
1 General Information
Component Level: Logical Device Driver

Category: Logical Device Drivers-Communication

This component encapsulates serial communication interface
(UART) and provides methods and events for asynchronous
serial communication.

The component provides standard features of asynchronous
serial communications (if supported by hardware) and also
special functions provided by the hardware like:

• Number of data bits/number of stop bits

• Baud rate

• Parity

• Handshake flow control

The component can work in two basic modes:

• Polling mode - no events available, no block transfer
functions available

• Interrupt mode - user can choose from a set of events
for data transfer management

Freescale Semiconductor Document Number:N/A

User Guide Rev 1, 12/2013

Serial_LDD
Embedded Component User Guide

© 2013 Freescale Semiconductor, Inc.

Contents

1 General Information..1

2 Properties...2

3 Methods...6

4 Events...19

5 Types and Constants..21

6 Typical usage..23

The component operates upon specified communication buffers to complete block transfer operations. The driver of the
component stores all the incoming data to the receive buffer and automatically transmits all the data from the transmit buffer.

The component also offers possibility to control the data transfer with standard RTS/CTS handshake mechanism when
supported by HW:

• CTS - an input pin. When in low level the device is allowed the send data. When in high level the device has to stop
transmitting.

• RTS - an output pin. When the device is able to receive data the RTS is set to low level. If the device can't accept new
data the RTS is set to high level.

The following picture shows an example of a connection between two DCE devices (RS232C interface) with a possible
handshake (dashed line):

The generated driver contains initialization code and selectable methods for the component runtime API generated according
to component configuration.

From code sharing perspective, the component driver code can operate in the following modes:

• Shared mode - One driver controls all UART channels by one peripheral driver.

• Distinct mode - There is generated a separate code for each UART channel.

Please note that capabilities of the component may depend on the capabilities of currently selected peripheral.

2 Properties
This section describes component's properties. Properties are parameters of the component that influence the generated code.
Please see the Processor Expert user manual for more details.

• Component name - Name of the component.

• Device - The channel used for serial asynchronous communication.

• Interrupt service/event - The component may or may not be implemented using interrupts. If this property is set to
"Enabled", the component functionality (e.g. sending and receiving data) depends on the interrupt service and will not
operate if the CPU interrupts are disabled. For details please refer to chapter "interrupt service in the component's
generated code".

The following items are available only if the group is enabled (the value is "Enabled"):

• Interrupt RxD - Interrupt from serial receiver.

• Interrupt RxD priority - The priority of the interrupt associated with the asynchronous communication.

• Settings only if component supports interrupt service routine properties.

• ISR Name - Name of the internal component interrupt service routine (ISR) invoked by this interrupt
vector. This property is for information only.

• Settings only if compiler supports preserve interrupt preserve registers.

Properties

Serial_LDD, Rev 1, 12/2013

2 Freescale Semiconductor, Inc.

• Interrupt preserve registers - If this property is set to 'yes' then the "saveall" modifier is generated
together with the "#pragma interrupt" statement before the appropriate ISR function definition. This
modifier preserves register values by saving and restoring all registers by calling the
INTERRUPT_SAVEALL and INTERRUPT_RESTOREALL routines in the Runtime Library. The
"#pragma interrupt called" statement, located before the appropriate event in Events.c, should be removed
in this mode.

If this option is set to 'no', a user must ensure that all registers used by any routine called by the ISR is
saved and restored by that routine.

The "#pragma interrupt called" statement, located before the appropriate event in Events.c, is needed in this
mode.

• Interrupt TxD - Interrupt from serial transmitter.

• Interrupt TxD priority - Priority of the interrupt associated with the asynchronous communication.

• Settings only if component supports interrupt service routine properties.

• ISR Name - Name of the internal component interrupt service routine (ISR) invoked by this interrupt
vector. This property is for information only.

• Settings only if compiler supports preserve interrupt preserve registers.

