LSDKYOCTOUG

Layerscape Software Development Kit User Guide for Yocto

Supports LSDK 20.04 Yocto 3.1 release

Rev. 3.1 — 07/2020

1 Introduction

This document describes the LSDK Yocto release, a Yocto layer with LSDK
components. This release provides recipes that integrate the latest LSDK
components into the most recent Yocto drop. The recipes will eventually make
their way into the next community Yocto version at www.yoctoproject.org.

2 Release notes

2.1 What's new

The table below shows Yocto branches and corresponding Yocto versions.

Table 1. Available Yocto versions

Yocto branch Yocto version

Dunfell YP 3.1-LSDK 2004
Zeus YP 3.0-LSDK 1909
Warrior YP 2.7-LSDK 1906
Thud YP 2.6-LSDK 1809
Sumo YP 2.5-LSDK 1806

2.2 Feature support matrix

Contents

User's Guide

1 Introduction........cccevveeeeierree e

2 Release Notes.........ccccvvrummmimimrmneneeeennnns

3 Download Yocto layers........c..ccccvemenne.

4 Build Yocto images.......cc.coceveierrcciinnnns

5 Boot boards with Yocto image
6 Program TF-A binaries............ccccce......
7 QorlQ memory layout............cceeeereenns
8 Prebuilt toolchains............ccccccvviieeenennee
9 User space applications.......................
10 Frequently asked questions

11 Related resources..........cccevevevevinennne

The tables below provide features of the current LSDK Yocto release and explain which feature is supported for which processor
in the current software release. For these tables, the legends are defined as follows:

* Y - Feature is supported by software
/- Feature is not supported by software

* na - Hardware feature is not available

Table 2. Key software features

Table continues on the next page...

h
P

Feature < | | | < |< | < |< |0 |||l |||l |N|9 |
SISI8(3(81818|12(|8(518 18 \3(5(8|8\8\12|83
SIS 2228|800 |a|a|a|a | |d|d|F|F|F|F
N0 nln | o’ % o
- - - - - - - s

32-bit user space, BE / / / / / / / Y| Y[Y| Y| Y| Y |YI|Y|Y|Y]|/ /

64-bit user space, BE [|na| [/ / / / / / |na|na|na|na|na|na|na Y|Y

http://www.yoctoproject.org

NXP Semiconductors

Release notes

Table 2. Key software features (continued)

Feature

LS1012A
LS1021A
LS1028A
LS1043A
LS1046A
LS1088A
LS2088A
LX2160A
MPC8548
P1010
P1020
P2020
P2041
P3041
P4080
P5040
T1024
T1042
T2080
T4240

32-bit user space, LE

~
<
~
~
~
~
~
~
>
[V
>
[V
>
[V
>
[V
>
[V
>
[V
>
[V
>
[V
>
[V
>
[V
>
[V
=]
]

64-bit user space, LE Y| n|Y|Y|Y|Y|Y|Y | na|na|na|na|na|na|na|na|na|na|naj|na
36-bit physicalmemory | Y | Y |[na|na|na|na|na|na|Y | Y [Y| Y |[Y |Y |Y |Y|Y |na|na|na
40-bit physicalmemory | Y |na | Y | Y | Y | Y | Y | Y |na|na|na|na|na|na|naj|na|na|na|na|na
AIOP service layer nalnajnalnalna|Y |Y |na|lna|na|na|na|nafna|na|na|na|na|na|na
ASF / / / / / / / / / / / / / / / / / / A

Data Plane Y|/ | Y| Y| Y[Y|[Y[|Y/[|/ / / / / / / / / / A

Development Kit

(DPDK)

EdgeScale - Edge / / / / / / / / / / / / / / / / / / A

computing

Hugetlbfs Y| Y| Y[Y| Y|Y|Y|Y|[Y|Y|Y|Y|Y|Y|Y|Y|Y|Y|Y]|Y

Management Complex [na |na|na|na|na|Y |Y | Y |/ / / / / / / / / / / /

Open Portable Trust Y|/ | Y| Y| Y| Y|Y]|Y]|/ / / / / / / / / / / /
Execution Environment
(OP-TEE)

Secure boot YI|Y | Y|\ Y |\ Y|\ Y |Y\|\Y |/ ||y

Time sensitive network |na|na| Y |na|na|na|na|na|na|na|na|na|na|na|na|na|na|na|na|na
(TSN)

Unified Extensible / / I Y | Y | [| Y |Y |/ / / / / / / / / / / /
Firmware Interface
(UEFI)

USDPAA applications |na |na |na| / / |na|na|na|na|na|naj|na| / / / / / / / /

Trusted Firmware-A Y / Y|Y|Y|Y|Y|Y|na|lnalna|na|na|na|na|na|na|na|naj|na
(TF-A)

Table 3. Virtualization features

Feature < <« | |« | |<|<|® (ol | (9 |0
SIS1812|181218|2|8/23(B|18|3|2|8|8(8|2 8|8
SIS 2228|800 |a|a|a|a|d|d|d|F|F|F|F
» 0o | n | n | n|n % o
| | | | | | | s
KVM/QEMU Y| Y| Y| Y| Y| Y|Y|Y|Y|Y|Y|Y|Y|Y|Y|Y|Y|]Y|Y]|Y
LXC Y[Y|Y|[Y|Y|Y|Y|Y]/ / / / / / / / / / / /
Libvirt Y[Y|Y|[Y|Y|Y|Y|Y]/ / / / / / / / / / / /
Network interface nalnajlnalnal/na|lY | Y |Y |na|na|lna|naf(na|na|na|na|na|na|na]|na
direct assignment

Table continues on the next page...

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 2/121

NXP Semiconductors

Release notes

Table 3. Virtualization features (continued)

Feature SISIg|sIsIS|sS|12/2|2/|2(5|5(8/2(|8(9(81%
S|8|§|1Z|13(E|2|8|8|2|e|R|8(B|§|8|8|2|8 |8
SIS 8|8 |18 |R|S|ola |a|a|a|d|d|d|F|F|F|F
n (0 0| n | n | 0|« % o
- - - - - - - E
VFIO najlnajnajlnajnal|Y |Y |Y | na|na|na|na|na|na|na|na|naj|najnajlna
Docker Y|/ | Y| Y| Y |Y|Y]|Y]|/ / / / / / / / / / / /
Table 4. Linux kernel driver features
FEEID JITISISISIS|ISISI2I2IRIRIFTIT||92|2]|9|8|%
s|8|8|13|13(8|2|2|8|2|e|glxl8lglBle|e|g|g
2222228880 |a|a|a|a e (d|d|F|F|F|F
nln (v n(n ol n % o
| .| | | .| .| .| S
Audio - I12S, SAI Y| Y |Y|nalna|na|na|lna|na|(na|na|na|nafnalnalna|na|na|najna
CAAM DMA Y | / / / / / / / / / / / / / / / / / / /
DCE nalnafnalnalnalna|Y |Y |na|na|nalna|na|na|lna|nafna|naj|nalna
DCU na| Y |[na|lnalna|lna|lna|lnalnalna|na|na|na|na|na|na|na|na|najna
Display - eDPNDP, nalna|Y |na|lna|na|na|na|na|naflnalnalna|na|na|na|na|najnajna
LCD
eLBC nalnafna|lnalnalnalnalnalnajlna|Y |[Y |Y|Y|Y]|Y|na|na|na|na
DMA Y| YI|Y|Y|Y|Y|Y|Y|Y|Y
DPAA1 - Ethernet, nalnafna|Y |Y |na|na|lna|na|na|na|na
FMan, QMan, BMan
DPAA2 - Ethernet, nalna|na|/na|lna|Y |Y|Y | na|na|na|nalna|na|na|na|na|naj|najna
L2Switching, QBMan
DSPI / Y / Y| Y |na|Y |nalna|na|na|na|na|na|na|na|na|naj|najna
eSDHC Y| Y|Y|Y|Y|Y|Y|Y|na
eSPI nalnafnalnalnalna|na|najna
ENETC nalna|Y |na|lna|lna|nalnalnalnalnalnalnalnalnalnalna|najlnalna
FlexCAN nal Y |Y|nalna|lna|na|Y |na|na|nalna|na|na|lna|nafna|najlnalna
FlexSPI na|lna|Y |nalnalnalna|Y [na|na|na|na|na|na|na|na|na|na|najna
GPU na|lna|Y |nalnalnalnalnalnalna|na|na|na|/na|na|na|na|na|najna
12C Y Y
IEEE1588, linuxptp / Y
IFC na| Y |na|Y|Y|Y|Y | nalna|lna|na|na|na|na|na|na
TSN Ethernet switch nalna|Y |na|lnalnalna|lnalnalna|na|na|na|na|na|na|na|na|najna
LPUART na| Y / / / |na|na|lna|najnal/nalnalnalnalnalnalna|najlnalna
QSPI Y| Y| na|Y|Y|Y|Y | na|nalna|na|lna|na|(na|na|na|na|na|najna

Table continues on the next page...

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 3/121

NXP Semiconductors

Table 4. Linux kernel driver features (continued)

Release notes

s === & O | | | |a |ad |a|ad || |F |F
219|238 |95 |8 5 |g
PCle root complex Y Y| Y| Y| Y| Y[Y[Y|Y|Y|Y|Y|[Y|Y|Y|[Y|Y|Y|Y]|Y
PCle endpoint 1|/ A I A I A A A A N A A Y A O A R A A I A A Y O Y A
PFE Y|na|na|na|na|na|na|na|najnajna|nalna|nalnalna|najlnalna|na
Power management Y| Y| Y[Y|[Y|Y|Y|Y| /| Y| Y[Y|Y|Y|Y|Y|Y|Y|]Y]|Y
Preempt Real-Time /
SATA Y na|na|na|na
SEC Y na|lY |Y]|Y
TDM (QE) nalnafna|lY |na|na|na|na|na|nalnalnalnalna|na|na|na|najlnajna
TSN na | na na|najnajnaflnalnalnajlnalnalnalnalna|na|najnajlnaj|na
UsSB Y Y|Y|Y|Y]|Y|na Y|Y|Y|Y|Y|Y|]Y]|Y
VeTSEC na na|najna|najnajlnaj|na na|najnajnajfnajlna|naj|na
VFIO for network nalnafnalnalna|Y |Y|Y |na|na|lna|lna|na|na|na|na|na|naj|naj|na
resources
Watchdog Y Y| Y| Y| Y| Y[Y[Y|Y|Y|Y|Y|[Y|Y|Y|[Y|Y|Y|Y]|Y

2.3 Supported targets

The table below explains which processors and development boards are supported in different LSDK Yocto releases. In this table:

* 'Y'indicates that a development board is supported in an LSDK Yocto release

» 'N'indicates that a development board is not supported in an LSDK Yocto release

Processor Board YP 2.5-LSDK |YP 2.6-LSDK | YP 2.7-LSDK | YP 3.0-LSDK | YP 3.1-LSDK
1806 1809 1906 1909 2004

LS1012A (revi.0and |LS1012ARDB | Y Y Y Y Y
rev2.0) FRWY-LS1012A |Y Y Y Y Y
LS1021ALS1020A |TWR-LS1021A | Y Y Y Y Y
(rev2.0)

LS1028A/LS1027A |LS1028ARDB-PA | N N N Y Y
(rev1.0)

LS1043A/LS1023A |LS1043ARDB-PC | Y Y Y Y Y
(rev1.1) LS1043ARDB-PD | Y Y Y Y Y
LS1046A/LS1026A |LS1046ARDB-PB | Y Y Y Y Y
(rev1.0) FRWY-LS1046A |N N Y Y Y
LS1088A (rev1.0) LS1088ARDB |Y N N N N

Table continues on the next page...

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020

User's Guide

4/121

NXP Semiconductors

Table continued from the previous page...

Release notes

Processor Board YP 2.5-LSDK |YP 2.6-LSDK |YP 2.7-LSDK | YP 3.0-LSDK |YP 3.1-LSDK
1806 1809 1906 1909 2004
LS1088ARDB-PB |Y Y Y Y Y
LS2088A/LS2084A/ LS2088ARDB Y Y Y Y Y
LS2081A (rev1.0 and
rev1.1)
LX2160A (rev1.0 and |LX2160ARDB N N Y (only rev1.0) | Y (only rev1.0) | Y (both)
rev2.0)
MPC8548 (rev3.1) MPC8548CDS Y Y Y Y Y
P1010 (rev2.01) P1010RDB-PB N N N N Y
P1020 (rev1.1) P1020RDB-PD Y Y Y N Y
P2020 (rev2.1) P2020RDB-PCA |Y Y Y Y Y
P2041 (rev2.0) P2041RDB-PC Y Y Y Y Y
P3041 (rev2.0) P3041DS-PC Y Y Y Y Y
P4080 (rev3.0) P4080DS Y Y Y Y Y
P5040 (rev2.1) P5040DS Y Y Y Y Y
T1024 (rev1.0) T1024RDB-PC Y Y Y Y Y
T1042 (rev1.1) T1042D4RDB-PA | Y Y Y Y Y
T2080 (rev1.1) T2080RDB-PC Y Y Y Y Y
T4240 (rev2.0) T4240RDB-PB Y Y Y Y Y

2.4 Fixed, open, and closed issues

The table below lists the issues fixed in current LSDK Yocto release.

NOTE
For the issues fixed in Linux, U-Boot, and other components, see "Fixed, open, and closed issues" section in
"Release Notes" chapter of Layerscape Software Development Kit User Guide available at the following link:

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-
software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

Table 5. Fixed issues

ID Description Disposition Opened in Fixed in

QYOCTO-583 | crconf update command cannot finish by itself Fixed Yocto 3.0 Yocto 3.1

QYOCTO-629 | There is no cmake command in Yocto 3.0 full rootfs, | Fixed Yocto 3.0 Yocto 3.1
XDP build on board failed

The table below lists the open issues in current LSDK Yocto release.

