

June 26, 2007

Hardware Design Considerations for *PCI Express® and SGMII*

AN307

Tiffany Tran-Chandler Senior Hardware Design Engineer

PCI Express[®] – Hardware Interconnect Design

- Abstract
 - Reviews the importance of high-speed serial interfaces to the next generation of system interconnect design. Provides the groundwork for successful PCI Express[®] and Serial Gigabit Media Independent Interface (SGMII) system design, including a focus on the careful attention to PCB design and interconnect that these systems demand.

PCI Express® – Hardware Interconnect Design

► Agenda

- PCI Express[®] Electrical Architecture Overview
- PCI Express Electrical Fundamentals
 - Loss
 - Jitter
- Interconnect Design
 - Practical PCB Design Recommendations
 - Loss and Jitter Mitigation
 - Simulation
- System Interconnect Example
- Brief introduction to PCI Express 2.0
- SGMII fundamentals and comparison

PCI SIG - Several Specs define requirements

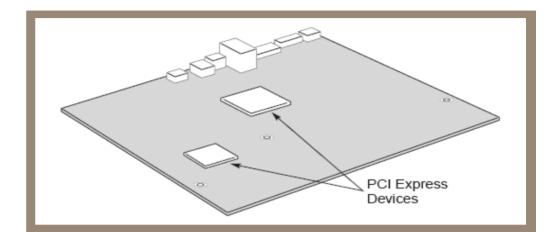
- PCI Express[®] Base Specification 1.1 and 2.0
- Companion Specifications
 - PCI Express Card Electromechanical Specification 1.1 and 2.0 (still unreleased)
 - Addresses Add-in cards for ATX-based desktop applications
 - PCI Express Mini Card Electromechanical Specification Revision 1.1
 - Addresses small card form factor for mobile and communications systems
 - PCI Express ExpressModule[™] Electromechanical Specification Revision 1.0
 - Latest addition defines removable modular I/O adapters for closed chassis servers and workstations
 - PCI Express External Cabling Specification 1.0 (Feb 07)

www.pcisig.com/specifications/pciexpress

PCI SIG – Several Specs define requirements

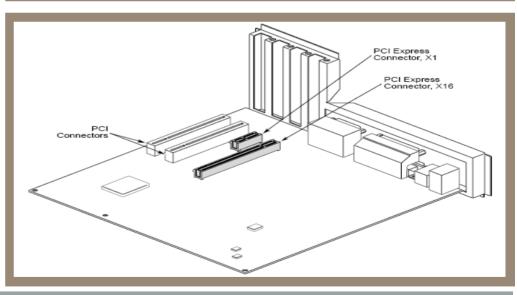
- PCI Express[®] Base Specification Revision 1.1
- Companion Specifications
 - PCI Express[®] Card Electromechanical Specification Revision 1.1
 - Addresses Add-in cards for ATX-based desktop applications
 - PCI Express[®] Mini Card Electromechanical Specification Revision 1.1
 - Addresses small card form factor for mobile and communications systems
 - PCI Express[®] ExpressModule[™] Electromechanical Specification Revision 1.0
 - Latest addition defines removable modular I/O adapters for closed chassis servers and workstations (previously referred to as "Server I/O Module" or "SIOM" spec)

http://www.pcisig.com/specifications/pciexpress


► *PCI Express*[®] Electrical Interconnect Design Resources

- "Checklists" aid electrical interconnect design
 - Motherboard Compliance Checklist
 - Expansion Card Compliance Checklist
- PCI Express[®] System Architecture, Ravi Budruk, et.al.
- High-Speed Digital Design and High Speed Signal Propagation, Howard Johnson, et.al.
- Xilinx / Howard Johnson Signal Integrity DVD at

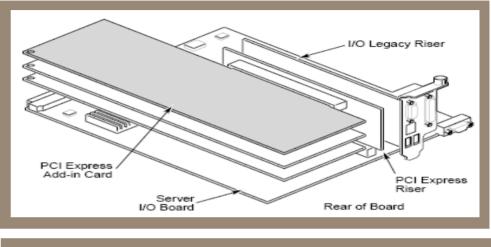
www.xilinx.com/products/design_resources/signal_integrity/resource/hojo_dvd.htm

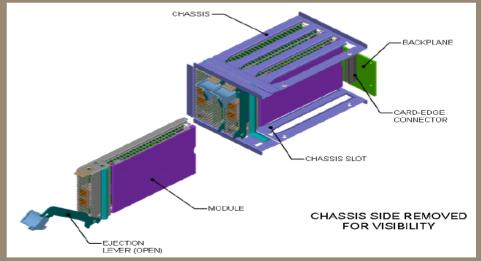

PCI Express[®] – Interconnect Topologies

One device on system board, second device on add-in card with a connector in between

Two devices on a single

system board

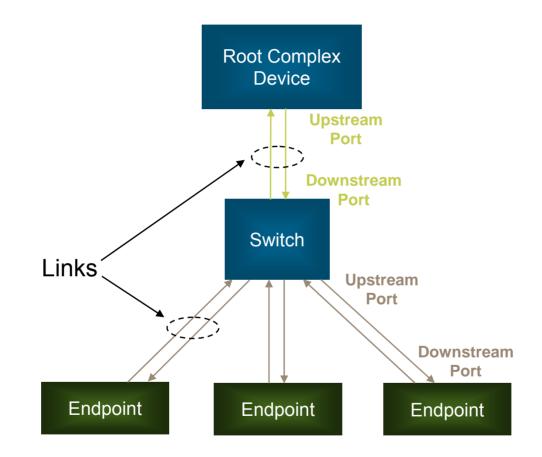




PCI Express[®] – Interconnect Topologies

One device on system board, second device on add-in card with a riser card and two connectors in between

