Freescale Semiconductor
Demo/Hands-On Lab

Rev. 1.0, 05/2011

Processor Expert Hands-On Lab
(Using the Kinetis K60 Tower Board)

by Jim Trudeau
Industrial and Multi-Market Microcontrollers

Freescale Semiconductor, Inc.
Austin, TX

In this exercise you will build a “bare metal”
(no RTOS) application from scratch, using
Processor Expert embedded components,
targeting a Freescale K60 board. You will:

* Create a CodeWarrior project that uses
Processor Expert

* Add several embedded components to
the project (logical device drivers,
LDDs)

* Configure the components
* Generate code for those components

* Write some interrupt service routines
(ISRs) to complete component
functionality

* Download and run the code on a Kinetis
K60 Tower System board

© 2011 Freescale Semiconductor, Inc.

Contents

1 INrOAUCHION ..ot 2
2 Create a project for code development. 4
3 Add and Configure @ TImer......cccccovvueeeeiiiieeeniiiee e 7
4 Add and Configure GPIOLccccoeeeviiieeiiiieeeeien. 12
5 Add and Configure GPIO2cccooviiiviiiiieeeiiieeee 14
6 Add and Configure INit_GPIOccoceviviieeeiiiieene 15
7 Generate COUecovveeeiiiiieeiiite e 18
8 Instantiate Components (ProcessorExpert.c)...21
9 Write the Event Handling Code (events.c)........... 21
10 Build the Codeccvveiiiiiiiiiec e 22
11 Download/Debug/Run........cccccovviiiiiieiiiiieeiiece e 23
12 CONCIUSION ...oeiiiiiiciieee e 26
13 ReVIiSiON HiStOryccoviiiiiiiiiiiiieeeeeiieeeee e 26

-

> freescale*

semvconductor

1 Introduction

To successfully complete this exercise you need the following board and development environment.
. The K60 Tower card, TWR-K60N512

. CodeWarrior for Microcontrollers v 10.1

There is no pre-built CodeWarrior project file. You will create a project from scratch. The only other
thing you need to accomplish this exercise successfully is this document.

1.1 What Will Happen

You will create a project, then add and configure embedded components using Processor Expert
technology. The Processor Expert tool will create all the initialization code for the drivers. You will
instantiate the drivers, and write some simple event handling code.

This demo is a classic “Flash the LED” application. There are four colored LEDs on the board. When
complete, this is how the LEDs will behave.

1. The blue LED comes on when code starts, and stays on all the time

2. The green LED blinks at 0.5 seconds intervals, controlled by a timer

3. The yellow LED turns on when you hold down SW2, and turns off when you let go

4. The orange LED turns on and off using SW1 as a toggle.

1.2 Hardware Background

The schematics shows the switches and LED connections.

4 =D pushButton 1 PTAID

SW1

2 Freescale Semiconductor

4 m=—b— pushbuttond FTE2S

SW2
=1 = =] =
lJpma B FTEzR 4 mEzR o TER 2
- s -] e - o4 -] ™
! E1 Ez Ex Ea
or D= =31 (s]H
3 & & &
- o OF + ELECTROCE - =™ ¥EL. B ECTRODE - =™ - m
LEL.OR LED. * LED_GRMN + ELECTRODE LHE_H ECTRODE
PTA |1
e
—_
FAT]
LEDs

This data is encapsulated in the Hardware to Port Mapping table immediately below. Review the table
carefully to understand why you configure the components the way you do in this exercise. In the
exercise you will use Processor Expert to set up these ports (and pins) to work properly.

Hardware to Port Mapping

Hardware Chip Port/Pin Comment
Swi PTA19 Will use as a toggle
SW2 PTE 26 Will use as “on while pushed”
LED 1 (orange) PTA 11
LED 2 (yellow) PTA 28
LED 3 (green) PTA 29
LED 4 (blue) PTA 10

Freescale Semiconductor

2 Create a project for code development.

Launch the CodeWarrior development environment. To create a new project, use the File menu. Point to
File ->New->Bareboard Project. The New Bareboard Project dialog appears. We will walk through a

series of panels in this Wizard.

First, name the project. We will use the name “K60 PE.” You can name it whatever you want. Click
Next.

The Devices panel appears, as shown below.

¥ New Barehoard Project

Devices

Seleck the derivative or board vou would like to use

[+

- HCS08

=) Kinetis

- K10 Family
- K20 Family
- K30 Family
- K40 Family
= K60 Family

MEGOMS1ZYMD 00

----- wlll oL L

[MP S

Creates project for MEGONS12YMD100 derivative

i | ¥

|A
I

(@ [< Back][Mext = H Einish ”_ Cancel

Navigate to the Kinetis K60 family and select MK60N512MD100. Then click Next.