• Interrupt preserve registers - If this property is set to 'yes' then the "saveall" modifier is generated
together with the "#pragma interrupt" statement before the appropriate ISR function definition. This
modifier preserves register values by saving and restoring all registers by calling the
INTERRUPT_SAVEALL and INTERRUPT_RESTOREALL routines in the Runtime Library. The
"#pragma interrupt called" statement, located before the appropriate event in Events.c, should be removed
in this mode.

If this option is set to 'no', a user must ensure that all registers used by any routine called by the ISR is
saved and restored by that routine.

The "#pragma interrupt called" statement, located before the appropriate event in Events.c, is needed in this
mode.

• Interrupt Error - Error interrupt from serial receiver.

• Interrupt Error priority - Priority of the interrupt associated with the asynchronous communication.

• Settings only if component supports interrupt service routine properties.

• ISR Name - Name of the internal component interrupt service routine (ISR) invoked by this interrupt
vector. This property is for information only.

• Settings only if compiler supports preserve interrupt preserve registers.

• Interrupt preserve registers - If this property is set to 'yes' then the "saveall" modifier is generated
together with the "#pragma interrupt" statement before the appropriate ISR function definition. This
modifier preserves register values by saving and restoring all registers by calling the
INTERRUPT_SAVEALL and INTERRUPT_RESTOREALL routines in the Runtime Library. The
"#pragma interrupt called" statement, located before the appropriate event in Events.c, should be removed
in this mode.

If this option is set to 'no', a user must ensure that all registers used by any routine called by the ISR is
saved and restored by that routine.

The "#pragma interrupt called" statement, located before the appropriate event in Events.c, is needed in this
mode.

• Settings - Common component setting.

• Data width - Number of data (information) bits.

Properties

Serial_LDD, Rev 1, 12/2013

Freescale Semiconductor, Inc. 3

• Parity - The type of the parity bit (none, hardware odd, hardware even, even (hw or sw), odd (hw or sw)). If odd
[even] is selected and the number of "ones" (bits) in the transmitted byte is odd, then the parity bit is 0 [1]. If
none is selected, there is no parity bit. The parity bit can be implemented by hardware (if it is supported by the
device) or by software.

• Stop bits - Number of stop bits (signaling the end of data transmission).

• Loop mode - Selects a channel mode.

• Baud rate - Communication baud rate. It is necessary to enter both a value and an unit (see Timing Setting

Syntax). The setting may be made with the help of the Timing dialog box that opens when clicking on
(...)button.

• Wakeup condition - Selects the condition of wake up the SCI.

There are 2 options:

• Address mark wakeup: a 1 in MSB position of received character wakes the receiver.

• Idle line wakeup: An idle character on RxD pin wakes the receiver.

• Stop in wait mode - Determines if the component is stopped in wait mode.

• Idle line mode - Idle line mode determines when the counter of idle character starts (after a start bit or stop bit).

There are 2 options:

• Starts after start bit: Idle character bit count starts after start bit.

• Starts after stop bit: Idle character bit count starts after stop bit.

• Transmitter output - Reverses the polarity of transmitted data.

• Receiver input - Reverses the polarity of received data.

• Break generation length - The length of generated break characters. The actual length is determined by the
selected data width (e.g. value '10/11 bits' means that for 8bit data the break length is 10bits and for 9bit data the
break length is 11bits).

• Receiver - Enable/Disable the receiver.

The following items are available only if the group is enabled (the value is "Enabled"):

• RxD - Input pin used for the communication.

• RxD pin signal - Signal name of RxD pin.

• Transmitter - Enable/Disable the transmitter.

The following items are available only if the group is enabled (the value is "Enabled"):

• TxD - Output pin used for the communication.

• TxD pin signal - Signal name of TxD pin.

• Flow control - Communication flow control.

There are 2 modes:

• None - No flow control. There are no items in this mode.

• Hardware (RTS/CTS) - Hardware supported RTS/CTS flow control. The following items are displayed in
this mode:

• CTS - Clear to send handshake. To use this feature the Transmitter must be enabled. DMA mode: If
DMA controller is available on the selected CPU and the transmitter is configured to use DMA
controller then this property is disabled. CTS can't be used in this mode.

