being serviced by CPU. But, this option should not be used if there is dependency
on any PCI device for system execution.

 NOTE

Before and during DPDK Application start

1. Setting real-time priority for DPDK Application

• In full fledged distributions, like Ubuntu, the root filesystem contains various system services by default. These services
are targeted towards a generic environment. Many of these services require periodic CPU cycles. DPDK I/O threads
execute as a run-to-completion process, infinitely looping over CPUs they are affined to. Services which require
periodic CPU cycles can interrupt the DPDK I/O threads causing loss of packets and/or latency. Ideally, such services
should be disabled or a rootfs without such services should be used for optimal performance. But, in case this cannot
be done, real-time priority of application can also achieve desired results.

• Execute the script /usr/share/dpdk/enable_performance_mode.sh. Care should be taken to run the DPDK
application from same shell as the one on which script was executed. This is because the script sets some environment
variables which are used by DPDK application to define real-time priorities for its threads. This script is also designed
to set to "performance" mode the CPU scaling governor. This prevents the CPU from putting itself into lower power
state when not busy. This causes loss of traffic in initial I/O streams when the CPU is expected to spin up to its maximum
frequency.

This script sets the real-time priorities for any DPDK application which is run after the script has been executed.
This also applies to application configured to run on Core 0. Thus, it is important to consider the implication. If the
application is run on Core 0 and it is busy in I/O, it can lead to CPU stall causing complete lock-up. DPDK sample
applications like l2fwd, l3fwd, ipsec-secgw are designed to relinquish the CPU when no I/O is being done.
That way, using sample application, all core performance can be calculated. Similar care should be taken while
developing custom DPDK applications. As this script was primarily designed for host applications, it may require
modification for it to be used with Virtualization cases (QEMU, VM) and OVS.

 NOTE

Though this script doesn't necessarily require core isolation and tickless kernel, it is still recommended that I/O
cores be isolated and tickless kernel be used to get the best performance environment. Also, this script assumes
that it is a Ubuntu environment with power governor support and that no other process is running in priority higher
than DPDK application.

 NOTE

An opposite script, /usr/share/dpdk/disable_performance_mode.sh, is also available. This puts the
processor back in the "on-demand" scaling governor configuration and also removed the environment variables.
It is important to run this script once performance verification of a DPDK sample application has been completed.
This would avoid issues with inadvertently executing DPDK application on Core 0 and causing a lock-up.

 NOTE

2. Using High Performance (PEB) Buffer (Only for DPAA2)

• In DPAA2 platform, while creating the resource container using the dynamic_dpl.sh script, it is possible to toggle
between high performance PEB buffers and normal buffers (DDR). By default, the high performance buffers are
enabled for LS2088A; for LS1088A, default configuration is normal buffers.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 95 / 121

For LS2088A, it is recommended to use high performance buffers which is enabled by default. Though, there is
caveat to this as described below.

PEB buffers are limited resources. Overusage of buffers, either through large number of queues or deep taildrop
settings, can cause the PEB buffers to overflow causing a interruption of I/O. The hardware might also enter a
state from which it will not recover until board is restarted.

Exact limitations of number of queues is based on various parameters and cannot be stated objectively without
defining the use-case. As a thumb-rule, refrain from using PEB buffers if configuration requires more than 1 queue
per CPU core to be used, assuming all ports and CPU cores are being employed.

 NOTE

For toggling between normal and high performance buffers, use the following environment variable before executing
the dynamic_dpl.sh script:

export DPNI_NORMAL_BUF=1
disables high performance buffers; enables normal buffers

3. Disabling PCI Ethernet (e1000) NICs

• As mentioned in the above section, it is preferable if no PCI Ethernet hardware (like e1000 on DPAA/DPAA2 boards)
is installed. But, if it is not possible to uninstall a hardware device, following command can be used to unlink the
Ethernet card from PCI driver in the Linux Kernel thereby preventing the CPU cores from being interrupted with periodic
interrupts. This is specially important when all core performance is to be recorded.

echo 1 > /sys/bus/pci/devices/<PCI device BDF address>/remove

In the above command, replace <PCI device BDF address> with appropriate BDF format bus address of the PCI
device, for example 0000:01:00.0, after properly bypassing the : character in the name to avoid failure reported by
Linux Bash prompt. For example, echo 1 > /sys/bus/pci/devices/0000\:01\:00.0/remove.

This command would unlink the PCI device with BDF address 0000:01:00.0 from its PCI driver's control, thereby
disabling it from Linux Kernel.

Once the device is unlined from the PCI driver, it would not be usable through the Linux Kernel interface until
bound to same or another PCI driver. It is out of scope for this document to record steps necessary for linking a
PCI device to a PCI driver to bring it under Linux Kernel control.

 NOTE

4. Interrupt Assignment for DPIO (Only for DPAA2)

With the Linux cat /proc/interrupts command, interrupts being serviced by each CPU core can be observed.

root@Ubuntu:~# cat /proc/interrupts r
 CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
...
113: 0 0 0 0 0 0 0 0 ITS-
fMSI 230000 Edge dpio.7
114: 0 0 0 0 0 0 0 0 ITS-
fMSI 230001 Edge dpio.6
115: 0 0 0 0 0 0 0 0 ITS-
fMSI 230002 Edge dpio.5
116: 0 0 0 0 0 0 0 0 ITS-
fMSI 230003 Edge dpio.4
117: 0 0 0 0 0 0 0 0 ITS-
fMSI 230004 Edge dpio.3
118: 0 0 0 0 0 0 0 0 ITS-
fMSI 230005 Edge dpio.2
119: 0 0 0 0 0 0 0 0 ITS-
fMSI 230006 Edge dpio.1

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 96 / 121

120: 0 0 0 0 0 0 0 0 ITS-
fMSI 230007 Edge dpio.0
...

This is especially important in case when any interrupts are being serviced by CPUs being used by DPDK. For example,
in the above representation, DPIO blocks have been shown - these are used by the Linux kernel assigned DPAA ports.
Thus, in case a port is assigned to Linux (and some are assigned to DPDK), if I/O is performed on the ports assigned to
Linux - there is a possibiMblity that interrupts for that I/O spread across cores which are being used by DPDK. This should
be avoided by setting the interrupt affinity. For example, if the DPIO.7 interrupt is considered in from the above output,
following terminal snippet shows the affinity of that interrupt:

root@Ubuntu:~# cd /proc/irq/113/
root@Ubuntu:/proc/irq/113# ls -la
total 0
dr-xr-xr-x 3 root root 0 Mar 2 23:09 .
dr-xr-xr-x 111 root root 0 Mar 1 17:49 ..
-r--r--r-- 1 root root 0 Mar 2 23:09 affinity_hint
dr-xr-xr-x 2 root root 0 Mar 2 23:09 dpio.7
-r--r--r-- 1 root root 0 Mar 2 23:09 effective_affinity
-r--r--r-- 1 root root 0 Mar 2 23:09 effective_affinity_list
-r--r--r-- 1 root root 0 Mar 2 23:09 node
-rw-r--r-- 1 root root 0 Mar 2 23:09 smp_affinity
-rw-r--r-- 1 root root 0 Mar 2 23:09 smp_affinity_list
-r--r--r-- 1 root root 0 Mar 2 23:09 spurious
root@Ubuntu:/proc/irq/113# cat smp_affinity
01

Output of cat smp_affinity is a mask for cores on which interrupt should be serviced. Affinity can be set by running
following command:

cat 03 > smp_affinity # for enabling Core 0 and Core 1 for serving interrupts on DPIO.7

5. DPDK Optimal Example Application Configuration

• Avoiding Core 0

— As mentioned above, distributions like Ubuntu have large number of system services. Though some of these
services can be disabled, there would always be cases of interrupts or un-interruptible services which would
require Core 0 cycles. Isolating the cores through Linux Kernel can be done using Linux boot arguments. This
would allow isolated cores to be used exclusively for DPDK I/O threads.

— Once a configuration of isolated cores is set, similar configuration should be done in DPDK application using the
-c or --coremask command line option.

— If 4 core (in LS1043A or LS1046A) or 8 core (LS1088A or LS2088A) performance is required, system services
should be disabled. Though, it should be noted that performance number using Core 0 show un-deterministic
behavior of latency and packet losses. For example, LS2088A has been observed to perform fairly stable on 8
core configuration with services disabled, but same cannot be stated for LS1088A boards.

• Avoiding Core 0 in case of Virtual Machine

— Core 0 impact on the DPDK I/O performance is valid for host as well as for Virtual Machine (VM). While configuring
DPDK application in VM, Core 0 should be avoided. The Qemu configuration should be such as to avoid using
the Host's Core 0 for any VM logical core which is running DPDK I/O threads.

— For a VM environment, OVS or similar switching stack maybe used on the host. Qemu configuration should be
such as to avoid mapping the logical cores (VCPU) assigned to VM with any of the CPU cores which run the
switching stack threads. taskset command is recommended for affining the Qemu threads (serving VM VCPUs)
to a particular core. Refer Launch QEMU and virtual machine for more details.

• Using Multi-queue configuration to spread load across multiple CPUs

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 97 / 121

— DPDK applications can utilize RSS based spreading of incoming frames across multiple queues servicing a
particular port. This is especially helpful in obtaining better performance by utilizing 1:N mapping of ports to CPU
cores. That is, more than 1 CPU core serves a single port.