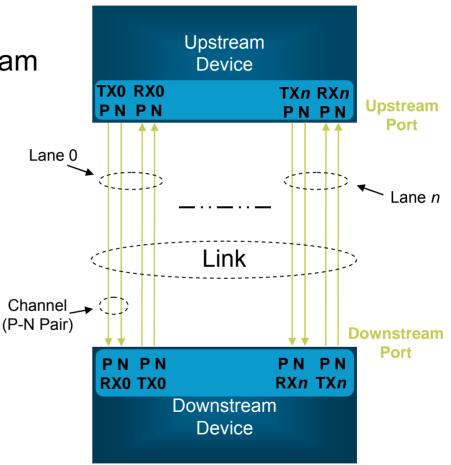
► Two ExpressModules – each with a device. The ExpressModules[™] plug into a small, compact chassis backplane



► PCI Express[®] Key Electrical Features

- High speed signaling extension to PCI and PCI-X
 - 1.x: 2.5 Gb/s raw bit rate per lane (diff pair) / per direction
 - 2.0: 5.0 Gb/s raw bit rate per lane (diff pair) / per direction
- Serial Interface on a dual simplex bus
- Point-to-point connections
- Differential (LVDS), AC coupled signaling
- · Terminations built into devices
- Embedded clock in data stream (8b/10b Encoding)
- In-band sidebands (interrupts, resets ...)

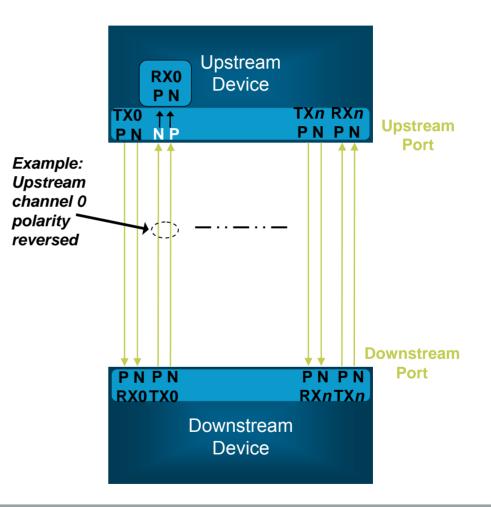
PCI Express[®] – System Topology



PCI Express[®] – Link Topology

Number of Lanes in a Link can be x1 x2 x4 x8 x12 x16 or x32 Each Lane consists of an upstream and downstream channel Each Channel consists of one

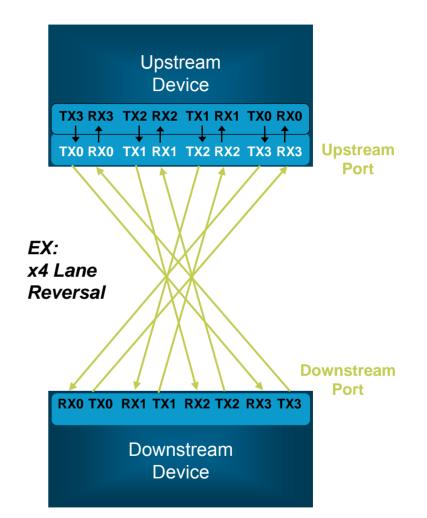
differential pair of signals



PCI Express® – Link Connectivity Variations

Polarity Inversion

- Any channel can be connected with the positive and negative signals reversed
- Training sequence detects
 polarity inversion condition
- RX port is **required** to invert its signal polarity
- Eases routing if differential signals are normally bow-tied
- Reduces vias

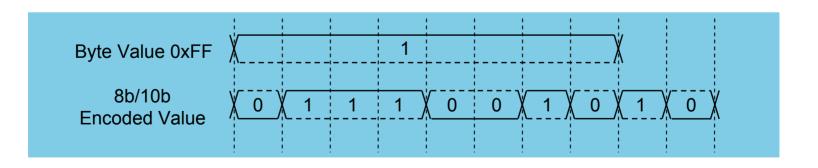


PCI Express® – Link Connectivity Variations

► Lane Reversal

- Either <u>all</u> lanes or <u>no</u> lanes in a link are reversed – no subset of reordering allowed
- Training sequence detects lane
 reversal condition
- Either device may change the lane ordering
- Eases routing, reduces vias, if lanes are naturally bow-tied
- **Optional feature** (may not be supported in some devices!)

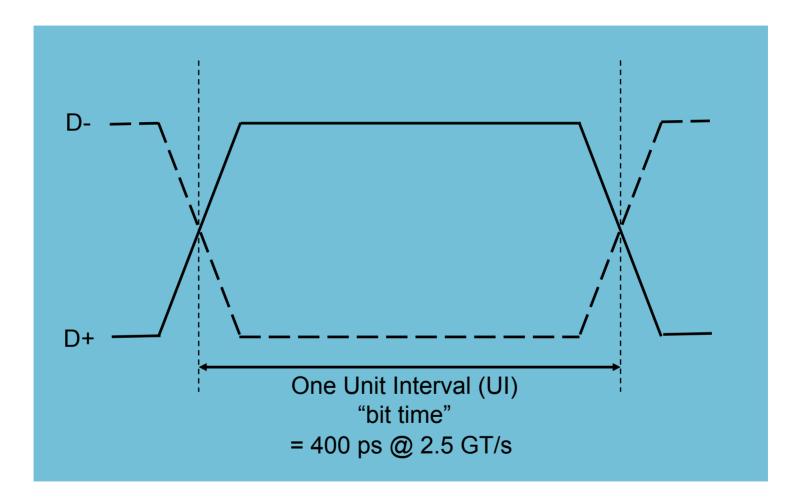
PCI Express[®] – Signaling


Differential Signaling

- Lower Crosstalk
- Improved EMI
- Matched signal return path
- $Z_{diff} = 100 \text{ ohms } +/- 20\%$, $Z_0 = 60 \text{ ohms } +/- 15\%$ recommended
- ► AC Coupled Differential Pairs
 - Isolates DC voltage component from TX device to RX device
 - Allows different reference planes at each device on a link
 - Used to employ link receiver detection during link initialization
 - Hot insertion protection
 - 75nF 200nF, placed near device transmitter outputs
- Terminations on-die to 100 ohms differential

