

Freescale Semiconductor
Demo/Hands-On Lab Rev. 1.0, 05/2011

© 2011 Freescale Semiconductor, Inc.

Processor Expert Hands-On Lab
(Using the Kinetis K60 Tower Board)

by Jim Trudeau

Industrial and Multi-Market Microcontrollers

Freescale Semiconductor, Inc.

Austin, TX

In this exercise you will build a “bare metal”

(no RTOS) application from scratch, using

Processor Expert embedded components,

targeting a Freescale K60 board. You will:

• Create a CodeWarrior project that uses

Processor Expert

• Add several embedded components to

the project (logical device drivers,

LDDs)

• Configure the components

• Generate code for those components

• Write some interrupt service routines

(ISRs) to complete component

functionality

• Download and run the code on a Kinetis

K60 Tower System board

Contents

1 Introduction .. 2
2 Create a project for code development. 4
3 Add and Configure a Timer .. 7
4 Add and Configure GPIO1 12
5 Add and Configure GPIO2 14
6 Add and Configure Init_GPIO 15
7 Generate Code .. 18
8 Instantiate Components (ProcessorExpert.c) ... 21
9 Write the Event Handling Code (events.c) 21
10 Build the Code ... 22
11 Download/Debug/Run .. 23
12 Conclusion ... 26
13 Revision History ... 26

2 Freescale Semiconductor

1 Introduction

To successfully complete this exercise you need the following board and development environment.

• The K60 Tower card, TWR-K60N512

• CodeWarrior for Microcontrollers v 10.1

There is no pre-built CodeWarrior project file. You will create a project from scratch. The only other

thing you need to accomplish this exercise successfully is this document.

1.1 What Will Happen

You will create a project, then add and configure embedded components using Processor Expert

technology. The Processor Expert tool will create all the initialization code for the drivers. You will

instantiate the drivers, and write some simple event handling code.

This demo is a classic “Flash the LED” application. There are four colored LEDs on the board. When

complete, this is how the LEDs will behave.

1. The blue LED comes on when code starts, and stays on all the time

2. The green LED blinks at 0.5 seconds intervals, controlled by a timer

3. The yellow LED turns on when you hold down SW2, and turns off when you let go

4. The orange LED turns on and off using SW1 as a toggle.

1.2 Hardware Background

The schematics shows the switches and LED connections.

SW1

Freescale Semiconductor 3

SW2

LEDs

This data is encapsulated in the Hardware to Port Mapping table immediately below. Review the table

carefully to understand why you configure the components the way you do in this exercise. In the

exercise you will use Processor Expert to set up these ports (and pins) to work properly.

Hardware to Port Mapping

Hardware Chip Port/Pin Comment

SW1 PTA19 Will use as a toggle

SW2 PTE 26 Will use as “on while pushed”

LED 1 (orange) PTA 11

LED 2 (yellow) PTA 28

LED 3 (green) PTA 29

LED 4 (blue) PTA 10

4 Freescale Semiconductor

2 Create a project for code development.

Launch the CodeWarrior development environment. To create a new project, use the File menu. Point to

File ->New->Bareboard Project. The New Bareboard Project dialog appears. We will walk through a

series of panels in this Wizard.

First, name the project. We will use the name “K60 PE.” You can name it whatever you want. Click

Next.

The Devices panel appears, as shown below.

Navigate to the Kinetis K60 family and select MK60N512MD100. Then click Next.

The Connections panel appears, as shown below.

Freescale Semiconductor 5

Choose P&E Open Source JTAG. Then click Next.

The Add Files panel appears (not shown). Default values are good, you will copy files into the project,

and create a main.c file. Click Next.

The Languages panel appears (not shown). Use C. Click Next.

The Rapid Application Development panel appears, as shown below.

Choose Processor Expert. Then click Next.

The Processor Expert MCU Pin Variants and Configuration panel appears, as shown below.

6 Freescale Semiconductor

Select the MK60N512VMD100. Then select the Internal_RAM configuration as shown. In this exercise

we will not modify the board’s flash.

Click Finish.

Typically a progress dialog will appear, telling you that the tools are creating a Processor Expert project

(You may have previously configured CodeWarrior tools to do this in the background.)

That’s it. Your new project appears in the CodeWarrior Project panel of the IDE. Inside is a Processor

Expert project as well, named ProcessorExpert.pe. If you expand that project, it looks like this:

Freescale Semiconductor 7

In subsequent steps you will add embedded components to the Processor Expert project: a timer, and

GPIO drivers. You will also generate code, and modify some source files.

3 Add and Configure a Timer

In this and subsequent steps you will use various views related to Processor Expert technology,

including the Components Library and Components Inspector.

If these views are not visible in the IDE, choose the Show Views item in the

Processor Expert menu. The views will appear. You can use this menu to hide

the views when you need to.