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020

User's Guide 5/121

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

NXP Semiconductors

Table 6. Open issues

Download Yocto layers

NOTE

For the open issues in Linux, U-Boot, and other components, see "Fixed, open, and closed issues" section in
"Release Notes" chapter of Layerscape Software Development Kit User Guide available at the following link:

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-
software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

ID Description Disposition Opened in Workaround
QUBOOT-5518 | Optical XFI2 port does not work on Open Yocto 3.0

T2080RDB
QYOCTO-586 | guest rootfs boot failed on T2080RDB and | Open Yocto 3.0

T4240RDB with ext2.gz on Yocto 2.6,

Yocto 2.7, Yocto 3.0, and Yocto 3.1

3 Download Yocto layers

Before starting to download Yocto, prepare the build host for running and building Yocto. To prepare the build host environment,
follow the instructions provided at the link below:

https://lwww.yoctoproject.org/docs/3.1/brief-yoctoprojectgs/brief-yoctoprojectgs.html

The subsections that follow provide two methods for downloading Yocto layers. You can use one of these methods (preferably
Download Yocto layers from repo manifest) to download Yocto layers.

3.1 Download Yocto layers from repo manifest

Follow these steps to download all Yocto layers from repo manifest using repo utility:

1. Install the repo utility:

SF
S:
S:

mkdir ~/bin
curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo

chmod a+x ~/bin/repo

2. Download the Yocto layers:

du

v U U

S

export PATH=S${PATH}:~/bin
mkdir yocto-sdk

cd yocto-sdk

repo init -u https://source.codeaurora.org/external/qgorig/gqorig-components/yocto-sdk -b
fell
repo sync --no-clone-bundle

3.2 Download Yocto layers from community repository

As an alternative method, use the following steps to download Yocto layers from community repository:

1. Run the following git commands to download all Yocto layers from community repository:

w »n » W W W

mkdir yocto-sdk
cd yocto-sdk
mkdir sources

git
git
git
git

clone
clone
clone
clone

git
git
git
git

://git.yoctoproject.
://git.yoctoproject.
://git.yoctoproject.
://git.yoctoproject.

org/poky sources/poky

org/meta-cloud-services sources/meta-cloud-services
org/meta-freescale sources/meta-freescale
org/meta-security sources/meta-security

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020

User's Guide

6/121

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.yoctoproject.org/docs/3.1/brief-yoctoprojectqs/brief-yoctoprojectqs.html

NXP Semiconductors

Build Yocto images

git clone git://git.yoctoproject.org/meta-selinux sources/meta-selinux

git clone git://git.yoctoproject.org/meta-virtualization sources/meta-virtualization

git clone https://github.com/0SSystems/meta-browser sources/meta-browser

git clone https://github.com/kraj/meta-clang sources/meta-clang

git clone https://github.com/Freescale/meta-freescale-distro sources/meta-freescale-distro
git clone https://github.com/openembedded/meta-openembedded sources/meta-openembedded

git clone https://github.com/TimesysGit/meta-timesys sources/meta-timesys

RO VoS VS O SR) R) SRR V) IR 00 3

git clone https://source.codeaurora.org/external/gorig/gorig-components/meta-goriq sources/
meta-qorig
2. Reset the revision of each Yocto layer as mentioned in the following manifest file:
https://source.codeaurora.org/external/qorig/qorig-components/yocto-sdk/tree/default.xml?h=dunfell

3. Finally, copy the setup script:

$ cp sources/meta-qoriqg/tools/setup-env .

4 Build Yocto images

The steps for building Yocto images are same for all boards with board name being the only change. For example, the commands
for building Yocto images for LS2088ARDB are as follows:

$ cd yocto-sdk

S: ./setup-env -m 1s2088ardb

$: bitbake fsl-image-networking

$: bitbake fsl-image-networking-full

NOTE
After running the above commands, you will get the LS2088ARDB Yocto images in the yocto-sdk/
build_Is2088ardb/tmp/deploy/images/Is2088ardb/ folder.

5 Boot boards with Yocto image

5.1 Prerequisites
Before initiating to boot a board with a Yocto image, ensure that:
* The TFTP server is set up for image download
» A serial cable is connected from your PC to UART1 port of the board

» An Ethernet cable is connected to the first Ethernet port on the board

5.2 Booting board with ramdisk rootfs image

Perform these steps to boot a board with ramdisk rootfs image:

NOTE
For more information on a board, see "LSDK Quick Start Guide" section for the board in "Layerscape SDK user
guide" chapter of Layerscape Software Development Kit User Guide available at the following link:

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-
software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
1. Power up or reset the board.

2. Press a key on the keyboard when prompted on the terminal to enter into the U-Boot command line.

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 77121

https://source.codeaurora.org/external/qoriq/qoriq-components/yocto-sdk/tree/default.xml?h=dunfell
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

NXP Semiconductors

Boot boards with Yocto image

3. Set up the environment in U-Boot:

=> setenv ipaddr <board ipaddr>

=> setenv serverip <tftp serverip>

The next command in setting up the environment in U-Boot is described for different boards in the table below.

Board

Command

FRWY-LS1012A
LS1012ARDB

=> setenv bootargs root=/dev/ram0 rw console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500 ramdisk_size=0x10000000

TWR-LS1021A

=> setenv bootargs root=/dev/ram0 rw console=ttyS0,115200 ramdisk_size=0x1000000

LS1028ARDB =>setenv bootargs root=/dev/ram0 rw console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500 default_hugepagesz=2m hugepagesz=2m
hugepages=256 ramdisk_size=100000000 video=1920x1080-32@60 cma=256M

LS1043ARDB => setenv bootargs root=/dev/ram0 rw console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500 ramdisk_size=0x10000000

LS1046ARDB => setenv bootargs root=/dev/ramO rw console=ttyS0,115200

FRWY-LS1046A

earlycon=uart8250,mmio,0x21c0500 ramdisk_size=0x10000000

LS1088ARDB-PB

=> setenv bootargs root=/dev/ram0 rw console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500 ramdisk_size=0x2000000 default_hugepagesz=2m
hugepagesz=2m hugepages=512

LS2088ARDB => setenv bootargs root=/dev/ram0 rw console=ttyS1,115200
earlycon=uart8250,mmio,0x21c0600 ramdisk_size=0x2000000 default_hugepagesz=1024m
hugepagesz=1024m hugepages=2

LX2160ARDB => setenv bootargs console=ttyAMAO0,115200 root=/dev/ram0 rw

(rev1.0 and rev2.0)

earlycon=pl011,mmio32,0x21c0000 ramdisk_size=0x2000000 default_hugepagesz=1024m
hugepagesz=1024m hugepages=2 pci=pcie_bus_perf

MPC8548CDS => setenv bootargs root=/dev/ram rw console=ttyS1,115200 ramdisk_size=1000000
log_buf_len=128K
Other PPC targets => setenv bootargs root=/dev/ram rw console=ttyS0,115200 ramdisk_size=1000000

log_buf_len=128K

4. In case of LS1088ARDB-PB, LS2088ARDB, or LX2160ARDB, enable DPAA2 Ethernet in Linux using commands
described in the table below.

Board

Commands

LS1088ARDB-PB

=> sf probe 0:0

=> sf read 0x80000000 0xA00000 0x200000
=> sf read 0x80200000 0xE00000 0x100000
=> fs|_mc start mc 0x80000000 0x80200000
=> sf read 0x80200000 0xd00000 0x100000
=> fsl_mc lazyapply dpl 0x80200000

Table continues on the next page...

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020

User's Guide

8/121

NXP Semiconductors

Boot boards with Yocto image

Table continued from the previous page...

Board Commands

LS2088ARDB => fs|_mc start mc 0x580a00000 0x580e00000
=> fsl_mc lazyapply dpl 0x580d00000

LX2160ARDB => sf probe 0:0

=> sf read 0x80a00000 0xa00000 0x300000
=> sf read 0x80e00000 0xe00000 0x100000
=> fsl_mc start mc 0x80a00000 0x80e00000
=> sf read 0x80d00000 0xd00000 0x100000
=> fsl_mc lazyapply dpl 0x80d00000

5. Download images and boot up the board using commands described in the table below.

Board Commands
FRWY-LS1012A => pci enum
LS1012ARDB => tftp 0x84080000 Image-<board>.bin

=> tftp 0x88000000 fsl-image-networking-<board>.ext2.gz.u-boot

FRWY-LS1012A:

=> tftp 0x8f000000 fsl-Is1012a-frwy.dtb
LS1012ARDB:

=> tftp 0x8f000000 fsl-Is1012a-rdb.dtb

=> pfe stop
=> booti 0x84080000 0x88000000 0x8f000000

TWR-LS1021A => tftp 0x82000000 ulmage-Is1021atwr.bin

=> tftp 0x88000000 fsl-image-networkingls1021atwr.ext2.gz.u-boot
=> tftp Ox8f000000 ulmage-Is1021a-twr.dtb

=> bootm 0x82000000 0x88000000 0x8f000000

LS1028ARDB => tftp 0x82000000 Image-<board>.bin

LS1043ARDB => tftp Oxa0000000 fsl-image-networking-<board>.ext2.gz.u-boot
LS1046ARDB LS1028ARDB:

FRWY-LS1046A => tftp 0x8f000000 fsl-Is1028a-rdb.dtb

LS1088ARDB-PB LS1043ARDE:

LS2088ARDB => tftp 0x8f000000 fsl-Is1043a-rdb-sdk.dtb

LX2160ARDB LS1046ARDB:

Table continues on the next page...

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 9/121

NXP Semiconductors

Boot boards with Yocto image

Table continued from the previous page...

Board Commands

=> tftp 0x8f000000 fsl-Is1046a-rdb-sdk.dtb
FRWY-LS1046A:

=> tftp 0x8f000000 fsl-Is1046a-frwy-sdk.dtb
LS1088ARDB-PB:

=> tftp 0x8f000000 fsl-Is1088a-rdb.dtb
LS2088ARDB:

=> tftp 0x8f000000 fsl-Is2088a-rdb.dtb
LX2160ARDB:

=> tftp 0x8f000000 fsl-1x2160a-rdb.dtb

=> booti 0x82000000 0xa0000000 0x8f000000

MPC8548CDS => tftpboot 0x01000000 ulmage-mpc8548cds.bin

=> tftpboot 0x03000000 fsl-image-networkingmpc8548cds.ext2.gz.u-boot
=> tftpboot 0x02000000 ulmagempc8548cds_32b.dtb

=> bootm 0x01000000 0x03000000 0x02000000

P1020RDB => tftpboot 0x01000000 ulmage-<board>.bin
P2020RDB => tftpboot 0x04000000 fsl-image-networking-<board>.ext2.gz.u-boot
P2041RDB => tftpboot 0x02000000 ulmage-<board>.dtb
P3041DS => bootm 0x01000000 0x04000000 0x02000000
P4080DS
P5040DS
T1024RDB => tftpboot 0x01000000 ulmage-<board>.bin
T1042D4RDB => tftpboot 0x05000000 fsl-image-networking- <board>.ext2.gz.u-boot
T2080RDB (64-bit) => tftpboot 0x02000000 ulmage-<board>.dtb
T4240RDB (64-bit) => bootm 0x01000000 0x05000000 0x02000000
NOTE

For flashing separate firmware images on alternate bank, find memory details for different firmware in QorlQ
memory layout.

5.3 Booting board with full rootfs from large storage device

Perform these steps to boot a board with full rootfs from large storage device, such as SD card, USB mass storage device, or
SATA device:

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 10/121

NXP Semiconductors

Boot boards with Yocto image

NOTE

For more information on a board, see "LSDK Quick Start Guide" section for the board in "Layerscape SDK user
guide" chapter of Layerscape Software Development Kit User Guide available at the following link:

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-
software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

1. Prepare the media (SD/USB/SATA) and format it to ext2 format.

o M 0D

Mount the ext2 partition, extract a full rootfs into this partition, and unmount the partition.
Power up or reset the board.
Press a key on the keyboard when prompted on the terminal to enter into the U-Boot command line.

Set up the environment in U-Boot using command described in the table below.

Board

Command

FRWY-LS1012A
LS1012ARDB
LS1043ARDB
LS1046ARDB
FRWY-LS1046A

=> setenv bootargs root=/dev/sda* rootdelay=5 rw console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500

TWR-LS1021A

=> setenv bootargs root=/dev/sda* rootdelay=5 rw console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500

LS1028ARDB

=> setenv bootargs root=/dev/mmcblkOp4 rw rootdelay=5 console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500 video=3840x2160-32@60 cma=256M
default_hugepagesz=2m hugepagesz=2m hugepages=256

LS1088ARDB-PB

=> setenv bootargs root=/dev/sda* rootdelay=5 rw console=ttyS0,115200
earlycon=uart8250,mmio,0x21c0500 default_hugepagesz=2m hugepagesz=2m hugepages=512

LS2088ARDB => setenv bootargs root=/dev/sda* rootdelay=5 rw console=ttyS1,115200
earlycon=uart8250,mmio,0x21c0600 default_hugepagesz=1024m hugepagesz=1024m
hugepages=8

LX2160ARDB => setenv bootargs console=ttyAMAO0, 115200 root=/dev/sda* rw rootdelay=10

earlycon=pl011,mmio32,0x21c0000 ramdisk_size=0x2000000 default_hugepagesz=1024m
hugepagesz=1024m hugepages=2 pci=pcie_bus_perf

6. In case of LS1088ARDB-PB, LS2088ARDB, or LX2160ARDB, enable DPAA2 Ethernet in Linux using commands
described in the table below.