This requires adequate configuration of Port-Queue-Core combination through DPDK application command line.
For example, l3fwd application can be configured to use 8 ports on a LS2088A board for serving 2 ports using
the following command:

l3fwd -c 0xFF -n 1 -- -p 0x3 --config="(0,0,0),(0,1,1),(0,2,2),(0,3,3),(1,0,4),(1,1,5),
(1,2,6),(1,3,7)"

In the above command, the --config argument takes multiple tuples of (port, queue, core). Note that Port
number 0 is being served by Core 0, 1, 2 and 3 using separate queue numbers.

Using similar configuration described for l2fwd application above, optimal utilization of Cores can be achieved.
The command line options vary with DPDK application and DPDK online web manual should be referred for
specific example applications.

Though the above command snippet utilizes Core 0, necessary care should be taken as described in text above.

— As mentioned above, DPDK uses RSS (Receive Side Scaling) to spread the incoming frames across multiple
queues. Multi-queue setup needs to be supported by varying flows from the Packet Generator. The flows created
should be such as to have varying Layer-2 or Layer-3 field values.

◦ As flow distribution is based on hash over Layer-2 and Layer-3 fields, it is possible that lower number of
flows would distribute unevenly across queues. Number of flows created should be large enough to spread
equally across all the configured queues.

• Consideration for CPU clusters

— SoC have multiple clusters housing one or more CPUs. Each cluster shares a L2 cache. In general, this allows
threads sharing data over CPUs from same cluster to perform better than threads sharing data across CPUs
from different clusters.

— For best performance, it is recommended that DPDK application configuration for selecting CPU cores should
be such to either use all CPUs from same cluster or spread queues equally across clusters. When this is
combined with Core 0 issue, it implies that using Cluster having Core 0 might perform slightly worse than using
cluster which doesn't use Core 0.

• Using limited number of I/O buffers

— DPDK allows an application to change the number of maximum in-flight buffers. This is especially useful when
there is memory constraint and DPDK application has limited resources.

— Each buffer, for processing, has to be fetched into the system caches (L2/L1). Larger the number of buffers in-
flight simultaneously, more would be the flushing of buffer addresses. To avoid excessive pressure on the L2
caches (eviction, hit, miss cycle), lower number of buffers should be used. Exact numbers would depend on the
use-case and resources available.

For example, in case of l3fwd application, --socket-mem=1025 like EAL argument can be provided to the
application as shown in command snippet below. Note that the argument has been provided before the -- -
these are passed to DPDK framework rather than the application itself.

./l3fwd -c 0xFF -n 1 --socket-mem=1025 -- -p 0x1 --config="(0,0,0),(0,1,1),(0,2,2),
(0,3,3),(0,4,4),(0,5,5),(0,6,6),(0,7,7)"

• Degradation of OVS performance with increase in flows

— It has been observed that OVS doesn't perform well when the number of flows are large. This is because of
OVS's inherent design to use a flow matching table of size 8000. If larger than 8000 flows are used, the overall

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 98 / 121

performance degrades because of hash collisions. If more than 8000 flows are required, use the following
command after OVS bridge has been created:

ovs-vsctl set bridge br0 other-config:flow-eviction-threshold=65535

This command would set the size of OVS internal flow table to 65535.

• Use -n 1 as argument passed to DPDK EAL

— -n argument for DPDK application is for defining number of DDR channels for the system - which is typically
valid for NUMA architectures. This parameter is used for mempool memory alignments. For NXP SoCs, this
should be set to "1". NXP SoCs supported by DPDK are non-NUMA.

9.1.11 Use cases

9.1.11.1 Traffic bifurcation using DPDMUX on DPAA2

9.1.11.1.1 Environment setup

This section uses LS2088A Board as an example platform for demonstrating the use-case. This use-case would
be applicable for all DPAA2 platforms including LS1088A, LX2160A.

 NOTE

Figure 19. External view of the setup

In the above image, a NXP LS2088A board has been shown connected to a packet generator (Spirent).

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 99 / 121

Though the example uses Spirent as packet generator, any other source of controlled packet transmission can
also be used.

 NOTE

The image uses dpmac.5 and dpmac.6 interfaces for demonstration. Any other other interface can also be used
- in which case, the commands described below would have to be altered accordingly.

 NOTE

Figure 20. NXP LS2088A Internal Block for traffic bifurcation setup

In the above environment setup, a DPRC container (dprc.2) is created containing DPAA2 dpmac.5 and dpmac.6 interfaces.
DPDMUX dpdmux.0 is created with dpni.1 and dpni.3, while dpni.2 is connected with dpmac.2.

NXP LS2088A board has 8 10G links – 4 Fiber ports, and 4 Copper ports.

Figure 21. LS2088ARDB ports

On a standard LSDK configuration, these ports are represented using dpmac.X naming. Corresponding to the image above
describing the ports, following is the naming convention:

• dpmac.1, dpmac.2, dpmac.3 and dpmac.4 are ETH4, ETH5, ETH6 and ETH7, respectively

• dpmac.5, dpmac.6, dpmac.7 and dpmac.8 are ETH0, ETH1, ETH2 and ETH3, respectively.

Following are the commands to create the above setup:

Though this section uses dpmac.5 and dpmac.6 as interfaces; similar setup can be created using any other ports of LS2088A
(or any other DPAA2 DPDMUX supporting board). Replace dpmac.X in commands below with equivalent port name.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 100 / 121

1. Create DPRC with dpmac.5 and dpmac.6 attached. This would create dpni.1 and dpni.2 internally.

/usr/share/dpdk/dpaa2/dynamic_dpl.sh dpmac.5 dpmac.6

Output log:

##################### Container dprc.2 is created ####################

Container dprc.2 have following resources :=>

* 1 DPMCP
* 16 DPBP
* 8 DPCON
* 8 DPSECI
* 2 DPNI
* 18 DPIO
* 2 DPCI
* 2 DPDMAI

######################### Configured Interfaces #########################
Interface Name Endpoint Mac Address
============== ======== ==================
dpni.1 dpmac.5 -Dynamic-
dpni.2 dpmac.6 -Dynamic-

2. Create a DPNI for assigning to Linux Kernel. This would be used for forwarding the UDP traffic.

ls-addni --no-link

Output log:

Created interface: eth0 (object:dpni.3, endpoint:)

It is important to note the dpni.X naming which is dynamically generated by the dynamic_dpl.sh script and ls-addni
command. In case they are different from what is described in this section, corresponding changes should be done
in the commands below.

 NOTE

3. Unplug the DPRC from VFIO, create a DPDMUX, assign DPNIs (dpni.1 and dpni.3) to it, and then plug the DPRC
back again to VFIO so that Userspace application can use it. This was already in plugged state because of the
dynamic_dpl.sh script.

Unbinding dprc.2 from VFIO
echo dprc.2 > /sys/bus/fsl-mc/drivers/vfio-fsl-mc/unbind

Remove dpni.2 from dprc.2 so that it can be assigned to dpdmux
restool dprc disconnect dprc.2 --endpoint=dpni.1

Create dpdmux with CUSTOM flow creation; Flows would be created
from the Userspace (DPDK) application
restool dpdmux create --default-if=1 --num-ifs=2 --method DPDMUX_METHOD_CUSTOM --
manip=DPDMUX_MANIP_NONE --option=DPDMUX_OPT_CLS_MASK_SUPPORT --container=dprc.1

Create DPDMUX with two DPNI connections and one DPMAC connection
restool dprc connect dprc.1 --endpoint1=dpdmux.0.0 --endpoint2=dpmac.5
restool dprc connect dprc.1 --endpoint1=dpdmux.0.1 --endpoint2=dpni.3
restool dprc connect dprc.1 --endpoint1=dpdmux.0.2 --endpoint2=dpni.1
restool dprc assign dprc.1 --object=dpdmux.0 --child=dprc.2 --plugged=1

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 101 / 121

The default queue has been configured as 0.1 in DPDK DPMUX driver. In the above commands, dpni.3 has
been configured to --endpoint1=dpdmux.0.1. Thus, all traffic which is not filtered would be sent by dpdmux.0
to dpni.3. Further, the l2fwd application has currently configured UDP traffic (IPv4 Protocol Header field value
17) to be sent to --endpoint1=dpdmux.0.2, which corresponds to dpni.1.

 NOTE

Bind the DPRC back to VFIO
echo dprc.2 > /sys/bus/fsl-mc/drivers/vfio-fsl-mc/bind

Export the DPRC
export DPRC=dprc.2

If required, IP Address can be assigned to eth0, which would appear in Linux OS to represent the dpni.3. Thereafter,
external packet generator or a device can send ICMP traffic to confirm the bifurcation of traffic.

root@Ubuntu:~# ifconfig eth0 10.0.0.10/24 up
root@Ubuntu:~# ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 10.0.0.10 netmask 255.255.255.0 broadcast 10.0.0.255
 inet6 fe80::dce6:feff:fe3a:e105 prefixlen 64 scopeid 0x20<link>
 ether de:e6:fe:3a:e1:05 txqueuelen 1000 (Ethernet)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 6 bytes 516 (516.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

root@Ubuntu:~# restool dpni info dpni.3
dpni version: 7.8
dpni id: 3
plugged state: plugged
endpoint state: 1
endpoint: dpdmux.0.1, link is up
link status: 1 - up
mac address: de:e6:fe:3a:e1:05
dpni_attr.options value is: 0

4. Run the l3fwd application

l3fwd -c 0xF0 -n 1 -- -p 0x3 --config="(0,0,4),(1,0,5)" -P --traffic-split-proto 17:2

• In the above command, -c 0xF0 corresponds to the cores being used by the DPDK Application. In case

they are different, the mask should be changed.

