CodeWarrior
Development Studio for
Power Architecture™
Processors

Professional /
Linux® Application
Editions

Targeting Manual

frees_calfew

Revised: 12 August 2010~ aamicon ductor

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior is a trademark or reg-
istered trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. PROCESSOR EXPERT
and EMBEDDED BEANS are trademarks of Freescale Semiconductor, Inc. All other product or service names are the
property of their respective owners.

Copyright © 2006-2010 Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.
6501 William Cannon Drive West
Austin, Texas 78735

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

1 Introduction 9
Overview of ThisManual. 9
Related Documentation.oviit it 10

CodeWarrior Information i 10
Embedded Power Architecture API Programming Information. 11
Power Architecture Processor and Board Information................. 12
AltiVec™ Information.ttt 12
CodeWarrior Power Architecture Development Tools 12
CodeWarrior IDE 13
Project Manager 13
Editor. . .. 15
C/C++ Compiler 15
Standalone Assembler. 15
LinKer ..o e e 15
Debugger. . ..o 16
Main Standard Libraries i 16
CodeWarrior Development Process 16
Project Files.o 17
Editing Codeo 17
Compilingot 17
Linking 18
Debugging.ot 18

2 Working with Projects 19
Types Of Projects.ot 19
Creating Projects.t 19

Using the Bare Board New Project Wizard. 20
Using the Linux® New Project Wizard 25
Using the External Build Wizard 30
Using the Empty Project Template 33

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 3

Table of Contents

3 Target Settings Reference 35
Working with Target Settingst 35
What are Target Settings?ttt i 35
Changing Target Settings. oottt 36
Restoring Target Settings. oottt 39
Importing/Exporting Target Settings., 39
Making a Copy of aProject. i 39
General Purpose Target Settings Panels 40
Power Architecture™-specific Target Settings Panels 41
Target Settingsot v e et 44
OSEK SySZen . ..ottt e e 47
EPPC Target.o ov et e e e 52
GNU Target 59
EPPC Assembler 61
GNU Assembler. 62
EPPC ProCessor.ottt et et 63
EPPC Disassembler. i 72
GNU Disassembler i 75
GNU Compiler e 76
EPPCLINKero e 77
EPPC Linker Optimizationsouutitineninnenenenenn... 85
GNU Post LinKer.ot e 88
GNU LInKer. e 89
BatchRunner PreLinker. i 90
BatchRunner Postlinker i 91
GNU Environment.ttt 93
GNU TOOIS. . ot e e e 95
Console I/O Settingscoitii i 97
Debugger Signals. 100
Debugger PIC Settingsouintinti i, 101
EPPC Debugger Settings. oit ittt 102
EPPC EXCePtONS. . o ottt ettt e e e e e e 106
EPPCTrace Buffer i 108
Source Folder Mapping cov it 114

4 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Table of Contents

System Call Service Settings.ciuiininnneen... 116
PC-lint Target Settings Panels. i, 117
PCLint Main Settingsott it 119
PCLINt OPtionsottt ettt e e e 121

4 Working with the Debugger 125
Standard Debugger Features. 125
Working with Remote Connectionscovvuin.... 126
Setting the Watchpoint Type i 143
Attaching to Processest 144
Ways to Initiate a Debug Session, 145
Displaying Register Contentsoiiniuiinenennen... 147
Using the Register Details Window 149
Viewing and Modifying Cache Contents 150
Using CodeWarrior TRK. i 156
Using the Command-Line Debugger 160
Debugging Bare Board Software 161
Tutorial: Debugging a Bare Board Application 162
Setting the Default Breakpoint Template 165
Setting Hardware Breakpoints 166
Accessing Translation Look-aside Buffers. 167
Setting the IMMR Register. 170
Setting the SCRB Register, 170
Sending a Hard Reset Signal. 170
Loading and Saving Memoryt 171
Filling Memory oottt e 171
Saving and Restoring Registers. 171
Virtual Address Translation Support. 171
Debugging ELF Files Created by Other Build Tools 173
Debugging Multiple ELF Files Simultaneously 178
Debugging a Multi-Core Processor., 184
Debugging Multiple Processors Connected in a JTAG Chain 201
Debugging Embedded Linux® Software 205
Tutorial: Debugging an Embedded Linux® Application 206
Debugging the U-Boot Bootstrap Firmware 210

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 5

Table of Contents

5 Working with the Hardware Tools 229
Flash Programmer. i 229
Hardware Diagnostics Tool. i 231
EPPC Trace Buffer Support i 233

A Debugger Limitations and Workarounds 237
PowerQUICC I Processors . ..o vt 237

Working With Watchpoints 237
Working with Hardware Breakpoints 237
PowerQUICC II Processors.o v v it e e e e e 238
Working with Watchpoints 238
Working with Hardware Breakpoints 238
Working with Memory Mapped Registers. 239
PowerQUICC I Pro Processors . ..ottt 239
Debugging interrupt handlers 239
Cache Coherence (€300cl Core Only) ..., 240
Working with Watchpoints i, 240
Working with Hardware Breakpoints 241
Working with Memory Mapped Registers. 241
PowerQUICC IIT Processors oo vi e e e e e e e e e ee e 241
MMU Configuration Through JTAG. 241
Reset Workaround 242
Working with Software Breakpoints 242
Working with Watchpoints 242
Working with Hardware Breakpoints 242
HOSt Processors covu i 242
Working with Breakpoints., 243
Working with Watchpoints 243
Working with Hardware Breakpoints 243
Generic Processors e 243
Working with Uninitialized Stack 243

B Target Initialization Files 245

Using Target Initialization Files 245

6 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Table of Contents

Target Initialization File Commands.
Command SYNtaxovtinin it
Table of Commands.
Access to Named Registers from within Scripts.
CommandReference.
alternatePC

SO e
writemem.b
WIEMEINL W. .« o oot e ettt e et e ettt et et e

WIEBIMGIILT .« . oottt ittt ettt e e
WITEBIIIMIL oottt ettt et e
A48 LTS (7
writeregl28
WIIEESPL « . ottt ettt e e e e e
A48 LTS 110) 10 F:
WIteUPMDo

C Memory Configuration Files

Using Memory Configuration Files
Memory Configuration File Commands.
Command Syntaxiiuitiinenin ..
Table of Commands. oL

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Table of Contents

reservedchar. 266

translate 267

D Using the Dhrystone Benchmark Software 269
Building the Dhrystone Example Project 269

Running the Dhrystone Program. 270

E Using the Linux-hosted Simulators 275
Creating and Configuring a Windows-hosted e500/e600 Simulator Project . .275

Configuring the Linux Machine 277

Debugging the Project. o 278

Index 279

8 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Introduction

This manual explains how to install and use the Professional and Linux® Application
editions of the CodeWarrior™ Development Studio for Power Architecture™ Processors
software development tools.

Use these tools to develop both bare board and embedded Linux software for Power
Architecture processors and boards.

The sections of this chapter are:
* Overview of This Manual
¢ Related Documentation

¢ CodeWarrior Power Architecture Development Tools

¢ CodeWarrior Development Process

Overview of This Manual

Table 1.1 lists and describes each chapter in this manual.

Table 1.1 Chapter Contents

Chapter Description
Introduction (this chapter)
Working with Projects Lists the different types of Linux and bare board projects

you can create and shows how to create bare board and
Linux projects using the EPPC New Project Wizard.

Target Settings Reference Lists each target settings panel in this CodeWarrior
product and defines each setting available on each of
these panels.

Working with the Debugger Lists the remote connections the CodeWarrior debugger
supports and covers Power Architecture-specific
debugger features.

Working with Explains how to use the flash programmer, hardware
the Hardware Tools diagnostics, and EPPC trace buffer tools.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 9

Introduction
Related Documentation

Table 1.1 Chapter Contents (continued)

Chapter Description

Debugger Limitations and Documents processor-family specific debugger
Workarounds limitations and workarounds.

Target Initialization Files Explains how to use a target initialization file to initialize a

board’s memory and registers prior to a debug session.

Memory Configuration Files | Explains how to use a memory configuration file to define
a board’s accessible memory prior to a debug session.

Using the Dhrystone Explains how to use the Dhrystone benchmark software.
Benchmark Software

Using the Linux-hosted Explains how to configure a remote connection to
Simulators communicate over the network with the simulator
running on the Linux machine.

Related Documentation

This section provides information where to find more information about your
CodeWarrior product and about developing software for the Power Architecture™
processors.

¢ CodeWarrior Information

* Embedded Power Architecture API Programming Information

¢ Power Architecture Processor and Board Information

e AltiVec™ Information

CodeWarrior Information

* To view the online help for the CodeWarrior Integrated Development Environment
(IDE), select Help > CodeWarrior IDE from the menu bar.

* For late-breaking information about new features, bug fixes, known problems, and
incompatibilities, read the release notes. They are in this folder:

installDir\Release Notes\
* For example CodeWarrior projects are in this folder:
installDir\ (CodeWarrior_Examples) \PowerPC_EABI\

* For general information about the CodeWarrior IDE and debugger, see the
CodeWarrior™ IDE User’s Guide. This document is in this folder:

10 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Introduction
Related Documentation

installDir\Help\PDF\

¢ For information specific to the C/C++ compiler, inline assembler, standalone
assembler and linker, read the Power Architecture Build Tools Reference. This
document is in this folder:

installDir\Help\PDF\

¢ For information about the Freescale standard C/C++ libraries, read the MSL C
Reference and the MSL C++ Reference. This document is in this folder:

installDir\Help\PDF\

* For information about CodeWarrior TRK, including how to customize CodeWarrior
TRK for a particular target board, read the CodeWarrior TRK Reference. This
document is in this folder:

installDir\Help\PDF\

¢ For information about the recommended jumper and DIP switch settings for the
boards supported by the CodeWarrior for Power Architecture Processors product,
refer to the documentation in this folder:

installDir\PowerPC_EABI_Support\Documentation\

This folder also contains files that explain how to customize the development tools
and list the additional hardware required to allow a board to interact with the tools.

NOTE A project created by the EPPC New Project Wizard includes the
documentation file for the board selected during the wizard process.

Embedded Power Architecture
APl Programming Information

The binaries generated by the CodeWarrior for Power Architecture Processors product
conform to the Power Architecture (formerly, PowerPC) Embedded Application Binary
Interface (EABI).

Power Architecture EABI specification defines data structure alignment, calling
conventions, etc. to which high-level language compilers for Power Architecture chips
must adhere. In addition, the specification defines the object file format (ELF) and
debugging-information format (DWARF) that Power Architecture linkers must generate.

To learn more the Embedded PowerPC EABI, refer to these documents:

o System V Application Binary Interface, Third Edition, published by UNIX System
Laboratories, 1994 (ISBN 0-13-100439-5).

¢ PowerPC Embedded Binary Interface, 32-Bit Implementation, published by
Freescale Semiconductor, Inc., and available at this web address:

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 11

Introduction
CodeWarrior Power Architecture Development Tools

www.freescale.com/files/32bit/doc/app_note/PPCEABI.pdf

» Executable and Linker Format, Version 1.1, published by UNIX System
Laboratories.

* DWARF Debugging Standard website available at:

www.dwarfstd.org

* DWARF Debugging Information Format, Revision: Version 1.1.0, published by
UNIX International, Programming Languages SIG, October 6, 1992 and available at
this web address:

www.nondot.org/sabre/os/files/Executables/dwarf-v1.1.0.pdf

* DWARF Debugging Information Format, Revision: Version 2.0.0, Industry Review
Draft, published by UNIX International, Programming Languages SIG, 7/27/1993.

Power Architecture Processor and Board
Information

¢ For documentation of the processors and boards supported by the CodeWarrior for
Power Architecture Processors product, refer to this web page:

www.freescale.com/powerarchitecture

AltiVec™ Information

To learn more about AltiVec technology, refer to the documents listed below.

o AltiVec Technology Programming Interface Manual. This document is available at
this web address:

www.freescale.com/files/32bit/doc/ref manual/ALTIVECPIM.pdf

e AltiVec Technology Programming Environments Manual. This document is available
at this web address:

www.freescale.com/files/32bit/doc/ref manual/ALTIVECPEM.pdf

CodeWarrior Power Architecture
Development Tools

Programming for Power Architecture processors is much like programming for any other
CodeWarrior platform target. If you have not used the CodeWarrior IDE before, these are
the tools with which you must become familiar:

e CodeWarrior IDE

12

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

http://www.freescale.com/powerarchitecture
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPEM.pdf
http://www.nondot.org/sabre/os/files/Executables/dwarf-v1.1.0.pdf
http://www.nondot.org/sabre/os/files/Executables/dwarf-v1.1.0.pdf
http://www.freescale.com/files/32bit/doc/app_note/PPCEABI.pdf
http://www.nondot.org/sabre/os/files/Executables/dwarf-v1.1.0.pdf
http://www.nondot.org/sabre/os/files/Executables/dwarf-v1.1.0.pdf

Introduction
CodeWarrior Power Architecture Development Tools

¢ Project Manager

* Editor

* C/C++ Compiler

¢ Standalone Assembler
* Linker

¢ Debugger

¢ Main Standard Libraries

If you are an experienced CodeWarrior user, you need to become familiar with the Power
Architecture runtime environment.

CodeWarrior IDE

The CodeWarrior IDE is a program that lets you configure and control a set of software
development tools for the Power Architecture processor family.

The IDE has a graphical user interface (GUI). You use the GUI to control the development
tools included in this CodeWarrior product.

The most important development tools provided by the IDE are the project manager,
editor, compiler, linker, and debugger.

For complete documentation of the CodeWarrior IDE, refer to online help or the
CodeWarrior™ IDE User Guide.

Project Manager

A project is a collection of files and configuration settings that the CodeWarrior IDE uses
to generate a final output file.

The project manager is a window that displays the files and targets your project uses.

Table 1.2 defines several project-related terms.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 13

Introduction
CodeWarrior Power Architecture Development Tools

Table 1.2 Project-related Terms

Term Definition

Host The system on which you run the CodeWarrior IDE to develop
software for one or more platform targets.

Platform target The operating system, simulator, or target board for which you are
writing software. The platform target can be different from the host.

Build target A named collection of settings and files that the IDE uses to build a
final output file.

A build target defines all build-specific information, including:

¢ Information that identifies files that belong to the build
target

e Compiler and linker settings for the build target
¢ Qutput information for the build target

A project can contain multiple build targets. This allows you to define
custom builds for different purposes.

The project manager keeps track of dependencies between files in your project. As a
result, if you change a file and then build your project, the IDE compiles:

* The file you changed
* All files that are dependent on the file you changed

The project manager lets you define one or more build targets for the same project. A
build target is a named set of project settings and files that the IDE uses to build a final
output file.

For example, you could create a build target named Debug. For this target, you might
choose settings that include information needed by the debugger.

Within the same project, you could also create a second build target, named Release. For
this build target, you could exclude all debugging information so the release version of
your program is smaller.

For instructions that explain how to use the CodeWarrior project manager, refer to the
online help or the CodeWarrior™ IDE User Guide.

14 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Introduction
CodeWarrior Power Architecture Development Tools

Editor

The CodeWarrior IDE includes a text editor that includes many features useful to
programmers.

For example, the editor highlights language keywords in the color you choose, interfaces
with your source code control software, and more.

For complete documentation of the CodeWarrior editor, refer to online help or the
CodeWarrior™ IDE User Guide.

C/C++ Compiler

The CodeWarrior Power Architecture C/C++ compiler is an ANSI-compliant compiler. It
compiles C and C++ statements and assembles inline assembly language statements.

You can generate Power Architecture applications and libraries that conform to the
PowerPC EABI by using the CodeWarrior compiler in conjunction with the CodeWarrior
linker for Power Architecture processors.

The IDE manages the execution of the compiler. The IDE invokes the compiler if you:
* Change a source file and issue the make command.

* Select a source file in your project and issue the compile, preprocess, or precompile
command.

For more information about the CodeWarrior Power Architecture C/C++ compiler and its
inline assembler, refer to the Power Architecture Build Tools Reference.

Standalone Assembler

The CodeWarrior Power Architecture assembler is a standalone assembler. The macros it
supports have an easy-to-use syntax.

For more information about the CodeWarrior Power Architecture assembler, see the
Assembler Reference.

Linker

The CodeWarrior Power Architecture linker generates binaries that conform to the
PowerPC EABI (Embedded Application Binary Interface). The linker combines object
modules created by the compiler and/or assembler with modules in static libraries to
produce a binary file in executable and linkable (ELF) format.

Among many powerful features, the linker lets you:
* Use absolute addressing

¢ Create multiple user-defined sections

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 15

Introduction
CodeWarrior Development Process

¢ Generate S-Record files
¢ Generate PIC/PID binaries
The IDE runs the linker each time you build your project.

For more information about the CodeWarrior Power Architecture linker, refer to the
Power Architecture Build Tools Reference.

Debugger

The CodeWarrior Power Architecture debugger controls the execution of your program
and allows you to see what is happening internally as the program runs. You use the
debugger to find problems in your program.

The debugger can execute your program one statement at a time and suspend execution
when control reaches a specified point. When the debugger stops a program, you can view
the chain of function calls, examine and change the values of variables, and inspect the
contents of registers.

For general information about the debugger, including all of its common features and its
visual interface, you should read the CodeWarrior™ IDE User’s Guide.

The Power Architecture debugger debugs software as it is running on the target board. The
debugger communicates with the board through a monitor program (such as CodeWarrior
TRK) or through a hardware probe (such as the CodeWarrior USB TAP).

Main Standard Libraries
The Main Standard Libraries (MSL) are ANSI-compliant C and C++ standard libraries.

Use these libraries to help you create applications for Power Architecture processors. The
Power Architecture versions of the MSL libraries have been customized and the runtime
has been adapted for Power Architecture processor development.

For more information about MSL, see the MSL C Reference and the MSL C++ Reference.

CodeWarrior Development Process

While working with the CodeWarrior IDE, you proceed through the development stages
familiar to all programmers: writing code, compiling and linking, and debugging. See the
CodeWarrior™ IDE User’s Guide for:

¢ Complete information on tasks such as editing, compiling, and linking

* Basic information on debugging

16

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Introduction
CodeWarrior Development Process

The difference between the CodeWarrior environment and traditional command-line
environments is how the software (in this case the IDE) helps you manage your work more
effectively.

If you are unfamiliar with an integrated environment in general, or with the CodeWarrior
IDE in particular, you may find the topics in this section helpful. Each topic explains how
one component of the CodeWarrior tools relates to a traditional command-line
environment.

Project Files

A CodeWarrior IDE project is analogous to a make file. Because a project can have
multiple build targets, the project really is analogous to a collection of make files. For
example, you can have one project that has both a debug version and a release version of
your code. You can build one or the other, or both as you wish. In the CodeWarrior IDE,
the different builds within a single project are called build targets.

The IDE uses the project manager window to list all the files in the project. Among the
kinds of files in a project are source code files and libraries.

You can add or remove files easily. You can assign files to one or more different build
targets within the project, so files common to multiple targets can be managed simply.

The IDE manages all the interdependencies between files automatically and tracks which
files have been changed since the last build. When you rebuild, only those files that have
changed are recompiled.

The IDE also stores the settings for compiler and linker options for each build target. You
can modify these settings using the IDE, or with #pragma statements in your code.

Editing Code

The CodeWarrior IDE has an integral text editor designed for programmers. It handles
text files in MS-DOS/Windows, UNIX, and Mac OS formats.

To edit a source code file, or any other editable file that is in a project, double-click the
filename in the project window to open the file.

The editor window has excellent navigational features that allow you to switch between
related files, locate any particular function, mark any location within a file, or go to a
specific line of code.

Compiling
To compile a source code file, it must be among the files that are part of the current build

target. If it is, select the source code file in the project window and select Project >
Compile from the menu bar.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 17

Introduction
CodeWarrior Development Process

To compile all the files in the current build target that have been modified since they were
last compiled, select Project > Bring Up To Date from the menu bar.

Linking
Select Project > Make from the menu bar to link object code into a final binary file. The

Make command brings the active project up-to-date, then links the resulting object code
into a final output file.

You control the linker through the IDE. There is no need to specify a list of object files.
The project manager tracks all the object files automatically. You can use the project
manager to specify link order as well.

Use the EPPC Target settings panel to set the name of the final output file.

Debugging
Select Project > Debug from the menu bar to debug your project. This command
downloads the current project’s executable to the target board and starts a debug session.

You can now use the debugger to step through the program's code, view and change the
value of variables, set breakpoint. See the CodeWarrior™ IDE User’s Guide and the
Working with the Debugger chapter of this manual for more information about the
debugger.

18 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with Projects

This chapter explains how to use CodeWarrior™ Development Studio for Power
Architecture™ Processors to create projects for boards that contain a Power Architecture
processor.

A CodeWarrior project contains one or more build targets. A build target is a named
collection of files and settings that the build tools use to generate an output file.

The sections of this chapter are:

* Types of Projects
» Creating Projects

Types of Projects

The CodeWarrior IDE can create projects for both bare board and embedded Linux®
development.

For bare board development, the IDE can create projects that generate applications,
libraries, and partially linked (that is, relocatable) binaries.

For Linux, the IDE can create projects that generate applications, shared libraries, static
libraries, and kernel loadable modules.

Creating Projects

This section shows you how to create EPPC projects.
There are four ways:
¢ Using the Bare Board New Project Wizard

¢ Using the Linux® New Project Wizard
¢ Using the External Build Wizard

¢ Using the Empty Project Template

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 19

Working with Projects
Creating Projects

Using the Bare Board New Project Wizard

This section shows you how to use the EPPC New Project wizard to create a project that
generates binaries for execution on a bare board.

Use the EPPC New Project wizard to create a project, if you can accept default target
settings (build options) for your project. Once the project has been created, you can
change any setting the wizard selected.

NOTE The Linux Application Edition of this product does not support bare board
software development.

To use the EPPC New Project Wizard to create a bare board project, follow these steps:

1. From the Windows taskbar, select Start > Programs > Freescale CodeWarrior >
CW for Power Architecture V8.8 > CodeWarrior IDE.

The CodeWarrior IDE starts and displays its main window.
2. From the IDE menu bar, select File > New.

The New dialog box appears. (See Figure 2.1.)

Figure 2.1 New Dialog Box

Froect | File | Object|

8 Empty Project Project name:
Ihello_world

@Extemal Build wizard
Location:

IE' Smy_projects PROYhello_worl — Set

Sddto Froject ——————
Praject:

ok I Cancel |

3. From the Project list box, select EPPC New Project Wizard.

4. In Project name text box, type hello_world.

5. In the Location text box, type the path in which to create this project, or click Set to
use the Create New Project dialog box to find and select this path.

20 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with Projects
Creating Projects

6. Click OK.
The EPPC New Project Wizard starts and displays its Linker page. (See Figure 2.2.)

Figure 2.2 EPPC New Project Wizard — Linker Page

EPPC New Project Wizard - Linker x|

Select the Linker.

I Linkers
EPPC Linux GNU Linker
PowerPC EAB| Linker

< Back I Mest > I Cancel

7. From the Linkers list box, select Freescale PowerPC EABI Linker.

8. Click OK.
The wizard displays its Target page. (See Figure 2.3.)

Figure 2.3 EPPC New Project Wizard — Target Page

EPPC New Project Wizard - Target il

Select processor and board
8o | 85 B3 |82 | B | Tococc| B2 |

Processors ﬂ Boards

PowerPC 8321 8360 MDS (rev1)

PowerPC 8323 8360 MDS (revd)

PowerPC 8343 e300_ISS

PowerPC 8347 Generic

PowerPC 8345

PowerPC 8358

PowerP 0

PowerPC 8379 =

| | B < |]

[~ Present detailed wizard

< Back MNexd > Cancel

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 21

Working with Projects
Creating Projects

9. In the Target page, click the tab for the processor family to which the processor on
your target board belongs.

The wizard displays the processors and boards in the selected family that this
CodeWarrior product supports.

10. From the Processors list box, select the processor on your target board.

In the Boards list box, the wizard displays the boards that contain the selected
processor and which this CodeWarrior product supports.

11. From the Target page’s Boards list box, select the board you are using.
12. Check the Present detailed wizard check box.
13. Click Next.

The wizard displays the Programming Language page. (See Figure 2.4.)

Figure 2.4 EPPC New Project Wizard — Programming Language Page

EPPC New Project Wizard - Programming Language 1[

Select programming language that is to be uzed in this stationery.

Languages

C++

¥ |se size optimized MSL libraries

< Back I Mest = I Cancel |

14. From the Languages list box, select the programming language you want to use.

For example, if you plan to use the C language in your source code files, select C.

NOTE The language you select determines the libraries with which the new project
links and the contents of the main source file. If you select the C++ language,
you can still add C source files to the project (and vice versa).

15. Check the Use size optimized MSL libraries box.
16. Click the Next.
The wizard displays the Floating Point page. (See Figure 2.5.)

22 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with Projects
Creating Projects

Figure 2.5 EPPC New Project Wizard — Floating Point Page

EPPC Mew Project Wizard - Floating Point

Select the floating-point support that iz to be used in this stationeny.

Floating-point Support

Mone

Software

< Back I Mest > I

Cancel |

17. From the Floating-point Support list, select the type of floating-point support your

project requires.
18. Click Next.

The wizard displays the Remote Connection page. (See Figure 2.6.)

Figure 2.6 EPPC New Project Wizard — Remote Connection Page

EPPC New Project Wizard - Remoke Connection

Select one of the connection protocols below.

B
Codeiw/arior Ethernet TAP
Ahatron Serial

Abatron TCPAP

Huostnarne:

< Back I Finigh I

Cancel |

19. From the Available Connections list box, select the remote connection for the
run-control hardware or software debug monitor you plan to use.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

23

Working with Projects
Creating Projects

20. Click Finish.

The wizard creates a project according to your specifications and displays a project
window docked to the left, top, and bottom of the IDE main window. (See Figure 2.7.)

Figure 2.7 Project Window — hello_world.mcp

=l
Build Target hello_world_mcp I
Dropdown Menu
I % Debug Version j B & @ ﬁc -
Debug Wersion
ROM Yergion k
Cache ISR Debug Wersion [Code | Data |Wh|eE |
"] Source] 0+ » =
& F-{ZMSL i] 0. =l
& [#-{_] Senal [UART) i] 0. =l
& [F-{_] Runtime] 0+ « =
-] Linker Command File] 0 =l
{7 Config] 0« =l
#HZ3 Documentation] 0« =l

The generated project includes these build targets:

¢ Debug Version

This build target lets you get started quickly because you can debug the generated
image in RAM. Use this build target until you need interrupt service routines or you
must write your program to the ROM.

ROM Version

This build target generates an image that can be written to ROM. The image includes
exception vectors and is linked in such a way that it will boot from reset and copy the
specified sections from ROM to RAM. Further, the image includes a default interrupt
handler function that can easily be modified to suit your needs. Finally, this build
target generates an S-Record file that standard flash programmers can use to write
the image to ROM where you can debug the image. For more information, see Flash
Programmer topic.

Cache ISR Debug Version

This build target is similar to the Debug Version build target, with the addition of the
exception vectors and interrupt handler included in the ROM Version target. In
addition, the Cache ISR Debug Version build target configures the MMU to use
block address translation and enables the L1 data caches and instruction caches.

That’s it—the new project is ready for use. You can now customize it by adding your own
source code files, changing target settings, adding libraries, etc.

See Tutorial: Debugging a Bare Board Application for instructions that explain how to
make and debug this project.

24

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with Projects
Creating Projects

Using the Linux® New Project Wizard

This section shows you how to use the EPPC New Project wizard to create a project that
generates binaries for execution by the embedded Linux operating system.

Use the Linux New Project wizard to create a project, if you can accept default target
settings (build options) for your project. Once the project has been created, you can
change any setting the wizard selected.

To use the EPPC New Project Wizard to create a Linux project, follow these steps:

1. From the Windows taskbar, select Start > Programs > Freescale CodeWarrior >
CW for Power Architecture V8.8 > CodeWarrior IDE.

The CodeWarrior IDE starts and displays its main window.
2. From the IDE menu bar, select File > New.

The New dialog box appears. (See Figure 2.8.)

Figure 2.8 New Dialog Box
ew x|

Project | Fie | Obiect |

@ Empty Project Project name:
HBIEPPC New Project Wizard [to_word_LINUX
8 Btemal Build Wizard
Location
IC:"-m;.- _projectshello_word_LIN Set...l
Aidd o Project:
Project:

| |

QK I Cancel |

3. From the Project list box, select EPPC New Project Wizard.

4. In the Project Name text box, type hello_world_LINUX.

5. In the Location text box, type the path in which to create this project, or click Set to
use the Create New Project dialog box to find and select this path.

6. Click OK.
The EPPC New Project Wizard starts and displays the Linker page. (See Figure 2.9.)

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 25

Working with Projects
Creating Projects

Figure 2.9 EPPC New Project Wizard — Linker Page

EPPC New Project Wizard - Linker x|

Select the Linker.

I Linkers
EPPC Linux GNU Linker
'ower L EAR] Linker

< Back I Mest > I Cancel

7. From the Linkers list box, select EPPC Linux GNU Linker.
8. Click Next.

The wizard displays the Application & Language page. (See Figure 2.10.)

Figure 2.10 EPPC New Project Wizard — Application & Language Page

EPPC New Project Wizard - Programming Language 1[

Select programming language that is to be used in this stationery.

Languages

C++

W Usze size optimized MSL libranies

< Back I Mest > I Cancel

9. From the Applications list box, select the type of application you want to create.

26 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with Projects
Creating Projects

10. From the Languages list box, select the programming language you plan to use.
For example, if you plan to use the C language in your source code files, select C.
NOTE The language you select determines the libraries with which the new project

links and the contents of the main source file. If you select the C++ language,
you can still add C source files to the project (and vice versa).

11. Click Next.
The wizard displays the GCC Toolchains page. (See Figure 2.11.)

Figure 2.11 EPPC New Project Wizard — GCC Toolchains Page

EPPC New Project Wizard - GCC Toolchains x|

Select the GCC Toolchain that iz to be uzed in thiz statiohen.

Avwailable GCC Toolchains

< Back I Mest = I Cancel |

12. From the Available GCC Toolchains list box, select the GCC toolchain for the new
project to use.

13. Click Next.
The wizard displays the Target page. (See Figure 2.12.)

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 27

Working with Projects
Creating Projects

Figure 2.12 EPPC New Project Wizard — Target Page

EPPC Mew Project Wizard - Targek

LChooze processor type

Processors

S

B3 Soft Floating Point
B3 Hard Floating Point
B5ux

Tdun

FurdG enernic

< Back I Mest > I Cancel |

14. From the Processors list box, select the processor family to which the processor on
your target board belongs.

15. Click Next.
The wizard displays the Remote Connection page. (See Figure 2.13.)

Figure 2.13 EPPC New Project Wizard — Remote Connection Page

EPPC New Project Wizard - Remote Connection 1[

Select one of the connection protocols below.

Hostname: |10.82.138.41:1000

< Back I Mest = I Cancel

16. From the Available Connections list box, select EPPC Linux CodeWarriorTRK.

The Hostname text box activates.

28 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with Projects
Creating Projects

17. In the Hostname text box, type the IP address assigned to your target board, followed
by a colon, followed by the port number on which (running on the board) will listen
for CodeWarrior debugger connections.

For example, you would enter this: 10.82.191.3:1000

if the IP address of your board is 10.82.191.3 and will listen on port 21000 for
debugger connections.

18. Click Next.

The wizard displays the Location page. (See Figure 2.14.)

Figure 2.14 EPPC New Project Wizard — Location Page

EPPC New Project Wizard - Location 1[

Download location on Linus target
The uger should have write permizzions in this target directony:

< Back I Finish I Cancel |

19. In the text box, type the path of the desired download location on the target board.
20. Click Finish.

The wizard creates a project according to your specifications and displays a project
window docked to the left, top, and bottom of the IDE’s main window.
(See Figure 2.15.)

Figure 2.15 Project Window for the hello_world_Linux Project

1=l
Build Target

Dropdown Menu hello_world_LINUX.mcp I

.Lﬂ Application Debug j B @ @ - ‘

ation Debug
¥ | Fie [Code | Dala |4 |
(23 Documentation a 0 =
% EHEH Source 0 0« =
¢ [T o 0e =

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 29

Working with Projects
Creating Projects

That’s it—the new project is ready for use. You can now customize it by adding your own
source code files, changing target settings, adding libraries, etc.

See Tutorial: Debugging an Embedded Linux® Application for instructions that explain
how to make and debug this project.

Using the External Build Wizard

The External Build Wizard creates a CodeWarrior project that lets the CodeWarrior IDE
manipulate an external project built by an external make system.

Create a project with the External Build Wizard if you have an existing project that is built
by an external make system and would like to use some of the CodeWarrior IDE’s
powerful features (such as the debugger) with this project.

NOTE The External Build Wizard does not “import” the information within an
external make file; instead, the wizard creates a CodeWarrior project that
invokes the specified external make utility on the specified make file.

To use the External Build Wizard, follow these steps:
1. Start the CodeWarrior IDE.
2. From the IDE’s menu bar, select File > New.

The New dialog box appears. (See Figure 2.16.)

Figure 2.16 New Dialog Box

Froject | File | Object|

i Ernpty Project Project name:
@ EPPC Mew Project Wizard Iext,makelile

Location:

IC:\my_proiects\ext_makehle Set...

Add Targets to Project:
Project:
| I

ok I Cancel

30

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with Projects
Creating Projects

Select External Build Wizard.
4. In the Project Name text box, type ext_makefile.

In the Location text box, type the location where you want to save this project, or click
Set to use a standard file dialog box to select a location.

6. Click OK.
The External Build Wizard starts and displays its first page. (See Figure 2.17.)

Figure 2.17 External Build Wizard — Page 1 of 2

External Build Wizard - page 1 of 2 x|

Thiz wizard allows you to uge Codetw arrior to build and debug a project that uses a command-ine-based build
system such as most make systems.

The wizard creates a Code'w ariar praject withaut imparting the esternal command-line-based project. It instead
aszociates the Codew arrior target with a command line, which iz executed when the Build command is invoked

If an executable file is specified it can be debugged from within the Code\warriar IDE

“r'ou can add the files that your external project uses to the Code'w arior project. This allows you to work. from within
the IDE and make use of advanced services such as code completion.

Einish Cancel

7. Read the information on the first wizard page.
8. Click Next.
The External Build Wizard displays its second page. (See Figure 2.18.)

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 31

Working with Projects
Creating Projects

Figure 2.18 External Build Wizard — Page 2 of 2

External Build Wizard - page 2 of 2 il
r— Building
Build command: Imake - hello_world.mk Debug"

For example: “make -f Test.mk Debug”

Build directary: I{Pr0|ect} Choose... |

— Debugging

Output file name: Ihello_world.elf

Output directony: I{F‘roiect} Choose... |

“Y'au can specify the autput file and directary after the project has been created in the
"Target Settings” and "'E sternal Build" preference panels.

Debug platform: Embedded PPC

< Back | Hewt = | Finizh I Cancel |

9. In the Build command text box, type the command-line string you enter at the
command prompt to build the project.

For example, if your project uses the Cygwin make utility, you might enter this:
make -f hello_world.mk Debug

10. In the Build directory text box, type the path in which the make file (entered in the
previous step) resides.

Alternatively, click Browse to select the build directory path using the Browse for
Folder dialog box.

TIP You can use any of the built-in CodeWarrior symbolic paths (such as
{Project}) for the Build directory path.

11. In the Output file name text box, type the root file name of the executable that the
CodeWarrior project (not the make file) will generate.

NOTE This file name does not have to match the name of the file generated by the
external make file.

12. In the Output directory text box, type the path to which you want the new CodeWarrior
project to write the output file specified in the previous step.

Alternatively, click Browse to select the output directory using the Browse for Folder
dialog box.

32 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with Projects
Creating Projects

TIP You can use any of the built-in CodeWarrior symbolic paths (such as
{Project}) for the Output directory path.

13. From the Debug platform dropdown menu, select Embedded PPC.
14. Click Finish.

15. The wizard displays its Summary page.

16. Click Generate.

The External Build Wizard creates a CodeWarrior project consisting of a single build
target that executes the specified Build command line each time you invoke one of the
IDE’s build commands (for example, Make and Debug).

That’s it. You have created a CodeWarrior project that builds a binary using an external
make utility.

Now, you should add the source files referenced by the external make file to the new
CodeWarrior project. Doing so lets you take advantage of more IDE features, such as code
completion.

To learn more about the External Build Wizard, see the CodeWarrior™ IDE User’s Guide
This document is in this folder:

installDir\Help\PDF\

Using the Empty Project Template

Finally, you can create a project “by-hand.” To do this, choose Empty Project from the
EPPC New Project Wizard. The result is a project that contains no files and only the most
obvious target settings choices.

Create an empty project if you want control over everything. See the Code Warrior™ IDE
User’s Guide and the Target Settings Reference chapter of this manual for the information
you will need to choose the target settings your new project requires.

To make the empty project approach easier, your CodeWarrior product includes template
source code files for each supported board. To get started faster, you can add the files from
the appropriate template directory to your empty project.

The EABI template source code files are here:
installDir\Templates\PowerPC_EABI\Sources

Beneath the Sources directory, there is one directory for each supported board.

NOTE Some template source files are stubs; you must replace them with full
implementations of your own.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 33

Working with Projects
Creating Projects

34 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

3

Target Settings Reference

This chapter documents the target settings panels that are specific to the CodeWarrior™
Development Studio for Power Architecture™ Processors product. Use these panels to
control the behavior of the compiler, linker, debugger, and other software development
tools included in this CodeWarrior product.

NOTE For documentation of the target settings panels common to all CodeWarrior
products, refer to the IDE User’s Guide and the Power Architecture™ Build
Tools Reference.

The sections of this chapter are:

* Working with Target Settings

* General Purpose Target Settings Panels

* Power Architecture™.-specific Target Settings Panels
¢ PC-lint Target Settings Panels

Working with Target Settings

This section explains what target settings are and shows you how to change, restore, and
save a copy of them.

What are Target Settings?

A CodeWarrior project contains one or more build targets. A build target is a named
collection of files and settings that the CodeWarrior IDE uses to generate an output file.

A platform target is an operating system or processor with which the output file generated
by a build target is compatible. For example, a build target might generate an executable
and linkable (ELF) format file that the Linux® operating system can execute. In this
example, Linux is the platform target.

A build target contains all build-specific rarget settings. Target settings define:
¢ The files that belong to a build target.

* The behavior of the compiler, assembler, linker, and other build tools.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 35

Target Settings Reference
Working with Target Settings

The build target feature lets you create different versions of your program for different
purposes. For example, you might have a debug build target. This build target would
include no optimizations so it is easy to debug. You might also have a release build target.
This build target would be heavily optimized so it uses less memory or runs faster.

Figure 3.1 shows how a CodeWarrior project, a platform target, and build targets relate.

Figure 3.1 Relationship between a Project, a Platform Target, and Build Targets

Project

Platform Tarmget

Debug Buid Tamet

[Fer || Fez | =
[Fie3s | [obkotcode]
[settigs | [BrwserDats] Motice that both
— build targets share
File 1 and Fike 2.

Ralease Build Targat

[Fer || Fez | —
[Fie4 | [obkot Code]
[settings | [aptimizations]

Changing Target Settings
If you create a project using the New Project Wizard, the wizard sets the target settings of

each build target in the project to reasonable defaults. That said, you may need to change
some of them.

To change a build target’s target settings, you use the Target Settings window. These
steps show you how:

1. Start the CodeWarrior IDE.
2. Open the project that contains the build target to be modified.

The IDE displays the project in a project window (docked to the left and bottom of the
IDE’s main window).

3. From the build target dropdown menu of the project window, select the build target
that you want to modify. (See Figure 3.2.)

36

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Working with Target Settings

Figure 3.2 Project Window Showing the Selection of a Build Target

=zl

Build Target hote et ncp |
Dropdown Menu I'O Debug Yersion j B & @ 3(.

Deb l
ROM Wersion k
Cache ISR Debug Yersion || Eode| Data |90 4

#{J Source 424 98+ e 3~
#{Z3 MSL 135K 28K - u
#{Z3 Serial (JART) 1K 1« u
F-Z3 Runtime 21K A |
[#{_3 Linker Command File] I =l
[#{_3 Config i] 0 =
#{_7 Documentation il 0 =

4. Press ALT-F7
The Target Settings window appears. (See Figure 3.3.)
NOTE In the sentence above, the word Target is in italics because it is a placeholder

for the name of the current build target. For example, in Figure 3.3, the string
Debug Version appears in place of Target.

The settings you make in the panels of the Target Settings window apply to the
project build target currently selected.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 37

Target Settings Reference
Working with Target Settings

Figure 3.3 Target Settings Window Showing the EPPC Processor Target Settings Panel

9.

Build Target Name EPPC Processor Panel

i mDebug Yersion Settings [t ello_world.mcp] ﬂﬂ'

|E Target Settings Panels § EPPC Processor

= Taiget = 5 a 5 o [~ Make Shings ReadOnly
i truict Ali nment:l ‘o] -
Target Settings ? ’7 I™ | Linker Merges Sting Constants

- Access Paths .

- Buid Extras Function Ahgnmanl.lfi Eyte j ™ Pool Data

- Runtime Settings Processor | 3001 - ™ Linker Merges FP Constants
- File Mappings

- Source Trees Floating Pairk:|H ardware - I Use Cornmon Section

l—_l [Use LMw/ & STHw
rge Soon Vestar Suppatt|one = ™ Inlined &ssembler Is Volatile

=~ Language Settings

« CAC++ Language I Rela Hiw IEEE I Instruction Scheduling

o CACH+ PTED"_?'CESSU' b I Use Fused Mult-dd/Sub B Pl @l

- C/C++Wamings I™ Generate FSEL Instruction F P

-~ EPPL Assembler ™ ssume Ordered Compares I™" Prafier Informatian
= Code Generation e600/Zen Dptiohs

- [Global Dptimizations

aliecons ™| Gererate ISEL Instuction
I” | Generate YRESAVE [nstructions O G s i e

- EPPC Disassembi

S Linker o | |2 e St oves I Translets PP Ao o VLE dsm
Factory Seftings | Fevert | Impart Panel... | Ex=port Panel... |
Ok | Cancel | Apply |

On the left side of the Target Settings window is the Target Settings Panels list. This
list contains the name of each target settings panel available for the current build
target. Your selections for Linker, Pre-linker, and Post-linker in the Target Settings
panel determine the panel names in this list.

In the Target Settings Panels list, click a target settings panel name.
The selected panel appears in the right side of the Target Settings window.

Figure 3.3 shows the EPPC Processor target settings panel on the right side of the
Target Settings window.

Change the settings in the displayed panel as dictated by the build target’s purpose.
Click Apply.

The IDE saves your new settings.

In the Target Settings Panels list, click a different target settings panel name.

The selected panel replaces the EPPC Processor panel.

Again, change the settings in the panel as dictated by the build target’s purpose.

10. Click Apply.

The IDE saves your new settings.

11. Continue this process for each target settings panel until you have made all settings

your build target requires.

38

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Working with Target Settings

12. When you are done making settings, click OK.

The IDE saves your settings and closes the Target Settings window.

Restoring Target Settings

If you change any of a build target’s settings, you can recover the original values.
To restore a build target’s original settings, use one of these methods:

* To restore the previous settings, click the Revert button at the bottom of the Target
Settings window.

* To restore the factory default settings, click the Factory Settings button at the
bottom of the Target Settings window.

Importing/Exporting Target Settings

If you want to save any of a build target’s settings, you can export them and save them.
You can also import a build target’s predefined settings.

To export or import a build target’s settings, use these methods:

* To export a build target’s settings, click the Export Panel button at the bottom of the
Target Settings window.

* To import the predefined target settings, click the Import Panel button at the bottom
of the Target Settings window.

Making a Copy of a Project

Once you have made the required settings for each build target of a project, you might
want to make a copy of the project before changing it any further. Doing so lets you create
a project template that you and others can use as a starting point for new projects.

To create a project template, follow these steps:
1. Create a project.
2. For each build target in the project, change the target settings as desired.
3. Select File > Save a Copy As.
The Save a copy of project as dialog box appears.

4. Use this dialog box to save a copy of the current project on your hard disk or on a
network disk (if you want others to be able to use the project template).

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 39

Target Settings Reference
General Purpose Target Settings Panels

General Purpose Target Settings Panels

Some target settings panels are needed for all development done with a CodeWarrior
product, no matter what the product. Other panels are specific to the CodeWarrior for
Power Architectures product.

Table 3.1 lists each target settings panel that is not Power Architecture-specific and
identifies the manual that documents the panel.

Table 3.1 General Purpose Target Settings Panels

Target
Settings Panel

Description

CodeWarrior™ IDE User’s Guide

Access Paths

Use this panel to define the list of directories that the build tools
search for files, such as include files.

Build Extras

Use this panel to select options that affect the performance of the
software development tools.

In addition, use this panel to set up a third-party debugger.

Runtime Settings

Use this panel to supply information, such as command-line
arguments, that your program needs when run under control of the
CodeWarrior debugger.

File Mappings

Use this panel to associate a file extension with a tool designed to
manipulate files that have that extension.

Source Trees

Use this panel to define aliases for paths that change from one
developer’s workstation to another’s.

Using source trees makes it easier to share a project.

External Build

Use this panel to configure a build target to use an external make
file to build the target’s output file.

Global
Optimizations

Use this panel to define the optimizations the compiler performs.

Custom Keywords

Use this panel to define up to four sets of custom keywords along
with the color the editor uses for each.

Other
Executables

Use this panel to define the list of other projects and executable
files for the debugger to use in addition to the executable
generated by the current build target.

40

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Table 3.1 General Purpose Target Settings Panels (continued)

Target

Settings Panel | Description

Debugger Use this panel to configure the general (that is, not EPPC-specific)

Settings behavior of the debugger.

Remote Use this panel to select and configure the connection that the

Debugging CodeWarrior debugger uses to communicate with the target board
or simulator.

For multi-core debugging, use this panel to specify the index of the
core to which the debugger should download the executable
generated by the current build target.

Power Architecture™ Build Tools Reference

C/C++ Language Use this panel to control how the compiler handles certain C/C++
language features as well as certain object code storage features.

C/C++ Use this panel to control the operation of the CodeWarrior
Preprocessor compiler’s preprocessor.

C/C++ Use this panel to control the warning messages the CodeWarrior
Warnings C/C++ compiler issues.

Power Architecture™-specific Target
Settings Panels

This section explains the purpose and effect of each setting in the target settings panels
that are specific to the CodeWarrior for Power Architecture Processors product.

Table 3.2 lists and briefly describes each Power Architecture-specific target settings
panels. In addition the table shows which panels are available when you select a particular
linker, pre-linker, or post-linker.

Table 3.2 Power Architecture™-Specific Target Settings Panels

Target Settings Panel | Description

All Linkers

Target Settings Use this panel to define the name of the current build
target, and the linker, pre-linker, post-linker, and output
directory this build target uses.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 4

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Table 3.2 Power Architecture™-Specific Target Settings Panels (continued)

Target Settings Panel | Description

Debugger PIC Settings Use this panel to specify an alternate address for the
debugger to load a PIC module on the target.

Source Folder Mapping Use this panel to enable source-level debugging when
debugging a binary that was built in one place, but which
is being debugged from another.