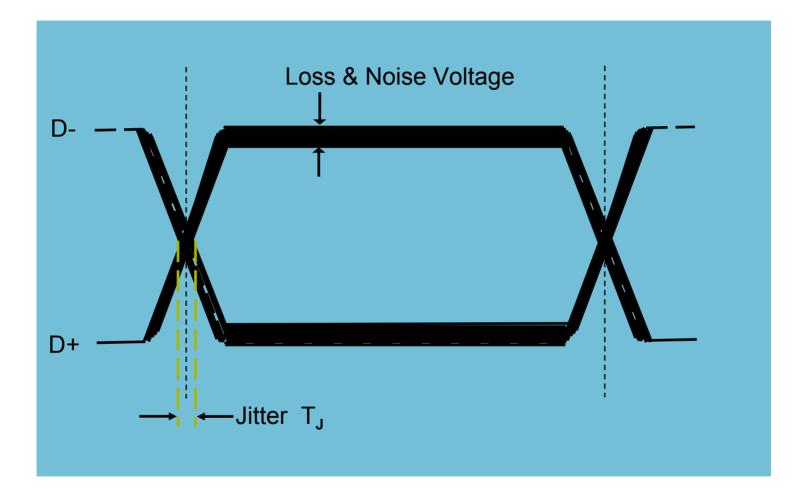
PCI Express[®] – Signaling

- Data scrambling (optional)
 - · Limits repeated occurrences of specific data patterns
 - Significantly improves EMI radiation
- ► 8b/10b data encoding (required)
 - No more than five bits in a row are transmitted at the same state limits "dead time" and allows AC coupling scheme
 - Frequency range is bounded from 250 MHz to 1.25 GHz
 - Guarantees clock recovery from transitioning data

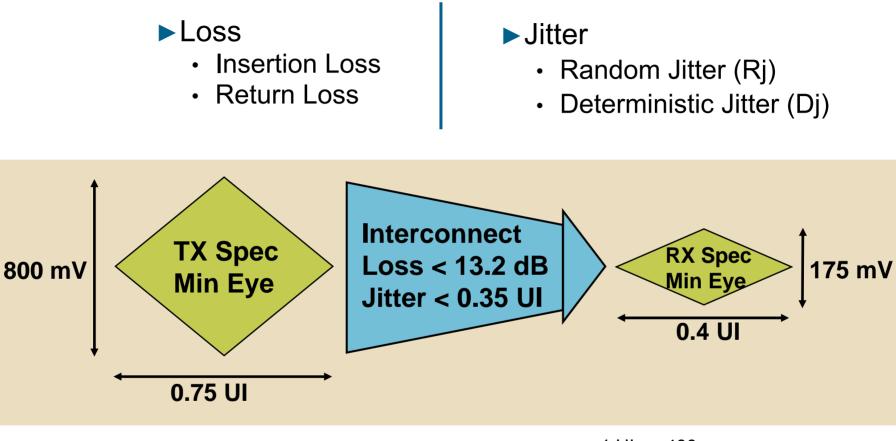


PCI Express[®] – Clocking

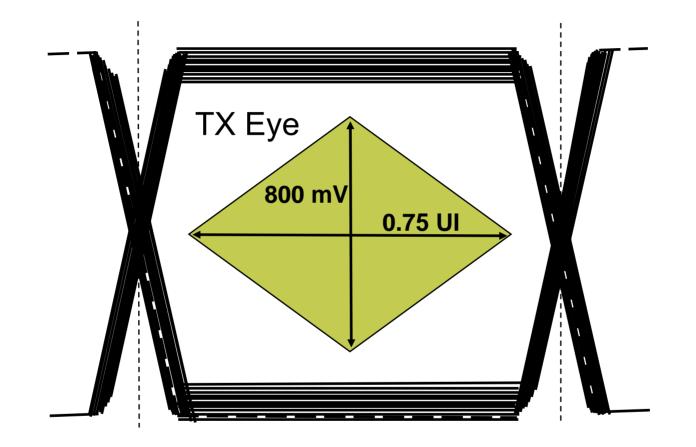
- TX/RX Clock is embedded in data
 - Clock is reconstructed from data signal
 - Removes skew relationships between a separate clock and data path
- Reference clock
 - Provided by system to each device on a link
 - HCSL(High Speed Current Sensing Logic) (0mV to 700mV level)
 - Static Reference Clock
 - 100 MHz +/- 300 ppm
 - Spread Spectrum Clocking (SSC)
 - 100 MHz +/- 300 ppm with modulation frequency of 30 to 33 kHz, down spread 0% to -0.5%
 - Both ports must adhere to +/- 300 ppm requirement, so SSC usually requires the clock for both devices on a link come from same SSC clock source