The Connections panel appears, as shown below.

Freescale Semiconductor

€3]

.~ Mew Bareboard Project

Connections

Choose the connection to use For this project

[
|

(7 . < Back |[ek = ” Firish H Cancel

@ New System 4
Connection to be used:
[]PAE USE MultiLink :
I P&E Open Source JTAG I
[]=eqgger 1-Link

£

Choose P&E Open Source JTAG. Then click Next.

The Add Files panel appears (not shown). Default values are good, you will copy files into the project,

and create a main.c file. Click Next.

The Languages panel appears (not shown). Use C. Click Next.

The Rapid Application Development panel appears, as shown below.

2 New Bareboard Project

Rapid Application Development

Processor Expert, Device Initialization

Rapid Application Development
{:} More

(") pevice Initialization
—

(%) Processar Expert

Processar Expert can generate Far you all the device initialization code, Ik
includes many low-level drivers,

4 |

|

3

| £

(7 [= Back, “ Nexk = |[Finish ” Cancel

Choose Processor Expert. Then click Next.

The Processor Expert MCU Pin Variants and Configuration panel appears, as shown below.

Freescale Semiconductor

4]

.~ Mew Bareboard Project

Processor Expert MCU Pin Variants and Configuration

Pracessar Expert Configuration

MCU Pin Yarianks
MEGOMS1 2RO 00

>

Configurakions

Mexk = [Einish H Cancel]

Select the MK60NS512VMD100. Then select the Internal RAM configuration as shown. In this exercise
we will not modify the board’s flash.

Click Finish.

Typically a progress dialog will appear, telling you that the tools are creating a Processor Expert project
(You may have previously configured CodeWarrior tools to do this in the background.)

That’s it. Your new project appears in the CodeWarrior Project panel of the IDE. Inside is a Processor
Expert project as well, named ProcessorExpert.pe. If you expand that project, it looks like this:

6 Freescale Semiconductor

% Codewwarrior Projects | T Project Panel 23 =0
s HE & "
ER=:q0 FE
[Documentation
[Generated_Code
[-= MEAOMS12YMD100_INTERMAL _RAM
[== Project_Headers
[== Project_Setkings
[~ Sources
E||':-'| ProcessorExpert.pe
[=-[= Configurations
INTERNAL_RAM
[= Operating Sysktem
== Cpus
Q Cpu:MKe0OMS12YMO100
[= Embedded Components
rseHoskSettingsCache, xml

In subsequent steps you will add embedded components to the Processor Expert project: a timer, and
GPIO drivers. You will also generate code, and modify some source files.

3 Add and Configure a Timer

In this and subsequent steps you will use various views related to Processor Expert technology,
including the Components Library and Components Inspector.

If these views are not visible in the IDE, choose the Show Views item in the
Processor Expert menu. The views will appear. You can use this menu to hide % _
the views when you need to. | ¢ Component Wizard

From the Components Library, add a TimerUnit LDD to the project. There Hide Views a

are a variety of ways you can do this. One way is to do as shown in the view | 0ot package
below. Select the Categories tab, then navigate to
Logical Device Drivers->Timer. Right click on the item and choose Add to Project. See the figure below
for guidance.

Window H

Processar Expert

Freescale Semiconductor 7

ﬁ% Components Library &3 B |f|v =5

Categories | Alphabetical | Assistant | CPUs |

Companent Component Lewvel #
H-[Z= Converker
[Display

B Add to project

Expand all

= Part Collapse all
= Secl Refresh

& Mg pelate Selected Template

----- @ e Drive

<k Help on Cormponent & Ditity

<k M!!aﬂ Logical Device Driv
“-Gnl WakchDog_LDD Logical Device Driv
[+--[Z2 Fimnerabinn Swekarns

< | >

=
]
i

W

The Timer driver appears in the Embedded Components section of the Processor Expert part of the
project, as shown here.

' 4
% ZodeMarrior Projects F?E. Project Panel &3 =08
== - T

= =5 k&0 PE
#- (= Documentation
#-(= Generated Code
""" = MEEOMNZ12YMD100_INTERMAL _RAM
""" [Project_Headers
#- [Project_Settings
#-(= Sources
EI =| ProcessorExpert.pe
== Configurations
& INTERNAL_RAM
[*-[Z= Cperating System
EHE? Cpus
- 48 CpuMKEONS12YMD100
EI% Embedded Components
E2RR)} TUI1 : TimnerUnit_LOD
---- rseHnstSE{)&ngsCache.xml

You can now configure this driver. You do this in the Component Inspector, as shown below. Note that
you can set the inspector to Basic, Advanced, or Expert level granularity. In this exercise you will work
in Basic view.