System Call Service Use this panel to activate debugger support for system
Settings services and to select options for handling requests for

system services.

PowerPC EABI Linker

OSEK Sysgen Use this panel to configure the behavior of the OSEK
sysgen utility.

NOTE: You should have the CodeWarrior OSEKturbo
Sysgen tool installed on your machine to use this panel.

EPPC Target Use this panel to specify the name the linker gives to the
final output file generated by the current build target.

In addition, use the panel to define compiler and linker
options such as the version of DWARF debugging
information generated and the ABI or code model used.

EPPC Assembler Use this panel to define the syntax allowed in assembly
language source code files.

EPPC Processor Use this panel to make processor-specific code
generation settings.

EPPC Disassembler Use this panel to control the information included in the
results of a disassembly.

EPPC Linker Use this panel to select options related to linking object
code into its final form.

EPPC Linker Use this panel to configure the bare board linker’s code
Optimizations merging feature.

EPPC Debugger Settings Use this panel to provide information the debugger needs
to work with the target and to define how and when the
debugger downloads portions of your binary to the target.

42 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Table 3.2 Power Architecture™-Specific Target Settings Panels (continued)

Target Settings Panel

Description

EPPC Exceptions

Use this panel to define the processor exceptions that the
CodeWarrior debugger will handle.

NOTE: this panel applies only to processors that have a
BDM debug module.

EPPC Trace Buffer

Use this panel to configure the trace events you want to
capture while debugging a target equipped with a trace
buffer.

EPPC Linux GNU Linker

GNU Target

Use this panel to select a project type, define the name of
the build target’s final output file and, for shared libraries,
to define the library’s SONAME.

GNU Assembler

Use this panel to specify command-line arguments to be
passed to the GNU assembler.

GNU Disassembler

Use this panel to specify command-line arguments to be
passed to the GNU disassembler.

GNU Compiler Use this panel to specify command-line arguments to be
passed to the GNU compiler
GNU Linker Use this panel to specify command-line arguments to be

passed to the GNU linker.

GNU Environment

Use this panel to define environment variables that the
GNU build tools can reference.

GNU Tools

Use this panel to specify the path to the GNU build tools
and to define the particular tools the IDE uses.

Console /O Settings

Use this panel to define the locations to which stdin,
stdout, and stderr are redirected when a Linux
application is run under control of the debugger.

Debugger Signals

Use this panel to define how CodeWarrior TRK (also
known as) handles Linux signals on behalf of the
debugger.

BatchRunner PreLinker

BatchRunner PreLinker

Use this panel to specify the batch file that the
BatchRunner PreLinker runs.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 43

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Table 3.2 Power Architecture™-Specific Target Settings Panels (continued)

Target Settings Panel | Description

BatchRunner PostLinker

BatchRunner PostLinker Use this panel to specify the batch file that the
BatchRunner PostLinker runs.

EPPC Linux GNU PostLinker

GNU Post Linker Use this panel to specify command-line arguments to be
passed to the GNU post-linker utility.

Target Settings

The Target Settings panel is the most important target settings panels. This is the panel
where you select the linker, pre-linker, and post-linker a build target uses. These choices,
in turn, define which target settings panels appear in the Target Settings window’s panel
list.

As your linker, pre-linker, and post-linker choices determine the availability of other
target settings panels, always make these choices first.

NOTE The Target Settings panel is not the same as the EPPC Target panel. You
select a linker in the Target Settings panel; you select other target-specific

options in the EPPC Target panel.

Figure 3.4 shows the Target Settings panel.

Figure 3.4 Target Settings Panel

M Target Settings

Target Mame: IDebug Wersion

Linkel:IF'nwerF'E E&BI

F're-linker:lNone

LefLed e

F'nst-linker:lNone

DOutput Directon:

Chooze. .. I
Clear I

|{F'rniect}Bin

™ Save project entries using relative paths

44 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Target Name

Use the Target Name text box to assign a name to the a build target. The name you specify
appears in the project window’s build target dropdown menu and in this window’s
Targets tab.

NOTE Target name is the name of the current build target, not the name of the file this
build target generates. You specify a build target’s output file name in the
Output File Name text box of the EPPC Target panel.

Linker

Use the Linker dropdown menu to select the linker a build target uses. The choices are:
* None

Choose this option if for a build target that generates no binary. For example, when
you create a CodeWarrior project just so you can debug and existing binary (such as
U-Boot), you would select None for linker.

¢ External Build Linker

Choose this option to configure a build target to use an external make file to build the
target’s output file.

If you select this linker, the External Build panel appears in the left pane of the
Target Settings window. See the IDE User’s Guide for instructions that explain how
to use this target settings panel.

Also, see Using the External Build Wizard for instructions that explain how to use a
wizard to create a project whose build targets use an external make file.

¢ EPPC Linux GNU Linker

Choose this linker to configure a build target to generate a file in Executable and
Linkable (ELF) format for execution on the embedded Linux operating system.

* PowerPC EABI
Choose this linker to configure a build target to use Freescale’s PowerPC EABI

linker to generate a file in Executable and Linkable (ELF) format for execution on a
bare board.

¢ PCLint Linker

Choose this option to configure a build target to use PC-lint to check your C/C++
source code files for bugs, inconsistencies, and non-portable constructs.

PC-lint is a third-party software development tool developed by Gimpel Software
(www.gimpel.com). As a result, you must obtain and install a copy of PC-lint before
a CodeWarrior build target can use this tool.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 45

http://www.gimpel.com

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

NOTE The sections below document the panels used by the “real” linkers, that is,
linkers that generate a binary. See PC-lint Target Settings Panels for
documentation of panels used by the PCLint “linker.”

Pre-linker

A pre-linker is a tool that performs its work immediately before the linker runs.

Use the Pre-linker dropdown menu to select the pre-linker the current build target uses.
The choices are:

* None
Use no pre-linker.
¢ BatchRunner PreLinker

If you select the BatchRunner PreLinker, a new panel, named BatchRunner
PreLinker, appears in the left panel of the Target Settings window. Use this panel to
select the Windows® batch file for the pre-linker to run.

Post-linker

A post-linker is a tool that performs its work immediately after the linker runs.

Use the Post-linker dropdown menu to select the post-linker the current build target uses.
The choices are:

* None
Use no post-linker.
¢ BatchRunner Postlinker

If you select this pre-linker, the BatchRunner Postlinker panel appears in the left
pane of the Target Settings window. Use this panel to select the Windows® batch
file for the post-linker to run.

¢ EPPC Linux GNU Postlinker

If you select the this pre-linker, the GNU Post Linker panel appears in the left pane
of the Target Settings window. Use this panel supply the command-line switches to
pass to the program specified Post Linker text box of the GNU Tools panel.

NOTE The Post-linker dropdown menu contains the EPPC Linker GNU Postlinker
option only if you select the EPPC Linux GNU Linker from the Linker
dropdown menu.

46 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Output Directory

This read-only text box contains the path in which the linker places a build target’s final
output file (application, library, etc.)

The {Project} directory is the default output directory.

Click Choose to display a dialog box that lets you select the desired output path.
Click Clear to restore the default directory (the project directory).

Save Project Entries Using Relative Paths

Check this box to instruct the IDE to save the relative path of each file in a build target
along with the root file name of the file.

If this box is checked, you can add two or more files that have the same name to a project.
This is so because, when searching for files, the IDE prepends the directory names in the
Access Paths target settings panel to the relative path of each project file, thereby
producing a unique filename.

If this box is unchecked, each file in a project must have a unique name because, when
searching for files, the IDE combines the directory names in the Access Paths panel with
just the root filename of each project file. As a result, the IDE cannot discriminate between
two files that have the same name but different relative paths.

OSEK Sysgen

Use the OSEK Sysgen settings panel to control the output of the OSEK Sysgen tool.
OSEK (Open Systems and their Interfaces for the Electronics in Motor Vehicles) is a
standards body that has produced specifications for an embedded operating system, a
communications stack, and a network management protocol for automotive embedded
systems. OSEK System Generator (Sysgen) is a special tool for system generation which
reads the operating system configuration file and configures the OS.

NOTE OSEK Sysgen can be used for only 52xx projects.

When you build a CodeWarrior build target that contains an object implementation
language (OIL) file, the OSEK Sysgen tool compiles the OIL file and generates

C language files used in the generation of an OSEK operating system image as well as
other types of files. The OSEK Sysgen panel lets you define the names, locations, and
other attributes of these files.

Next, the CodeWarrior C compiler compiles the generated C language files, the OSEK
operating system’s source code, and any application source code files the build target
contains. Finally, the CodeWarrior linker links the resulting object code into an executable
OSEK operating system image that contains your application.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 47

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Compilation of the OSEK operating system source code depends on the definition of
several macros; the OSEK Sysgen tool helps with these macro definitions. Specifically,
the tool generates file options .h, which you must include in your build target’s prefix
file. The tool also defines macros APPTYPESH, OSPROPH, and OSCFGH, extracting
macro values from corresponding user types, property, and object-declaration files.

NOTE We recommend that you not edit the generated files. Doing so may lead to data
inconsistency, compilation errors, or unpredictable application behavior.

Figure 3.5 shows the OSEK Sysgen settings panel.

Figure 3.5 OSEK Sysgen Panel

N OSEK Swsgen

File Location:
File Type: IF‘ropert_l,l File j Clear
I{Ploiect}gen'\ospmp.h Browse

ddll;

I Suppress Warnings Messages | ORTI Yersiom: Abaut
[T Generate Absolute Paths |2_1

. Help
[Single Backslash
"Include Paths:

Commatd Line Options:

-p "{Projectigentozprop. b -h "Projectigentcfg b ¢ "iProjectigentefg.ct -2
"{Projectigertatklabel 2" -0 "{TargetFile} ot -0 "2.1"

File Type

Use the File Type dropdown menu to select the type of file referenced by the File Location
text box. Table 3.3 lists and describes each File Type option.

48 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Table 3.3 OSEK Sysgen File Type Options

Option

Description

Property File

Select this file type so you can specify the path and name of an
OSEK property file in the related text box. The property file is a
C language header file that describes the current configuration of
the operating system — in other words, system properties.

This file contains the preprocessor directives #define and
#undef and is used at compile-time to build the OS kernel with
the specified properties.

The defaultis {Project}gen\osprop.h, but you can use
another path and name.

Objects
Declaration File

Select this file type so you can specify the path and name of an
OSEK objects declaration file in the related text box. The objects
declaration file is a header file that contains definitions of data
types, constants, and external declarations of variables needed
to describe system objects.

The defaultis {Project}gen\cfg.h, but you can use another
path and name.

Objects
Definition File

Select this file type so you can specify the path and name of an
OSEK objects definition file in the related text box. The objects
definition file is a source file that contains initialized data and
allocates memory for system objects.

The defaultis {Project}gen\cfg.c, but you can use another
path and name.

Stack Labels File

Select this file type so you can specify the path and name of an
OSEK stack labels file in the related text box. The stack labels file
defines labels for the bottom and top of the stack for extended
tasks implemented in the OSEK OS.

You can see these labels in the debugger during application
execution and can use them for dynamic control of task stack
usage.

The defaultis {Project}gen\stklabel.s, but you can use
another path and name.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 49

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Table 3.3 OSEK Sysgen File Type Options

Option Description

ORTI File Select this file type so you can specify the path and name of an
OSEK ORTI (OSEK Run Time Interface) file in the related text
box. The ORTI file contains internal OSEK operating system
data, which is available to an ORTI Aware Debugger.

The debugger can display and update the system object
information in the ORTI file.

The default path and filename is the same as the path and name
of the . abs file, but you can use another name.

Sysgen Tool Select this file type so you can specify the path to and name of
the OSEK Sysgen utility. This utility processes a OIL file.

If you do not define the location of the Sysgen utility, the IDE
looks for this information in the Windows® registry. If the registry
does not contain this information, the IDE next looks at the PATH
environment variable.

The default is {Compiler}osek\shared\bin\sysgen.exe,
but you can use another path and name.

Sysgen Select this file type so you can specify the path to and name of
Command Line File | the OSEK Sysgen command-line file in the related text box. The
Sysgen command-line file contains additional command-line
options for the Sysgen utility. Use of the command-line file is
optional and is intended for advanced users.

There is no default filename for this file type.

User Types File Select this file type so you can specify the path to and name of
the OSEK user types file in the related text box. The user types
file contains definitions of a users’ message types. Also, the file
defines the macro APPTYPESH equal to the location of this file.

The defaultis {Project}Sources\usertypes.h, but you can
use another path and name.

Prefix File Path Select this file type so you can specify the path in which the

(for option.h) Sysgen utility writes the prefix file (options.h)in the related text
box. If you do not specify a path, options.h file is put in the
{Project} directory.

The options.h file contains macro definitions that other OS files
use to find other generated OSEK configuration files. You must
include options.h in a build target’s prefix file or as an
additional include file in the compiler’s configuration.

The default is {Project}gen, but you can use another path.

50 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

File Location

Use the File Location text box to type the path to and name of a file of the type currently
selected in the File Type dropdown menu. Alternatively, click Browse to display a dialog
box with which you can to navigate to and find this file.

Suppress Warnings

Check the Suppress Warnings checkbox so the OSEK Sysgen utility does not display
warning and informational messages in the log window.

Generate Absolute Paths

Check the Generate Absolute Paths box if the file location macros in options.h be
assigned absolute paths.

Uncheck this box, if these macros must be assigned relative paths.

Single Backslash

Check the Single Backslash checkbox to use a single backslash as the path delimiter in the
paths assigned to the file location macros in options.h.

Uncheck this box to use two backslash characters as the path delimiter in the paths
assigned to the file location macros in options.h.

Messages

Click the Messages button to display the Suppress Messages dialog box. Use this dialog
box to define the warning messages and informational messages you want suppressed.

Clicking Disable All is equivalent to checking the Suppress Warnings checkbox.
Clicking Enable All is equivalent to unchecking the Suppress Warnings checkbox.

ORTI Version

Use the ORTI Version text box to enter the supported ORTI (OSEK Run Time Interface)
version.

About Button

Click the About button to display a dialog box containing OSEK Sysgen utility version
information.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 51

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Help Button

Click the Help button to display an online help window. This window contains
information that explains how to use the OSEK Sysgen utility and the OSEK Sysgen
target settings panel.

Include Paths

Use the Include Paths text box to enter directories for the OSEK Sysgen utility to search
for include OIL files. Separate each directory path with a comma or a semicolon.

Command Line Options

The Command Line Options read-only text box displays all system generation options
currently defined.

EPPC Target

Use the EPPC Target settings panel to specify the name the linker assigns to the final
output file (application, library, etc.) generated by the current build target. In addition, use
this panel to tell the linker how to structure this file.

In addition, use the panel to define compiler and linker options, such as the version of
DWAREF debugging information generated and the ABI or code model used.

Figure 3.6 shows the EPPC Target settings panel.

Figure 3.6 EPPC Target Panel
N EPFC Target

— Project Type IAppIicatinn - I

File Mame ISimuIatDr.out

Byte Ordering ™ Disable Cw Extensions
’75' Big Erdian " Little Endian DWAF!FIDWﬁ?«FHF 2 vl
Code Model [4bsolute Addressing x| a8l [EsE =l

Srall Data IB— " Tune Relocations
Srmall D ata? |a—

Heap Size (k) |32—

Stack Size [k) |32—

52 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Project Type
Use the Project Type dropdown menu to define the kind of project that the build target
creates. The options are:
* Application
e Library
¢ Partial Link
The project type you choose determines which other items appear in this panel.

If you choose Library or Partial Link, the Heap Size, Stack Size, and Tune Relocations
items disappear because they are not relevant. The Partial Link item lets you generate a
relocatable output file that a dynamic linker or loader can use as input. If you choose
Partial Link, the items Optimize Partial Link, Deadstrip Unused Symbols, and Require
Resolved Symbols appear in the panel.

File Name

Use the File Name text box to define the name of the application or library a build target
creates.

By convention, application names should end with the extension . el£, and library names
should end with the extension . a.

If the build target is configured to generate an S-Record file and/or a map file, and the in
the File Name text box ends in . elf or . ELF, this extension is stripped and .mot is
appended to the S-Record file name and . MAP is appended to the map file name.

Byte Ordering

Use the option buttons in the Byte Ordering group box to select big-endian or little-endian
byte ordering. The Big-endian option generates object code and links an executable image
that uses big-endian byte ordering. This is the default setting for the compiler and linker.
The little-endian option generates object code and links an executable image that uses
little-endian byte ordering.

If you choose big endian byte ordering, within a given multi-byte numeric representation,
the most significant byte has the lowest address (the word is stored "big-end-first").
Listing 3.1 shows how the value 0x0A0BOCOD is stored in memory if big-endian byte
ordering is chosen.

Listing 3.1 Big-Endian Byte Ordering

Memory Address: 0x1000 0x1001 0x1002 0x1003
Byte: 0xA 0xB 0xC 0xD

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 53

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

If you choose little endian byte ordering, within a given multi-byte numeric
representation, bytes at lower addresses have lower significance (the word is stored "little-
end-first"). Listing 3.2 shows how the value 0x0A0BOCOD is stored in memory if little-
endian byte ordering is chosen.

Listing 3.2 Little-Endian Byte Ordering

Memory Address: 0x1000 0x1001 0x1002 0x1003
Byte: 0xD 0xC 0xB 0xA

NOTE You can create little endian project from this panel, but debugging such a
project is not supported.

Disable CW Extensions

Check the Disable CW Extension box if you are using a third-party linker, and it cannot
link object files generated by the CodeWarrior C/C++ compiler.

Object modules generated from C-language files compiled by the CodeWarrior compiler
contain extra information that lets the CodeWarrior linker eliminate unused code, data,
and DWAREF symbols. This feature is called deadstripping.

Most third-party linkers have no problem with the extra information the CodeWarrior
compiler puts in its object modules (although they do not use it to perform deadstripping).
That said, if a third-party linker issues errors, the errors might go away if you:

¢ Check the Disable CW Extensions box

¢ Recompile all your C language source code files

¢ Relink

NOTE Even if Disable CW Extensions is checked, the compiler may generate some
sections that a third-party linker cannot handle. In particular, if the Enable C++
Exceptions box of the C/C++ Language panel is checked, the compiler
generates the . extab and . extabindex sections. If, after checking Disable
CW Extensions, your link still fails, try unchecking Enable C++ Exceptions.

DWARF

Use the DWARF dropdown menu to select the version of the Debug With Arbitrary
Record Format (DWARF) debugging information format the compiler and assembler
generate. If in doubt about the DWARF version to use, you can use the default setting of
DWAREF 2.x.

54 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

The linker ignores debugging information that is not in the selected format.

ABI

Use the ABI dropdown menu to select the Application Binary Interface (ABI) the
compiler and assembler use for function calls and structure layout. For more information
on the Application Binary Interface (ABI), see the Embedded Power Architecture

API Programming Information topic.

Tune Relocations
The tune relocations option pertains to object relocation and is available for just these
application binary interfaces:

¢ EABI

* SDA PIC/PID

NOTE The Tune Relocations checkbox appears only if you select Application from
the Project Type dropdown menu.

Check the Tune Relocations checkbox when you receive link warning about out of range
relocations. Checking the Tune Relocations checkbox has these effects:

* For the EABI application binary interface, a 14-bit branch relocation is converted to
a 24-bit branch relocation only if the 14-bit relocation cannot reach the calling site
from the original relocation.

* For the SDA PIC/PID application binary interface, the absolute addressed references
of data from code are changed to use a small data register (such as r13) instead of
r0; absolute code is changed to code references to use the PC relative relocations.

Code Model

Use the Code Model dropdown menu to select the addressing mode for the binary
generated by the current build target.

The options are:
* Absolute Addressing
Select to instruct the build tools to generate a non-relocatable binary.
* SDA Based PIC/PID Addressing

Select to instruct the build tools to generate a relocatable binary that uses position-
independent-code (PIC)/position-independent-data (PID) addressing. The resulting
binary can be loaded at any address.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 55

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Small Data

Use the Small Data text box to specify the threshold size (in bytes) for an item to be
considered small data by the linker. The linker stores small data items in the Small Data
address space.

Data in the Small Data address space can be accessed more quickly than data in the
“normal” address space.

Small Data2

Use the Small Data2 text box to specify the threshold size (in bytes) for an item to be
considered small data by the linker. The linker stores read-only small data items in the
Small Dasta2 address space.

Constant data in the Small Data2 address space can be accessed more quickly than data in
the “normal” address space.

Heap Size

Use the Heap Size text box to define the amount of memory (in kilobytes) the build tools
allocate for the heap. The heap is used when your program calls malloc or new. You can
define the address of the heap segment in a linker command file or in the EPPC Linker
target settings panel.

NOTE Heap size does not apply to libraries; only applications have a heap.

Stack Size

Use the Stack Size text box to define the amount of memory (in kilobytes) the build tools
allocate for the stack. You can define the address of the stack segment in a linker
command file or in the EPPC Linker target settings panel.

NOTE Stack size does not apply to libraries; only applications have a stack.

NOTE Consider the amount of RAM your target has, as you choose heap and stack
size. If you allocate too much RAM to the heap and stack, your program may
run out of memory; if you allocate to little RAM to heap and stack, your
program might run out of these critical resources.

56 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Optimize Partial Link

Check the Optimize Partial Link checkbox to instruct the linker to perform final work on a
partial link.

An unoptimized partial link (also known as a partial link without qualifiers) is a
relocatable file that can be linked again just like any . o file. An optimized partial link is
almost the same as a unoptimized partial link except that the linker creates the symbols
_ctors and _dtors. A loader needs these symbols to initialize C++ exceptions and
static constructors after the loader relocates the file.

The linker generates four symbols:
e __ ctors — an array of static constructors
e _ dtors — an array of destructors

e _ rom_copy_info — an array of a structure that contains all of the necessary
information about all initialized sections to copy them from ROM to RAM

e _ bss_init_info — asimilar array that contains all of the information
necessary to initialize all of the bss-type sections.

NOTE The Optimize Partial Link checkbox is available only if you select Partial Link
from the Project Type dropdown menu.

Enabling this option instructs the linker to:
¢ Use a linker command file (LCF)

The commands in an LCF let you merge the sections of your program into the
.text, .data, or . bss segment. If you do not use an LCF to perform this merge,
the CodeWarrior debugger will probably not display the application’s source code
correctly.

* Perform deadstripping

Deadstripping is strongly recommended.

NOTE An application must have at least one entry point for the linker to be able to
deadstrip it.

¢ Collect all static constructors and destructors in a way similar to the munch utility.

NOTE Refer to any Unix documentation for an explanation of the munch utility.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 57

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

NOTE Itis essential that you not use munch yourself because the linker must put C++
exception handling initialization code in the first constructor.
If you see munch in a make file that you are importing into the CodeWarrior
IDE, it is a clue that you need an optimized build, that is, that you need to
enable the Optimize Partial Link option.

¢ Change common symbols to .bss symbols.
As aresult, you can examine the common symbols in the debugger.
» Perform a special type of partial link that has no unresolved symbols.
Wind River's Diab linker can perform the same kind of special link.

If you do not check the Optimize Partial Link box, the build target’s output file is
equivalent to the file produce by the command-line linker when it is passed the —r flag.

Deadstrip Unused Symbols

Check the Deadstrip Unused Symbols checkbox to instruct the linker to remove any
symbols that are not used. Deadstripping makes your program smaller by removing code
and data not referenced by an application’s main entry point (or any entry points specified
in a force_active linker command file directive).

NOTE The Deadstrip Unused Symbols checkbox is available only if you select Partial
Link from the Project Type dropdown menu.

Require Resolved Symbols

Check the Require Resolved Symbols checkbox to instruct the linker to resolve all
symbols in a partial link.

NOTE The Require Resolved Symbols checkbox is available only if you select Partial
Link from the Project Type dropdown menu.

If this option is checked, the linker emits an error message if any symbol referenced by
your program is not defined in any source code file or library in the project.

NOTE Some real-time operating systems require that there be no unresolved symbols
in a partial link file. In this case, enable this option.

58

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

GNU Target

Use the GNU Target panel to select a project type, define the name of the build target’s
final output file and, for shared libraries, to define the library’s SONAME.

Figure 3.7 shows the GNU Target settings panel.

Figure 3.7 GNU Target Panel

N GMU Target

Project Type:l Application j

Output File Mame: Imyapp_cpp.elf

’fSDN.&ME:INnne vl

Custom SONAME: |

Project Type

Use the Project Type dropdown menu to select the project type for the build target.

Table 3.4 lists and describes each option the Project Type menu provides.

Table 3.4 Project Types

Project Type

Description

Application

A standalone application (such as cw.elf)

Shared Library

A library that can be shared by multiple processes or dynamically
loaded into a process (for example, sharedlib. so)

Library

A static library (such as staticlib.a)

Loadable Module

A Linux kernel module that can be loaded into the kernel at runtime
(for example, printdriver.o)

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 59

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Output File Name
In the Output File Name text box, type the file name for the build target to assign to its
final output file.

The linker creates this file in the Output Directory defined in the Target Settings panel. To
get the linker to put the final output file elsewhere, type a relative path and file name in the
Output File Name text box.

Table 3.5 shows the default output file names for each project type.

Table 3.5 Default File Names for each Project Type

Project Type Default Output File Name
Application myapp_cpp.elf

Shared Library my_sharedLib. so

Library my_staticLib.a

Loadable Module mod.o

SONAME

Use the SONAME dropdown menu to define the SONAME (shared object name) to
embed in the shared library.

The menu choices are:
* None
No SONAME is embedded in the shared library.
¢ Default
The name in the Output File Name text box is embedded in the shared library.
¢ Custom

The string you enter in the Custom SONAME text box is embedded in the shared
library.

NOTE The SONAME dropdown menu is only available for shared library projects.

The SONAME feature lets the library creator provide the system with version
compatibility information.

The Linux dynamic loader compares the SONAME requested by a program to the
SONAME embedded in each shared library the loader finds. The loader will load only a

60

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

shared library whose SONAME matches the SONAME requested by the program, thereby
ensuring that the program and shared library are compatible.

EPPC Assembler

Use the EPPC Assembler target settings panel to define the syntax allowed in assembly
language source code files, whether the assembler generates a listing file, and the name of
the prefix file for the assembler to use (if any).

Figure 3.8 shows the EPPC Assembler target settings panel.

Figure 3.8 EPPC Assembler Panel

N EPPC Aszembler

— Source Format
v Labels Must End With '

¥ Directives Begin 'with -
¥ Case Sensitive |dentifiers

¥ Allow Space [n Operand Field

[~ GMU Compatible Syntax

[~ Generate Listing File
Prefix File:

NOTE Previous versions of this panel included processor-related options. These
options are now defined using the Processor dropdown menu of the
EPPC Processor target settings panel.

Source Format

Use the checkboxes in the Source Format area to define some syntax requirements for
assembly language source files. For more information about the syntax that the EPPC
assembler requires, refer to the Assembler Reference.

GNU Compatible Syntax

Check the GNU compatible syntax checkbox to indicate that your application uses
GNU-compatible assembly language syntax.

GNU-compatibility allows:

* Redefining all equates regardless of whether they were defined using .equ or . set

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 61

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

¢ Ignoring the . type directive
* Treating undefined symbols as imported
¢ Using GNU-compatible arithmetic operators

The symbols < and > mean left-shift and right-shift instead of less than and greater
than. Additionally, the symbol ! means bitwise-or-not instead of logical not

¢ Using GNU-compatible operator precedence rules

¢ Implementing GNU-compatible numeric local labels from 0 to 9

» Treating numeric constants that start with the ‘0’ character as octal values
» Using semicolons as statement separators

* Using a single unbalanced quote for character constants. For example, .byte 'a

Generate Listing File
A listing file contains source code statements along with line numbers, relocation
information, and macro expansions.

Check the Generate Listing File checkbox to instruct the assembler to generate a listing
file for each assembly language source code file in a build target.

Prefix File

The Prefix File text box lets you enter the name of a prefix file. The assembler
automatically includes this file at the beginning of each assembly language source code
file in a build target.

This feature lets you include common definitions without having to include the file that
contains these definitions in every source code file

GNU Assembler

Use the GNU Assembler target settings panel to specify the command-line arguments to
be passed to the GNU assembler.

Figure 3.9 shows the GNU Assembler target settings panel.

62 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Figure 3.9 GNU Assembler Panel
N GMNU Aszembler

Carnrmand Ling Arguments:

Command Line Arguments

In the Command Line Argument text box, type the command-line arguments to be passed
to the GNU assembler.

EPPC Processor

Use the EPPC Processor panel to make processor-specific code generation settings.

Figure 3.10 shows the EPPC Processor target settings panel.
Figure 3.10 EPPC Processor Panel

N EPPL Processor
[~ Make Stings ReadOnly———

Struct Alignment: IF'owerF'E I . _

[™ | Litker Merges Sting Constants
Function Alignment: |4 EByte I~ PodlData
[Linker Merges FP Canstants
™ Use Common Section
[Use L & STHw
[Inlined &ssembler |2 Yolatile
[Instruction Scheduling

Froceszor; I &R0

Floating F'oint:INone

Lef Le) Le] Lo

Wector Support:lNone
—I Belax Hisf IEEE

[T Use Fused Mult-&dd/Sub
I~ Generate FSEL Instruction
[T Assume Ordered Compares

[~ Peephole Optimization

[~ Profiler Infarmation

eb00/Zen Optionz
sz Ui ¥ Generate ISEL Instuction
™| Generate YRSAVE Instructions I | Gererate YLE Instuctions
™ ali/es Stucture Moves ™| Translate PPE &am to YIE Asm

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 63

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Struct Alignment

Select an option from the Struct Alignment dropdown menu to define how the compiler
aligns structures.

The default option for Struct Alignment is PowerPC.

If your code must conform to the PowerPC EABI specification and inter-operate with
third party object code, you must select PowerPC for the Struct Alignment option. Other
choices may lead to reduced performance or alignment violation exceptions.

For more information, refer to the documentation of the pack pragma in the Power
Architecture Build Tools Reference.

NOTE If you choose a Struct Alignment setting other than PowerPC, your program
may not run correctly.

Function Alignment

If your board has hardware capable of fetching multiple instructions at a time, you may
achieve slightly better performance by aligning functions to the width of the fetch.

Use the Function Alignment dropdown menu to select alignments from 4 (the default) to
128 bytes. These selections correspond to #pragma function_align. For more
information, see the function_align pragma topic in the Power Architecture Build
Tools Reference.

NOTE The st_other field of the . symtab entries in ELF files generated by the
CodeWarrior build tools has been overloaded to ensure that dead-stripping
functions does not interfere with the chosen function alignment. This may
result in code that is incompatible with some third-party linkers.

Processor

Use the Processor dropdown menu to select a target processor.

Choose Generic if the processor you are working with is not listed, or if you want to
generate code that runs on any EPPC processor. Choosing Generic allows the use of all
optional instructions and the core instructions for the 603, 604, 740, and 750 processors.

Choosing a particular processor (as opposed to Generic) has these effects:
¢ Improved instruction scheduling

Specifying the specific processor being targeted lets the build tools do a better job of
optimizing instruction scheduling. Of course, the Instruction Scheduling option must
be enabled for this effect to be realized.

64

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

* A preprocessor symbol for the selected target is defined

If you select a particular processor, a preprocessor symbol is defined that allows code
that applies just to this processor to be conditionally compiled.

The symbol is defined as shown below, where number is the identification number
of the processor selected:

#define _ PPCnumber 1

If you select the 823 processor, for example, the symbol ___PPC823___is defined. If
you select Generic, the symbol __ PPCGENERIC__is defined to 1.

» Floating-point support verification

You can select any of the options in the Floating Point dropdown menu (Software,
Hardware, SPFP, and DPFP), no matter what processor you select.

Selecting a specific processor (as opposed to Generic) lets the build tools warn
you if the selected floating-point option is not supported by the processor you select.

Floating Point

Use the Floating Point dropdown menu to define how the compiler handles floating-point
operations it encounters in your source code.

NOTE Some Floating Point menu options require that you include the corresponding
version of the runtime library in your build target. For example, if you select
None, you must include Runtime.PPCEABI.N. a in your build target.

Table 3.6 lists and describes each floating-point support option.

Table 3.6 Floating-Point Support Options

Item

Description

None

Select to disable floating-point support.

Software

Select to have the compiler emulate floating-point operations by calling
functions that perform floating-point math. The C runtime library contains
the functions the compiler invokes.

If you use software floating-point emulation, you must include the
appropriate C runtime library in your project. Enabling this option without
including the appropriate C runtime library causes link errors.

Hardware

Select to have the compiler handle floating-point operations by generating
instructions for the hardware floating-point unit.

Do not select this option if your target processor does not have a hardware
floating-point unit.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 65

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Table 3.6 Floating-Point Support Options (continued)

Item Description

SPFP Select to have the compiler handle single-precision floating-point
operations by generating instructions for the e500-EFPU floating point unit,
and perform double-precision floating-point operations by calling functions
that perform double-precision floating-point math.

Do not select this option if your target processor does not have a
e500-EFPU floating-point unit.

DPFP Select to have the compiler handle both single- and double-precision
floating-point operations by generating instructions for the e500 DPFP
APU (Double-Precision Floating-Point Auxiliary Processing Unit).

Do not select this option if your target processor does not have a DPFP
unit.

NOTE If the selected processor does not handle a floating-point exception, you should
select None or Sof tware floating-point support.

Vector Support

Use the Vector Support dropdown menu to select the type of vector execution unit your
target processor has. The CodeWarrior Power Architecture C/C++ compiler supports both
AltiVec™ and SPE vector execution units.

If your target processor includes a vector execution unit and you want the compiler to
generate instructions for this unit, select the vector type your processor supports from the
Vector Support dropdown menu. If your processor does not have a vector execution unit
or you do not want the compiler to emit vector instructions, select None.

If you select Altivec from the Vector Support menu, the checkboxes in the Altivec Options
area enable. These options let you select the type of AltiVec support required.

Relax HW IEEE

Check the The Relax HW IEEE checkbox to instruct the compiler to generate faster code
by ignoring some of the more strict requirements of the IEEE floating-point standard. You
control the particular requirements that are relaxed with the options Use Fused Multi-Add/
Sub, Generate FSEL Instruction, and Assume Ordered Compares.

66

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

NOTE The Relax HW IEEE checkbox is available only if you select Hardware from
the Floating Point dropdown menu.

Use Fused Multi-Add/Sub

Check this box to instruct the compiler to generate EPPC Fused Multi-Add/Sub
instructions. If enabled, this option lets the compiler generate smaller and faster floating-
point code than it generates if it adheres to the IEEE floating-point specification.

NOTE Enabling the Use Fused Multi-Add/Sub option may produce unexpected results
because of the greater precision of the intermediate values these instructions
produce. The results are slightly more accurate than those produced by the
IEEE floating-point standard because of an extra rounding bit between the
multiply operation and the add/subtract operation.

Generate FSEL Instruction

Check this box to instruct the compiler to generate the FSEL instruction. This instruction
executes more quickly than corresponding instructions allowed by the IEEE floating-point
specification.

Enabling Generate FSEL Instruction option lets the compiler optimize the pattern
x = (condition ? y : z)

where x and y are floating-point values.

NOTE The FSEL instruction is not accurate for denormalized numbers and may cause
problems related to unordered compares.

Assume Ordered Compares

Check this box to instruct the compiler to ignore issues associated with unordered
numbers (such as NAN) when comparing floating-point values. In strict IEEE mode, any
comparison with NAN except not-equal-to, returns false. The assume ordered compares
optimization ignores this requirement, thereby allowing this conversion:

if (a <= b)
to
if !(a > b)

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 67

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Altivec Options

Use the checkboxes of the Altivec Options group box to instruct the compiler to generate
specific categories of instructions for an Altivec vector execution unit.

NOTE The options in the Altivec Options group are disabled unless you select Altivec
from the Vector Support dropdown menu.

Altivec Structure Moves

Check the Altivec Structure Move checkbox to instruct the compiler to use Altivec
instructions to copy structures.

Generate VRSAVE Instructions

The value of the VRSAVE register tells the operating system which vector registers to
save and reload when a context switch occurs—the bits of the VRSAVE register that
correspond to the vector registers to save/reload are set to 1.

When a function call occurs, the value of the VRSAVE register is saved in a part of the
stack frame called the vrsave word. In addition, the function saves the values of any non-
volatile vector registers in the stack frame in an area called the vector register save area
before changing the values in any of these registers.

Checking the Generate VRSAVE Instructions checkbox tells the compiler to use the
Altivec VRSAVE instruction to save these vector register values, thereby reducing the
time required to complete a context switch.

NOTE Check the Generate VRSAVE Instructions box only if the resulting binary will
run on multi-tasking operating system that supports the Altivec vector unit.

Make Strings Read Only

Check the Make Strings Read Only box to instruct the compiler to store string constants in
the . rodata (read-only data) section. Uncheck this box to instruct the compiler to store
string constants in the . data section.

The Make Strings Read Only option corresponds to #pragma readonly_strings.
The default setting of this pragma is OFF.

Linker Merges Strings Constants

If you check the Make Strings Read Only checkbox, the Linker Merges String Constants
checkbox becomes available.

68

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Check the Linker Merges String Constants box to have the compiler pool strings defined
within a given source file. If this checkbox is clear, the compiler treats each string as an
individual string.

NOTE The linker can deadstrip unused, unpooled strings, but cannot deadstrip unused
pooled strings.

Pool Data

Check the Pool Data checkbox to instruct the compiler to organize some of the data in the
large data sections (.data, .bss, and . rodata) such that a program can access the
data more quickly.

The Pool Data option affects only data that is defined in the current source file; the option
does not affect external declarations or any small data.

NOTE The linker is aggressive about stripping unused data and functions from a
binary; however, the linker cannot strip any large data that has been pooled.

NOTE If your program uses tentative data, you get a warning that you need to force
the tentative data into the common section.

Linker Merges FP Constants

Check the Linker Merges FP Constants checkbox to instruct the compiler to name
floating-point constants in such a way that the name contains the constant. This lets the
linker merge floating-point constants automatically.

Use Common Section

Check the Use Common Section checkbox to have the compiler place global, uninitialized
data in the common section. This section is similar to a Fortran common block.

If this box is checked and the linker finds two or more variables with the same name and at
least one of them is in a common section, the linker assigns these variables the same
memory address. If this checkbox is clear, two variables with the same name generate a
link error.

The compiler never places small data, pooled data, or variables declared static in the
common section.

The section pragma provides fine control over which symbols the compiler includes in
the common section.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 69

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

To have the desired effect, this feature must be enabled during the definition of the data, as
well as during the declaration of the data. Common section data is converted to use the

. bss section at link time. The linker supports common section data in libraries even if the
switch is disabled at the build-target level.

NOTE You must initialize a common section variable in each source file that uses this
variable; otherwise you get unexpected results.

NOTE We recommend that you develop with the Use Common Section box clear.
Once you have debugged your program, look at its data for especially large
variables that are used in just one file. Change the names of such variables so
they are the same, and make sure that you initialize them before you use them.
Once you have completed this process, you can enable the Use Common
Section feature.

Use LMW & STMW

LMW (Load Multiple Word) is a single EPPC instruction that loads a group of registers;
STMW (Store Multiple Word) is a single EPPC instruction that stores a group of registers.
If the Use LMW & STMW box is checked, the compiler sometimes uses these instructions
in a function’s prologue and epilogue to save and restore volatile registers.

A function that uses the LMW and STMW instructions is always smaller, but usually slower,
than a function that uses an equivalent series of LWZ and STW instructions. Therefore, in
general, check the Use LMW & STMW box if compact code is your goal, and leave this
box unchecked if execution speed is your objective.

That said, because a smaller function might fit better in the processor’s cache lines than a
larger function, it is possible that a function that uses LMW/STMW will execute faster than
one that uses multiple LWZ/STW instructions.

As aresult, to determine which instructions produce faster code for a given function, you
must try the function with and without LMW/ STMW instructions. To make this
determination, use these pragmas to control the instructions the compiler emits for the
function in question:

* #pragma no_register_save_helpers on|off|reset
If this pragma is on, the compiler always inlines instructions.
* #pragma use_lmw_stmw on|off|reset

This pragma has the same effect as the Use LMW & STMW checkbox, but operates at the
function level.

70

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

NOTE The compiler never uses the LMW and STMW instructions if little-endian byte
ordering is enabled, even if the Use LMW & STMW checkbox is checked.
This restriction is necessary because execution of an LMW or STMW instruction
while the processor is in little-endian mode causes an alignment exception.

See the Programming Environments Manual For 32-Bit Implementations of the PowerPC
Architecture for more information about LMW and STMW efficiency issues.

Inlined Assembler is Volatile

Check the Inlined Assembler is Volatile checkbox to instruct the compiler to treat all asm
blocks (including inline asm blocks) as if the volatile keyword were present. This
prevents the asm block from being optimized.

You can use the .nonvolatile directive to selectively enable optimization on asm
blocks, as required.

Instruction Scheduling

If the Instruction Scheduling checkbox is checked, scheduling of instructions is optimized
for the specific processor you are targeting (as defined by which processor selected in the
Processor dropdown menu).

NOTE Enabling the Instruction Scheduling checkbox can make source-level
debugging more difficult (because the source code may not correspond to the
execution order of the underlying instructions). Sometimes, it is helpful to clear
this checkbox when debugging, and then check it once you have finished the
bulk of your debugging.

Peephole Optimization

Check the Peephole Optimization checkbox to instruct the compiler to perform peephole
optimizations.

Peephole optimizations are small, local optimizations that can reduce several instructions
to one target instruction, eliminate some compare instructions, and improve branch
sequences.

This checkbox corresponds to #pragma peephole. See the Power Architecture Build
Tools Reference for more information about this pragma.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 71

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Profiler Information

Check the Profiler Information checkbox to instruct the compiler to generate object code
that collects information at runtime that the code profiler can use.

This checkbox corresponds to #pragma profile.

e500/Zen Options

The options in the e500/Zen Options group box apply only to processors that have an e500
or an €200z (formerly, Zen) core.

The e500/Zen options are:

NOTE This CodeWarrior product supports the €500 core. The product does not
support the €200z core.

¢ Generate ISEL Instruction
Check this box to instruct the compiler to generate ISEL instructions.

The ISEL instruction can improve program performance by reducing conditional
branching.

NOTE The Generate ISEL Instruction checkbox is disabled unless you select e500v1
or e500v2 from the Processor dropdown menu of this panel. This is because
only processors that have an €500 core have an ISEL auxiliary processing unit
(APU).

¢ Generate VLE Instructions
CodeWarrior for Power Architecture Processors does not support this feature.
¢ Translate PPC Asm to VLE Asm

CodeWarrior for Power Architecture Processors does not support this feature.

EPPC Disassembler

Use the EPPC Disassembler target settings panel to define the information to include in
the results of a disassembly.

Figure 3.11 shows the EPPC Disassembler target settings panel.

72 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Figure 3.11 EPPC Disassembler Panel
N EPPC Disassembler

v Show Headers

¥ Show Symbal Table
—Iv Show Code Modules

¥ Use Extended Mnemonics
™ Show Source Code
™ Only Show Operands and Miemonics

—Iv Show Data Modules

[Disassemble Exception Tables

—Iv Show DWARF lnfo
™ Relocate DWARF Infio

v Werbose Info

Show Headers

Check the Show Headers checkbox to have the disassembler include ELF header
information in the results of the disassembly.

Show Symbol Table

Check the Show Symbol Table checkbox to have the disassembler include the symbol
table in the module being disassembled in the results of the disassembly.

Show Code Modules

Check the Show Code Modules checkbox to have the disassembler include ELF code
sections in the results of the disassembly.

Checking the Show Code Modules checkbox enables these checkboxes:
¢ Use Extended Mnemonics

¢ Show Source Code

¢ Only Show Operands and Mnemonics

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 73

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Use Extended Mnemonics

Check the Use Extended Mnemonics checkbox to have the disassembler include the
extended mnemonics for each instruction in the module being disassembled in the results
of the disassembly.

Show Source Code

Check the Show Source Code checkbox to have the disassembler include the source code
used to build the module being disassembled in the results of the disassembly. The source
code is interleaved with the mnemonics of the disassembled instructions.

Only Show Operands and Mnemonics

Check the Only Show Operands and Mnemonics checkbox to have the disassembler
exclude all information other than operands and mnemonics for each code section in the
results of the disassembly.

Show Data Modules

Check the Show Data Modules checkbox to have the disassembler include ELF data
sections (such as . rodata and .Dbss) in the results of the disassembly.

Checking the Show Data Modules checkbox enables the Disassemble Exception Tables
checkbox.

Disassemble Exception Tables

Check the Disassemble Exception Tables checkbox to have the disassembler include
C++ exception tables in the module being disassembled in the results of the disassembly.

Show DWAREF Info

Check the Show DWAREF Info checkbox to have the disassembler include DWARF
debugging information in the results of the disassembly.

Checking the Show DWARF Info checkbox enables the Relocate DWAREF Info checkbox.

Relocate DWARF Info

Check the Relocate DWARF Info checkbox to have object and function addresses appear
in the debug sections of the module being disassembled in the results of the disassembly.

74

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

NOTE This option affects modules containing DWARF v1 debug information only.

Verbose Info

Check the Verbose Info checkbox to instruct the disassembler to include additional data
for certain categories of data in the module being disassembled in the results of the
disassembly.

For the . symtab section, some of the descriptive constants are shown with their numeric
equivalents. The . 1ine, .debug, extab, and extabindex sections are also shown
in an unstructured hexadecimal dump form.

GNU Disassembler

Use the GNU Disassembler target settings to specify command-line arguments to be
passed to the GNU disassembler.

Figure 3.12 shows the GNU Disassembler target settings panel.

Figure 3.12 GNU Disassembler Panel

R GMU Disazsembler

Command Line Arguments:

[Show assembly output of compiler, when disassembling source

[Display content of anchive at the time of disassembly

Command Line Arguments

In the Command Line Arguments text box, type the command-line arguments to be passed
to the GNU disassembler.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 75

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Show Assembly Output of Compiler When
Disassembling Source

Check this checkbox to instruct the IDE to use the GNU compiler to disassemble files.

If unchecked, the IDE uses the disassembler utility specified in the GNU Tools panel to
disassemble binary files.

Display Content of Archive at Time of
Disassembly

Check this checkbox to instruct the IDE to use the archiver tool specified in the GNU
GNU Tools panel to disassemble binary files. Using this archiver, you can view the list of
objects within libraries.

If this box is unchecked, the IDE uses the disassembler utility specified in the GNU Tools
panel to disassemble binary files.

GNU Compiler

Use the GNU Compiler target settings panel to specify command-line arguments to be
passed to the GNU compiler, a prefix file for the compiler to include at the start of each
source code file, and the format of the debugging information the compiler places in the
object code it generates.

Figure 3.13 shows the GNU Compiler target settings panel.

Figure 3.13 GNU Compiler Panel

H GHLU Compiler

Cammand Line Arguments:

00 -niostding

Prefis File: |

’—I- |Jze Custom Debug Format

D ebug Option: |-gdwalf-2 -g2

76

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Command Line Arguments

In the Command Line Arguments text box, type the command-line arguments to be passed
to the GNU compiler.