Board

Commands

LS1088ARDB-PB

=> sf probe 0:0

=> sf read 0x80000000 0xA00000 0x200000
=> sf read 0x80200000 0xE00000 0x100000
=> fsl_mc start mc 0x80000000 0x80200000
=> sf read 0x80200000 0xd00000 0x100000
=> fsl_mc lazyapply dpl 0x80200000

Table continues on the next page...

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020

User's Guide

117121

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

NXP Semiconductors

Boot boards with Yocto image

Table continued from the previous page...

Board Commands

LS2088ARDB => fsl_mc start mc 0x580a00000 0x580e00000
=> fsl_mc lazyapply dpl 0x580d00000

LX2160ARDB => sf probe 0:0

=> sf read 0x80a00000 0xa00000 0x300000
=> sf read 0x80e00000 0xe00000 0x100000
=> fsl_mc start mc 0x80a00000 0x80e00000
=> sf read 0x80d00000 0xd00000 0x100000
=> fsl_mc lazyapply dpl 0x80d00000

7. Download images and boot up the board using commands described in the table below.

Board Commands
FRWY-LS1012A => pci enum
LS1012ARDB => tftp 0x84080000 Image-<board>.bin

FRWY-LS1012A:

=> tftp 0x8f000000 fsl-Is1012a-frwy.dtb
LS1012ARDB:

=> tftp 0x8f000000 fsl-Is1012a-rdb.dtb

=> pfe stop

=> booti 0x84080000 - 0x8f000000

TWR-LS1021A

=> tftp 0x82000000 ulmage-Is1021atwr.bin
=> tftp 0x8f000000 ulmage-Is1021a-twr.dtb
=> bootm 0x82000000 - 0x8f000000

FRWY-LS1046A
LS1088ARDB-PB

LS1028ARDB => tftp 0x82000000 Image-<board>.bin
LST043ARDB LS1028ARDB:
LS1046ARDB

=> tftp 0x8f000000 fsl-Is1028a-rdb.dtb
LS1043ARDB:
=> tftp 0x8f000000 fsl-Is1043a-rdb-sdk.dtb

LS2088ARDB LS1046ARDB:
LX2160ARDB => tftp 0x8f000000 fsl-Is 1046a-rdb-sdk.dtb
FRWY-LS1046A:
=> tftp 0x8f000000 fsl-Is1046a-frwy-sdk.dtb
LS1088ARDB-PB:
Table continues on the next page...
Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 12/121

NXP Semiconductors

Program TF-A binaries

Table continued from the previous page...

Board Commands

=> tftp 0x8f000000 fsl-Is1088a-rdb.dtb
LS2088ARDB:
=> tftp 0x8f000000 fsl-Is2088a-rdb.dtb
LX2160ARDB:
=> tftp 0x8f000000 fsl-Ix2160a-rdb.dtb

=> booti 0x82000000 - 0x8f000000

5.4 Secure boot
To build the secure boot image, follow these steps:

1. Set the following variables in the local.conf file:

DISTRO FEATURES append = ' secure'
ROOTFS_ IMAGE = 'fsl-image-mfgtool'

In case of an arm64 target, also set the following variable:
KERNEL ITS ="kernel-all.its"
In case of an arm32 target, also set the following variable:
KERNEL ITS = "kernel-arm32.its"
2. Run the following command to build the secure boot image:
$: bitbake secure-boot-gorig

To enable secure boot on QorlQ platforms, see section 6.1 ("Secure boot") of Layerscape Software Development Kit User Guide
available at the following link:

https://lwww.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-
development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

6 Program TF-A binaries

The table below describes boot types supported for programming TF-A binaries in different Layerscape boards.

Table 7. Supported boot types
Board QSPI NOR flash FlexSPI NOR flash IFC NOR flash NAND flash SD card

FRWY-LS1012A

LS1012ARDB

LS1028ARDB Y

LS1043ARDB Y Y

Table continues on the next page...

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 137121

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

NXP Semiconductors

Program TF-A binaries

Table 7. Supported boot types (continued)

Board QSPI NOR flash FlexSPI NOR flash IFC NOR flash NAND flash SD card

FRWY-LS1046A

LS1046ARDB

LS1088ARDB-PB

LS2088ARDB Y

LX2160ARDB Y Y

6.1 Program TF-A binaries on QSPI NOR flash

Follow these steps to program TF-A binaries on QSPI NOR flash:
1. Boot the board from QSPI NOR flash 0.
2. Program QSPI NOR flash 1:

=> sf probe 0:1
3. Flash bl2_gspi.pbl:

=> tftp 0xa0000000 bl2 gspi.pbl
=> sf erase 0x0 +S$filesize && sf write 0xa0000000 0x0 S$filesize

4. Flash fip_uboot.bin:

=> tftp 0xa0000000 fip uboot.bin
=> sf erase 0x100000 +$filesize && sf write 0xa0000000 0x100000 S$filesize

5. Boot the board from QSPI NOR flash 1. The board will boot with TF-A.

6.2 Program TF-A binaries on FlexSPI NOR flash

In LX2160A and LS1028A, FlexSPI NOR flash is used in place of QSPI NOR flash.

For LX2160A, the steps to program TF-A binaries on FlexSPI NOR flash are as follows:
1. Boot the board from FlexSPI NOR flash 0.
2. Program FlexSPI NOR flash 1:

=> sf probe 0:1
3. Flash bl2_flexspi_nor.pbl:

=> tftp 0xa0000000 bl2 flexspi nor.pbl
=> sf erase 0x0 +S$filesize && sf write 0xa0000000 0x0 S$filesize

4. Flash fip_uboot.bin:

=> tftp 0xa0000000 fip uboot.bin
=> sf erase 0x100000 +$filesize && sf write 0xa0000000 0x100000 $filesize

5. Boot the board from FlexSPI NOR flash 1. The board will boot with TF-A.
For LS1028A, the steps to program TF-A binaries on FlexSPI NOR flash are as follows:

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 14 /121

NXP Semiconductors

Program TF-A binaries

1. Boot the board from FlexSPI NOR flash 0.
2. Program FlexSPI NOR flash 0 (LS1028A has only one bank):

=> sf probe 0:0
3. Flash bl2_flexspi_nor.pbl:

=> tftp 0x80000000 bl2 flexspi nor.pbl
=> sf erase 0x0 +$filesize && sf write 0x80000000 0x0 S$filesize

4. Flash fip_uboot.bin:

=> tftp 0x80000000 fip uboot.bin
=> sf erase 0x100000 +$filesize && sf write 0x80000000 0x100000 S$filesize

5. Flash DP firmware:

=> tftp 0x80000000 1s1028ardb/dp/lsl028a-dp-fw.bin
=> sf erase 0x900000 +$filesize && sf write 0x80000000 0x900000 S$filesize

6. Boot the board from FlexSPI NOR flash 0. The board will boot with TF-A.

6.3 Program TF-A binaries on IFC NOR flash

Follow these steps to program TF-A binaries on IFC NOR flash:
1. Boot the board from default bank.
2. Flash bl2_nor.pbl to alternate bank:

=> tftp 0x82000000 $path/bl2 nor.pbl
=> pro off all;erase 0x584000000 +$filesize;cp.b 0x82000000 0x584000000 S$filesize

3. Flash fip_uboot.bin to alternate bank:

=> tftp 0x82000000 $path/fip uboot.bin;
=> pro off all;erase 0x64100000 +S$filesize;cp.b 0x82000000 0x64100000 S$filesize

4. Boot the board from alternate bank. The board will boot with TF-A.

6.4 Program TF-A binaries on NAND flash

Follow these steps to program TF-A binaries on NAND flash:
1. Boot the board from default bank.
2. Flash bl2_nand.pbl to NAND flash:

=> tftp 82000000 $path/bl2 nand.pbl
=> nand erase 0x0 $filesize;nand write 0x82000000 0x0 $filesize;

3. Flash fip_uboot.bin to NAND flash:

=> tftp 82000000 $path/fip uboot.bin
=> nand erase 0x100000 $filesize;nand write 0x82000000 0x100000 $filesize;

4. Boot the board from NAND flash. The board will boot with TF-A.

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 157121

NXP Semiconductors

QorlQ memory layout

6.5 Program TF-A binaries on SD card
Follow these steps to program TF-A binaries on SD card:
1. Boot the board from default bank.
2. Flash bl2_sd.pbl to SD card:

=> tftp 82000000 bl2 sd.pbl
=> mmc write 82000000 8 <blk cnt>

where <blk_cnt> is the number of blocks in SD card that need to be written. It is calculated based on file size. For
example, if bl2_sd.pbl is loaded from the TFTP server and the number of bytes transferred is 82809 (14379 hex), then
<blk_cnt> is calculated as:

82809/512 = 161 (A1 hex)

For this example, mmc write command will be:

=> mmc write 82000000 8 Al

3. Flash fip_uboot.bin to SD card:

=> tftp 82000000 fip_ uboot.bin
=> mmc write 82000000 800 <blk cnt>

4. Boot the board from SD card. The board will boot with TF-A.

7 QorlQ memory layout

The following table shows the memory layout of various firmware stored in NOR/NAND/QSPI/XSPI flash device or SD card on
all QorlQ Reference Design Boards.

NOTE
When the board boots from NOR flash, the NOR bank from which the board boots is considered as the "current
bank" and the other bank is considered as the "alternate bank". For example, if LS1043ARDB boots from NOR
bank 4, to update an image on NOR bank 0, you need to use the "alternate bank" address range, 0x64000000
- 0x64F00000.

Table 8. Unified 64MiB memory layout of NOR/QSPI/XSPI/NAND/SD media

Firmware definition Max size | Flash Offset |Absolute Absolute Absolute Absolute SD start
(QSPI/XSPI/ |address address address address block no.
NAND flash) |(NOR current | (NOR (NOR (NOR
bank on alternate current alternate
LS1043ARD | bank on bank on bank on
B, LS1043AR |[LS2088AR |LS2088AR
LS1021ATW |DB, DB) DB)
R) LS1021AT
WR)
RCW + PBI + BL2 1MiB 0x00000000 |0x60000000 |0x6400000 |0x5800000 |0x5840000 |0x00008
(bl2_<boot_mode>.pbl)’ 0 00 00
TF-A FIP image (BL31 + |4MiB 0x00100000 |0x60100000 |0x6410000 |0x5801000 |0x5841000 |0x00800
TEE (BL32) + U-Boot/ 0 00 00
UEFI (BI33)) (fip.bin)?2

Table continues on the next page...

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 16/121

NXP Semiconductors

Table 8. Unified 64MiB memory layout of NOR/QSPI/XSPI/NAND/SD media (continued)

QorlQ memory layout

Firmware definition Max size |Flash Offset | Absolute Absolute Absolute Absolute SD start
(QSPI/XSPI/ |address address address address block no.
NAND flash) | (NOR current | (NOR (NOR (NOR
bank on alternate current alternate
LS1043ARD | bank on bank on bank on
B, LS1043AR |LS2088AR |LS2088AR
LS1021ATW | DB, DB) DB)
R) LS1021AT
WR)
Boot firmware 1MiB 0x00500000 |0x60500000 |0x6450000 |0x5805000 |0x5845000 |0x02800
environment 0 00 00
Secure boot headers 2MiB 0x00600000 |0x60600000 |0x6460000 |0x5806000 |0x5846000 |0x03000
0 00 00
Secure header or DDR 512KiB 0x00800000 |0x60800000 |0x6480000 |0x5808000 |0x5848000 |0x04000
PHY FW 0 00 00
Fuse provisioning header |512KiB 0x00880000 |0x60880000 |0x6488000 |0x5808800 |0x5848800 |0x04400
0 00 00
DPAA1 FMAN ucode 256KiB 0x00900000 |0x60900000 |0x6490000 |0x5809000 |0x5849000 |0x04800
0 00 00
QE firmware or DP 256KiB 0x00940000 |0x60940000 |0x6494000 |0x5809400 |[0x5849400 |0x04A00
firmware 0 00 00
Ethernet PHY firmware 256KiB 0x00980000 |0x60980000 |0x6498000 |0x5809800 |0x5849800 |0x04C00
0 00 00
Script for flashing image | 256KiB 0x009C0000 | 0x609C0000 |0x649C000 |0x5809C00 |0x5849C00 |0x04E00
0 00 00
DPAA2-MC or PFE 3MiB 0x00A00000 |0x60A00000 |0x64A0000 |0x580A000 |0x584A000 |0x05000
firmware 0 00 00
DPAA2 DPL 1MiB 0x00D00000 | 0x60D00000 |0x64D0O000 |0x580D000 |0x584D000 |0x06800
0 00 00
DPAA2 DPC 1MiB 0x00E00000 |0x60E00000 |0x64E0000 |0x580E000 |0x584E000 |0x07000
0 00 00
Device tree (needed by 1MiB 0x00F00000 | 0x60F00000 |0x64F0000 |0x580F000 |0x584F000 |0x07800
UEFI) 0 00 00
Kernel |lIsdk_linux_<arc | 16MiB 0x01000000 |0x61000000 |0x6500000 |0x5810000 |0x5850000 |0x08000
h>_LS_tiny.itb 0 00 00
Ramdis 32MiB 0x02000000 |0x62000000 |0x6600000 |0x5820000 |0x5860000 |0x10000
k rfs 0 00 00

1. For any update in the BL2 source code or RCW binary, the b12 <boot mode>.pbl binary needs to be recompiled (see

Layerscape Software Development Kit User Guide for more information).
2. For any update in the BL31, BL32, or BL33 binaries, the fip.bin binary needs to be recompiled (see Layerscape Software
Development Kit User Guide for more information).

