

TPL: SPL loading SPL
(and, SPL as just another U-Boot config)

Scott Wood
Freescale Semiconductor

October 2013

Copyright 2013 Freescale Semiconductor, Inc. Redistribution is permitted, provided that modified versions be clearly identified as
such. Freescale and QorIQ are trademarks of Freescale Semiconductor, Inc.

Background: What is SPL?

● Unlike NOR flash, many boot sources are not directly memory mapped.

● On-chip ROM or other mechanism loads a binary into an SRAM.

– This SRAM is often very small, sometimes 4 KiB or less.
– The ROM can't load us into main system RAM yet, since initialization is

too complex and must be handled by U-Boot.
● SPL (Secondary Program Loader) is a small binary, generated from U-Boot

source, that fits in the SRAM and loads the main U-Boot into system RAM.

● Configured by a parallel set of makefile config symbols –
CONFIG_SPL_I2C_SUPPORT, CONFIG_SPL_NAND_SUPPORT, etc.

– Normal CONFIG symbols also used, but not to control the differences
between the SPL and the main U-Boot.

– SPL also relies heavily on toolchain garbage collection.

What can we do in 4 KiB?

● Not much.
– Hardcoded RAM initialization

● Causes problems if a new revision of the board has different
RAM, or if RAM is socketed

● Code to use SPD to dynamically initialize RAM is way too large to
fit.

– Barely fits even then
● Limited output capability (puts rather than printf)
● No exception handling
● Toolchain variations often cause breakage due to size differences

Running from a different SRAM

● Sometimes, there is more than one SRAM on the system,
and the boot ROM loads us into the smaller one.
– In particular, on some Freescale 85xx/QorIQ chips, we get

loaded into a 4 KiB NAND I/O buffer, but L2 cache can be locked
to provide a larger SRAM.

● ...but this time, it's the full U-Boot that needs to fit.
– On Freescale 85xx/QorIQ:

● Sometimes we have 512K, which is usually good.
● Sometimes only 256K, which is not enough.

Tertiary Program Loader

● Tiny SPL loads moderate-size middle layer called TPL.
● TPL

– Implementation by Ying Zhang, in v2013.10

– Originally proposed in patch by Haiying Wang in 2011

– does dynamic initialization of full RAM

– loads the full U-Boot into RAM

– uses existing SPL makefile infrastructure and symbols, with a separate
autoconf.mk

– Is essentially another instance of SPL
● CONFIG_SPL_BUILD set for both TPL and SPL
● CONFIG_TPL_BUILD set for TPL only

TPL configuration
#ifdef CONFIG_TPL_BUILD

#define CONFIG_SPL_NAND_BOOT

#define CONFIG_SPL_FLUSH_IMAGE

#define CONFIG_SPL_ENV_SUPPORT

#define CONFIG_SPL_NAND_INIT

#define CONFIG_SPL_SERIAL_SUPPORT

#define CONFIG_SPL_LIBGENERIC_SUPPORT

#define CONFIG_SPL_LIBCOMMON_SUPPORT

#define CONFIG_SPL_I2C_SUPPORT

#define CONFIG_SPL_NAND_SUPPORT

#define CONFIG_SPL_MPC8XXX_INIT_DDR_SUPPORT

#define CONFIG_SPL_COMMON_INIT_DDR

#define CONFIG_SPL_MAX_SIZE (128 << 10)

#define CONFIG_SPL_TEXT_BASE 0xf8f81000

#define CONFIG_SYS_MPC85XX_NO_RESETVEC

#define CONFIG_SYS_NAND_U_BOOT_SIZE (576 << 10)

#define CONFIG_SYS_NAND_U_BOOT_DST (0x11000000)

#define CONFIG_SYS_NAND_U_BOOT_START (0x11000000)

#define CONFIG_SYS_NAND_U_BOOT_OFFS ((128 + 128) << 10)

#elif defined(CONFIG_SPL_BUILD)

#define CONFIG_SPL_INIT_MINIMAL

#define CONFIG_SPL_SERIAL_SUPPORT

#define CONFIG_SPL_NAND_SUPPORT

#define CONFIG_SPL_FLUSH_IMAGE

#define CONFIG_SPL_TEXT_BASE 0xff800000

#define CONFIG_SPL_MAX_SIZE 4096

#define CONFIG_SYS_NAND_U_BOOT_SIZE (128 << 10)

#define CONFIG_SYS_NAND_U_BOOT_DST 0xf8f80000

#define CONFIG_SYS_NAND_U_BOOT_START 0xf8f80000

#define CONFIG_SYS_NAND_U_BOOT_OFFS (128 << 10)

#endif

Another approach

● If we can use ifdefs in the board config file to differentiate SPL from TPL, why
not to differentiate SPL from the main U-Boot?

● Patch from Joel Fernandes (in v2013.10) provides a separate autoconf.mk
for SPL (which TPL builds on).

● TPL patch using similar concept by Matthew McClintock in 2011

● Would let us get away from having a separate, parallel build config system
just for SPL

● Make config more fine grained in order to maintain ability to meet size
requirements.

● Use kconfig to keep things manageable (we want this anyway).

– This means our usage of kconfig would need to support multiple config
instances.

Example (pre-kconfig)

#define CONFIG_CMD_NAND

…

#ifndef CONFIG_SPL_BUILD

#define CONFIG_CMD_NET

…

#endif /* nonSPL */

Example (pre-kconfig)

#define CONFIG_CMD_NAND

…

#if defined(CONFIG_SPL_BUILD) && !defined(CONFIG_TPL_BUILD)

#define CONFIG_SPL_INIT_MINIMAL

…

#endif /* first SPL */

#if defined(CONFIG_TPL_BUILD) || !defined(CONFIG_SPL_BUILD)

/* currently CONFIG_SPL_LIBGENERIC_SUPPORT */

#define CONFIG_LIBGENERIC

…

#endif /* TPL and main UBoot */

#ifndef CONFIG_SPL_BUILD

#define CONFIG_CMD_NET

…

#endif /* main UBoot */

Questions or comments?