Prefix File

In Prefix File text box, type the path to the prefix file for the GNU compiler to include at
the start of each implementation (. c, . cpp) file.

Use Custom Debug Format

Check the Use Custom Debug Format checkbox to instruct the compiler to generate
debugging information in the format specified in the Debug Option text box.

Uncheck this box to instruct the compiler to generate debugging information in the default
format.

Debug Option
If you check the Use Custom Debug Format box, the Debug Option text box activates.

In this text box, type the command-line argument that tells the GNU compiler what
debugging information format to use.

EPPC Linker

Use the EPPC Linker target settings panel to select options related to linking object code
into its final form.

Figure 3.14 shows the EPPC Linker target settings panel.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 77

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Figure 3.14 EPPC Linker Panel

M EFPLC Linker
r— Link Options — Segment Addieszes
Link MDdE:INU”'“aI j' ™ Use Linker Command File
o Iﬁsenjratt_ [:I‘vghlﬁl;lnfo ¥ Code Address: IW
v Gene:te LIJ_inkar\FI a|:uamES I DataAddress: Im

v List Closure [Small Data: IDHDDDDDDDD

v List Unuzed Objects r
Small Dataz: Ox00000ac
I~ List DWARF Objects [o

™ Suppress Warning Messages

™ Heap Address: ID;.;I:lI:l.j:lzDDD I Soit 5-Recod
[V Stack Addiess: ID:-:IJD?DDDDD Max Lenath: |25

[Generate ROM Imags EOL Chalacter:lDDS vl

Fiah Bufer Address: |mrrruuunn - Entry Point
ROM Image Address: IDxfffDDEIEIEI [_start

Link Mode

Link mode lets you control how much memory the linker uses as it writes the output file to
the hard disk. Linking requires enough RAM to hold all of the input files and the
numerous structures that the linker uses for housekeeping. The housekeeping allocations
occur before the linker writes the output file to the disk.

— W Generate 5-Record File

Use the Link Mode dropdown menu to select the link mode. The options are:
¢ Use Less RAM

In this link mode, the linker writes the output file directly to disk without using a
buffer.

¢ Normal

In this link mode, the linker writes to a 512-byte buffer and then writes the buffer to
disk. For most projects, this link mode is the best choice.

¢ Use More RAM

In this link mode, the linker writes each segment to its own buffer. When all
segments have been written to their buffers, the buffers are flushed to the disk. This
link mode is best suited for small projects.

Generate DWARF Info

Check the Generate DWARF Info checkbox to instruct the linker to generate debugging
information in Debug With Arbitrary Record Format (DWARF) format. DWARF

78 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

information is included within the linked ELF file. Checking this box does not cause the
linker to generate a separate file.

If you check the Generate DWARF Info checkbox, the Use Full Path Names checkbox
becomes available.

Use Full Path Names

Use the Use Full Path Names checkbox to control the type of source file code paths the
linker embeds in the ELF file the linker generates.

If the Use Full Path Names checkbox is checked, the linker embeds full paths as well as
root source file names within the linked ELF file (see the note that follows). If this
checkbox is clear, the linker saves just the root file names of the source code file from
which the ELF was generated.

NOTE If you build your programs on one machine and debug it on another, clear the
Use Full Path Names checkbox. Clearing this box makes it easier for the
debugger to find the source code files associated with a binary.

Generate Link Map

Check the Generate Link Map checkbox to instruct the linker to generate a link map.

The linker adds the extension . MAP to the file name specified in the File Name text box of
the EPPC Target settings panel. The file is saved in the same folder as the output file.

The link map shows which file provided the definition for every object and function in the
output file. The map also displays the address assigned to each object and function, a
memory map of where each section resides in memory, and the value of each linker
generated symbol.

Although the linker aggressively strips unused code and data from relocatable files
generated by the CodeWarrior compiler, the linker never deadstrips relocatable files
generated by the assembler or relocatable files built with other compilers.

If a relocatable file was not built with the CodeWarrior C/C++ compiler, the link map lists
all the unused but unstripped symbols. You can use this information to remove the symbol
definitions from your source code, thereby making the final image smaller.

List Closure

Check the List Closure checkbox to have all the functions called by the starting point of
the program listed in the link map. See the Entry Point topic for details.

This List Closure box is available only if you check the Generate Link Map checkbox.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 79

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

List Unused Objects

Check the List Unused Objects checkbox to instruct the linker to include unused objects in
the link map. This setting helps you find objects that you think are being used, but are
really not.

The List Unused Objects checkbox is available only if you check the Generate Link Map
checkbox.

List DWARF Objects

Check the List DWARF Objects checkbox to instruct the linker to list all DWARF
debugging objects in the section area of the link map. The DWARF debugging objects are
also listed in the closure area if you check the List Closure checkbox.

The List DWARF Objects checkbox is available only if you check the Generate Link Map
checkbox.

Suppress Warning Messages

Check the Suppress Warning Messages checkbox to instruct the linker to not display
warnings in the CodeWarrior Errors and Warnings window.

Heap Address

Use the Heap Address text box to define the memory location at which the linker places
the heap. The heap is used if your program calls malloc or new.

To specify a heap address, check this Heap Address checkbox and then type an address in
related text box. You must specify the address in hexadecimal (e.g, 0x00c02000).

The address specified is the bottom of the heap and (if necessary) is changed to align with
the nearest 8-byte boundary.

The top of the heap is Heap Size (k) kilobytes above the Heap Address (where Heap Size
is defined in the EPPC Target panel). The possible addresses depend on your target board
and how this board’s memory is mapped. The heap must reside in RAM.

If you do not specify a heap address, the top of the heap is equal to the bottom of the stack,
and the following statements are true:

_stack_end = _stack_addr - (Stack Size * 1024);
_heap_end = _stack_end;
_heap_addr = _heap_end - (Heap Size * 1024);

The MSL memory allocation routines do not require that the heap be below the stack: You
can set the heap address to any place in RAM that does not overlap other sections. MSL
also lets you have multiple memory pools, which can increase the total size of the heap.

80

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Clear the Heap Address checkbox if your code does not use a heap. If you are using MSL,
your program may implicitly use a heap.

NOTE If there is not enough free memory available in your program, malloc returns
zero. If you do not call malloc or new, consider setting Heap Size (k) to 0 to
maximize the memory available for code, data, and stack.

Stack Address

Use the Stack Address text box to define the memory location at which the linker places
the stack.

To specify a stack address, check the Stack Address checkbox and type an address related
text box. The address must be in hexadecimal (e.g, 0x007£0000).

The address you specify is the top of the stack. If necessary this address is changed to
align to the nearest 8-byte boundary.

The stack extends downward from the specified address by the number of kilobytes
specified in the Stack Size text box of the EPPC Target panel.

The possible address for the stack depend on your target board and the way its memory is
mapped. The stack must reside in RAM.

NOTE Alternatively, you can specify the stack address by entering a value for the
symbol _stack_addr in a linker command file.

If you do not specify an explicit stack address, the linker uses the address 0x003DFFFO.
However, this address may not be suitable for boards with a small amount of RAM. For
such boards, see the stationery projects for examples with suitable addresses.

NOTE Because the stack grows downward in memory, it is common to place the stack
as high in memory as possible. If you have a board that has CodeWarrior TRK
installed, this program puts its data in high memory. The default (factory) stack
address reflects the memory requirements of CodeWarrior TRK and places the
stack address at 0x003DFFF0. CodeWarrior TRK also uses memory from
0x00000100 to 0x00002000 for exception vectors.

Generate ROM Image

Check the Generate ROM Image box to instruct the linker to create a ROM image. A
ROM image is a file that a flash programmer can write to flash ROM.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 81

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

RAM Buffer Address

Use the RAM Buffer Address text box to specify the address of a RAM buffer for a flash
programmer to use.

Many flash programmers (such as the MPC8BUG programmer) use the RAM buffer you
specify to load all segments in your binary to consecutive addresses in flash ROM. Note,
however, that at runtime, these segments are loaded at the addresses you specify in your
linker command file or in the fields of the Segment Addresses group box.

For example, the MPC8BUG flash programmer requires a RAM Buffer Address of
0x02800000. This programmer makes a copy of your program starting at address
0xFFE00000. If 0xFFE00000 is where you want your . text section, then you must
enter 0OXxFFE00000 in the Code Address text box of the Segment Addresses group. If you
specify a different code address, you must copy the code to this address from address
OxFFEQ00000.

NOTE To perform address calculations like that in the example above, you may find
the symbols the linker generates for ROM and execution addresses helpful.
For more information about the linker-generated symbols related to these
addresses, see this file:
installDir\PowerPC_EABI_Support\
Runtime\Include__ ppc_eabi_linker.h

NOTE The CodeWarrior flash programmer does not use a separate RAM buffer. As a
result, if you use the CodeWarrior flash programmer (or any other flash
programmer that does not use a RAM buffer), the RAM Buffer Address must
be equal to the ROM Image Address.

ROM Image Address

Use the ROM Image Address text box to specify the address at which you want your
binary written to flash ROM.

The address you enter must be in hexadecimal (for example, 0x£££00000).

Segment Addresses

Use the checkboxes in the Segment Addresses group box to indicate whether you want the
segment addresses defined by a linker command file or directly in this settings panel.

82

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Use Linker Command File

Check the Use Linker Command File checkbox to use a linker command file to define
segment addresses. If the linker does not find a command file, it issues an error message.

Leave this checkbox clear if you want to specify the segment addresses directly in the
segment address text boxes: Code Address, Data Address, Small Data, and Small Data2.

NOTE If you have a linker command file in your project and the Use Linker
Command File checkbox is clear, the linker ignores this file.

Code Address

Use the Code Address text box to define the memory location at which the linker places a
build target’s executable code.

To specify a code segment address, check the Code Address checkbox and type an address
in the related text box. You must specify the address in hexadecimal notation (for
example, 0x00002000). Possible code segment addresses depend on your target board
and how its memory is mapped.

If you clear the checkbox, the default code segment address is 0x00010000. This default
address may not be suitable for boards with a small amount of RAM. For such boards, see
the stationery projects for examples with suitable addresses.

Data Address

Use the Data Address text box to define the memory location at which the linker places a
build target’s global data.

To specify a data segment address, check the Data Address checkbox and type an address
in the related text box. You must specify the address in hexadecimal notation (for
example, 0x000A0000). Possible data segment addresses depend on your target board
and how its memory is mapped. Data must reside in RAM.

If you clear the Data Address checkbox, the linker sets places the data segment
immediately following the read-only code and data segments (. text, .rodata,
extab, and extabindex).

Small Data

The Small Data checkbox and related text box let you define the memory location at
which the linker places the first small data section mandated by the PowerPC EABI
specification.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 83

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

If you uncheck the Small Data checkbox, the linker places the first small data section
immediately after the . data section.

If you check the Small Data checkbox, the related text box enables. In this text box, type
the address at which you want the linker to place the first small data section. The address
entered must be in hexadecimal format (for example, 0xABCD1000). Further, the address
entered must be supported by your target board and must not conflict with the memory
map of this board. Finally, all types of data must reside in RAM.

Small Data2

The Small Data2 checkbox and related text box let you define the memory location at
which the linker places the second small data section mandated by the PowerPC EABI
specification.

If you uncheck the Small Data2 checkbox, the linker places the second small data section
immediately after the . sbss section.

If you check the Small Data2 checkbox, the related text box enables. In this text box, type
the address at which you want the linker to place the second small data section. The
address entered must be in hexadecimal format (for example, 0x1000ABCD). Further, the
address entered must be supported by your target board and must not conflict with the
memory map of this board. Finally, all types of data must reside in RAM.

NOTE The CodeWarrior development tools create the three small data sections
required by the PowerPC EABI specification.
Further, the CodeWarrior tools let you define additional small data sections.
See the Power Architecture Build Tools Reference for instructions that explain
how to do this.

Generate S-Record File

Check the Generate S-Record File checkbox to instruct the linker to generate an S-Record
file based on the application object image. This file has the same name as the executable
file, but with a . mot extension. The linker generates S3 type S-Records.

Sort S-Record

Check the Sort S-Record checkbox to have the generated S-Record file sorted in the
ascending order by address.

This checkbox is available only if you check the Generate S-Record File checkbox.

84

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Max Length

Use the Max Length text box to define the maximum length of the S-Records generated by
the linker. The maximum value allowed for an S-Record length is 256 bytes.

This text box is available only if you check the Generate S-Record File checkbox.

NOTE Most programs that load embedded software have a maximum S-Record
length. The CodeWarrior debugger can handle S-Records up to 256 bytes long.
If you are using something other than the CodeWarrior debugger to load your
embedded application, you must find out what the maximum allowed length is.

EOL Character

Use the EOL Character dropdown menu to select the end-of-line character for the
S-Record file. The end of line character options are:

e <cr><1f> for DOS
e <1f> for Unix
e <cr> for Mac

This menu is available only if the Generate S-Record File checkbox is checked.

Entry Point
Use the Entry Point text box to specify the function that the linker uses first when the
program launches. This is the starting point of the program.

The default ___start function is bootstrap (or glue) code that sets up the PowerPC EABI
environment before your code executes. This function is in the __start. c file. The
final task performed by ___start is to call your main () function.

EPPC Linker Optimizations

Use the EPPC Linker Optimizations target settings panel to configure the EPPC linker’s
code merging feature.

Figure 3.15 shows the EPPC Linker Optimizations target settings panel.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 85

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Figure 3.15 EPPC Linker Optimizations Panel

R EPPC Linker Optimizations

r— Code Optimizations
Code Merging———————— | [~ FartoMear Addreszing
off hd " %LE Shorten Branches
™| Aogressive Merging
[™ %LE Enhance Merging

Code Merging

Use the Code Merging dropdown menu to select the type of code merging you want the
linker to perform. Code merging is a size optimization that removes duplicated functions.

The options are:
e Off
The linker performs no code merging.
» Safe Functions
The linker removes only those functions that are weakly duplicated.
¢ All Functions

The linker removes all duplicated functions.

Aggressive Merging
Check to have the linker perform aggressive merging for the selected code merge type.

When performing an aggressive merge, the linker removes a duplicated function even if
the function’s program uses the function’s address.

NOTE Aggressive merging is not ANSI-compliant.

When performing a non-aggressive merge, the linker does not remove a duplicated
function if the function’s program uses that function’s address; instead, the linker replaces
the function with a single instruction — a branch to its duplicate function.

Consider the code shown in Listing 3.3.

86

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Listing 3.3 Source Code that Uses the Addresses of Functions

pfl = &func_1;
pf2 = &func_2;
if (pfl !'= pf2)

return 0;

else

return 1;
//where pfl and pf2 are pointers to functions

In the code shown above, you probably must preserve distinct objects for func_1 and
func_2, even if the functions contain identical code. As a result, you must choose a non-
aggressive merge.

However, if your code just takes function addresses to initialize function pointers and does
not do address comparisons (as in the above example), you can use an aggressive merge.

VLE Enhance Merging

Check to have the linker perform enhanced merging for the selected code merge type.

Checking this option removes duplicated functions that are called by functions that use
VLE instructions to reduce object code size.

When applying the code merging optimization, this linker optimization ensures that
function calls that use VLE (Variable Length Encoding) instructions are able to reach a
function that has been removed. This optimization replaces the 16-bit se_bl instruction
with a 32-bit e_bl instruction.

When this option is not used, the linker does not merge functions that are called by
functions that use VLE instructions. This optimization requires that the target processor
has the Variable Length Encoding (VLE) extension. This optimization has no effect when
the linker is not applying the code merging optimization.

NOTE The linker does not apply this optimization to functions that are declared with
the _ declspec (no_linker_opts) directive.

Far to Near Addressing

Check this option to simplify address computations by reducing object code size and
improving performance.

This linker optimization simplifies address computations in object code. If an address
value is within the range that can be stored in the immediate field of the load immediate

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 87

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

instruction, the linker replaces the address’s two-instruction computation with a single
instruction. An address value that is outside this range still requires two instructions to
compute.

The ranges of values that may be stored in the immediate field is -0x7£££ to 0x8000
for the regular 11 instruction and -0x7££££f to 0x80000 for e_11, the VLE (Variable
Length Encoding) instruction.

NOTE The linker does not apply this optimization to functions that are declared with
the _ declspec (no_linker_opts) directive.

VLE Shorten Branches

Check this option to replace branch instructions to reduce object code size.

This linker optimization replaces each 32-bit e_b1 instruction with a 16-bit se_bl
instruction for a function call when the span of memory between the calling function and
called function is sufficiently close.

This optimization requires that the target processor has the Variable Length Encoding
(VLE) extension.

NOTE The linker does not apply this optimization to functions that have been declared
with the __declspec (no_linker_opts) directive.

GNU Post Linker

Use the GNU Post Linker target settings panel to specify command-line arguments to be
passed to the GNU post-linker utility. This utility is specified in the Post Linker text box
of the GNU Tools target settings panel.

NOTE The GNU Post Linker panel appears in the panel list of the Target Settings
window only if you select EPPC GNU Post-linker or EPPC Linux GNU
Post-linker from the Post-linker menu of the Target Settings panel.

Figure 3.16 shows the GNU Post Linker target settings panel.

88 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Figure 3.16 GNU Post Linker Panel
H GMU Post Linker

Carnrmand Ling Arguments:

Command Line Arguments

In the Command Line Arguments text box, type the command-line arguments to be passed

to the post-linker specified in the GNU Tools target settings panel.

GNU Linker

Use the GNU Linker target settings panel to specify command-line arguments to be
passed to the GNU linker.

Figure 3.17 shows the GNU Linker target settings panel.

Figure 3.17 GNU Linker Panel

H GMU Linker

LinkerA&rchiver Flags:

Libraries:

Linker/Archiver Flags

In the Linker/Archiver text box, type the command-line arguments to be passed to the
GNU linker specified in the Target Settings panel.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

89

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Figure 3.18

Libraries

In the Linker/Archiver text box, type the names of the libraries with which to link the
binary generated by the current build target.

BatchRunner PreLinker

Use the BatchRunner PreLinker target settings panel to specify the batch file that the
BatchRunner PreLinker runs. The pre-linker runs this batch file immediately before the
linker is invoked.

Figure 3.18 shows the BatchRunner PreLinker target settings panel.

NOTE This panel is available only if you select BatchRunner PreLinker from the
Target Settings panel’s Pre-linker menu.

BatchRunner PreLinker Panel

N BatchRunner Prelinker

Select the batch file to mn before a link

Eatch file;

| Choosze... I
Clear I

Cdeindnw:lMinimize vl

Batch file

Click the Choose button to display the Select Batch/Command File dialog box. Use this
dialog box to select a batch file for the IDE to run prior to invoking the linker.

Cmd Window

Select an option from the Cmd Window dropdown menu to define the behavior of the
Windows operating system’s command window (cmd . exe) while the specified batch file
executes.
The options are:
¢ Minimize
Select this option if you want the command window to be minimized to the Windows
task bar while the specified batch file executes.

90

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

¢ Show

Select this option if you want the command window to be visible while the specified
batch file executes.

¢ Hide

Select this option if you want the command window to be invisible while the
specified batch file executes.

BatchRunner PostLinker

Use the BatchRunner PostLinker target settings panel to specify the batch file that the
BatchRunner PostLinker runs. The post-linker runs this batch file immediately after the
linker terminates.

NOTE This panel is available only if you select BatchRunner PostLinker from the
Target Settings panel’s Post-linker menu.

Figure 3.19 shows the BatchRunner PostLinker target settings panel.

Figure 3.19 BatchRunner PostLinker Panel

N BatchRunner PostLinker

Select the batch file ta mun after the successful link
Eatch file:

Chooze. .. I
| Clear I

—I Argument [Pass linker output file a3 %1 parameter to batch file)
%) Hame of the linker outgut file
= FullPath of the linker output file

—wiorking Directory
& Linker output directory
= Batch file directary

Crnd Wwindion: I kinimize = I

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 91

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Batch File

Use the Batch File text box to define the batch file that the BatchRunner Post-Linker runs.

Because this text box is read-only, you cannot type the batch file name into this box.
Instead, click Choose to display the Select Batch/Command file dialog box, and use this
dialog box to select the batch file for the BatchRunner Post-Linker to run.

Argument (Pass linker output file as %1
parameter to batch file)

The Argument option buttons let you select the value that the BatchRunner Post-Linker
passes as the 1 parameter to the batch file this post-linker runs.

The options are:
* Name of linker output file

Select this option to instruct the Batch File Post-Linker to pass the root file name of
the linker output file as the $1 parameter of the batch file the post-linker runs.

This file name is specified in the File Name text box of the EPPC Target panel.
* FullPath of the linker output file

Select this option to instruct the Batch File Post-Linker to pass the full path of the
directory to which the linker writes its output the $1 parameter of the batch file the
post-linker runs.

This linker output directory is specified in the Output Directory text box of the
Target Settings panel.

Working Directory
The Working Directory option buttons let you select the working directory for the batch
file the Batch File Post-Linker runs.
The options are:
* Linker output directory

Select this option to make the directory to which the linker writes a build target’s
output file the batch file’s working directory. This directory is defined in the
Target Settings panel.

¢ Batch file directory

Select this option to make the directory in which the batch file resides the batch file’s
working directory.

92

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Cmd Window

Select an option from the Cmd Window dropdown menu to define the behavior of the
Windows operating system’s command window (cmd . exe) while the specified batch file
executes.

The options are:
¢ Minimize
Select this option if you want the command window to be minimized to the Windows
task bar while the specified batch file executes.
* Show

Select this option if you want the command window to be visible while the specified
batch file executes.

¢ Hide

Select this option if you want the command window to be invisible while the
specified batch file executes.

GNU Environment

Use the GNU Environment target settings panel to define environment variables that the
GNU compiler, linker, assembler, and other build tools can reference.

NOTE If you add environment variables to this panel, the IDE will use the copy of
cygwinl.dll inthe installDir\Cross_Tools\ directory to invoke
the GNU build tools. If you have Cygwin installed elsewhere on your system
and want the IDE to use the copy of cygwinl .d11 in this installation, do not
add any environment variables to this panel.

Figure 3.20 shows the GNU Environment target settings panel.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 93

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Figure 3.20 GNU Environment Panel

H GMU Enviranment

E Ervdironment Y ariable | Y alue
tmp =hmp -
compiler_dir hgochbin

— Erwironment VW ariable Setting:
Errdiranment Y ariable : Icompiler_dir
Walue : |c:\gcc'\bin
Add | Change | Remaove |

Environment Variable/Value List Box

This Environment Variable/Value list box displays each environment variable/value pair
currently defined.

If click on an entry in this list box, the environment variable name contained in this entry
appears in the Environment Variable text box, and the value contained in this entry
appears in the Value text box. You can then modify these strings using these text boxes.

Environment Variable

Use the Environment Variable text box, to enter the name of the environment variable you
want to add, change or remove.

To add an environment variable:

1. Type the variable’s name in the Environment Variable text box
2. Type the variable’s value in the Value text box

3. Click Add.

The new environment variable/value pair appears in the Environment Variable/Value
list box.

To change the name or value of an environment variable:

94

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

1. Click the entry in the Environment Variable/Value list box for the environment
variable you want to change.

The environment variable name contained in this entry appears in the Environment
Variable text box, and the value contained in this entry appears in the Value text box.

2. Optionally, modify the name in the Environment Variable text box.
3. Optionally, modify the value in the Value text box.
4. Click Change.

The modified environment variable name and/or value appears in the Environment
Variable/Value list box.

To remove an environment variable:

1. Click the entry in the Environment Variable/Value list box for the environment
variable you want to remove.

The environment variable name contained in this entry appears in the Environment
Variable text box and the value contained in this entry appears in the Value text box.

2. Click Remove.

The selected environment variable is removed from in the Environment Variable/
Value list box.

Value

Use the Value text box, to enter the name of the environment variable you want to add,
change, or remove.

See the Environment Variable topic for instructions that explain how to add, change, and
remove an environment variable.

GNU Tools

Use the GNU Tools settings panel to specify the path to the GNU build tools and to define
the particular tool within a tool class (compiler, archiver, etc.) the IDE uses.

Figure 3.21 shows the GNU Tools target settings panel.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 95

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Figure 3.21 GNU Tools Panel

N GHU Taols
—Iv Use Custom Tool Commatids

Toal Path: Ippc'\tools'\gcc-S.3.2-glil:u:-2.3.2\powerpc-linu>:'\birl Choose. .. |

r— Commatds:
Carnpiler: IQCC
Linker: Igcc
Archiver: Iar
Size Reporter: ISiZB
Dizaszembler: Iobidump
Azzembler: IaS
Post Linker: ISlfiD

[Display generated command lines

Use Custom Tool Commands

Check the Use Custom Tool Commands checkbox if you want to specify your own tools
path or tools executables.

Tool Path

Use the Tool Path text box to enter the path to the cross-compiler tools on your system.

Commands

Use the text boxes in the Commands group box to enter the names of the GNU tools you
want to use.

The Commands group box has these text boxes:
¢ Compiler
Enter the name of the compiler that you want to use.
¢ Linker
Enter the linker that you want to use.
¢ Archiver

Enter the archiver that you want to use.

96 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

* Size Reporter

Enter the size reporter utility that you want to use.
* Disassembler

Enter the disassembler utility that you want to use.
* Assembler

Enter the assembler utility that you want to use.
* Post Linker

Enter the post linker that you want to use.

NOTE The specified post linker runs only if you select EPPC Linux GNU Post-linker
from the Post-linker dropdown menu of the Target Settings panel.

Display generated command lines

Check the Display generated command lines checkbox if you want the IDE to display each
command line it passes to the GNU build tools during the build process.

Console I/O Settings

Use the Console 1/0 Setting target settings panel to define the locations to which stdin,
stdout, and stderr are redirected when a Linux application is run under control of the
debugger.

NOTE The Console I/0O Settings panel is not present in the panel list of the Target
Settings window unless the build target’s remote connection is EPPC Linux
CodeWarrior TRK.

For instructions that explain how to assign a remote connection to a build
target, see Working with Remote Connections.

Figure 3.22 shows the Console I/O Setting target settings panel.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 97

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Figure 3.22 Console I/O Settings Panel

N Consale [/0 Settings

= Stdin:lDebugger vl

File M arme: I

= Stdout:lDebugger VI
File M arme: I

= Stden:lDebugger vl
File M arme: I

You can redirect stdin, stdout, and stderr to:
¢ A file on the target system
* The debugger’s console window
* The console window from which you launched CodeWarrior TRK (also known as)

In most cases, to redirect stdin, stdout, or stderr to a file on the target system, you
must specify the full target-side path of the file as well as the file name. However, if the

target-side location of the file to which you want to redirect input or output is the same as
the directory in which CodeWarrior TRK resides, you must only supply the root file name.

Stdin
Use the Stdin dropdown menu to define the place from which data an application reads
from stdin comes while the application is running under control of the debugger.
The options are:

 File

Select File if you want the data the application being debugged reads from stdin to
come from the specified target-side file.

¢ Debugger

Select Debugger if you want the data the application being debugged reads from
stdin to come from the debugger’s console window.

¢ Console I/0

98

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Select Console I/0 if you want the data the application being debugged reads from
stdin to come from the console window from which CodeWarrior TRK was
launched.

Stdout

Use the Stdout dropdown menu to define the place at which data an application writes to
stdout appears while the application is running under control of the debugger.

The options are:
* File

Select File if you want the data the application being debugged writes to stdout to
appear in the specified target-side file.

¢ Debugger

Select Debugger if you want the data the application being debugged writes to
stdout to appear in the debugger’s console window.

¢ Console I/0

Select Console I/0 if you want the data the application being debugged writes to
stdout to appear in the console window from which CodeWarrior TRK was
launched.

Stderr

Use the Stderr dropdown menu to define the place at which data an application writes to
stderr appears while the application is running under control of the debugger.

The options are:
* File
Select File if you want the data the application being debugged writes to stderr to
appear in the specified target-side file.
¢ Debugger

Select Debugger if you want the data the application being debugged writes to
stderr to appear in the debugger’s console window.

¢ Console I/0

Select Console I/0 if you want the data the application being debugged writes to
stderr to appear in the console window from which CodeWarrior TRK was
launched.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 929

Target Settings Reference

Power Architecture ™-specific Target Settings Panels

Debugger Signals

Use the Debugger Signals target settings panel to define how CodeWarrior TRK (also

known as) handles Linux signals on behalf of the debugger.

NOTE The Debugger Signals panel is not present in the panel list of the Target
Settings window unless the build target’s remote connection is EPPC Linux

CodeWarrior TRK.

For instructions that explain how to assign a remote connection to a build

target, see Working with Remote Connections.

Figure 3.23 shows the Debugger Signals target settings panel.

Figure 3.23 Debugger Signals Panel

N Debuager Signals

CFP
[~ ™ SIGHUP (1)

¥ [~ SIGINT (2
™ ¥ SIGQUIT (3]
VI SIGILL (4]
¥ [~ SIGTRAR (5
[T ¥ SIGABRT (8]
[¥ SIGBUS [7)
¥ [SIGFPE (3]
¥ | SIGKILL [3)F
¥ [~ SIGUSR1 [10)

Sighal Handling [check signals ta [Clatch and [Flazs on]

CFP
[T ™ SIGSEGY (1]

[¥ SIGUSRZ(12)
[~ ¥ SIGRIFE (13]
[T ¥ SIGALRM [14]
[¥ SIGTERM [15]
[¥ SIGSTEFLT [1E)
[¥ SIGCHLD (17)
[¥ SIGCONMT (18]
¥ [~ SIGSTOP [19)
[¥ SIGTSTP(20)

CFP
[T ™ SIGTTIN [(21]

[T ¥ SIGTTOU (22]
¥ [~ SIGURG [23F
[T ¥ SIGHCPU [24)
[T ¥ SIGHFSZ (25)
[T ¥ SIGYTALRM [26)
[¥ SIGPROF [27)
[T ¥ SIGWINCH [29)
" SIGI0 [29)

[T ¥ SIGPwWR (20]

* - If zatch iz unselected these may affect the debugager's ability ta contral the process

For a given signal:

* If you check just the C (catch) checkbox, when the signal is raised, CodeWarrior
TRK sends an event to the debugger. When the debugger user continues the process
being debugged, CodeWarrior TRK does not pass the signal to this process.

* If you check just the P (pass on) checkbox, when the signal is raised, CodeWarrior
TRK passes the signal to the process being debugged. In this case, CodeWarrior

TRK does not send an event to the debugger.

* If you check both the C and the P boxes, when the signal is raised, CodeWarrior TRK
sends an event to the debugger. Then, when the debugger user continues the process
being debugged, CodeWarrior TRK passes the signal to this process.

100 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

* If you uncheck both the C and P boxes, when the signal is raised, CodeWarrior TRK
squelches it. In other words, CodeWarrior TRK does not pass the signal to the
debugger or to the process being debugged.

To ensure that the CodeWarrior debugger can control the process being debugged, always
check C for these signals:

e SIGINT
e SIGILL
* SIGTRAP
* SIGKILL
* SIGURG

Debugger PIC Settings

Use the Debugger PIC Settings target settings panel to specify an alternate address for
the debugger to load a PIC module on a target board.

Usually, Position Independent Code (PIC) is linked in such a way that the entire image
starts at address 0x00000000. The Debugger PIC Settings panel lets you specify an
alternate address at which the debugger will load the PIC module in target memory.

Figure 3.24 shows the Debugger PIC Settings target settings panel.

Figure 3.24 Debugger PIC Settings Panel

N Debugger PIC Settings

[~ Alernate Load Address
Lmnnnnnnnn

Alternate Load Address

To specify an alternate load address, check the Alternate Load Address checkbox and then
type the alternate address in the associated text box. The debugger will load your binary
on the target at the specified address.You can also use this setting when you have an
application which is built with ROM addresses and then relocates itself to RAM (such as
U-Boot). Specifying a relocation address lets the debugger map the symbolic debugging
information contained in the original ELF file (built for ROM addresses) to the relocated
application image in RAM.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 101

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

NOTE The debugger does not verify whether your code can execute at the new
address. As a result, the PIC generation settings of the compiler, linker and
your program's startup routines must correctly set any base registers and
perform any required relocations.

EPPC Debugger Settings

Use the EPPC Debugger Settings target settings panel to provide information the
debugger needs to work with the target and to define how and when the debugger

downloads portions of your binary to the target.
Figure 3.25 shows the EPPC Debugger Settings target settings panel.

Figure 3.25 EPPC Debugger Settings Panel
N EFPC Debugger Settings

Proceszor Fami|_'.JZ|52HH vl Target DS:lBareBoard j
Target F'rc:cessor:|52DD vl [~ SMP Target

—[w Usze Target Initialization File

|owerF'E_Ef-'«Bl_Support\InitiaIization_FiIe&\52ﬂ:-:\Lit852DD_init.u:fg Browse... |

— v Use Memary Configuration File
|owerF'E_Ef-'«BI_Support'\Initialization_FiIe&\Memu:ur_l.J\Lite52DD.mem Browse... |

— Program Download Options . ; _
Imitial Launch | Successive Runs - Relleneiiiics
Stop oh exit point
Executable v Ewecutable [v i i
Constant Data v Conztant Data [v
Initialized Data v Initialized Crata [
Uninitialized Data [Uninitialized Data [~

Processor Family

Use the Processor Family dropdown menu to select the processor family of the processor
on your target board. The family that you select defines the processors that appear in the
Target Processor dropdown menu. (See below.)

Target Processor

Use the Target Processor dropdown menu to select the processor on your target board.

102 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Target OS

Use the Target OS dropdown menu to select the operating system running on your board.
The choices are:
* BareBoard
Enables bare board debugging.
Select this option if you are not using an operating system.
* OSEK
Enables OSEK Aware debugging.

Select this option if your board is running an implementation of the OSEK real-time
operating system.
Selecting OSEK enables OIL (Object Interface Language) support which, in turn,

lets the debugger interpret the information in the ORTI (OSEK Run Time Interface)
file generated when you built your OSEK image.

SMP Target

Check the SMP Target checkbox if you want to use symmetric multiprocessing (SMP)
debugging mode. The SMP debugging mode involves debugging a single executable
image that is shared by multiple cores. SMP mode implies a shared memory model.
Consequently, there is a single CodeWarrior project for the application that is shared by
all the cores.

NOTE SMP mode can be used only for 8641D core #0. In the Remote Debugging
Panel, check the Multi-Core Debugging checkbox and select Core Index #0.

Use Target Initialization File

Check the Use Target Initialization File checkbox if you want the current build target to
use a target initialization file. Type the full path and name of the initialization file you
want, or click Browse to display a dialog box with which you can select the required file.

NOTE The New Project Wizard automatically selects the correct target initialization
files for the board selected at wizard-time.

Sample target initialization files are in the PQ1, PQ2, PQ3, Host, and 52xx
subdirectories of this path:

installDir\PowerPC_EABI_Support\Initialization_Files\

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 103

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

See Target Initialization Files for documentation that explains the purpose of these files
and the commands that can appear in them.

Use Memory Configuration File

Check the Use Memory Configuration File checkbox if you want to use a memory
configuration file. Type the full path and name of the memory configuration file you want,
or click Browse to display a dialog box with which you can select the required file.

A memory configuration file defines the memory access rules (restrictions, translations)
used each time the debugger needs to access memory on the target board.

Sample memory configuration files are in this directory:
installDir\PowerPC_EABI_Support\Initialization_Files\memory\

If you are using a memory configuration file and you try to read from an invalid address,
the debugger fills the memory buffer with a reserved character (defined in the memory
configuration file).

If you try to write to an invalid address, the write command is ignored and fails.
You can change a memory configuration file during a debug session.

See Memory Configuration Files for documentation that explains the purpose of these
files and the commands that can appear in them.

Program Download Options
Use the options in the Program Downloads group box to define the sections of your
program that the debugger downloads to the target board initially and on successive runs.

The initial run is the first time the debugger downloads your program to the target board
for execution.

Successive runs are the second through last times the debugger downloads your program
to the target board for execution.

The program section download options are:
* Executable
Executable sections contain your program’s code.

Check the Executable box in the Initial Launch group to instruct the debugger to
download your program’s executable sections to the target board the first time the
debugger runs the program.

Check the Executable box in the Successive Runs group to instruct the debugger to
download the executable sections on each successive run of the program.

¢ Constant Data

Constant data sections contain your program’s constants.

104

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Check the Constant Data box in the Initial Launch group to instruct the debugger to
download your program’s constant data sections to the target board the first time the
debugger runs the program.

Check the Constant Data box in the Successive Runs group to instruct the debugger
to download the constant data sections on each successive run of the program.

¢ Initialized Data
Initialized data sections contain your program’s modifiable data.

Check the Initialized Data box in the Initial Launch group to instruct the debugger to
download your program’s initialized data sections to the target board the first time
the debugger runs the program.

Check the Initialized Data box in the Successive Runs group to instruct the debugger
to download the initialized data sections on each successive run of the program.

¢ Uninitialized Data
Uninitialized data sections contain your program’s uninitialized variables.

Check the Uninitialized Data box in the Initial Launch group to instruct the debugger
to download your program’s uninitialized data sections to the target board the first
time the debugger runs the program.

Check the Uninitialized Data box in the Successive Runs group to instruct the
debugger to download the uninitialized data sections on each successive run of the
program.

NOTE You do not need to download uninitialized data if you are using CodeWarrior
runtime code because this code initializes this data for you.

Verify Memory Writes

Check the Verify Memory Writes checkbox to instruct the debugger to verify that each
program section is downloaded to the target without error. The debugger then verifies that
sections selected to be downloaded are written correctly to the target board's memory.
However, the debugger does not check for modified data in other sections.

Stop on exit point

Check the Stop on exit point checkbox to instruct the debugger to set a breakpoint at the
exit point of the code. This is valid for CodeWarrior but not for other runtime
environments like VxWorks. In case of multi-core projects if you set the checkbox for a
project on one core it is set for projects on both the cores.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 105

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

System Controller

Select the system controller on the target processor. This setting controls which system
controller registers the IDE displays in the Register Details window during a debug
session.

NOTE The System Controller dropdown menu is only available if you select a Host
processor (such as 7xx or 74xx) from the Processor dropdown menu.

Table 3.7 lists and describes each item in the System Controller menu.

Table 3.7 System Controller Menu ltems

Item Description

None Display no system controller registers; show only CPU registers.
107 Display the MPC107 system controller registers.

109 Display the Tundra 109 system controller registers.

NOTE Setting the System Controller option to a system controller other than the one
on the target system, and then using the Register Details window to view the
system controller registers on the target system may cause target instability.

EPPC Exceptions

The EPPC Exceptions target settings panel lists each of the EPPC exceptions that the
CodeWarrior debugger can catch.

Use this panel to select the EPPC exceptions that you want the debugger to catch.

NOTE This panel applies only to processors that have BDM and PQ3 debug module.

EPPC Exceptions for BDM Target

Check all of the checkboxes in this panel if you want the debugger to catch all the listed
exceptions. Clear the checkboxes for those exceptions that you would prefer to handle. By
default, catching all exceptions is enabled for BDM target.

Figure 3.26 shows the EPPC Exceptions target settings panel for BDM target.

106

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Figure 3.26 EPPC Exceptions Panel for BDM Target

N EPPC Exceptions

Esception handling currently only supported far EFPC BDM T argets.

Exception Handling [check the exceptions to alwayps catch)

[w 0240000000 System Feset

[w 0=20000000 Check Stop

v 0x10000000 M achine Check.

v Dx02000000 E stermal

[0201000000 Alighment
[wT-0=00200000 Pragram?
F%HDDJMDDDD Flaating Paint Unavailable
v Dx00200000 Decrementer

[v 0200040000 Systemn Call

v Dx00020000 Trace

100004000 Software Enulation®
1400002000 [nstruction TLE Miss
1400007000 [nstruction TLE Errar
0=00000200 Data TLE Miss
(+00000400 Data TLE Error
0x00000008 Load/Store Breakpaoint
0=00000004 [nstruction Breakpaint
0«00000002 E sternal Breakpoint
0x00000007 Development Paort*

A ARA

* - If unzelected theze may affect the debugger's ability to control target

The settings in this panel define the value to which the target EPPC processor’s Debug
Enable Register (DER) is set. The value of the DER register, in turn, defines which
exceptions are caught and which are ignored by the processor’s Background Debug
Module (BDM) on-chip debug interface. Consult your processor’s documentation for
more information about the DER register and BDM.

To ensure that the CodeWarrior debugger works properly, always check these exceptions:
* 0x00800000 Program — for software breakpoints on some boards
* 0x00020000 Trace — for single stepping

¢ 0x00004000 Software Emulation — for software breakpoints on some
boards

* 0x00000001 Development Port — for halting the target processor.

EPPC Exceptions for PQ3 Target

Check the checkboxes in this panel if you want the debugger to catch the required
exceptions. By default, catching all exceptions is disabled for PQ3 target. Only the Debug
exception is caught, as the debugger uses this exception for setting breakpoints. Catching
the debug exception cannot be unset.

Figure 3.26 shows the EPPC Exceptions target settings panel for PQ3 target.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 107

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Figure 3.27 EPPC Exceptions Panel for PQ3 Target

R EPPC E=ceptions

E xception Handling [check the exceptions to always catch)

[~ Critical input [“watchdog Timer

™ Machine Check [Data TLE Emar

[" Data Storage [Instruction TLE Erar
™ Instruction Storage ¥ Debug:

[~ Extemal " Performance Moritor
[~ alignment

[~ Program

[~ System Call

" Decrementer
[Fixed Interval Timer

* - [F unzelected these may affect the debugger's ability to control target

Checking any of the checkboxes configures the core to automatically halt when the
corresponding exception is taken. The debugger stops at the entry point of the interrupt
handler for the selected exception, allowing you to inspect the processor state and
continue debugging from there.

To ensure that the CodeWarrior debugger works properly, the debug exception is always
set. Catching the selected exceptions works only if the target is debugged. Make sure that
you click only the Debug icon.

NOTE Catching PQ3 exceptions is not supported for e500 simulator.

EPPC Trace Buffer

Use the EPPC Trace Buffer target settings panel to configure the trace events you want
to capture while debugging a target equipped with a trace buffer.

The options in this panel correspond to bits in the trace configuration registers TBCRO and
TBCRI, the address register TBAR, the address mask register TBAMR, and the transaction
mask register TBTMR.

NOTE For more information about using the EPPC trace buffer with the debugger, see
the EPPC Trace Buffer Support topic.

Figure 3.28 shows the EPPC Trace Buffer target settings panel.

108

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Figure 3.28 EPPC Trace Buffer Panel

N EFPLC Trace Buifer
[~ Enable Trace collection on Launch Interface Selection:
Coherency module dizpatch -
[Tranzaction Match Dizable I v P J
Start Condition:
[~ Equal Context Enable IImmediateI_l,J ﬂ
[~ Mot Equal Context Enable Stap Condiion:
[Trace Only in TRACE event |Euffer iz full j
—I SourcelD Enable———— — [Target ID Enable
EIEES =] IS =]
—I— Address Match Enable
Trace Address Trace &ddress Mask
’7 IEmpt_l,J ’7 IEmpt_l,l

Enable Trace collection on Launch

Check the Enable Trace collection on Launch checkbox to start trace event collection
when you connect to the target board. The monitor configures the trace buffer each time
you do a software or hardware reset from the CodeWarrior debugger. The trace buffer can
be reconfigured at any time during a debug session.

Transaction Match Disable

Check the Transaction Match Disable checkbox to ignore the transaction type match when
the monitor receives a trace buffer event. Clear this checkbox to have the monitor report
only transaction types that match the transaction mask from the TBTMR register.

NOTE Currently, the debugger reports all possible transaction types for a particular
interface.

Equal Context Enable

Check the Equal Context Enable checkbox to record trace events only if the current
context (the value of CCIDR register) is equal to the programmed context (the value of
PCIDR register).

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 109

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

NOTE Do not check this checkbox and the Not Equal Context Enable checkbox at the
same time. If both checkboxes are checked, the watchpoint monitor will not
record trace events.

Not Equal Context Enable

Check the Not Equal Context Enable checkbox to record trace events only if the current
context (the value of CCIDR register) is not equal to the programmed context (the value of
PCIDR register).

NOTE Do not check this checkbox and the Equal Context Enable checkbox at the
same time. If both checkboxes are checked, the watchpoint monitor will not
record trace events.

Trace Only in TRACE Event

Check the Trace Only in TRACE Event checkbox to trace only cycles in which the
monitor detects a trace event. Clear this checkbox to have the monitor trace all valid
transactions.

NOTE If the trace buffer is not properly configured to specify traceable events, the
monitor traces every valid address.

Interface Selection

Select an item from the Interface Selection dropdown menu to specify the interface you
want to trace. Selecting an interface activates tracing for all possible transaction types
specific to that interface.

For more information see the description of Trace Buffer Transaction Mask Register
(TBTMR) in the MPC8560 Reference manual.

Start Condition

Select an item from the Start Condition dropdown menu to define the event that causes the
monitor to start watching for traceable events.

Table 3.8 lists and describes the items in this menu.

110

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Table 3.8 Start Conditions

Item

Description

Immediately

Start tracing immediately after configuring the
trace buffer.

Watchpoint event detected

Start tracing when the monitor detects a
watchpoint event.

Trace Buffer event detected

Start tracing when the monitor detects a trace
buffer event.

Performance monitor overflow

Start tracing when the performance monitor
signals that an overflow occurred.

TRIG_IN 0 to 1 transition

Start tracing when the value of the TRIG_IN
signal changes from 0 to 1.

TRIG_IN 1 to 0 transition

Start tracing when the value of the TRIG_IN
signal changes from 1 to 0.

Context: Current == programmed Start tracing when the current context ID is equal

to the programmed context ID.

Context: Current != programm

ed Start tracing when the current context ID is not
equal to the programmed context ID.

Stop Condition

Select an item from the Stop Condition dropdown menu to define the event that causes the
monitor to stop watching for traceable events.

Table 3.9 lists and describes the items in this menu.

Table 3.9 Stop Conditions

Item

Description

Buffer is full

Stop tracing once all 256 elements of the trace
buffer are recorded.

Watchpoint event detected

Stop tracing once the monitor detects a watchpoint
event.

Trace Buffer event detected

Stop tracing once the monitor detects a trace event.

Targeting Power Architecture™ Processo

rs, Pro/Linux® Application Editions 111

Target Settings Reference

Power Architecture ™-specific Target Settings Panels

Table 3.9 Stop Conditions (continued)

Item

Description

Performance monitor overflow

Stop tracing when the performance monitor signals
that an overflow occurred.

TRIG_IN 0 to 1 transition

Start tracing when the value of the TRIG_1IN signal
changes from 0 to 1.

TRIG_IN 1 to 0 transition

Start tracing when the value of the TRIG_IN signal
changes from 1 to 0.

Context: Current == programmed

Start tracing when the current context ID is equal to
the programmed context ID.

Context: Current != programmed

Start tracing when the current context ID is not
equal to the programmed context ID.

Source ID Enable

Check the Source ID Enable checkbox and select a block or port from the dropdown menu
to record only trace events whose transaction source ID matches the selected block or port.

Table 3.10 lists the valid source IDs.