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020

User's Guide 177121

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

NXP Semiconductors

Table 9. 2MB memory layout of QSPI/SD media on LS1012AFRWY

Prebuilt toolchains

Firmware definition Max size Location SD start block no.
RCW+PBI+BL2 64KB 0x0000_0000 - 0x0000_FFFF 0x00008
(bl2_<boot_mode>.pbl)

Reserved 64KB 0x0001_0000 - 0x0001_FFFF 0x00080

PFE firmware 256KB 0x0002_0000 - 0x0005_FFFF 0x00100

FIP (BL31+BL32+BL33) 1MB 0x0006_0000 - 0x000D_FFFF 0x00300
Environment varialbes 64KB 0x001D_0000 - 0x001D_FFFF 0Ox00E80
Reserved 64KB 0x001E_0000 - 0x001E_FFFF 0x00F00
Secureboot headers 64KB 0x001F_0000 - 0x001F_FFFF 0x00F80

8 Prebuilt toolchains

Download prebuilt toolchain binaries

Prebuilt toolchains for supported targets are available on NXP official image mirror. The table below provides links from NXP
official image mirror to download prebuilt toolchain binaries.

Table 10. Prebuilt toolchain download links

Target type Toolchain download link

ARM32 https://www.nxp.com/lgfiles/sdk/Isdk2004-yocto31/fsl-qorig-glibc-x86_64-fsl-toolchain-cortexa7hf-neon-
toolchain-3.1.sh

ARMG64 https://lwww.nxp.com/Igfiles/sdk/Isdk2004-yocto31/fsl-qorig-glibc-x86_64-fsl-toolchain-aarch64-
toolchain-3.1.sh

PPCES500V2 | https://www.nxp.com/Igfiles/sdk/Isdk2004-yocto31/fsl-qorig-glibc-x86_64-fsl-toolchain-ppce500v2-
toolchain-3.1.sh

PPCES500MC | https://www.nxp.com/Idfiles/sdk/Isdk2004-yocto31/fsl-qorig-glibc-x86_64-fsl-toolchain-ppce500mc-
toolchain-3.1.sh

PPCES5500 https://www.nxp.com/Igfiles/sdk/Isdk2004-yocto31/fsl-qorig-glibc-x86_64-fsl-toolchain-ppce5500-
toolchain-3.1.sh

PPCES5500-6 | https://www.nxp.com/Igfiles/sdk/Isdk2004-yocto31/fsl-qorig-glibc-x86_64-fsl-toolchain-ppc64e5500-

4B toolchain-3.1.sh

PPCE6500 https://www.nxp.com/Igfiles/sdk/Isdk2004-yocto31/fsl-qorig-glibc-x86_64-fsl-toolchain-ppce6500-
toolchain-3.1.sh

PPCE6500-6 | https://www.nxp.com/Igfiles/sdk/Isdk2004-yocto31/fsl-qorig-glibc-x86_64-fsl-toolchain-ppc64e6500-

4B toolchain-3.1.sh

Install a prebuilt toolchain

You can install a prebuilt toolchain as follows:

$./fsl-gorig-glibc-<host arch>-fsl-toolchain-<core>-toolchain-<release>.sh

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020

User's Guide

187121

https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-cortexa7hf-neon-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-cortexa7hf-neon-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-aarch64-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-aarch64-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce500v2-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce500v2-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce500mc-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce500mc-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce5500-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce5500-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppc64e5500-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppc64e5500-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce6500-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppce6500-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppc64e6500-toolchain-3.1.sh
https://www.nxp.com/lgfiles/sdk/lsdk2004-yocto31/fsl-qoriq-glibc-x86_64-fsl-toolchain-ppc64e6500-toolchain-3.1.sh

NXP Semiconductors

User space applications

NOTE
The default installation path for a prebuilt toolchain is /opt/fsl-qorig/<release>/. If desired, you can specify a different
installation path during installation.

Use a prebuilt toolchain
To use a prebuilt toolchain after installation:

1. Go to the location where the toolchain is installed and source the environment-setup-<core> file. This sets up the
correct path to the build tools and also exports some environment variables that are relevant for development (for
example, $cC, $ARCH, $CROSS _COMPILE, $LDFLAGS, and so on).

2. Invoke the compiler using the scc variable (for example, $scc <source files>).

NOTE
This is a sysrooted toolchain. GCC needs option --sysroot=<path-to-target-sysroot> to find target
fragments and libraries (for example, crt*, libgcc. a) as the default sysroot is poisoned (made non-existent).
However, when invoking the compiler through the $ccC variable, you do not need to pass the --sysroot parameter
as it is already included in the variable (you can verify it by running the echo $cC command).

9 User space applications

This section provides build and compile instructions related to these user space applications: Data Plane Development Kit (DPDK)
and QEMU.

9.1 DPDK

9.1.1 Introduction
DPDK is an user space packet processing framework.

This guide contains instructions for installing and configuring the user space Data Plane Development Kit (DPDK) v19.11 software.
Besides highlighting the applicable platforms, this guide describes steps for compiling and executing sample DPDK applications
in a Linux application (/inuxapp) environment over Layerscape boards.

OVS-DPDK is a popular software switching package which uses DPDK as the underlying platform. The guide also detail methods
to execute ovs-agpdk in conjuction with DPDK over Layerscape boards.
9.1.1.1 Supported platforms and platform-specific details

DPDK supports LS1012A, LS1028A, LS1043A, LS1046A, LS1088A, LS2088A, and LX2160 family of SoCs. This section details
the architectural and port layout of their Reference Design Boards. Port layout information is especially relevant while executing
DPDK applications - to map DPDK port number to physical ports..

Refer to the following for board specific information:

9.1.1.1.1 LS1012A Reference Design Board (RDB)
LS1012A is a PPFE-based platform. For more information on LS1012ARDB, see www.nxp.com/LS1012ARDB
Hardware Specification of LS1012ARDB

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 19/121

http://www.nxp.com/LS1012ARDB

NXP Semiconductors

User space applications

USB2.0&3.0

Figure 1. QorlQ LS1012A Reference Design

< P USB Connector
SDHC2
R SGMI GbE
— > > 4¢P pyy €¢—PGHE
4GB oMMC o —»
Memory
Y_ 222 » SATA
SDIO Wi-Fi* 4
Module 5 PCle® J, HolfHeight
LS1 01 2A mPCle* Connector
H L ‘— 1
eyt © | <l QuadsP! 128 MB
<+ 4P NORFlash
SA12
e RGMI <20R3L____, 1GBDOR3L
GbE <> SDRAM
GbE 4—P pyy ¢ >
USB to JTAG ——P K22 % » VR5100

PMIC

LS1012ARDB Port Layout

Power
connector (12 V)

Ethemnet connector Ethernet connector

(ETHZ2) (ETH1)
Figure 2. LS1012A Port Layout
Label on Case DPDK vdev Port Names
ETHA1 eth_pfe0
Table continues on the next page...
Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide

20/121

NXP Semiconductors

User space applications

Table continued from the previous page...

ETH2 eth_pfe1

9.1.1.1.2 LS1028A Reference Design Board (RDB)

The Layerscape LS1028A industrial applications processor includes a TSN-enabled Ethernet switch and Ethernet controllers to
support converged IT and OT networks. For more information on LS1028ARDB, http://www.nxp.com/LS1028ARDB.

Hardware specification

12vDC

P DisplayPort 2x Click Modules
MikroBUS ™

USB Type C —

USB Type A
3.5 mm Audio

QSGMII
RJ45

RJ45

DB9

DB9

Figure 3. Layerscape LS1028A architecture

Figure 4. LS1028ARDB port layout

Label on Case PCI address of interface

Table continues on the next page...

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 21/121

http://www.nxp.com/LS1028ARDB

NXP Semiconductors

User space applications

Table continued from the previous page...

1G MACO 0000:00:00.0
1G SWPO NA
1G SWP1 NA
1G SWP2 NA
1G SWP3 NA

9.1.1.1.3 LS1043A Reference Design Board (RDB)
LS1043A is a DPAA-based platform. For more information on LS1043ARDB, see www.nxp.com/LS1043ARDB
Hardware Specification of LS1043ARDB

The QorlQ LS1043A reference design board

RS2 4y puanT DR 4222
CTWEIQE ¢ ol ae
Connaector QorlQ
For PMC plug-in card LS10434
PCle X1 SerDes
SDHC
o USE 3.0 DPAA Ett i
SarDes
Lane DPRAA Ethamet
Ic

DFAA Ethiermet

(980 > vrEo0Pwic] PSU || Goos |

"] Board Compeonents || Expansion Modules |] Connectors

Figure 5. QorlQ LS1043A Reference Design

LS1043ARDB Port Layout

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 22 /121

http://www.nxp.com/LS1043ARDB

NXP Semiconductors

User space applications

RGMII1 UARTT RST

usel__-ltl.'m QSGMIL22

Figure 6. LS1043A Port Layout

Label on Case FMAN Port Names Userspace Ports Comment
QSGMII.PO FMO-MAC1 0 1G Port
QSGMII.P1 FMO0-MAC2 1 1G Port

RGMII1 FMO-MAC3 2 1G Port

RGMII2 FMO-MAC4 3 1G Port
QSGMII.P2 FMO0-MAC5 4 1G Port
QSGMIILP3 FMO0-MAC6 5 1G Port

10G FMO-MAC9 6 10G - Copper Port

NOTE
Information provided in the "Userspace Ports" column above is conditional to default Device tree (DTB) provided
as part of Board Support Package. The ordering can change for a custom DTB.

9.1.1.1.4 LS1046A Reference Design Board (RDB) / LS1046A Freeway Board (FRWY)

LS1046A is a DPAA based platform. For more information on LS1046ARDB, see www.nxp.com/LS1046ARDB and for LS1046A
Freeway, see www.nxp.com/FRWY-LS1046A.

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 23 /121

http://www.nxp.com/LS1046ARDB
https://www.nxp.com/FRWY-LS1046A

NXP Semiconductors

User space applications

Hardware specification of LS1046ARDB

usezo 4—p Hinotis — UARTY
RE232 wt
- LS1046A
— - QorlQ®
eee ENET DOR4
RS — Pmm_ ‘—L_. e d ATZ ATZ
Wig|+—+ Row i VoLl WD
- o SarDes| 12 ME
45 —+ T +— »emi Lene2 ATl Ar BLC
SerDes wLr oL FC —
RJ4E 4w ﬁl —F BB) s L2
(I - -
- |
Mini PCls s T & T SerDes? Laned i m——
syl L3 S 10 SerDes2 Lane! QsPI_A i
x1 : ..101 e
P i SerDesZ Lane2 FLASH .
SR e -
SFPCAGE | 1 Lane ‘—|_' itk
x1 f———— A
RE —p MOREG e XPUZ-B0 SCGMII SerDes! Laned : EEPROM
PHY LiAE PC ‘_—I_.,
AGR108 L]
G le_| _ ——* SATA SeDeszianed
B — ==
S R8232 s
UsBL0 . 4.
A e = =
usBaLo —— LED W Powst Supphes
K1 MicraAB Indicates
Chock Sources

Figure 7. QorlQ LS1046A reference design

LS1046ARDB port layout

UARTI

SGMII

Figure 8. LS1046ARDB port layout

Label on sase FMAN port names Userspace ports Comment
RGMII1 FMO0-MAC3 0 1G Port
RGMII2 FMO0-MAC4 1 1G Port
SGMII1 FMO0-MAC5 2 1G Port
SGMII2 FMO0-MAC6 3 1G Port
10G-Copper FMO-MAC9 4 10G - Copper Port
10G-SFP+ FMO0-MAC10 5 10G - SFP+ Optical Port
Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 247121

NXP Semiconductors

User space applications
NOTE

Information provided in the "Userspace Ports" column above is conditional to default Device tree (DTB) provided
as part of LSDK. The ordering can change for a custom DTB.

FRWY-LS1046A port layout

1G PORT1 1G PORT3

Ready
Fuse PRG
POWER

o

MicroSD

T—
12v/5A HOST 1

1G PORT2 1G PORT4

Figure 9. FRWY-LS1046A port layout

Label on case FMAN port names Userspace ports Comment
1G PORT1 FMO-MAC1 0 1G Port
1G PORT2 FMO-MAC5 1 1G Port
1G PORT3 FMO-MACG6 2 1G Port
1G PORT4 FMO-MAC10 3 1G Port

9.1.1.1.5 LS1088A Reference Design Board (RDB)

LS1088A is a DPAA2 based platform. For more information on QorlQ LS1088A, see www.nxp.com/LS1088ARDB.
Hardware Specifications of LS1088ARDB

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 25/121

http://www.nxp.com/LS1088ARDB

NXP Semiconductors

User space applications

ARM?® Cortex® ARM Cortex
A53 64-Bit Core A53 64-Bit Core
32 KB 32 KB 32KB 32 KB
D-Cache D-Cache D-Cache D-Cache
64-Bit
DDR4
1 MB L2 Cache 1 MB L2 Cache Memory Controller
Secure Boot
CoreLink CCI-400™ Coherency Fabric
TrustZone®
Power Management SMMUs
IFC, QuadSPI, SPI j
i Real-Time Debu,
SD/SDIO/eMMC Management Complex RICE y &
DMA Buffering ; Watchpoint
: = = = = Cross
2 x DUART Security Queue / Buffer < b = 2 uoj Trigger
Engine Buffer o = o = 5
1G 1G 16 1G 9] o fl o b=
4 X [EC, GPIO (SEC) Manager] : a a a @&
el icliclich : Betl;
: lle} ' Monitor = Tace
4 x FlexTimer Processor ‘ e
(AIOP) 110G 110G

2 x USB3.0 w/PHY

Core Complex DPAA2 Hardware 4-Lane 10 GHz SerDes 4-Lane 10 GHz SerDes

Accelerators and Memory Control
Basic Peripherals, Interconnect and Debug
Networking Elements

Figure 10. QorlQ LS1088A Architecture

LS1088ARDB Port Layout

Pa¢

LS1088ARDB

ETHS

Figure 11. LS1088ARDB Port Layout

Label on Case Physical Ports Comment

ETHO DPMAC.1 10G - Copper port
ETHA1 DPMAC.2 10G - SFP+ (Optical port)
ETH2 DPMAC.7 QSGMII port (1G)
ETH3 DPMAC.8 QSGMII port (1G)
ETH4 DPMAC.9 QSGMII port (1G)
ETH5 DPMAC.10 QSGMII port (1G)
ETH6 DPMAC.3 QSGMII port (1G)
ETH7 DPMAC 4 QSGMII port (1G)
ETHS8 DPMAC.5 QSGMII port (1G)
ETH9 DPMAC.6 QSGMII port (1G)

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 26 /121

NXP Semiconductors

User space applications

9.1.1.1.6 LS2088A Reference Design Board (RDB)
LS2088A is a DPAA2 based platform. For more information on QorlQ LS2088A, see www.nxp.com/LS2088ARDB.