The following items are available only if the group is enabled (the value is "Enabled"):

Properties

Serial_LDD, Rev 1, 12/2013

4 Freescale Semiconductor, Inc.

• CTS Pin - Clear-to-send pin.

• CTS pin signal - Signal name of CTS pin.

• Settings only if SW Handshake is supported for CPU

• Interrupt CTS priority - Priority of the interrupt associated with the asynchronous
communication.

• Interrupt CTS - Interrupt from the CTS.

• RTS - Ready to send handshake. To use this feature the Receiver must be enabled. DMA mode: If
DMA controller is available on the selected CPU and the receiver is configured to use DMA
controller then this property is disabled. RTS can't be used in this mode.

The following items are available only if the group is enabled (the value is "Enabled"):

• RTS Pin - Ready-to-send pin

• RTS pin signal - Signal name of RTS pin

• RTS enabled - If an input buffer is enabled and a SW handshake is used then the given number
denotes a number of received characters in the buffer when the signal RTS is activated. If a SW
handshake is used then the maximum efficiency can be achieved by using the input buffer of a
greater size than the specified number for RTS enabled. This item is not accessible if the input
buffer is disabled.

• Initialization - Initial settings (after power-on or reset).

• Enabled in init. code - The component is enabled after power-on or reset (in initialization code).

•
• Auto initialization - Automated initialization of the component. The component Init method is

automatically called from CPU component initialization function PE_low_level_init(). In this mode, the
constant <ComponentName>_DeviceData is defined in component header file and it can be used as a
device data structure pointer that can be passed as a first parameter to all component methods.

• Event mask - This group defines initialization event mask value.

• OnBlockSent - Specifies if OnBlockSent event is enabled in initialization code.

• OnBlockReceived - Specifies if OnReceived event is enabled in initialization code.

• OnTxComplete - Specifies if OnTxComplete event is enabled in initialization code.

• OnError - Specifies if OnError event is enabled in initialization code.

• OnBreak - Specifies if OnBreak event is enabled in initialization code.

•
• CPU clock/configuration selection - Settings for the CPU clock configurations: specifies whether the

component is supported or not.

For details about speed modes please refer to page Speed Modes Support.

• Clock configuration 0 - The component is enabled/disabled in the clock configuration 0.

• Clock configuration 1 - The component is enabled/disabled in the clock configuration 1.

• Clock configuration 2 - The component is enabled/disabled in the clock configuration 2.

• Clock configuration 3 - The component is enabled/disabled in the clock configuration 3.

• Clock configuration 4 - The component is enabled/disabled in the clock configuration 4.

• Clock configuration 5 - The component is enabled/disabled in the clock configuration 5.

• Clock configuration 6 - The component is enabled/disabled in the clock configuration 6.

• Clock configuration 7 - The component is enabled/disabled in the clock configuration 7.

Properties

Serial_LDD, Rev 1, 12/2013

Freescale Semiconductor, Inc. 5

3 Methods
This section describes component's methods. Methods are user-callable functions/subroutines intended for the component
runtime control. Please see the Processor Expert user manual for more details.

3.1 Init
Initializes the device. Allocates memory for the device data structure, allocates interrupt vectors and sets interrupt priority,
sets pin routing, sets timing, etc. If the "Enable in init. code" is set to "yes" value then the device is also enabled(see the
description of the Enable() method). In this case the Enable() method is not necessary and needn't to be generated.

Prototype

 LDD_TDeviceData* Init(LDD_TUserData *UserDataPtr)

Parameters

• UserDataPtr: Pointer to LDD_TUserData - Pointer to the user or RTOS specific data. This pointer will be passed as an
event or callback parameter.

Return value

• Return value:LDD_TDeviceData* - Device data structure pointer.

3.2 Deinit
Deinitializes the device. Switches off the device, frees the device data structure memory, interrupts vectors, etc.