Table 3.10 Transaction Source Identifiers

PCI1 CPM
PCI2 DMA
PCI Express SAP
Local Bus Ethernet 0
Security Ethernet 1
Config Space Ethernet 2
Boot Sequencer Ethernet 3

Rapid 10

Rapid IO Message

Local Space DDR

Rapid 10 Doorbell

Local Processor Instruction Fetch

Rapid IO Port Write

Local Processor Data Fetch

112

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

NOTE If you select an invalid block or port, no transaction will target the specified
block or port and, as a result, the monitor will not record trace events.

Target ID Enable

Check the Target ID Enable checkbox and select a block or port from the dropdown menu
to record only trace events whose transaction target ID matches the selected block or port.

Table 3.11 lists the valid target IDs.

Table 3.11 Transaction Target IDs

PCH CPM

PCI2 DMA

PCI Express SAP

Local Bus Ethernet 0
Security Ethernet 1

Config Space Ethernet 2

Boot Sequencer Ethernet 3

Rapid IO Rapid IO Message
Local Space DDR Rapid |0 Doorbell
Local Processor Instruction Fetch Rapid IO Port Write
Local Processor Data Fetch

NOTE If you select an invalid block or port, no transaction will target the specified
block or port, and as a result, the monitor will not record trace events.

Address Match Enable

Check the Address Match Enable checkbox to record only trace events whose trace
address matches the transaction address. Enter an address in the Trace Address text box.
Enter a mask in the Trace Address Mask text box. The monitor masks the trace address by
excluding the address mask bits before comparison.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 113

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

Source Folder Mapping

Use the Source Folder Mapping target settings panel if you are debugging an ELF binary
that was built in one place, but which is being debugged from another.

The mapping information you supply lets the CodeWarrior debugger find and display the
binary’s source code files even though they are not in the locations specified in the ELF
file’s debug information.

NOTE If you create a CodeWarrior project by opening an ELF file in the IDE, the IDE
automatically creates entries in the Source Folder Mapping panel. The IDE
creates these entries using the current folder information you provide during
the project creation process and the existing folder information in the ELF’s
debug information.

Figure 3.29 shows the Source Folder Mapping target settings panel.

Figure 3.29 Source Folder Mapping Panel

§ Source Folder Mapping

|E Build Folder | Current Folder
feob 1 C:hmy_zource ﬂ
fvob 2 D:my_backup

[

Source File Mapping:

Build Folder: I.f'vob_2 Brawse |
Current Folder: ID:\my_backup Browwse I

4dd Lhange I Hemnvel

Build Folder

Use the Build Folder text box to enter the path that contained the executable’s source files
when this executable was originally built. Alternatively, click Browse to display a dialog
box you can use to select the correct path.

The supplied path can be the root of a source code tree. For example, if your source code
files were in the directories.

114 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

/vob/my_project/headers
/vob/my_project/source

you can enter /vob/my_project in the Build Folder text box.

If the debugger cannot find a file referenced in the executable’s debug information, the
debugger replaces the string /vob/my_project in the missing file’s name with the
associated Current Folder string and tries again. The debugger repeats this process for
each Build Folder/Current Folder pair until it finds the missing file or no more folder pairs
remain.

Current Folder

Use the Current Folder text box to enter the path that contains the executable’s source files
now, that is, at the time of the debug session. Alternatively, click Browse to display a
dialog box you can use to select the correct path.

The supplied path can be the root of a source code tree. For example, if your source code
files are now in the directories

C:\my_project\headers
C:\my_project\source

you can enter C: \my_project in the Current Folder text box.

If the debugger cannot find a file referenced in the executable’s debug information, the
debugger replaces the Build Folder string in the missing file’s name with the string
C:\my_project and tries again. The debugger repeats this process for each Build
Folder/Current Folder pair until it finds the missing file or no more folder pairs remain.

Add

Click the Add button to add the current Build Folder/Current Folder association to the
Source Folder Mapping list.

Change

Click the Change button to change the Build Folder/Current Folder mapping currently
selected in the Source Folder Mapping list.

Remove

Click the Remove button to remove the Build Folder/Current Folder mapping currently
selected in the Source Folder Mapping list.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 115

Target Settings Reference
Power Architecture ™-specific Target Settings Panels

System Call Service Settings

Use the System Call Service Settings target settings panel to activate the debugger’s
support for system calls and to select options the define how the debugger handles system
calls.

Figure 3.30 shows the System Call Service Settings target settings panel.

Figure 3.30 System Call Service Settings Panel

N Swstem Call Service Settings

— v Activate Suppart for System Services

—I~ Redirect stdout/stderr to:

| Ernwse...l

[~ Usze shared consale window Trace levellNa hace vI

—I~ Redirect trace to:

| Ernwse...l

The CodeWarrior debugger provides system call support over JTAG. System call support
lets bare board applications use the functionality of host OS service routines. This feature
is useful if you do not have a board support package (BSP) for your target board.

The host debugger implements these services. Therefore, the host OS service routines are
available only when you are debugging a program on a target board or simulator.

NOTE The OS service routines provided must comply with an industry-accepted
standard. The definitions of the system service functions provided are a subset
of Single UNIX Specification (SUS).

Activate Support for System Services

Check the Activate Support for System Services checkbox to enable support for system
services. All the other options in the System Call Service Setting panel are available only
if you check this checkbox.

116

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
PC-lint Target Settings Panels

Redirect stdout/stderr to

The default place at which output written to stdout and stderr appears in a
CodeWarrior IDE “console” window.

To redirect this output to a file, check the Redirect stdout/stderr to checkbox. Click
Browse to display a dialog box with which you can define the path and name of this file.

Use Shared Console Window

Check the Use shared console window checkbox if you wish to share the same console
window between different debug targets. This setting is useful in multi-core or multi-
target debugging.

Trace Level

Use the Trace level dropdown menu to specify the system call trace level. The system call
trace level options available are:

¢ No Trace — system calls are not traced
¢ Summary Trace — the requests for system services are displayed

* Detailed Trace — the requests for system services are displayed along with the
arguments/parameters of the request

The place where the traced system service requests are displayed is determined by the
Redirect trace to checkbox.

Redirect Trace to

The default place at which traced system service requests appear is in a CodeWarrior IDE
“console” window.

To log traced system service requests to a file, check the Redirect trace to checkbox. Click
Browse to display a dialog box with which you can define the path and name of this file.

NOTE Inaa project created by the New Project wizard, use the library syscall.a rather

than a UART library. syscall.a is in this directory:
installDir\PowerPC_EABI_Support\SystemCallSupport\Lib

PC-lint Target Settings Panels

PC-lint is a third-party software development tool that checks C/C++ source code for
bugs, inconsistencies, non-portable constructs, redundant code, and other problems.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 117

Target Settings Reference
PC-lint Target Settings Panels

CodeWarrior for Power Architecture™ Processor includes target settings panels and plug-
ins that let you configure and use PC-lint from within the CodeWarrior IDE. However, the
PC-lint software itself is not included with your CodeWarrior product. As a result, you
must obtain and install a copy of PC-lint before you can use it with the CodeWarrior IDE.
Among other places, PC-lint is available from its developers, Gimpel Software

(www.gimpel.com).

NOTE The default CodeWarrior PC-lint configuration requires that your PC-lint
installation to be in installDir\Lint
(where installDir is the path to your CodeWarrior product.)
That said, you can install PC-lint anywhere and then adjust the CodeWarrior
configuration to match.

Once you have installed PC-lint, you can configure any build target of any CodeWarrior
project to use this software. To do this, follow these steps:

1. Open a project and select the build target with which you want to use PC-lint.

2. Display the Target Settings window for this build target.

3. Display the Target Settings panel in the Target Settings window.

4. In the Target Settings panel, choose PCLint Linker from Linker dropdown menu.

The PCLint Main Settings and PCLint Options target settings panels appear in the
panel list of the Target Settings window. In addition, the IDE removes panels that
pertain to ELF generation and debugging from the panel list.

5. Choose the PC-lint configuration options appropriate for your build target using the
PC-lint target settings panels.

Table 3.12 lists and describes each PC-lint target settings panel.

The sections this table explain each option available in these panels.

Table 3.12 PC-lint Target Settings Panels

Target Settings Panel | Description

PCLint Main Settings Use this panel to provide the path to the PC-lint
executable and to define the compiler option files and
prefix file that PC-lint will use.

PCLint Options Use this panel to define the syntax rules PC-lint uses to
validate your C/C++ source code, to define the
environment with which PC-lint must ensure your code
conforms, and to pass command-line switches to PC-lint.

118 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

http://www.gimpel.com/

Target Settings Reference
PC-lint Target Settings Panels

PCLint Main Settings

Use the PCLint Main Settings settings panel to provide the path to the PC-lint executable
and to define the compiler option files and prefix file that PC-lint uses.

NOTE The PC-lint target settings panels are available only if you first select
PCLint Linker in the Target Settings panel. (See Figure 3.4.)

Figure 3.31 shows the PCLint Main Settings panel.

Figure 3.31 PCLint Main Settings Panel

N PCLint Main Settings

— PCHint Executable

I{EDmpiIer}Lint'\Lint-nt.e:-te Choose |

[Display generated commandlines in message window
¥ Mointer-modul checks

—Additional Path ta PC-lint Campiler Option Files

I{E0mpiIer}Lint\Inl\EodeWarrior Choose |

r— Compiler Option
IMetrowerks EFPC Corpiler [co-rmwPPC. Int] j
[Display default PC-int compiler aption files tao

— Prefix File:

I Choose |

PC-lint Executable

In the PC-lint Executable text box, type the path to and name of the PC-lint executable.
Alternatively, click Choose to display a dialog box with which you can select this file.

NOTE The default PC-lint path is {Compiler}Lint\Lint-nt.exe. If you
installed PC-lint somewhere else, replace this default path with the correct

PC-lint executable path.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 119

Target Settings Reference
PC-lint Target Settings Panels

Display generated command lines in message
window

Check this box to instruct the IDE to display the command line it passes to PC-lint in the
Errors & Warnings window.

No inter-modul checks

Check the No Inter-modul checks box to instruct PC-lint to do no inter-module checking.

NOTE If you uncheck this box, PC-lint takes longer to process your build target’s
source files.

Additional Path to PC-lint Compiler Option Files

The IDE’s default behavior is to use any PC-lint compiler option files (* . 1nt) it finds in
the directory {Compiler}\Lint\1lnt.

To configure a build target to use a PC-lint compiler option file in addition to those in the
default directory, enter the path to the directory that contains this file in the Additional
Path to PC-lint Compiler Option Files text box. If the specified directory contains any files
that end with the suffix . Int, the Compiler Option dropdown menu (see below) enables
and displays these files.

The default CodeWarrior installation includes pre-written PC-lint compiler option files.
They are in this directory:

{CodeWarrior}Lint\1lnt\CodeWarrior

Each file in this directory is designed to work with a particular CodeWarrior compiler.
Many users enter this path in the Additional Path to PC-lint Compiler Option Files text
box and then choose the file for the CodeWarrior compiler they are using from the
Compiler Option list.

You can leave this text box empty, if desired.

Compiler Option

Use the Compiler Option dropdown menu to select the PC-lint compiler option file for the
CodeWarrior compiler the build target is using.

This menu displays all . 1nt files in the directory specified in the Additional Path to PC-
lint Compiler Option files text box. If this directory contains no . 1nt files, the Compiler
Option dropdown menu is disabled.

120

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
PC-lint Target Settings Panels

Display default PC-lint compiler option files too

Check this box to include the default . 1nt files (the files in {Compiler}Lint\1lnt)
in the Compiler Option dropdown menu along with those in the directory specified in the
Additional Path to PC-lint Compiler Option Files text box.

Prefix File

In the Prefix File text box, type the name of a prefix file to pass to PC-lint. Alternatively,
click Choose to display a dialog box that lets you navigate to and select this file.

Typically, you use this feature to define macros to required values for a particular PC-lint
run or to instruct PC-lint to check certain command-line commands. To do this, define this
information in a prefix file.

You may leave this text box empty, if desired.

PCLint Options

Use the PCLint Options target settings panel to define the syntax rules that PC-lint uses
to validate your C/C++ source code, to define the environment (libraries, operating
system, remote procedure call standard, etc.) with which PC-lint must ensure your code
conforms, and to pass command-line switches to PC-lint.

Figure 3.32 shows the PCLint Options panel.

Figure 3.32 PC-lint Options Panel

N PCLint Dptions

—Author Options
[Scott Meyers [Effective C++] [Dan Saks [MISRA
— Library Options
[Active Template Library I Wwindows 16-hit [~ MFC
[Standard Template Library [windows 32-bit [~ CORB&
[~ Open Ireverter Library [windows NT

— Mezzage Inhibition

W arnings IError, Warning and Infarmational messages (default) j

Library ‘w arnings IError, Warning and Infarmational [default) j

—Additional Options

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 121

Target Settings Reference
PC-lint Target Settings Panels

Author Options

This Author Options group box contains checkboxes that let you select the set of syntax
rules that PC-lint uses as it checks your code.

The options are:

Scott Meyers (Effective C++)

Check this box to instruct PC-lint to verify that your code adheres to the syntax rules
documented in Effective C++.

Dan Saks

Check this box to instruct PC-lint to verify that your code adheres to the syntax rules
recommended by Dan Saks.

MISRA

Check this box to instruct PC-lint to verity that your code adheres to the Motor
Industry Software Reliability Association (MISRA) C language guidelines for
safety-critical embedded software.

You can check none, some, or all boxes in this group.

Library Options

This Library Options group box contains checkboxes that let you define the environment
with which PC-lint must ensure your code conforms.

The options are:

Active Template Library

Check this box to instruct PC-lint to validate your Active X Template (ATL) library
code.

Standard Template Library

Check this box to instruct PC-lint to validate your Standard Template Library (STL)
code.

Open Inverter Library

Check this box to instruct PC-lint to validate your Open Inverter Library code.
Windows 16-bit

Check this box to instruct PC-lint to validate your 16-bit Windows API calls.
Windows 32-bit

Check this box to instruct PC-lint to validate your 32-bit Windows API calls.
Windows NT

Check this box to instruct PC-lint to validate your Windows NT API calls.

122

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Settings Reference
PC-lint Target Settings Panels

* MFC

Check this box to instruct PC-lint to validate your Microsoft Foundation Classes
(MFC) code.

« CORBA

Check this box to instruct PC-lint to validate your Common Object Request Broker
Architecture (CORBA) code.

Warnings

Use the options in the Warnings dropdown menu to control the warning and error
messages that PC-lint emits.

The default setting displays error, warning, and information messages.

Library Warnings

Use the options in the Library Warnings dropdown menu to control the warning and error
messages that PC-lint emits for libraries.

The default setting displays error, warning and information messages.

Additional Options

In the Additional Options text box, type the PC-lint command-line arguments to be passed
to PC-lint. Refer to your PC-lint manuals for documentation of these arguments.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 123

Target Settings Reference
PC-lint Target Settings Panels

124 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

4
Working with the Debugger

This chapter explains how to use the CodeWarrior™ development tools to debug both
bare board and embedded Linux® software for Power Architecture™ processors.

See the appendix Debugger Limitations and Workarounds for documentation of
processor-specific debugger limitations and workarounds.

NOTE This chapter documents debugger features that are specific to the CodeWarrior
for Power Architecture Processors product. For documentation of debugger
features that are in all CodeWarrior products, refer to the CodeWarrior™ IDE
User’s Guide.

The sections of this chapter are:
* Standard Debugger Features
¢ Debugging Bare Board Software
* Debugging Embedded Linux® Software

Standard Debugger Features

This section presents information that applies to debugging both bare board and embedded
Linux software.

The topics are:
* Working with Remote Connections
¢ Setting the Watchpoint Type

* Attaching to Processes
¢ Ways to Initiate a Debug Session

* Displaying Register Contents
¢ Using the Register Details Window

¢ Viewing and Modifying Cache Contents
¢ Using CodeWarrior TRK

¢ Using the Command-Line Debugger

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 125

Working with the Debugger
Standard Debugger Features

Working with Remote Connections

This section defines what remote connection are and explains how to define and use them.
The topics are:
* What is a Remote Connection?

¢ Using Remote Connections

¢ Predefined Remote Connections

» Editing a Remote Connection
* Creating a Remote Connection

What is a Remote Connection?

A remote connection is a named collection of configuration settings for a connection
between the CodeWarrior debugger and a target board or simulator.

Each remote connection assigns values to parameters that apply to the type of connection
between the debugger and the target.

For example, the CodeWarrior USB TAP remote connection defines the interface clock
frequency at which the USB TAP runs, while the Abatron Serial remote connection
defines the attributes (baud rate, number of data bits, etc.) of the serial link between the
debugger and the Abatron probe.

Using Remote Connections

You use a remote connection by assigning it to a build target. To do this, display the
Remote Debugging target settings panel and select the remote connection you want to use
from the Connection dropdown menu. (See Figure 4.1.)

126

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Standard Debugger Features

Figure 4.1 The Remote Debugging Target Settings Panel

E Fiemote Debugging

— i tion Settings

Connection: | Cadetw amor USE TAP j Edit Connection... |

Eemote dopbatron Serial
I_Abatron TCRAR
Cade'w/ armior Ethemet TAP

L ior ISE TAR
[t Codel armiorTRE
I EFPC Linwue Codetsf armiorTRE.

S imuilatar

’7|_ Multi-CIS imulatar[1]

Care Indes: ID ill

For example, you might assign the CodeWarrior USB TAP remote connection to a build
target. When you debug this build target, the CodeWarrior debugger configures the USB
TAP as specified in this remote connection and then uses the USB TAP to connect to and
control your target board.

Predefined Remote Connections

Your CodeWarrior product includes several predefined remote connections for the probes
that have been tested with the supported target boards. These remote connections define
configuration parameters that work for the majority of these boards.

Table 4.1 lists and describes the pre-defined remote connections.

Table 4.1 Predefined Remote Connections

Remote

Connection Name Description

Abatron Serial Assign this remote connection to a build target if you are
using an Abatron probe and this device communicates
with your development PC over a serial link.

Abatron TCP/IP Assign this remote connection to a build target if you are

using an Abatron probe and this device communicates
with your development PC over a TCP/IP link.

CodeWarrior Ethernet TAP | Assign this remote connection to a build target if you are
using an Ethernet TAP probe.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 127

Working with the Debugger
Standard Debugger Features

Table 4.1 Predefined Remote Connections

Remote
Connection Name Description

CodeWarrior USB TAP Assign this remote connection to a build target if you are
using a USB TAP probe.

CodeWarriorTRK Assign this remote connection to a build target if you are
using the CodeWarriorTRK software debug monitor to
debug a bare board program on your target board.

EPPC Linux Assign this remote connection to a build target that
CodeWarrior TRK generates a binary for execution by the embedded Linux
operating system on your target board. EPPC Linux
CodeWarrior TRK also needs CodeWarrior TRK to work.

Simulator Assign this remote connection to a build target if you are
using a simulator to debug a bare board program.

This remote connection is configured to use the ccssim2
simulator.

Simulator[1] Assign this remote connection to a build target if you are
using a simulator to debug a bare board program.

This remote connection is configured to use the SimRun
simulator.

NOTE: simRun is the simulator connection to use with
the Linux-hosted CodeWarrior tools. It is also based on
ccssim?2.

Editing a Remote Connection

The predefined remote connections reliably cover typical use cases. That said, you might
have to change a setting to get a particular remote connection to work with your target
board. This section explains how to edit a remote connection.

NOTE You can also create a new remote connection, so you do not have to change
one of the pre-defined ones.

First you select a debugger protocol. A debugger protocol is the protocol that the
CodeWarrior debugger and a probe use to communicate.

Table 4.2 lists each debugger protocol supported by the CodeWarrior debugger.

128

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Standard Debugger Features

Table 4.2 Debugger Protocols

Debugger Protocol

Description

EPPC - Abatron

Select to define a remote connection that uses an
Abatron probe.

EPPC - CodeWarriorTRK

Select to define a remote connection that uses the
CodeWarrior TRK software debug monitor designed
for used with a bare board.

EPPC - Linux CodeWarriorTRK

Select to define a remote connection that uses the
CodeWarrior TRK software debug monitor designed
for used with embedded Linux.

CCS EPPC Protocol Plugin

Select to define a remote connection that uses CCS
(CodeWarrior Connection Server) to control a probe
or simulator.

Once you have selected a debugger protocol, you must assign a connection type to this
protocol. A connection type defines the type and attributes of the communications link
between the CodeWarrior debugger and a probe.

Each debugger protocol supports one or more connection type (CCS remote, TCP/IP,

USB, or Serial).

Table 4.3 lists the debugger protocols and the connection types each supports.

Table 4.3 Connection Types Supported by each Debugger Protocol

Debugger Protocol

Supported Connection Types

EPPC - Abatron Serial, TCP/IP
EPPC - CodeWarriorTRK Serial
EPPC - Linux CodeWarriorTRK Serial, TCP/IP

CCS EPPC Protocol Plugin

CCS Remote Connection,
Ethernet TAP, USBTAP

Based on the selected debugger protocol and connection type, the IDE makes different
connections settings available. For example, if you select Serial for connection type, the
IDE presents settings for baud rate, stop bits, flow control, and so on.

To configure a remote connection to work with the particular hardware debug probe,
software debug probe, or simulator you are using, you must edit the connection settings.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

129

Working with the Debugger
Standard Debugger Features

You access the settings with the Edit Connection dialog box. You can display this dialog
box in one of these ways:

* In the Remote Connections preference panel, select a connection from the list, and
click Change. The Edit Connection dialog box appears.

* In the Remote Connections preference panel, click Add to create a new remote
connection. The New Connection dialog box appears.

¢ In the Remote Debugging target settings panel, select a connection from the
Connection dropdown menu, then click the Edit Connection button. The Edit
Connection dialog box appears.

This section explains the purpose of each setting available for each connection type.
The topics are:

* Serial

e TCP/IP

¢ CCS Remote Connection

¢ Ethernet TAP

* USBTAP

Serial

Use this connection type to configure how the debugger uses the serial interface of the
host PC to connect to the target system. This connection type is available if the

EPPC - Abatron, EPPC - CodeWarriorTRK, or EPPC - Linux CodeWarriorTRK debugger
protocol is selected.

Figure 4.2 shows the settings that are available to you when you select Serial from the
Connection Type dropdown menu in the Edit Connection dialog box.

130 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Standard Debugger Features

Figure 4.2 Serial Connection Type — Options

zl

REREA batron Seria

Debuggel:lEPPC - Abatran

— Cannectiah T_l,lpe:ISeriaI ;li

=

Port:IEDM1 vl Parit_l,l:INone vl
Hate:IS?BUU 'I Stop Bits:|1 'I
Data Bits:l g - I Flovs Comtral: INone - I

™ Log Communications Data to Log Window

Factary Settings |

Fievert Patel | Cancel I (1]9 I

Table 4.4 describes the options in this dialog box.

Table 4.4 Serial Connection Type — Option Descriptions

Option Description

Name Enter the name to assign to this remote connection. This name
appears in the Remote Connections preference panel.

Debugger Select EPPC - Abatron or EPPC - CodeWarriorTRK.

Connection Type

Select Serial.

Port Select the PC serial port to which the Abatron device or
CodeWarrior TRK is connected.
Rate Select the baud rate at which the debugger transmits and

receives bits.

This rate must match the rate being used by the Abatron probe
or by CodeWarrior TRK.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 131

Working with the Debugger
Standard Debugger Features

Table 4.4 Serial Connection Type — Option Descriptions (continued)

Option Description

Data Bits Select the number of data bits in each character the debugger
transmits and receives.

This setting must match the setting being used by the Abatron
probe or by CodeWarrior TRK.

Parity Select the type of parity the debugger uses in each character it
transmits and receives.

This setting must match the setting being used by the Abatron
probe or by CodeWarrior TRK.

Stop Bits Select the number of stop bits in each character the debugger
transmits and receives.

This setting must match the setting being used by the Abatron
probe or by CodeWarrior TRK.

Flow Control Select the type of flow control for the debugger to use.

This setting must match the setting being used by the Abatron
probe or by CodeWarrior TRK.

Log Communications Check to have the debugger display communications data in a
Data to Log Window log window when the debugger uses this connection.

TCP/IP

Use this connection type to configure how the debugger uses the TCP/IP protocol to
connect to the target system. This connection type is available if the EPPC - Abatron
debugger protocol is selected.

Figure 4.3 shows the settings that are available when you select TCP/IP from the
Connection Type dropdown menu in the Edit Connection dialog box.

132 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger

Standard Debugger Features

Figure 4.3 TCP/IP Connection Type — Options

x|
Mame: |Abatron TCR/P
Debuggel:lEPPC - Abatran j
— Cannectiah T_l,lpe:ITEP.f’IF‘ ;li
IPAddress: [10.63.67.101:100
Enter an IP address in the format of 127.0.0.1:1000 or host.domain. com: 1 000.
™ Log Commurizations D ata to Log Window
Factary Settings | Rewvert Panel | Cancel I 0K I
Table 4.5 describes the options in this dialog box.
Table 4.5 TCP/IP Connection Type — Option Descriptions
Option Description
Name Enter the name to assign to this remote connection. This name

appears in the Remote Connections preference panel.

Debugger Select EPPC - Abatron.

Connection Type Select TCP/IP.

IP Address Enter the Internet Protocol (IP) address assigned to the target
system.

Data to Log Window

Log Communications Check to have the debugger display data in a log window.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 133

Working with the Debugger
Standard Debugger Features

CCS Remote Connection

Use this connection type to configure how the debugger uses the CodeWarrior Connection
Server (CCS) to connect to the remote target system. This connection is usually used when
you want to connect to a remote CCS running on another machine, or if you want to
connect to the simulator server running either on localhost or on a remote machine. This
connection type is available only if the CCS EPPC Protocol Plugin debugger protocol is
selected.

Figure 4.4 shows the settings that are available when you select CCS Remote Connection
from the Connection Type dropdown menu in the Edit Connection dialog box.

Figure 4.4 CCS Remote Connection Connection Type — Options

ﬂ

M arne: |Simulat0r

Debugger:lEES EPPC Praotocal Plugin j

— Connection Type:ICCS Femate Connection j

|41 475

—I UseRemate CCS ——————————— Port #:
Server P Address: Ihoslname ’7

— v Specify CCS Executable

I{Compiler}ccs\bin\ccssimz e Choose... I

—I MultiCore D ebugging
JTAG Configuration File:

I Chooze... |

CCS Timeout——————— [~ Specify Intemal Clack Freq.
’7 |1 0 seconds ’7|D tck
[¥ PReset Target on Launch [~ Enable Logaing
Factory Settings | Revert Panel | Cancel aK

Table 4.6 describes the options in this dialog box.

Table 4.6 CCS Remote Connection Connection Type — Option Descriptions

Option Description

Name Enter the name to assign to this remote connection. This
name appears in the Remote Connections preference panel.

Debugger Select CCS EPPC Protocol Plugin.

134 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Standard Debugger Features

Table 4.6 CCS Remote Connection Connection Type — Option Descriptions (continued)

Option

Description

Connection Type

Select CCS Remote Connection.

Use Remote CCS

Check to debug a board connected to a remote PC. In this
scenario, the CodeWarrior debugger on your machine must
connect to the CCS instance running on the remote PC.

Server IP Address

Enter the Internet Protocol (IP) address of the remote PC on
which a remote CCS instance is running.

This text box activates only if Use Remote CCS is checked.

Port #

Enter the port on the target system to which the debugger
should connect for CCS operations. The default port number
for CCS hardware connections is 41475. Enter 41476 for the
CCS Simulator.

Specify CCS Executable

Check to use a CCS executable other than the default CCS
executable file in installDir\ccs\bin\ccs.exe

Multi-Core Debugging

Check to debug a target system that has multiple cores for
which you must specify the JTAG chain for debugging. Click
Choose to specify the JTAG configuration file.

A JTAG configuration file defines the names and order of the
boards and/or cores you want to debug.

CCS Timeout

Enter the maximum number of seconds the debugger should
wait for a response from CCS. By default, the debugger
waits up to 10 seconds for responses.

Specify Internal Clock
Freq.

Manually enter the JTAG clock frequency to be used during
this connection.

Reset Target on Launch

Check to have the debugger send a reset signal to the target
system when you start debugging.

Clear to prevent the debugger from resetting the target
device when you start debugging.

Enable Logging

Check to display a log of all debugger transactions during
the debug session. If this checkbox is checked, a protocol
logging window appears when you connect the debugger to
the target system.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

135

Working with the Debugger
Standard Debugger Features

Ethernet TAP

Use this connection type to define how the debugger configures a CodeWarrior Ethernet
TAP probe when the debugger connects to a target system. This connection type is
available only if the CCS EPPC Protocol Plugin debugger protocol is selected.

Figure 4.5 shows the settings that are available to you when you select Ethernet TAP from
the Connection Type dropdown menu in the Edit Connection dialog box.

Figure 4.5 Ethernet TAP Connection Type — Option Descriptions

CodeWarrior Ethernet TAP |

Narne: |C0deWanior Etheret TAP
Debugger:IEES EFPC Protocal Plugin j

— Connection Type:IEthemet TAP j

Hostname I

Metwork timeout {15

Interface Clock Frequency |16 MHz vl
Mem Read Delay ID

Mem Wwiite Delay o
[TAP Memory Buffer [hew) |0-00000000

¥ Reset Target on Launch [Do not use fast dovnload
[~ Force Shell Download [~ Enable Logging
V' &spnchronous Multi-Core Contral

I~ UseJTAG Configuration file

’7| LChoose... |

* -This frequency may wark only with CCS.

Factor Settings I Frewvert Panel I Cancel | 0k I

Table 4.7 describes the options in this dialog box.

Table 4.7 Ethernet TAP Connection Type — Option Descriptions

Option Description

Name Enter the name to assign to this remote connection. This name
appears in the Remote Connections preference panel.

Debugger Select CCS EPPC Protocol Plugin.

Connection Type Select Ethernet TAP.

136 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Standard Debugger Features

Table 4.7 Ethernet TAP Connection Type — Option Descriptions (continued)

Option

Description

Hostname

Enter the host name or IP address that you assigned to the
Ethernet TAP device.

Network Timeout

Enter the maximum number of seconds the debugger should wait
for a response from the Ethernet TAP device. By default, the
debugger waits up to 15 seconds for responses.

Interface
Clock Frequency

Select the clock frequency for the Ethernet TAP device. We
recommend you to set this to 16 MHz.

Mem Read Delay

Enter the number of additional processor cycles (in the range 0
through 65024) the debugger should insert as a delay for
completion of memory read operations. By default, the debugger
delays for 350 cycles.

Mem Read delay is supported only for 8260, 8280, 8272, and
5200 targets. Changing the value has no effect for other
processors. Setting this value to 0 translates in 350 delay cycles.
Entering a nominal value other than 0 causes that value to be
used. We recommend you to keep the default value for this
setting.

Mem Write Delay

Enter the number of additional processor cycles (in the range 0
through 65024) the debugger should insert as a delay for
completion of memory write operations. By default, the debugger
delays for 350 cycles.

Mem Write delay is supported only for 8260, 8280, 8272, and
5200 targets. Changing the value has no effect for other
processors. Setting this value to 0 translates in 350 delay cycles.
Entering a nominal value other than 0 causes that value to be
used. We recommend you to keep the default value for this
setting.

TAP Memory Buffer

Enter an available target memory address for the debugger to
use as an internal buffer. This is usually used to download the
cache flushing routines necessary to maintain cache coherence
during asynchronous multi-core debug. The minimum buffer size
is 512 bytes.

Reset Target
on Launch

Check to have the debugger send a reset and stop signal to the
target system when you start debugging.

Clear to prevent the debugger from resetting the target device
when you start debugging.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 137

Working with the Debugger

Standard Debugger Features

Table 4.7 Ethernet TAP Connection Type — Option Descriptions (continued)

Option Description
Force Shell Check to have the debugger re-download the Ethernet TAP’s
Download shell when you start debugging.
Clear to prevent the debugger from downloading the Ethernet
TAP shell each time you start debugging.
This option is used to force updating the shell version running on
the Ethernet TAP.
Asynchronous Check to have the debugger perform asynchronous debugging

Multi-Core Control

on a multi-core system.
Uncheck to have the debugger perform synchronous debugging.

Do not
use fast download

Check to have the debugger use a standard (slow) procedure to
write to memory on the target system.

Clear to have the debugger use an optimized (fast) download
procedure to write to memory on the target system. The fast
download mechanism is used by default when writing target
memory. Check this if fast download procedure results in failures.

Enable Logging

Check to have the debugger display a log of all debug
transactions during the debug session. If this checkbox is
checked, a protocol logging window appears when you connect
the debugger to the target system.

Note: If you define the CCS_LOG_PARAMETERS environment
variable, the debugger writes log messages to the specified file.

Use JTAG
Configuration File

Check to assign a JTAG configuration file to this remote
connection. In the related text box, type the path and name of the
JTAG configuration file to use, or click Choose to display a
dialog box with which you can select the required file.

Clear if this remote connection does not need a JTAG
configuration file.

Note: For more information, refer to the CodeWarrior Project
readme file.

USBTAP

Use this connection type to define how the debugger configures a CodeWarrior USB TAP
probe when the debugger connects to a target system. This connection type is available
only if the CCS EPPC Protocol Plugin debugger protocol is selected.

Figure 4.6 shows the settings that are available to you when you select USBTAP from the
Connection Type dropdown menu in the Edit Connection dialog box.

138

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Standard Debugger Features

Figure 4.6 USBTAP Connection Type — Options

CodeWarrior USB TAP

Mame: |CodeWarri0r USE TAP
Debuggel:lEES EPPLC Pratacal Plugin j

— Cannectiah T_l,lpe:IUSBTAP j
Use default Serial Mumber W

USE TAP Serial Number (hes) [
CCS timeout |1D_
Interface Clock Frequency Im
Mem Read Delay ID_
tem Wwiite Delay IU—
[~ TAP Memary Buffer (hex) IW

¥ Reset Target on Launch
™ Force Shell Download [” Enable Logging
Ird Agynchronous Multi-Core Caontrol

™ Do not use fast download

’7|_ Use JTAG Configuration fil

Chooze... |

Factary Settings | Frewert Fare | Cancel I

oK

Table 4.8 describes the options in this dialog box.

Table 4.8 USBTAP Connection Type — Option Descriptions

Option Description

preference panel.

Name Use this text box to enter the name to assign to this remote
connect. This name appears in the Remote Connections

Debugger Select CCS EPPC Protocol Plugin.

Connection Type Select USBTAP.

Use default Check if you only have one USB TAP device connected to the
serial number host computer.

Clear if you have more than one USB TAP device connected to
the host computer. When this checkbox is clear, the USB TAP
Serial Number text box is available.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

139

Working with the Debugger
Standard Debugger Features

Table 4.8 USBTAP Connection Type — Option Descriptions (continued)

Option Description
USB TAP If you have more than one USB TAP connected to the host
Serial Number computer, enter the serial number of the USB TAP you want to

use for debugging.

Note: The USB TAP serial number is on a label on the bottom
of the device.

CCS Timeout Enter the maximum number of seconds the debugger should
wait for a response from CCS. By default, the debugger waits
up to 10 seconds for responses.

Interface Select the clock frequency for the USB TAP device. We
Clock Frequency recommended you set this to 4 MHz.
Mem Read Delay Enter the number of additional processor cycles (in the range: 0

through 65024) the debugger should insert as a delay for
completion of memory read operations. By default, the
debugger delays for 350 cycles.

Mem Read delay is supported only for 8260, 8280, 8272, and
5200 targets. Changing the value has no effect for other
processors. Setting this value to O translates in 350 delay
cycles. Entering a nominal value other than 0 causes that value
to be used. We recommend you to keep the default value for
this setting.

Mem Write Delay Enter the number of additional processor cycles (in the range: 0
through 65024) the debugger should insert as a delay for
completion of memory write operations. By default, the
debugger does not delay.

Mem Write delay is supported only for 8260, 8280, 8272, and
5200 targets. Changing the value has no effect for other
processors. Setting this value to 0 translates in 350 delay
cycles. Entering a nominal value other than 0 causes that value
to be used. We recommend you to keep the default value for
this setting.

TAP Memory Buffer Enter an available target memory address for the debugger to
use as an internal buffer. This is usually used to download the
cache flushing routines necessary to maintain cache
coherence during asynchronous multi-core debug.

140 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Standard Debugger Features

Table 4.8 USBTAP Connection Type — Option Descriptions (continued)

Option Description
Reset Target Check to have the debugger send a reset signal to the target
on Launch system when you start debugging.

Clear to prevent the debugger from resetting the target device
when you start debugging.

Force Shell Download

Check to have the debugger start the USB TAP shell when you
start debugging.

Clear to prevent the debugger from starting the USB TAP shell
when you start debugging.

This option is used to force updating the shell version running
on the USB TAP.

Asynchronous
Multi-Core Control

Check to have the debugger perform asynchronous debugging
on a multi-core system.

Uncheck to have the debugger perform synchronous
debugging.

Do not
use fast download

Check to have the debugger use a standard (slow) procedure
to write to memory on the target system.

Clear to have the debugger use an optimized (fast) download
procedure to write to memory on the target system. The fast
download mechanism is used by default when writing target
memory. Check this if fast download procedure results in
failures.

Enable Logging

Check to have the IDE display a log of all debugger
transactions during the debug session.

If this box is checked, a protocol logging window appears when
you connect the debugger to the target system.

Note: If you set the CCS_LOG_PARAMETERS environment
variable, the debugger writes log messages to the specified file.

Use JTAG
Configuration File

Check to assign a JTAG configuration file to this remote
connection. In the related text box, type the path and name of
the JTAG configuration file to use, or click Choose to display a
dialog box with which you can select the required file.

Clear if this remote connection does not need a JTAG
configuration file.

Note: For more information, refer to the CodeWarrior project
readme file.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

141

Working with the Debugger
Standard Debugger Features

Creating a Remote Connection

If the pre-defined remote connections do not meet your needs, you can create your own.
To create a remote connection, follow these steps:
1. From the IDE’s menu bar, select Edit > Preferences.

The IDE Preferences window appears. The Remote Connections list box displays
each remote connection currently defined. (See Figure 4.7.)

Figure 4.7 Remote Connections Preference Panel

{ mIDE Preferences : 211
IE IDE Preference Panels | E Remate Cornections
= General ;I
- Build Settings [§Name | Type |
- |DE Extras Abatron Serial Serial :I
- |DE Startup Abatron TCPAP TCPAP
- Plugin Settings Codeiw arior Ethernet TAP PowerTAP TCR/P
- Shielded Folders Co rior LISE TAP
o Source Trees Codetw amiorT RE Serial
=- Editor EPPC Linug CodetwfarriorTRE. TCRAP
- Code Completion Simuilator CC5 Remaote Connection
- Code Formatting Simuilator(1] CC5 Remaote Connection
- Editor Settings
- Font & Tabs
- Temt Colors
=~ Debugger
- Display Settings &
- Window Settings
Gilobal Settings Add... I Change... I Remave I
Factory Settings Fevert | Import Panel... | Export Panel... |
Ok, | Cancel | Apply |

2. Click Add.
The New Connection dialog box appears. (See Figure 4.8.)

142 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Standard Debugger Features

Figure 4.8 The New Connection Dialog Box

New Connection 5[

Mame: IMy Mew Femote Connection

Debugger:lEPPE Linwx Codetsd armiorT RE j

— Connection T_l,lpe:ISeriaI - l

Port:IEDM‘I VI Parit}l:INone vl
Hate:|1152DD vI Stap Bits:|1 vl
Data Bits:IB VI Flaw ControI:INone vl

¥ Log Commurications O ata to Log Window

Factory Settings | Rewert Fanel Cancel I Ok |

In the Name text box, type a mnemonic name for the new remote connection.

4. From the Debugger dropdown menu, select the debugger protocol appropriate for the
probe for which the remote connection is being created.

The Connection Type dropdown menu populates with choice appropriate for the
selected Debugger protocol.

5. From the Connection Type dropdown menu, select the type of connection that the new
remote connection’s probe uses.

Options appear in the bottom of the New Connection dialog appropriate for the
selected connection type.

6. For each connection type option, enter the value appropriate for the new remote
connection.

Setting the Watchpoint Type

A watchpoint is another name for a data breakpoint. The debugger halts execution each
time the watchpoint location is read, written, or accessed (read or written).

Use the Debug > Set Watchpoint Type command to set a watchpoint. Setting the
watchpoint type defines the conditions under which the debugger halts execution.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 143

Working with the Debugger
Standard Debugger Features

The options are:

Read

Program execution stops when your program reads from memory at the watchpoint
address.

Write

Program execution stops when your program writes to memory at the watchpoint
address.

Read/Write

Program execution stops when your program reads or writes memory at the
watchpoint address.

Prompt when set

The debugger lets you to select one of the watchpoint types above at the time you set
the watchpoint.

NOTE If a C/C++ statement assembles to a machine instruction that reads or writes

the same address multiple times, a watchpoint set on this statement will be hit
multiple times.

NOTE The Watchpoint Type command is available only if both the selected processor

and your probe support it.

TIP You can also set watchpoint types by issuing the watchpoint command in the

CodeWarrior Command Window.

Attaching to Processes

Use the Debug > Attach to Process command to attach the debugger to a process running
on a target board. The debugger can control any process to which it is attached.

If the target board is running an operating system or multiple processes, you can use the
CodeWarrior System Browser window to view and attach to these processes.

To use the System Browser window, follow these steps:

1.
2.

Open a CodeWarrior project.

Ensure that a linker is selected in the Target Settings panel in the Target Settings
window.

Ensure that a remote connection is selected in the Remote Debugging target settings
panel.

144

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Standard Debugger Features

4. Build the CodeWarrior project to generate an executable file.
5. Select View > System > Connection from the IDE’s menu bar (where Connection is
the name of the selected remote connection).

The System Browser window appears and displays a list of the processes running on
the target board.

6. In the System Browser window, select the process to which you want to attach, then
click the Attach To Process button (&5).

NOTE For more information about the System Browser window, refer to the
CodeWarrior™ IDE User’s Guide.

If the target board is not running an operating system, then there is just a single process. In
this case, select Debug > Attach To Process to attach to and debug this process.

TIP You can also attach to processes by issuing the at tach command in the
CodeWarrior Command Window.

Ways to Initiate a Debug Session

The CodeWarrior debugger has three ways to initiate a debug session:
- Attach to Process

- Connect

- Debug

These commands differ in these ways:

* The Attach to Process command assumes that code is already running on the board
and therefore does not run a hardware initialization file. The state of the running
program is undisturbed. The debugger loads symbolic debugging information for the
current build target’s executable. The result is that you have the same source-level
debugging facilities you have in a normal debug session (the ability to view source
code and variables, and so on). The Attach to Process function does not reset the
target, even if the remote connection specifies this action. Further, the command
loads symbolics, does not stop the target, run an initialization script, download an
ELF file, or modify the program counter (PC).

NOTE The debugger assumes that the current build target’s generated executable
matches the code currently running on the target.

¢ The Connect command runs the target initialization file specified in the EPPC
Debugger Settings panel to set up the board before connecting to it. The Connect

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 145

Working with the Debugger
Standard Debugger Features

function does not load any symbolic debugging information for the current build
target’s executable. You therefore do not have access to source-level debugging and
variable display. The Connect resets the target if the remote connection specifies this
action. Further, the command stops the target, (optionally) runs an initialization
script, does not load symbolics, download an ELF file, or modify the program
counter (PC).

* The Debug command resets the target if the remote connection specifies the action.
Further, the command stops the target, (optionally) runs an initialization script,
downloads the specified ELF file, and modifies the PC.

Table 4.9 Effect of Each Different Connection Type

Connection Resets Stops Runs Init |Uses Modifies |Downloads
Type Target on |Target Script Symbolics |Entry PC |Application
Launch
Attach Never No No Yes No Never
Connect Per Remote (Only if Per No No Per EPPC
Connection |Reseton |debugger Debugger
setting: Launch Global Settings
Usually set Setting
to Yes panel
Debug Per Remote (Only if Per Yes Yes Per EPPC
Connection |Reset on debugger Debugger
setting: Launch and |Global Settings
Usually set [Stop on Setting
to Yes Application |panel
Launch

Table 4.10 Connection Type: Use cases

Connection Type Typical Use Example

Attach Debug a target system without modifying its
state at all initially, but allow use of symbolics
during actual debug. Useful for debugging a
system that is already up and running.

146 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Standard Debugger Features

Table 4.10 Connection Type: Use cases

Connection Type Typical Use Example

Connect Raw debug of a board without any software
or symbolics. Useful during hardware bring
up, and often combined with scripts for
checking various aspects of the hardware.

Debug Develop code that gets downloaded to the
system on debugger launch. Useful for bare
board code development without a working
bootloader.

NOTE The default debugger configuration causes the debugger to cache symbolics
between runs. However, the Debug > Connect command invalidates this
cache. If you must preserve the contents of the symbolics cache, and you plan
to use the Debug > Connect command, uncheck the Cache symbolics
between runs checkbox in the Debugger Settings panel just before you issue
the Debug > Connect command.

Displaying Register Contents

Use the Registers window to view and modify the contents of the registers of the
processor on your target board. To display this window, select View > Registers.

The Registers window displays categories of registers in a tree format. To display the
contents of a particular category of registers, expand the tree element of the register
category of interest. Figure 4.9 shows the Registers window with the General Purpose
Registers tree element expanded.

TIP You can also view and modify registers by issuing the reg, change, or
display commands in the CodeWarrior Command Window.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 147

Working with the Debugger
Standard Debugger Features

Figure 4.9 Registers Window

LIE]
§ Register | alue
[Z- Codewarrior Ethernet TAP =
[debug.elf
B core #0. chain position 1
[B- General Purpose Registers
H- Floating Point Registers
|- vector Registers
- PYR 0x80040202
- M3R 0x00002000
- DAR 0x00000000
- D5IR 0x00000000
- 5PRGO 0x00000000 —
- 3PRG1 0x00000000
- 3PRGZ 0x00000000
- 5PRG3 0x00000000
- SRRO 0x000023C0
- 3RR1 0x00083000
- TBL 0x03DEBYCE
- TBU 0x00000000
- DEC OxXFC214831
[Memory Management Special Purpose Registers j
[H- e&00 Special Purpose Registers 7

TIP If you want to watch a particular group of registers at all times during a debug
session, double-click the name of this register group in the Registers window. A
new window opens showing the registers in this group. You can even dock this
window, if desired. (See Figure 4.10.)

148 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Standard Debugger Features

Figure 4.10 The Reset Module Register Group Shown in Separate, Docked Window

B

Rezet Module Window |iiiztchdog Timer Re... I

debug.&lf [chain pozition O, core #0] [Thread 0=0]
RCWLR 0x04040006 ;I
RCWHR 0xX34500000

RSR 0x00000003

RMR. 0x00000000

RFR 0x00000000

RCR 0x00000000

RCER 0x00000000

’LI

Using the Register Details Window

You can use the Register Details window to view different EPPC registers by specifying
the name of the register. Selecting View > Register Details displays the Register Details

dialog box (Figure 4.11).

Figure 4.11 Register Details Dialog Box

{ @ Register Details x|

Dezcription File: I

Reqister Mame: Folmat:lm
21lad2dad oA 2425 2 dad ol ad adad 1 ad adadad 1 d1alad o] o] 7| 6] 5| 4] 2] 2] 1] 0

| |-
Type the nh:ne of & register or & full path to & description file in the ;I
'Description File:' field.