Hardware specifications

LS2088A Reference Design Board

System Control

9x WDOG
Internal BootROM
7 B 64-bit DDR4
Security Monitor Memory
Power Management Controller
System Interfaces Memory
IFC Flash Controller
QuadSPI Flash
1x SDXC/ eMMC Cache Coherent Interconnect
2x DUART SMMU
4x12C T 3
32-bit DDR4
Management 4MB PEB
4x FlexTimer I gemen Memory
| Complex Controller
21 USB 3.0 + PHY I WRIOP |
[oce | sy | Qoel ||| sl -
4x GPIO | Engine ||\ o 10 swichassist Il o 2 [8] o 2/l =
X 8T || Processor Il © 210 |l = =
I (AIOP) Il = Sl=ENE
by
I core Complex || PME || QDMA ‘ #1106+ 816 | 8 3| =
[Accelerators and Memory Control ! |
l:l Basic Peripherals and Interconnect DPAA2 Hardware
. 8-lane 10 GHz SerDes 8-lane 10 GHz SerDes
[Networking Elements

Figure 12. QorlQ LS2088A Architecture

LS2088ARDB Port Layout

K

LS2088ARDB

Network Appliance

Figure 13. LS2088ARDB Port Layout

Label on Case Physical Ports Comment

ETHO DPMAC.5 10G - Copper port

ETHA1 DPMAC.6 10G - Copper port

ETH2 DPMAC.7 10G - Copper port

ETH3 DPMAC.8 10G - Copper port

ETH4 DPMAC.1 10G - SFP+ (Optical port)
ETH5 DPMAC.2 10G - SFP+ (Optical port)
ETH6 DPMAC.3 10G - SFP+ (Optical port)
ETH7 DPMAC.4 10G - SFP+ (Optical port)

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020

User's Guide 27 /121

http://www.nxp.com/LS2088ARDB

NXP Semiconductors

User space applications
9.1.1.1.7 LX2160A Reference Design Board (RDB)

LX2160A is a DPAA2 based platform. For more information on QorlQ LX2160A, see www.nxp.com/LX2160A.

Hardware specifications

LX2160A Reference Design Board

System control
o
BootROM (64-bit
+£00)
DDR4
Security Monit
oo
e controller
Management
[swBPatormCache |
System interfaces Cache Coherent Interconnect
| SMMUs |
2 x SDHC/eMMC
2 MB Packet Express Buffer 2|
o 2l8lglelelgllk | K|l 7obi
WRioP ol lg|e i
SR8 130 Gbps 518 55 5 &5 | +EC0)
1/2.5/10/25/40/50/ 100 SHIo19191S1¢© 2| @ DDR4
Ethernet RUR > > > % || & it
SEE-E 212 o
+ PHY . controller
QBMan 24 lanes at up to 25 GHz
. Core Complex |:| Basic Peripherals and Interconnect

|:| Accelerators and Memory Control |:| Networking Elements

Figure 1-1. LX2160A block diagram

Figure 14. QorlQ LX2160A Architecture

LX2160ARDB Port Layout

LX2160ARDE _AiEC IR kil il TPl . . B L

D 256 MACS 256 MACE

Ethernet ports

Figure 15. LX2160ARDB Port Layout

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 28/121

http://www.nxp.com/LX2160A

NXP Semiconductors

Table 11. Port Layout

User space applications

Label on Case Physical Ports Comment

40G MAC2 () dpmac.2 40G - Fiber port
10G MAC3 dpmac.3 10G - Copper port
10G MAC4 dpmac.4 10G - Copper port
25G MAC5 dpmac.5 25G - Fiber port
25G MAC6 dpmac.6 25G - Fiber port
10G MACY (%) dpmac.7 10G - Fiber port
10G MACS8 (*) dpmac.8 10G - Fiber port
10G MACS9 (*) dpmac.9 10G - Fiber port
10G MAC10 (*) dpmac.10 10G - Fiber port
1G MAC17 dpmac.17 1G - Copper port
1G MAC18 dpmac.18 1G - Copper port

NOTE

(*) Only one configuration between 40G or 4x10G would be available - thus depending on SerDes configuration,
only one of {dpmac.2} port or {dpmac. 7, dpmac.8, dpmac.9, dpmac. 10} would be available. 4x10G is available by
using port-splitter on the 40G port (dpmac.2). For 4x10G configuration, use SerDes Protocol 18.

SerDes configuration

Following table shows the SerDes protocol configuration application for LX2160A boards. Based on the configuration of the
protocol, either 4x10G ports or 1x40G port is configured/visible.

18 USXGMILS |USKGMIL / [25GE.S 25GE.6 LSXGMILS |USXGMI 7 (USKGMIL S |USXGMIl/ | SSFFSSS
XFL.3 XFl4 XFLT XFLE XFL.9 XF1.10 b

19 USXGMILS |USKGMIL / [25GE.S 25GE.6 40GE.2 S5FFS55
XFL3 XFl4 b

NOTE

For detailed configurations and protocol information, see "LSDK Quick Start Guide for LX2160ARDB" section in
"Layerscape SDK user guide" chapter of Layerscape Software Development Kit User Guide available at the

following link:

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-
software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab

9.1.1.2 References

Table 12. DPDK Application References

Sample Applications

DPDK Web Manual Link

Description

Layer-2 Forwarding (12 fwd)

12fwd usage

Layer 2 Forwarding sample application
setup and usage guide.

crypto)

Layer-2 Forwarding with Crypto (12fwd-

12fwd-crypto

Table continues on the next page...

Layer 2 Forwarding with Crypto sample
application setup and usage guide.

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020

User's Guide

29/121

https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://www.nxp.com/design/software/embedded-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK?tab=Documentation_Tab
https://doc.dpdk.org/guides-19.11/sample_app_ug/l2_forward_real_virtual.html
http://doc.dpdk.org/guides-19.11/sample_app_ug/l2_forward_crypto.html

NXP Semiconductors

User space applications

Table 12. DPDK Application References (continued)

Layer-3 Forwarding (13fwd) I3fwd usage Layer 3 Forwarding sample application
setup and usage guide.

IPSec Gateway (ipsec-secgw) ipsec-secgw usage IPSec Security Gateway sample
application setup and usage guide.

PMD Test Application (testpmd) testpmd usage Guide for test application which can be
used to test all PMD supported features.

DPDK Web Guide DPDK Documentation Link to DPDK Web Manual containing
information about all supported PMD and
Applications.

Table 13. Release References

Component Base Upstream Release Versions
DPDK 19.11.0

ovs 2.13.0

PKTGEN 19.12.0

9.1.2 DPDK Overview

Key goal of the DPDK is to provide a simple, complete framework for fast packet processing in data plane applications. Using
the APIs provided as part of the framework, applications can leverage the capabilities of underlying network infrastructure.

The framework creates a set of libraries for target environments, layered through an Environment Abstraction Layer (EAL) which
hides all the device glue logic beneath a set of consistent APIs. These environments are created through the use of configuration
files. Once the EAL library is created, the user may link with the library to create their own applications. Various other libraries,
outside of EAL, including the Hash, Longest Prefix Match (LPM) and rings libraries are also available for performing specific
operations. Sample applications are also provided to help understand various features and uses of DPDK framework.

DPDK implements a run-to-completion model for packet processing where all resources must be allocated prior to calling data
plane applications, running as execution units on logical processing cores. In addition, a pipeline model may also be used by
passing packets or messages between cores via rings. This allows work to be performed in stages, resulting in more efficient
use of code on cores.

More information on general working of DPDK can be found through DPDK website.

9.1.2.1 DPDK Platform Support

This section describes the NXP Data Path Acceleration Architecture, see the diagram below:

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 30/121

http://doc.dpdk.org/guides-19.11/sample_app_ug/l3_forward.html
https://doc.dpdk.org/guides-19.11/sample_app_ug/ipsec_secgw.html
http://doc.dpdk.org/guides-19.11/testpmd_app_ug/index.html
http://doc.dpdk.org/guides-19.11/index.html
http://dpdk.org/doc

NXP Semiconductors

User space applications

|

Customer

DPDK Applications

Applications

DPDK.org.

L
4 3
o
< DPOK API
10 & Acceleration Run-Time Services Network Services
£
13
g Et::tse(;;i\“i‘; Raw Dev PMD Resource Mgmt

[

\

]

Arch/ Power8

.

Platform specific

L E
a3 2
E

1]
z g
2 =}

-
DPAAZ
DPAA-SEC

DPAAZ-SEC

|

Figure 16. DPDK Architecture with NXP Components

The NXP Data Path Acceleration Architecture comprises a set of hardware components which are integrated via a hardware
queue manager and use a common hardware buffer manager. Software accesses the DPAA via hardware components called
"Software Portals". These directly provide queue and buffer manager operations such as enqueues, dequeues, buffer allocations,
and buffer releases and indirectly provide access to all of the other DPAA hardware components via the queue manager.

NXP DPAA architecture based PMD (Poll Mode Drivers) has been added to DPDK infrastructure to support seamless working
on NXP platform. With the addition of these drivers, DPDK framework on NXP platforms permits Linux user space applications
to be build using standard DPDK APIs in a portable fashion. The drivers directly access the DPAA queue and buffer manager
software portals in a high performance manner and the internal details remains hidden from higher level DPDK framework.
Besides drivers for network interfaces, drivers (PMDs) for interfacing with Crypto (CAAM) block have also been included in the
DPDK source code.

NOTE
Since this guide contains support for PPFE, DPAA2, ENETC and DPAA platforms, the following markers are used
throughout the guide:

« DPAAZ2 - This marker marks the steps/text applicable only for DPAA2 platforms, for example, LS2088
» DPAA - This marker marks the steps/text applicable only for DPAA platforms, for example, LS1043

» PPFE - This marker marks the steps/text applicable only for PPFE platforms, for example, LS1012

« ENETC - This marker marks the steps/text applicable only for ENETC platforms, for example, LS1028

All other steps which don’t have any marker are applicable for both the platforms.

NOTE
See DPDK Performance Reproducibility Guide to tune the system for best DPDK performance on NXP platforms.

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 31/121

NXP Semiconductors

User space applications

NOTE
Multi-thread environment

DPDK was originally designed for Intel architectures, however efforts are underway to make it multiple architecture
friendly. There are still some restrictions which should be taken care when used on NXP platforms.

1. Multiple pthreads

DPDK usually pins one pthread per core to avoid the overhead of task switching. This allows for significant
performance gains, but lacks flexibility and is not always efficient. DPDK is comprised of several libraries
- some of the functions in these libraries can be safely called from multiple threads simultaneously, while
others cannot.

The run-time environment of the DPDK is typically a single thread per logical core. Itis best to avoid sharing
data structures between threads and/or processes where possible. Where this is not possible, the execution
blocks must access the data in a thread-safe manner. Mechanisms such as atomic variables or locking
can be used to allow execution blocks to operate serially. However, this can effect the performance of the
application.

2. Fast-path APIs

Applications operating in the data plane are performance sensitive but certain functions within those
libraries may not be safe to call from multiple threads simultaneously.

The Hash, LPM, Mempool libraries and RX/TX in the PMD are examples of such multi-thread unsafe
functions. The RX/TX of the PMDare the most critical aspects of a DPDK application and it is recommended
that no locking be used with these paths as it will impact performance. However, these functions can be
safely used from multiple threads when each thread is performing I/O on a different NIC queue. If multiple
threads are to use the same hardware queue on the same NIC port, then locking or some other form of
mutual exclusion is necessary. In the NXP implementation, each thread has to use a software portal (DP1O)
instance to access the underlying DPAA hardware. Thus, itis recommended that only one thread per logical
core should be created for RX/TX and other I/O access to DPAA hardware.