From the Components Library, add a TimerUnit_LDD to the project. There

are a variety of ways you can do this. One way is to do as shown in the view

below. Select the Categories tab, then navigate to

Logical Device Drivers->Timer. Right click on the item and choose Add to Project. See the figure below

for guidance.

8 Freescale Semiconductor

The Timer driver appears in the Embedded Components section of the Processor Expert part of the

project, as shown here.

You can now configure this driver. You do this in the Component Inspector, as shown below. Note that

you can set the inspector to Basic, Advanced, or Expert level granularity. In this exercise you will work

in Basic view.

You will do three things:

Freescale Semiconductor 9

1. Enable interrupts for this driver

2. Set the Counter Restart to one second

3. Adjust the counter frequency

Note throughout this process that as you set values, Processor Expert will alert you to problems that

need resolution.

First, set the Interrupt property to Enabled. Note that the lines Initialization, Event mask, and

OnCounterRestart all turn red if OnCounterRestart is not enabled.

If interrupts are enabled, you must have an OnCounterRestart() function. So set

OnCounterRestart to Enabled as well. Processor Expert will create the function stub for you

automatically. Later on you will write some code in this function to control an LED. Because this

component is named TU1, the name of the function will be TU1_OnCounterRestart().

Set the Counter restart property to On-match. Note that the Period property becomes red because it

now must have a value. The Details column tells you what’s wrong. Click inside the Value box, and

type 1 sec. Alternatively, once you click in the box to activate data entry, you can click this button: .

That will bring up a timing dialog as shown here, where you can set the values.

10 Freescale Semiconductor

Note that once you set the period to 1 second, a new problem appears. The counter frequency does not

support this period.

Freescale Semiconductor 11

So, set the Counter frequency property to a good value. In this case, 7.8 ms works fine. Again, you can

either type that directly into the Value field, or use the timing dialog to set the value.

When this step is complete, the Component Inspector will look like this:

12 Freescale Semiconductor

For subsequent steps the instructions will be somewhat less comprehensive, now that you are familiar

with the Component Inspector and how to set values.

4 Add and Configure GPIO1

Go to the Components Library. In the Categories tab, look for Logical Device Drivers->PortIO. Add the

GPIO_LDD to the project. This is general purpose IO, and you will use it to control the LEDs.

When you add it to the project, it will appear as GPIO1.

In the Component Inspector, the Port defaults to PTA, and that’s what we need.

Set the Interrupt service/event value to Enabled.

Set the Bit Fields value to 5. When you do, a series of five bit fields will appear in the component

inspector. We need these to control the various LEDs.

Set these properties for the first bit field.

Property Value Note

Field Name LED1 this name will appear in source code, so case matters

Pin PTA11 this pin controls LED #1

Initial Pin Direction Output Sending a signal to the LED

Set these properties for the second bit field:

Freescale Semiconductor 13

Property Value Note

Field Name LED2 this name will appear in source code, so case matters

Pin PTA28 this pin controls LED #2

Initial Pin Direction Output Sending a signal to the LED

Set these properties for the third bit field:

Property Value Note

Field Name LED3 this name will appear in source code, so case matters

Pin PTA29 this pin controls LED #3

Initial Pin Direction Output Sending a signal to the LED

Set these properties for the fourth bit field:

Property Value Note

Field Name LED4 this name will appear in source code, so case matters

Pin PTA10 this pin controls LED #4

Initial Pin Direction Output Sending a signal to the LED

Set these properties for the fifth and final bit field.

Property Value Note

Field Name SW1 this name will appear in source code, so case matters

Pin PTA19 this pin is connected to SW1

Initial Pin Direction Input

Initial Pin Event Falling Edge This switch works as a toggle. So all we need is the signal

when the SW is “unpressed”

Finally, at the bottom of the inspector is the Initialization area. Set OnPortEvent to Enabled.

In the end, this component looks like this (with some levels collapsed).

14 Freescale Semiconductor

5 Add and Configure GPIO2

In this step you add another GPIO component, which you will use to work with SW2.

Go to the Components Library. In the Categories tab, look for Logical Device Drivers->PortIO. Add the

GPIO_LDD to the project again. When you add it to the project, it will appear as GPIO2.

In the Component Inspector, the Port defaults to PTA, and in this case that is not correct. SW2 is

connected to PTE.

In the Component Inspector, set these properties to these values for the GPIO2 component.

Property Value Note

Port PTE Required for SW2

Interrupt service/event Enabled You will capture an event when the switch is pressed

Interrupt Priority 6 You’ll handle the switch at a higher priority than other events

Bit Fields 1 This is the default value

Freescale Semiconductor 15

Field Name SW2 Will appear in source code, so case matters

Pin PTE26 Per schematic

Initial pin direction Input

Initial pin event Both edges This switch turns on an LED as long as the switch is pushed,

so we need both the “pressed” and “unpressed” signals of the

same push.