I
Fevert | Fead | rite I HesetVaIuel TextView:IAuto vl
4

After the CodeWarrior software displays the Register Details window, type the name of
the register (or the full path to the register description file) in the Description File text box
to display the applicable register and its values.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 149

Working with the Debugger
Standard Debugger Features

TIP A convenient way to display the Register Details window for a particular register

is to right-click on the register of interest in the Registers window and then select
Register Details from the context menu that appears.

TIP You can also view register details by issuing the reg command in the
CodeWarrior Command Window.

Figure 4.12 shows the Register Details dialog box displaying the MSR register.

Figure 4.12 Register Details Dialog Box Showing the MSR Register

x

Description File: |
Fegister Mame: MSH Folmat:lm
D|1|2|3|46 718l aladaals 15l1g171d194z20z2 ads
o0

0000 ofJoji|o 0o 0o 0 0 O|ofO|ofo]|ofojofo|jOf1

IL’CI_E [5] j = |UbU E IAny cache lock instruction executed in user-mode Ij

=
=
I
[

EEEEEEEEE
o ofofofelofo

User-mode cache lock enable. Used to restrict user-mode cache-line ;I
locking by the cperating system

I
Revert | Read | Wirike I FlesetValuel TextView:IAuto VI Y
2

You can change the format in which the CodeWarrior software displays registers using the
Format dropdown menu. In addition, if you click on different bit fields of the displayed
register, the CodeWarrior software displays a description of the bit or group of bits
chosen. You also can change the text information that the CodeWarrior software displays
by using the Text View dropdown menu.

NOTE For more information, see CodeWarrior™ IDE User’s Guide.

Viewing and Modifying Cache Contents

The CodeWarrior debugger lets you view and modify the instruction cache and data cache
of the target system during a debug session.

This topics of this section are:

» Displaying Processor Caches
¢ Cache Window Toolbar Buttons

150

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Standard Debugger Features

¢ Components of the Cache Window
* Using the Command Window to View Caches
* Supported Processor Cache Features

Displaying Processor Caches

To display a processor’s caches, start a CodeWarrior debug session on your target board,
select Data > View Cache from the IDE menu bar, and select the instruction or data cache
from the submenu that appears. The Cache Window appears.

Figure 4.13 shows the cache window displaying the contents of an instruction cache;
Figure 4.14 shows the cache window displaying the contents of a data cache.

NOTE The Data menu is present in the IDE menu bar only during a debug session.

Figure 4.13 Cache Window Showing the Contents of an Instruction Cache

ore0: L1 Instruction Cache 10l x|

SRR Y Y T | #

Set |wWay| Address Walid | Lock wordlD [Word1 [Word2 [Wword2 [wod4 [wods [wodE [word 7
23cf4000 No MO OD1&7F2F EESAGZDF GE3FFE2T BCEBE4BL OCSESCZE FODEEB2ZCE 725EF2ED EZESDEZL &
e2T23020 No MO (CAF2FF2F ALEFCEFE EE1BACDO DCCODSFE OFEDTEEA 22240 3CE ASEE3R52 21144A0E
af47an4n No WO SC167FCF AA450237 FFE46CET 4CEAGSEC FEFEN4SE FFOEBCFE SAF1E493 AE297AEE
7429h060 NO WO 2206F7AF 2FCE50FE B0083B4E 70097 FEE 649A34CA CEF95F58 OEFBOGLE 5205B57F
7dbd1080 No WO G47EFSLF AB4272BF BFF47677 9CSEESFS TELIELCCE 0294FB3E 42002439 SRASECFO
E3353040 No NO [C2Fz53ED E2SEFECA ELA4F74E | 702357FE AGF43EEA 231B56E0 ODZ1EB363 5235F762
z07df0co No No 2336FFEF BE4AOFFF 4ECE7FCOS |PCIEFSED OD0Z2 5435 4C7AESDD 7IGEBACLE FAZZ327E
focflboed HNo No [C273EFZF AFFFEL4Z EGA4EFES FEF355F3 AASADGEA DFEFE3AA O5FE4CEE O3 146EFZ
0fd70100 No No GF347FDF AB46FOLA OFESFEEZ (CCDI2EAT 62D045C4A FOAZDISE 3361AN0F3 FF2ECEES
7454C120 No No DOGBF3AD ES4AEE3 3 548E575B ASFIFDEC 6503636A DCSADE4A 07AD2C1E B2F4035E
42230140 Mo MO FDO47FOF CA42EAZE R00474F7 | DC13650B OEDFECFA 40B2ZDEFE CESEFEE2 EZZCOT744
feebfdled No MO E4EBFEAF BFEEFDAC ALEDEF42 FCFOL47E AZE411A4 CIEEIFLA OEEE1RFA S1E4B2FE -

o 2] |Le | >0

Refresh Wlibe I View As:IRaw data vl
7

Figure 4.14 Cache Window Showing the Contents of a Data Cache

i =10]

GReaaeam| ElR2

Set ['wiay] Address Share |%alid [Dir Lack | |[waordD [waord1 [wad2 [wad3 [wadd [wod5 [Word6 [Word 7

0 0 ec000000 No N No No 00000000 00000000 00800000 00000000 00000008 00000000 (00000000 |00000000 |4

1 o €&6000020 No Mo No Mo 00000000 00000000/00000000 00000000/00000000 00000000 /00000000 /00000000

2 0 es000040 No NO No No 00000000 00000000 00000000 00000000 00000000|00000000|00000000/00000000

3 o EE000080 No Mo No NO Q0000000 /00000000 00000000 /00000000 00000000 /00000000 /00000000

4 o €&000020 No Mo No Mo 00000000 00000000/00000000 00000000/00000000 00000000 /00000000 /00000000

S 0 es0000a0 No NO No No 00000000 00000000 00000000 00000000 00000000|00000000|00000000/00000000

& o €&60000Cc0 No Mo No Mo 00000000 00000000/00000000 00000000/00000000 00000000 /00000000 /00000000

7 0 es0000e0 No NO No No 00000000 00000000 00000000 00000000 00000000|00000000|00000000/00000000

g o E&000100 Mo Mo No NO 00000000 00000000/00000000 00000000/00000000 00000000 /00000000 /00000000

El o €6000120 Mo Mo No Mo 00000000 00000000/00000000 00000000/00000000 00000000 /00000000 /00000000

10 0 es000140 No NO No No 00000000 00000000 00000000 00000000 00000000|00000000|00000000/00000000

11 0 EE&000160 No Mo No NO 00000000 00000000/00000000 00000000/00000000 00000000 /00000000 /00000000

| (AN | ;I:'

Refresh Write Wiew As:[Raw data .I

VA

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 151

Working with the Debugger
Standard Debugger Features

Cache Window Toolbar Buttons

At the top of the cache window is a toolbar with two groups of buttons separated by a
vertical divider line. The buttons to the left of the toolbar divider line control the entire
cache. The buttons to the right of the toolbar divider line control only the currently-
selected cache lines.

NOTE Certain toolbar buttons are unavailable (grayed out) if the target hardware does
not support their corresponding functions, or if the operation could be
performed in assembly language and is not supported by the cache viewer.

Table 4.11 lists and describes each cache window toolbar button.

Table 4.11 Cache Window Toolbar Buttons

Button | Function Description

o ‘ Enable/ Enabled — The cache is on.

Disable Cache | 1y hled — The cache is off.

o Lock/ Enabled — Every line of the cache is locked. This state
Unlock Cache prevents the cache from fetching new lines and from
discarding current valid lines.

Disabled — Every line of the cache is unlocked. This
state allows the cache to fetch new lines and discard
current valid lines.

% Invalidate Cache | Click to invalidate all lines in the cache.
Note: To avoid data loss, flush the data cache before
invalidating it.

o Flush Cache Click to push out all lines marked as modified to the
main memory so that the main memory and cache

content are completely in sync.

ﬁ Lock/ Enabled — Locks the selected cache lines.

Unlock Line Disabled — Unlocks the selected cache lines.

Note: Feature is not available for all processor variants.

152 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Standard Debugger Features

Table 4.11 Cache Window Toolbar Buttons (continued)

Button | Function Description

*l Invalidate Line Click to invalidate the selected cache lines.

Note: Feature is not available for all processor variants.

ﬁ Flush Line Click to push out the contents of the selected cache lines
to the main memory so that the main memory and cache
content are completely in sync.

Note: Feature is not available for all processor variants.

NOTE The Activate/Deactivate LRU Display and Inverse LRU buttons never
activate because their functions do not apply to Power Architecture processors.

Components of the Cache Window

Below the toolbar, there are two panes in the window, separated by another vertical
divider line. The pane to the left of the divider line displays the attributes for each
displayed cache line. The pane to the right of the divider line displays the actual contents
of each displayed cache line. You can modify information in this pane and click the Write
button to apply those changes to the cache on the target board.

Below the cache line display panes are the Refresh and Write buttons and the View As
dropdown menu. Click the Refresh button to clear the entire contents of the cache, re-read
status information from the target hardware, and update the cache lines display panes.
Click the Write button to commit cache content changes from this window to the cache
memory on the target hardware (if the target hardware supports doing so). Select Raw
Data, or Disassembly from the View As dropdown menu to change the way the IDE
displays the data in the cache line contents pane on the right side of the window.

You can perform all cache operations from assembly code in your programs. For details
about assembly code, refer to the core documentation for the target processor.

You can also perform cache operations by selecting appropriate items from the Cache
menu in the CodeWarrior menu bar. The Cache menu is available only when the Cache
Window is open in the CodeWarrior IDE.

Using the Command Window to View Caches

Another way to manipulate the processor’s caches is by using the CodeWarrior
Command Window.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 153

Working with the Debugger
Standard Debugger Features

To display the Command Window, select View > Command Window from the
CodeWarrior menu bar.

To display a list of the commands supported by the Command Window, enter this at the
command prompt:

help -tree

Certain cache operations are invisible by default. To make them visible, enter these
commands at the command prompt:

cmdwin: :setvisible on cmdwin: :ca
cmdwin: :setvisible on cmdwin::caln

For more information about the Command Window support of cache commands,
(cmdwin: : ca for global operations and cmdwin: : caln for cache line operations)
enter these commands at the command prompt:

help cmdwin::ca

help cmdwin::caln

Supported Processor Cache Features

This section lists the cache features of the processors supported by this product.
Table 4.12 lists cache features supported by PowerQUICC I processors.

Table 4.13 lists cache features supported by PowerQUICC II processors.

Table 4.14 lists cache features supported by PowerQUICC III processors.
Table 4.15 lists cache features supported by e600 processors.

Table 4.12 PowerQUICC | Family — Supported Cache Operations

Cache Features Supported Operations
L1D * 8 KB size * enable/disable cache
L1 data cache * 256 sets * lock/unlock cache

* 2 ways * invalidate line

* 4 words/ line ¢ read/modify data
L1l * 16 KB size * enable/disable cache
L1 instruction * 256 sets * lock/unlock cache
cache e 4 ways * invalidate line

e 4 words/line ¢ read/modify data

154 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Standard Debugger Features

Table 4.13 PowerQUICC Il Family — Supported Cache Operations

Cache Features Supported Operations
L1D * 16 KB size * enable/disable cache
L1 data cache * 128 sets ¢ lock/unlock cache

* 4 ways ¢ invalidate cache

8 words / line

read/modify data

L1l * 16 KB size ¢ enable/disable cache
L1 instruction * 128 sets * lock/unlock cache
cache * 4 ways ¢ invalidate cache

e 8 words/line ¢ read/modify data

Table 4.14 PowerQUICC lll Family — Supported Cache Operations

Cache Features Supported Operations
L1D * 32 KB size * enable/disable cache
L1 data cache * 128 sets ¢ lock/unlock cache

* 8 ways ¢ invalidate cache

8 words / line

lock/unlock line
invalidate line
read/modify data

L1l * 32 KB size ¢ enable/disable cache
L1 instruction * 128 sets ¢ lock/unlock cache
cache * 8 ways * invalidate cache

e 8 words/line ¢ lock/unlock line

invalidate line
read/modify data

L2

L2 cache (data
only, instruction
only, unified)

256 KB/512 KB
size

1024/2048 sets
8 ways
8 words / line

enable/disable cache
lock/unlock cache
invalidate cache
read/modify data

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

155

Working with the Debugger
Standard Debugger Features

Table 4.15 €600 Family — Supported Cache Operations

Cache Features Supported Operations
L1D * 32 KB size * enable/disable cache
L1 data cache * 128 sets * lock/unlock cache

* 8 ways ¢ invalidate cache

e 8 words/line ¢ lock/unlock way

¢ invalidate line
¢ read/modify data

L1l * 32 KB size ¢ enable/disable cache
L1 instruction * 128 sets ¢ lock/unlock cache
cache * 8 ways * invalidate cache

* 8 words/line * lock/unlock way

* invalidate line
¢ read/modify data

L2 * 512 KB size * enable/disable cache
L2 cache (data * 2048 sets * invalidate cache
only, instruction * 8 ways * invalidate line

only, unified)

e 8 words/line ¢ read/modify data

Using CodeWarrior TRK

This section briefly describes CodeWarrior TRK and then presents information that
explains how to using CodeWarrior TRK with this product.

This topics are:
¢ CodeWarrior TRK Overview

¢ Connecting to CodeWarrior TRK

¢ CodeWarrior TRK Memory Configuration
¢ Using CodeWarrior TRK for Debugging

CodeWarrior TRK Overview

CodeWarrior TRK is a software debug monitor that a debugger uses to manipulate the
target board and control the execution of software running on this board.

CodeWarrior TRK runs on the target board along with the program you are debugging and
provides debug services to a debugger running on your development system. Code Warrior
TRK and the development workstation communicate over a serial communications link.

156

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Standard Debugger Features

The CodeWarrior installer installs the source code for CodeWarrior TRK, as well as ROM
images and project files for several pre-configured builds of CodeWarrior TRK.

The board-specific directories that contain CodeWarrior TRK source code are here:

installDir\PowerPC_EABI_ Tools\
CodeWarriorTRK\Processor\ppc\Board\

If you are using an unsupported board, you may need to customize this source code to get
CodeWarrior TRK to work with this board. For instructions, see the CodeWarrior TRK
Reference.

NOTE You cannot adapt the CodeWarrior TRK source code to work for
PowerQUICC III boards.

To modify a version of CodeWarrior TRK, find an existing CodeWarrior TRK project for
your target board. You either can make a copy of the project (and its associated source
files) or you can directly edit the originals. If you edit the originals, you always can get the
original version from your CodeWarrior CD.

Connecting to CodeWarrior TRK

This section explains how to connect to the CodeWarrior TRK debug monitor over a serial
connection.

To connect to CodeWarrior TRK, follow these steps:
1. Ensure that your target board has a debug monitor in ROM or in flash memory.

If CodeWarrior TRK is not installed your the board, burn the program into ROM, or
use a flash programmer to write the program to flash memory.

For some boards, you can use one of the included CodeWarrior TRK projects to write
CodeWarrior TRK to flash memory. These projects are here:

installDir\PowerPC_EABI_Tools\
CodeWarriorTRK\Processor\ppc\Board

2. Determine whether CodeWarrior TRK is in ROM or flash memory.

a. Connect the serial cable to the target board.

NOTE Many target boards require a straight-through serial cable. Other boards require
a null modem (DTE/DCE) cable. The user manual for your board should
indicate which type of serial cable the board requires.

b. Start a terminal emulator and configure it as shown in Table 4.16.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 157

Working with the Debugger
Standard Debugger Features

Table 4.16 Terminal Emulator Configuration Settings

bits per second 57600
data bits 8
parity none
stop bits 1
hardware flow control none
software flow control none

c. Reset the target board.

If CodeWarrior TRK is present, the terminal emulation program displays

CodeWarrior TRK initialization messages.

3. If you plan to use console I/O, ensure that your project contains the libraries required

for console I/0.

Ensure that your project includes the MSL library and the UART driver library. If
needed, add the libraries and rebuild the project. In addition, you must have a free
serial port (besides the serial port that connects the target board with the host machine)

and be running a terminal emulation program.

NOTE See the project read me file regarding CodeWarrior TRK options.

CodeWarrior TRK Memory Configuration

This section presents the default memory locations of the CodeWarrior TRK code and
data sections and of your target application.

Locations of CodeWarrior TRK RAM Sections

Several CodeWarrior TRK RAM sections exist. You can reconfigure some of the
CodeWarrior TRK RAM sections.

This section contains these topics:

* Exception Vectors
¢ Data and Code Sections

e The Stack

158 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Standard Debugger Features

Exception Vectors

For a ROM-based CodeWarrior TRK, the CodeWarrior TRK initialization process copies
the exception vectors from ROM to RAM.

The location of the exception vectors in RAM is a set characteristic of the processor. For
Power Architecture processors, the exception vector must start at 0x000100 and span
7936 bytes to end at 0x002000.

NOTE Do not change the location of the exception vectors because the processor
expects the exception vectors to reside at the specific location.

Data and Code Sections

The standard configuration for CodeWarrior TRK uses approximately 29KB of code
space as well as 8KB of data space.

In the default ROM-based implementation of CodeWarrior TRK used with most
supported target boards, no CodeWarrior TRK code section exists in RAM because the
code executes directly from ROM. However, for some Power Architecture target boards,
some CodeWarrior TRK code does reside in RAM, usually for one of these reasons:

* Executing from ROM is slow enough to limit the CodeWarrior TRK data
transmission rate (baud rate)

* For the 603e and 7xx processors, the main exception handler must reside in
cacheable memory if the instruction cache is enabled. On some boards the ROM is
not cacheable; consequently, the main exception handler must reside in RAM if the
instruction cache is enabled

RAM does contain a CodeWarrior TRK data section. For example, on the Freescale 8xx
FADS board, the default address where CodeWarrior TRK data section starts is
0x3F8000 and ends at the address 0x3FA000.

You can change the location of the data and code sections in your CodeWarrior TRK
project using one of these methods:

* By modifying settings in the EPPC Linker settings panel

* By modifying values in the linker command file (the file in your project that has the
extension .1lcf)

NOTE To use a linker command file, you must check the Use Linker Command File
checkbox in the EPPC Linker settings panel.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 159

Working with the Debugger
Standard Debugger Features

The Stack

In the default implementation, the CodeWarrior TRK stack resides in high memory and
grows downward. The default implementation of CodeWarrior TRK requires a maximum
of 8KB of stack space.

For example, on the Freescale 8xx ADS and Freescale 8xx MBX boards, the CodeWarrior
TRK stack resides between the addresses 0x3F6000 and 0x3F8000.

You can change the location of the stack section by modifying settings of the
EPPC Linker settings panel and rebuilding the CodeWarrior TRK project.

CodeWarrior TRK Memory Map

For more information about the CodeWarrior TRK memory map, see the board-specific
information provided with the CodeWarrior TRK source code.

Using CodeWarrior TRK for Debugging

To use CodeWarrior TRK for debugging, you must load it on your target board in flash
memory.

CodeWarrior TRK can communicate over serial port A or serial port B, depending on how
the software was built. Ensure that you connect your serial cable to the correct port for the
version of CodeWarrior TRK that you are using.

After you load CodeWarrior TRK on the target board, you can use the debugger to
download and debug your application if the debugger is set to use CodeWarrior TRK.

NOTE Before using CodeWarrior TRK with hardware other than the supported target
boards, see the CodeWarrior TRK Reference.

Using the Command-Line Debugger

The CodeWarrior IDE supports a command-line interface to some of its features,
including the debugger. You can use the command-line interface together with various
scripting engines, such as the Microsoft® Visual Basic® script engine, the Java™ script
engine, TCL, Python, and Perl. You can even issue a command that saves a your
command-line activity to a log file.

Use the Command Window (Figure 4.15) to issue commands to the IDE. For example,
enter debug to start a debugging session. The IDE’s Command Window shows the
standard output and standard error streams generated by commands issued from the
command line.

To display the Command Window, select View > Command Window.

160

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

Figure 4.15 Command Window

i gCommand Window -0l x|

IR EEEREEEREERE

cmdwi n 2 about
Command Window 3.1 (IDE 5.9.0.2112)
|

command complete

ahoLt] Bli as EiEtach L] cd] Ehange RE EEE=a1 stry

To issue a command-line command, make the Command Window the active window,
type the desired command at the command prompt ($>), and press Enter or Return. The
Command Window executes the specified command.

If you work with hardware as part of your project, you can use the Command Window to
issue commands to the IDE while the hardware is running.

NOTE To display a list of the commands the Command Window supports, type
help at the command prompt and press Enter. The help command lists each
supported command along with a brief description of the command.

Refer to the IDE Automation Guide for information about using the command-line
debugger. This manual presents the definition, shortcut, syntax, and examples of each
command-line debugger option.

Debugging Bare Board Software

The topics in this section apply to debugging software on bare board systems, that is, to
systems that are not running an operating system.

NOTE The Linux Application Edition of this product does not support debugging bare
board software.

The topics are:

» Tutorial: Debugging a Bare Board Application
¢ Setting the Default Breakpoint Template

o Setting Hardware Breakpoints

¢ Accessing Translation Look-aside Buffers

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 161

Working with the Debugger
Debugging Bare Board Software

o Setting the IMMR Register

¢ Setting the SCRB Register

* Sending a Hard Reset Signal

* Loading and Saving Memory

¢ Filling Memory

* Saving and Restoring Registers

* Virtual Address Translation Support

* Debugging ELF Files Created by Other Build Tools
¢ Debugging Multiple ELF Files Simultaneously

¢ Debugging a Multi-Core Processor

¢ Debugging Multiple Processors Connected in a JTAG Chain

Tutorial: Debugging a Bare Board

Application

This chapter explains how to use your CodeWarrior tools to build and debug the project
created in the Using the Bare Board New Project Wizard section.

To build this project, download and debug the resulting binary on your target board,

follow these steps:

1. Start the CodeWarrior IDE.

2. Open the project created in the Using the Bare Board New Project Wizard section.

The project window appears, docked to the left, top, and bottom of the IDE’s main

window. (See Figure 4.16.)

Figure 4.16 Project Window — hello_world.mcp

Build Target
Dropdown Menu

=l
hello_world_ mcp I
.I, ¥ DebugVersion j B % @ B >
D ebug Yersion
ROM Verzion k
Cache 1SR Debug Wersion [Code | Data 404 |
@ -] Source 0 0D+ + =
@ g MS5L 0 0 s =
& [F-{_J Senial [UART) 0 0 e =l
& -] Rurtime 0 0+ » =
#-{_3 Linker Carmmand File 0 0 |
&3 Config 0 0« =l
#-{C3 Docurnentation 0 0 s =l

162 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

3. From the build target dropdown menu, select Debug Version.
4. Select Project > Make.

The IDE compiles/assembles the Debug Version build target’s source code files and
links the resulting object code into an . el f format executable file.

5. Connect your target board to your PC.
Ensure that target board’s power switch is in the OFF position.

a
b. Connect a power supply to the board.

o

Connect your run-control hardware to the target board and to your PC.

a

Connect a serial cable to the target board and to your PC.
e. Move the board’s power switch to the ON position.
The target board powers up.
6. Start a terminal emulator program (such as HyperTerminal).

7. Configure the terminal emulator as shown in Table 4.17.

Table 4.17 Terminal Emulator Configuration Settings

bits per second 57600
data bits 8
parity none
stop bits 1
hardware flow control none
software flow control none

NOTE If you created your project with the New Project Wizard, the project contains a
board-specific README file. This file provides information such as the serial
connection settings to use, the type of serial cable required, and more.

8. Select Project > Debug.
The debugger downloads the . el f format executable to the board, halts execution at
the first statement inmain (), and displays your source code in the debugger window.
(See Figure 4.17.)

The program counter icon # points to the current statement (that is, to the next
statement to be executed).

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 163

Working with the Debugger
Debugging Bare Board Software

Figure 4.17 Debugger Window

i mmyapp_cpp.elf {Unknown) - | Ellﬂ
R E x G |OEE
Stack A | [§e VYariables: Live | Value | Location]|
(0=00000000 ([0x00000000) d N o vasiaivtas ;I
00FEEE344 [0<0FEEE344)
main J _I
-
Sourcer C:myprojectsthello worldh S ourcehmain. o E||
#include <stdic.h» :I

int main{)
-
- printf {"Welcore to CodeWarrior!irin");
- return 0;
- 1
0 Line 4 Coll | Sowce M 4|

_>I_L

9. In the debugger window, click the step over €3 button.

The processor executes the current statement and halts at the next statement.

10. In the leftmost column of the debugger window, click the dash next to this statement:
system_call(); // generate a system call exception to

// demonstrate the ISR

A breakpoint indicator # appears next to this statement.

11. In the debugger window, click the run % button.

The processor executes all statements up to but not including the breakpoint statement

and then halts at the breakpoint statement.

The terminal emulator displays the string Welcome to CodeWarrior! because

execution has passed the printf () statement.
12. In the debugger window, click the run button again.

The program enters an infinite loop.

The terminal emulator displays the string system call exception handler
because execution has passed the system_call () statement. (See Figure 4.18.)

164 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

Figure 4.18 Terminal Emulator Window Containing Program Output Message

#ghello_world_output - HyperTerm - |EI|5|

File Edit ¥iew Call Transfer Help

Helcome to CodeMarrior! :|
system call exception handler

=
< | »

Connected 0:03:37 |autodetect [s7eO0EN-1 [SCRO 4

13. In the debugger window, click the break ® button.

The debugger halts the program at the next statement to be executed.

14. In the debugger window, click the kill # button.

The debug session ends and the debugger window closes.
15. Exit the terminal emulator.
16. Press Alt-F4.

The CodeWarrior IDE exits.

That’s it. You have created a bare board project for your target board, built this project,
downloaded the resulting application to the board, and used the CodeWarrior debugger to
control this application’s execution.

Setting the Default Breakpoint Template

Use the options in the Debug > Default the Breakpoint Template submenu to specify
the type of breakpoint the debugger sets.

The options are:
* Software

In this breakpoint mode, the debugger sets breakpoints in target memory. When
program execution reaches the breakpoint, execution stops. The breakpoint remains
in the target memory until the user removes it.

A software breakpoint can be set only in writable memory like SRAM or DDR. You
cannot use this type of breakpoints in ROM.

e Hardware

In this breakpoint mode, the debugger uses the internal processor breakpoints. A
processor does not provide many hardware breakpoints (sometimes as few as one),

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 165

Working with the Debugger
Debugging Bare Board Software

but they can be used with any kind of memory because they are implemented using
processor registers.

* Auto

In this breakpoint mode, the debugger first tries to set a software breakpoint. If this
fails, the debugger then tries to set a hardware breakpoint.

NOTE The Default Breakpoint Template command is available only if both the
selected processor and your probe support it.

TIP You can also set breakpoint types by issuing the bp command in the CodeWarrior
Command Window.

Setting Hardware Breakpoints

To set a hardware breakpoint, follow these steps:
1. Connect to the target board.
2. Select Debug > Default Breakpoint Template > Hardware.

NOTE You can also set a hardware breakpoints by right clicking on a code line and
then selecting Set Hardware Breakpoint command.

Table 4.18 lists the number of hardware breakpoints that can be set for each Power
Architecture processor supported by this CodeWarrior product. Every processor listed in
the table supports software breakpoints.

Table 4.18 Hardware BPs Allowed by the Supported Power Architecture™ Processors

Processor Number of
Hardware Breakpoints

8641, 8641D 1
8245, 8250, 8255, 8260, 8264, 8265, 8266, 8610

166

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

Table 4.18 Hardware BPs Allowed by the Supported Power Architecture™ Processors

5200 2

8540, 8541, 8543, 8545, 8547, 8548, 8555,8560,
8572

8313, 8315, 8321, 8323, 8343, 8347, 8349, 8358,
8360, 8379

8247, 8248, 8270, 8271, 8272, 8275, 8280

P1020, P1021, P1022, P2010, P2020, P1011,
P1012

823, 850, 852, 857, 859 4
860, 862, 866, 870, 875, 880, 885

NOTE For some processors, the debugger must use one hardware breakpoint to
implement software breakpoints. For these processors, you will have one less
hardware breakpoint than listed in Table 4.18 unless you clear all software
breakpoints.

Accessing Translation Look-aside Buffers

This section shows you how to use the CodeWarrior debugger to access PowerQUICC III
Level 2 Memory Management Unit (MMU) translation look-aside buffers (TLBs).

PowerQUICC III Level 2 MMUSs have two TLBs:

« TLBO — a 256-element, two-way set associative array supporting a 4K page size,
a 512-element for e500v2 (8544, 8548, 8572)

* TLBI1 — a 16-element, fully associative array supporting nine or more page sizes

If you are debugging a supported PowerQUICC III board, the Registers window displays
the TLBO Registers and TLB1 Registers register groups.

Initializing TLBs

You can use writeregl28 commands in debugger initialization files to set up TLBs at
target system startup. For details, read writereg]128.

Accessing TLB Registers

To view the Registers window:

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 167

Working with the Debugger
Debugging Bare Board Software

1. Start the CodeWarrior IDE.

2. Open (or create) a project that targets the Power Architecture system you want to

debug.

3. From the CodeWarrior menu bar, select Project > Debug.

The IDE starts a debug session, connects to the target system, and halts the system at
the program entry point.

4. Select View > Registers.

The Registers window appears. (See Figure 4.19.)

Figure 4.19 Registers Window — TLB Register Groups Displayed

Lol
f Register | "alue
= simulator [l
#- debug.elf
B Thread 0x0 I
[B- General Purpose Registers
[B- e500 Special Purpose Registers
H- standard Special Purpose Registers
[E
0Ox04000000 00000000 00000000 00000000
- LZMMU_TLE1 0Ox04000000 00000000 00000000 00000000
- LZMMU_TLEZ 0Ox04000000 00000000 00000000 00000000
- LZMMU_TLB3 0x04000000 00000000 00000000 00000000
- LZMMU_TLES4 0x04000000 00000000 00000000 00000000
+ LZMMU_TLES 0x04000000 00000000 00000000 00000000
- LZMMU_TLE®& 0x04000000 00000000 00000000 00000000
- LZMMU_TLET 0x04000000 00000000 00000000 00000000
- LZMMU_TLES 0Ox04000000 00000000 00000000 00000000
- LZMMU_TLE®S 0Ox04000000 00000000 00000000 00000000
- LZMMU_TLEB10 0Ox04000000 00000000 00000000 00000000
- LZMMU_TLB11 0Ox04000000 00000000 00000000 00000000
- LZMMU_TLEB1Z2 0Ox04000000 00000000 00000000 00000000
- LZMMU_TLEB13 0Ox04000000 00000000 00000000 00000000
- LZMMU_TLB14 0x04000000 00000000 00000000 00000000
- LZMMU_TLEB15 0x04000000 00000000 00000000 00000000
- L2ZMMU_TLE16& 0x04000000 00000000 00000000 00000000
- L2ZMMU_TLB17 0x04000000 00000000 00000000 00000000 LI
.| PMMLI_TI R18 Nx04000000_NNNANNN0_NN000000_10nnnnnn v

The Registers window shows all registers supported by the target system. The window
groups all TLBO registers in the TLBO Registers group and groups all TLB1 registers
in the TLB1 Registers group. (See Figure 4.19.)

To view all of the elements of a TLB register group, double-click the group you want to
view. A window appears that displays all of the elements of the selected TLB.

For example, if you double-click the TLBO Registers group, the TLBO Registers window

appears. (See Figure 4.20.)

168 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

Figure 4.20 TLBO Registers Window

LBO Registers Window
debug.elf [Thread Ox0]

=0l x|

L2ZMMU_TLEL 0x042000000005A0000FCALO0010000000
L2ZMMU_TLEZ2 0x041D00000005A0000BAT 400010000000
LZMMU_TLEZ 0x042000000005A0000BE000000FFS0000
LZMMU_TLE4 0x041D00000005A0000BAT 200010000000
L2MMU_TLES 0x041D00000005A0000BAT 100010000000
LZMMU_TLEG 0x041D00000005A0000BAGF 00010000000
L2ZMMU_TLET 0x041D00000005A0000BAGEDDOLO000000
LZMMU_TLES 0x042000000005A0000FF2E00030000000
LZMMU_TLES 0x042000000005A0000FF2AQ0030000000
LZMMU_TLEL1D 0x042000000005A0000FF23000320000000
LZMMU_TLE11l 0x042000000005A0000FF2100010000000
LZMMU_TLE1Z 0x041D0O0000005A0000FEDZ200010000000
LZMMU_TLEL1Z 0x042000000005A0000FF25000320000000
LZMMU_TLE14 0x041D0O0000005A0000BE450000FFS0000
LZMMU_TLE1S 0x041F00000005A0000BE0100010000000
LZMMU_TLElEe O0x041D0O0000005A0000FESTOO00FESDOOOD

LZMMU_TLEL7 0x042000000005A0000BE420000FFS0000 -
LZMMU_TLE1S O0x041D0O0000005A0000FESSO0O00FESDOOOD rJ
#

LZMMU_TLED 0x042000000005A0000FF 4500030000000 ﬂ

A

This window shows all of the TLB registers, and their contents. To modify TLB registers

during a CodeWarrior de

bug session:

1. In the Registers window, select the TLB register you want to modify.

The IDE highlights your selection.

2. From the CodeWarrior menu bar, select View > Register Details.

The Register Details window appears. (See Figure 4.21.)

Figure 4.21 Register Details Window
]

Desciriptian File: ||

Fegister Mame: L2tMU_TLEE

mem1Dehmt VI

0O 0O0O0OODOOOQWOD

0000000 O0O0OO0OO0

of sfalsl sl sl elzleloladuddsdsdsddsdsdsdsdzdzdzdzdzdadzdadzdzdzda:
30 30 304 305| 30 BDI 30 30 4DEi 401I 402I 40 40 40 40 4DI 40 40 50 501I 502‘I SD3| 504 505| Sﬂd SD?l Sljd 504 Gﬂd GD].I 602‘I GD
sdesdededededrdralrd7d747d| 74747 7dad aslada iﬁﬁﬁiﬁiﬂiﬁiﬁ?ﬁ?ﬂiﬂiﬁiﬁ%

0

906' 90?| 90‘Ei S:‘ 10Ei 10Ei 10Ei 1od 10Ei 10Ei 10Ei 10El 1od 1od 10jl 10jl 10jl 10jl 10]l 10

10jl 10jl 10jl 10jl 102I 102I 102I 102I 102| 10EI 102I 10

II-Ic: ne j |

IILBl array entry

Resvert | Read |

it | Feset Yalue

1=
=]

T et View: IAuto - l
4

2

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

169

Working with the Debugger
Debugging Bare Board Software

This window lets you view register contents in different formats, and change portions of
the selected register.

Setting the IMMR Register

Use the Debug > EPPC > Change IMMR command to define the memory location of the
IMMR (Internal Memory Map) register. This information lets the CodeWarrior debugger
find the IMMR register at debug-time.

NOTE The Change IMMR command is enabled only if you first select an 825x or
826x processor in the EPPC Debugger Settings target settings panels.

TIP You can also set the IMMR base address by issuing the
cmdwin: :eppc: : setMMRBaseAddr command in the Command Window.

Setting the SCRB Register

Use Debug > EPPC > Change SCRB command to set the System Controller register
base value. This information lets the CodeWarrior debugger find the System Controller
registers during a debug session.

NOTE This command is disabled unless you select 107 or 109 from the System
Controller dropdown menu of the EPPC Debugger Settings panel. The System
Controller dropdown menu, in turn, is displayed only if you first select a
processor having a 109 system controller (for example, the MPC744x) in the

EPPC Debugger Settings target settings panel.

Sending a Hard Reset Signal

Use the Debug > EPPC > Hard Reset command to send a hard reset signal to the
processor on the target board.

NOTE The Hard Reset command is enabled only if the run-control hardware you are
using supports this command.

TIP You can also perform a hard reset by issuing the reset hard command from
the CodeWarrior Command Window.

170

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

Loading and Saving Memory

Use the Debug > EPPC > Load/Save Memory command to copy data from a file into
memory or to save data in memory to a file.

In more detail, the Load/Save Memory command:

* Loads the specified amount of data from a binary or text file on the host and writes
this data to the target board’s memory starting at the specified address.

* Reads the specified amount of data from the specified address of the target board’s
memory and saves this data in a binary or text file on the host.

TIP You can also load and save memory by issuing the restore and save
commands from the CodeWarrior Command Window.

If you load an S-Record file, the loader behaves as follows:

¢ The loader uses the offset field to shift the address contained in each S-Record to a
lower or higher address. The sign of the offset field determines the direction of the
shift.

* The address produced by this shift is the memory address at which the loader starts
writing the S-Record data.

¢ The loader uses the address and size fields as a filter. The loader applies these fields
to the initial S-Record (not to its shifted version) to ensure that only the zone defined
by these fields is actually written to.

Filling Memory

Use the Debug > EPPC > Fill Memory command to assign the specified value to a range
of memory locations starting at the specified memory address.

Saving and Restoring Registers

Use the Debug > EPPC > Save/Restore Registers command to:
* Copy the contents of the specified registers to a text file
or
* Load the specified registers from a text file.

The command lets you select the register group to save or restore.

Virtual Address Translation Support

The CodeWarrior debugger supports two types of address translation:

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 171

Working with the Debugger
Debugging Bare Board Software

» Static address translation

To achieve this form of address translation, you add a translate command to your
build target’s memory configuration file for each block to be translated.

Each translation block definition includes a virtual and a physical address. The
address mapping of a block does not change during a debug session.

Static address translation works with most remote connections and is not affected by
differences in the architecture of a chip’s MMU.

For instructions that explain how to enable static address translation support, refer to
the Enabling Address Translations topic.
Finally, static address translation does not apply to dynamic memory pages.

¢ Dynamic address translation

To achieve this form of address translation, you add a range command to your build
target’s memory configuration file for each block to be translated. To each range
command, you pass the argument LogicalData for the optional memorySpace
parameter.

At debug-time, the specified address translations are sent to the probe. The probe, in
turn, translates virtual addresses to physical ones before requesting data through the
JTAG port.

Use dynamic address translation to access dynamic memory pages.

Refer to the Memory Configuration Files appendix for instructions that explain how to
create and use a memory configuration file.

Enabling Address Translations

Use the Debug > EPPC > Enable Address Translations command to enable and disable
the debugger’s virtual-to-physical address translation feature. Typically, you enable this
feature to debug programs that use a memory management unit (MMU) that performs
block address translations.

If you enable address translations, the debugger uses the address translation commands in
your memory configuration file to perform virtual-to-physical address translations. Refer
to the translate topic for a definition of the syntax and effect of the address translation
command.

To perform MMU debugging, follow these steps:

1. Add required address translation commands to your memory configuration file.

NOTE To create the required address translation commands, you must know how your
application maps memory.

172

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

2. Inthe EPPC Debugger Settings target settings panel, check the Use Memory
Configuration File checkbox, and specify the memory configuration file described
above in the related text box.

3. Select Project > Debug.

The debugger downloads your executable to the target device. The executable enables
the MMU of the target device.

4. Select Debug > EPPC > Enable Address Translations.

The debugger performs address translations using the address translation commands it
finds in the your memory configuration file.

Automatically Enabling Address Translation

By default, address translations are disabled. However, if you must download an
executable to a virtual address, you must enable address translation before the download.

To enable address translations before a download, add this statement to your memory
configuration file:

AutoEnableTranslations true

NOTE Typically, when using virtual addressing, you link your executable with virtual
addresses and initialize the MMU of your target device from a target
initialization file or boot-loader.

Debugging ELF Files Created by Other
Build Tools

You can use the CodeWarrior debugger to debug a “foreign” ELF file, that is, an ELF file
created by build tools other than the CodeWarrior build tools.

Before you open a foreign ELF file for debugging, you must examine some IDE
preferences and change them if needed. In addition, you must customize the default XML
project file with appropriate target settings. The CodeWarrior IDE uses the XML file to
create a project with the same target settings for any ELF file that you open to debug.

Preparing to Debug an ELF File

Before you debug an ELF file, you need to change certain IDE preferences and modify
them if needed.
1. Select Edit > Preferences.

The IDE Preferences window appears.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 173

Working with the Debugger
Debugging Bare Board Software

2. From the IDE Preference Panels list, select Build Settings.
The Build Settings panel appears. (See Figure 4.22.)

Figure 4.22 Build Settings Preference Panel
R Build Settings

— Settings

Build befare running: INever 'I v Save open files before build

[Show message after building up-to-date project
Compiler thread stack [K]: 325

—I~ Use Local Project Data Storage

|{Eompiler}anaI_D ata_Storage Choose,.. |

|1zed when the project data folder cannot be created on read-only volumes.

3. Make sure that the Build before running dropdown menu specifies Never.

NOTE Selecting Never prevents the IDE from building the newly created project,
which is useful if you prefer to use a different compiler.

4. In the IDE Preference Panels list, click the Global Settings item.
The Global Settings preference panel appears. (See Figure 4.23.)

174 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

Figure 4.23 Global Settings Preference Panel

N Global Settings

Purge after: |1 days. Purge Maow I IED frames

r— Other Settings

[Confirm invalid file modification dates when debugging

— [+ Cache Edited Files Between Debug Sessions—‘ ’,r Limit Stack Crawls ——

[~ automatically launch applications when opening a 5vH file
[+ Confirm "Kill Process" when closing or quitting the application
v Select thread window when stopping task

v Do naot step into runtime support code

[~ Auto target libraries

¥ Close 10 conzole on process death

¥ Reopen |40 console as needed
Re-erecute target init zcript even if already connected: IAsk vl

5. Make sure that the Cache Edited Files Between Debug Sessions checkbox is clear.
6. Close the IDE Preferences window.

That’s it. You have examined the relevant IDE preference settings.

Customizing the Default XML Project File

When you debug an ELF file, the CodeWarrior software uses the default XML project file
to create a CodeWarrior project for the ELF file. The path to an name of this file is:

installDir\bin\Plugins\
Support\PowerPC_EABI\EPPC_Default_Project.XML

You must import the default XML project file, adjust the target settings of the new project,
and export the changed project back to the original default XML project file. The
CodeWarrior software then uses the changed XML file to create projects for any ELF files
that you open to debug.

NOTE The IDE overwrites the EPPC_Default_Project .XML file each time you
customize it. To preserve a customized version of this file, rename it or save it
in another directory.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 175

Working with the Debugger
Debugging Bare Board Software

To customize the default XML project file:

1.

Import the default XML project file.
Select File > Import Project.

b. Navigate to this location in the CodeWarrior installation directory:
bin\Plugins\Support\PowerPC_EABI\

Select the EPPC_Default_Project.XML file name.
Click Open.

e. Select the location where you want to save the new project.

& e

)

In the File name text box, enter the name of the new project file and click Save.

The CodeWarrior software displays a new project based on
EPPC_Default_Project.XML.

. Change the target settings of the new project.

Select Edit > Target Settings to display the Target Settings window. In this window,
you can change the target settings of the new project as per the requirements of your
target board and debugging devices.

Export the new project with its changed target settings.

Export the new project back to the original default XML project file
(EPPC_Default_Project.XML) by selecting File > Export Project and saving
the new XML file over the old one.

The new EPPC_Default_Project.XML file reflects any target settings changes
that you made. Any projects that the CodeWarrior software creates when you open an
ELF file to debug use these target settings.

Debugging an ELF File

This section explains how to prepare for debugging an ELF file for the first time.
To debug an ELF file:

1.

From the CodeWarrior menu bar, select File > Open.

2. Navigate to and select the ELF file (with included debugger symbolic information).

The CodeWarrior software creates a new project using the previously customized
default XML project file. The CodeWarrior software bases the name of the new
project on the name of the ELF file. For example, an ELF file named cw . ELF results
in a project named cw . ELF . mcp.

The symbolics in the ELF file specify the files in the project and their paths. Therefore,
the ELF file must include the full path to the files.

The DWARF information in the ELF file does not contain full path names for
assembly (. s) files. Therefore, the CodeWarrior software cannot find them when

176

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

creating the project. However, when you debug the project, the CodeWarrior software
finds and uses the assembly files if the files reside in a directory that is an access path
in the project. If not, you can add the directory to the project, after which the
CodeWarrior software finds the directory whenever you open the project. You can add
access paths for any other missing files to the project as well.

3. (Optional) Check whether the target settings in the new project are satisfactory.
4. Begin debugging.
Select Project > Debug.

NOTE For more information on debugging, see CodeWarrior™ IDE User’s Guide.

After debugging, the ELF file you imported is unlocked. If you choose to build your
project in the CodeWarrior software (rather than using another compiler), you can
select Project > Make to build the project, and the CodeWarrior software saves the
new ELF file over the original one.

Additional Considerations

This section presents information that is useful when debugging ELF files.

Deleting Old Access Paths From ELF-Created Projects

After you create a project to allow debugging an ELF file, you can delete old access paths
that no longer apply to the ELF file by using these methods:

¢ Manually remove the access paths from the project in the Access Paths target
settings panel.

* Delete the existing project for the ELF file and recreate it by dragging the ELF file
icon to the IDE.

Removing Files From ELF-Created Projects

After you create a project to allow debugging an ELF file, you may later delete one or
more files from the ELF project. However, if you open the project again after rebuilding
the ELF file, the CodeWarrior software does not automatically remove the deleted files
from the corresponding project. For the project to include only the current files, you must
manually delete the files that no longer apply to the ELF file from the project.

Recreating ELF-Created Projects

To recreate a project that you previously created from an ELF file:

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 177

Working with the Debugger
Debugging Bare Board Software

1. Close the project if it is open.

2. Delete the project file. The project file has the file extension .mcp and resides in the
same directory as the ELF file.

3. Drag the ELF file icon to the IDE. The CodeWarrior IDE opens a new project based on
the ELF file.

Debugging Multiple ELF Files
Simultaneously

This section explains how to use the CodeWarrior IDE to simultaneously debug multiple
ELF files on a bare board. This is similar to debugging both an application and an
associated shared library.

In order to debug multiple ELF files simultaneously with the CodeWarrior IDE, both ELF
files must be available on the host computer, and must have DWARF 1.x, DWARF 2.x, or
STABS symbolic information.

In this section, we show you how to debug multiple ELF files simultaneously under these
scenarios:

¢ Debugging a Secondary ELF File Using the Load/Save Memory Option
* Debugging a Secondary PIC/PID ELF File
¢ Debugging a Secondary ELF File Created by Third-Party Tools

Debugging a Secondary ELF File Using a Serial
Connection

In this scenario, you have two CodeWarrior projects that generate ELF files. The first
project builds the main application, an application that loads and launches a secondary
application. The second project builds the secondary application, which you send to the
target system in S-Record format over a serial connection.

NOTE All source files for both projects must be available on the host system.

NOTE You can use two build targets in a single CodeWarrior project to generate both
the main and the secondary applications, or you can use separate CodeWarrior
projects to build each application. In this example, we use separate projects.

1. Inthe CodeWarrior IDE, open the main and secondary application projects.

Ensure that the host computer and the target system are connected by a serial cable.

178

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

TIP You can easily create a CodeWarrior project from an existing ELF file by
dragging the ELF file from Windows Explorer and dropping it on the
CodeWarrior menu bar.

2. Configure both projects to connect to the target system using a CCS connection.

TIP Read Working with Remote Connections for instructions that explain how to
configure remote connections.