Prototype

 void Deinit(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

3.3 Enable
Enables the device, starts the transmitting and receiving.

Prototype

 LDD_TError Enable(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

• Return value:LDD_TError - Error code, possible codes:

Methods

Serial_LDD, Rev 1, 12/2013

6 Freescale Semiconductor, Inc.

ERR_OK - OK

ERR_SPEED - The component does not work in the active clock configuration.

3.4 Disable
Disables the device, stops the transmitting and receiving.

Prototype

 LDD_TError Disable(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

• Return value:LDD_TError - Error code, possible codes:

ERR_OK - OK

ERR_SPEED - The component does not work in the active clock configuration.

3.5 SendBlock
Sends a block of characters. The method returns ERR_BUSY when the previous block transmission is not completed.
Method CancelBlockTransmission can be used to cancel a transmit operation. This method is available only if the transmitter
property is enabled.

Prototype

 LDD_TError SendBlock(LDD_TDeviceData *DeviceDataPtr, LDD_TData *BufferPtr, uint16_t Size)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

• BufferPtr: Pointer to LDD_TData - Pointer to a buffer from where data will be sent.

• Size:uint16_t - Number of characters in the buffer.

Return value

• Return value:LDD_TError - Error code, possible codes:

ERR_OK - OK

ERR_SPEED - The component does not work in the active clock configuration.

ERR_PARAM_SIZE - Parameter Size is out of expected range.

ERR_DISABLED - The component or device is disabled.

ERR_BUSY - The previous transmit request is pending.

Methods

Serial_LDD, Rev 1, 12/2013

Freescale Semiconductor, Inc. 7

3.6 ReceiveBlock
Specifies the number of data to receive. The method returns ERR_BUSY until the specified number of characters is received.
Method CancelBlockReception can be used to cancel a running receive operation.

Prototype

 LDD_TError ReceiveBlock(LDD_TDeviceData *DeviceDataPtr, LDD_TData *BufferPtr, uint16_t Size)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

• BufferPtr: Pointer to LDD_TData - Pointer to a buffer where received characters will be stored.

• Size:uint16_t - Number of characters to receive

Return value

• Return value:LDD_TError - Error code, possible codes:

ERR_OK - OK

ERR_SPEED - The component does not work in the active clock configuration.

ERR_PARAM_SIZE - Parameter Size is out of expected range.

ERR_DISABLED - The component or device is disabled.

ERR_BUSY - The previous receive request is pending.

3.7 CancelBlockTransmission
Immediately cancels the running transmit process started by method SendBlock. Characters already stored in the transmit
shift register will be sent.

Prototype

 LDD_TError CancelBlockTransmission(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

• Return value:LDD_TError - Error code, possible codes:

ERR_OK - OK

ERR_SPEED - The component does not work in the active clock configuration.

ERR_DISABLED - The component or device is disabled.

3.8 CancelBlockReception
Immediately cancels the running receive process started by method ReceiveBlock. Characters already stored in the HW FIFO
will be lost.

Methods

Serial_LDD, Rev 1, 12/2013

8 Freescale Semiconductor, Inc.

Prototype

 LDD_TError CancelBlockReception(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

• Return value:LDD_TError - Error code, possible codes:

ERR_OK - OK

ERR_SPEED - The component does not work in the active clock configuration.

ERR_DISABLED - The component or device is disabled.

3.9 GetError
This method returns a set of asserted flags. The flags are accumulated in the set. After calling this method the set is returned
and cleared.

Prototype

 LDD_TError GetError(LDD_TDeviceData *DeviceDataPtr, LDD_SERIAL_TError *ErrorPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

• ErrorPtr: Pointer to LDD_SERIAL_TError - A pointer to the returned set of error flags:

LDD_SERIAL_RX_OVERRUN - Receiver overrun.

LDD_SERIAL_PARITY_ERROR - Parity error (only if HW supports parity feature).

LDD_SERIAL_FRAMING_ERROR - Framing error.

LDD_SERIAL_NOISE_ERROR - Noise error.