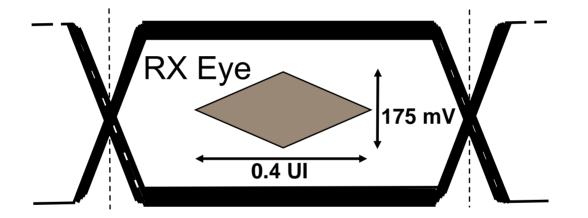
PCI Express[®] – SERDES Data Eye



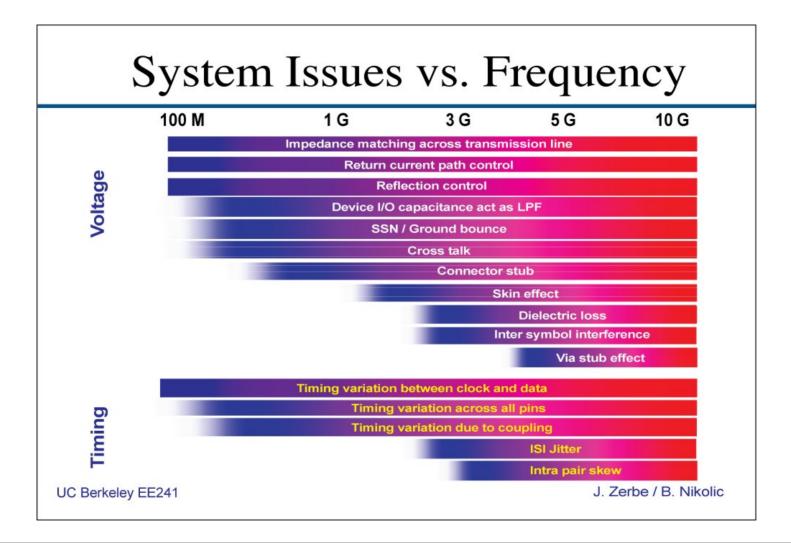
PCI Express® – SERDES Data Eye


PCI Express® – Key Electrical Parameters

•1 UI = 400 ps•TX Eye shown without de-emphasis

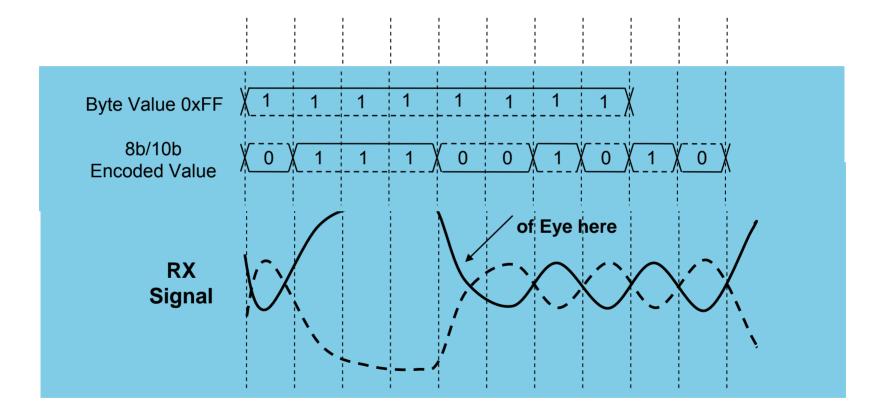

PCI Express[®] – SERDES Data Eye

Eye Diagram at the Transmitter

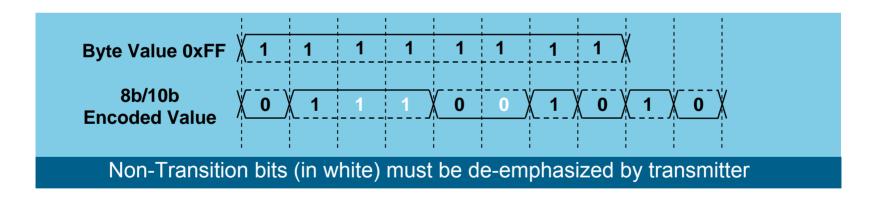


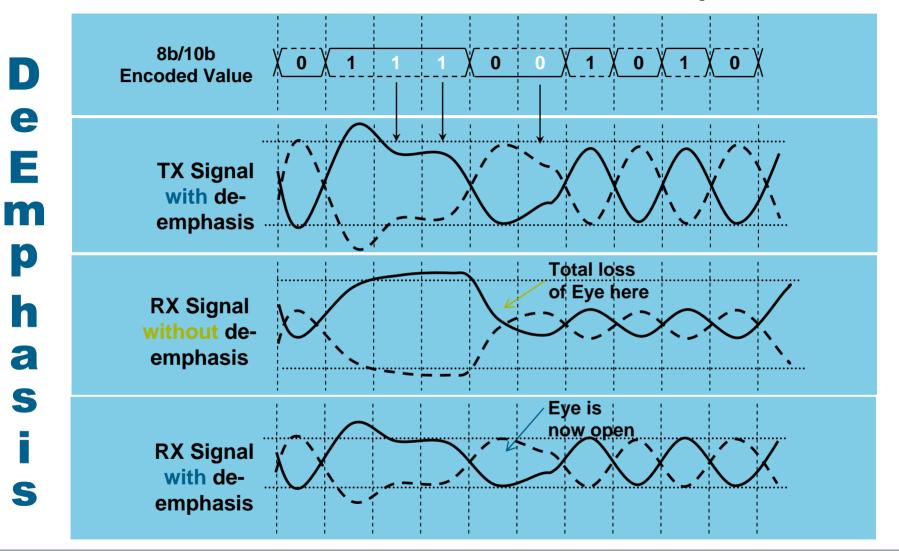
PCI Express[®] – SERDES Data Eye


Eye Diagram at the Receiver



- ► ISI (Inter-Symbol Interference)
 - The signal degradation effect on a signal state, called a symbol, from *previous* data signal transitions


Signal transitions start at different voltage levels depending on their previous signal state



De-emphasis

- An attenuation of the voltage level at the transmitter of all consecutive bits of the same signal state except the first
- Non-transition bits are de-emphasized by the transmitter (required by spec)
- The cure for ISI

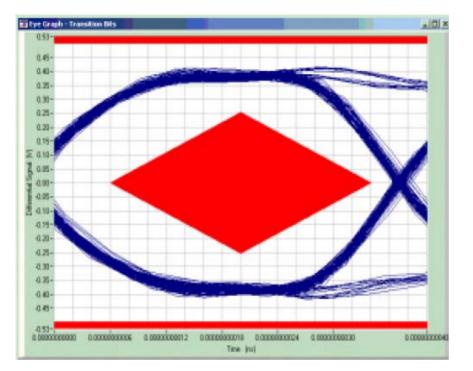
Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2008.