3. In the main application project, add the secondary ELF file to the Other Executables
target settings panel.

The secondary ELF is the file produced by compile/linking the secondary project.

4. In the secondary application project, check the Generate S-Record checkbox in the
EPPC Linker target settings panel.

5. Build the secondary application.

The IDE generates the secondary ELF file in the Bin subfolder of the project folder.
6. Use a terminal application such as HyperTerminal to connect to the target system.
7. In the terminal, send the secondary ELF over the serial connection to the target system.

8. In the CodeWarrior IDE, open the main . c source code file in the main application
project.

Set a breakpoint in the main. c source code file where the loading of the S-Record
(.mot) file is finished, before application launch.

9. Start a debug session of the main application project.
The debugger stops at the main application entry point.

10. In the terminal window, paste the content of the secondary S-Record (. mot) file the
CodeWarrior IDE generated when you built the secondary project.

11. From the CodeWarrior menu bar, select View > Symbolics.

The Symbolics window appears.
12. In the Executables pane of the Symbolics window, select secondary.elf.
13. In the Files pane of the Symbolics window, select main. c.

The Symbolics window displays the main . c source code file.

14. In the Source pane of the Symbolics window, click the breakpoint column (at the left
side of the source code listing) to set a breakpoint in the main. c file.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 179

Working with the Debugger
Debugging Bare Board Software

15. From the CodeWarrior menu bar, select Project > Run.

The processor executes the main application. The main application loads the
secondary application and passes control to it. The debugger halts the secondary
application when its execution reaches the breakpoint you set.

Debugging a Secondary ELF File Using the
Load/Save Memory Option

In this scenario, you have two CodeWarrior projects that generate ELF files. The first
project builds the main application, an application that loads and launches a secondary
application. The second project builds the secondary application, which you send to the
target system in S-Record format over a serial connection.

NOTE All source files for both projects must be available on the host system.

NOTE You can use two build targets in a single CodeWarrior project to generate both
the main and the secondary applications, or you can use separate CodeWarrior
projects to build each application. In this example, we use separate projects.

1. Connect a serial cable between the host computer and the target board.

2. In the CodeWarrior IDE, open the main and secondary application projects.

TIP You can easily create a CodeWarrior project from an existing ELF file by
dragging the ELF file from Windows Explorer and dropping it on the
CodeWarrior menu bar.

3. Configure both projects to connect to the target system using a CCS connection.

TIP Read Working with Remote Connections for detailed instructions that explain how
to configure remote connections.

4. In the main application project, add the secondary ELF file to the Other Executables
target settings panel.

The secondary ELF is the file produced by compile/linking the secondary project.

5. In the secondary application project, check the Generate S-Record checkbox in the
EPPC Linker target settings panel.

6. Inthe CodeWarrior IDE, open the main. c source code file in the main application
project.

7. Set a breakpoint in the main. ¢ source code file where the loading of the S-Record
(.mot) file is finished, before application launch.

180

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

8. Start a debug session for the main application project.
The debugger stops at the main application’s entry point.
9. From the CodeWarrior menu bar, select Debug > EPPC > Load/Save Memory.
The Load/Save Memory dialog box appears.
10. Use this dialog box to download the S-Record file (secondary.mot) to the target.
11. From the CodeWarrior menu bar, select View > Symbolics.
12. The Symbolics window appears.
13. In the Executables pane of the Symbolics window, select secondary.elf.
14. In the Files pane of the Symbolics window, select main. c.
The Symbolics window displays the main . c source code file.

15. In the Source pane of the Symbolics window, click the breakpoint column (at the left
side of the source code listing) to set a breakpoint in the main. c file.

16. From the CodeWarrior menu bar, select Project > Run.

The processor executes the main application. The main application loads the
secondary application and passes control to it. The debugger halts the secondary
application when its execution reaches the breakpoint you set.

NOTE For more information about the Load/Save Memory function, refer to the
Loading and Saving Memory topic.

Debugging a Secondary PIC/PID ELF File

In this scenario, you create a simple CodeWarrior project to build an application that uses
PIC/PID addressing.

1. Connect a serial cable between the host computer and the target system.

2. Start the target system.

3. Inthe CodeWarrior IDE, open the primary and secondary application projects.

TIP You can easily create a CodeWarrior project from an existing ELF file by
dragging the ELF file from Windows Explorer and dropping it on the
CodeWarrior menu bar.

4. Configure both projects to connect to the target system using a remote connection over
the serial cable.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 181

Working with the Debugger
Debugging Bare Board Software

TIP See Working with Remote Connections for detailed instructions that explain how
to configure remote connections.

5. In the main application project, check the Generate S-Record checkbox in the
EPPC Linker target settings panel.

6. In the secondary application project, check the Generate S-Record checkbox in the
EPPC Linker target settings panel.

7. In the secondary application project, set the Code Address text box in the Segment
Addresses area of the EPPC Linker target settings panel to an appropriate value.

8. Build the secondary application.
The IDE generates the secondary ELF file in the Bin subfolder of the project folder.

9. In the main application project, add the secondary ELF file to the Other Executables
target settings panel.

10. Use a terminal application such as HyperTerminal to connect to the target system.
11. Start a debug session of the main application project.

12. From the CodeWarrior menu bar, select View > Symbolics to view the Symbolics
window.

13. In the Executables pane of the Symbolics window, select secondary.elf.
14. In the Files pane of the Symbolics window, select main. c.
The Symbolics window displays the main . c source code file.

15. In the Source pane of the Symbolics window, click the breakpoint column (at the left
side of the source code listing) to set a breakpoint somewhere in the main.c file.

16. Start a CodeWarrior debug session for the main application project.

17. From the CodeWarrior menu bar, select Debug > EPPC > Load/Save Memory to
display the Load/Save Memory dialog box.

18. Use the Load/Save Memory dialog box to load the secondary ELF at the address you
set in the Code Address text box in the EPPC Linker target settings panel.

TIP For instructions that explain how to use the Load/Save Memory dialog box, see
Loading and Saving Memory.

19. From the CodeWarrior menu bar, select View > Symbolics to display the Symbolics
window.

20. In the Executables pane of the Symbolics window, select secondary.elf.
21. In the Files pane of the Symbolics window, select main.c.

The Symbolics window displays the main . c source code file.

182

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

22. In the Source pane of the Symbolics window, drag the program counter indicator (the
blue arrow) to a line of source code in the main. c file.

The thread window displays the source code of the main. c file. The program counter
(blue arrow) appears at the line of source code you specified.

23. Change the view mode of thread window to Mixed.

The Address line displays the address you set in the Code Address text box in the
Segment Addresses area of the EPPC Linker target settings panel.

Debugging a Secondary ELF File Created by
Third-Party Tools

In this scenario, you have a CodeWarrior project for the main application and a secondary
application built by third-party tools.

NOTE The secondary ELF file to be debugged must contain debugging information in
one of these formats: DWARF 1.x, DWARF 2.x, or Stabs.

NOTE All source files for the secondary ELF file must be present on the host system.

To debug a secondary ELF file that was built with third-party tools, follow these steps:
1. Use the third-party tools to build the secondary ELF file.
2. Open the secondary ELF file in the CodeWarrior IDE.

TIP To open the secondary ELF file, you can drag-and-drop it into the client area of
the CodeWarrior IDE.

The IDE creates a CodeWarrior project for the secondary ELF file.

3. Configure the settings for the project such as the target processor for the secondary
ELF file.

4. Open the CodeWarrior project for the main application.

5. In the main application project, add the secondary ELF file to the Other Executables
target settings panel.

NOTE Downloading is a part of the launching process. Sections of the elf file to be
downloaded are controlled by EPPC Debugger Settings panel settings. The
debugger does not download the contents of a secondary ELF file defined in
the Other Executables section of the CodeWarrior project. The debugger
downloads and launches the specified project, only if there is a mcp file

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 183

Working with the Debugger
Debugging Bare Board Software

specified in the Other Executables section. In case of an ELF file the debugger
loads only the symbolic information for that file.

6. Start a CodeWarrior debug session for the main application project.

7. From the CodeWarrior menu bar, select Debug > EPPC > Load/Save Memory to
display the Load/Save Memory dialog box.

8. Use the Load/Save Memory dialog box to load the secondary ELF at the address you
set in the Code Address text box of the EPPC Linker target settings panel.

TIP For instructions that explain how to use the Load/Save Memory dialog box, see
the Loading and Saving Memory topic.

NOTE The Load/Save Memory dialog box offers the option of downloading only a
SREC or bin file and not an elf file. Therefore, the elf file should be available
in one of these formats. The included freescale compiler generates all three
formats - elf, bin and mot.

9. Start a debug session of the main application project.
10. From the CodeWarrior menu bar, select View > Symbolics.
The Symbolics window appears.
11. In the Executables pane of the Symbolics window, select secondary.elf.
12. In the Files pane of the Symbolics window, select main. c.
The Symbolics window displays the main . c source code file.

The thread window displays the source code of the main. c file. The program counter
(blue arrow) appears at the line of source code you specified.

Debugging a Multi-Core Processor

This section explains how to create CodeWarrior projects for board that has a multi-core
Power Architecture processor (such as the MPC8641D), download the binaries generated
by this project to each core of the target processor, and debug the binary on each core.

The topics are:
¢ Creating Projects for a Multi-Core Processor
¢ Debugging Multi-Core System
¢ Other Multi-Core Debugger Features

184 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

Creating Projects for a Multi-Core Processor
To create a project for a board that has a multi-core processor, follow these steps:
1. Start the CodeWarrior IDE.

The CodeWarrior IDE starts and displays its main window.
2. From the IDE menu bar, select File > New.

The New dialog box appears. (See Figure 4.24.)

Figure 4.24 New Dialog Box

Poiect | Fie | Obiect

8 Empty Project Project name:
8 EPFC New Project Wizard Itest_mc
i Extemal Build wizard
Location:
|E: my_projectzhtest_mc Set..
Audd ta Froject:
Praject:

| -

] I Cancel

3. From the Project list box, select EPPC New Project Wizard.
4. In the Project Name text box, type test_mc.

5. In the Location text box, type the path in which to create this project, or click Set to
use the Create New Project dialog box to find and select this path.

6. Click OK.
The EPPC New Project Wizard starts and displays its Linker page. (See Figure 4.25.)

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 185

Working with the Debugger
Debugging Bare Board Software

Figure 4.25 EPPC New Project Wizard — Linker Page

EPPC New Project Wizard - Linker

Select the Linker.

| Linkers

EPPC Linus GHU Linker
Freescale PowerPL EAB| Linker

< Back I MNest » I

Cancel

7. From the Linkers list box, select Freescale
8. Click OK.

PowerPC EABI Linker.

The wizard displays its Target page. (See Figure 4.26.)

Figure 4.26 EPPC New Project Wizard — Target Page

EPPC New Project Wizard - Target

x|
Select processor and board
850|850 | 83ec | B2ox | Boc | BovToec | 52 |
Processors Boards
PowerPC 8610 B641DHPCN
PowerPC 8641 e600D_ISS
PowerPC 86410 Generic
4 12 | |+
[~ Present detailed wizard
< Back MNexd Cancel |

9. In the Target page, click the tab for a processor family that includes a multi-core

processor.

For example, click the 86xx tab because this processor family includes the MPC8641D

multi-core processor.

186

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

10. From Target page’s Processors list box, select a multi-core processor.

For example, in the Processors list box of the 86xx tab, select the PowerPC 8641D
processor because this is a dual-core processor.

11. From the Target page’s Boards list box, select a board that has a multi-core processor
on it.

For example, in the Boards list box of the 86xx tab, select the 8641 DHPCN board
because this board contains the PowerPC 8641D dual-core processor.

12. Check the Present detailed wizard check box.
13. Click Next.
The wizard displays the Programming Language page.
14. From the Languages list box, select the programming language you want to use.

For example, if you plan to use the C language in your source code files, select C.

NOTE The language you select determines the libraries with which the new project’s
links and the contents of the main source file. If you select the C++ language,
you can still add C source files to the project (and vice versa).

15. Check the Use size optimized MSL libraries box.
16. Click the Next.
The wizard displays the Floating Point page.

17. From the Floating-point Support list, select the type of floating-point support your
project requires.

18. Click Next.
The wizard displays the Remote Connection page.

19. From the Available Connections list box, select the remote connection for the
run-control hardware you plan to use.

NOTE To debug a multi-core processor, you must use a JTAG probe.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 187

Working with the Debugger
Debugging Bare Board Software

20. Click Finish.
The wizard creates a project for each core on the selected processor and displays each
project window docked to the left, top, and bottom of the IDE main window.

The wizard appends the string _coreX (where X is a number between 0 and the
number of cores on the selected processor) to the each project name. This suffix lets
you tell which project is for which core.

The project with the suffix _core0 is the master project. When you debug this
project, the debugger downloads its binary to the processor’s first core, and then
downloads the binaries generated by each slave project to their respective cores.

Figure 4.27 shows the two projects that the wizard creates for the dual-core
PowerPC 8641D processor.

Figure 4.27 Project Windows — test_mc_core0.mcp and test_mc_corel.mcp

Praject far Project far
Coreng Core 1
=
test_mc_cors.mcp tesi_mc_core1.mcp I
I % Debug Version j B @ @ o=
Files I Link. Drderl Talgetsl
| Fils | Code | Data [#u/u |
& [F{] Source 0 0+ + =
g ML a 0D =
@ [#{_] Serial [UART) i 0« =l
@ {7 Runtime] 0 « =
[#{_3 Linker Command File i} i} =
[#{_] Config 1] o= =
{3 Diocumentation 1] 0 =

21. Click the tab labeled test_mc_core(.mcp.
This project becomes the active project.
22. Press Alt-F7.

The Target Settings window for the current build target of the test_mc_core0.mcp
project appears.

188 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

23.In the Target Settings window, select Other Executables from the Target
Settings Panels list.

The Other Executables target settings panel appears. (See Figure 4.28.)

Notice that the wizard included the path to and name of the slave project (that is, the
project that generates a binary for the second MPC8641D core) in this panel.

This information instructs the debugger to download the binary generated by the slave
project after it downloads the binary generated by test_mc_core0.mcp. Further,
it is this information that makes test_mc_core0 .mcp the master project.

Figure 4.28 The Other Executables Panel Showing a Slave Project
E Other Executables

Specify other executable files to debug while debugaing this target:

nc_corel.moep

[-]

Add... | Change. .. | Remove I

24. In the Target Settings window, select Remote Debugging from the Target
Settings Panels list.

The Remote Debugging target settings panel appears. (See Figure 4.29.)

Notice that the Multi-Core Debugging box is checked and that the Core Index text box
contains a 0. This information tells the debugger that:

* The current build target is for a multi-core processor.

* The binary generated by this build target should be downloaded to core O of the
multi-core processor.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 189

Working with the Debugger
Debugging Bare Board Software

Figure 4.29 The Remote Debugging Panel Showing the Settings Needed to Debug Core 0

|E Remate Debugging

— Connection Sethings
Eonnection:ltode\.\!arrior Ethernet TAP j Edit Conection... |
"Hemote download path

’7|7 Multi-Core Debugaing

Core Index: I 1] ﬂ

25. Click Edit Connection in the Remote Debugging target settings panel.
The Selected Connection dialog box appears. (See Figure 4.30.)
Make Sure that the Asynchronous Multi-Core Control box is checked.

In case of asynchronous run control, stop, run, and step commands affect only that
particular core.

In case of synchronous multi-core control, any run or halt command on one core
applies for all the cores. All the cores stop when any of the cores hits a breakpoint.
Step commands do not affect all cores.

NOTE Synchronous multi-core debugging is not supported for all the systems
(currently only 8641D supports it).

190 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

Figure 4.30 The Remote Debugging Panel Showing the Asynchronous Multi-core

26.
217.

28.

29.

30.

31.

Control Checkbox
zl
M arme: |Eodew’amor Ethemet TAP
Debugger, lm
i— Connection Type'IEthemet TAP VI
Hosthame: l—

Metwork timeout |15—
Interface Clack Frequency lm
Mem Read Delay ln—
Mermn ‘Write Delay lg_
™ TAP Memary Buffer (hex] [0=00000000
¥ Reset Target on Launch ™ Do not ugs fast download
I Force Shell Download [Enable Logging

¥ Asynchionous Multi-Core Control

[~ UseJTAG Configuration fil
’7| Chonse..

* -This frequency may work, only with CCS

Factony Settings I Fevert Pane! I Cancel | ak I

Close the Target Settings window.
Select Project > Make.

The IDE compiles/assembles the source code files of the current build target of the
test_mc_core0 project and links the resulting object code into an . el f format

executable file.

Click the tab labeled test_mc_corel .mcp.
This project becomes the active project.

Press Alt-F7.

The Target Settings window for the current build target of the
test_mc_corel .mcp project appears.

In the Target Settings window, select Other Executables from the Target
Settings Panels list.

The Other Executables target settings panel appears.

Notice that the panel contains no project name. The absence of a slave project list is
what makes this project a slave project.

In the Target Settings window, select Remote Debugging from the Target
Settings Panels list.

The Remote Debugging target settings panel appears.

Notice that the Multi-Core Debugging box is checked and that the Core Index text box
contains a 1. This information tells the debugger that:

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 191

Working with the Debugger
Debugging Bare Board Software

* The current build target is for a multi-core processor.

* The binary generated by this build target should be downloaded to core 1 of the
multi-core processor.

32. Close the Target Settings window.
33. Select Project > Make.

The IDE compiles/assembles the source code files of the current build target of the
test_mc_corel project and links the resulting object code into an . el f format
executable file.

34. Click the tab labeled test_mc_core0 .mcp.
This project becomes the active project.

That’s it. You have created a project that is configured for multi-core debugging.

Debugging Multi-Core System
The following tutorial uses the MPC8641D example project to show you how to use some
of the multi-core debugger’s features.
1. Start the CodeWarrior IDE.
2. Open the master project.
3. Select Project > Debug.
The debugger:
* Opens each slave project and displays its project window.
¢ Adds the Multi-Core Debug menu item to the IDE’s menu bar.

* For core 0, downloads the binary generated by the master project to core 0, halts
execution at the first statement in main (), and displays the source code in a
debugger window.

» For core 1, downloads the binary generated by the first slave project to core 1, halts
execution at the first statement inmain (), and displays the source code in a second
debugger window.

.. and so on until the binary for each slave project has been downloaded to the core
w1th which the binary is associated.
For example, for the dual-core MPC8641D processor, two debugger windows are
displayed. (See Figure 4.31.)
In each window, the program counter icon # points to the current statement (that is, to
the next statement to be executed) for each core.

The string in the title bar of each window tells you which debugger window is for
which core.

192

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

NOTE
core 0 has already executed part of the code.

In case of Synchronous multi-core control, when core 1 stops at entry point the

Figure 4.31 Debugger Windows for the Dual-Core MPC8641D Processor — View 1

i s debug.elf (core 20, chai 1ol x|
s ExOHhh|EEE
R Stack B| | [J@ Variables: Live | Value | Location]|
| stat = i 1069637592 | $GPR30 =
B main B pm 0xCOBEADOD $GPR31
-
R Souce:Crmp_projectsesl_meest_me_coreDiSourcetmainc =
—
¥ i @ debug.elf 'core #1, chain position 2) i [m] 3
typadef int (printf N xna) {1_‘)|E|
[Stack | | [§@ Variables: Live | Valus | Location [=]
A _stant =] i 25261985 $GPA30 =]
B main B pm O«FBFEF7AF $GPRZT
[.] =
- P
SuumE Chmy_projectsttest mettest me_corel\Sourcehmain.c. El
_ mtepr SEROD nofralloc B
3 ‘ sc
- blr
- printf{'weleons t }
O Line25 Col24 [Souwc | tvesdsf int (peintf method) {censt char *

void main{)

= interrupt handl
1 be used in the
er printf_methodr

printf;

- wtepr SPR30, pr
i

- Erintf (Vial

4] Line 32 Col8 | Source

K|

cntain shared
er call and interrupt handlers

e, we

;IJA

You use each debugger window the same way as with a single-core processor. In most
cases, an action taken in one window affects just the core with which this window is

associated — the action does not affect the other core.

NOTE

In case of Synchronous multi-core debugging, an action taken in one window

affects all the core with which this window is associated. In case of two cores,
both the cores run and stop at the same time. When a breakpoint is hit on a core
that core will stop resulting in a similar behavior on all other cores. Run/Stop
operations have the same behavior as Run All/Stop All, but on the target only
one run/stop command is issued by the core on which the command is

requested.

That said, if the program counter is in memory shared by a pair of cores, the debugger
window for each core shows the same source code and changes to the code in one
window are reflected in the other. Further, a breakpoint set in either window is

honored by both cores.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

193

Working with the Debugger
Debugging Bare Board Software

NOTE For the following procedure the run control is asynchronous.

4. In core 1’s debugger window, click the step over 3 button.

Core 1 executes the current statement and halts at the next statement.

Notice that the program counter icon in core 0’s debugger window does not move.
This is because the debugger controls each core’s execution individually (that is, the
execution of the cores is not synchronized).

. In the core 0’s debugger window, click the step over 3 button until reaching the

printf () statement.

Core 0 executes the current statement, the following statements, and halts at the
printf () statement.

Notice that the program counter icon in core 1’s debugger window does not change
position. Again, this is because the debugger controls each core’s execution
individually. (See Figure 4.32.)

. In the leftmost column of the core 0’s debugger window, click the dash next to this

statement:
system_call(); // generate a system call exception to
// demonstrate the ISR

A breakpoint indicator # appears next to this statement.

Notice that a breakpoint indicator does not appear in core 1’s debugger window. This
is because each core has a private copy of the main () function. (See Figure 4.32.)

194

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

Figure 4.32 Debugger Windows for the Dual-Core MPC8641D Processor — View 2

: m debug.elf (core #0,) -hain po 1ol x|
rE x 1O EEE

Stack m] | [f& Vaiables Live | value | Location =1
| stant =] i 1053637532 $GPR30 =]
B main #- pm 0xCO3EADOD $EPR2T

-] =

~
IE Sowce: Cihmy_projectsitest_meitest_me_core0\S ourcelmain.c [=]]

B \(mm maing] { mdebug.el (core #1. chain position 2)

B E x L h EEE

- int i=0;
scause interry

) e txu“x_:e'_ * [fStack m| | [J@ Vanables: Live | Value | Location =
o B = i 26281985 $GPR30 =
! b masin = pm OxFEFEF7AF $GFR31
- mtspr SPRGO. LI LI
}
BE Source:Chmy_projectsest_mo'test_me_corel MG ourceimain.c]|
printf (" Gl - ;I

B blr
/4 .

.EJ@

while {1 i++;
Ble 1) 0 e typadef int (1 hod) {const char * , ...);

£ o Line 34 Cal2 | Sourc

woid main(]

int i=0;
/*Because intarrupt handlere contain shared cods, we need to sawe the
Thiz will ke in t . call and interrupt handlers for pris
ragister printf_rethod® pm = printf;
asr
0

mtepr SFRG0, pm

e,
S

T

- printf {“Weleons to CoddWarrioriirin®);

N

0. Line 32 Col13 | Sowce 4] |

7. Incore 1’s debugger window, click the run % button.
The program enters an infinite loop.

The debugger window displays this status message:
Program "debug.elf" is executing.
Choose Break from the Debug menu to stop it.

Notice that core 1 does not hit the breakpoint set in core 0’s debugger window.

8. In the core 0’s debugger window, click the run % button.

Core 0 executes all statements up to but not including the breakpoint statement and
then halts at the breakpoint statement.

Core 1 continues to execute.

9. In the core 0’s debugger window, click the run % button.
Core 0 enters an infinite loop.

Core 1 continues to execute.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 195

Working with the Debugger
Debugging Bare Board Software

10. In core 1’s debugger window, click the break ™ button.
The debugger halts the core 1 at the next statement to be executed.
Core 0 continues to execute.

11. From the IDE’s menu bar, select Multi-Core Debug > Kill AllL
Both debugger windows close and the debug session ends.

12. Press Alt-F4.
The CodeWarrior IDE exits.

That’s it. You have created a project for a board that has a multi-core processor, built this
project, downloaded the resulting binaries to each core on the board, and used the multi-
core features of the CodeWarrior debugger to control each binary’s execution.

Other Multi-Core Debugger Features

This sections explains how to use the memory window, registers window, symbolics
window, and the Multi-Core Debug menu when debugging a multi-core processor.

The topics are:

¢ Using the Memory Window
¢ Using the Registers Window

¢ Using the Symbolics Window

¢ Using the Cache Window
e Using the Multi-Core Debug Menu

Using the Memory Window
You can open an instance of the memory window for each core in your multi-core system.

Like each debugger window lets you control particular core’s execution, so each memory
window lets you display and modify a particular core’s memory contents. However, if
memory shared by a pair of cores changes, the memory windows for each core reflect the
change.

The following tutorial uses the MPC8641D project to shows you how to display a memory
window for two cores.

1. Start the CodeWarrior IDE.
2. Open the master project.
3. Select Project > Debug.

The debugger downloads a binary to core 0, a binary to core 1, and displays two
debugger windows.

196

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

4. Activate core 0’s debugger window by clicking its title bar.
Core 0’s debugger window becomes topmost.
5. Select Data > View Memory.
A memory window displaying core 0’s memory appears.
6. Activate core 1’s debugger window by clicking its title bar.
Core 1’s debugger window becomes topmost.
7. Select Data > View Memory.
A memory window displaying core 1’s memory appears.
Figure 4.33 shows the memory windows for cores 0 and 1.

Refer to the CodeWarrior™ IDE User’s Guide for instructions that explain how to use the
memory window.

Figure 4.33 Memory Windows for the Dual-Core MPC8641D Processor

i @ debug.elf Memory 1 ;|E| 1'
Display: [main Wiew: IHaw data j

Hex: 00001BCC:00002ECO
7C0802A6 90010014 93E1000C

000023C0

00002300 | |23C10008 38C0O0000 3C600000 3BE356C4 N Z
0000Z23E0D | |FFFO43A6 3C600000 38636DCO 4CC63182 c’eBame Lol
000023F0 | |480032D5 4BFFFFCS 3BDE0OOOL 4BFFFFFC N L
00002400 | |2421FFF0 38210010 4E800020 9421FFF0 c Bl N ter g
00002410 | |7COB02A6 20010014 48000015 0010014 [+ ++ Hevw v
00002420 | |7COB03A6 38210010 4E800020 OD454E44 B! N +END
00002430 | |3883FFFF 3860FFFF 8C040001 38630001 B e 8C: =
00002440 | [2C000000 4082FFF4 4E800020 28040003 [, «+ v @ Nov (oo v g

Wwhord Size:|32 l i @ debug.elf Memory 2 =] 3
Display: [main View:lHaw data j
Address Hex: 10001BC0:10002BC0
100023C0 TCOBOZAE 90010014 I3E1000C
10002300 | [33C10008 3BCO0000 3CE01000 3BE356C4H
100023E0 | |7FFO43A6 3C601000 38636DCO 4CCE3182
100023F0 | |480032D5 4BFFFFCS 3BDEOOOL 4BFFFFFC
10002400 | |9421FFFO 38210010 4EB00020 9421FFFO
10002410 | [7COB02AE 90010014 48000015 80010014
10002420 | [7COB03AE 38210010 4EB00020 0045 4E44
10002430 | |3883FFFF 3BE0FFFF BCO40001 38630001
10002440 | |2C000000 4082FFF4 4EB00020 28040003
Word Size:
2 - 4

Using the Registers Window

You can open just one instance of the Registers window for all cores in your multi-core
system. This window displays each core’s private register set, along with the registers that
each core shares.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 197

Working with the Debugger
Debugging Bare Board Software

The following tutorial uses the MPC8641D project to shows you how to display a memory

window for two cores.
1. Start the CodeWarrior IDE.
2. Open the master project.

3. Select Project > Debug.

The debugger downloads a binary to core 1, a binary to core 2, and displays two

debugger windows.
4. Select View > Registers.

The Registers window appears. (See Figure 4.34.)

Refer to the CodeWarrior™ IDE User’s Guide for instructions that explain how to use the

Registers window.

Figure 4.34 Registers Window Showing Registers for the MPC8641D Dual-Core Chip

B Reqister

=0l x|

= iCodewarrior Ethernet TAP

| Walue |

-

[debug.elf
I"El-d"a"r" position 1
IE General Purpose Registers
IE Floating Point Registers
IE vector Registers
IE Standard Special Purpose Registers
IE Memory Management Special Purpose Registers
B 2600 Special Purpose Registers
[debug.elf
Ii:l- chain position 2
H- DDR Memory Controller 1 Registers (DDRC1)
H- DDR Memory Controller 2 Registers (DDRCZ)
H- Debug and watchpoint Monitor Registers (DEBUGWM)
H- DMA General Registers (DMA)
H- Dual I2C Registers
H- DUART
H- eTSEC Registers
H- Global utilities Registers (GLEUTIL)
H- Local-Access Registers-Configuration, Control, and Status Registers
H- Local-Access Window Base and S5ize Registers {LA_WBS)
H- Local Bus Controller Registers (LBC)
- MPIC Registers (MPIC)
H- MPX Coherency Module Registers (MPX)
H- PCI Express 1 Registers
H- PCI Express 2 Registers
H- Serial RapidI0o Registers (RapidIo)

== = = W= W= T = T = == = W = R = = T =

KN

Using the Symbolics Window

You can open just one instance of the Symbolics window for all cores in your multi-core

system.

For the selected core, the Symbolics window lists the source code files used to build the
binary running on the core, the public symbols defined in each file, and the contents of the

currently selected file.

198

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

The following tutorial uses the MPC8641D project to shows you how to display the multi-

core Symbolics window.
1. Start the CodeWarrior IDE.
2. Open the master project.

3. Select Project > Debug.

The debugger downloads a binary to core 1, a binary to core 2, and displays two

debugger windows.
4. Select View > Symbolics.

The Symbolics window appears. (See Figure 4.35.)

Refer to the CodeWarrior™ IDE User’s Guide for instructions that explain how to use the

Symbolics window.

Figure 4.35 Symbolics Window for the MPC8641D Dual-Core Chip

=T
B m x 03t
Executables =i Files]| Funchionz =] |
buffer_io.c ;I mair —
debug. elf direct_io.c spstem_call
duart.c J
duart_config.c
E sceptionPPC.cp
main.c
LI math_api.c LI LI
-
E_ﬂ Source: C:\my_ projectsitest mchtest mecore0MNS ourcesmain. o [=]|

2 interrupt handler cnmtain shared cc
=d in the =y =m call and inter
- register printf_method* pm = printf;
asm
{
- mtspr SFRGE0, pm
1

- printf {"Waelcorme to CodeWarrior!hrhn"];

£ . Line 31 Coll | Souce » 4 |

Using the Cache Window

The cache window can display the contents of any cache of any core of a multi-core
system. You can then manipulate this data in the same way as for a single-core processor.
(See Viewing and Modifying Cache Contents for instructions that explain how to use the

cache window.)

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

199

Working with the Debugger
Debugging Bare Board Software

To display a cache of a core of a multi-core system, follow these steps:

1. Activate the debugger window of the core for which you want to display cache
contents.

2. Select Data > View Cache.
A submenu listing the caches of the current core appears.

3. From this submenu, select the cache with which you want to work.
The cache window appears, showing the contents of the selected cache.

Figure 4.36 shows the cache window displaying the contents of the L1 instruction
cache of core 1 of the MPC8641D dual core processor.

Figure 4.36 Cache View Window for the MPC8641D Dual-Core Chip

iy
HEBRENRT |2

W [LRUVald | |[Wad0 [Wad! [Wod2 [Wodd [Wodd [Wod5
i0 00017000 Yes Mo 8009 2 T s

00016020 Yes No
00018040 Yes Ko
00017060 Yes No
00027080 Yes No
000270a0 Yes No
000270C0 Yes No
000270e0 Yes No
00027100 Yes Ko
00027120 Yes Ko
10 00027140 Yes Ko
11 00027160 Yes No

20 £
q | (4] | »

Refresh Wite Viewdhs [Raw data « y
)

T T W T e

2
3

oo 0o oo oo oo o

Using the Multi-Core Debug Menu

When you start a multi-core debug session, the debugger adds the Multi-Core Debug
menu to the IDE’s menu bar. This menu contains commands that affect all cores
simultaneously. Table 4.19 lists and describes each menu option.

Table 4.19 Multi-Core Debug Menu Commands

Command Descriptions

Run All Starts all cores of a multi-core system running simultaneously.

Stop All Stops execution of all cores of a multi-core system simultaneously

200 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

Table 4.19 Multi-Core Debug Menu Commands

Command Descriptions

Kill All Kills the debug session for all cores of a multi-core system
simultaneously.

Restart All Restarts all the debug sessions for all cores of a multi-core system
simultaneously.

Debugging Multiple Processors
Connected in a JTAG Chain

This section explains how to configure the CodeWarrior Power Architecture debugger to
support targets with more than one device on the JTAG scan chain.

The CodeWarrior debugger debugs the Freescale Power Architecture processors, single-
core or multi-core, connected together on one JTAG scan chain. Each single-core or multi-
core processor has its own CodeWarrior project and is debugged individually in the
CodeWarrior IDE. Debugging multi-core processors is handled automatically by the
CodeWarrior debugger. Debugging multiple processors, or debugging processors that
have other devices on the JTAG scan chain, requires some configuration provided by the
user.

The topics are:

¢ Creating a JTAG Configuration File
¢ Assigning the JTAG configuration file to the CodeWarrior Project

Creating a JTAG Configuration File

First step involves creating a JTAG configuration file.

The JTAG configuration file is an ASCII text file that defines all the devices on the scan
chain and the order in which they occur. Starting with the device directly connected to the
TDO (transmit data out) signal (Pin 1) of the 16-pin COP/JTAG debug connector on the
hardware target, list each device on a separate line and conclude with a blank line.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 201

Working with the Debugger
Debugging Bare Board Software

Figure 4.37 A JTAG Scan Chain

TDI TDD TDI TDD TDI TDD TDI inla]
— o[wpes3so }—»‘ MPC2641D }—»‘ MPC3572 }—»‘ MPC3548 }—.moo
3-T01
Chainpos. 3 Chain pos. 3-4 Chainpos. 1-2 Chainpos. 0

COPATAG
Debug
Connector

In the JTAG scan chain shown in Figure 4.37, the hardware target has four Freescale
Power Architecture processors on the JTAG scan chain: MPC8548, MPC8572,
MPC8641D, and MPC8360.

The JTAG Configuration File for this scan chain appears as shown:
PQ38

MPC8572

MPC8641D

MPC8360 (1 1) (2 0x84030006) (3 0x8C600000)

This list of devices follows the order of the scan chain starting with the device directly
connected to TDO of the COP/JTAG debug connector. In this example, the entry for the
MPC8360 also includes the Hard Reset Control Word (HRCW) data that will overwrite the
HRCW fetched by the MPC8360 upon power up or Hard Reset. The Hard Reset Control
Word parameters are optional.

The CodeWarrior debugger also supports targets with non-Freescale devices on the scan
chain. Each non-Freescale device is declared as "generic" and needs three parameters:
JTAG Instruction Length; Bypass Command; and Bypass Length. The values for these
three parameters are available in the device's data sheet or from its manufacturer.

202 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Bare Board Software

Figure 4.38 A JTAG Scan Chain

—-{ PLA }—»‘ MPCE560 }—.moo
3-TOI

TDI TDO TDI TDO

Chain pos. 1 Chain pos. 0

COPAITAG
Debug
Connector

In the JTAG scan chain shown in Figure 4.38, the hardware target has one Freescale
MPC8560 and one non-Freescale PLA on the JTAG scan chain. From the PLA's data
sheet, the JTAG Instruction Length = 5, the Bypass Command = 1, and the Bypass Length
= 0x1F. The JTAG Configuration File for this scan chain appears as shown:

MPC8560

Generic 5 1 0x1F

Assigning the JTAG configuration file to the
CodeWarrior Project

1.

In the CodeWarrior IDE, create a CodeWarrior project for each Freescale processor.
For detailed instructions, see Creating Projects for a Multi-Core Processor topic.

The wizard creates a project for each core on the hardware target and displays each
project window docked to the left, top, and bottom of the IDE main window.

Click the tab of each project to activate it.

3. Press Alt-F7.

The Target Settings window for the current build target of the project appears.

In the Target Settings window, select Remote Debugging from the Target Settings
Panels list.

The Remote Debugging target settings panel appears. (See Figure 4.39.)

The Core Index refers to the position of the processor or core on the scan chain,
starting with zero. The device directly connected to the TDO signal (Pin 1 of the
target's 16-pin COP/JTAG debug connector) is Core Index 0, the next device is Core
Index 1, and so on.

In JTAG scan chain shown in Figure 4.37, the hardware target has four Freescale
Power Architecture processors on the JTAG scan chain:

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 203

Working with the Debugger
Debugging Bare Board Software

e MPC8548 — Core Index 0
* MPC8572 — Core Indices 1-2
* MPC8641D — Core Indices 3-4
* MPC8360 — Core Index 5

For this target the MPC8548 project uses Core Index 0, core 1 of the MPC8572 uses
Core Index 1, core 2 of the MPC8572 uses Core Index 3, core 1 of the MPC8641D
uses Core Index 3, core 2 of the MPC8641D uses Core Index 4, and the MPC8360
project uses Core Index 5.

Figure 4.39 The Remote Debugging Panel

|E Remate Debugging

— Connection Sethings

Connection: IEodeWarrior Ethernet TAP j Edit Conection... |

— Femate download path

— W Multi-Core Debugging

Core Index: I 1] ﬂ

5. Click Edit Connection in the Remote Debugging target settings panel.
The Selected Connection dialog box appears. (See Figure 4.40.)

204 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Embedded Linux® Software

Figure 4.40 The Remote Debugging Panel Showing the Use JTAG Configuration file
Checkbox
B
ame: |CudeWarriDr Ethernet T4P
Debugger[ECS EFFC Fiotocal Flugin._~ |
- Connection Type:[Ethemet TSP =]

Hostname 10.171.77.204

Metwork timeout 15
Interface Clock Frequency Im
Mem Read Delay
tem wirite Delap
[~ TAP Memory Buffer [hex] D:00000000
¥ Reset Target on Launch I™ Do not use fast download

[~ Force Shell Download I” Enable Logging
¥ Aspnchronous Muli-Caore Control

W Use JTAG Configuration fil

Choose... I

* -Thiz frequency may work only with CCS.

Factory Settings | Revert Panel | Cancel I Ok |

6. Check the Use JTAG Configuration File check box.
7. Click Choose.
Navigate to the location of the JTAG Configuration File created above.
8. Select the file and click OK.
9. Close the Target Settings window.

10. Similarly, for each CodeWarrior project, enable the Multi-Core Debugging option of
the Remote Debugging target settings panel.

11. Similarly, for each CodeWarrior project, specify the correct Core Index value in the
Remote Debugging target settings panel.

That’s it. You have created a project that is configured for debugging multiple processors
connected in a JTAG chain.

Debugging Embedded Linux® Software

This section explains how to use the CodeWarrior debugger to debug an embedded Linux
application and to debug the U-Boot bootstrap firmware.

The topics are:

e Tutorial: Debugging an Embedded Linux® Application
¢ Debugging the U-Boot Bootstrap Firmware

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 205

Working with the Debugger
Debugging Embedded Linux® Software

Tutorial: Debugging an Embedded Linux®
Application

This chapter explains how to use your CodeWarrior tools to build and debug the project
created in the Using the Linux® New Project Wizard section.

To build this project, and download and debug the resulting binary on your target board,
follow these steps:

1. Start the CodeWarrior IDE.
2. Open the project created in the Using the Linux® New Project Wizard section.

The project window appears, docked to the left, top, and bottom of the IDE’s main
window. (See Figure 4.41.)

Figure 4.41 Project Window

T
Build Target hell d I
Dropdown Menu i ——
.Llﬂ Diebug Yersion j B & @ o
Diebug on
ROk Wersion k
Cache 1SR Debug Yersion [Code | Data |40 % |
w [+{_] Source 1] 0« « =
W F{JM5L 0 0« =l
W [#{_] Senal [UART) 0 0« =l
w [+{_] Runtime 1] 0+« « =
[#_] Linker Command File 1] I =l
*4_] Carfig 1] o - =l
F1Z] Documentation 1] 0 e =l

3. From the build target dropdown menu, select Application Debug.
4. Select Project > Make.

The IDE compiles/assembles the project’s source code files and links the resulting
object code into an executable file.

5. Connect your target board to your PC.
a. Ensure that target board’s power switch is in the OFF position.
b. Connect a power supply to the board.

Connect an Ethernet cable to the target board and to your PC.

& 0

Connect a serial cable to the target board and to your PC.

e. On your PC, start a terminal emulator program.

lag

Configure the terminal emulator as shown in Table 4.20.

206

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Embedded Linux® Software

Table 4.20 Terminal Emulator Configuration Settings

bits per second 115200
data bits 8

parity none
stop bits 1
hardware flow control none
software flow control none

g. Move the board’s power switch to the ON position.
The target board powers up.
The terminal emulator displays Linux boot status messages and then displays a

login prompt. (See Figure 4.42.)

Figure 4.42 Terminal Emulator Showing Linux® Shell Prompt

#ghello_world_output - HyperTermin -0l x|

File Edit View Call Tramsfer Help

D] 55

Welcome to Codelarrior! :|
system call exception handler

-
KN — »
[Connected 0:03:37 |uto detect [s7e008-N-1 [SCRO

h. In the terminal emulator, type root at the login prompt and press Enter.
The system prompts you for a password.
i. In the terminal emulator, type root at the password prompt an press Enter.

The system logs you in as user root and displays this prompt:
~ #

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 207

Working with the Debugger
Debugging Embedded Linux® Software

j- At the prompt, execute this command:
~ # ifconfig eth0 IPAddress netmask Mask

(where ITPAddress is an available, static IP address on your network, and Mask
is the mask appropriate for your subnet).

The ifconfig utility assigns the specified IP address and netmask to Ethernet
port 0.

NOTE If you do not have an unused, static IP address, obtain one from your network
administrator.

k. At the prompt, execute this command:
~ # ./apptrk.elf :1000

The CodeWarrior Target-Resident Kernel (apptrk) runs in the background on the
processor board and listens on port 1000 for CodeWarrior debugger connections.

The terminal emulator redisplays the ~ # prompt.

NOTE If the Linux file system does not contain a copy of apptrk, you can generate
one by building the project trk_linux_ppc.mcp. This file is in this folder:
installDir\PowerPC_EABI_Tools\
CodeWarriorTRK\Os\unix\linux\ppc

1. Exit the terminal emulator program.
6. Select Project > Debug.

The debugger opens a console window, downloads the application to the processor
board, halts execution at the first statement in main (), and displays your source code
in the debugger window. (See Figure 4.43.)

The program counter icon # points to the current statement (that is, to the next
statement to be executed).

The debugger adds the item Linux Info to the IDE’s menu bar.

208 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Embedded Linux® Software

Figure 4.43 Debugger Window

i mmyapp_cpp.elf (Unknown) ;IQILI
B E x OO OEEE
IEStac:k m| | [fe Varisbles Live | value | Location]|
(0x00000000 [0=00000000) ;I Mo b vasiaddar ;I
Ox0FEBE344 [0<0FEBE3A4)
main
= =
A4
Source: C:hmy_projectsihello_world'S ourcehmain.c Ell
#include <stdic.h= ;I

int main{)
L2

- printf {"Welcome to CodsWarrior!hrin");

- return 0O;
-}

+ Li 4 3
£ Line 4 Col1 | Source KR IA

7. Control the application using the debugger.

a.

In the bottom pane of the debugger window, scroll to this statement:
printf (“Welcome to CodeWarrior!\r\n”);

In the leftmost column of debugger window, click the dash next to this statement.

A breakpoint indicator ® appears next to the statement.

Click the run ¥ button.

The debugger executes all statements up to but not including the breakpoint
statement and then halts at the breakpoint statement.

Click the step over {3 button.

The debugger executes the print £ () statement and halts execution at the next
statement. The text Welcome to CodeWarrior! appears in the console
window.

From the IDE’s menu bar, select Linux Info > Process Info.
The debugger displays the Process Information Window.

The left side of this window displays the name of each process running on the
target board. The right side of the window displays information about the process
currently selected in the left side of the window. (See Figure 4.44.)

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 209

Working with the Debugger
Debugging Embedded Linux® Software

Figure 4.44 Process Information Window

i mProcess Information Window 10l x|
myapp_cpp.elf <97 Stopped =-apptrk <06= Rumning Info
W i cmdLine: apptrk :1000
apptrk <94>*§leepingican be interrupted) & Environ

sh <00- slespingican be interruptead) - Maps

inetd <84> sSleepingican be interrupted) .. Process Status

jEfs2_ged _mtdl <3l> Sleespingican be interrupted) £ memory status

mtdblockd «1l> Sleepingican be interrupted) i.Total program size: 509

kewapdD <9> Sleepingi{can be interrupted) esident set size: 197

kthread <5» Slespingican be intarrupted) hared pages: 159

rhelper «4> Sleepingican be interrupted) ext {code) : Sz

events/0 «3» Slespingican be interrupted) ibrary: a

ksoftirgd/0 «<2» sleepingican be interrupted) B ata/stack: 69

init <l sleepingican be interrupted) i.dirty pages: a

f. Click the kill thread * button.

The debugger kills your application without letting it complete and closes the
debugger window.

8. Press Alt-F4.
The CodeWarrior IDE exits.

That’s it. You have created a Linux application project for your target board, built this
project, downloaded the resulting application to the board, and used the CodeWarrior
debugger to control this application’s execution.

Debugging the U-Boot Bootstrap Firmware

This section explains how to use the CodeWarrior debugger to debug the U-Boot
bootstrap firmware.

U-Boot resides in flash memory on your target board and boots an embedded Linux image
developed for the board.

NOTE The Linux Application Edition of this product does not support debugging the
U-Boot bootstrap firmware.

The topics in this section are:

* Preparing to Debug U-Boot

¢ Debugging U-Boot
Preparing to Debug U-Boot

NOTE The first part of this procedure must be performed on a Linux host.

210

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Embedded Linux® Software

To prepare to debug U-Boot on a target board, follow these steps:
1. Obtain the board support package (BSP) for your target board.

You can download a BSP for your board from this web page:
http://www freescale.com/powerbsp

Open a terminal window.
Create a directory named /mnt/iso

Execute the su command to obtain superuser privileges.

wok o w N

Mount the iso file containing the BSP by executing this command:
mount -o loop bspFileName /mnt/iso

(where bspFileName is a placeholder for the name of your BSP’s . iso file).
6. Exit superuser mode.
7. Install the BSP.

Refer to the documentation included with in the BSP for instructions.