Return value

• Return value:LDD_TError - Error code (if GetError did not succeed), possible codes:

ERR_OK - OK

ERR_SPEED - This device does not work in the active clock configuration

ERR_DISABLED - Component is disabled

3.10 GetSentDataNum
Returns the number of sent characters.

Prototype

 uint16_t GetSentDataNum(LDD_TDeviceData *DeviceDataPtr)

Parameters

Methods

Serial_LDD, Rev 1, 12/2013

Freescale Semiconductor, Inc. 9

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

• Return value:uint16_t - The number of sent characters.

3.11 GetReceivedDataNum
Returns the number of received characters in the receive buffer.

Prototype

 uint16_t GetReceivedDataNum(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

• Return value:uint16_t - Number of received characters in the receive buffer.

3.12 GetTxCompleteStatus
Returns whether the transmitter has transmitted all characters and there are no other characters in the transmitter's HW FIFO
or the shift register. The status flag is accumulated, after calling this method the status is returned and cleared (set to "false"
state). This method is available only if a peripheral supports this feature.

Prototype

 bool GetTxCompleteStatus(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

• Return value:bool - Possible values:

true - Data block is completely transmitted.

false - Data block isn't completely transmitted.

3.13 SetEventMask
Enables/Disables events. This method is available if the interrupt service/event property is enabled and at least one event is
enabled.

Prototype

 LDD_TError SetEventMask(LDD_TDeviceData *DeviceDataPtr, LDD_TEventMask EventMask)

Methods

Serial_LDD, Rev 1, 12/2013

10 Freescale Semiconductor, Inc.

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

• EventMask:LDD_TEventMask - Mask of events to enable.

Return value

• Return value:LDD_TError - Error code, possible codes:

ERR_OK - OK

ERR_SPEED - The component does not work in the active clock configuration.

ERR_DISABLED - The component or device is disabled.

ERR_PARAM_MASK - Invalid event mask.

3.14 GetEventMask
Returns current event mask. This method is available if the interrupt service/event property is enabled and at least one event
is enabled.

Prototype

 LDD_TEventMask GetEventMask(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

• Return value:LDD_TEventMask - The current event mask. The component event masks are defined in the PE_Types.h
file.

3.15 SelectBaudRate
This method changes the channel communication speed (baud rate). This method is enabled only if the user specifies a list of
possible period settings at design time (see Timing dialog box - Runtime setting - from a list of values). Each of these
settings constitutes a mode and Processor Expert assigns them a mode identifier. The prescaler and compare values
corresponding to each mode are calculated in design time. The user may switch modes at runtime by referring to a mode
identifier. No run-time calculations are performed, all the calculations are performed at design time.

Prototype

 LDD_TError SelectBaudRate(LDD_TDeviceData *DeviceDataPtr, LDD_SERIAL_TBaudMode Mode)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

• Mode:LDD_SERIAL_TBaudMode - Timing mode to set

Note: Special constant is generated in the components header file for each mode from the list of values.

This constant can be directly passed to the parameter. Format of the constant is:

Methods

Serial_LDD, Rev 1, 12/2013

Freescale Semiconductor, Inc. 11

<BeanName>_BM_<Timing> e.g. "as1_BM_9600BAUD" for baud rate set to 9600 baud and component name "as1".
See header file of the generated code for details.

Return value

• Return value:LDD_TError - Error code, possible codes:

ERR_OK - OK

ERR_SPEED - The component does not work in the active clock configuration.

ERR_DISABLED - The component or device is disabled.

ERR_PARAM_MODE - Invalid ID of the baud rate mode.

3.16 GetSelectedBaudRate
Returns the current selected baud rate ID. This method is enabled only if the user specifies a list of possible period settings in
design time (see Timing dialog box - Runtime setting - from a list of values).

Prototype

 LDD_SERIAL_TBaudMode GetSelectedBaudRate(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

• Return value:LDD_SERIAL_TBaudMode - The current selected baud rate ID.