OnPortEvent Enabled

When complete, the Component Inspector should look like this:

6 Add and Configure Init_GPIO

SW2 does not have a pull up on the board, so you will turn on the internal pull up on the port. Because

SW2 is connected to PTE, you will use that port.

Go to the Components Library. In the Categories tab, look for CPU Internal Peripherals->Peripheral

Initialization. In the list that appears, look for Init_GPIO, and add it to the project. When you add it to

the project, it will appear as GPIO3:Init_GPIO.

Then examine this component in the Component Inspector.

At the very top is the Device property. Set this to PTE, as shown here.

16 Freescale Semiconductor

The Inspector lists all the pins associated with this component. You can expand a pin and set various

properties for each pin. In this step you will work on Pin 26.

Scroll to Pin 26, and enable the pin. When you do, a warning appears as shown below. This pin is

already in use by GPIO2 which you configured in the previous step.

Freescale Semiconductor 17

Note that the error statement tells you precisely what’s going on and where the conflict arises. In this

case, you want to use the same pin, so this is not an error. You will solve this a little later in this step by

enabling pin sharing. For now, continue with pin configuration.

In the Component Inspector, expand Pin 26 and set these properties to these values:

Property Value Note

Pull enable Enabled

Pull select Pull up

All other pin values use default settings, either no change or no initialization.

Scroll to the end of the Properties for this component, you will see the Interrupts property for the

component. Set the property Port Interrupt to Disabled.

Finally, resolve the pin sharing conflict. On the Pin property of pin 26, right click and choose Pin

Sharing Enabled. Essentially this tells Processor Expert that you know about this and to ignore the

potential problem, you are explicitly sharing this pin.

18 Freescale Semiconductor

When complete, the error goes away and the other properties for the component and the pin should look

like the image above.

7 Generate Code

Before you generate code, expand the Generated Code directory in the Projects view, as shown here, just

to see what is already in this folder.

Freescale Semiconductor 19

Now generate code. Go to the Project menu and choose Generate Processor Expert Code.

When you do, a progress dialog will appear. There should be no errors. When complete, new source

files will appear in the Generated Code directory.

20 Freescale Semiconductor

Feel free to open and explore these files. For example, here is the code that sets up the pins driving the

LEDs, from GPIO1.c

You do not need to modify these files in any way, nor should you. You will need to write some code, but

you will do that in the files in the Sources directory.

Freescale Semiconductor 21

8 Instantiate Components (ProcessorExpert.c)

As noted in the previous step, you do need to write code, but you do that in files in the Sources

directory. In this step you modify the code in the file ProcessorExpert.c. Note that this file is

created automatically for you. It contains standard #include statements and function stubs. Places

where you add code are clearly delineated.

In the project window, double click ProcessorExpert.c to open the file in the editor. Look for the

main() function and add the required code in the correct places. Add the bold red statements to the

code.

First, define three variables that will hold pointers to the data structures for the components. This

happens globally, just before the code for the main() function, not inside the function. These variables

will be used in events.c, and are not local to main(). At the time of this writing, this is at line 32 of

the file.

/* User includes (#include below this line is not maintained by Processor Expert)

*/

LDD_TDeviceData *Led1Data;

LDD_TDeviceData *SW2Data;

LDD_TDeviceData *TimerData;

Inside the main() function, create instances of these components and initialize them.

void main(void)

{

 …

 /* Write your code here */

 /* For example: for(;;) { } */

 Led1Data = GPIO1_Init(NULL);

 SW2Data = GPIO2_Init(NULL);

 TimerData = TU1_Init(NULL);

 /*** Don't write any code pass this line, or it will be deleted during code

generation. ***/

You have now created the components inside the source code. All that remains is writing the event

handling code, and then making sure it all works.

9 Write the Event Handling Code (events.c)

In the events.c file you add the code that executes when each switch is pressed. Based on the

component configuration, Processor Expert has already created the necessary function stubs for the

interrupt routines you need to write. These are in events.c.

22 Freescale Semiconductor

There are three LEDs controlled: GPIO1 is connected to SW1 and controls LED1. It also drives the

LEDs. GPIO2 is connected to SW2 and controls LED2. The timer controls the third LED. LED4 is on

all the time.

In each case you are toggling the state of the LED, and GPIO1 defines the bits that handle each LED. So

you will call the GPIO1_ToggleFieldBits() function.

Double click the events.c file to open it in the editor. Then look for the correct function to modify.

Add the code in red.

