

# Board Design Guidelines for PCI Express<sup>TM</sup> Architecture

Zale Schoenborn
Co-Chair, PCI Express Electrical WG







- Background
- Layout considerations
- System board requirements
- Add-in card designs
- Signal validations
- Summary



- PCI common clock
  - ✓ Meet setup/hold timing
  - ✓ Multi-drop parallel I/O
- AGP source synchronous
  - ✓ Single strobe, multiple data
  - ✓ Match all data to strobes
- PCI Express serial differential
  - ✓ Embedded clock
  - ✓ Point-to-point, match per data pair only
  - ✓ Longer route, creative device placement





Backgroun



PCI Express pt-to-pt routing is straightforward



- **✓** Diff pairs
- ✓ AC coupled
- ✓ Lane-to-lane de-skew
- ✓ Polarity inversion
- ✓On-chip equalization (de-emphasis)
- ✓On-chip terminations





PCI

SIG





#### **PCI Express Routing**

- Trace length matching between pairs is not required
  - Embedded clock simplifies routing rules
- Longer motherboard traces
  - √12+ inches possible
- TX pairs usually route on top layer
  - AC coupling caps on TX traces on system board

**AC Coupling Caps** 

**PCI Express x16 Connector** 

**Trace Serpentines Not Required** 







#### **Interconnect Budget**

- Loss and jitter are key parameters
- Target impedance not as critical
- Maintain differential pair symmetry
- Manufacturing Probe Point

  BEST CASE (No Layer Transitions)
- Design tradeoffs: loss vs. trace length, etc.

#### Recommended Solution Space:

- System board traces:
  - ✓ Up to 12 inches
- Add-in card traces:
  - ✓ Up to 3.5 inches

#### Chip-to-chip routes:

- System board traces:
  - ✓ Up to 15 inches



Manage loss and jitter to meet budget



#### Stäckup Design

- No new PCB technology required
- Standard 4-layer stackup 0.062" thick PCB
- Microstrip ½ oz Cu plated

-OR-

Stripline 1 oz Cu (6+ layers)



Follow simple layout rules & design tradeoffs



Tx

#### **Trace Geometry & Impedance**

- Wide pair-to-pair spacing ⇒ minimize crosstalk
   ✓ "Close" intra-pair spacing
- Same geometry for interleaved/non-interleaved
- Example impedance targets:
  - ✓ Single-end  $Z_0$  of 60  $Ω \pm 15\%$
  - ✓ Differential Impedance of ~100  $\Omega$  ±20%



Non-interleaved topology example





Stripline



#### FR4 Loss Considerations

- Stackup: FR4 material
  - ✓ Narrow traces ⇒ loss ↑
  - ✓ Copper roughness ⇒ loss ↑
  - ✓ Dielectrics with more resin material⇒ loss ↑
- Non-homogeneous dielectrics
  - ✓ Localized Zo variation due to material weave ⇒ loss ↑
- Wide differential impedance variation on µstrip traces
  - ✓ Etching and plating process ⇒ loss ↑

#### **Glass Material**

#### **Resin Material**



FR4 cross-section



## Trace Length

- Longer trace length ⇒ loss ↑
  - √~0.25 to 0.35 dB inherent loss per inch for FR4 microstrip traces at 1.25GHz
- Manage trace lengths to minimize loss
  - ✓ Example: 12" board, 3.5" add-in card lengths





## Trace Symmetry & Matching

- No matching needed pair-to-pair
- Match each differential pair per segment
  - ✓ Match overall length ≤ 5 mils (recommended)
  - √ Symmetric routing for each pair





#### Bends and Small Serpentines

- Avoid tight bends
  - ✓ No 90° bends; impact to loss and jitter budgets
- Keep angles >= 135° (a)
- Maintain adequate air gap
  - $\checkmark$  A >= 4x the trace width
- Lengths of B, C >= 1.5x the width of the trace









#### Package Pin Field Breakout

- Use side-by-side breakout for package to maintain symmetry
- Avoid tight bends





#### Reference Plane

- Full GND plane reference recommended
- Stitching vias required for layer transition

- Keep clearance from plane voids
- Avoid plane splits
- Avoid trace over anti-pad





Long trace routes





## AC Coupling Caps

- Size: 0402 best, 0603 ok
- No 0805 size or C-packs
- Symmetric placement best



- Cap size: 0.1uF best
- Same sizes for both D+/D-
- Cap location:
  - ✓ Along Tx pairs on system board
  - ✓ Along Tx pairs on add-in card





#### **Test Points & Vias**

- Minimize via usage
  - ✓ Up to 0.25 dB loss per via
  - ✓ Use via pad size ≤ 25 mil, hole size ≤ 14 mil; standard anti-pad size of 35 mil
- Put test points or LAI pads in series (if used)
  - ✓ No stubs
  - ✓ Place symmetrically
  - ✓ Provide GND pads for single-ended probing





#### Reference Clock

- Clocks have no phase relationships
  - ✓ Length matching for clocks is NOT required!
- Deliver diff clock to each device and connector
  - ✓ Use same trace geometries as other diff pairs
- Clock driver requirements:
  - √100MHz with SSC support (e.g. CK410)
  - √ System board (source) termination only
  - ✓ Rise/fall slew rate requirements need to be met





## Connector Layout

- Connector with standard PTH
  - √Connector sizes: x1, x4, x8, x16
  - ✓ Pinout optimized for differential routing & crosstalk reduction
  - √ Polarity inversion allowed
- Loss & crosstalk part of system board budget