• Further, --config="(0,0,4),(1,0,5)" represents (Port, Queue, Core) – which should align with the
core masks provided. The Port value is ‘0’ and ‘1’ assuming only dpmac.5 and dpmac.6 have been assigned
to the DPRC dprc.2. Only single queue per device has been considered. Numbering for all elements of this
tuple starts from 0.

• --traffic-split-proto 17:2 conveys to the application that protocol number 17 (UDP) should be sent
to DPDMUX port 2 - which would be dpni.1 (accodring to order of creation of ports in DPDMUX).

 NOTE

Output log:

EAL: Detected 8 lcore(s)
EAL: Probing VFIO support...
EAL: VFIO support initialized
EAL: PCI device 0000:01:00.0 on NUMA socket -1

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 102 / 121

EAL: Invalid NUMA socket, default to 0
EAL: probe driver: 8086:10d3 net_e1000_em
PMD: dpni.1: netdev created
PMD: dpni.2: netdev created
PMD: dpsec-0 cryptodev created
PMD: dpsec-1 cryptodev created
PMD: dpsec-2 cryptodev created
PMD: dpsec-3 cryptodev created
PMD: dpsec-4 cryptodev created
PMD: dpsec-5 cryptodev created
PMD: dpsec-6 cryptodev created
PMD: dpsec-7 cryptodev created
^[[6~L3FWD: Promiscuous mode selected
L3FWD: LPM or EM none selected, default LPM on
Initializing port 0 ... Creating queues: nb_rxq=1 nb_txq=4... Address:00:00:00:00:00:01,
Destination:02:00:00:00:00:00, Allocated mbuf pool on socket 0
LPM: Adding route 0x01010100 / 24 (0)
LPM: Adding route 0x02010100 / 24 (1)
LPM: Adding route IPV6 / 48 (0)
LPM: Adding route IPV6 / 48 (1)
txq=4,0,0 txq=5,1,0 txq=6,2,0 txq=7,3,0
Initializing port 1 ... Creating queues: nb_rxq=1 nb_txq=4... Address:DA:CA:B2:78:68:19,
Destination:02:00:00:00:00:01, Allocated mbuf pool on socket 0
txq=4,0,0 txq=5,1,0 txq=6,2,0 txq=7,3,0
Initializing rx queues on lcore 4 ... rxq=0,0,0
Initializing rx queues on lcore 5 ... rxq=1,0,0
Initializing rx queues on lcore 6 ...
Initializing rx queues on lcore 7 ...

Checking link statusdone
Port0 Link Up. Speed 1000 Mbps -full-duplex
Port1 Link Up. Speed 10000 Mbps -full-duplex
L3FWD: entering main loop on lcore 5
L3FWD: -- lcoreid=5 portid=1 rxqueueid=0
L3FWD: lcore 7 has nothing to do
L3FWD: lcore 6 has nothing to do
L3FWD: entering main loop on lcore 4
L3FWD: -- lcoreid=4 portid=0 rxqueueid=0

5. Send following packet streams from the Packet generator (in this case, Spirent)

a. Packets sent to dpmac.5

i. UDP Traffic: IPv4 Packet with Protocol ID field (next protocol) = 0x11 (hex) or 17 (decimal); Size greater
than 82 bytes.

ii. IPv4 Only Traffic: IPv4 Traffic with any random Protocol ID (next protocol) = 253 (Experimental); Size
greater than equal to 64 bytes. Src IP: 1.1.1.1; Dst IP: 2.1.1.1 (so that packets can be forwarded by l3fwd
application from dpmac.5 to dpmac.6.

b. Packets sent to dpmac.2

i. IPv4 Only Traffic: IPv4 Traffic with any random Protocol ID (next protocol) = 253 (Experimental); Size
greater than equal to 64 bytes. Src IP: 2.1.1.1; Dst IP: 1.1.1.1 (so that packets can be forwarded by l3fwd
application from dpmac.6 to dpmac.5.

9.1.11.1.2 Expected results

Following is the expected output:

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 103 / 121

Figure 22. Expected output on Linux Userspace and Packet Generator

1. All traffic with UDP Protocol set in IPv4 header would be sent to Linux Kernel network stack and would be eventually
available on the ethernet interface (backed by dpni.3). Application like tcpdump would be able to demonstrate the
packets coming in:

root@localhost:~# ifconfig
…
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.0.0.10 netmask 255.255.255.0 broadcast 10.0.0.255
inet6 fe80::5885:a5ff:fe1c:76af prefixlen 64 scopeid 0x20<link>
ether 5a:85:a5:1c:76:af txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 5 bytes 426 (426.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
…

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
22:39:10.286502 IP 10.0.0.11 > Ubuntu.ls2088ardb: ip-proto-200 90
22:39:11.286385 IP 10.0.0.11 > Ubuntu.ls2088ardb: ip-proto-201 90
22:39:12.286286 IP 10.0.0.11 > Ubuntu.ls2088ardb: ip-proto-202 90
22:39:13.286172 IP 10.0.0.11 > Ubuntu.ls2088ardb: ip-proto-203 90
22:39:14.286075 IP 10.0.0.11 > Ubuntu.ls2088ardb: ip-proto-204 90
22:39:15.285958 IP 10.0.0.11 > Ubuntu.ls2088ardb: ip-proto-205 90
22:39:16.285845 IP 10.0.0.11 > Ubuntu.ls2088ardb: ip-proto-206 90
22:39:17.285757 IP 10.0.0.11 > Ubuntu.ls2088ardb: ip-proto-207 90
22:39:18.285636 IP 10.0.0.11 > Ubuntu.ls2088ardb: ip-proto-208 90
22:39:19.285541 IP 10.0.0.11 > Ubuntu.ls2088ardb: ip-proto-209 90
^C
10 packets captured
10 packets received by filter
0 packets dropped by kernel
root@Ubuntu:~#

In the above output, it can be observed that packets of different IPv4 Protocol fields are being received in Linux. (This
setting can be configured in Spirent). Ubuntu.ls2088ardb refers to the local machine IP 10.0.0.10 which was
configured using ifconfig.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 104 / 121

2. All other traffic would be visible in the packet generator being reflected by ‘l3fwd’ application. Below is the screen-grab
of Wireshark output of packet captured by Spirent which were reflected by the l3fwd application:

9.1.11.1.3 Application Limitation

Currently, the application has been designed to only bifurcate traffic on the basis of the protocol number matched in the IP header
(provided through --traffic-split-proto 17:2 argument). Also, only a single matching criteria can be provided for now. For
enhanced cases, the application will have to be modified.

9.1.11.2 DPDK multi-process

9.1.11.2.1 DPDK Multiprocess Support

Supported Platforms (and their derivatives):

• DPAA2 : LS108x, LS208x, LX2160

NXP DPDK provides a set of data plane libraries and network interface controller driver for Layerscape platforms. This section
provides information about multiprocess support in DPDK for NXP platforms.

• Multiprocess: In DPDK context, this is a deployment model where multiple independent processes are executed each of
which can functionally behave as threads of a parent process.

• Parent/Primary Process: The first DPDK process which is run. In the DPDK multiprocess model, this process is responsible
for configuration of the devices and any other common configuration to be used by the secondary processes. This process
can also perform I/O on the devices. While executing the process, if --proc-type=primary is used as an EAL argument,
the process is expected to be primary. In case this is not the first DPDK process, then this would result in error.

• Child/Secondary Process: Every next DPDK process which is started with --proc-type=secondary EAL argument. Another
way is to add --proc-type=auto as EAL argument which automatically selects between primary or secondary based on
order of execution.

In case another instance of DPDK application is started but it is not expected to be part of a Multiprocess model
(separate DPDK instance), then adequate configuration of hugepages need to be done. By default, DPDK maps
all available hugepages which only be consumed by a single process, and its secondary processes.

 NOTE

9.1.11.2.2 Various Multiprocess Models

This section is only applicable for DPAA2 as this involves I/O in the secondary process. Refer to following sections
for DPAA support.

 NOTE

Based on the functionality of the processes, the multiprocess model can be categorized into two broad spectrum:

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 105 / 121

• Symmetric: A model where the Primary and Secondary process have similar functionality. For example, where Primary
processes is performing I/O over one eth device, while one or more secondary processes are also performing I/O on separate
eth devices. Or, if each device is equally shared across multiple processes for I/O.