D

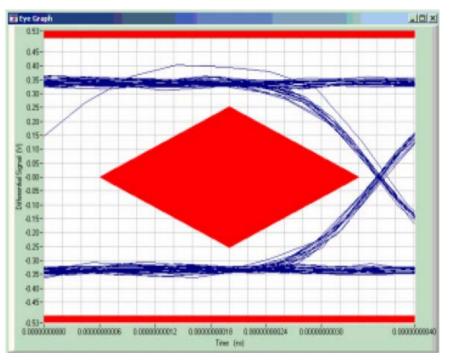
e

Ε

p


h

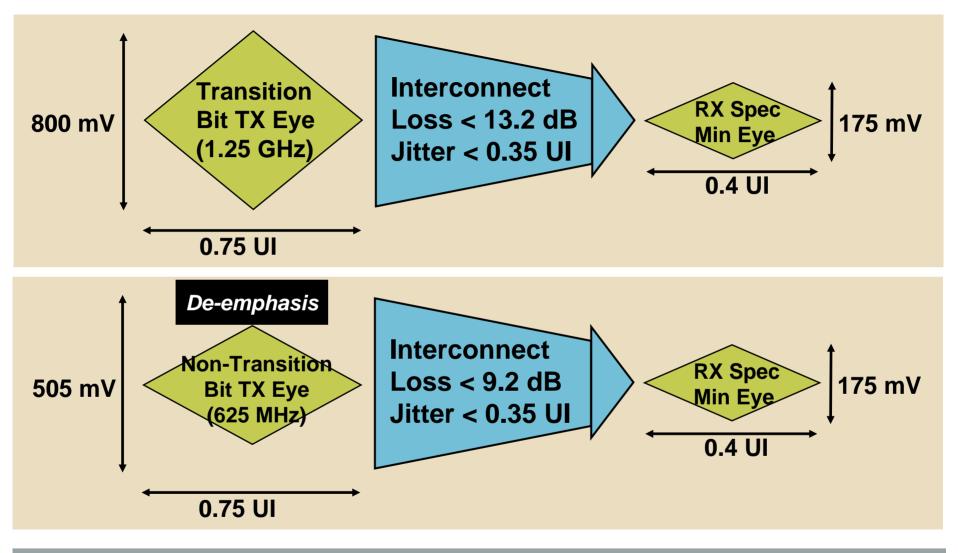
a


S

S

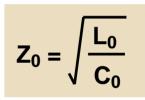
PCI Express[®] – SERDES Data Eye

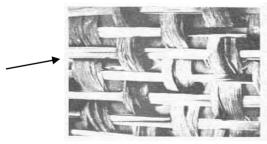
Transition Bit Eye Diagram at the Transmitter



Non-Transition Bit Eye Diagram at the Transmitter (with De-Emphasis)

PCI Express[®] Design and Interoperability Considerations Ajay Bhatt 2003


PCI Express® – Key Electrical Parameters



Insertion Loss

- Signal amplitude attenuation in the forward signal direction (from TX to RX)
- Contributors to loss
 - KEY \rightarrow consistent L₀/C₀ along the path
 - Package
 - PCB traces and vias
 - AC coupling caps (parasitics)
 - Connectors
 - PCB dielectric variations (FR4 fabric weave)
 - Data Pattern (Intersymbol Interference)

Ideal (lossless) transmission line

Insertion Loss

- Conservative estimates (standard FR4)
 - PCB traces → 0.25 0.35 db/inch at 1.25 GHz
 - Standard FR4 Vias (T < 150 mils) Vias → 0.25 db each
 - Backplane Vias (T > 150 mils) → 0.5 db each
 - Connectors (CEM Spec only allows 1db loss up to 1.25 GHz
 - Two types of Loss to consider
 - Skin Effect loss
 - Resistive loss due to the tendency of current to flow near the surface of a conductor at high frequencies
 - Dielectric Loss
 - Loss due to heating effects in the surrounding dielectric materials
 - Loss _{Total} = Loss _{Skin} Effect + Loss_{Dielectic}

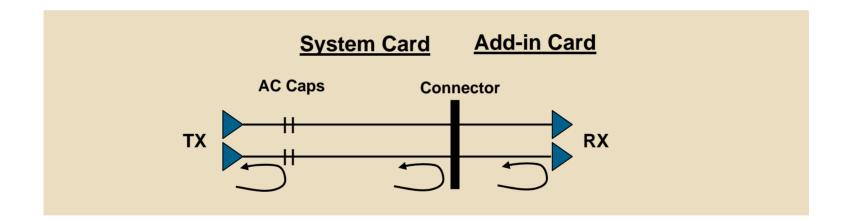
Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2008.