You will do three things:

8 Freescale Semiconductor

1. Enable interrupts for this driver
2. Set the Counter Restart to one second
3. Adjust the counter frequency

Note throughout this process that as you set values, Processor Expert will alert you to problems that
need resolution.

£y *Component Inspector 57 |E| idvanced Expert ~ — O
= Properties | jlethogs Events Il}l:'fghangua wisihility to Advanced
ENT Yalue Details I
Module name FTMO FTrM0
Counter FTMO_CMT FTMO_CMT
Counter direction p
Counter width 16 hits
Yalue tvpe Cpirmal uink3z _t
= ¥ Input clock source Internal
¥ Counter Frequency 0kHz Error in initialization value, non zero expected
= Counter restart On-averrun
Period BE536
|+ Interrupt I
Channel lisk
= Initialization B
Enabled in init. code yes Change these items
= Event mask
CnCounterReskart Dizabled
CnChanneld Disabled ‘\
CnChannell Dizabled
OnChannel2 Disabled
CnChanneld Disabled
OnChanneld Disabled
CnChannels Disabled
CnChannels Disabled
OnChannel? Disabled
< &

First, set the Interrupt property to Enabled. Note that the lines Initialization, Event mask, and
OnCounterRestart all turn red if OnCounterRestart is not enabled.

If interrupts are enabled, you must have an OnCounterRestart () function. So set
OnCounterRestart to Enabled as well. Processor Expert will create the function stub for you
automatically. Later on you will write some code in this function to control an LED. Because this
component is named TU1, the name of the function will be TU1 OnCounterRestart ().

Set the Counter restart property to On-match. Note that the Period property becomes red because it
now must have a value. The Details column tells you what’s wrong. Click inside the Value box, and
type 1 sec. Alternatively, once you click in the box to activate data entry, you can click this button: .
That will bring up a timing dialog as shown here, where you can set the values.

Freescale Semiconductor 9

Timing dialog

Prescaler setting not available in this wersion
Runtime settings bype: Pzl sedinct
Yalue bype Walue Fraom Ta Step
Init, value: 1 0.0953674 s 3.125 ms 0.0476537 s
31250477 ms £.25 ms 0.0953674 ps
6, 2500954 ms 12.5ms 0,1907349 ps
12.5001907 ms 25 ms 0.3814697 ps
25,0003515 ms 50 ms 0, 7629395 s
50.0007629 ms 100 ms 1.5258789 ps
100,0015259 ms 200 ms 30517578 ps
200,0030518 ms 400 ms £.1035156 ps
400,0051035 ms 4 sec 61.05351562 ps
4.000061 sec 8 sec 1220703125 ps
5.0001221 sec 16 sec 244, 140625 ps
16.0002441 sec 32 sec 458.28125 ps
320004383 sec 64 sec 76,5625 s
&4.0009766 sec 128 sec 1.953125 ms
125,0019531 sec 256 sec 390625 ms
256.0039062 sec 512 sec 78125 ms
Allowed error: Lnit:
| 5 ko b
| Error in main ktiming {Counter Frequency) |
@ L Ok] [Cancel]

Note that once you set the period to 1 second, a new problem appears. The counter frequency does not
support this period.

10 Freescale Semiconductor

-
% *Component Inspector &3 |E=asi|: | Advanced Expert ~ = O

B Properties | Methods | Ewents

Mame Yalue Details |
Module name FTMO FTMO
Zounker FTMO_CMT FTMO_CMT
Counter direction Up
Counter width 16 bits
Yalue bvpe Cpkirnal uink32_k
= ¥ Input clock source Internal
¥ Counter Frequency 0kHz Errar in initialization value, non zero expected
= ¥ Counter restart Cn-match
Period device FTRO_MOD FTMO_MCD
¥ Period 1sec Error in main timing {Counter frequency
| Interrupt

Inkerrupk prioriky mediom priovity & Petiod of the counter restart,
Channel list 0 RRCR: Error in main kiming {Counter Frequencﬂ
= Initialization
Enabled in init. code VEs
[= Event mask

OnCounterReskart Enabled

CnChanneld Dizabled

OnChannell Dizabled

CnChannel2 Dizabled

OnChannel Disabled

CnChanneld Disabled

OnChannels Disabled T

CnChannels Disabled 7

P Tt S by) [t B | —
¥ Il | »

So, set the Counter frequency property to a good value. In this case, 7.8 ms works fine. Again, you can
either type that directly into the Value field, or use the timing dialog to set the value.