For GPIO1

void GPIO1_OnPortEvent(LDD_TUserData *UserDataPtr)

{

 /* Write your code here ... */

 extern LDD_TDeviceData *Led1Data;

 GPIO1_ToggleFieldBits(Led1Data, LED1, 0x1);

}

For GPIO2

void GPIO2_OnPortEvent(LDD_TUserData *UserDataPtr)

{

 /* Write your code here ... */

 extern LDD_TDeviceData *Led1Data;

 GPIO1_ToggleFieldBits(Led1Data, LED2, 0x1);

}

For the Timer

{

 /* Write your code here ... */

 extern LDD_TDeviceData *Led1Data;

 GPIO1_ToggleFieldBits(Led1Data, LED3, 0x1);

}

10 Build the Code

If you have more than one project in your project view, make sure the proper project is the focus. The

most reliable way to do this is to right click the project and choose Build Project as shown below. You

can also go to the Project menu and choose the same command.

Freescale Semiconductor 23

If you encounter errors, look in the Problems view and resolve them. You can ignore any warnings. For

example, if you accidentally defined the LDD_TDeviceData pointers inside main(), instead of

before the function, the linker won’t be able to find them.

11 Download/Debug/Run

If the project builds correctly, it is time to download to the board and watch it work. Ensure that the

USB cable that came with the board connects the board to the host computer’s USB port.

There are multiple ways to issue the Debug command You can right click the project in the projects

view and choose Debug As->CodeWarrior Download. Alternatively, you can go to the Run menu and

choose Debug (F11). . If you have multiple projects in the projects view, make sure the correct one has

focus.

If you see a dialog asking for which configuration to use, choose the one for Internal RAM. If you

followed instructions carefully, there will not be a Flash configuration.

Firmware may change after the boards have been manufactured and shipped. As a result, you may

encounter this alert when you attempt to download software to the board:

24 Freescale Semiconductor

Follow the instructions carefully. Unplug the USB cable. As it comes from the factory, the K60 board

has a free jumper on the board. Look for the two pins labeled JM60 Boot and put a jumper on those pins.

Then reconnect the USB cable and click OK. The new firmware will download. A new dialog will

appear when the process is complete.

Unplug the cable, remove the jumper, and reconnect the cable. Then click OK. (You can store the

jumper on the board, just set it so that it does not connect pins.)

You may or may not encounter the firmware issue, or the multiple configurations issue. Once resolved,

you should not see them again. In an updated environment, this is what happens.

Issue a Debug command.

The project’s application downloads to the board. This will take a few moments. The code stops at the

first line of main(). The program counter arrow is a bit subtle, so it is circled in the screenshot below.

Freescale Semiconductor 25

Click the Resume button and the code runs.

The blue LED should be on and stay on. The green LED should be flashing about once per second.

Press and hold SW2. The yellow LED should light as long as you hold down the switch. When you

release the switch, the LED turns off.

Press SW1. The orange LED should toggle on or off.

If the LEDs do not behave as expected, have fun debugging! For example, if an LED does not light at

all, check the Processor Expert configuration – did you set the associated pin to be an output signal?

Even if everything is working, feel free to set breakpoints in the code to study how it all works.

Click the Pause button to stop execution. Click the Terminate button to end debugging.

26 Freescale Semiconductor

12 Conclusion

You have successfully built a complete application from scratch, configured drivers, and built all the

necessary initialization code. Along the way you have seen how the Processor Expert tool, a genuine

expert system for driver configuration, warns you of potential difficulties based on its comprehensive

knowledge of SOC components. As well, the user interface enables you to configure a driver quickly

and easily. The tool handles most of the low-level work cleanly and reliably, and creates function stubs

for the ISRs you need, based on the driver configuration you specified.

Have fun experimenting. Modify the behavior of the switches, or the timing rate. The pads around the

LED are touch sensitive! You could write code so that a touch on the blue LED toggles it on or off, or

touch the green LED to change the flashing rate.

Congratulations and good luck in your programming endeavors.

13 Revision History
Table 1. Revision History

Rev. Number Date Substantive Change

0.1 04 April 2011 Original Draft – Work in Process

1.0 19 May 2011 Major rewrite and expansion, put in proper template

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution
Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and
all liability, including without limitation consequential or incidental damages. “Typical” parameters that
may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including
“Typicals”, must be validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for
any other application in which the failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the
design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, StarCore, and Symphony are
trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine,
and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the
property of their respective owners. The Power Architecture and Power.org word marks and the Power
and Power.org logos and related marks are trademarks and service marks licensed by Power.org.
RapidIO is a registered trademark of the RapidIO Trade Association. ARM is the registered trademark of
ARM Limited. ARMnnn is the trademark of ARM Limited. IEEE nnn, nnn, and nnn are trademarks or
registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is
not endorsed or approved by the IEEE.

© 2011 Freescale Semiconductor, Inc.