Both are frequency dependent

Skin effect loss

- grows in proportion to the square root of frequency
- grows in proportion to decreasing trace width
- Dielectric loss
 - grows in proportion to the frequency
 - grows in proportion to loss tangent of material
 - grows in proportion to the square root of dielectric constant

t_w = trace width


$$\alpha = 2.3 (f) \tan(\theta) \sqrt{e_r}$$

 $tan(\theta) = loss tangent$ $e_r = dielectric constant$

Loss_{Total} = Loss_{Skin Effect} + Loss_{Dielectric}

- Return Loss
 - Reflected signal amplitude in the reverse direction (in path from RX to TX)
 - Matching Impedance along the path minimizes return loss

PCI Express® – Jitter

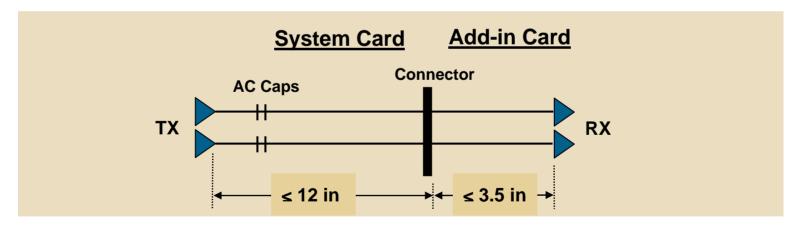
► Jitter

- Random Jitter (Rj)
 - Random noise and thermal effects in silicon
 - Gaussian distribution (unbounded)
- Deterministic Jitter (Dj)
 - Data dependent (ISI)
 - System and transmission line effects
 - ISI
 - Crosstalk
 - Impedance discontinuities
 - Power supply noise
 - Non-Gaussian distribution (bounded)

PCI Express® – Jitter

► Jitter

- Total Jitter (Tj) measured directly from Eye Diagram
- Spec allows Tj of 0.35 UI on the interconnect \rightarrow 140 ps
- Recently released CEM spec breaks out phase jitter budget
- Refer to PCI Express[®] Jitter and BER and PCI Express Jitter Modeling at PCI-SIG website for additional details on jitter definition and budgeting


PCI Express[®] – PCB Design Recommendations

► Use standard FR4

► Z_{diff} = 100 ohms +/- 20%, Z_o = 60 ohms +/- 15%

Routing Length

- System Board → up to 12 inches
- Add-in Card → up to 3.5 inches
- System Board (chip-to-chip) → up to 15.5 inches

PCI Express[®] – PCB Design Recommendations

PCB Trace routing

- Trace thickness
 - → Microstrip (outside signal layers) ½ oz. Copper plated OR -
 - → Stripline (inner signal layers) 1 oz. Copper
- Trace width = 5 mils
- Solid reference plane GND (strongly recommended)
- Close differential intra-pair air gap spacing
 - ➔ Microstrip = 7 mils
 - → Stripline = 5 mils

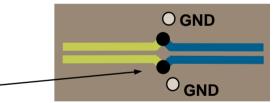
PCI Express[®]– PCB Design Recommendations (cont.)

- Differential pair-to-pair spacing should be > 20 mils → minimizes crosstalk
- · Length Matching between pairs not required
 - → Recommend matching to within 3 nsec to reduce latency
 - → ~20 inches on a microstrip
 - → ~16 inches on a stripline
- Match diff pair (P to N) to within 5 mils

PCI Express[®]– PCB Design Recommendations (cont.)

► PCB Trace routing

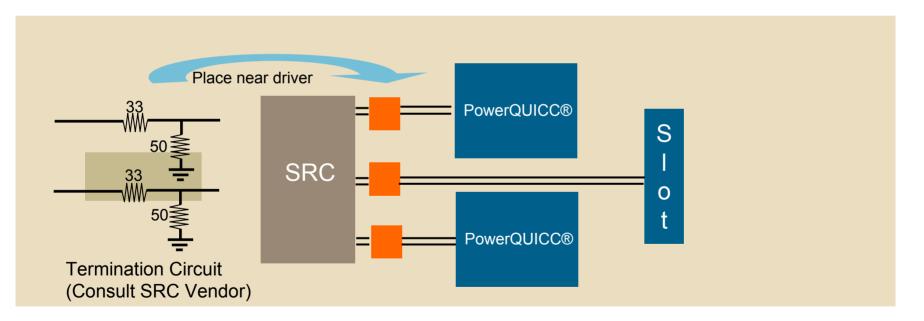
- Maintain symmetry of diff pair routing
 - Placing AC capacitors side-by-side symmetrically will help this
- Side-by-side breakout from package pins
- Serpentine or loop-end route where non-symmetrical breakouts patterns cannot be avoided


PCI Express[®]– PCB Design Recommendations (cont.)

► PCB Trace routing

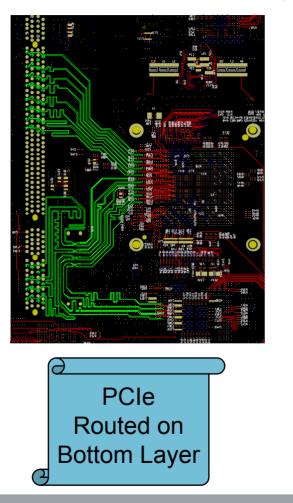
- Bends
 - Avoid tight bends in trace: 45° or less, no 90° bends
 - Match number of left and right bends when possible
- No Stubs!
- Do not route diff pairs over voids in reference plane – includes antipads
- Maximum of 6 vias in entire path
- Stitching vias (to GND) at all diff pair via sites
- Vertical and horizontal routing increases dielectric loss