When this step is complete, the Component Inspector will look like this:

Freescale Semiconductor 11

By £3

Basic | Advanced Expert V=g

Properties | Methods | Events

Mame
Module name
Counter
Counter direction
Counter width
Yalue type
= Input clock source
Counter frequency
- Counter restart
Period device
Period
= Interrupt
Interrupt priority
Channel lisk
= Initialization
Enabled in init, code
=l Event mask
OnCounterRestark
OnChannelo
OnChannell

Yalue
FTro
FTMO_CMT
p
16 hits
Cptimal
Internal
7.8ms
on-makch
FTMO_MCD
1 sec
Enabled
medium priority
]

ves
Enabled

Disabled
Disabled

Dt ails e
FTro
FTMO_CHT
uink32_t

7.812ms

FTMO_MOD
1 sec

g

For subsequent steps the instructions will be somewhat less comprehensive, now that you are familiar
with the Component Inspector and how to set values.

4 Add and Configure GPIO1

Go to the Components Library. In the Categories tab, look for Logical Device Drivers->PortIO. Add the
GPIO_ LDD to the project. This is general purpose IO, and you will use it to control the LEDs.

When you add it to the project, it will appear as GPTO1.

In the Component Inspector, the Port defaults to PTA, and that’s what we need.

Set the Interrupt service/event value to Enabled.

Set the Bit Fields value to 5. When you do, a series of five bit fields will appear in the component
inspector. We need these to control the various LEDs.

Set these properties for the first bit field.

Property Value Note
Field Name LED1 this name will appear in source code, so case matters
Pin PTA11l this pin controls LED #1
Initial Pin Direction Output Sending a signal to the LED

Set these properties for the second bit field:

12

Freescale Semiconductor

Property Value Note
Field Name LED2 this name will appear in source code, so case matters
Pin PTA28 this pin controls LED #2
Initial Pin Direction Output Sending a signal to the LED

Set these properties for the third bit field:

Property Value Note
Field Name LED3 this name will appear in source code, so case matters
Pin PTA29 this pin controls LED #3
Initial Pin Direction Output Sending a signal to the LED

Set these properties for the fourth bit field:

Property Value Note
Field Name LED4 this name will appear in source code, so case matters
Pin PTA10 this pin controls LED #4
Initial Pin Direction Output Sending a signal to the LED

Set these properties for the fifth and final bit field.

Property Value Note
Field Name SW1 this name will appear in source code, so case matters
Pin PTA19 this pin is connected to SW1
Initial Pin Direction Input
Initial Pin Event Falling Edge This switch works as a toggle. So all we need is the signal
when the SW is “unpressed”

Finally, at the bottom of the inspector is the Initialization area. Set OnPortEvent to Enabled.

In the end, this component looks like this (with some levels collapsed).

Freescale Semiconductor

% *Zomponent Inspectar &4

Basic | Advanced Expert ¥ =0

5

Properties | Methods | Events

[arme
Part
Port width
Mask of allocated pins
= Interrupt service;event
Interrupt priority
=| Bit fields
= Bit field
Field narme
+ Pins
Bit field
Field narme
+ Pins
Bit field
Field narme
+ Pins
Bit field
Field name
- Pins
+ Pin
Bit field
Field name
- Pins
+ Pin
= Initialization
- Event mask
OnPartEvent

Walue Details
PTA PTA

32 bits

aoozocon

Enabled

medium priariky a

5

LED1

LEDZ

LED3

LEC+4

iy |

Enabled

Add and Configure GPI10O2

In this step you add another GPIO component, which you will use to work with SW2.

Go to the Components Library. In the Categories tab, look for Logical Device Drivers->PortlO. Add the
GPIO_LDD to the project again. When you add it to the project, it will appear as GPTO2.

In the Component Inspector, the Port defaults to PTA, and in this case that is not correct. SW2 is
connected to PTE.

In the Component Inspector, set these properties to these values for the GPIO2 component.

Property Value
Port PTE Required for SW2
Interrupt service/event Enabled You will capture an event when the switch is pressed
Interrupt Priority 6 You'll handle the switch at a higher priority than other events
Bit Fields 1 This is the default value

14

Freescale Semiconductor

Field Name SW2 Will appear in source code, so case matters

Pin PTE26 Per schematic

Initial pin direction Input

Initial pin event Both edges This switch turns on an LED as long as the switch is pushed,
so we need both the “pressed” and “unpressed” signals of the
same push.