 +----------+ +------------+ +------------+ +------------+
 | Primary | | Secondary1 | | Secondary2 |... | SecondaryN |
 +-----XV---+ +------XV----+ +------XV----+ +-----XV-----+
 || || || ||
 +-----||---+ +------||----+ +------||----+ +-----||-----+
 | Device 1 | | Device 2 | | Device 3 |... | Device N |
 +----------+ +------------+ +------------+ +------------+

Where, { X = Rx and V = Tx } signifying I/O (Rx/Tx, both). Another way to visualize is where I/O (Rx/Tx) is performed by each
process on same device, maybe through separate queues:

 +----------+ +------------+ +------------+ +------------+
 | Primary | | Secondary1 | | Secondary2 |... | SecondaryN |
 +-----XV---+ +------XV----+ +------XV----+ +------XV-----+
 || || || ||
 || .-------------` || ||
 || || .------------------------` ||
 || || || .-----------------------------------`
 || || || ||
 +-----||--||---||----||--+
 | Device 1 |
 +------------------------+

• Asymmetric: A model where the primary and secondary process have dis-similar functionality in terms of I/O. For example,
primary process performing Rx on a device, transferring data to a secondary process through some internal process
mechanism (IPC, for example, Ring), which in turn does Tx on the same device.

 +----------+ +------------+
 | Primary >----X Secondary1 |
 +-----X-V-V+ +------V-----+
 | | | | +------------+
 | | `-----------)---------X Secondary2 |
 | | | +------V-----+
 | | | |
 | | | | +------------+
 | `-------------)----------------)-------...-X SecondaryN |
 | | | +-----V------+
 | | | |
 |.---------------' | |
 ||.-------------------------------` |
 |||.--`
 ||||
 +-----||||-+
 | Device 1 |
 +----------+

Current implementation of NXP DPDK supports both mode on the supported platforms. The design of the application drives
the mode being used.

9.1.11.2.3 Environment Setup

This section is applicable for DPAA2 only.

 NOTE

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 106 / 121

For all DPDK multiprocess use-cases, disable ASLR - Address Space Layout Randomization[1]This is the default
setting on various Linux distribution for preventing stack and other malicious address manipulation attacks. This
works by randomizing the address-space layout of the ELF binary. This impact secondary process because the
second or further process would attempt to find the same address space as the primary process (hugepage). This
should be disabled using:

echo 0 > /proc/sys/kernel/randomize_va_space

 NOTE

DPRC or DPAA2 Resource Container contains a number of resources which need to be segregated between the primary and
secondary process. Initializing all the I/O devices (dpni, dpseci, dpdmai, etc) is done by primary - secondary process is not
expected to initialize any I/O device. Only control devices like dpio, dpmcp need to be initialized by secondary for its own work.

While executing the primary or secondary processes, list of devices to blacklist (those which are not to be configured) need to
be passed. Alternatively, a list of all devices which are to be configured can be passed. This list is important as overlap would
result in incorrect configuration.

1. Create enough dpmcp devices: While creating the DPRC (through dynamic_dpl.sh script), create as many dpmcp as the
number of processes (primary and secondary) expected to use the DPRC.

 $ export DPMCP_COUNT=3 # for 1 Primary, 2 Secondary
 $./dynamic_dpl.sh dpmac.1 dpmac.2

2. Create enough dpio devices to suffice the total number of cores being used across primary and secondary, plus one
additional for each process. For example, in case primary is to be run with 2 cores, and secondary with 2 Cores, total dpio
required are: (Total Process = 3) x (3 dpio per process) = 9

A large number of dpio devices are already created in default container created by dynamic_dpl.sh.

 NOTE

 $ export DPIO_COUNT=10 # A larger number to accommodate conf changes
 $./dynamic_dpl.sh dpmac.1 dpmac.2

Assuming that following DPRC is created:

$ restool dprc show dprc.2

 dprc.2 contains 58 objects:
 object label plugged-state
 dpni.3 plugged
 dpni.2 plugged
 dpni.1 plugged
 dpbp.16 plugged
 dpbp.15 plugged
 dpbp.14 plugged
 dpbp.13 plugged
 dpbp.12 plugged
 dpbp.11 plugged
 dpbp.10 plugged
 dpbp.9 plugged
 dpbp.8 plugged
 dpbp.7 plugged
 dpbp.6 plugged
 dpbp.5 plugged
 dpbp.4 plugged

[1] https://en.wikipedia.org/wiki/Address_space_layout_randomization

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 107 / 121

https://en.wikipedia.org/wiki/Address_space_layout_randomization

 dpbp.3 plugged
 dpbp.2 plugged
 dpbp.1 plugged
 dpci.1 plugged
 dpci.0 plugged
 dpseci.7 plugged
 dpseci.6 plugged
 dpseci.5 plugged
 dpseci.4 plugged
 dpseci.3 plugged
 dpseci.2 plugged
 dpseci.1 plugged
 dpseci.0 plugged
 dpdmai.1 plugged
 dpdmai.2 plugged
 dpmcp.23 plugged
 dpmcp.22 plugged
 dpmcp.21 plugged
 dpio.17 plugged
 dpio.16 plugged
 dpio.15 plugged
 dpio.14 plugged
 dpio.13 plugged
 dpio.12 plugged
 dpio.11 plugged
 dpio.10 plugged
 dpio.9 plugged
 dpio.8 plugged
 dpcon.8 plugged
 dpcon.7 plugged
 dpcon.6 plugged
 dpcon.5 plugged
 dpcon.4 plugged
 dpcon.3 plugged
 dpcon.2 plugged
 dpcon.1 plugged

Ignore dpni, dpbp, dpci, dpseci, dpcon - as they are all configured by the primary process only. Secondary process is
designed to skip them. But, dpio and dpmcp are important considerations.

3. Start primary application with EAL arguments for blacklisting

Only allowing dpio.8, dpio.9, dpio.10, dpmcp.21 in primary; blacklisting all others

$./primary_process -c 0x3 -b fslmc:dpio.11 -b fslmc:dpio.12 -b fslmc:dpio.13 \
 -b fslmc:dpio.14 -b fslmc:dpio.15 -b fslmc:dpio.16 -b fslmc:dpio.17 \
 -b fslmc:dpmcp.22 -b fslmc:dpmcp.23 -- <application arguments>

Only allowing fslmc:dpio.11, fslmc:dpio.12, fslmc:dpio.13, fslmc:dpmcp.22 in secondary process 1

$./secondary_process1 -c 0x3 -b fslmc:dpio.8 -b fslmc:dpio.9 -b fslmc:dpio.10 \
 -b fslmc:dpio.14 -b fslmc:dpio.15 -b fslmc:dpio.16 -b fslmc:dpio.17 \
 -b fslmc:dpmcp.21 -b fslmc:dpmcp.23 -- <application arguments>

Only allowing fslmc:dpio.14, fslmc:dpio.15, fslmc:dpio.16, fslmc:dpmcp.23 in secondary process
2; ignoring dpio.17

$./secondary_process1 -c 0x3 -b fslmc:dpio.8 -b fslmc:dpio.9 -b fslmc:dpio.10 \

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 108 / 121

 -b fslmc:dpio.11 -b fslmc:dpio.12 -b fslmc:dpio.13 -b fslmc:dpio.17 \
 -b fslmc:dpmcp.21 -b fslmc:dpmcp.22 -- <application arguments>

• In the above format <bus>:<device> is the way to provide the device identifier for blacklisting/whitelisting.

• Another method would be to whitelist all devices - but, that would require listing even the dpni, dpci,
dpseci, and dpcon devices. That would increase the length of the argument to unmanageable lengths.

 NOTE

9.1.11.2.4 Executing DPDK example application

This section is applicable for DPAA2 only.

 NOTE

Applications used in the snippets below are not available on the LSDK rootfs. For standalone compilation of these
applications, refer Compiling DPDK Example Applications

 NOTE

It important to note that before any secondary application execution, ASLR support should be disabled by using
echo 0 > /proc/sys/kernel/randomize_va_space.

 NOTE

DPDK provides two sample applications which can be used for I/O using multiprocess model.

./examples/multi_process/symmetric_mp # symmetric model example

./examples/multi_process/client_server_mp # asymmetric model example

Some other examples are also provided from NXP which use the available hardware support in DPAA2:

./examples/multi_process/symmetric_mp_qdma # symmetric model with QDMA example

Detailed explanation can be seen from DPDK documentation: https://doc.dpdk.org/guides/sample_app_ug/multi_process.html

Using the same DPRC shown as sample above.

1. Executing symmetric_mp with 1 Primary, 1 Secondary:

Running primary process with single Core, 2 ports; assigning 1 dpmcp and 5 dpio to it.

./symmetric_mp -c 0x1 -n 1 -b fslmc:dpio.13 -b fslmc:dpio.14 -b fslmc:dpio.15 \
 -b fslmc:dpio.16 -b fslmc:dpio.17 -b fslmc:dpmcp.22 -b fslmc:dpmcp.23 \
 -- -p 0x3 --num-procs=2 --proc-id=0

In the above, --num-procs=2 signifies 2 processes in total. --proc-id=0 is the identifier for the primary process.

Running secondary process with single core (not overlappping with primary), 2 ports (same as
primary); Assigning 1 dpmcp and 5 dpio to it. (We can ignore the extra dpmcp preserved for 3
process, if any)

./symmetric_mp -c 0x2 -n 1 --proc-type=secondary -b fslmc:dpio.8 \
 -b fslmc:dpio.9 -b fslmc:dpio.10 -b fslmc:dpio.11 -b fslmc:dpio.12 \
 -b fslmc:dpmcp.21 -b fslmc:dpmcp.23 -- -p 0x3 --num-procs=2 --proc-id=1

In case more than one instance of application is to be executed, similar blacklisting has to be done to distribute resources.
Further, --num-procs and --proc-id too need to be changed.