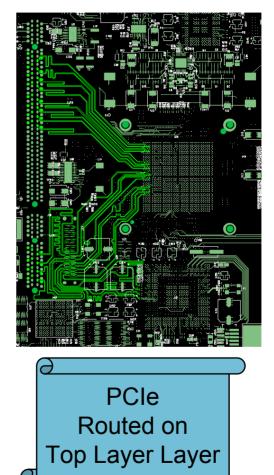
SMTnet SMT Express Vol. 1, Issue 2



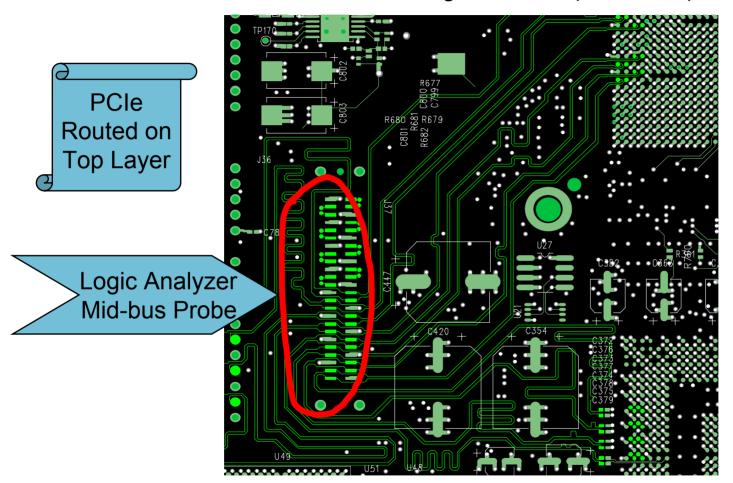
PCI Express[®] – PCB Design Recommendations (cont.)

Reference Clock


- Net lengths do not have to be equal
- May need to filter Reference Clock VDD
- Reference differential pair to solid plane
- Recommend using common clock source if SSC is needed



PCI Express[®] – HPCN EVAL Platform Routing


PCIe Bus Routing for HPCN (MPC8641)

PCI Express[®] – HPCN EVAL Platform routing

PCIe Bus Routing for HPCN (MPC8641)

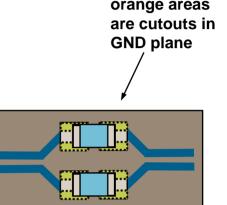
PCI Express[®] – Ways to Mitigate Loss and Jitter

Trace width

- Use wider traces
 - (+) Improves skin effect loss
 - (+) No increase in material cost
 - (-) Uses more routing area
 - (-) Increases PCB thickness to maintain impedance targets
 - Ex: $\frac{1}{2}$ oz. Copper stripline, Zdiff = 100 ohms
 - 5 mil width / 6 mil air gap yields 1 db loss per 10.8 inches
 - 8 mil width / 14 mil air gap yields 1 db loss per 15.0 inches

Vias

- Use blind/buried vias
- Use via-in-pad (+) Smaller via geometry \rightarrow lower parasitics


size scales linearly with frequency

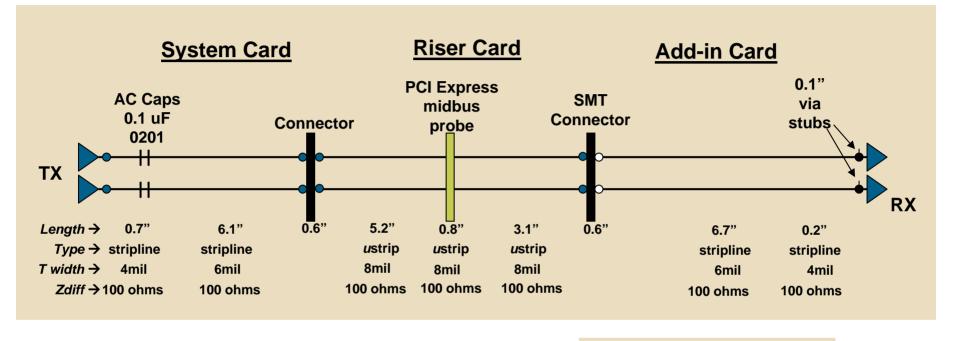
(2x smaller ==> 2x frequency)

PCI Express[®] – Ways to Mitigate Loss and Jitter

► PCB Materials

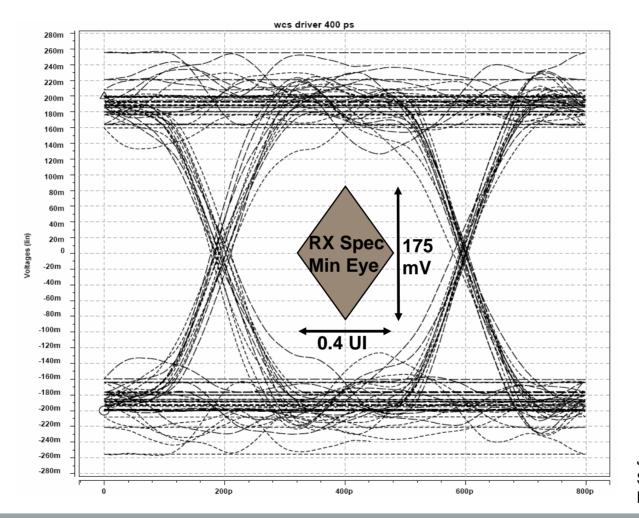
- Use "High-speed" FR4
 - (+) Lower $e_r \rightarrow$ lowers dielectric loss
 - (+) Lower loss tangent \rightarrow lowers dielectric loss
 - Loss tangent can be cut in half with modified FR4 materials
 - (-) can cost 2x to 5x of standard FR4
- Use "smooth" copper
 - (+) Lower dielectric loss
 - (-) Caution! Peel strength is reduced
- AC Coupling Caps
 - Use smaller body style (0402 recommended for most designs)
 (+) 0201 pads reduce parasitic capacitance by 70% over 0402 pads
 - (-) 0201 assembly and rework more challenging
 - Cutout Reference planes underneath capacitor pads

PCI Express® – Simulation


Simulate the design!