Improved PTH connector for PCI Express



- Increased current capability for x16 connector
  - ✓ Additional +12V pin; 1.1 Amp per pin capability
- Helpful grouping of power supply pins
  - Eases power delivery routing
- ATX power supply connector
  - √ 2x12 (recommended)

| Power Rail                                                 | x16 Connector Spec                        |  |
|------------------------------------------------------------|-------------------------------------------|--|
| +3.3V<br>Voltage Tolerance<br>Current                      | ± 9% (max)<br>3.0 A (max)                 |  |
| +12V<br>Voltage Tolerance<br>Current                       | ± 8% (max)<br>5.5A (max)                  |  |
| +3.3Vaux<br>Voltage Tolerance<br>Current: Wake<br>Non-Wake | ± 9% (max)<br>375 mA (max)<br>20 mA (max) |  |

#### Power Consumption

#### PCI Express introduces a spec for 75W cards

- ✓ Available for x16 connectors
- ✓ Allows for performance graphics cards
- √75W can be fully drawn thru x16 connector
- ✓ Note: ≤ 25W at initial power-up (75W after configuration as a high power device)
- Up to 25W allowed for x1,x4,x8 cards

#### <u>Connector Size</u> → <u>Power Consumption Allowance</u>s

|                  | <b>X1</b>               |               | x4/x8      | x16                     |               |
|------------------|-------------------------|---------------|------------|-------------------------|---------------|
| Standard height  | 10 W <sup>1</sup> (max) | 25 W<br>(max) | 25 W (max) | 25 W <sup>1</sup> (max) | 75 W<br>(max) |
| Low profile card | 10 W (max)              |               | 10 W (max) | 25 W (max)              |               |

1. Max at initial power-up only.

#### PCI Express spec support for 75W cards

#### Power Delivery - 75W Support

- Ensure +3.3V & +12V tolerances at add-in card
- Max of 2%~3% MB +12V voltage drop (e.g. 360mV)
  - √Typical power supply = ± 5% drop
  - ✓ Balance trace width vs. length
  - ✓ Example: 100 mils min trace width, = 12" length for +12V with 1oz Cu
- Proper power decoupling
  - ✓ Max current slew rate of 0.1A/µs
  - ✓ Suppress high freq coupling noise
  - ✓ Tune capacitor type/location to board needs

#### Example uATX +12V layout



**2x12 Power Supply Connector** 

### Thermal & Acoustic Management

- Platforms need to deliver cool air to x16 slot
  - ✓ Use side panel vents, ducting
  - √75W card recommendation: ≤ 55°C air temp at graphics. card fan intake
  - ✓ Use larger fans for better acoustics





## Card Edge Fingers

- Remove ref plane under edge finger pads
  - ✓ Better impedance match
- PRSNT1#, PRSNT2# Pins
  - ✓1mm shorter: last-mate, first break Hot-Plug support
  - ✓ Multiple PRSNT2# pins (x4,x8,x16 cards)
  - ✓ Cards must strap PRSNT1#
    with furthest PRSNT2# signal
  - ✓ System board Hot-Plug support optional





## Card Retention

- Card allows for chassis & system board-based retention
  - ✓ Fixed card height & keep outs
  - √ "Hockey-stick" near edge fingers
- PCI-SIG\* design guideline for retention solution
  - √ Clip for system board, card "hockey-stick"
  - √ Supports up to 350g for 75W cards
- OEMs free to innovate independent solutions







**Hockey-Stick Retention Mechanism** 

#### **Card Physical Dimensions**



#### Gfx Thermal & Acoustic

- Limit heat re-circulated thru Gfx card heat sink
  - ✓ Use shroud to separate fan intake and heat sink exhaust
  - ✓ Place fan intake near air source- direct away the exhaust
  - √ Reduce fan noise and low speed chatter
  - ✓ Use diode and/or thermister for fan speed control

cool air source (e.g. from chassis vent)





#### Lab Signal Measurements

- PCI Express devices generate compliance pattern per spec
- Use compliance boards for signal validation
  - Compliance Base Board (CBB) for add-in card measurements
  - Compliance Load Board (CLB) for system board measurements
- Measure eye diagrams with real time scope
  - √ 6+ GHz analog bandwidth
  - ✓ 20+ Gs sampling bandwidth
  - Scope vendor should have eye diagram signal analysis SW tool









#### **Acquiring & Interpreting Results**

- Probe locations
  - √Tx Signals: measure at 50Ω loads
  - Rx Signals: measure at package input pins
- Scope post-processing software
  - ✓ Create transition bit eye
  - √ Create de-emphasized eye
- Determine:
  - ✓ Max jitter
  - ✓ Min eye voltage margin (high/low)
  - ✓ Max AC common mode voltage





Validate eye diagrams using real time scope





- PCI Express point-to-point layout is straightforward
- Manage loss and jitter from PCB to meet interconnect budget
- Follow basic layout rules and design tradeoffs to implement typical topologies
- Improved connector & add-in card features support for 75 Watt cards
- Validate compliance eye diagrams using compliance boards and real time scope





#### Collateral

 For additional and updated information on PCI Express Architecture, visit

http://www.pcisig.com





# Thank you for attending the 2004 PCI-SIG Asia-Pacific Developers Conference.

## For more information please go to <a href="https://www.pcisig.com">www.pcisig.com</a>

# PGL SIG