OnPortEvent Enabled

When complete, the Component Inspector should look like this:

%*Campunent Inspector &3 Basic | Advanced Expert ¥ =0
Properties | Methods | Events
Tamne Yalue Details
Part FTE PTE
Part width 32 hits
Mask of allocated pins 4000000 Hl
=1 Interrupt service/event Enabled
Interrupk priority -] -]
= Bit fields 1
= Bit field
Figld name SW2
- Pins 1
= Pin
Pin PTEZ6/UART4 ... PTEZ6{UART4_CTS_BJEMET 1558 _CLKIMRTC_CLKD..,
Pin signal
+ Initial pin direction Input
Initial pin event Both edges
Lock initialization function no
= Initialization
= Event mask
OnPortEvent Enabled

6 Add and Configure Init._ GPIO

SW2 does not have a pull up on the board, so you will turn on the internal pull up on the port. Because
SW2 is connected to PTE, you will use that port.

Go to the Components Library. In the Categories tab, look for CPU Internal Peripherals->Peripheral
Initialization. In the list that appears, look for Init GPIO, and add it to the project. When you add it to
the project, it will appear as GPTIO3:Init GPIO.

Then examine this component in the Component Inspector.

At the very top is the Device property. Set this to PTE, as shown here.

Freescale Semiconductor 15

*Component Inspector X |E| Advanced Expert
& Properties | Methods | Ewents
Marne |
Device

= Pins
PinD =
Pin 1
Pin 2 k
Pin 3 Dizabled -
Pin 4 Dizabled
Pin 5 Dizabled
Pin b Dizabled
Pin 7 Dizabled
Pin & Dizabled
Pin 9 Disabled
Pin 10 Disabled
Pin 11 Disabled
Pin 12 Disabled
Pin 13 Disabled
Pin 14 Dizabled
Pin 15 Dizabled]|

%

The Inspector lists all the pins associated with this component. You can expand a pin and set various
properties for each pin. In this step you will work on Pin 26.

Scroll to Pin 26, and enable the pin. When you do, a warning appears as shown below. This pin is
already in use by GPIO2 which you configured in the previous step.

16 Freescale Semiconductor

% *Companent Inspectar 23 | Basic | advanced Expert ~ O
B Properties Methods Events
Mame Yalue Details o

Pin 22 Disabled
Pin 23 Disabled
Pin 24 Disabled
Pin 25 Disabled

Enabled I

¥ Fin PTEZE/UART4_... Peripheralis already used by the component GPIOZ [see ikem: Bit Fields [Bit. ..

Ciimale

Pirh

Op
Pull
Pull
Ok

{1}

L, 13 Lol
Fin of the GPIO port (For information only),
PTA:This item modifies MURD, MUXZ bits in the PORTA_PCR26 register,
PTE:This item modifies MU0, MUXZ bits in the PORTE_PCRZ6 reqgisker,
Feripheral description: General purpose 10, Part E, bit 26; UART4 clear to send; ENET 1588 Timer Clock Input; Output of the
F-TC oscillator; USE Alternate Clock
Fin number on the CPU package: K4,

SlewERR.OR: Peripheral is already used by the component GPIOE [see item: Bit Fields [Bit figld | Pins | Pin) Pin]
Drive strength Mo initialization
Interrupt configuration Mo initialization
Cigital Filker enable Mo initialization
Passive filker enable Mo initialization
Lock Mo initialization
Pin 27

Disabled

o

Note that the error statement tells you precisely what’s going on and where the conflict arises. In this

case, you want to use the same pin, so this is not an error. You will solve this a little later in this step by
enabling pin sharing. For now, continue with pin configuration.

In the Component Inspector, expand Pin 26 and set these properties to these values:

Property Value Note
Pull enable Enabled
Pull select Pull up

All other pin values use default settings, either no change or no initialization.

Scroll to the end of the Properties for this component, you will see the Interrupts property for the

component. Set the property Port Interrupt to Disabled.

Finally, resolve the pin sharing conflict. On the Pin property of pin 26, right click and choose Pin
Sharing Enabled. Essentially this tells Processor Expert that you know about this and to ignore the

potential problem, you are explicitly sharing this pin.