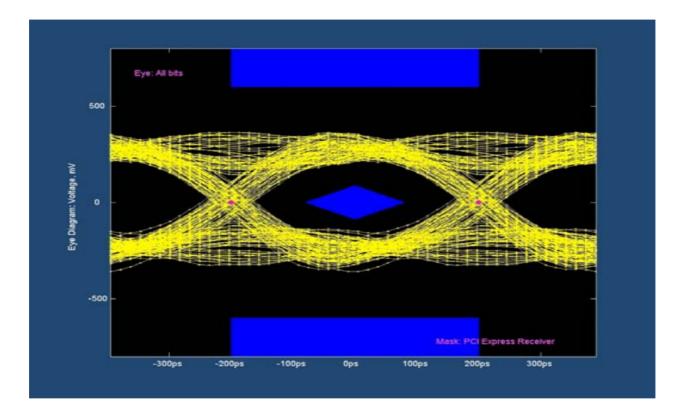
- Preliminary simulation
 - As soon as you know the topology structure (trace length estimate, number of connectors, etc)
 - Goal: Will this topology work?
- Second pass simulation
 - Done when details of the elements are known (using trace lengths and width, actual connector model, AC capacitor geometry, number of vias, etc.)
 - Improves confidence of success

PCI Express® – Simulation Example



Total Length = 24 in. !! Will stubs at RX be ok?

- Thru via (no stub)
- Thru via (0.1 stub)
- Backdrilled via (no stub)


PCI Express[®] – Simulation Example

Jon Burnett Signal Integrity Engineer Freescale Semiconductor

PCI Express[®] – RX Data Eye

RX Data Eye: 24 inch path through two connectors

Next Generation PCI Express® 2.0

► PCI Express[®] 2.0

- Double the Data Rate of PCIe 1.x 5 GT/s
- AC parameters and measurements redefined
 - Jitter budget
 - Insertion loss
- Backwards compatible to PCIe 1.x
- "short reach" <= 20" achievable with 1.x routing guidelines and materials
- "long reach" >20" difficult
 - Requires one or more of the following:
 - Improved PCB materials (not FR4)
 - Backdrilling of via stubs
 - Improved (higher speed) connectors
 - PCI SIG struggling to find inexpensive solution to 31" ATCA backplane solution

PCI Express[®] 1.1 vs 2.0

	PCIe (Gen1)	PCIe2 (Gen2)
Data rate	2.5 GT/s	5.0 GT/s
Unit Interval	400 ps ± 300ppm	200 ps ± 300ppm
TX min voltage	800 mV p-p	800 mV p-p
RX min voltage	175 mV p-p	120 mV p-p
Jitter: Tj @ Receiver	0.6 UI (240 ps)	0.6 UI (120ps)
REFCLK jitter	150 ps (cyc-cyc) 108 ps J _{phase,p-p @ BER=10} -12	150 ps (cyc-cyc) 3.1 ps rms J _{rnd}

SGMII Overview

- Transmit and receive data paths leverage the 1000BASE-SX PCS defined in the IEEE 802.3z specification (clause 36).
- Cisco ownership of Serial-GMII Specification
- ► Half the data rate of PCI Express[®] 1.x -> 1.25 GT/s
- 8-wire, 6-wire and 4-wire interconnect
 - Cisco SGMII spec rev 1.7 only calls out 6-wire and 8-wire interface
 the 4-wire interface is an industry de-facto standard
 - Freescale PowerQUICC® devices to date only implement 4-wire interface
 - 4-wire interface relies on Clock Data Recovery to reconstruct clock from transmitted data.
- 1 Lane only
- No polarity inversion capability in the differential pair
- LVDS Signaling
- No receiver detection circuit hardware required (AC coupling caps).
 - AC caps are optional, but are required if the transmitter common mode (DC) signaling is not compatible with receiving devices input voltage DC window.

SGMII vs PCI Express® (System Design)

	PCle (Gen1)	SGMII
Data rate	2.5 GT/s	1.25 GT/s
Unit Interval	400 ps ± 300ppm	800 ps ± 100ppm*
TX min voltage	800 mV p-p	300 mV p-p
RX min voltage	175 mV p-p	200 mV p-p
Jitter: Tj @ Receiver	0.6 UI (240 ps)	0.375 UI (300ps)
REFCLK jitter	150 ps (cyc-cyc) 108 ps J _{phase,p-p @ BER=10} -12	100 ps (cyc-cyc)

SGMII System Design Guidelines

► PCI Express[®] 1.x and SGMII interconnect are very similar

SGMII is less strict on nearly all spec parameters

- Watch out for stricter frequency tolerance and jitter specs on REFCLK.
- 4-wire SGMII is a defacto standard and has no published interconnect guidelines, therefore...

Use PCI Express 1.x guidelines for interconnect and routing

- Can route even further with SGMII if necessary due to its reduced data rate → simulate first!!!
- Calculate insertion loss budget using device's minimum TX output and minimum RX input voltages.
- Backdrilling and advanced PCB materials likely not needed.
- Eliminate AC coupling caps if I/O voltage signaling levels are compatible between devices.

PCI Express[®] – Hardware Interconnect Design

Summary

- PCI Express[®] offers flexibility in a broad range of architectural topologies
- PCI Express provides significant performance advantages over previous generation busses
- Electrical Interconnect design focuses on the two key performance parameters of loss and jitter
- Well-defined interconnect design guidelines facilitate successful firsttime designs for *PCI Express* as well as SGMII