9.1.2.2 DPAA: Supported DPDK Features
Following is the list of DPDK NIC features which DPAA driver support:

* Allmulticast mode

+ Basic stats

» Extended stats

* Flow control

 Firmware Version information

* Jumbo frame

* L3 checksum offload

* L4 checksum offload

* Link status

* MTU update

» Promiscuous mode

* Queue start/stop

» Speed Capabilities

» Scattered RX

* Unicast MAC filter

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 32/121

NXP Semiconductors

RSS Hash
Packet type parsing
ARMv8

9.1.2.3 DPAA2: Supported DPDK Features
Following is the list of DPDK NIC features which DPAA2 driver support:

Allmulticast mode

Basic stats

Firmware Version information

Flow control

Jumbo frame

L3 checksum offload
L4 checksum offload
Link Status

Link Status Events
MTU update

Packet type parsing
Promiscuous mode
Queue start/stop
RSS hash

Unicast MAC filter
VLAN offload

VLAN filter

Speed capabilities
ARMvS8

Linux VFIO

Extended stats

9.1.2.4 PPFE supported DPDK features
Following is the list of DPDK NIC features which PPFE driver support:

ALLmulticast mode
Basic Stats

MTU update
Promiscuous mode
Packet type parsing
ARMvS8

9.1.2.5 ENETC supported DPDK features
Following is the list of DPDK NIC features which ENETC driver supports:

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020

User space applications

User's Guide

33/121

NXP Semiconductors

User space applications

» Packet type information
» Basic stats

* Promiscuous

* Multicast

» Jumbo packets

* Queue Start/Stop

* Deferred Queue Start

* CRC offload

Note:
ENETC based DPDK features are not supported with Kernel 4.14.

9.1.3 Build DPDK

This section includes three subsections which detail:
1. Building DPDK binaries (libraries and sample applications) using the Yocto build system.
2. Building DPDK binaries as standalone package, through DPDK's own build system.

3. Building Pktgen application which can be used as a software packet generator using DPDK as underlying layer.

9.1.3.1 Build DPDK using Yocto

DPDK is one of the application packages of the Yocto build system. This section details method to build DPDK as a standalone
package within the Yocto environment. It is assumed that the Yocto environment has already been configured before executing
the commands below.

See Download Yocto layers for complete details of using the Yocto build system.

After the Yocto environment has been set up, the following commands can be used to build DPDK applications and libraries.
Generated files (libraries and binaries) would be available in the <yocto sdk>/build 1s2088ardb/tmp/work/1s2088ardb-fsl-
linux/dpdk/ folder. After the rooffs (root filesystem) is generated, the binaries would be merged into it.

bitbake dpdk # it is assumed setup-env was run before running this command.
See Build Yocto images for packing these binaries into the target rooffs using the Yocto build system. Yocto environment by
default compiles DPDK and place it in the rootfs when bitbake fsl-image-networking iS run.
Layout of DPDK binaries

Single image of DPDK binary supports DPAA, DPAA2, ENETC, and PPFE platforms. Once the DPDK package has been installed,
binaries would be available /usr/share/dpdk folder in the rootfs. Yocto system generates a single rootfs for all NXP platforms
it supports.

/usr/share/dpdk/examples/ # Contains the sample applications listed in Table 12

At various places in this document, above binaries would be referred for representing execution as well as other information. It
is assumed that execution is being done either using the paTH variable set, as explained above, or with absolute path to the
binaries.

Besides the above folders, another set of files are also available in rooffs to support DPDK application execution. These files are
available in the /usr/share/dpdk folder in the rooffs.

Table below depicts various DPDK artifacts which are available in the Yocto generated rooffs:

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 34/121

NXP Semiconductors

User space applications

File/lmage name relative to /usr/share/dpdk/

Description

./examples/12fwd
./examples/13fwd
./examples/12fwd-crypto
./examples/ipsec-secgw

./examples/testpmd

DPAA, DPAA2, ENETC, and PPFE

DPDK Example applications and PMD test
application.

./dpaa/usdpaa_config 1s<PLAT>.xml
./dpaa/usdpaa_policy hash ipv4 lqueue.xml
./dpaa/usdpaa_policy hash ipv4 2queue.xml

./dpaa/usdpaa_policy hash ipv4 4queue.xml

DPAA Only.
FMC Configurations and Policy files.

<PLAT> is platform name for DPAA platform,
for example 1s1043 or 1s1046.

Each Policy file for defining the number of
queues per port as mentioned in its name.

./dpaa2/dynamic_dpl.sh

./dpaa2/destroy dynamic dpl.sh

DPAA2 Only.

Dynamic DPL container creation and
teardown script.

../usertools/dpdk-setup.sh

../usertools/dpdk devbind.py

PPFE only
DPDK NIC binding utility.

This is only applicable for executing DPDK
applications in VM.

./enable performance mode.sh

./disable performance mode.sh

When executing a Ubuntu OS over
Layerscape board, performance on core 0 can
become non-deterministic because of OS
services and threads.

These scripts allow a special setting wherein
the DPDK application, which would run after

running the enable script, would get real time
priorities.

NOTE
These scripts should
not be used in general
cases. For detailed
use-case, refer to
Performance
Reproducibility Guide
section.

./examples/ipsec_secgw/ep0.cfg
./examples/ipsec_secgw/epl.cfg
./ipsec/ep0 64X64.cfg

./ipsec/epl 64X64.cfg

Configuration files for ipsec-gw example
application.

The ep0 and ep1 files are standard
configurations for 2 tunnels for encryption and

Table continues on the next page...

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020

User's Guide

35/121

NXP Semiconductors

User space applications

Table continued from the previous page...

./ipsec/ep0_64X64 proto.cfg decryption, each. The ep0_64x64 and
epl 64x64 are for 64 tunnels for encryption

./ipsec/ep0 64X64 sha256.cfg .
- - and decryption, each.

./ipsec/epl 64X64 proto.cfg

./ipsec/epl 64X64 sha256.cfg

/usr/bin/pktgen Packet generation application

./debug_dump.sh Dumping the debug data for further analysis.

9.1.3.2 Build DPDK on host (native)

This section lists the steps required to build DPDK binaries (libraries and example applications) on the host environment. This
environment is host enabled for building directly on the Layerscape target board.

NOTE
This section focuses on building of DPDK on a host machine for Layerscape boards as target. Notes are added
to enable the compilation of DPDK applications directly on a host machine.

Setup proxies

Depending on the environment you are working in, proxies setting might be required to have internet connectivity. Use the
following proxy commands:

$ export http_proxy:http://<proxy—server—name>.com:<port—number>
$ export https proxy=https://<proxy-server-name>.com:<port-number>

Obtain the DPDK source code

The DPDK source code contains all the libraries for building example applications as well as test applications. The source code
includes configurations and scripts for supporting build and execution. Obtain the DPDK source code using the link below:

git clone https://source.codeaurora.org/external/qorig/gqorig-components/dpdk -b github.gorig-os/19.11-
gorig

Once the above repository is cloned, DPDK source code will be available for compilation. This source is common for DPAA,
DPAA2, ENETC, and PPFE platforms.

Compiling DPDK

Follow the below steps to compile DPDK. In case of direct compilation on target boards, it is assumed that prerequisites would
be satisfied using the root filesystem. Execute the following command:

make T=armé64-dpaa-linuxapp-gcc install CONFIG RTE KNI KMOD=n CONFIG RTE EAL IGB UIO=n -j 4

A directory named arm64-dpaa-1inuxapp-gcc is created, binaries and libraries are also available in it.

The KNI and other kernel module compilation should be disabled as only limitation is kernel module like (KNI) native compilation
is not supported due to build dependencies not met by Root File System.

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 36/121

NXP Semiconductors

User space applications

NOTE
DPDK arm64-dpaa-1linuxapp-gcc folder contains .config file for storing the build configuration. Another way
of disabling or enabling support features, like KNI and software crypto drivers, is to edit this file before executing
the make command. If this method is adopted, parameters to command line for disabling the feature are not
required. There is one limitation that the kernel module (KNI) compilation is not supported because build
dependencies at native are not satisfactory.

NOTE
If KNI or software crypto driver support is disabled using the make command line parameters, it would not modify
the configuration file for DPDK in the <target> folder. Every subsequent compilation of DPDK or example
application would need to include the same command line arguments to avoid failure because of missing features
which were not compiled. Or, edit the .config folder in the arm64-dpaa-1inuxapp-gcc build folder.

Compiling DPDK example applications
Once the DPDK source code is compiled, the DPDK example applications can be built independently as required:
1. Before the example applications can be built, the path to DPDK SDK needs to be set which includes the DPDK source

code. This would be used by build system to look for compiled libraries and headers.
export RTE SDK=<path to DPDK source code, where compilation was done>
2. Target should be set to same value as done for compilation of DPDK.
export RTE TARGET=arm64-dpaa-linuxapp-gcc

3. Once the above variables are set, example applications can be compiled using the following commands:

Some applications like testpmd are generated as part of default build. These would be available in <build folder>/app/
folder.

For other example applications which are part of the examples/ folder, one of following is applicable:

make -C examples/13fwd # for the L3 forwarding application

make -C examples/12fwd # for the L2 forwarding application

make -C examples/ip fragmentation # for the IP fragmentation application
make -C examples/ip reassembly # for the IP reassembly application
make -C examples/ipsec-secgw # for the IPSec gateway application

Above are sample commands for a limited set of DPDK example applications. Other applications can be compiled using similar
command pattern.

make -C examples/<Name of examples directory>

NOTE
All the example applications currently supported by DPDK are available as part of the DPDK source code in
the . /examples/ folder. Other examples can also be compiled using the pattern stated above.

9.1.3.3 Standalone build of DPDK libraries and applications

This section details steps required to build DPDK binaries (libraries and example applications) in a standalone environment. This
environment can either be on a host enabled for cross building for Layerscape boards or directly on the Layerscape target board.

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 37/121

NXP Semiconductors

User space applications

NOTE
This section primarily focuses on standalone building of DPDK on a host machine using cross compilation for
Layerscape boards as target. Though, necessary notes have been added to enable compilation directly on target
boards. See Download Yocto layers for creating an environment suitable for building DPDK on Layerscape boards.

For instructions on how to build DPDK using Yocto system, see Build DPDK using Yocto.

Obtain the DPDK source code

The DPDK source code contains all the necessary libraries for build example applications as well as test applications. The source
code also includes various configuration and scripts for supporting build and execution. Obtain the DPDK source code using the
link below:

git clone https://source.codeaurora.org/external/qoriqg/gorig-components/dpdk -b github.gorig-os/19.11-
gorig

After the above repository has been cloned, DPDK source code is available for compilation. This source is common for both,
DPAA, DPAA2, ENETC, and PPFE platforms.
Prerequisites before compiling DPDK
Before compiling DPDK as a standalone build, following dependencies need to be resolved independently:
» Platform compliant and compiled Linux Kernel source code so that KNI modules can be built.
— This is optional and if KNI module support is not required, this can be ignored
— For details of compiling platform compliant Linux Kernel, see Download Yocto layers and Build Yocto images
— For disabling KNI module, see notes below
* OpenSSL libraries required for building software crypto driver (OpenSSL PMD).

— OpenSSL package needs to be separately compiled and libraries installed at a known path before DPDK build can
be done

— This is optional and if software crypto driver support is not required, this dependency can be ignored.

Follow the steps below to build OpenSSL as a standalone package.

git clone git://git.openssl.org/openssl.git # Clone the OpenSSL source code
cd openssl # Change into cloned directory
git checkout OpenSSL 1 1 1g # Checkout the specific tag supported by DPDK

Export the Cross Compilation tool chain for building OpenSSL for target. The following step for exporting cross
compilation toolchain is required only when compiling on Host. On a target board, it is assumed default build toolchain
would be used.

export CROSS COMPILE=<path to uncompressed toolchain archive>/bin/aarch64-linux-gnu-

Configure the OpenSSL build system with following command. The --prefix argument specifies a path where
OpenSSL libraries would be deployed after build completes. This is also a path which would be provided to DPDK build
system for accessing the compiled OpenSSL libraries.

./Configure linux-aarch64 --prefix=<OpenSSL library path> shared

make depend

make

make install

export OPENSSL PATH=<OpenSSL library path>

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 38/121

NXP Semiconductors

User space applications

NOTE
When building DPDK on target board, it is possible that OpenSSL libraries required by DPDK are already available
as part of the rooffs, in which case external compilation of OpenSSL package would not be required.
— For disabling OpenSSL PMD support, see notes below
Compiling DPDK

Follow the below steps to compile DPDK once the above prerequisites are resolved. These steps are common for DPAA and
DPAAZ2 targets and are needed only when cross compiling on a host for Layerscape boards as target. In case of direct
compilation on target boards, it is assumed that prerequisites would be satisfied using the root filesystem. In case root
filesystem doesn't contain necessary prerequisites, below steps would be required once prerequisites have been built/obtained
independently.

1. Setup the environment for compilation:

a. Setup Linux Kernel path. This is optional and required only for KNI and ixgb_uio module compilation. Skip it, if
ixgb_uio or KNI module or KNI example application is not required.

export RTE KERNELDIR=<Path to compiled Linux kernel to compile KNI kernel module>

b. Setup cross compilation toolchain.