3.17 SetParity
Sets the parity type.

Prototype

 LDD_TError SetParity(LDD_TDeviceData *DeviceDataPtr, LDD_SERIAL_TParity Parity)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

• Parity:LDD_SERIAL_TParity - Parity type identifier.

Return value

• Return value:LDD_TError - Error code, possible codes:

ERR_OK - OK

ERR_SPEED - The component does not work in the active clock configuration.

ERR_DISABLED - The component or device is disabled.

ERR_PARAM_PARITY - Invalid parity.

Methods

Serial_LDD, Rev 1, 12/2013

12 Freescale Semiconductor, Inc.

3.18 GetParity
Returns the parity type currently set.

Prototype

 LDD_SERIAL_TParity GetParity(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

• Return value:LDD_SERIAL_TParity - The parity type currently set.

3.19 SetDataWidth
Sets the number of bits per character.

Prototype

 LDD_TError SetDataWidth(LDD_TDeviceData *DeviceDataPtr, LDD_SERIAL_TDataWidth DataWidth)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

• DataWidth:LDD_SERIAL_TDataWidth - Character bit length

Return value

• Return value:LDD_TError - Error code, possible codes:

ERR_OK - OK

ERR_SPEED - The component does not work in the active clock configuration.

ERR_DISABLED - The component or device is disabled.

ERR_PARAM_WIDTH - Invalid data width.

3.20 GetDataWidth
Returns the current number of bits per character.

Prototype

 LDD_SERIAL_TDataWidth GetDataWidth(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

Methods

Serial_LDD, Rev 1, 12/2013

Freescale Semiconductor, Inc. 13

• Return value:LDD_SERIAL_TDataWidth - The current number of bits per character.

3.21 SetStopBitLength
Sets the stop bit length.

Prototype

 LDD_TError SetStopBitLength(LDD_TDeviceData *DeviceDataPtr, LDD_SERIAL_TStopBitLen
StopBitLen)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

• StopBitLen:LDD_SERIAL_TStopBitLen - Stop bit length

Return value

• Return value:LDD_TError - Error code, possible codes:

ERR_OK - OK

ERR_SPEED - The component does not work in the active clock configuration.

ERR_DISABLED - The component or device is disabled.

ERR_PARAM_LENGTH - Invalid stop bit length.

3.22 GetStopBitLength
Returns the current stop bit length.

Prototype

 LDD_SERIAL_TStopBitLen GetStopBitLength(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

• Return value:LDD_SERIAL_TStopBitLen - The current stop bit length.

3.23 SetLoopMode
Sets the loop mode operation.

Prototype

 LDD_TError SetLoopMode(LDD_TDeviceData *DeviceDataPtr, LDD_SERIAL_TLoopMode LoopMode)

Parameters

Methods

Serial_LDD, Rev 1, 12/2013

14 Freescale Semiconductor, Inc.

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

• LoopMode:LDD_SERIAL_TLoopMode - Requested loop mode.

Return value

• Return value:LDD_TError - Error code, possible codes:

ERR_OK - OK

ERR_SPEED - The component does not work in the active clock configuration.

ERR_DISABLED - The component or device is disabled.

ERR_PARAM_MODE - Invalid loop mode.

3.24 GetLoopMode
Returns the loop mode currently set.

Prototype

 LDD_SERIAL_TLoopMode GetLoopMode(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

• Return value:LDD_SERIAL_TLoopMode - The current loop mode.

3.25 GetStats
Returns the driver's receive/transmit statistic information.

Prototype

 LDD_SERIAL_TStats GetStats(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

• Return value:LDD_SERIAL_TStats - Driver's receive/transmit statistic structure.

3.26 ClearStats
Clears the driver's statistic information. This method is available only if the GetStats method is enabled.

Prototype

 void ClearStats(LDD_TDeviceData *DeviceDataPtr)

Methods

Serial_LDD, Rev 1, 12/2013

Freescale Semiconductor, Inc. 15

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

3.27 SendBreak
Sends the break character. This method is available only if the Transmitter property is enabled.

Prototype

 LDD_TError SendBreak(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

• Return value:LDD_TError - Error code, possible codes:

ERR_OK - OK

ERR_SPEED - The component does not work in the active clock configuration.