Freescale Semiconductor

17

f%- *Component Inspector &5 | Basic | Advanced Expert =~ =)
B Properties | Methods | Events |
Marne Yalue Deetails fe
Pin 25 Disabled
= ¥ Pin26 Enabled
PTEZ6/UART4 ... | Peripher gl s GRIOZ
Pin oukput Disabled Expand all
Open drain enable Mo initializakion Collapse al
Pull enable Enabled Help on Camponent
Pul select Pull Up Fin Sharing Enabled
Cukput value Mo change k
Slew rate Mo initialization
Drrive strength Mo initializakion
Inkerrupt configuration Mo initialization
Digital filker enable Mo inikializakion
Paszive filker enable Mo initializakion
Lock, Mo initializakion
Pin 27 Disabled
Pin 28 Disabled
Pin 29 Disabled
Cigital filker clock source Bus clock. y
Digital filler width 0 D
= Interrupts
Port interrupt Disabled
= Initialization
Call Init method YEs 7 |
L
F i | = o

When complete, the error goes away and the other properties for the component and the pin should look
like the image above.

7 Generate Code

Before you generate code, expand the Generated Code directory in the Projects view, as shown here, just
to see what is already in this folder.

18 Freescale Semiconductor

-
%Cndew.arriur Projects ('E:T. Project Panel 5 = 0O
s=S - T

= =5 K60 PE
[+ = Documentation
[=- = Generated_Code

..... @ IO_Map.h
----- [£] PE_canst.h
----- EI PE_Error.h
----- [£] PE_LDD.c
----- [£] PE_LDDLK
----- @ PE_Twpes.h
----- @ Veckars,c
----- = TREUMET 2 0T TERMAL_R.AM

----- [= Project_Headers
- Project_Settings

== Sources
@ Ewvents.c
@ Ewerts.h B
@ ProcessarExpert,c

= '_E ProcessarExpert.pe

EI[E? Configurations

& INTERNAL_RAM
[E‘? Operating System
=17 s :

Now generate code. Go to the Project menu and choose Generate Processor Expert Code.

Praoject

Open Projeck
Close Projeck

|and Build Al Ckrl+B
Build Configurations r
Build Project:
Build Warking Set r
Clean...

Build Automatically

Make Target r

izenerate Processor Expert Code
Generate Makefiles Clagri
hange Device)Conneckion

Properties

When you do, a progress dialog will appear. There should be no errors. When complete, new source
files will appear in the Generated Code directory.

Freescale Semiconductor 19

o — i
B cotswernor e (il = O

E @ v
= = K60 PE ~

[E:- Documentation
== Generated_Code

----- [o] GPIOL.c
----- €] aPIoL.h
----- €] aPIoZ.c
----- [g] @PIoZ.h
----- [£] @PIOS.C
.c] GPICE.h
""" .c| Io_Map.h
----- €] PE_Canst.h
----- @ PE_Error.h
----- €] PE_LDD.c
----- [€] PE_LDD R -

New files E

""" [== MEAOMS12YMD100_IMTERMAL_RAM

---- [== Project_Headers

H-[=> Project_Settings

&Fcb7QHHWﬁ§ W

Feel free to open and explore these files. For example, here is the code that sets up the pins driving the
LEDs, from GPIO1.c

@ mair,c (a@ wechors.c (@ GRIOL.C (@ ink_ena.c =B
oG GFIOE PODORET PODL=~OR000S0s00, FOO| = 0% =
147 GPIOAL PDDR = {uintic_t) ((GPIOA PDDR & (uint3z_t)~0x00050500UL) | fuint3Z_t)0x300004000L) ; b |

1458 /% Initialization of Port Control registers +/
149 /% PORTA PCR11: I3F=0,LE=0,MUE=1 =/
: [uint: [[i x0100 auL) (uin t) Ox01000L) ; Fl

0x01008600UL) (uin L1 0x0100UL) ;

¥01008600TL) (uin t) OxOL00TL)
. OuUL) (ui C 00muL) ;

~0x010086007TL) (uin t) OxO100UL) ;

PORTA PCR19 = {uint3z t) ([PORTA PCR19 & [uint32 t)~0x000500000 (uin L) 0x010A0000TL) ;
161 /% NWICIPS7: PRIST=0x80 */
16z NWNWICIPSY = (uints_t)Ox80U:;
163 ¢ A% NWICISERZ: SETENL|=0x00500000 */] 5 |
|| i} |

You do not need to modify these files in any way, nor should you. You will need to write some code, but
you will do that in the files in the Sources directory.

20 Freescale Semiconductor

8 Instantiate Components (ProcessorExpert.c)

As noted in the previous step, you do need to write code, but you do that in files in the Sources
directory. In this step you modify the code in the file ProcessorExpert. c. Note that this file is
created automatically for you. It contains standard # include statements and function stubs. Places
where you add code are clearly delineated.

