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Background: What is SPL?

● Unlike NOR flash, many boot sources are not directly memory mapped.

● On-chip ROM or other mechanism loads a binary into an SRAM.

– This SRAM is often very small, sometimes 4 KiB or less.
– The ROM can't load us into main system RAM yet, since initialization is 

too complex and must be handled by U-Boot.
● SPL (Secondary Program Loader) is a small binary, generated from U-Boot 

source, that fits in the SRAM and loads the main U-Boot into system RAM.

● Configured by a parallel set of makefile config symbols – 
CONFIG_SPL_I2C_SUPPORT, CONFIG_SPL_NAND_SUPPORT, etc.

– Normal CONFIG symbols also used, but not to control the differences 
between the SPL and the main U-Boot.

– SPL also relies heavily on toolchain garbage collection.



 

What can we do in 4 KiB?

● Not much.
– Hardcoded RAM initialization

● Causes problems if a new revision of the board has different 
RAM, or if RAM is socketed

● Code to use SPD to dynamically initialize RAM is way too large to 
fit.

– Barely fits even then
● Limited output capability (puts rather than printf)
● No exception handling
● Toolchain variations often cause breakage due to size differences



 

Running from a different SRAM

● Sometimes, there is more than one SRAM on the system, 
and the boot ROM loads us into the smaller one.
– In particular, on some Freescale 85xx/QorIQ chips, we get 

loaded into a 4 KiB NAND I/O buffer, but L2 cache can be locked 
to provide a larger SRAM.

● ...but this time, it's the full U-Boot that needs to fit.
– On Freescale 85xx/QorIQ:

● Sometimes we have 512K, which is usually good.
● Sometimes only 256K, which is not enough.



 

Tertiary Program Loader

● Tiny SPL loads moderate-size middle layer called TPL.
● TPL

– Implementation by Ying Zhang, in v2013.10

– Originally proposed in patch by Haiying Wang in 2011

– does dynamic initialization of full RAM

– loads the full U-Boot into RAM

– uses existing SPL makefile infrastructure and symbols, with a separate 
autoconf.mk

– Is essentially another instance of SPL
● CONFIG_SPL_BUILD set for both TPL and SPL
● CONFIG_TPL_BUILD set for TPL only



 

TPL configuration
#ifdef CONFIG_TPL_BUILD

#define CONFIG_SPL_NAND_BOOT  

#define CONFIG_SPL_FLUSH_IMAGE

#define CONFIG_SPL_ENV_SUPPORT

#define CONFIG_SPL_NAND_INIT

#define CONFIG_SPL_SERIAL_SUPPORT

#define CONFIG_SPL_LIBGENERIC_SUPPORT

#define CONFIG_SPL_LIBCOMMON_SUPPORT

#define CONFIG_SPL_I2C_SUPPORT 

#define CONFIG_SPL_NAND_SUPPORT

#define CONFIG_SPL_MPC8XXX_INIT_DDR_SUPPORT

#define CONFIG_SPL_COMMON_INIT_DDR

#define CONFIG_SPL_MAX_SIZE             (128 << 10)

#define CONFIG_SPL_TEXT_BASE            0xf8f81000

#define CONFIG_SYS_MPC85XX_NO_RESETVEC

#define CONFIG_SYS_NAND_U_BOOT_SIZE     (576 << 10) 

#define CONFIG_SYS_NAND_U_BOOT_DST      (0x11000000)

#define CONFIG_SYS_NAND_U_BOOT_START    (0x11000000)

#define CONFIG_SYS_NAND_U_BOOT_OFFS     ((128 + 128) << 10)

#elif defined(CONFIG_SPL_BUILD)

#define CONFIG_SPL_INIT_MINIMAL

#define CONFIG_SPL_SERIAL_SUPPORT

#define CONFIG_SPL_NAND_SUPPORT  

#define CONFIG_SPL_FLUSH_IMAGE   

#define CONFIG_SPL_TEXT_BASE            0xff800000

#define CONFIG_SPL_MAX_SIZE             4096

#define CONFIG_SYS_NAND_U_BOOT_SIZE     (128 << 10)

#define CONFIG_SYS_NAND_U_BOOT_DST      0xf8f80000 

#define CONFIG_SYS_NAND_U_BOOT_START    0xf8f80000 

#define CONFIG_SYS_NAND_U_BOOT_OFFS     (128 << 10)

#endif



 

Another approach

● If we can use ifdefs in the board config file to differentiate SPL from TPL, why 
not to differentiate SPL from the main U-Boot?

● Patch from Joel Fernandes (in v2013.10) provides a separate autoconf.mk 
for SPL (which TPL builds on).

● TPL patch using similar concept by Matthew McClintock in 2011

● Would let us get away from having a separate, parallel build config system 
just for SPL

● Make config more fine grained in order to maintain ability to meet size 
requirements.

● Use kconfig to keep things manageable (we want this anyway).

– This means our usage of kconfig would need to support multiple config 
instances.



 

Example (pre-kconfig)

#define CONFIG_CMD_NAND

…

#ifndef CONFIG_SPL_BUILD

#define CONFIG_CMD_NET

…

#endif /* nonSPL */



 

Example (pre-kconfig)

#define CONFIG_CMD_NAND

…

#if defined(CONFIG_SPL_BUILD) && !defined(CONFIG_TPL_BUILD)

#define CONFIG_SPL_INIT_MINIMAL

…

#endif /* first SPL */

#if defined(CONFIG_TPL_BUILD) || !defined(CONFIG_SPL_BUILD)

/* currently CONFIG_SPL_LIBGENERIC_SUPPORT */

#define CONFIG_LIBGENERIC

…

#endif /* TPL and main UBoot */

#ifndef CONFIG_SPL_BUILD

#define CONFIG_CMD_NET

…

#endif /* main UBoot */



 

Questions or comments?