Send I/O to the ports assigned to the processes and observe traffic being reflected back.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 109 / 121

https://doc.dpdk.org/guides/sample_app_ug/multi_process.html

2. Executing client_server_mp with 1 Primary, 1 Secondary:

This sample application has two different applications which are executed as server and client. Server process is
responsible for Rx from interfaces (all) and distributing to Client for Tx (one queue per device).

Running server (primary) process with 1 Core, 2 ports; assigning 1 dpmcp and 5 dpio to it.

./mp_server -c 0x1 -n 1 -b fslmc:dpio.13 -b fslmc:dpio.14 -b fslmc:dpio.15 \
 -b fslmc:dpio.16 -b fslmc:dpio.17 -b fslmc:dpmcp.22 -b fslmc:dpmcp.23 \
 -- -p 0x3 -n 1

 # Running client (secondary) process with 1 Core, 2 ports; assigning 1 dpmcp and 5 dpio to it.

./mp_client -c 0x2 -n 1 --proc-type=secondary -b fslmc:dpio.8 \
 -b fslmc:dpio.9 -b fslmc:dpio.10 -b fslmc:dpio.11 -b fslmc:dpio.12 \
 -b fslmc:dpmcp.21 -b fslmc:dpmcp.23 -- -n 0

Send I/O to the ports assigned to the processes and observe traffic being forwarded.

3. Executing QDMA example application:

symmetric_mp_qdma application is similar to symmetric_mp except that the mbuf (buffer) transfers between Rx and Tx are
done using the NXP DPAA2 QDMA (dpdmai) hardware block.

Running primary process with single Core, 2 ports; assigning 1 dpmcp and 5 dpio, 1 dpdmai to it:
Assuming that there are two DPDMAI objects in the DPRC: dpdmai.1 and dpdmai.2, the command is
very similar to the symmetric_mp example:

./symmetric_mp_qdma -c 0x1 -n 1 -b fslmc:dpio.13 -b fslmc:dpio.14 -b fslmc:dpio.15 \
 -b fslmc:dpio.16 -b fslmc:dpio.17 -b fslmc:dpmcp.22 -b fslmc:dpmcp.23 \
 -b fslmc:dpdmai.1 -- -p 0x3 --num-procs=2 --proc-id=0

Notice the extra parameter -b fslmc:dpdmai.1 as compared the symmetric_mp command. This extra parameter conveys
this process to ignore the dpdmai.1 block and use dpdmai.2 in Primary.

Running secondary process with single core (not overlappping with primary), 2 ports (same as
primary); Assigning 1 dpmcp and 5 dpio, 1 dpdmai to it. (We can ignore the extra dpmcp preserved
for 3 process, if any)

./symmetric_mp_qdma -c 0x2 -n 1 --proc-type=secondary -b fslmc:dpio.8 \
 -b fslmc:dpio.9 -b fslmc:dpio.10 -b fslmc:dpio.11 -b fslmc:dpio.12 \
 -b fslmc:dpmcp.21 -b fslmc:dpmcp.23 -b fslmc:dpdmai.2 \
 -- -p 0x3 --num-procs=2 --proc-id=1

4. Executing l2fwd-crypto example application:

l2fwd-crypto is a standard DPDK cryto demonstration application, which also supports multiprocess model.

Primary difference with usual execution of l2fwd-crypto are the mp-emask and mp-cmask arguments passed - signifying
ethernet ports and crypto ports, respectively, which would be used by l2fwd-crypto instance.

Following can be a possible primary application command, using the same DPRC as used for examples described above:

./l2fwd-crypto -c 0x3 -n 1 -b fslmc:dpio.13 -b fslmc:dpio.14 -b fslmc:dpio.15 \
 -b fslmc:dpio.16 -b fslmc:dpio.17 -b fslmc:dpmcp.22 -b fslmc:dpmcp.23 \
 -- -p 0x3 -q 1 --mp-emask 0x1 --mp-cmask 0x1 --chain CIPHER_ONLY \
 --cipher_algo aes-cbc --cipher_op ENCRYPT \
 --cipher_key 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 \
 --cipher_iv 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 110 / 121

Secondary application can be executed like:

./l2fwd-crypto -c 0xc -n 1 --proc-type=secondary -b fslmc:dpio.8 \
 -b fslmc:dpio.9 -b fslmc:dpio.10 -b fslmc:dpio.11 -b fslmc:dpio.12 \
 -b fslmc:dpmcp.21 -b fslmc:dpmcp.23 -b fslmc:dpdmai.2 \
 -- -p 0x3 -q 1 --mp-emask 0x2 --mp-cmask 0x2 --chain CIPHER_ONLY \
 --cipher_algo aes-cbc --cipher_op ENCRYPT \
 --cipher_key 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 \
 --cipher_iv 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10

5. Non-I/O performing applications: dpdk-pdump and dpdk-procinfo

Both, dpdk-pdump and dpdk-procinfo are examples of secondary applications can query the primary application (the first
one) for information, without performing any actual I/O over the network devices. Both these are compiled as default as
part of the DPDK framework, just like testpmd and can be obtained from app/ folder in the compiled output.

a. dpdk-pdump for capturing packets

The sample application dpdk-pdump allows capturing of packets arriving on other interfaces/devices available in
DPDK. For compiling dpdk-pdump, enable CONFIG_RTE_LIBRTE_PMD_PCAP=y and CONFIG_RTE_LIBRTE_PDUMP=y
configuration. Later configuration is to enable dumping packets to a PCAP format which can then be used to read
using applications like Wireshark. PCAP support is optional.

For PCAP support, 'libpcap' library has to be provided to DPDK during compilation. This needs to be compiled for
ARM64 target.

 NOTE

Execute the primary application (only testpmd currently suports interfacing with dpdk-pdump):

testpmd -c 0xff -n 1 -- -i --portmask=0x3 --nb-ports=2
...
Start I/O on application
testpmd> set fwd io
testpmd> start

Execute the secondary application, dpdk-pdump. Just like the symmetric_mp and other multiprocess application,
isolation of DPRC resources like dpio and dpmcp needs to be done.

dpdk-pdump -n 1 -b fslmc:dpio.8 -b fslmc:dpio.9 -b fslmc:dpio.10 -b fslmc:dpio.11 \
 -b fslmc:dpio.12 -b fslmc:dpio.13 -b fslmc:dpio.14 -b fslmc:dpio.15 \
 -b fslmc:dpio.16 -b fslmc:dpmcp.29 --mbuf-pool-ops-name="ring_mp_mc" \
 -- --pdump "port=0,queue=*,rx-dev=./rx.pcap"

In the above command, port=0, ... parameters convey `dpdk-pdump` app that capture should be done on port
0 (for example, dpni.1) and packets being received on all queues queue=*. Further, all the captured packets can
be dumped to a PCAP file using rx-dev=<path to pcap file> if LIBPCAP was enabled.

In the above example, only Rx'd packets are being written to PCAP. For Tx'd packets, use something similar to
port=0,queue=*,tx-dev=./... where the output PCAP file is different from Rx'd packets. Both, Rx and Tx, options
can be simultaneously provided.

Stop dpdk-pdump using Ctrl+C and copy the pcap file for reading through external application like Wireshark

b. dpdk-procinfo for dumping application information like memory or port statistics

dpdk-procinfo is an inbuilt application which allows dumping information like memory and statistics of a running
(primary) DPDK application.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 111 / 121

Execute the primary application: (Unlike dpdk-pdump, dpdk-procinfo can be run along with any primary
application):

testpmd -c 0xff -n 1 -- -i --portmask=0x3 --nb-ports=2
...
Start I/O on application
testpmd> set fwd io
testpmd> start

Execute the secondary application, dpdk-procinfo:

It is a good practice to isolate the resources of the application (dpio, dpmcp and dpdmai) for all cases of secondary
application. Though dpdk-procinfo can work without that isolation because it doesn't necessary access device
specific data, it is good practice to do the isolation in this case as well.

 NOTE

dpdk-procinfo -- -m

Above command would dump to screen the memory layout of the primary DPDK application. There are other
switches also available like -s which can dump the statistics.

• l2fwd/l3fwd in their current design are not suited for multiprocess execution and hence would not work with

substantial modification of segregating the queues and Rx/Tx processing.

• For exiting the application, it is advisable to send SIGKILL to all the application. Similar to "killall <application
name>". If not, all secondary should be killed first (Ctrl+C or SIGKILL) before the primary process.

 NOTE

9.1.11.3 Traffic Policing in DPAA

On the DPAA SoCs (like LS1043, LS1046), using the FMC tool, traffic policing can be done using simple configuration.

This is part of the Ingress Traffic Management in the FMan block which sits between the QMan and the hardware in the overall
vertical block layout of DPAA. Once the frames are ingressed from WRIOP into FMan, post the Parser and Classify block, the
Policer block can be configured to color (and drop) frames based on the policy. Policer blocks passes along any non-dropped
frame towards the QMan through the FMan<=>QMan interface. FMan support upto 256 policy profiles.