In the project window, double click ProcessorExpert . c to open the file in the editor. Look for the
main () function and add the required code in the correct places. Add the bold red statements to the
code.

First, define three variables that will hold pointers to the data structures for the components. This
happens globally, just before the code for the main () function, not inside the function. These variables
will be used in events. c, and are not local to main (). At the time of this writing, this is at line 32 of
the file.

/* User includes (#include below this line is not maintained by Processor Expert)

*/

LDD_TDeviceData *LedlData;
LDD TDeviceData *SW2Data;
LDD_TDeviceData *TimerData;

Inside the main () function, create instances of these components and initialize them.

void main (void)

{

/* Write your code here */
/* For example: for(;;) { } */

LedlData = GPIOl_Init(NULL);

SW2Data GPIO2_ Init (NULL);
TimerData = TUl_Init (NULL);

/*** Don't write any code pass this line, or it will be deleted during code
generation. ***/

You have now created the components inside the source code. All that remains is writing the event
handling code, and then making sure it all works.

9 Write the Event Handling Code (events.c)

In the events. c file you add the code that executes when each switch is pressed. Based on the
component configuration, Processor Expert has already created the necessary function stubs for the
interrupt routines you need to write. These are in events.c.

Freescale Semiconductor 21

There are three LEDs controlled: GPIO1 is connected to SW1 and controls LEDI1. It also drives the
LEDs. GPIO?2 is connected to SW2 and controls LED2. The timer controls the third LED. LED4 is on
all the time.

In each case you are toggling the state of the LED, and GPIO1 defines the bits that handle each LED. So
you will call the GPIO1 ToggleFieldBits () function.

Double click the events. c file to open it in the editor. Then look for the correct function to modify.
Add the code in red.

For GPIO1

void GPIOl_QnPortEvent(LDD_TUserData *UserDataPtr)
{

/* Write your code here ... */
extern LDD TDeviceData *LedlData;
GPIOl_ToggleFieldBits (LedlData, LED1, O0Ox1);

For GPIO2

void GPIO2_OnPortEvent (LDD TUserData *UserDataPtr)
{

/* Write your code here ... */
extern LDD TDeviceData *LedlData;
GPIOl_ToggleFieldBits (LedlData, LED2, 0x1);

For the Timer
{

/* Write your code here ... */
extern LDD TDeviceData *LedlData;
GPIOl_ToggleFieldBits (LedlData, LED3, 0x1);

10 Build the Code

If you have more than one project in your project view, make sure the proper project is the focus. The
most reliable way to do this is to right click the project and choose Build Project as shown below. You
can also go to the Project menu and choose the same command.

22 Freescale Semiconductor

@ “ode'W'arrior Projects | ‘o5 Prajeck Panel 2% =0

= <~1='=f> &
B = = ®
= e L
= E’E =| Copy Chrl4+C

¥ Delete Delete

Rename. .. Fz

Eug Import. .,
L Export...
#dd Files...

[

[

[

[

[_
[

[
[w
[2 | Refresh F5

[

[

[

[

[

[

Close Project
Clase Unrelated Projects

Converk To,.,

Edit Linked Resources Locakions, ..

Run As LS
I

If you encounter errors, look in the Problems view and resolve them. You can ignore any warnings. For
example, if you accidentally defined the LDD TDeviceData pointers inside main (), instead of
before the function, the linker won’t be able to find them.

11 Download/Debug/Run

If the project builds correctly, it is time to download to the board and watch it work. Ensure that the
USB cable that came with the board connects the board to the host computer’s USB port.

There are multiple ways to issue the Debug command You can right click the project in the projects
view and choose Debug As->CodeWarrior Download. Alternatively, you can go to the Run menu and
choose Debug (F11). . If you have multiple projects in the projects view, make sure the correct one has
focus.

If you see a dialog asking for which configuration to use, choose the one for Internal RAM. If you
followed instructions carefully, there will not be a Flash configuration.

Firmware may change after the boards have been manufactured and shipped. As a result, you may
encounter this alert when you attempt to download software to the board:

Freescale Semiconductor 23

Confirm r'>__(|

Qld ©SITAGHDISEDM Firmware has
been detected, The embedded
firrmware needs ko be in bootloader
b B maode to update. Please unplug the

\-fr) LISE cable, insert a jumper on the
2-pin bootloader header
(connecting JMe0 IRG to ground),
and reconnect the USE cable,

[Ok] [Cancel]

Follow the instructions carefully. Unplug the USB cable. As it comes from the factory, the K60 board
has a free jumper on the board. Look for the two pins labeled JIM60 Boot and put a jumper on those pins.
Then reconnect the USB cable and click OK. The new firmware will download. A new dialog will
appear when the process is complete.