This step is required only on the host environment where default toolchain is not for target boards. When compiling
on a target board, this step can be skipped.

export CROSS=<path to cross-compile toolchain>

c. Setup OpenSSL path for software crypto drivers (OpenSSL PMD). This is optional and can be skipped in case
software crypto driver (OpenSSL PMD) support is not required.

export OPENSSL PATH=<path to installed OpenSSL>

2. Use DPDK build system for compiling DPDK.

NOTE
DPDK binaries generated using below steps are compatible for DPAA, DPAA2, ENETC, and PPFE platforms. This
is also valid when DPDK is build through Yocto build system.

a. Execute the following command:

make T=arm64-dpaa-linuxapp-gcc install DESTDIR=<location to install DPDK>

Where DESTDIR=<location to install DPDK> is an optional parameter to deploy all the DPDK binaries (libraries
and example applications) to a standard Linux package specific layout within a directory represented by this
parameter. Alternatively, a directory named armé4-dpaa-1inuxapp-gcc is also created and binaries and libraries
are also available in it.

b. Disabling KNI and other kernel module compilation: In case DPDK kernel modules is not required (RTE_KERNELDIR
variable is not set), use the following command. pESTDIR can be added, as explained above, if required.

make T=armé64-dpaa-linuxapp-gcc CONFIG RTE KNI KMOD=n CONFIG RTE EAL IGB UIO=n
CONFIG_RTE EAL IGB UIO=n install

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 39/121

NXP Semiconductors

User space applications

c. Enabling software crypto driver support: Software crypto driver (OpenSSL PMD) is disabled by default. If it is
required set oPENSSL_PATH variable, use the following command. pEsTDIR can be added, as explained above, if
required.

make T=arm64-dpaa-linuxapp-gcc CONFIG RTE LIBRTE PMD OPENSSL=y EXTRA CFLAGS="-I$
{OPENSSL_PATH}/include/" EXTRA LDFLAGS="-L${OPENSSL PATH}/lib/" install

d. In case KNI is not required and software crypto support is required, use the following command. bEsSTDIR can be
added, as explained above, if required.

make T=armé64-dpaa-linuxapp-gcc CONFIG RTE LIBRTE PMD OPENSSL=y EXTRA CFLAGS="-IS$
{OPENSSL_PATH}/include/" EXTRA LDFLAGS="-L${OPENSSL PATH}/lib/" CONFIG_RTE_KNI_KMOD=n
CONFIG_RTE_EAL IGB UIO=n install

e. In case of dpdk-pdump, an example of multiprocess application, following command pattern can be used after
replacing the ExTra_* variables with apropriate path.

make T=armé64-dpaa-linuxapp-gcc CONFIG RTE LIBRTE PMD PCAP=y CONFIG RTE LIBRTE PDUMP=y
EXTRA LDFLAGS="-L/path/to/compiled/LIBPCAP/lib" EXTRA CFLAGS="-I"-L/path/to/compiled/
LIBPCAP/include" CONFIG RTE KNI KMOD=n CONFIG RTE EAL IGB UIO=n install

NOTE
The LIBPCAP library and headers provided to above build command should have been cross-compiled for
aarché64 and should be copied over to the board before executing the binary.

NOTE
Currently, dpdk-pdump is supported only with testpmd application compiled using same build steps. Other
applications would require modification for supporting packet capturing support before being run with dpdk-
pdump

NOTE
For more information about the DPDK build system, refer DPDK Documentation.

NOTE
DPDK arm64-dpaa-linuxapp-gcc folder contains . config file for storing the build configuration. Another
way of disabling or enabling support features, like KNI and software crypto drivers, is to edit this file before
executing the make command. If this method is adopted, parameters to command line for disabling the feature
are not required.

NOTE
If KNI or software crypto driver support is disabled using the make command line parameters, it would nof modify
the configuration file for DPDK in the <target> folder. Every subsequent compilation of DPDK or example
application would need to include the same command line arguments to avoid failure because of missing features
which were not compiled. Or, edit the . config folder in the arm64-dpaa-1inuxapp-gcc build folder.

Compiling DPDK example applications
Once the DPDK source code has been compiled, the DPDK example applications can be built independently as required.

1. Before the example applications can be built, the path to DPDK SDK needs to be set which includes the DPDK source
code. This would be used by build system to look for compiled libraries and headers.

export RTE SDK=<path to DPDK source code, where compilation was done>

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 40/121

http://dpdk.org/doc/guides/prog_guide/dev_kit_build_system.html

NXP Semiconductors

User space applications

2. Target should be set to same value as done for compilation of DPDK.

export RTE TARGET=arm64-dpaa-linuxapp-gcc

3. Once the above variables are set, example applications can be compiled using the following commands:

Some applications like testpmd, dpdk-procinfo and dpdk-pdump (last two being multiprocess examples), are generated
as part of default build. These would be available in <build folder>/app/ folder. Steps for these applications are defined
in the Compiling DPDK section above.

For other example applications which are part of the examples/ folder, one of following is applicable:

make -C examples/13fwd # for the L3 forwarding application
make -C examples/1l2fwd # for the L2 forwarding application
make -C examples/ip fragmentation # for the IP fragmentation application
make -C examples/ip reassembly # for the IP reassembly application

make -C examples/ipsec-secgw # for the IPSec gateway application

make -C examples/ipsec-secgw CONFIG_RTE LIBRTE PMD OPENSSL=y EXTRA CFLAGS="-I${OPENSSL PATH}/
include/" EXTRA LDFLAGS="-L${OPENSSL PATH}/lib/" # for IPSec application with openssl PMD

make -C examples/l2fwd-crypto # for the L2 forwarding with crypto support application

make -C examples/l2fwd-crypto CONFIG _RTE LIBRTE PMD OPENSSL=y EXTRA_CFLAGS:"—I${OPENSSL_PATH}/
include/" EXTRA LDFLAGS="-L${OPENSSL PATH}/lib/" # for L2 forwarding crypto operations with
openssl PMD

Above are sample commands for a limited set of DPDK example applications. Other applications too be compiled using
similar command pattern.

make -C examples/<Name of examples directory>

NOTE
All the example applications currently supported by DPDK are available as part of the DPDK source code in
the . /examples/ folder. Other examples can also be compiled using the pattern stated above.

NOTE
testpmd is not supported on platforms with single core, for example LS1012 (PPFE). This is because testpmd
requires one core for its CLI or management (timer) threads.

4. Once the example application are compiled, the binaries would be available in the following folder within the DPDK source
code folder:

examples/<name of example application>/build/app/*

Besides the above example application, DPDK also provides a testpmd binary which can be used for comprehensive
verification of DPDK driver (PMD) features for available and compatible devices. This binary is compiled by default during
DPDK source compilation explained in Compiling DPDK section.

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 41 /121

NXP Semiconductors

User space applications

NOTE
Only a small set of DPDK example applications are currently deployed to root filesystem when compiling DPDK
through Yocto build system. These are: 12fwd, 13fwd, 12fwd-crypto, ipsec-gw, cmdif demo,
ip fragmentation, ip reassembly, 12fwd-gdma, and testpmd

9.1.3.4 DPDK based Packet Generator

Pktgen is a packet generator powered by DPDK. It requires DPDK environment for compilation and DPDK compliant infrastructure
for execution. DPAA and DPAA2 DPDK PMD (Poll Mode Drivers) can be used by Pktgen for building a packet generator using
the DPAA infrastructure.

Prerequisites for compiling Pkigen

For compiling Pktgen, libpcap library is required. If compiling Pktgen as a cross-compiled target, then compile 1ibpcap also
against the same compiler. See Build Yocto images for more information.

NOTE
For libpcap library compilation and deployment, refer Tcpdump and libpcap project pages. Libpcap current and
past releases can be obtained from this link. Documentation for libpcap is included in its source code. Also note
that libpcap should be compiled for target board if working in a cross compilation environment.
Obtaining the Pktgen source code
Fetch the Pktgen source code using the following clone command:
git clone http://dpdk.org/git/apps/pktgen-dpdk
git checkout pktgen-19.12.0
Compiling Pktgen

Compilation steps below assume that compiled DPDK binaries (libraries and headers) are available in build directory generated
by DPDK. Refer DPDK Build Steps for compiling DPDK and creating the build (arm64-dpaa-1linuxapp-gcc) directory. Further,
it is expected that 1ibpcap libraries and headers are also present in this build folder.

Export the path to DPDK build environment and build folder defined by the compilation target:

export RTE SDK=<path to compiled DPDK source code containing build folder>

export RTE TARGET=<arm64-dpaa-linuxapp-gcc or armé4-dpaa-linuxapp-gcc> # Select the build folder based
on required DPAA or DPAA2 target>

Build the source code:

make

Before executing the Pktgen application
For executing the Pktgen application, Pkfgen.lua file and pkfgen binary are needed on the execution environment.

If build was done using a cross compiled environment, transfer these binaries to the target environment from the build host. If
the compilation was done on the target board, skip this step.

cd <Pktgen compiled source code>

cp Pktgen.lua <target board>
cp app/app/armé64-dpaa-linuxapp-gcc/pktgen <target board>

9.1.3.5 Build OVS-DPDK using Yocto

OVS is a popular multilayer virtual switch for enabling massive network automation through programmatic extensions.

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 42 /121

http://www.tcpdump.org/#source
http://www.tcpdump.org/release/

NXP Semiconductors

User space applications

OVS-DPDK is one of the application packages of the Yocto build system that uses DPDK as underlying framework. This section
explains the method to build OVS-DPDK as a standalone package within the Yocto environment. It is assumed that the Yocto
environment is configured before executing the commands mentioned below.

See Download Yocto layers for details about using the Yocto build system.

NOTE
In the Yocto configurations, OVS-DPDK needs to be configured to 'y' for enabling packaging of OVS-DPDK in
Yocto generated root filesystem, if not already enabled. For more information, see Download Yocto layers.

After the Yocto environment has been set up, the following commands can be used to build OVS-DPDK package. Generated
files (libraries and binaries) would be available in the <yocto sdk>/build 1s2088ardb/tmp/deploy/images/1s2088ardb/
folder. After the rootfs (root filesystem) is generated, the binaries would be merged into it.

$ bitbake ovs-dpdk

NOTE
OVS-DPDK is dependent on DPDK package as itis used as its underlying framework. Yocto is designed to compile
DPDK before OVS-DPDK if not already built.

Layout of OVS-DPDK binaries

A OVS-DPDK binary image supports both the DPAA and DPAA2 platforms. After the OVS-DPDK package has been installed,
binaries are available in /usr/bin/ovs-dpdk folder in the rootfs. Yocto system generates a single rootfs for all NXP platforms it
supports.

NOTE
OVS-DPDK binaries are deployed into the root filesystem as per the default layout of installation target for OVS-
DPDK build system.

The table below depicts various OVS-DPDK artifacts that are available in the Yocto generated rooffs.

File/image name related t0 /usr/bin/ovs-dpdk Description

* ./ovs-ofctl Various OVS binaries for both DPAA and
DPAA2 platforms

¢ ./ovs-vsctl

¢ ./ovsdb-tool

* ./ovsdb-server

* ./ovs-vswitchd

» And various other binaries installed by OVS package by default

9.1.3.6 Virtual machine (VM or guest) images

This section describes steps for deploying a Virtual Machine and executing DPDK applications in it. Additionally, OVS-DPDK
package is used for deploying a software switch on the host machine through which virtual machines communicate with other
virtual machine or external network.

NOTE
For obtaining necessary artifacts (kernel image, rootfs) for booting up a virtual machine on a Layerscape board,
see QEMU.

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 43 /121

NXP Semiconductors

User space applications

9.1.4 Executing DPDK Applications on Host

This section describes how to execute DPDK and related applications in both Host and VM environments.

NOTE
IP ADDR BRD,IP ADDR IMAGE SERVER,and TFTP BASE DIRare notU-BootorLinux environmentvariables.
They are used in this document to represent:

1. IP_ADDR_BRD: IP address of target board in test setup.

2. IP_ADDR_IMAGE_SERVER: IP address of the machine where all the software images are kept. These
images are transferred to the board using either tftp or scp.

3. TFTP_BASE_DIR: TFTP base directory of TFTP server running on the machine where images are kept.

9.1.4.1 Booting up target board

Follow the instructions mentioned in "LSDK Quick Start" section of Layerscape Software Development Kit User Guide to get the
target board up and working.

NOTE
While bringing up various platforms, use the following boot arguments to obtain best performance. This can be
done by appending the following string to the othbootargs environment variable in uboot. If othbootargs is not
present, create a new variable.While booting up, the boot scripts would append the othbootargs to the
bootargs variable.

For LS1012ARDB:
default hugepagesz=2MB hugepagesz=2MB hugepages=256 iommu.passthrough=1

For LS1028ARB:
default hugepagesz=2MB hugepagesz=2MB hugepages=256 isolcpus=1 iommu.passthrough=1

For LS1043ARDB:
default hugepagesz=2MB hugepagesz=2MB hugepages=512 isolcpus=1-3 bportals=s0 gportals=s0
iommu.passthrough=1

For LS1046ARDB:
default hugepagesz=2m hugepagesz=2m hugepages=448 isolcpus=1-3 bportals=s0 gportals=s0
iommu.passthrough=1

For LS1088ARDB:
default hugepagesz=1024m hugepagesz=1024m hugepages=6 isolcpus=1-7 iommu.passthrough=1

For LS2088ARDB:
default hugepagesz=1024m hugepagesz=1024m hugepages=8 isolcpus=1-7 iommu.passthrough=1

For LX2160ARDB:
default hugepagesz=1024m hugepagesz=1024m hugepages=8 isolcpus=1-15 iommu.passthrough=1

Above setting insures that available number of hugepages are available with the application depending on the platform. isolcpus
insures that Linux Kernel doesn't use these CPUs for scheduling its tasks - that prevents context switching of any application
running on these cores. If the installed memory is lesser, lower number of hugepages can be used.

iommu.passthrough=1 is to disable SMMU configuration by kernel which is ignored in case of DPDK userspace application.
Though, this setting should does impact security context of enviroment and should be done after due-dilligence.

The bportals and gportals ensures that only 1 portal is available for kernel use (since only one core is for kernel), rest are
available for user space. This setting is needed only for DPAA1 platforms.

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 44 /121

NXP Semiconductors

User space applications

NOTE
Depend on the available memory, hugepage may be added to the system from command line as well.

echo 256 > /proc/sys/vm/nr_hugepages
Check it with:
cat /proc/meminfo

NOTE
For UEFI, to update the boot arguments please refer to UEFI section in the user manual.

Update grub.cfg file for hugepage and isolcpus related changes.