A sample XML has been added to DPDK source folder /usr/share/dpdk/dpaa/
usdpaa_policy_hash_ipv4_1queue_policer_ls1046.xml. This section uses snippets from this file. This
is ONLY applicable for LS1046A boards.

 NOTE

1. Define a Policer policy XML. In this example, a copy of usdpaa_policy_hash_ipv4_1queue_policer_ls1046.xml has
been used.

 <policer name="policer9">
 <algorithm>rfc2698</algorithm>
 <color_mode>color_aware</color_mode>
 <CIR>5000000</CIR>
 <EIR>5500000</EIR>
 <CBS>5000000</CBS>
 <EBS>5500000</EBS>
 <unit>packet</unit>
 <action condition="on-red" type="drop"/>
 </policer>

In the above configuration, a RFC2698 (Two Rate Three Color Marker) policer has been defined. This policy is based on
2 token buckets representing two rates - PIR/EIR or Peak/Exceed Information Rate and CIR or Committed Information

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 112 / 121

https://tools.ietf.org/html/rfc2698

Rate - and 3 colors - Red, Yellow and Green. Based on the information configured above for CBS (Committed Burst Size)
and EBS (Peak/Exceed Burst Size), streams are marked as being colored for one of the 3 colors.

Based on the standard trTCM (Three Color Marker), CIR is rate of filling the committed bucket and CBS being its
initial size, EIR is the rate of filling the exceed bucket and EBS being its initial size. Thus, in case a flow of packets
is received which exceeds the EIR, it would be marked as Red; else if it exceeds CIR but below EIR, it would be
marked Yellow; otherwise Green.

 NOTE

The configuration above has following elements:

• policer name is the name of the Policer which would be used for assigning to the distribution policy records

• algorithm which has to be defined to rfc2968, or rfc4115 for trTCM for differentiated services or pass-through to
disable policing (default)

• color_mode which can be set to either of color_aware or color_blind. color_aware uses the pre-colored
information, if any, to make decisions, while color_blind ignores the existing color information.

• CIR, EIR - for Committed Information Rate and Exceed Information Rate, respectively. Metric for this is defined by
unit per second (explained below).

• CBS, EBS - for Committed Burst Size and Exceed Burst Size, respectively. Metric for this is defined by unit per second
(explained below).

• unit - defines the metric for all the four configuration parameters, namely CIR, CBS, EIR, EBS. For information
rate, it would be unit/second whereas for burst size it would unit.

2. Apply the policy to one or more distribution policies:

 <distribution name="hash_ipv4_src_dst_dist9">
 <queue count="1" base="0xd00"/>
 <key>
 <fieldref name="ipv4.src"/>
 <fieldref name="ipv4.dst"/>
 </key>
 <action type="policer" name="policer9"/>
 </distribution>

3. Apply the policy file using the FMC tool

root@LS1046ARDB:~# fmc -x
root@LS1046ARDB:~# fmc -c /usr/share/dpdk/dpaa/usdpaa_config_ls1046.xml -p /usr/share/dpdk/dpaa/
usdpaa_policy_hash_ipv4_1queue_policer_ls1046.xml -a

Perform I/O hereafter to see the affect of policing being implemented.

9.1.11.4 Precision Time Protocol (IEEE1588)

The Precision Time Protocol (PTP) is a protocol used to synchronize clock throughout a computer network. PTP was originally
defined in IEEE1588-2002 standard.

To test ptp functionality in DPDK, one can use DPDK example application “ptpclient” present in DPDK source code. ptpclient
application uses DPDK IEEE1588 API to communicate with a PTP master clock to synchronize the time on NIC and, optionally,
on the Linux system.

ptpclient application is based on assumption that it is single-threaded and it always works in slave mode.

 NOTE

.

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 113 / 121

9.1.11.4.1 Supported platforms

PTP is supported for DPAA2 based LS1088A and LS2088A family of SoCs.

9.1.11.4.2 Build procedure

1. By default, IEEE1588 is kept disabled in DPDK config file. To enable, set 'CONFIG_RTE_LIBRTE_IEEE1588=y' in config/
defconfig_arm64-dpaa-linuxapp-gcc.

2. Build DPDK using steps mentioned in Build DPDK section.

3. Build ptpclient application with

• make -C examples/ptpclient/

4. ‘ptpclient’ executable will be generated in “examples/ptpclient/build/” directory

9.1.11.4.3 Test setup and prerequisite to test with ptpclient

ptpclient test application works in slave mode. It can be tested with ptp4l test application running in Linux on another machine in
master mode.

Two machines are required to be connected back-to-back:

• Tester Machine: to run ptp4l test application. ptp4l test application can be directly installed on tester machine via apt-install
type commands or can be built by downloading linuxptp package.

• DUT (Board NXP platform): to run ptp4client test application.

DPAA2 port of DUT board on which ptpclient test application will be tested should be connected to one of ethernet port of Tester
Machine (Tester_port).

9.1.11.4.4 Test procedure with ptpclient

1. Tester machine: Ensure the Tester_port is up and connected to DPAA2_port of DUT board. Confirm this by testing ping.
If the tester machine is NXP DPAA2 based board and the Tester_port does not show up in ifconfig -a command, run
command like below to create the interface:

#ls-addni dpmac.1
Created interface: eth1 (object:dpni.0, endpoint: dpmac.1)

For more details on interface creation, see "Creating a DPAA2 network interface" subsection of "DPAA2 Quick Start Guide"
section of Layerscape Software Development Kit User Guide.

Start ptp server on tester machine. This will act as PTP Master. Suppose eth1 is tester_port which is connect to DUT

#./ptp4l -i eth1 -m -2
ptp4l[581.659]: selected /dev/ptp1 as PTP clock
ptp4l[581.718]: port 1: INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[581.718]: port 0: INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[587.813]: port 1: LISTENING to MASTER on ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES
ptp4l[587.813]: selected local clock b26433.fffe.beb68c as best master
ptp4l[587.813]: assuming the grand master
role

2. DUT machine: This machine will act as ptp slave. Create DPRTC instance and attach DPAA2 port to DPDK using
dynamic_dpl script.

#export
DPRTC_COUNT=1

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 114 / 121

#source ./dynamic_dpl.sh dpmac.1

Confirm from dynamic_dps.sh output that one DPRTC object is created.

Run ptpclient applicaton on DUT_port

a. To synchronize DUT PTP Hardware clock with Tester Machine PTP Hardware clock

#./ptpclient -l 1 -n 1 -- -p 0x1 -T 0

b. To synchronize DUT PTP Hardware clock with Tester Machine PTP Hardware clock and additionally update system
kernel clock

#./ptpclient -l 1 -n 1 -- -p 0x1 -T 1

c. To verify if System kernel clock is updated, read time before and after execution of above ptpclient command using
date command

#date

root@localhost:~# export DPRTC_COUNT=1
root@localhost:~# source ./dynamic_dpl.sh dpmac.5
parent - dprc.1
Creating Non nested DPRC
NEW DPRCs
dprc.1
dprc.2

Using board type as 2088
Using High Performance Buffers

##################### Container dprc.2 is created ####################
Container dprc.2 have following resources :=>

 * 1 DPMCP
 * 16 DPBP
 * 8 DPCON
 * 8 DPSECI
 * 1 DPNI
 * 18 DPIO
 * 2 DPCI
 * 2 DPDMAI
 * 1 DPRTC

######################### Configured Interfaces #########################
Interface Name Endpoint Mac Address
============== ======== ==================
dpni.1 dpmac.5 -Dynamic-

root@localhost:~# date
Mon Jul 1 21:41:26 UTC 2019

root@localhost:~# ./ptpclient -l 1 -n 1 -- -p 0x1 -T 0
EAL: Detected 8 lcore(s)
EAL: Detected 1 NUMA nodes
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
fslmc: Skipping invalid device (power)
EAL: Probing VFIO support...
EAL: VFIO support initialized
EAL: PCI device 0000:01:00.0 on NUMA socket -1
EAL: Invalid NUMA socket, default to 0
EAL: probe driver: 8086:10d3 net_e1000_em
PMD: dpni.1: netdev created

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 115 / 121

dpaa2_net: Rx offloads non configurable - requested 0x0 ignored 0x2000
dpaa2_net: Tx offloads non configurable - requested 0x18000 ignored 0x1c000

Core 1 Waiting for SYNC packets. [Ctrl+C to quit]
Master Clock id: 32:70:3e:ff:fe:ff:a6:59
T2 - Slave Clock. 207s 560468378ns
T1 - Master Clock. 19324s 999662036ns
T3 - Slave Clock. 0s 0ns
T4 - Master Clock. 19324s 999702684ns

Delta between master and slave clocks:19221219448171ns

Comparison between Linux kernel Time and PTP:
Current PTP Time: Thu Jan 1 05:23:48 1970 780202685 ns
Current SYS Time: Mon Jul 1 21:42:10 2019 317847 ns