8. Use the tools included with the BSP to build an ELF format U-Boot file that includes
debugging information.

NOTE If the used BSP does not offer the Codewarrior debug support, go to the
CodeWarriorIDE/CodeWarrior/PowerPC_EABI_Tools/
KernelAndUboot_patches directory, apply one of the U-Boot patches
and rebuild the U-Boot. If your U-Boot does not support any of the provided
patches, manually apply the changes from the correct core version of one patch
to your U-boot source tree. If you encounter problems during U-Boot debug,
make sure you have completed steps (a,b,c, and d) below, before building the
bootloader.

a. Make these changes to u-boot/config.mk:

¢ DBGFLAGS = -g2 -gdwarf-2
e AFLAGS_DEBUG = -Wa,-gdwarf2
e OPTFLAGS = -01

NOTE If you are using an LTIB BSP, you may need to change the optimization flag of
the U-Boot CFLAGS argument in this file:
install/ltib/config/platform/boardName/.config file.

b. Inu-boot/1lib_ppc/board.c, change the token debug to the token
printf in the statement that includes the string now running in ram.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 211

http://www.freescale.com/powerbsp
http://www.freescale.com/powerbsp

Working with the Debugger
Debugging Embedded Linux® Software

c. Build U-Boot.

You now have an ELF format U-Boot file that contains debugging information. In

addition, you have a U-Boot raw binary that you can write to flash memory on the
target board.

NOTE The following procedure must be performed using the Professional Edition of
this CodeWarrior product.

9. Start the CodeWarrior IDE.

10. Use the CodeWarrior flash programmer to write the raw binary U-Boot file (not the
ELF format file) to the flash memory of your target board.

Refer to the Flashing U-Boot section of your board’s BSP User’s Guide for
instructions that explain how to flash U-Boot to your board. This document is in this
folder of the BSP directory tree: help/software/

NOTE Do not write the ELF format U-Boot file to flash memory; you must use the
raw binary U-Boot file.
11. From the IDE’s menu bar, select File > Open.
The standard Windows® Open dialog box appears.

12. Use this dialog box to find and open the ELF format U-Boot file.
13. Click OK.

The IDE displays the Choose Debugger dialog box. (See Figure 4.45.)

Figure 4.45 Choose Debugger Dialog Box

Choose Debugger x|

Chooze a debugger:

Abatron Serial ;I
Abatron TCP/AP

Codew arrior Ethernet TAP

Code'/arriar PCI

ior USE TAP

EPPC Linux Code'w amiorTRE
EPPC Linus Codew arior TRE[1]
MetoTRE

Sirnulator

Simulator[1]

d|
ag I Cancel |

14. From this dialog box, select one of these remote connections:

212 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Embedded Linux® Software

¢ CodeWarrior Ethernet TAP—if you are using an Ethernet TAP probe.
¢ CodeWarrior USB TAP—if you are using a USB TAP probe.

NOTE You must use a JTAG probe to debug U-Boot. The CodeWarrior USB TAP
and the CodeWarrior Ethernet TAP are both JTAG devices.

15. Click OK.

In the directory containing the ELF format U-Boot file, the IDE creates a CodeWarrior
project containing the source code files used to build the U-Boot file. As the IDE
creates this project, it displays a progress bar that indicates project-creation progress.

For each U-Boot source code file that the IDE cannot find, it displays a dialog box
with which you can navigate to and select the missing file. (See Figure 4.46.)

Figure 4.46 Missing Source File Dialog Box

Can't find the file start.5 2xl
Laak in: I@ u-boot_debug =] « cf 3~

u-boot-8360-dbg_Data
uhoct-2360-dbg
u-boot-8360-dbg.mep

Ohject name:

start. 5 Open I
Objects of [l Files [~ =] Cancel |

NOTE For the IDE to create a complete U-Boot project file, you must have all source
code files used to build the ELF format U-Boot file.

For each source code file that cannot be found, the IDE logs a message to the
Project Creator Log window. Once project creation is complete, the IDE displays the
project in a project window. (See Figure 4.47.)

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 213

Working with the Debugger
Debugging Embedded Linux® Software

Figure 4.47 CodeWarrior™ Project Window for U-Boot

=l
u-booi-3360-dbg el _mcp I
I ¥ Default Project j B ¥ @ 5 >
Files | Lirlk. Drderl Targetsl
¢ | Fie | Code | Data (4 |
¢ B durmmpc] 0 =
¢ [EPPC_Defaull_README.tat n'a n'a =l
¢ [startS 0 0s =
¢ [traps.c i 0« =
¢ B cpu_initc i 0« =
¢ [interupts.c i 0« =
¢ [spd_sdram.c a 0 =
M bitops.h a o =
vgvvamfwvvwwwwvvmw&/w

That’s it. You now have CodeWarrior project with which you can debug the U-Boot
bootstrap firmware just written to the target board’s flash memory.

NOTE While debugging U-Boot on 86xx, if the Address Translations option has not
been enabled and you set a breakpoint in a part of code after the address
translation is done, this breakpoint will not be hit. Breakpoints can be used
until enable address translation is done. You can use step into to debug through
the address translation section (breakpoints / step over / run to cursor cannot be
used). After the translation is enabled, you can start using again the hardware
breakpoints. A breakpoint set in the c) part of code while debugging in the a)
part of code will not be hit.

Debugging U-Boot

On power-up, the processor starts executing the U-Boot image in flash memory. First, the
code executed from flash enables the processor’s MMU. Next, the code executed from
flash copies the main part of the U-Boot image to RAM. Finally, execution jumps to the
U-Boot code in RAM.

Because the target settings required to debug U-Boot before the MMU is enabled, after the
MMU is enabled, and after execution from RAM starts are different, you must debug
U-Boot in three stages.

These sections explain how to debug U-Boot at each stage of its execution:
* Debugging U-Boot before the MMU is Enabled

¢ Debugging U-Boot after the MMU is Enabled
* Debugging the U-Boot Section in RAM

214 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Embedded Linux® Software

Debugging U-Boot before the MMU is Enabled

To debug the U-Boot section in flash memory before the chip’s MMU has been enabled,
follow these steps:

1.
2.
3.

Start the CodeWarrior IDE.

Open the U-Boot project.

Press Alt-F7.

The Target Settings window appears.

Select Debugger Settings from the Target Settings Panels list of the Target
Settings window.

The Debugger Settings panel appears.

NOTE See the IDE User’s Guide for a definition of each option in this panel.

In this panel, make these settings:
¢ Check the Stop on Application Launch box.

* Select the Program entry point option button.

. Select Remote Debugging from the Target Settings Panels list of the Target

Settings window.

The Remote Debugging target settings panel appears.

NOTE See the IDE User’s Guide for a definition of each option in this panel.

9.

. In this panel, ensure that one of the remote connection names listed below appears in

the Connection dropdown menu.
* CodeWarrior Ethernet TAP
¢ CodeWarrior USB TAP

. In this panel, click the Edit Connection button.

The Edit Connections dialog box appears and displays the configuration for the
selected remote connection.

In this dialog box, check the Reset Target on Launch checkbox.

10. Click OK.

The Edit Connections dialog box closes.

11. Select Debugger PIC Settings from the Target Settings Panels list of the

Target Settings window.

The Debugger PIC Settings target settings panel appears.

12. In this panel, make these selections:

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 215

Working with the Debugger
Debugging Embedded Linux® Software

¢ Check the Alternate Load Address checkbox.

* In the Alternate Load Address text box, enter the address at which the U-Boot image
was written to flash memory.

13. Select EPPC Debugger Settings from the Target Settings Panels list of the
Target Settings window.

The EPPC Debugger Settings panel appears.
14. In this panel, make these selections:

a. From the Target Processor dropdown menu, select the processor on your target
board.

b. From the Target OS dropdown menu, select BareBoard.
c. If your board needs to be initialized prior to being debugged:
¢ Check the Use Target Initialization File checkbox.

* Click Browse to display a dialog box with which you can choose the U-Boot
target initialization file for your board.

NOTE If the U-Boot initialization file for the used target is not there, you may use the
ROM initialization file for that target.

d. Inthe Program Download Options group box, clear all the checkboxes in the Initial
Launch and Successive Runs boxes.

15. In the Target Settings window, click OK.
The IDE saves your settings and closes the Target Settings window.
16. On your PC, start a terminal emulator program.

17. Configure the terminal emulator as shown in Table 4.21.

Table 4.21 Terminal Emulator Configuration Settings

bits per second 115200
data bits 8

parity none
stop bits 1
hardware flow control none
software flow control none

216 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Embedded Linux® Software

18. Move the board’s power switch to the ON position.
The board powers up.

In the terminal emulator, U-Boot displays status messages and then displays this
message:
Hit any key to stop autoboot: N

(where Nis the number of seconds left until autoboot starts).
19. Before Nreaches zero, press Enter.

U-Boot displays this prompt: —->

NOTE If during its initialization, U-Boot requests a MAC address, enter a dummy
MAC address (such as, 00:01:03:00:01:04), and press Enter.

20. In the CodeWarrior IDE, select Debug > Attach to Process.
The debugger connects to the target board and displays the debugger window.

21. In the debugger window, click the break ™ button.

The debugger halts U-Boot’s execution and displays disassembled code in the Source
pane of the debugger window. (See Figure 4.48.)

Figure 4.48 Debugger Window Showing Disassembled U-Boot Code

i mu-boot-§360-dbg.elf (Thread 0x0) 10l x|
pEx M| EEE
B Stack | | [ReVarables: Live | Value | Location]|
0:0FFDE 728 [0:0FFDE7283) ;I A drea siadiar ;I
0:0FFDETDO [020FFDE1DO)
0x0FFDEDS0 [0:0FFDEO0) |
(0FFD OFFDEZCY) M |
-
Source: [=1]
=
- OFFDG2BE4: 38210010 addi rep, rep, 16
- OFFDG2BS: 4E800020 blr
- OFFD62BC: P421FFF0 stwu rsp. -1 {rsp)
- OFFDG200: 88030005 lbz r0,5(r3)
~ @OFFDG204: 70090001 andi. r?,rl, 0x0001
~ OFFDG2C08: 4182FFFE beg OxOFFDG2C0 (OxEfdG2co)
- OFFDG2CC: 288630000 lbz r3, 0i(xri)
~ OFFDG2D0: 38210010 addi rEp,rEp, 16
- OFFD62D4: 4ES00020 blr
- OFFD62D8: 2421FFF0 stwu rep, -16 (r=p)
~ OFFDG2DC: 88630005 lbz r3,5(r3)

OFFDG2EQ: 546307FE clrlwi ri, ri, 31

{1, Linek Coll | Assembler M/ 4] | LI_L

22. Select Debug > EPPC > Hard Reset.

The debugger sends a hard reset signal to the board. The debugger window displays
the __start section. You can debug from this point up to the first bl r instruction in
start.S.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 217

Working with the Debugger
Debugging Embedded Linux® Software

Debugging U-Boot after the MMU is Enabled

To debug the U-Boot section in flash memory after the chip’s MMU has been enabled,
follow these steps:

1. Start the CodeWarrior IDE.
2. Open the U-Boot project.
3. Press Alt-F7.
The Target Settings window appears.

4. Select Debugger Settings from the Target Settings Panels list of the Target
Settings window.

The Debugger Settings panel appears.
NOTE See the IDE User’s Guide for a definition of each option in this panel.

5. In this panel, make these settings:
¢ Check the Stop on Application Launch box.
* Select the Program entry point option button.

6. Select Remote Debugging from the Target Settings Panels list of the Target
Settings window.

The Remote Debugging target settings panel appears.
NOTE See the IDE User’s Guide for a definition of each option in this panel.

7. In this panel, ensure that one of the remote connection names listed below appears in
the Connection dropdown menu.

¢ CodeWarrior Ethernet TAP
e CodeWarrior USB TAP
8. In this panel, click the Edit Connection button.

The Edit Connections dialog box appears and displays the configuration for the
selected remote connection.

9. In this dialog box, check the Reset Target on Launch checkbox.
10. Click OK.
The Edit Connections dialog box closes.

11. Select Debugger PIC Settings from the Target Settings Panels list of the
Target Settings window.

The Debugger PIC Settings target settings panel appears.
12. In this panel, uncheck the Alternate Load Address checkbox.

218

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Embedded Linux® Software

13. Select EPPC Debugger Settings from the Target Settings Panels list of the
Target Settings window.

The EPPC Debugger Settings panel appears.
14. In this panel, make these selections:

a. From the Target Processor dropdown menu, select the processor on your target
board.

b. From the Target OS dropdown menu, select BareBoard.
c. If your board needs to be initialized prior to being debugged:
¢ Check the Use Target Initialization File checkbox.

¢ Click Browse to display a dialog box with which you can choose the target
initialization file for your board.

d. Inthe Program Download Options group box, clear all the checkboxes in the Initial
Launch and Successive Runs boxes.

15. In the Target Settings window, click OK.
The IDE saves your settings and closes the Target Settings window.
16. On your PC, start a terminal emulator program.

17. Configure the terminal emulator as shown in Table 4.22.

Table 4.22 Terminal Emulator Configuration Settings

bits per second 115200
data bits 8
parity none
stop bits 1
hardware flow control none
software flow control none

18. Move the board’s power switch to the ON position.
The board powers up.

In the terminal emulator, U-Boot displays status messages and then displays this
message:
Hit any key to stop autoboot: N

(where Nis the number of seconds left until autoboot starts).

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 219

Working with the Debugger
Debugging Embedded Linux® Software

19. Before Nreaches zero, press Enter.

U-Boot displays this prompt: ——>

NOTE If during its initialization, U-Boot requests a MAC address, enter a dummy
MAC address (such as, 00:01:03:00:01:04), and press Enter.

20. In the CodeWarrior IDE, select Debug > Attach to Process.
The debugger connects to the target board and displays the debugger window.

21. In the debugger window, click the break ™ button.

The debugger halts U-Boot’s execution and displays disassembled code in the Source
pane of the debugger window. (See Figure 4.49.)

Figure 4.49 Debugger Window Showing Disassembled U-Boot Code

i mu-boot-8360-dbg.elf (Thread Dx0) - o x|
EEx 0| EEE
B Stack B| | [feVariables: Live | Value | Location]|
0x0FFDE 728 (04OFFDE728) Bl 5|
D<0FFDETD0 (0XIFFD £100)
id|
~
Snurce' 1)
5
- OFFDG2B4: 38210010 addi rEp, rE0, 16
- OFFD62BE: 4ES00020 blr
- OFFD&2BC: 9421FFF0 stwu r=p, -16 (rsp)
- OFFDA2C0: 88030005 lb=z ro,5(r3)
- OFFDG204: 70020001 andi. r?,r0, 0x0001
- OFFDG208: 4182FFFE8 beg Ox0FFDE200 (O0xf£d52c0)
- OFFD62CC: 88630000 lb=z ri,0(r3)
-/ OFFD&2D0. 38210010 addi rep,rsp, 16
- OFFDG2D4: 4E800020 blr
- OFFDE2D8: 9421FFF0 stwu rep, -16{r=p)
- OFFD&2DC: 88630005 lbz r3, 5i(rd)
- OFFDG2ED: 546307FE clrlwi ri,ri, 3l
>
0./ Line & Coli | Assembler b 4] | Ey

22. Set a hardware breakpoint at board_init_f.

a. In the debugger window, click the symbolics button.
The Symbolics window appears. (See Figure 4.50.)

220 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Embedded Linux® Software

Figure 4.50 Symbolics Window for U-Boot ELF File Showing Function board_init_f

i @ Symbolics Window 10l x|
B E x 3Hhh
B Executables =] Files A/ | [§ Functions 1]
u-boot-8360-dbg. & ﬂ bitops.h | | @ board_init_f =
board.c = | |board_init_r =
bootp.c hang
j bytearder.h LI init_baudrate j
-
H_n Source: D:MProfilesi\BAT 74850 eskbopiu-boot_debughsrchurboot-1.1.34ib_ppehboard.c Ell
* RAM. d
* Be awars of the re ticne: global data is read-only, BEE is not
* initialized, and sta space is limited to a few kB.
x =1

T L T T L T T T Y

wvold board init £ {(ulong bootflag)
DECLARE_GLOBAL_DATA_DTR;

bd_t *bd;

@ Line348 Coll | Sowce ¥4] I LI_L

b. In the Executables pane of the Symbolics window, select the U-Boot ELF file.

The Files pane populates with the names of the source code files used to build the
ELF file.

c. In the Files pane of the Symbolics window, select board. c.
The Functions pane populates with the functions defined in board. c.
d. In the Functions pane of the Symbolics window, select board_init_f.

The board_init_f function’s source code appears in the Source pane of the
Symbolics window.

e. Move the mouse cursor to the tic mark next to the entry point of the
board_init_f function and right-click.

A context menu appears.
f. From this context menu, select Set Hardware Breakpoint.
A hardware breakpoint indicator [+ appears at the selected tick mark.
g. Close the Symbolics window.
23. Select Debug > EPPC > Hard Reset.
The debugger sends a hard reset signal to the target board.

24. In the debugger window, click the run % button.

U-Boot executes until it reaches the hardware breakpoint set previously. The debugger
then halts execution and displays the board_init_f function. (See Figure 4.51.)

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 221

Working with the Debugger
Debugging Embedded Linux® Software

Figure 4.51 Debugger Window After Hitting the Hardware Breakpoint in board_init_f

; gu-boot-8360-dbg.elf (Thread 0x0) - 1ol x|
pE x| EHE
Gtack. =] | [§e Variables Live [Value | Location]|
board_init_f = addr 2BE108206 $GFPR2A a|
= ardi_zp 4377313540 $EPRI -|
~
Sourcei [:\Profiles\RAT 748\Desktop'u-boot_debughsrciu-boat-1.1. 3\ib_ppchboard.c 5|
woid board _init_f (uleng bootflag)
AL
DECLARE_CGLOBAL_DATA_DPTR;
bd_t *bd; —
uleng len, addr, addr_sp;
gd & *id;
init_fne_t **init_fne_ptr;
#ifd=f CONFIG_FRAM
int i:
ulong reqg;
uchar trplsd]; /* leng encugh for envircnment variables +/
#endif
#* Pointer is writable since we allocated a register for it */ -
0 LineME Cold | Sowce b4 >|_I A

25. In the debugger window, click the step over €3 button.
The debugger steps from one C-language statement to the next.

That’s it. You can now debug the U-Boot section in flash memory.

Debugging the U-Boot Section in RAM
To debug the U-Boot section in RAM, follow these steps:
1. On your PC, start a terminal emulator program.

2. Configure the terminal emulator as shown in Table 4.23.

Table 4.23 Terminal Emulator Configuration Settings

bits per second 115200
data bits 8
parity none
stop bits 1
hardware flow control none
software flow control none

222 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Embedded Linux® Software

3. Move the board’s power switch to the ON position.
The board powers up.

The terminal emulator displays U-Boot startup messages and then and then displays
this message:
Hit any key to stop autoboot: N

(where Nis the number of seconds left until autoboot starts).
4. Press Enter.
U-Boot displays this prompt: —->

5. Write down the memory address displayed by the terminal emulator in this string:
Now running in RAM - U-Boot at: memory address

(where memory._address is a placeholder for the real address at which U-Boot
resides in RAM).

Figure 4.52 shows the string that contains the U-Boot RAM address.

Figure 4.52 Terminal Emulator Showing U-Boot RAM Memory Address

#gtemp - HyperTerminal I [59
Elle Edit Wiew Call Transfer Help
DRAM: =l

DDR DIMM: data bus width is 64 bit without ECC
DDRC ECC mode: OFF

SDRAM on Local Bus: 64 MB
DR RAM- :

runniné in'Rﬂﬁ - U-Boot at: 0ffc9000

JAY

Err: serial

Net: FSL GETHO

Hit any key to stop autoboot: 0
=>

-

4| | »
Connected 3:40:11 [suto detect [1152008w-1 [SCROLL [CaPs [MUM [Captore [Print g

6. Start the CodeWarrior IDE.
7. Open the U-Boot project.
8. Press Alt-F7.
The Target Settings window appears

9. Select Debugger Settings from the Target Settings Panels list of the Target
Settings window.

The Debugger Settings panel appears.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 223

Working with the Debugger
Debugging Embedded Linux® Software

NOTE See the IDE User’s Guide for a definition of each option in this panel.

10. In this panel, make these settings:
¢ Check the Stop on Application Launch box.
* Select the Program entry point option button.

11. Select Remote Debugging from the Target Settings Panels list of the Target
Settings window.

The Remote Debugging target settings panel appears.
NOTE See the IDE User’s Guide for a definition of each option in this panel.

12. In this panel, ensure that one of the remote connection names listed below appears in
the Connection dropdown menu.

¢ CodeWarrior Ethernet TAP
¢ CodeWarrior USB TAP
13. In this panel, click the Edit Connection button.

The Edit Connections dialog box appears and displays the configuration for the
selected remote connection.

14. In this dialog box, check the Reset Target on Launch checkbox.
15. Click OK.
The Edit Connections dialog box closes.

16. Select Debugger PIC Settings from the Target Settings Panels list of the
Target Settings window.

The Debugger PIC Settings target settings panel appears.
17. In this panel, make these settings:
* Check the Alternate Load Address checkbox.

* In the Alternate Load Address text box, enter the U-Boot RAM address you wrote
down previously.

NOTE If you specify an alternate load address, the debugger can display source code
for sections in RAM only. This is because an alternate load address value
causes the debugger to assume that all sections have been relocated to RAM.
For the same reason, if no alternate load address is specified, the debugger can
display source code for sections in flash memory only.

224

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Embedded Linux® Software

18. Select EPPC Debugger Settings from the Target Settings Panels list of the
Target Settings window.

The EPPC Debugger Settings panel appears.
19. In this panel, make these selections:

a. From the Target Processor dropdown menu, select the processor on your target
board.

b. From the Target OS dropdown menu, select BareBoard.
Uncheck the Use Target Initialization File checkbox.

d. Inthe Program Download Options group box, clear all the checkboxes in the Initial
Launch and Successive Runs boxes.

20. In the Target Settings window, click OK.
The IDE saves your settings and closes the Target Settings window.
21. Select Debug > Attach to Process.
The debugger connects to the target board and displays the debugger window.

22. In the debugger window, click the break ™ button.

The debugger halts U-Boot’s execution and displays disassembled code in the Source
pane of the debugger window. (See Figure 4.53.)

Figure 4.53 Debugger Window Source Code for the U-Boot RAM Section

i mu-boot-§360-dbg.elf (Thread 0x0) 7 O]
prEx OO EEE
B Stack | | [ReVariables: Live | Value | Location]|
fgete ;I [com_port 0<E 0004500 $GPR3 ;I
senal_getc
_senial_gstc J==)
- =l
=
Source: D:AProfileshRAT 74850 eskiopbu-boot_debughsrchwrboot1.1. 3hdriversing16550.c m|
- while {{com_port-slsr & LSR_THRE] == 0]; 1=

- com_port->thr = o
-1

char NS16550_getc (NSLE550_t com_port)

- whila {{com_port-=lsr & LSR_DR) == 0] (
#ifdef CONFIG_USE_TTY
axtern void usbtty_polljveid);

usbtty polli);
#endif

}

return {com_port-srbr] ;

Al 1 _'I_I
{3, Line 57 Col1 | Source Mo | 4

23. Set a software breakpoint at board_init_r.

a. In the debugger window, click the symbolics button.
The Symbolics window appears. (See Figure 4.54.)

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 225

Working with the Debugger
Debugging Embedded Linux® Software

Figure 4.54 Symbolics Window for U-Boot ELF File Showing Function board_init_r

g.

{ @ Symbolics Window =] 3]
% EH ox 3 h
B Executables m| | [§Files E1] | [B Functions 1]
u-boot-8360-dbg. elf ;I bitops.h - board_init_f 1=
W boardc W board_init_r -
bootp.c hang
| | |bytearderh | | |init_baudrate |
i
[FHR Souce:D-“Frofies'RAT 74840 eskiophurbont_debughsichurbont] 1 34ib_ppotbrard o =l|
¥ that critical any morae, abc. -
N
R KRR AR R K R AR R AR R R R R KR AR A
oy
woid board_init_r (gd_t *id, uleng dest_addr)
* —
DECLARE GLOBAL DATR PR
erd_thl_t *cmdtp:
char *s, *a;
bd_t *bd;
int i;
extern void malloc_bin relec {void);
-
{3 LineB06 Col1 | Source KD | 3 Y

In the Executables pane of the Symbolics window, select the U-Boot ELF file.

The Files pane populates with the names of the source code files used to build the
ELF file.

In the Files pane of the Symbolics window, select board. c.
The Functions pane populates with the functions defined in board. c.
In the Functions pane of the Symbolics window, select board_init_r.

The board_init_r function’s source code appears in the Source pane of the
Symbolics window.

Move the mouse cursor to the tic mark next to the entry point of the
board_init_r function and right-click.

A context menu appears.
From this context menu, select Set Software Breakpoint.
A software breakpoint indicator # appears at the selected tick mark.

Close the Symbolics window.

24. Select Debug > EPPC > Hard Reset.

The debugger sends a hard reset signal to the target board.

25. In the debugger window, click the run % button.

U-Boot executes until it reaches the software breakpoint set previously. The debugger
then halts execution and displays the board_init_r function. (See Figure 4.55.)

226

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Debugger
Debugging Embedded Linux® Software

Figure 4.55 Debugger Window After Hitting the Software Breakpoint in board_init_r

{ mu-boot-8360-dbg.elf (Thread Dx0) - o x|
EEx 0| EEE
B Stack A | §eYaiables: Live | Valye | Lacation 1]
[tssmS ection] A= bd Dx0FFAEFE4 $GPRZ7 =
board_init_r — ||®=- cmdp 0«0FFFECS0 $GPR11 —
main_loop dest_addr 1} $GPRA
parse_file_outer LI =) " 0=0FFAEF18 LI
-
Snurce' D:hProfiles\RAT 748\Desktophu-boot_debughsrchu-boot-1.1.34ib_ppciboard.c El
wvold board_init_r (gd_t *id, ulong dest_addr)
LI
DECLARE GLOBAL DATR_PTH;
erd_thl_t *cmdtp:
char *=, *a;
bd_t *bd;
int i; —
extern void mallos bin_relos {void);
#ifndef CFS_ENV_IS_NOWHERE
axtern char * env_narme spac;
#endif
» Li 4 3
0. LineB12 Col27 | Sowce M4 | Y

26. In the debugger window, click the step over T button.
The debugger steps from one C-language statement to the next.

That’s it. You can now debug the U-Boot section in RAM.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 227

Working with the Debugger
Debugging Embedded Linux® Software

228 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with
the Hardware Tools

This chapter explains how to use the CodeWarrior hardware tools. Use these tools for
board bring-up, test, and analysis.

The sections of this chapter are:

¢ Flash Programmer
* Hardware Diagnostics Tool
¢ EPPC Trace Buffer Support

NOTE The flash programmer, hardware diagnostics tool, and support for the EPPC
trace buffer are not included in the Linux® Application Edition of this product.

Flash Programmer

The CodeWarrior flash programmer lets you manipulate the flash memory of any
supported Power Architecture board from within the CodeWarrior IDE. Specifically, the
flash programmer can perform these functions:

¢ Program

* Erase

¢ Blank Check
* Verify

¢ Checksum

NOTE The debugger provides common flash-programmer features (such as view/
modify memory, view/modify registers, and save memory to a file). As a
result, the CodeWarrior flash programmer does not include these features.

CodeWarrior for Power Architecture Processors includes a flash programmer settings file
for each supported target board. These files are in this directory:

installDir\bin\Plugins\Support\Flash Programmer\EPPC

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 229

Working with the Hardware Tools
Flash Programmer

To configure the flash programmer so it works with your target board, follow these steps:

1. From the IDE’s menu bar, select Tools > Flash Programmer.

The Flash Programmer window appears. (See Figure 5.1.)

Figure 5.1 Flash Programmer Window

i @Flash Programmer ﬂ
Flash Pragrammer Target Configuration
T arl ation
Flash Configuration
Erase / Blank Check Default Project: bello_word BE mep
Program / Verify
Checksum Drefault Target: Debug Yersion
¥ Use Custom Settings
Processor Family: I B5um 'I
Target Processor: |854D 'I Connection: | Codew/arrior Ethernet TAP j
IV Usge Target Iritialization
targetfilenarne B |
r— Target Rak temary Buffer Optior:
Target Memory Buffer Address: 0x (00000000 [V Enable Logging
Target kemary Buffer Size: [| 00008000 I~ Verify Target Memory Wiites
Shaow Log | Load Settings... I Save Seftings... | Claze |

2. Select Target Configuration from the pane on the left side of the Flash

Programmer window.

The Target Configuration panel appears on the right side of the Flash Programmer

window.

3. Optionally, configure the Flash Programmer window using a CodeWarrior project.

a. Open a CodeWarrior project and select the build target that has the target settings

you want to use.

b. Clear the Use Custom Settings checkbox.

The appearance of the Default Project and Default Target text strings changes from

dim to normal.

c. SelectFlash Configuration from the pane on the left side of the Flash

Programmer window.

The Flash Device Configuration panel appears on the right side of the Flash

Programmer window.

230

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Hardware Tools
Hardware Diagnostics Tool

d. For the options listed below, select values appropriate for the flash memory device
on your board.

¢ Flash Memory Base Address
* Device
¢ Organization

* Sector Address Map
NOTE See your target board’s User Manual for the values to specify for these options.

e. Skip step 4.

4. Optionally, configure the Flash Programmer window using a flash programmer
settings file.

a. Check the Use Custom Settings checkbox.

The appearance of the Default Project and Default Target text strings changes from
normal to dim.

b. Click Load Settings.
A standard “open file” dialog box appears.

c. Use this dialog box to select the flash programmer settings file appropriate for your
target board.

d. Click Open.
The dialog box closes.

The options on each panel of the Flash Programmer window are set using values
from the selected settings file.

5. From the Connection dropdown menu, select the probe you are using.
That’s it. The CodeWarrior flash programmer is now configured to work with your board.

See the CodeWarrior™ IDE User’s Guide for instructions that explain how to use the
Flash Programmer window.

Hardware Diagnostics Tool

The CodeWarrior hardware diagnostics tool lets you test your target board’s hardware.

To configure the hardware diagnostics tool so it works with your target board, follow
these steps:

1. From the IDE’s menu bar, select Tools > Hardware Diagnostics.

The Hardware Diagnostics window appears. (See Figure 5.2.)

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 231

Working with the Hardware Tools

Hardware Diagnostics Tool

Figure 5.2 Hardware Diagnhostics Window

mHardware Diagnostics il
Hardware Diagnostics Configuration
figuration
mory Read / Wirite
Scope Loop Default Project: — hello world BB mep
femorp Tests
Default Target: [Debug Yersion
¥ Use Custom Settings
Processor Family: IGenEric ‘I
Target Processor: IGeneric ‘I Connection: | Codehw'amion Ethernet TAR j
¥ Use Target Initialization
targetfilename s, |
Show Log I Load Settings... | Save Seftings... I Cloze |

2. Select Configuration from the pane on the left side of the Hardware Diagnostics

window.

The Configuration panel appears on the right side of the Hardware Diagnostics

window.

3. Optionally, configure the Hardware Diagnostics window using a CodeWarrior

project.

a. Open a CodeWarrior project and select the build target that has the target settings
you want to use.

b. Clear the Use Custom Settings checkbox.

The appearance of the Default Project and Default Target text strings changes from

dim to normal.

c. Skip step 4.

4. Optionally, configure the Hardware Diagnostics window using a hardware
diagnostics settings file.

232

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Hardware Tools
EPPC Trace Buffer Support

EPPC

To use a hardware diagnostics settings file to configure the Hardware Diagnostics
window, follow these steps:

a. Check the Use Custom Settings checkbox.

The appearance of the Default Project and Default Target text strings changes from
normal to dim.

b. Click Load Settings.
A standard “open file” dialog box appears.

c. Use this dialog box to select the hardware diagnostics settings file appropriate for
your target board.

d. Click Open.
The dialog box closes.

The options on each panel of the Hardware Diagnostics window are set using
values from the selected settings file.

5. From the Connection dropdown menu, select the probe you are using.

That’s it. The CodeWarrior hardware diagnostics tool is now set up to work with your
target board.

See the CodeWarrior™ IDE User’s Guide for instructions that explain how to use the
Hardware Diagnostics window.

Trace Buffer Support

The EPPC trace buffer is a 256- x 64-bit buffer that can capture information related to the
internal processing of transactions with the processing interfaces. This visibility into
internal device behavior is useful for debugging application software through inverse
assembly and reconstruction of the fetch stream.

On some Power Architecture processors, trace buffer support is implemented in hardware;
as a result, the trace buffer does not affect application performance.

You can configure the trace buffer to trace the dispatch bus from any of these interfaces:
¢ 500 coherency module (ECM)
¢ Outbound host interface to the RapidIO controller
¢ Outbound host interface to the PCI controller

¢ Host interface to the DDR controller.

NOTE You can trace only one interface at a time.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 233

Working with the Hardware Tools
EPPC Trace Buffer Support

As transactions come into the ECM, the ECM arbitrates common resources and dispatches
the transactions to target ports. You can capture information such as transaction types,
source ID, and other attributes for any of the selected interfaces.

Trace events hold this information:

» Transaction type — the type of transaction (for example, write with local processor
snoop, or read with unlock)

* Source of the transaction — the source block or port of the transaction (for example,
the local processor for data fetches).

» Target of the transaction — the target block or port of the transaction (typically slave
ports in a transaction, such as local memory)

* The size of the transaction, in bytes
NOTE Transaction target is meaningful only if monitoring the ECM dispatch bus.

You can configure the trace buffer to record all transactions or to record only:
 transactions with a specified source ID
 transactions with a specified target ID
* transactions whose address matches a specified masked address

* transactions whose current context ID (the value of CCIDR register) matches or does
not match the programmed context ID (the value of PCIDR register).

You can combine any of these conditions.

You use the EPPC Trace Buffer target settings panel to configure the trace buffer for
each build target in a CodeWarrior project.

For example, you could set up the EPPC Trace Buffer panel such that the trace buffer
records just transactions that meet these criteria:

» Dispatched by the ECM

* Source ID is “Local Processor Data Fetch”

e Target ID is “Local Space DDR”

* Address in the range 0x00010000 to 0x0001FFFF
Figure 5.3 shows the EPPC Trace Buffer set up this way.

234

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Working with the Hardware Tools
EPPC Trace Buffer Support

Figure 5.3 EPPC Trace Buffer Panel Showing Example Trace Buffer Configuration

[} EPFC Trace Buffer

™ Equal Cortest Enal
[Mot Equal Contest

—Iv¥ Source ID Enable

¥ Enable Trace collection on Launch

[~ Transaction Match Digable

ble
Enable

W Trace Only in TRACE event

Interface Selection:

ICoherenc:y module dispatch

Start Condition:

=

IImmediateI}l

Stop Condition:

{Buffer is ful

¥ Target |0 Enable

ILocaI processor [data fetch) j

ILocaI space [DDR)

—Iv Address Match Enabl

Trace Address
’V | 000010000

" Trace Address Mazk

|0+FFFFODOD

To see the events captured in the trace buffer during a debug session, display the trace
window. To do this, select Data > View Trace from the IDE’s menu bar.

Figure 5.4 show the trace window after a debug session run using the trace buffer

configuration shown in Figure 5.3.

Figure 5.4 Trace Buffer Window Showing Captured Events

Jnterface

Coherencu Madile Disnatch
i

—o/x]
EEEEaAAA

| Transaction | Source | Target | Byte Count | Addiess | Size |
Coherency Module Dispatch Read with Local Snoop Local Proc. (data fetch) Local Space [DDR) 020 010310 0:0 =
Coherency Module Dispatch Read with Local Snoop Local Proc. (data fetch) Local Space (DDR) 0x20 010318 0:0 -
Coherency Moduls Dispatch Read with Local Snoop Local Proc. (dats fstchl Local Space [DDR) 0x20 0x10320 0:0
Coherency Moduls Dispatch Read with Local Snoop Local Proc. (dats fstch] Local Space [DDR) 0x20 0x10328 0:0
Coherency Moduls Dispatch Read with Local Snoop Local Proc. (dats fstch] Local Space [DDR) 0x20 0410340 0:0
Coherency Moduls Dispatch Read with Local Snoop Local Proc. (dats fstch] Local Space [DDR) 0x20 0410348 0:0
Coherency Moduls Dispatch Read with Local Snoop Local Proc. (dats fstch] Local Space [DDR) 0x20 0x10360 0:0

RAerad with | nmal Spann | aeal Prac (Hata fetehl | nral SnAace NNRT NP0 N=1N3R0 N

Display: [0:x00010310

View: [Raw data

Addiess

§ Hew: OO0OFE4:00010B14

00010310
0001032C
00010348
00010364
00010380
0001035C
000103EE
00010304
000103F0
00010400
00010428
00010444

00010000 00010000 00000363 000103C0 00010300 00005246C 00015630
00015630 00000400 00016030 00016030 00000008 00016035 00016038
00000008 00016040 00016040 00000010 00016050 00016050 00000048
00016098 00016095 00000658 O001EEF0 000LE6F0 00000045 00016770
00016770 00000045 00000CO0 00000C00 000000ED 00000000 00000000
00000000 00016735 00000038 000167 EE 00000358 00000000 00000000
a5 SCF25 ADZS0CCD 44000002 4ES00020 S421FFEQ FCOB0246 0010024
S3EL001C 3BEQOOOOD 30608045 35030001 S00DS048 35000003 90005048
3CE00001 3E6360B5 4CCE3182 45003E43 4BFFFFCL 3BFFO00L 4BFFFFFC
542 1FFF0 35210010 4E500020 $421FFF0 7COS02A6 50010014 45000015
80010014 7COS0346 35210010 4E500020 00454E44 3563FFFF 3560FFFF

8C040001 38620001 25000000 4082FFF4 4ES00020 28040003 S2E30000

Wword Size: |32 -

For a documentation of each option in the EPPC trace buffer target settings panel, see the
EPPC Trace Buffer topic.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

235

Working with the Hardware Tools
EPPC Trace Buffer Support

NOTE This CodeWarrior product includes an example project that shows you how to
use the debugger's EPPC trace buffer visibility feature. The project file is
named TraceBuffer_8560ADS_REVA and is in this directory:
installDir\ (CodeWarrior_Examples)\
PowerPC_EABI\TraceBuffer 8560ADS_REVA.

236 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

A

Debugger Limitations and
Workarounds

This appendix documents processor-specific CodeWarrior debugger limitations and
workarounds.

The sections of this appendix are:
¢ PowerQUICC I Processors
¢ PowerQUICC II Processors
¢ PowerQUICC II Pro Processors
¢ PowerQUICC III Processors

¢ Host Processors

¢ Generic Processors

PowerQUICC | Processors

The PowerQUICC I family includes the 8xx series of processors.

Working With Watchpoints

The 8xx processor implements two load and store address comparator registers. The
CodeWarrior debugger uses both these registers to enable placing a single watchpoint on
any variable or memory range. The watchpoint is 1-byte aligned.

Working with Hardware Breakpoints

The 8xx processor implements four address instruction breakpoints (hardware
breakpoints) that can be used during a debug session.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 237

Debugger Limitations and Workarounds
PowerQUICC Il Processors

PowerQUICC Il Processors

The PowerQUICC II family includes these processors:
* G2: 8240/1/5, 825x, 826x
* G2 LE: 8247/8, 827x, 828x, 5200

Working with Watchpoints
G2 Cores

G2 cores do not support watchpoints.

G2 LE Cores

G2 LE cores implement two data address registers. The CodeWarrior debugger uses these
registers to place a single watchpoint on a variable or memory range.

A watchpoint set on a variable or memory address is equivalent to a watchpoint set on an
aligned address and a range of 64-bit multiple.

Working with Hardware Breakpoints
G2 Cores

G2 cores implement one address instruction breakpoint (hardware breakpoint) that can be
used in a debug session.

G2 LE Cores

G2 LE cores implement two address instruction breakpoints (hardware breakpoints) that
can be used in a debug session.

238 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Debugger Limitations and Workarounds
PowerQUICC Il Pro Processors

Working with Memory Mapped Registers
G2 Cores

For G2 cores, you must provide the internal memory map base address before the
CodeWarrior debugger can access the internal memory-mapped registers (MMR). There
are three ways to provide this address:

¢ Use the setMMRBaseAddr command in a target initialization file.

¢ During a debug session, select Debug > EPPC and enter the required address in the
Change IMMR dialog box that appears.

* During a debug session, display the Command Window and issue this command:
cmdwin: :eppc: : setMMRBaseAddr

G2 LE Cores

G2 LE cores have an internal memory-mapped registers base address register
(IMMRBAR). This is a memory-mapped register that relocates with the whole internal
memory map.

Further, the debugger uses the special purpose memory base address register (MBAR) to
store the base address of the internal memory-mapped registers.

Each time the location of the internal memory map changes, you must maintain the
correspondence between the IMMRBAR and MBAR registers.

PowerQUICC Il Pro Processors

The PowerQUICC II Pro family includes these processors:
e e300cl: 834x, 835x, 836x
e e300c2: 832x, e300c3: 831x
e ¢300c4: 837x, 5121e

Debugging interrupt handlers

If a target takes an exception and is stopped at the beginning of an interrupt handler, the
program counter (PC) often shows the previous address instead of the correct address. For
example, the PC would show 0x6FC instead of 0x700 or 0x10FC instead of 0x1100.

To overcome this problem, a workaround has been implemented that automatically adds 4
to the PC if the target is stopped at a 0x...FC address in the interrupt vector address range.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 239

Debugger Limitations and Workarounds
PowerQUICC Il Pro Processors

You can enable or disable this workaround for the current debug session or for all
subsequent debug sessions by issuing the cmdwin: : eppc: :e300_adjust_pc
command in the CodeWarrior Command Window.

For more information about this command, refer to the Command Window online help.
To do this, issue the command help cmdwin: : eppc: : e300_adjust_pc in the
CodeWarrior Command Window.

Cache Coherence (e300c1 Core Only)

While debugging an e300c1 target, when the core stops due to a breakpoint or due to a
request, the core goes into stop mode. After this, the CodeWarrior Connection Server
(CCS) moves the core from stop mode to iJam mode. However, while in stop mode, the
core does not maintain cache coherency.

To solve this problem, a workaround has been implemented that uses the processor's
power management facilities to prevent external masters from generating new memory
transactions. To achieve this, CCS tries to keep the PMCCR register with defined values
(PMCCR[SLPEN] == b'l and PMCCR[DLPEN] == b'0).

You can enable or disable this workaround for the current debug session or for all
subsequent debug session (after the download phase) by issuing the

cmdwin: :eppc: :e300cl_cache_coherence command in the CodeWarrior
Command Window.

For more information about this command, refer to the Command Window online help.
To do this, issue the help cmdwin: :eppc: :e300cl_cache_coherence
command in the CodeWarrior Command Window.

Working with Watchpoints

Resuming Execution after a Watchpoint is Hit

When a target is under the debugger’s control and a watchpoint (data breakpoint)
condition is met, the core stops execution at the instruction that generated the data access.
This instruction is called the watchpoint hit instruction.

Unfortunately, when an e300 core hits a watchpoint, the debugger cannot determine the
circumstances under which the target stopped because these cores (except for the e300c1)
do not update the necessary status registers. As a result, it is impossible to resume (run or
step) the target after a watchpoint has been hit because the debugger cannot temporarily
disable the watchpoint generated by the hit instruction.

240

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Debugger Limitations and Workarounds
PowerQUICC Il Processors

As aresult, for an e300 core, you must manually disable a watchpoint before you can
resume execution from the watchpoint hit instruction.

NOTE For e300cl cores, the watchpoint mechanism works as expected.

64-bit Alignment
The e300 core implements two data address registers. The CodeWarrior debugger uses
both registers to place a single watchpoint on a variable or memory range.

Any watchpoint set on a variable or memory address is equivalent to a watchpoint set on
an aligned address and a range of 64-bit multiple. This limitation stems from the e300
cores’s data breakpoints implementation.

Working with Hardware Breakpoints

The e300 core implements two address instruction breakpoints (hardware breakpoints)
that can be used in a debug session.

Working with Memory Mapped Registers

€300 cores have an internal memory-mapped registers base address register IMMRBAR).
This is a memory-mapped register that relocates with the whole internal memory map.

Further, the debugger uses the special purpose memory base address register (MBAR) to
store the base address of the internal memory-mapped registers.

Each time the location of the internal memory map changes, you must maintain the
correspondence between the IMMRBAR and MBAR registers.

PowerQUICC Il Processors

The PowerQUICC III family includes e500: 85xx processors.

MMU Configuration Through JTAG

For €500 cores, the debugger is able to read and write the L2 MMU TLBs registers
without using dedicated processor instructions. You can access these registers from the
debugger's Registers window or with commands in a target initialization file.

For more information on the TLB register structure, refer to the README . txt file that
includes in the default CodeWarrior project for each supported target board.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 241

Debugger Limitations and Workarounds
Host Processors

Reset Workaround

To put the €500 core in debug mode at reset, you must ensure that the core is running. The
target initialization file sets a hardware breakpoint at the reset address. The core is stopped
at the reset address to be put in the debug mode.

Working with Software Breakpoints

For e500 cores, the debugger implements software breakpoints by using debug exceptions
and the corresponding interrupt handler. When a debug exception is encountered, the
target is expected to stop at the debug exception handler pointed by ITVPR+IVOR15.

However, for e500 cores, there is a chance that the first few instructions of the debug
exception handler are fetched and even executed before processor halts.

As aresult, the core must be able to fetch and execute valid instructions from the interrupt
handler location pointed by ITVPR+IVOR15 without raising a TBL miss exception or any
other exception. Also, the first few instructions of the debug interrupt handler must not
perform any Load or Store operations that would corrupt the application's context if
executed. If any of these conditions is not satisfied, the software breakpoint will not work.

Working with Watchpoints

The €500 core implements two data address compare registers. The CodeWarrior
debugger uses both these registers to place a single watchpoint on any variable or memory
range. The variable or memory range is 1-byte aligned.

Working with Hardware Breakpoints

The 500 core implements two address instruction breakpoints (hardware breakpoints)
that can be used in a debug session.

Host Processors

The Host processor family includes:
e G3: 7xx
o G4: 74xx
e e600: 7448, 86xx

242 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Debugger Limitations and Workarounds
Generic Processors

Working with Breakpoints

The debugger implements software breakpoints for the G3, G4 and e600 cores by using an
illegal opcode, which generates a program exception. When this exception is encountered,
the target is expected to stop at the program exception handler (0x700 or
0XFFF00700).

For G3, G4 and e600 cores, a silicon issue causes the processor to execute the first
instruction of the exception handler instead of halting immediately. The debugger works
around this problem by using the only hardware breakpoint available in the core. The
hardware breakpoint is set to the program exception handler location (0x700 or
0xFFF00700) to prevent further execution.

This workaround has these consequences:

* You cannot use this hardware breakpoint simultaneously with other software
breakpoints. If you try, the debugger displays the “not enough resources” message,
because the hardware breakpoint is already in use. To use the hardware breakpoint,
you must remove all software breakpoints currently set.

¢ The CodeWarrior Flash Programmer uses this workaround to control the execution
of the flash algorithm. The target initialization file used by the Flash Programmer
manually sets a hardware breakpoint to the program exception handler.

Working with Watchpoints

The G3, G4, and €600 cores implement one data address breakpoint register. The
granularity of the data address breakpoint compare is a double word. For AltiVec quad-
word loads and stores (e600 cores only), the granularity is quad-word.

Working with Hardware Breakpoints

The G3, G4, and €600 cores implement one address instruction breakpoint (hardware
breakpoint), and it is used by the debugger’s software breakpoint implementation.
Consequently, you cannot to use this hardware breakpoint if you have any software
breakpoints set.