On DPAAZ2 platforms: "rootwait=20 default hugepagesz=1024m hugepagesz=1024m hugepages=8

isolcpus=1-7"

On DPAAT1 platforms: "rootwait=20 default hugepagesz=2MB hugepagesz=2MB hugepages=512
isolcpus=1-3 bportals=s0 gportals=s0"

NOTE
Userspace mode for DPAA1: For the DPAA platform, DPDK specific Device Tree file (for example, £s1-1s1046a-
rdb-usdpaa.dtb for LS1046ARDB, £s1-1s1046a-frwy-usdpaa.dtb for LS1046AFRWY and £s1-
1s1043a-rdb-usdpaa.dtb for LS1043A) should be used for booting up the board.This Device tree file is
configured to provide userspace applications with network interfaces.

Also note that once the above mentioned Device Tree configuration is used, all FMAN ports would be available in
the userspace only. Changes to the Device Tree file would be required to assign some of the FMAN ports to Linux
Kernel.

NOTE
Optionally follow the below instructions to assign one of the FMAN ports on LS 104x (DPAA) RDB boards to Linux.

With standard Yocto generated dtb all interfaces will be assinged to either Linux or Userspace.
When using £s1-1s1043a-rdb-sdk.dtb Or

fs1-1s1046a-rdb-sdk.dtb all network interfaces will be assigned to Linux. When using fs1-
1s1043a-rdb-usdpaa.dtb Or fs1-1s1046a-rdb-usdpaa.dtb all network interfaces will be assigned
to user space.

The example below shows the changes that are required to assign one network interface to Linux and
configure FMAN to support DPDK applications.

Example: Modify fs1-1s1046a-rdb-usdpaa.dts file to assign FMAN ports to Linux by removing the following
ethernet node that corresponds to fm0-mac3 (RGMII-1).

ethernet@2 {
compatible = "fsl,dpa-ethernet-init";
fsl,bman-buffer-pools = <&bp7 &bp8 &bp9>;
fsl,gman-frame-queues-rx = <0x54 1 0x55 1>;
fsl,gman-frame-queues-tx = <0x74 1 0x75 1>;
}i

Then modify the file usdpaa config 1s1046.xml (located in /usr/share/dpdk/dpaa) by removing the
corresponding port entry. For example the below entry needs to be removed for fm0-mac3 (RGMII-1):

<port type="MAC" number="3" policy="hash ipsec src dst spi policy mac3"/>

On DPAAT1, the port numbers are decided in the sequence they are getting detected. In case one or more ports
is assigned to Linux kernel, the userspace port numbering will change. For example, once the above code change
is done, fm0-mac4 will become Port 0 in DPDK/Userspace.

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020

User's Guide

457121

NXP Semiconductors

User space applications

9.1.4.2 Prerequisites for running DPDK applications

This section describes the procedures after the target platform is booted up and logged into the Linux shell. This section is
applicable to DPAA, DPAA2, ENETC, and PPFE platforms and is organized as follows:

» Generic setup contains common steps to be executed before executing any of DPDK sample application or external DPDK
applications. One of these sections would be relevant depending on the platform DPAA, DPAA2, ENETC, or PPFE being
used.

» Application-specific sections contain steps on how to execute the DPDK example and related applications.
For more details, see the following topics:

— Test Environment Setup

— Generic Setup - DPAA

— Generic Setup - DPAA2

— Generic Setup - PPFE

— Generic setup - ENETC

— DPAA2: Multiple parallel DPDK applications

9.1.4.2.1 Test Environment Setup
Test Environment Setup

Various sample application execution steps are detailed in the following sections. Figure below describes the setup containing
the DUT (Device Under Test) and the Packet Generator (Spirent, Ixia or any other software/hardware packet generator). This is
applicable for the commands provided in following section.

The setup includes a one-to-one link between DUT and Packet generator unit. DPDK application running on the DUT is expected
to forward the traffic from one port to another. The setup below and commands described in following sections can be scaled for
more number of ports.

) Board
Jnterface#x dpni-x/fm-gbx
Packet
Generator DPDK
e.g. Spirent -Interface#y dpni-y/fm-gb Application

Figure 17. Test Setup

9.1.4.2.2 Generic Setup - DPAA

This section details steps required to setup necessary environment for execution of DPDK applications on DPAA platform. This
section is applicable for sample as well as any external DPDK applications. For further details about the applicable configuration
file for DPAA platform, refer to Build OVS-DPDK using Yocto. For DPAA2 platform specific setup, refer to Generic Setup - DPAA2.

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 46 /121

NXP Semiconductors

User space applications

DPAA Hardware Configuration files

NOTE
For automatic or dynamic FMAN queue configuration, use the export DPAA FMCLESS MODE=1 environment
variable. If this environment variable is set, DPDK based DPAA driver would automatically configure the number
of queues as demanded by the application.

Default is non dynamic mode which requires user to run the fmctool with exact queue configuration before running

a DPDK application. This section provides details about this mode.

DPAA platforms supports hardware acceleration of packet queues. These queues need to be configured in the Frame Manager
(FMan) prior to being used. This can be done by choosing the appropriate policy configuration file packaged along with Yocto
rootfs or DPDK source code.

Either of 1, 2, or 4 queue based policy files can be selected before application is executed. For example, 1 queue policy file would
define single queue per physical interface of DPAA. Similarly, 2 and 4 queue are for defining 2 or 4 queues for each defined
interface, respectively.

NOTE
For switching between different number of queue configuration, fmctool is required to be run each time with new
policy files. Before running fmctool, fmc -x should be executed to clean old configuration.
Following are the available platform specific configuration files:
* usdpaa config 1s51043.xml for LS1043ARDB board
* usdpaa config 1s51046.xml for LS1046ARDB board
* usdpaa config 151046 frwy.xml for LS1046AFRWY board
Following are the available policy files:
. usdpaa_policy_hash_ipv4_lqueue.xmlfor1 queue per port
* usdpaa policy hash ipv4 2queue.xml for 2 queues per port

* usdpaa policy hash ipv4 4queue.xml for 4 queues per port

NOTE
It is important to execute the applications using the same queue configuration as per the policy file used. This is
because once the queue configuration is done, DPAA hardware would distribute packets across configured
number of queues. Not consuming packets from any queue would lead to queue buildup eventually stopping the
1/0.

Setting up the DPAA Environment

Configure number of queues using environment variable:
export DPAA NUM RX QUEUES=<Number of queues>
Based on the number of queues defined in the above parameter, select the policy configuration file and execute the £mc binary:

fmc -x # Clean any previous configuration/setting
fmc -c <Configuration file> -p <Policy File> -a

For example, in case of LS1043 platform, using 1 queue, following would be the command to execute:
export DPAA NUM RX QUEUES=1

fmc -x
fmc -c ./usdpaa_config 1s1043.xml -p ./usdpaa policy hash ipv4 lqueue.xml -a

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 47 /121

NXP Semiconductors

User space applications

NOTE
It is important that value of DPAA NUM RX QUEUES matches to the policy file being used. In case of mismatch,
DPDK application may show unexpected behavior.

NOTE
LSDK 18.03 (or dpdk release 18.02) onwards DPAA platforms enables the push mode by default. That is, first 4
queues of an interface would be configured in Push mode, thereafter, all queues would use the default pull
configuration. Push mode queues support higher performance configuration than standard pull mode queues, but
are limited in numbers. To toggle the number of push mode queues, use the following environment variable:

#export DPAA PUSH QUEUES NUMBER=0 <default value is 4>

Do note that configuring larger number of push mode queues than available (achievable), would lead to I/O failure.
Max possible value of DPAA PUSH QUEUES NUMBER on DPAA (LS1043, LS1046) is 8.

Setup hugepages for DPDK application to use for packet and general buffers. This step can be ignored if hugepages are
already mounted. Use command mount | grep hugetlbfs to check if hugepages are already setup.

mkdir /dev/hugepages

mount -t hugetlbfs none /dev/hugepages

Hereafter, DPDK sample applications are ready to be executed on the DPAA platform.

Cleanup of the DPAA Environment

To remove the configuration done using the fmc tool, use the -x parameter. It is a good practice to cleanup the configuration
before setting up a new configuration. Even in cases where change of configuration is required, for example, increasing the
number of queues supported, following command can be used for cleaning up the previous configuration.

fmc -x

9.1.4.2.3 Generic Setup - DPAA2

This section details steps required to setup necessary environment for execution of DPDK applications over DPAA2 platform.
This section is applicable for sample as well as any external DPDK applications. For further details about the applicable
configuration file for DPAA2 platform, see Build OVS-DPDK using Yocto. For DPAA platform specific setup, see Generic Setup
- DPAA.

These steps must be performed before running any of the DPDK application on host.
Setting up the DPAA2 environment

For executing DPDK application on DPAA2 platform, a resource container needs to be created which contains all necessary
interfaces to the DPAA2 hardware blocks. Necessary configuration scripts are provided with DPDK package for creating and
destroying containers.

1. Configure the DPAA2 resource container with dynamic_dp1l.sh script. This script is available under /usr/share/dpdk/
dpaa2 folder in the rootfs.

cd /usr/share/dpdk/dpaa2 # Or, any other folder if custom installation of DPDK is done
./dynamic_dpl.sh <DPMACl.id> <DPMAC2.id> ... <DPMACn.id>

In the above command, <ppMac1 . id> refers to the DPAA2 MAC resource, for example, dpmac.1 or dpmac. 2. Modify the
above command as per the number of physical MAC ports required by the application (constrained by availability and
connectivity on the DUT).

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 48 /121

NXP Semiconductors

User space applications

Output of dynamic_dpl.sh command shows the name of the container created. This name is passed to DPDK applications
using the pprc environment variable. Following block shows sample output of the dynamic_dpl.sh command:

#HFHH S HF A HHFEEHH Container dpre.2 1s created ######H#HFHSHHFFESES
Container dprc.2 have following resources :=>

* 16 DPBP
* 5 DPCON
* 4 DPSECI
* 3 DPNI

* 10 DPIO
* 10 DPCI

FHEFHHEH A AR A AR A A A AR S Configured Interfaces ###########HFHFHFHHHHHHHH

Interface Name Endpoint Mac Address
dpni.l dpmac.1 -Dynamic—
dpni.2 dpmac.2 -Dynamic-

The MAC addresses are auto-assigned by the DPDK applications after fetching information from the firmware. These
would be same as the one programmed by u-boot. For creating flows, see the application output or note the MAC addresses
during board bootup. Testpmd application can also be used to find the MAC address assigned.

NOTE
In case of using UEFI-ACPI as boot loader, run export BOARD TYPE=2160 or 2088 before running
dynamic_dpl.sh

NOTE
It is possible to modify the number of interfaces (DPBP, DPCON, DPNI, etc) in a container. This can be done by
defining environment variable COMPONENT COUNT=<number> before executing the script. For example, to set
number of DPBP to 4, use export DPBP_COUNT=4.

Though the flexibility has been provided to modify the interfaces in the container, note that resources need to be
balanced and changing any count will require corresponding changes to other interfaces. Incorrect changes can
render the DPDK application unable to execute.

2. Setup the environment variable using the container name reported by dynamic_dpl.sh command:
export DPRC=dprc.2

After the above setup is complete, DPDK application can be executed on the DPAA2 platform.
Teardown of DPAA2 environment

It might be required to change the configuration of the resource contain to modify the components included in it. As the number
of resources in the system are limited, number of containers which can be created as also limited. It is possible to remove an
existing container and create another.

Execute the following command to teardown a container:

cd /usr/share/dpdk/dpaa?2 # Or, any other folder if custom installation of DPDK is done
./destroy dynamic dpl.sh <Container Name> # for example, "dprc.2"

9.1.4.2.4 Generic Setup - PPFE
This section provides steps required to setup necessary environment for execution of DPDK applications over PPFE platform.

These steps must be performed before running any of the DPDK application on host.

Layerscape Software Development Kit User Guide for Yocto, Rev. 3.1, 07/2020
User's Guide 49 /121

NXP Semiconductors

User space applications

Setting up the PPFE Environment

For executing DPDK application on PPFE platform, a kernel module pfe. ko must be loaded in user space mode which will do
the necessary initialization to run the DPDK applications. By default, pfe. ko will be loaded automatically during kernel bootup.
User must ensure the value of /sys/module/pfe/parameters/us is 1 to check pfe.ko module is loaded in user space mode.

If /sys/module/pfe/parameters/us is not 1, then user shall unload the module and then load again with module argument as

us=1.

rmmod pfe.ko
insmod pfe.ko us=1

Additionally, user must run the below commands to fulfill DPDK applications huge pages requirements.

mkdir /mnt/hugepages
mount -t hugetlbfs none /mnt/hugepages

9.1.4.2.5 Generic setup — ENETC

This section details steps required to set up necessary environment for execution of DPDK applications over ENETC platform.
This section is applicable for sample as well as any external DPDK applications.

These steps must be performed before running any of the DPDK application on host
Setting up ENETC environment

For executing DPDK application on ENETC platform, ethernet devices need to be bound to "vfio-pci" driver. Necessary
configuration script is provided with DPDK package.

This script is available under /usr/share/dpdk/enetc folder in the rootfs.

cd /usr/share/dpdk/enetc # Or, any other folder if custom installation of DPDK is done
./dpdk_configure 1028ardb.sh

This script enables two ethernet devices to be used by DPDK applications by binding them to "vfio_pci" driver. These devices on
case are labeled as "1G MACO0" and "1G SWPQ".

9.1.4.2.6 DPAA2: Multiple parallel DPDK applications
This section describes steps for executing multiple parallel DPDK application on DPAA2 platform.

For executing multiple DPDK applications, each application instance should run with its own resource container (DPRC). This
constraint is because of the way DPDK framework is designed to use a given container for exclusive use, irrespective of resources
within, and bind it using VFIO layer. This design prevents parallel access to single resource container