Delta between PTP and Linux Kernel time:-1561997901537542450ns
[Ctrl+C to quit]

root@localhost:~# date
Mon Jul 1 21:42:18 UTC 2019
root@localhost:~# ./ptpclient -l 1 -n 1 -- -p 0x1 -T 1
EAL: Detected 8 lcore(s)
EAL: Detected 1 NUMA nodes
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
fslmc: Skipping invalid device (power)
EAL: Probing VFIO support...
EAL: VFIO support initialized
EAL: PCI device 0000:01:00.0 on NUMA socket -1
EAL: Invalid NUMA socket, default to 0
EAL: probe driver: 8086:10d3 net_e1000_em
PMD: dpni.1: netdev created

dpaa2_net: Rx offloads non configurable - requested 0x0 ignored 0x2000
dpaa2_net: Tx offloads non configurable - requested 0x18000 ignored

0x1c000

Core 1 Waiting for SYNC packets. [Ctrl+C to quit]
Master Clock id: 32:70:3e:ff:fe:ff:a6:59
T2 - Slave Clock. 20845s 385135978ns
T1 - Master Clock. 19339s 999998152ns
T3 - Slave Clock. 0s 0ns
T4 - Master Clock. 19340s 23532ns

Delta between master and slave clocks:8917307442853ns

Comparison between Linux kernel Time and PTP:
Current PTP Time: Thu Jan 1 08:16:02 1970 692874689 ns
Current SYS Time: Thu Jan 1 08:16:02 1970 692915 ns
Delta between PTP and Linux Kernel time:52105ns
[Ctrl+C to quit]

root@localhost:~# date
Thu Jan 1 05:16:17 UTC 1970

root@localhost:~#

Figure 23. LS2088ARDB DUT logs

9.2 QEMU
This section provides some use case scenarios to highlight the differences between Yocto and Ubuntu userlands. See Layerscape
Software Development Kit User Guide for more details.

The examples provided in this section assume that the host Linux kernel is booted and has a working network interface and the
following images are present in the host root filesystem:

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 116 / 121

• Guest kernel image (/boot/Image)

• Guest root filesystem (/boot/fsl-image-networking-ls2088ardb.ext2.gz)

• QEMU (/usr/bin/qemu-system-aarch64)

You can get these images from Yocto image, fsl-image-networking-full.

How to mount HugeTLB filesystem on host

1. Mount the HugeTLB filesystem on the host as follows:

$: echo 512 > /proc/sys/vm/nr_hugepages
$: mkdir /mnt/hugetlbfs #any mount point can be used
$: mount -t hugetlbfs none /mnt/hugetlbfs

How to start QEMU guest

1. Start QEMU guest:

$: qemu-system-aarch64 -smp 8 -m 1024 -mem-path /mnt/hugetlbfs -cpu host -machine type=virt,gic-
version=3 -kernel /boot/Image -enable-kvm -display none -serial tcp::4446,server,telnet -initrd /
boot/fsl-image-networking-ls2088ardb.ext2.gz -append 'root=/dev/ram rw console=ttyAMA0
ramdisk_size=1000000 rootwait earlyprintk' -monitor stdio

2. Connect to QEMU via Telnet to start booting the virtual machine (in this example, the IP address of the target board is
192.168.4.100):

$: telnet 192.168.4.100 4446

ls1043a and ls1046a do not have a GICv3 implementation, rather they have GICv2 implementation. For those
platforms, gic-version=3should be omitted (see Layerscape Software Development Kit User Guide for more
details).

 NOTE

How to use virtual network interfaces using virtio

1. Enable virtio networking in the host and guest Linux kernels.

2. On the host Linux system, create a bridge to the physical network interface to be used by the virtual network interface in
the virtual machine:

$: brctl addbr br0
$: ifconfig br0 192.168.3.30 netmask 255.255.248.0
$: ifconfig eth2 0.0.0.0
$: brctl addif br0 eth2

3. Create a qemu-ifup script on the host Linux system:

#!/bin/sh
TAP interface will be passed in $1
bridge=br0
guest_device=$1
ifconfig $guest_device 0.0.0.0 up
brctl addif $bridge $guest_device

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 117 / 121

4. When starting QEMU, specify that the network device type is “virtio” and specify the path to the script created in step 3:

$: qemu-system-aarch64 -smp 8 -m 1024 -mem-path /mnt/hugetlbfs -cpu host -machine type=virt,gic-
version=3 -kernel /boot/Image -enable-kvm -display none -seriatrd /boot/fsl-image-networking-
ls2088ardb.ext2.gz -netdev tap,id=tap0,script=qemu-ifup,downscript=no,ifname="tap0" -device
virtio-net-pci,netdev=tap0 -append 'root=/dev/ram r=1000000 rootwait earlyprintk' -monitor stdio

If you want to use vhost-net with virtio, then perform the above steps and add the vhost=on parameter as follows:

$: qemu-system-aarch64 -smp 8 -m 1024 -mem-path /mnt/hugetlbfs -cpu host -machine type=virt,gic-
version=3 -kernel /boot/Image -enable-kvm -display none -serial tcp::4446,server,telnet -initrd /boot/
fsl-image-networking-ls2088ardb.ext2.gz -netdev tap,id=tap0,script=qemu-
ifup,downscript=no,ifname="tap0",vhost=on -device virtio-net-pci,netdev=tap0 -append 'root=/dev/ram rw
console=ttyAMA0 ramdisk_size=1000000 rootwait earlyprintk' -monitor stdio

How to use virtual disks using virtio

1. On the host Linux system, create a binary image to represent the guest disk:

$: dd if =/dev/zero of=my_guest_disk bs=4K count=4K

2. Start QEMU, specifying the name of the virtual disk file for the -drive argument:

$: qemu-system-aarch64 -smp 8 -m 1024 -mem-path /mnt/hugetlbfs -cpu host -machine type=virt,gic-
version=3 -kernel /boot/Image -enable-kvm -display none -serial tcp::4446,server,telnet -initrd /
boot/fsl-image-networking-ls2088ardb.ext2.gz -drive
if=none,file=my_guest_disk,cache=none,id=user,format=raw -device virtio-blk-pci,drive=user -
append 'root=/dev/ram rw console=ttyAMA0 ramdisk_size=1000000 rootwait earlyprintk' -monitor
stdio

How to use virtual disks using virtio-blk dataplane

1. Start QEMU as follows:

$: qemu-system-aarch64 -smp 8 -m 1024 -mem-path /mnt/hugetlbfs -cpu host -machine type=virt,gic-
version=3 -kernel /boot/Image -enable-kvm -display none -serial tcp::4446,server,telnet -initrd /
boot/fsl-image-networking-ls2088ardb.ext2.gz -object iothread,id=iothread0 -drive
if=none,file=/dev/mmcblk0,cache=none,id=drive0,format=raw,aio=native -device virtio-blk-
pci,drive=drive0,scsi=off,iothread=iothread0 -append 'root=/dev/ram rw console=ttyAMA0
ramdisk_size=1000000 rootwait earlyprintk' -monitor stdio

How to use DPAA2 direct assignment

1. Create the child container that will be assigned to the guest virtual machine and bind it to the vfio-fsl-mc driver.

2. Add the following device command to the QEMU command line:

-device vfio-fsl-mc,host=dprc.2

3. Start QEMU as follows:

$: qemu-system-aarch64 -smp 8 -m 1024 -mem-path /mnt/hugetlbfs -cpu host -machine type=virt,gic-
version=3 -kernel /boot/Image -enable-kvm -display none -serial tcp::4446,server,telnet -initrd /
boot/fsl-image-networking-ls2088ardb.ext2.gz -device vfio-fsl-mc,host=dprc.2 -append
'root=/dev/ram rw console=ttyAMA0 ramdisk_size=1000000 rootwait earlyprintk' -monitor stdio -S

4. Assign each vCPU thread to one physical CPU only:

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 118 / 121

a. Get the virtual machine thread IDs by entering QEMU shell:

(qemu) info cpus

b. Assign one vCPU thread to one core only using taskset.

c. Start the vCPU threads:

(qemu) c

How to use PCIe direct assignment

1. Select the PCIe device that will be assigned to the virtual machine. For example, PCIe device is e1000e PCIe network
device (0000.01.00.0).