Confirm r)__(|

The embedded OSITAGHOSEDM
neads ko enter run mode to skart
9 the debug/programming session.
\"\'/ Please unplug the USE cable,
remove the jurmper From the 2-pin
bootloader header, and reconnect
the LUSE cable,

[o3 i [Cancel]

Unplug the cable, remove the jumper, and reconnect the cable. Then click OK. (You can store the
jumper on the board, just set it so that it does not connect pins.)

You may or may not encounter the firmware issue, or the multiple configurations issue. Once resolved,
you should not see them again. In an updated environment, this is what happens.

Issue a Debug command.

The project’s application downloads to the board. This will take a few moments. The code stops at the
first line of main (). The program counter arrow is a bit subtle, so it is circled in the screenshot below.

24 Freescale Semiconductor

]

.= Debug - K60 PESounces/ProcessorExpert.c - CodeWarrior Development Studio
File Edit Refactor Mavigate Search Project Run RTCS MOQE MOQK Tools Profiler PEMicro - Pro

- B I S G FoH-E- % 0-Q- i
%5 Debug 22 G B [LI = ST d

= [T] K60 PE_MKBOMS12YMD100_IMTERMAL RAM_PRE OSITAG [CodeWWarrior Download]
= ﬁ' ARM Processors, KAOPE, afx (Suspended)
=g Thread [ID: 0x0] {Suspended: Signal 'Halt' received. Description: User halked thread.)
2 main{) Di\Prafilesirab 190y Documents\MCUwarkspacel ka0 PE\Saurces ProcessarExpe
1 __thumb_startup) O workspace\ARM_CORTERMARM_CorkexM_ComponentiewliEvL_
g Di\Profilesirat1 9044y Documents|MCUworkspaceik a0 PEYMEGONS 12¥MD100_INTERMAL _RAMIKS!

4

@ main.c @ ProcessorExpert.c i3 @ Ewents.c

J7vroid main(void)

39 f¥ Write your local variakhle definition here #/

40

41 f**%% Processor Expert internal initialization. DON'T REMOVE 1
4z PE low level initi);

Click the Resume button "™ and the code runs.
The blue LED should be on and stay on. The green LED should be flashing about once per second.

Press and hold SW2. The yellow LED should light as long as you hold down the switch. When you
release the switch, the LED turns off.

Press SW1. The orange LED should toggle on or off.

If the LEDs do not behave as expected, have fun debugging! For example, if an LED does not light at
all, check the Processor Expert configuration — did you set the associated pin to be an output signal?

Even if everything is working, feel free to set breakpoints in the code to study how it all works.

Click the Pause button " to stop execution. Click the Terminate button to end debugging.

Freescale Semiconductor 25

12 Conclusion

You have successfully built a complete application from scratch, configured drivers, and built all the
necessary initialization code. Along the way you have seen how the Processor Expert tool, a genuine
expert system for driver configuration, warns you of potential difficulties based on its comprehensive
knowledge of SOC components. As well, the user interface enables you to configure a driver quickly
and easily. The tool handles most of the low-level work cleanly and reliably, and creates function stubs
for the ISRs you need, based on the driver configuration you specified.

Have fun experimenting. Modify the behavior of the switches, or the timing rate. The pads around the
LED are touch sensitive! You could write code so that a touch on the blue LED toggles it on or off, or
touch the green LED to change the flashing rate.

Congratulations and good luck in your programming endeavors.

13 Revision History

Table 1. Revision History

Rev. Number Date Substantive Change
0.1 04 April 2011 Original Draft — Work in Process
1.0 19 May 2011 Major rewrite and expansion, put in proper template
26 Freescale Semiconductor

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor

Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution

Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and
all liability, including without limitation consequential or incidental damages. “Typical” parameters that
may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including
“Typicals”, must be validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for
any other application in which the failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the
design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, StarCore, and Symphony are
trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ, QUICC Engine,
and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the
property of their respective owners. The Power Architecture and Power.org word marks and the Power
and Power.org logos and related marks are trademarks and service marks licensed by Power.org.
RapidlO is a registered trademark of the RapidlO Trade Association. ARM is the registered trademark of
ARM Limited. ARMnnn is the trademark of ARM Limited. IEEE nnn, nnn, and nnn are trademarks or
registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is
not endorsed or approved by the IEEE.

© 2011 Freescale Semiconductor, Inc.