For more information, see Working with Breakpoints.

Generic Processors

Working with Uninitialized Stack

Debugging while the stack is not initialized can cause uninitialized memory accesses
errors. This situation occurs when the debugger tries to construct the stack trace.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 243

Debugger Limitations and Workarounds
Generic Processors

To avoid this problem, stop the debugger from constructing a stack trace by adding a
command to your target initialization file that sets the stack pointer (SP) register to an
unaligned address.

For example, you could put this command in your target initialization file:

writereg SP 0x0x0000000F

244 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

B

Target Initialization Files

A target initialization file is a file that contains commands that initialize registers, memory
locations, etc. on a target board.

If necessary, you can have the CodeWarrior™ debugger execute a target initialization file
immediately before the debugger downloads a bare board binary to a target board. The
commands in a target initialization file put a board in the state required to debug a bare
board program.

NOTE Assign a target initialization file to bare board build targets only. A board that
boots embedded Linux® is already set up properly for debugging. The target
board can be initialized either by the debugger (by using an initialization file),
or by an external bootloader or OS (U-Boot, Linux). In both cases, the extra
use of an initialization file is necessary for debugger-specific settings (for
example, silicon workarounds needed for the debug features).

The sections of this appendix are:

» Using Target Initialization Files
» Target Initialization File Commands

Using Target Initialization Files

A target initialization file is a command file that the CodeWarrior debugger executes each
time the build target to which the initialization file is assigned is debugged.

Often, you must use a target initialization file for build targets that use a BDM or JTAG
probe. The commands in the file initialize target memory as required and set any registers
involved in debugging to the required values.

NOTE You do not need to use an initialization file if you debug using the
CodeWarrior TRK debug monitor.

To instruct the CodeWarrior debugger to use a target initialization file, follow these steps:
1. Start the CodeWarrior IDE.

2. Open a bare board project.

3. Select one of this project’s build targets.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 245

Target Initialization Files
Target Initialization File Commands

4. Display the EPPC Debugger Settings target settings panel.

5. Check the Use Target Initialization File box of this panel and then type the path and
name of the initialization file you want in the related text box.

Alternatively, click Browse to display a dialog box with which you can select the
target initialization file you want.

Your CodeWarrior product includes example target initialization files for the supported
target boards. These files are in board-specific subdirectories of this path:

installDir\PowerPC_EABI_Support\Initialization_Files\

You can also write your own target initialization files. The next section documents the
commands that can appear in such files.

Target Initialization File Commands

This section documents each command that can appear in a target initialization file and
defines the syntax rules that these commands follow.

Command Syntax

The syntax of target initialization file commands follows these rules:
* Spaces and tabs (white space) are ignored
¢ Character case is ignored
* Unless otherwise noted, values may be specified in hexidecimal, octal, or decimal:
— Hexidecimal values are preceded by 0x (for example, 0XDEADBEEF)
— Octal values are preceded by 0 (for example, 01234567)
— Decimal values start with a non-zero numeric character (for example, 1234)

* Comments start with a semicolon (;) or pound sign (#), and continue to the end of
the line

Table of Commands

Table B.1 lists each command that can appear in a target initialization file.

Table B.1 Target Initialization Commands

alternatePC ANDmem.|

AND IncorMMR

246 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Initialization Files
Target Initialization File Commands

Table B.1 Target Initialization Commands (continued)

ORmem.! reset

run setMMRBaseAddr
sleep stop

writemem.b writemem.w
writemem.| writemem.r
writemmr writereg
writereg128 writespr
writeupma writeupmb

Access to Named Registers from within
Scripts

Some commands described in the Command Reference section (below) allow access to
memory-mapped register by name as well as address. Based on the processor selection in
the debugger settings, these commands will accept the register names shown a part's
Freescale User's Manual. There are also commands to access built-in registers of a
processor core, for example, 'writereg'. The names of these registers follow the
architectural description for the respective processor core for general purpose and special
purpose registers. Note that these names (for example, GPRS) might be different from
names used in assembly language (for example, 15).

NOTE To ensure correct access to named registers, read the description of the
setMMRBaseAddr command and ensure it is used when necessary.

Command Reference

The section documents each target initialization file command.

For each command, the section provides a brief statement of what the command does, the
command’s syntax, a definition of each argument that can be passed to the command, and
examples showing how to use the command.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 247

Target Initialization Files
Target Initialization File Commands

alternatePC

Sets the program counter (PC) register to the specified value.

Syntax

alternatePC address

Arguments
address
The address to assign to the program counter register.
This address may be specified in hexidecimal (for example, 0xABCD0000), octal
(for example, 025363200000), or decimal (for example, 2882338816).
Example

This command assigns the address 0xc28737a4 to the program counter register:

alternatePC 0xc28737a4

ANDmem.|

Performs a bitwise AND using the 32-bit value at the specified memory address and the
supplied 32-bit mask and writes the result back to the specified address.

No read/write verity is performed.

Syntax

ANDmem.1l address mask

Arguments
address
The address of the 32-bit value upon which to perform the bitwise AND operation.

This address may be specified in hexidecimal (for example, 0xABCD0000), octal
(for example, 025363200000), or decimal (for example, 2882338816).

mask

32-bit mask to use in the bitwise AND operation.

248

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Initialization Files
Target Initialization File Commands

Example

The command below performs a bitwise AND operation using the 32-bit value at
memory location 0xC30A0004 and the 32-bit mask OXxFFFFFFFF. The
command then writes the result back to memory location 0xC30A0004.

ANDmem.1l 0xC30A0004 OXFFFFFEFF

AND

Performs a bitwise AND of the contents of the specified memory-mapped register (MMR)
and the supplied 32-bit mask, and writes the result back to the specified register.

Syntax

ANDmmr regName mask

Arguments
regName
The name of the memory-mapped register upon which to perform a bitwise AND.

NOTE For more information on the memory-mapped register names accepted by this
command see Access to Named Registers from within Scripts.

mask

32-bit mask to use in the bitwise AND operation.

Example

This command bitwise ANDs the contents of the ACFG register with the value
0x00002000:

ANDmmr ACFG 0x00002000

IncorMMR

Performs a bitwise OR using the contents of the specified memory-mapped register
(MMR) and the supplied 32-bit mask and writes the result back to the specified register.

Syntax

incorMMR regName mask

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 249

Target Initialization Files
Target Initialization File Commands

Arguments
regName

The name of the memory-mapped register (MMR) upon which to perform a
bitwise OR.

NOTE For more information on the memory-mapped register names accepted by this
command see Access to Named Registers from within Scripts.

mask

32-bit mask to use in the bitwise inclusive OR operation.

Example

This command bitwise ORs the contents of the ACFG register with the value
0x00002000:

incorMMR ACFG 0x00002000

ORmem.|
Performs a bitwise OR using the 32-bit value at the specified memory address and the
supplied 32-bit mask and writes the result back to the specified address.

No read/write verify is performed.

Syntax

ORmem.1 address mask

Arguments
address
The address of the 32-bit value upon which to perform the bitwise OR operation.

This address may be specified in hexidecimal (for example, 0xABCD0000), octal
(for example, 025363200000), or decimal (for example, 2882338816).

mask

32-bit mask to use in the bitwise OR operation.

250 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Initialization Files
Target Initialization File Commands

Example

The command below performs a bitwise OR operation using the 32-bit value at

memory location 0xC30A0008 and the 32-bit mask 0x01000800. The
command then writes the result back to memory location 0xC30A0004.

ORmem.1l 0xC30A0008 0x01000800

reset

Resets the processor on the target board.

Syntax

reset code

Arguments

code

Number that defines what the debugger does after it resets the processor on the

target board.

Use one of the values in Table B.2.

Table B.2 Post Reset Actions

Value Description
0 reset the target processor, then run
1 reset the target processor, then stop

run

Starts program execution at the current program counter (PC) address.

Syntax

run

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

251

Target Initialization Files
Target Initialization File Commands

setMMRBaseAddr

Provide the debugger with the base address of a processor’s memory-mapped registers
(MMR). Upon execution of this command, the debugger can read, write, and display a
processor’s memory mapped registers.

The setMMRBaseAddr command must appear before any wr i temmr commands in the
target initialization file.

NOTE This command is not needed in target initialization files for members of the
PowerQUICC III processor family.

NOTE The debugger requires the base address of the memory-mapped registers for
825x/826x processors only. As a result, this command must appear in all target
initialization files for 825x/826x processors.

Syntax

setMMRBaseAddr baseAddress

Arguments
baseAddress
The base address (in hexidecimal) of the memory-mapped registers.

The specified address must be in hexadecimal (for example, 0xABCD1234).

NOTE For more information on the memory-mapped register names accepted by this
command see Access to Named Registers from within Scripts.

Example
This command makes the memory-mapped register base address 0x0£00000:

setMMRBaseAddr 0x0£00000

sleep

Causes script execution to pause the specified number of milliseconds before executing
the next instruction.

252 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Initialization Files
Target Initialization File Commands

Syntax

sleep milliseconds

Arguments
milliseconds

The number of milliseconds (in decimal) to pause the debugger.

Example
This command pauses the debugger for 10 milliseconds:

sleep 10

stop
Stops program execution and halts the processor on the target board.
Syntax
stop

writemem.b

Writes a byte (8 bits) of data to the specified memory address.

Syntax

writemem.b address value

Arguments
address
The memory address to which to assign the supplied 8-bit value.

This address may be specified in hexidecimal (for example, 0xABCD), octal ((for
example, 0125715), or decimal (43981).

value
The 8-bit value to write to the specified memory address.

This value may be specified in hexidecimal (for example, 0xFF), octal (for
example, 0377), or decimal (for example, 255).

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 253

Target Initialization Files
Target Initialization File Commands

Example

This command writes the byte 0x1A to the memory location 0x0001FF00:
writemem.b 0x0001FF00 O0x1A

writemem.w

Writes a word (16 bits) of data to the specified memory address.

Syntax

writemem.w address value

Arguments
address
The memory address to which to assign the supplied 16-bit value.

This address may be specified in hexidecimal (for example, 0xABCD0000), octal
(for example, 025363200000), or decimal (for example, 2882338816).

value
The 16-bit value to write to the specified memory address.
This value may be specified in hexidecimal (for example, 0XFFFF), octal (for
example, 0177777), or decimal (for example, 65535).
Example
This command writes the word 0x1234 to memory location 0x0001FF00:

writemem.w Ox0001FF00 0x1234

writemem.l

Writes a long integer (32 bits) of data to the specified memory location.

Syntax

writemem.l address value

Arguments
address

The memory address to which to assign the supplied 32-bit value.

254

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Initialization Files
Target Initialization File Commands

This address may be specified in hexidecimal (for example, 0xABCD0000), octal
(for example, 025363200000), or decimal (for example, 2882338816).

value
The 32-bit value to write to the specified memory address.
This value may be specified in hexidecimal (for example, 0OXxFFFFABCD), octal
(for example, 037777725715), or decimal (for example, 4294945741).
Example

This command writes the long integer 0x12345678 to the memory location
0x0001FFO00:

writemem.w Ox0001FF00 0x12345678

writemem.r

Writes a value to the specified register.

Syntax

writemem.r regName value

Arguments
regName
The name of the register to which to assign the supplied value.
value
The value to write to the specified register.
This value may be specified in hexidecimal (for example, OxFFFFABCD), octal
(for example, 037777725715), or decimal (for example, 4294945741).
Example
This command writes the value O0xffffffc3 to the SYPCR register:
writemem.r SYPCR Oxffffffc3

writemmr

Writes a value to the specified memory-mapped register (MMR).

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 255

Target Initialization Files
Target Initialization File Commands

Syntax

writemmr regName value

Arguments
regName

The name of the memory mapped register to which to assign the supplied value.

NOTE This command accepts most Power Architecture processor memory-mapped
register names. If the command rejects a memory mapped register name, use
writemem.r instead. For more information on the memory mapped register
names accepted by this command see Access to Named Registers from within
Scripts.

value
The value to write to the specified memory-mapped register.

This value may be specified in hexidecimal (for example, OXFFFFABCD), octal
(for example, 037777725715), or decimal (for example, 4294945741).

Example
This command writes the value Oxf ££ff fc3 to the SYPCR register:
writemmr SYPCR Oxffffffc3
This command writes the value 0x0001 to the RMR register:
writemmr RMR 0x0001
This command writes the value 0x3200 to the MPTPR register:
writemmr MPTPR 0x3200

writereg

Writes the supplied data to the specified register.

Syntax

writereg regName value

Parameters
regName

The name of the register to which to assign the supplied value.

256

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Initialization Files
Target Initialization File Commands

value
The value to write to the specified register.
This value may be specified in hexidecimal (for example, 0OxFFFFABCD), octal
(for example, 037777725715), or decimal (for example, 4294945741).
Example

This command writes the value 0x00001002 to the MSR register:
writereg MSR 0x00001002

writereg128

Writes the supplied 32-bit values to the specified TLB register.

NOTE This command is applicable only to Book E cores like the e500 or €200
variants.

Syntax

writeregl28 regName valuel value2 value3 value4

Arguments
regName

The name (or number) of the TLB register to which to assign the specified values.

TIP Valid TLBO register names range from L2MMU_TLBO through L2MMU_TLB255,
and TLB511 for e500v2.

TIP Valid TLBI register names range from L2MMU_CAMO through L2MMU_CAM15.

valuel, value2, value3, valued

The four 32-bit values that together make up the 128-bit value to assign to the
specified TLB register.

Each value must be specified in hexidecimal (for example, 0xFFFFABCD).

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 257

Target Initialization Files
Target Initialization File Commands

Example

This command writes the values 0xA1002, 0xB1003, 0xC1004, and
0xD1005 to the L2MMU_CAMO TLB register:

writeregl28 L2MMU_CAMO 0xA1002 0xB1003 0xC1004 0xD1005

writespr

Writes the specified value to the specified special-purpose register (SPR).

NOTE This command is similar to the writereg SPRxxx command, except that
writespr lets you specify the SPR register to modify by number
(in hexidecimal, octal, or decimal).

Syntax

writespr regNumber value

Arguments
regNumber
The number of the SPR register to which to assign the supplied value.

This value may be specified in hexidecimal (for example, 0x27E), octal (for
example, 01176), or decimal (for example, 638).

value
The value to write to the specified SPR register.
This value may be specified in hexidecimal (for example, 0OXFFFFABCD), octal
(for example, 037777725715), or decimal (for example, 4294945741).
Example
This command writes the value 0x0220000 to SPR register 638:
writespr 638 0x02200000

writeupma

Writes the supplied RAM word to the specified offset of user-programmable machine
(UPM) A’s RAM array.

Each offset in UPM A’s RAM array corresponds to a type of memory transaction.

258 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Target Initialization Files
Target Initialization File Commands

The RAM word at a RAM array offset (and the words immediately following the first
RAM word) are instructions that control the behavior of UPM A.

For more information about programming UPM A, refer to the Memory Controller section
of the hardware manual for the Power Architecture processor you are using.

NOTE This command applies to just PQ1 MPC8xx type devices.

Syntax

writeupma offset ramWord

Arguments
offset
Offset into UPM A’s RAM array at which to write the supplied RAM word.

This offset must fall within the range 0 through 0x3F inclusive. Each offset is
interpreted by UPM A as a particular memory transaction type.

For more information about UPM transaction types, refer to the UPM Transaction
Type table in the Memory Controller section of the hardware manual for the Power
Architecture processor you are using.

ramword

The RAM word to assign to the specified offset of UPM A’s RAM array.

Example

This command assigns the RAM word 0xAAAA1100 to the 0x18 position of
UPM A’s RAM array:

writeupmb 0x18 0xAAAA1100

writeupmb
Writes the supplied RAM word to the specified offset of user-programmable machine
(UPM) B’s RAM array.
Each offset in UPM B’s RAM array corresponds to a type of memory transaction.

The RAM word at a RAM array offset (and the words immediately following the first
RAM word) are instructions that control the behavior of UPM B.

For more information about programming UPM B, refer to the Memory Controller section
of the hardware manual for the Power Architecture processor you are using.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 259

Target Initialization Files
Target Initialization File Commands

NOTE This command applies to just PQ1 MPC8xx type devices.

Syntax

writeupmb offset ramWord

Arguments
offset
Offset into UPM B’s RAM array at which to write the supplied RAM word.

This offset must fall within the range 0 through 0x3F inclusive. Each offset is
interpreted by UPM B as a particular memory transaction type.

For more information about UPM transaction types, refer to the UPM Transaction
Type table in the Memory Controller section of the hardware manual for the Power
Architecture processor you are using.

ramwWord

The RAM word to assign to the specified offset of UPM B’s RAM array.

Example

This command assigns the RAM word 0xffffcc24 to the 0x08 position of
UPM B’s RAM array:

writeupmb 0x08 Oxffffcc24

260 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

C

Memory Configuration Files

A memory configuration file contains commands that define the rules the debugger
follows when accessing a target board's memory.

NOTE Memory configuration files do not define the memory map for the target.
Instead, they define how the debugger should treat the target’s memory map,
which has already been established. The actual memory map is initialized
either by a target-resident boot loader or by a target initialization file, as

described in Target Initialization Files.

If necessary, you can have the CodeWarrior debugger execute a memory configuration file
immediately before the debugger downloads a bare board binary to a target board. The
memory configuration file defines the memory access rules (restrictions, translations) used
each time the debugger needs to access memory on the target board.

NOTE Assign a memory configuration file to bare board build targets only. The
memory of a board that boots embedded Linux® is already set up properly. A
memory configuration file defines memory access rules for the debugger; the
file has nothing to do with the OS running on a board. If needed, a memory
configuration file should be in place at all times. The Linux Kernel Aware
Plugin performs memory translations automatically, relieving the user from
specifying them in the memory configuration file.

The sections of this appendix are:

* Using Memory Configuration Files
¢ Memory Configuration File Commands

Using Memory Configuration Files

A memory configuration file is a command file that the CodeWarrior debugger executes
each time the build target to which the configuration file is assigned is debugged.

To instruct the CodeWarrior debugger to use a memory configuration file, follow these
steps:

1. Start the CodeWarrior IDE.
2. Open a bare board project.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 261

Memory Configuration Files
Memory Configuration File Commands

3. Select one of this project’s build targets.

4. Display the EPPC Debugger Settings target settings panel.

5. Check the Use Memory Configuration File box of this panel and then type the path and
name of the configuration file you want to use in the related text box.

Alternatively, click Browse to display a dialog box with which you can select the
memory configuration file you want.

Your CodeWarrior product includes example memory configuration files for the
supported target boards. These files are in this directory:

installDir\PowerPC_EABI_Support\Initialization_Files\Memory\

You can also write your own memory configuration files. The next section documents the
commands that can appear in such files.

Memory Configuration File Commands

This section documents each command that can appear in a memory configuration file and
defines the syntax rules that these commands follow.

Command Syntax

In general, the syntax of memory configuration file commands follows these rules:
* Spaces and tabs (white space) are ignored
* Character case is ignored
¢ Unless otherwise noted, values may be specified in hexidecimal, octal, or decimal:
— hexidecimal values are preceded by 0x (for example, 0xABCDFFFF)
— octal values are preceded by 0 (for example, 01234567)
— decimal values start with a non-zero numeric character (for example, 1234)

¢ Comments start with standard C and C++ comment characters, and continue to the
end of the line

Table of Commands

Table C.1 lists each command that can appear in a memory configuration file.

Table C.1 Target Initialization Commands

‘ autoEnableAddressTranslations ‘ range

262 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Memory Configuration Files
Memory Configuration File Commands

Table C.1 Target Initialization Commands (continued)

reserved reservedchar

translate

Command Reference

This section documents each memory configuration command.

For each command, the section provides a brief statement of what the command does, the
command’s syntax, a definition of each argument that can be passed to the command, and
examples showing how to use the command.

autoEnableAddressTranslations

The autoEnableAddressTranslations command enables the memory management unit
(MMU) before the download of the binary to be debugged.

Syntax

autoEnableAddressTranslations enableFlag

Arguments
enableFlag

Pass true to instruct the debugger to enable the MMU before downloading the
binary to be debugged; otherwise, pass false.

If this command is not present in a memory configuration file, the MMU is not
enabled prior to the download of the executable to be debugged.

Examples

This command enables a processor’s MMU before the debugger downloads the
binary to be debugged:

AutoEnableTranslations true

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 263

Memory Configuration Files
Memory Configuration File Commands

range
The range command assigns the specified attributes to the specified range of memory
locations. These attributes tell the CodeWarrior debugger how to treat the specified
memory range.
The attributes the range command supports are access type (for example, read-only),
access size (for example, 2 bytes per memory access), and whether the range consists of
physical or virtual addresses.
Syntax
range 1oAddr hiAddr (accessSize | any) accessType
[memSpaceType]
Arguments
1oAddr
Defines the start address of the memory block.
hiAddr
Defines the end address of the memory block.
accessSize | any
Defines the size (in bytes) of the memory accesses that the debugger can perform
on the specified memory block.
Pass the token any if the debugger is to perform dynamic virtual address
translations.
accessType
Defines the type of access the debugger has to the specified memory block.
Must be one of:
* Read
e Write
* ReadWrite
memSpaceType
Defines the type of the memory block. Must be one of:
¢ Physical
This attribute tells the debugger that each address in the specified range is a
physical memory address.
264 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Memory Configuration Files
Memory Configuration File Commands

e LogicalData

This attribute tells the debugger that each address in the specified range is a
virtual address and that each address can be accessed as code or as data.

Assign this attribute to memory ranges for which the MMU is configured so that
there is a corresponding range of data addresses for the specified code address
range. This is the typical MMU configuration.

e LogicalCode

This attribute tells the debugger that each address in the specified range is a
virtual address and that each address can be accessed as code only.

Assign this attribute to memory ranges for which the MMU is configured so that
there is not a corresponding data address range for the specified code address
range.

The memSpaceType parameter is optional, and its default value is Physical.
Therefore, if you pass no memSpaceType argument to a range command, the
command defines a physical memory block.

Examples

This command makes the memory locations from OxFF000000 through
0xFFO00O0FF read-only, with an access size of 4 bytes:

range OxFF000000 OxFFOOOOFF 4 Read

This command makes the memory locations from 0xFF000100 through
0xFFO001FF write-only, with an access size of 2 bytes:

range 0xFF000100 OxFFOO001FF 2 Write

This command makes the memory locations from 0xFF000200 through
OxFFFFFFFF readable and writable, with an access size of 1 byte:

range 0xFF000200 OxFFFFFFFF 1 ReadWrite

This command instructs the debugger that addresses in the range 0x0 through
0x0FFFFFFC are virtual addresses and to request that the probe translate
addresses using the current TLB entries:

range 0x0 OxOFFFFFFC any ReadWrite LogicalData

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 265

Memory Configuration Files
Memory Configuration File Commands

reserved
The reserved command makes the specified range of memory locations inaccessible to the
debugger.

If the debugger tries to read reserved memory, the debugger’s buffer is filled with the
reserved character. If the debugger attempts to write to reserved memory, no write occurs.

NOTE Refer to the reservedchar topic for instructions that explain how to set the
reserved character.

Syntax

reserved loAddress hiAddress

Arguments
loAddress

The start address of the range of memory locations to reserve.
hiAddress

The end address of the range of memory locations to reserve.

Examples

This command reserves the memory locations from 0xFF000024 to
0xFF00002F:

reserved 0xFF000024 OxFFO00O0O2F

reservedchar

This reservedchar command defines the character the debugger puts in its buffer when it
the debugger attempts to read a reserved or invalid memory location.

Syntax

reservedchar rChar

266 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Memory Configuration Files
Memory Configuration File Commands

Arguments

rChar
The character the debugger uses to fill its buffer when it attempts to read reserved
or invalid memory.

Example
This command makes the character *x’ the reserved character:

reservedchar 0x78

translate

This command lets you configure how the debugger performs virtual-to-physical memory
address translations. Typically, you use address translations to debug programs that use a
memory management unit (MMU) to perform block address translations.

Syntax

translate virtualAddress physicalAddress numBytes

Arguments
virtualAddress

The address of the first byte of the virtual address range to translate.
physicalAddress

The address of the first byte of the physical address range to which the debugger
translates virtual addresses.

numBytes

The size (in bytes) of the address range to translate.

Example
This command below:
¢ Defines a one-megabyte address range (0x100000 bytes is one megabyte).

¢ Instructs the debugger to convert a virtual address in the range 0xC0000000 to
0xC0100000 to the corresponding physical address in the range
0x00000000 to 0x00100000.

translate 0xC0000000 0x00000000 0x100000

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 267

Memory Configuration Files
Memory Configuration File Commands

268 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Using the Dhrystone
Benchmark Software

Dhrystone is a general-performance benchmark test originally developed in 1984. This
benchmark is used to measure and compare the performance of different computers or the
efficiency of the code generated for the same computer by different compilers. The test
reports general performance in Dhrystone-per-second.

Like most benchmark programs, Dhrystone consists of standard code and concentrates on
string handling. It uses no floating-point operations. It is heavily influenced by hardware
and software design, compiler and linker options, code optimization, cache memory, wait
states, and integer data types.

This appendix explains how to use the Dhrystone benchmark example program included
with your CodeWarrior product. This example works with a Freescale Lite5200 board.
You can use the example as the basis for your own Dhrystone benchmark programs.

NOTE The Dhrystone benchmark software in not included in the Linux® Application
Edition of this product.

The sections of this appendix are:

* Building the Dhrystone Example Project
¢ Running the Dhrystone Program

Building the Dhrystone Example Project

To build the Dhrystone example program, follow these steps:
1. Start the CodeWarrior IDE.
2. Open the CodeWarrior project file named Dhrystone5200 .mcp.
This project file is here:
installDir\ (CodeWarrior_Examples) \PowerPC_EABI\Dhrystone\

The Dhrystone project window appears. (See Figure D.1.)

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 269

Using the Dhrystone Benchmark Software
Running the Dhrystone Program

Figure D.1 Dhrystone Example Project — Project Window

3.

1=l

Dhrystone5200_mcp I

[% Dhy By %% H

Files | Link Order | Targets |

| Fie | Code | Data [#h[w€ |-
@ [#-{_] Dhiystone Sources 1] 0e » =-
@ [5upport Sourcd] o 0s « =
@ [F{JMSL 0 0 e =l
@[] Senal [UART) 0 0 e =l
@ [#-{_] Runtime 1] 0s « =
@ [#-{_] Linker Commatnd File 1] 0 e =l
@ [#{_] Documentation 1] o« =l
Select Project > Make.

The IDE builds the project and generates an executable that you can run on a Freescale
Lite5200 target board.

Running the Dhrystone Program

To run the Dhrystone example program on a Lite5200 board, follow these steps:

1.

Connect your debug hardware to the Lite5200 and to your PC.

For example, connect a USB TAP run-control tool to the JTAG port of the Lite5200
and to a USB port of your PC.

Start the CodeWarrior IDE.

3. Open the CodeWarrior project file named Dhrystone5200 .mcp

This project file is here:

installDir\ (CodeWarrior_Examples) \PowerPC_EABI\Dhrystone\
From the CodeWarrior menu bar, select Edit > TargetName Settings.

The IDE displays the Target Settings window.

In the left pane of the Target Settings window, select Remote Debugging.

The Remote Debugging target settings panel appears in the right side of the Target
Settings window. (See Figure D.2.)

270

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Using the Dhrystone Benchmark Software

Running the Dhrystone Program

Figure D.2 The Remote Debugging Target Settings Panel

H Remate Debugaing

— Connection Settings

Connection:

Codew amor USE TAP

Edit Connection. .. |

— Remote download path

—[Launch remote host application

Al
! |

Core Index: IBDDD

—[Muli-Core Debugging—— "JT.-’-\G Clock Speed

6. From the Connection dropdown menu, select the remote connection appropriate for

your debug hardware.
7. Click Edit Connection

The Edit Connection dialog box appears. Use this dialog box to configure your debug

hardware.

See Working with Remote Connections for a definition of each option for each

available remote connection.
8. Click OK.

The remote connection dialog box closes.
9. Click OK.

The Target Settings window closes.

10. Connect a null modem serial cable between port COM1 of the Lite5200 and a free

serial port of your PC.

11. Start a terminal emulation program and configure it as shown in Table D.1.

Table D.1 Terminal Emulator Configuration Settings

bits per second 57600
data bits 8
parity none

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

271

Using the Dhrystone Benchmark Software
Running the Dhrystone Program

Table D.1 Terminal Emulator Configuration Settings (continued)

stop bits 1
hardware flow control none
software flow control none

12. From the menu bar of the IDE, select Project > Run.

The debugger downloads the example program to the Lite5200 board. The program
writes the “start” information shown in Figure D.3 to the terminal emulator window
and then executes 6,000,000 loops. (Depending on the speed of your board’s processor
clock, this test can take up to 15 minutes to finish.)

Figure D.3 Terminal Emulator Showing Test “Start” Information

#g Dhrystone - HyperTerminal =181

File Edit View Call Transfer Help

Demo CodeWarrior for embedded PowerPC
Compilation Date: Jun 1 2084

HID1: Bx40000000

PLL Config: Bx08

Number of Loops: 6000000

Dhrystone 1s running. ..

-
4| | 3

Cornecked 0:51:04 lotodetect [S7E00EN-L [SCROLL [CaPs oM [Ceptue

13. Upon completion, the Dhrystone example program displays the results of its tests in
the terminal emulator window. (See Figure D.4.)

272 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Using the Dhrystone Benchmark Software
Running the Dhrystone Program

Figure D.4 Terminal Emulator Showing Test Results

g Dhrystone - HyperTerminal =101 x]
File Edit Wiew Call Transfer Help
Str_1_Loc: DHRYSTONE PROGRAM, 1'ST STRING [
should be: DHRYSTONE PROGRAM, 1°'ST STRING
Str_2_Loc: DHRYSTONE PROGRAM, 2 'ND STRING
should be: DHRYSTONE PROGRAM, 2'ND STRING
Register option selected? HNO
Time Base: 33000000.0 Hz Ticks per Second
Elapsed Time: 912.0 sec 16896000169 Ticks
Pro Dhrystone: 2816 Ticks
Microseconds for one run through Dhryustone: 85.3
Dhrystones per Second: 11718.7
VAX MIPS rating = 6.670
Compiler Options:
Optimization: 1
Opt Level: B
Peephole: B
o | _>|J
Connected 1:02:35 |Aut0detect |5?6008-N-1 |SCROLL |C-¢\PS |NUM |Capture |Print echo %

That’s it. If you want to write your own Dhrystone benchmark program, you can use this

example program as a starting point.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

273

Using the Dhrystone Benchmark Software
Running the Dhrystone Program

274 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Using the Linux-hosted
Simulators

While working on a Windows-hosted e500/e600 project, you can configure a remote
connection to communicate over the network with the simulator running on the Linux
machine.

This appendix explains how to use the Linux-hosted simulators for a Windows-hosted
e500/e600 project. The sections of this appendix are:

“Creating and Configuring a Windows-hosted e500/e600 Simulator Project”

¢ “Configuring the Linux Machine”
¢ “Debugging the Project”

Creating and Configuring a Windows-
hosted e500/e600 Simulator Project

To create and configure an e500/e600 project for remote connectivity, follow these steps:

1.
. Create a new ¢500/e600 project with EPPC New Project Wizard.

Start the CodeWarrior IDE.

2
3. From the Linkers list box, select Freescale PowerPC EABI Linker.
4.
5

Click Next.

. From the Target Page:

* For an 500 simulator project:
¢ Click the 85xx tab.
¢ Select any of the 85xx processors from the left box.
e Select e500v2_ISS from the right box.
» For an e600 simulator project:
¢ Click the 86xx tab.
¢ Select the 8641 processor from the left box.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 275

Using the Linux-hosted Simulators
Creating and Configuring a Windows-hosted e500/e600 Simulator Project

NOTE The 600 simulator only supports 8641 boards.

e Select e600_ISS from the right box.

6. Click Next.
7.
8
9

In Programming Language page, select C.

. Click Next.

. In Remote Connection page, select the Simulator1 connection.

After creating the project, you must configure it for remote communication with a Linux-
hosted simulator. Follow the steps below to configure the project for remote debugging:

1.

Open the Remote Debugging panel from the Debug Version Settings window.

2. Make sure that the Simulator1 is selected in the Connection box.
3. Click Edit Connection button.

4.
5

. Enter the IP address of your Linux machine in the Server IP Address text box. (See

Check the Use Remote CSS checkbox.

Figure E.1).

276

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Using the Linux-hosted Simulators
Configuring the Linux Machine

Figure E.1 Edit Connection Window

x

MName: |S irmulator]1]

Debugger:IECS EPPC Pratocal Plugin j

— Connection T_l,lpe:IEES Fiemate Connection j

—Iw Use Femate CCS Part #:
Server |P Address: |1U.32.138.5 ’7 |40959

—I" Specify CCS5 Executablz

I{Compiler}ccs\bin\ccssimze:-:e Chooze,.. |

—I Multi-Core Debugging
JTAG Configuration File:

| Chooze... |

CCS Timeout———— [~ Specify Internal Clock Freq,
’7 I‘I 0 zeconds ’7|D tok
¥ Reset Target on Launch [~ Enable Logging
Factary Settings Frevert Pane! | Cancel]

6. Click OK.

Configuring the Linux Machine

To run the Windows-hosted e500/e600 project on the Linux-hosted simulator, perform the
following steps:

1. Copy the Linux Simulator files from the
installDir\ccs\bin\Linux_simulators folder to your Linux machine.
These files include the ccssim? file along with the library files for the e500/e600
simulators.

2. Copy the SimRun Linux script file from installDir\ccs\bin along with the
ccssim?2 file on your Linux machine.

3. Edit the SimRun Linux script file and replace BASE=/usr/local/Freescale/
with the correct path of the simulator files on your Linux machine.

4. Run the SimRun Linux script file to start the simulator.

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 277

Using the Linux-hosted Simulators
Debugging the Project

Debugging the Project

Follow these steps to debug the project:
1. Open the e500/e600 project.
2. Select Project > Debug. Figure E.2 appears:

Figure E.2 Debug Window

oo

E x JHNOEOREE
[} Stack || @Vanables: Live | Walue | Location ||
| start =] i] $GPR31 |
= =

-
RE Gouwe=: LAy ProjectsheB00NS ourcetmain. o
asm volid svsten call()

| |3

nofralloc
- =C
- blr

H

void main()
-
- int i=0;

- printf{"Velcone to CodeVarrior!-r-n"):

- systemn_calli): -~ generate a =y=tem call exception to demon: |

- while (1) { i++; } ~~ loop forever

{} .| Line 17 Colil | Source » 4| | 3| Y

278

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

Index

A

access paths panel 40

accessing TLBs 167

address translations, enabling 172
alternatePC command 248

AltiVec information 12

ANDmem.l command 248

ANDmmr command 249

attaching to processes 144, 145
autoEnableAddressTranslation command 263
AutoEnableTranslations command 173, 263

B
bare board

accessing TLBs 167

address translations 172

debugging 161

debugging multiple ELFs 178

debugging non-CodeWarrior ELFs 173

debugging tutorial 162

default XML project file 175

hard reset 170

memory

filling 171
loading and saving 171

multi-core debugging 184

setting default breakpoint template 165

setting hardware breakpoints 166

setting IMMR register 170

setting SCRB register 170
BatchRunner postlinker panel 91
BatchRunner prelinker panel 90
benchmark software, dhrystone 269
build extras panel 40
build target, defined 14,17, 19, 35
building dhrystone example project 269

C

C/C++ language panel 41
C/C++ preprocessor panel 41
C/C++ warnings panel 41

cache contents, viewing 150
cache window

components of 153

toolbar buttons 152
CCS remote connection connection type 134
CCS remote connection options, table of 134
chapter contents, table of 9
CodeWarrior development process 16
CodeWarrior documentation 10
CodeWarrior IDE, overview 13
CodeWarrior TRK

connecting to 157

memory configuration 158

overview 156

using to debug 160
command reference

target initialization files 247
command window, viewing caches 153
command-line debugger, using 160
compiler, overview 15
components of cache window 153
connecting to CodeWarrior TRK 157
connection type

CCS remote connection 134

defined 129

serial 130

TCP/IP 132,133

USBTAP 138
connection types, table of 129
console I/O settings panel 97
creating a remote connection 142
creating multi-core debug project 185
creating projects 19
custom keywords panel 40

D

deadstripping, defined 54

debugger features, standard 125

debugger PIC settings panel 101

debugger protocol connection types
table of 129

debugger protocol, defined 128

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions 279

debugger protocols, table of 129 F

debugger settings panel 41

debugger signals panel 100

debugger, overview 16

debugging bare board software 161

default breakpoint template, setting 165

default project file names, table of 60 G

default XML project file 175

development process, CodeWarrior 16

development tools, overview 12

dhrystone benchmark software
example program, running 270
example project, building 269
using 269

displaying processor caches 151

displaying register contents 147

documentation, related 10

file mappings panel 40

filling memory 171

flash programmer, setting up 229
floating-point support options, table of 65

general purpose settings panels, table of 40
get 59

global optimizations panel 40

GNU assembler panel 62

GNU compiler panel 76

GNU disassembler panel 75

GNU environment panel 93

GNU linker panel 89

GNU post linker panel 88

GNU tools panel 95

N H
€600 cache operations, table of 156
EABI information 11
editing a remote connection 128
editor, overview 15
embedded Linux
debugging 205 I
tutorial, debugging 206
u-boot, debugging 210
empty project template, using 33
enabling address translations 172

hard reset, sending 170

hardware breakpoints, setting 166
hardware diagnostics tool, setting up 231
host, defined 14

IMMR register, setting 170
incorMMR command 249

EPPC L

trace buffer panel 108 linker, overview 15

trace buffer support 233 loading and saving memory 171
EPPC assembler panel 61
EPPC debugger settings panel 102 M
EPPC disassembler panel 72 manual, overview 9
EPPC exceptions panel 106 memory configuration files
EPPC linker 77 command reference 263
EPPC linker optimizations panel 85 autoEnableAddressTranslation 263
EPPC processor panel 63 range 264
EPPC target panel 52 reserved 266
Ethernet TAP connection type options, table reservedchar 266

of 136 translate 267

external build panel 40 command syntax 262
external build wizard, using 30 commands, table of 262

280 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

using 261

memory configuration of CodeWarrior TRK 158

MSL
overview 16
multi-core debugging 184
cache window, and 199
creating project 185
memory window, and 196
multi-core debug menu 200
registers window, and 197
symbolics window, and 198
multiple ELFs, debugging 178
multiple USB TAPs, using 139

N

new project wizard, bare board 20

new project wizard, Linux 25
non-CodeWarrior ELFs, debugging 173
number of hardware breakpoints, table of 166

0]

ORmem.l command 250
OSEK sysgen file type options, table of 49
OSEK sysgen panel 47
other executables panel 40
overview
CodeWarrior IDE 13
CodeWarrior TRK 156
compiler 15
debugger 16
development tools 12
editor 15
linker 15
MSL 16
project manager 13
standalone assembler 15
overview of manual 9

P

PC-lint
main settings panel 119
options panel 121
support 117

platform target, defined 14
post reset actions, table of 251
power architecture information 12
power architecture-specific settings panels 41
PQI1 cache operations, table of 154
PQ?2 cache operations, table of 155
PQ3
cache operations, table of 155
predefined remote connections, table of 127
processes, attaching to 144, 145
processor caches, displaying 151
project manager, overview 13
project types, table of 59
project, defined 17
project-related terms, table of 14
projects
bare board new project wizard 20
creating 19
empty project template 33
external build wizard 30
Linux new project wizard 25
types of 19

R

range command 264
register contents, displaying 147
register details window, using 149
registers, saving and restoring 171
related documentation 10

AltiVec 12

CodeWarrior information 10

EABI information 11

power architecture 12
remote connection

creating 142

defined 126

editing 128

predefined 127

using 126
remote debugging panel 41
reserved command 266
reservedchar command 266
reset command 251
run command 251

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

281

running dhrystone example program 270
runtime settings panel 40

S

saving and restoring registers 171
SCRB register, setting 170
serial connection type 130
serial connection type options, table of 131
SetMMRBaseAddr command 252
setting up
flash programmer 229
hardware diagnostics tool 231
setting watchpoint type 143
sleep command 252
source folder mapping panel 114
source trees panel 40
standalone assembler, overview 15
standard debugger features 125
start condition menu items, table of 111
stop command 253
stop condition menu items, table of 111
system call service settings panel 116
system controller menu items, table of 106

T

tables
cache window toolbar buttons 152
CCS remote connection, options 134
chapter contents 9, 14
connection types 129
debugger protocol connection types 129
debugger protocols 129
€600 cache operations 156
Ethernet TAP connection type, options 136
floating-point support options 65
general purpose settings panels 40
number of hardware breakpoints 166
PC-lint settings panels 118
post reset actions 251
power architecture-specific settings

panels 41

PQ1 cache operations 154
PQ2 cache operations 155
PQ3 cache operations 155

predefined remote connections 127
project default file names 60
project types 59
project-related terms 14
serial connection type, options 131
start condition menu items 111
stop condition menu items 111
system controller menu items 106
target initialization commands 246, 262
TCP/IP connection type, options 133
transaction source identifiers 112
transaction target identifiers 113
USBTAP connection type, options 139
target initialization commands, table of 262
target initialization files
command reference 247
alternatePC 248
ANDmem.] 248

ANDmmr 249
incorMMR 249
ORmem.l 250

reset 251

run 251
setMMRBaseAddr 252
sleep 252

stop 253

writemem.b 253
writemem.l 254
writemem.r 255
writemem.w 254
writemmr 255
writereg 256
writereg128 257
writespr 258
writeupma 258
writeupmb 259

command syntax 246

commands, table of 246

using 245

target settings

changing 36

defined 35

general purpose panels 40

power architecture-specific panels 41

282 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

restoring 39

saving a copy of 39

working with 35
target settings panel 44
TCP/IP connection type 132
TCP/IP connection type options, table of 133
TLBs, accessing 167
toolbar buttons, cache window 152
trace buffer support, EPPC 233
transaction source identifiers, table of 112
transaction target identifiers, table of 113
translate command 267
tutorial

bare board debugging 162

debugging embedded Linux software 206
types of projects 19

U
u-boot, debugging 210

flash section 215

RAM section 222
USBTAP connection type 138
USBTAP connection type options, table of 139
using memory configuration files 261
using multiple USB TAPS 139
using register details window 149
using target initialization files 245
using the command-line debugger 160

A\

viewing cache contents 150
viewing caches
command window 153
supported features 154
virtual address translation 171

W

watchpoint type, setting 143
writemem.b command 253
writemem.l command 254
writemem.r command 255
writemem.w command 254
writemmr command 255

writereg command 256
writereg128 command 257
writespr command 258
writeupma command 258
writeupmb command 259

Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

283

284 Targeting Power Architecture™ Processors, Pro/Linux® Application Editions

	Introduction
	Overview of This Manual
	Related Documentation
	CodeWarrior Information
	Embedded Power Architecture API Programming Information
	Power Architecture Processor and Board Information
	AltiVec™ Information

	CodeWarrior Power Architecture Development Tools
	CodeWarrior IDE
	Project Manager
	Editor
	C/C++ Compiler
	Standalone Assembler
	Linker
	Debugger
	Main Standard Libraries

	CodeWarrior Development Process
	Project Files
	Editing Code
	Compiling
	Linking
	Debugging

	Working with Projects
	Types of Projects
	Creating Projects
	Using the Bare Board New Project Wizard
	Using the Linux® New Project Wizard
	Using the External Build Wizard
	Using the Empty Project Template

	Target Settings Reference
	Working with Target Settings
	What are Target Settings?
	Changing Target Settings
	Restoring Target Settings
	Importing/Exporting Target Settings
	Making a Copy of a Project

	General Purpose Target Settings Panels
	Power Architecture™-specific Target Settings Panels
	Target Settings
	OSEK Sysgen
	EPPC Target
	GNU Target
	EPPC Assembler
	GNU Assembler
	EPPC Processor
	EPPC Disassembler
	GNU Disassembler
	GNU Compiler
	EPPC Linker
	EPPC Linker Optimizations
	GNU Post Linker
	GNU Linker
	BatchRunner PreLinker
	BatchRunner PostLinker
	GNU Environment
	GNU Tools
	Console I/O Settings
	Debugger Signals
	Debugger PIC Settings
	EPPC Debugger Settings
	EPPC Exceptions
	EPPC Trace Buffer
	Source Folder Mapping
	System Call Service Settings

	PC-lint Target Settings Panels
	PCLint Main Settings
	PCLint Options

	Working with the Debugger
	Standard Debugger Features
	Working with Remote Connections
	Setting the Watchpoint Type
	Attaching to Processes
	Ways to Initiate a Debug Session
	Displaying Register Contents
	Using the Register Details Window
	Viewing and Modifying Cache Contents
	Using CodeWarrior TRK
	Using the Command-Line Debugger

	Debugging Bare Board Software
	Tutorial: Debugging a Bare Board Application
	Setting the Default Breakpoint Template
	Setting Hardware Breakpoints
	Accessing Translation Look-aside Buffers
	Setting the IMMR Register
	Setting the SCRB Register
	Sending a Hard Reset Signal
	Loading and Saving Memory
	Filling Memory
	Saving and Restoring Registers
	Virtual Address Translation Support
	Debugging ELF Files Created by Other Build Tools
	Debugging Multiple ELF Files Simultaneously
	Debugging a Multi-Core Processor
	Debugging Multiple Processors Connected in a JTAG Chain

	Debugging Embedded Linux® Software
	Tutorial: Debugging an Embedded Linux® Application
	Debugging the U-Boot Bootstrap Firmware

	Working with the Hardware Tools
	Flash Programmer
	Hardware Diagnostics Tool
	EPPC Trace Buffer Support

	Debugger Limitations and Workarounds
	PowerQUICC I Processors
	Working With Watchpoints
	Working with Hardware Breakpoints

	PowerQUICC II Processors
	Working with Watchpoints
	Working with Hardware Breakpoints
	Working with Memory Mapped Registers

	PowerQUICC II Pro Processors
	Debugging interrupt handlers
	Cache Coherence (e300c1 Core Only)
	Working with Watchpoints
	Working with Hardware Breakpoints
	Working with Memory Mapped Registers

	PowerQUICC III Processors
	MMU Configuration Through JTAG
	Reset Workaround
	Working with Software Breakpoints
	Working with Watchpoints
	Working with Hardware Breakpoints

	Host Processors
	Working with Breakpoints
	Working with Watchpoints
	Working with Hardware Breakpoints

	Generic Processors
	Working with Uninitialized Stack

	Target Initialization Files
	Using Target Initialization Files
	Target Initialization File Commands
	Command Syntax
	Table of Commands
	Access to Named Registers from within Scripts
	Command Reference

	Memory Configuration Files
	Using Memory Configuration Files
	Memory Configuration File Commands
	Command Syntax
	Table of Commands
	Command Reference

	Using the Dhrystone Benchmark Software
	Building the Dhrystone Example Project
	Running the Dhrystone Program

	Using the Linux-hosted Simulators
	Creating and Configuring a Windows- hosted e500/e600 Simulator Project
	Configuring the Linux Machine
	Debugging the Project

	Index