2. Bind the PCIe device to the VFIO driver.

3. List all devices in the same iommu-group and bind them to VFIO using step 1.

4. Add the following device command to the QEMU command line for all the devices in the iommu-group:

-device vfio-pci,host=0000:01:00.0

5. Start QEMU as follows:

$: qemu-system-aarch64 -smp 8 -m 1024 -mem-path /mnt/hugetlbfs -cpu host -machine type=virt,gic-
version=3 -kernel /boot/Image -enable-kvm -display none -serial tcp::4446,server,telnet -initrd /
boot/fsl-image-networking-ls2088ardb.ext2.gz -device vfio-pci,host=0000:01:00.0 -append
'root=/dev/ram rw console=ttyAMA0 ramdisk_size=1000000 rootwait earlyprintk' -monitor stdio

How to use pass-through of USB devices

Use one of the following two approaches for passing through a USB device:

• By specifying USB vendor ID and device's product ID:

1. Specify the USB vendor ID and the product ID of the device (identify the information using lsusb):

-device nec-usb-xhci,id=xhci
-device usb-host,bus=xhci.0,vendorid=0x13fe,productid=0x3600

2. Start QEMU as follows:

$: qemu-system-aarch64 -smp 8 -m 1024 -mem-path /mnt/hugetlbfs -cpu host -machine
type=virt,gic-version=3 -kernel /boot/Image -enable-kvm -display none -serial
tcp::4446,server,telnet -initrd /boot/fsl-image-networking-ls2088ardb.ext2.gz -device nec-usb-
xhci,id=xhci -device usb-host,bus=xhci.0,vendorid=0x13fe,productid=0x3600 -append
'root=/dev/ram rw console=ttyAMA0 ramdisk_size=1000000 rootwait earlyprintk' -monitor stdio

• By specifying USB bus and port number:

1. Specify the USB bus and the port number (identify the information using lsusb -t):

-device nec-usb-xhci,id=xhci
-device usb-host,bus=xhci.0,hostbus=1,hostport=1

2. Start QEMU as follows:

$: qemu-system-aarch64 -smp 8 -m 1024 -mem-path /mnt/hugetlbfs -cpu host -machine
type=virt,gic-version=3 -kernel /boot/Image -enable-kvm -display none -serial
tcp::4446,server,telnet -initrd /boot/fsl-image-networking-ls2088ardb.ext2.gz -device nec-usb-

NXP Semiconductors
User space applications

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 119 / 121

xhci,id=xhci -device usb-host,bus=xhci.0,hostbus=1,hostport=1 -append 'root=/dev/ram rw
console=ttyAMA0 ramdisk_size=1000000 rootwait earlyprintk' -monitor stdio

10 Frequently asked questions
Question 1: How can I compile ATF with OPTEE?

Answer: For compiling ATF with OPTEE, add the below line in your conf/local.conf file:

DISTRO_FEATURES_append = " optee"

Question 2: How can I compile ATF with RCW image that is different from default image?

Answer: Modify RCWNOR or RCWSD and RCWNAND in <machine>.conf file. For example, update ls1043ardb.conf file in meta-
freescale layer as follows:

RCWNOR ?= "RR_FQPP_1455/rcw_1600"

Question 3: How can I add custom additional packages to default rootfs?

Answer: Set IMAGE_INSTALL_append in the conf/local.conf file.

Question 4: How to build fsl-image-multimedia-full on the LS1028ARDB?

Answer: First, uncomment the below line in conf/local.conf file to remove distro feature x11 as the LS1028ARDB uses wayland:

#DISTRO_FEATURES_remove = " x11"
#PREFERRED_VERSION_weston = "8.0.0.imx"
#PREFERRED_VERSION_wayland-protocols = "1.18.imx"
#PREFERRED_VERSION_libdrm = "2.4.99.imx"
#PREFERRED_PROVIDER_virtual/libgl = "imx-gpu-viv"
#PREFERRED_PROVIDER_virtual/libgles1 = "imx-gpu-viv"
#PREFERRED_PROVIDER_virtual/libgles2 = "imx-gpu-viv"
#PREFERRED_PROVIDER_virtual/egl = "imx-gpu-viv"

Then, run the following command:

bitbake fsl-image-multimedia-full

11 Related resources
The table below provides resources available for reference.

Table 14. Related resources

Resource Resource link

NXP LSDK official
website

https://www.nxp.com/lsdk

Layerscape
Software
Development Kit
User Guide

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/
layerscape-software-development-kit-v19.09:LAYERSCAPE-SDK?tab=Documentation_Tab

NXP LSDK github
portal

https://lsdk.github.io/

Yocto Open
Source User Guide

https://www.yoctoproject.org/docs/

NXP Semiconductors
Frequently asked questions

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 120 / 121

https://www.nxp.com/lsdk
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit-v19.09:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit-v19.09:LAYERSCAPE-SDK?tab=Documentation_Tab
https://lsdk.github.io/
https://www.yoctoproject.org/docs/

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, Freescale, the Freescale logo, CodeWarrior, Layerscape, PowerQUICC,
and QorIQ are trademarks of NXP B.V. All other product or service names are the property of
their respective owners. Arm, Cortex, and TrustZone are trademarks or registered trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be
protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 07/2020
Document identifier: LSDKYOCTOUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Release notes
	2.1 What’s new
	2.2 Feature support matrix
	2.3 Supported targets
	2.4 Fixed, open, and closed issues

	3 Download Yocto layers
	3.1 Download Yocto layers from repo manifest
	3.2 Download Yocto layers from community repository

	4 Build Yocto images
	5 Boot boards with Yocto image
	5.1 Prerequisites
	5.2 Booting board with ramdisk rootfs image
	5.3 Booting board with full rootfs from large storage device
	5.4 Secure boot

	6 Program TF-A binaries
	6.1 Program TF-A binaries on QSPI NOR flash
	6.2 Program TF-A binaries on FlexSPI NOR flash
	6.3 Program TF-A binaries on IFC NOR flash
	6.4 Program TF-A binaries on NAND flash
	6.5 Program TF-A binaries on SD card

	7 QorIQ memory layout
	8 Prebuilt toolchains
	9 User space applications
	9.1 DPDK
	9.1.1 Introduction
	9.1.1.1 Supported platforms and platform-specific details
	9.1.1.1.1 LS1012A Reference Design Board (RDB)
	9.1.1.1.2 LS1028A Reference Design Board (RDB)
	9.1.1.1.3 LS1043A Reference Design Board (RDB)
	9.1.1.1.4 LS1046A Reference Design Board (RDB) / LS1046A Freeway Board (FRWY)
	9.1.1.1.5 LS1088A Reference Design Board (RDB)
	9.1.1.1.6 LS2088A Reference Design Board (RDB)
	9.1.1.1.7 LX2160A Reference Design Board (RDB)

	9.1.1.2 References

	9.1.2 DPDK Overview
	9.1.2.1 DPDK Platform Support
	9.1.2.2 DPAA: Supported DPDK Features
	9.1.2.3 DPAA2: Supported DPDK Features
	9.1.2.4 PPFE supported DPDK features
	9.1.2.5 ENETC supported DPDK features

	9.1.3 Build DPDK
	9.1.3.1 Build DPDK using Yocto
	9.1.3.2 Build DPDK on host (native)
	9.1.3.3 Standalone build of DPDK libraries and applications
	9.1.3.4 DPDK based Packet Generator
	9.1.3.5 Build OVS-DPDK using Yocto
	9.1.3.6 Virtual machine (VM or guest) images

	9.1.4 Executing DPDK Applications on Host
	9.1.4.1 Booting up target board
	9.1.4.2 Prerequisites for running DPDK applications
	9.1.4.2.1 Test Environment Setup
	9.1.4.2.2 Generic Setup - DPAA
	9.1.4.2.3 Generic Setup - DPAA2
	9.1.4.2.4 Generic Setup - PPFE
	9.1.4.2.5 Generic setup – ENETC
	9.1.4.2.6 DPAA2: Multiple parallel DPDK applications

	9.1.4.3 DPDK example applications
	9.1.4.4 Command interface (CMDIF) demo application

	9.1.5 OVS-DPDK and DPDK in VM with VIRTIO Interfaces
	9.1.5.1 Generic steps
	9.1.5.2 Configuring OVS
	9.1.5.3 Launch Virtual Machine
	9.1.5.4 Launching two virtual machines
	9.1.5.5 Running DPDK applications in VM
	9.1.5.6 Multi Queue VIRTIO support
	9.1.5.6.1 Accessing virtual machine console

	9.1.5.7 OVS DPDK Performance Guide

	9.1.6 DPDK on Docker
	9.1.6.1 Docker Overview
	9.1.6.2 DPAA1-Platform
	9.1.6.2.1 Running Docker Container on DPAA1
	9.1.6.2.2 Running the DPDK Application

	9.1.6.3 DPAA2-Platform
	9.1.6.3.1 Traffic Multiplexer/De-Multiplexer
	9.1.6.3.2 Single Docker Instance - Container Configuration (DPDMUX/DPSW)
	9.1.6.3.3 Running Docker Container on DPAA2
	9.1.6.3.4 Running the DPDK Application
	9.1.6.3.5 Example Configuration for 2 Docker Instances: Using DPDMUX
	9.1.6.3.6 Example Configuration for 2 Docker Instances: Using DPSW

	9.1.7 Enabling DPAA2 direct assignment for DPDK
	9.1.7.1 Launch Virtual Machine
	9.1.7.2 Accessing the virtual machine console
	9.1.7.3 Running DPDK applications with direct device assignments

	9.1.8 Known Limitations and Future Work
	9.1.9 Troubleshooting
	9.1.10 DPDK Performance Reproducibility Guide
	9.1.11 Use cases
	9.1.11.1 Traffic bifurcation using DPDMUX on DPAA2
	9.1.11.1.1 Environment setup
	9.1.11.1.2 Expected results
	9.1.11.1.3 Application Limitation

	9.1.11.2 DPDK multi-process
	9.1.11.2.1 DPDK Multiprocess Support
	9.1.11.2.2 Various Multiprocess Models
	9.1.11.2.3 Environment Setup
	9.1.11.2.4 Executing DPDK example application

	9.1.11.3 Traffic Policing in DPAA
	9.1.11.4 Precision Time Protocol (IEEE1588)
	9.1.11.4.1 Supported platforms
	9.1.11.4.2 Build procedure
	9.1.11.4.3 Test setup and prerequisite to test with ptpclient
	9.1.11.4.4 Test procedure with ptpclient

	9.2 QEMU

	10 Frequently asked questions
	11 Related resources