ERR_DISABLED - This component is disabled by user

ERR_BUSY - The previous transmit request is pending.

3.28 GetBreak
Tests the internal input break flag, returns it (whether the break has occurred or not) and clears it. This method is available
only if the property Receiver is enabled.

Prototype

 bool GetBreak(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

• Return value:bool - Possible return values:

true - The break character was detected.

false - The break character was not detected.

3.29 TurnTxOn
Turns on the transmitter. This method is available only if the transmitter property is enabled.

Prototype

Methods

Serial_LDD, Rev 1, 12/2013

16 Freescale Semiconductor, Inc.

 void TurnTxOn(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

3.30 TurnTxOff
Turns off the transmitter. This method is available only if the transmitter property is enabled.

Prototype

 void TurnTxOff(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

3.31 TurnRxOn
Turns on the receiver. This method is available only if the receiver property is enabled.

Prototype

 void TurnRxOn(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

3.32 TurnRxOff
Turns off the receiver. This method is available only if the receiver property is enabled.

Prototype

 void TurnRxOff(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

3.33 ConnectPin
This method reconnects the requested pin associated with the selected peripheral in this component. This method is only
available for CPU derivatives and peripherals that support the runtime pin sharing with other internal on-chip peripherals.

Prototype

 LDD_TError ConnectPin(LDD_TDeviceData *DeviceDataPtr, LDD_TPinMask PinMask)

Parameters

Methods

Serial_LDD, Rev 1, 12/2013

Freescale Semiconductor, Inc. 17

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

• PinMask:LDD_TPinMask - Mask(s) for the requested pins. The peripheral pins are reconnected according to this mask.

Possible parameters:

LDD_SERIAL_RX_PIN - Receiver pin mask

LDD_SERIAL_TX_PIN - Transmitter pin mask

LDD_SERIAL_CTS_PIN - CTS pin mask

LDD_SERIAL_RTS_PIN - RTS pin mask

Return value

• Return value:LDD_TError - Error code, possible codes:

ERR_OK - OK

ERR_SPEED - The component does not work in the active clock configuration.

ERR_PARAM_MASK - Invalid pin mask parameter.

3.34 Main
This method is available only in the polling mode (Interrupt service/event = 'no'). If interrupt service is disabled this method
replaces the interrupt handler. This method should be called if Receive/SendBlock was invoked before in order to run the
reception/transmission. The end of the receiving/transmitting is indicated by OnBlockSent or OnBlockReceived event.

Prototype

 void Main(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

3.35 SetOperationMode
This method requests to change the component's operation mode. Upon a request to change the operation mode, the
component will finish a pending job first and then notify a caller that an operation mode has been changed.

Prototype

 LDD_TError SetOperationMode(LDD_TDeviceData *DeviceDataPtr, LDD_TDriverOperationMode
OperationMode, LDD_TCallback ModeChangeCallback, LDD_TCallbackParam
*ModeChangeCallbackParamPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

• OperationMode:LDD_TDriverOperationMode - Requested driver operation mode.

• ModeChangeCallback:LDD_TCallback - Callback to notify the upper layer once a mode has been changed.

• ModeChangeCallbackParamPtr: Pointer to LDD_TCallbackParam - Pointer to callback parameter to notify the upper
layer once a mode has been changed.

Methods

Serial_LDD, Rev 1, 12/2013

18 Freescale Semiconductor, Inc.

Return value

• Return value:LDD_TError - Error code, possible codes:

ERR_OK - The component accepted request to change the operation mode.

ERR_SPEED - The component does not work in the active clock configuration.

ERR_DISABLED - This component is disabled by user.

ERR_PARAM_MODE - Invalid operation mode.

3.36 GetDriverState
This method returns the current driver status.

Prototype

 LDD_TDriverState GetDriverState(LDD_TDeviceData *DeviceDataPtr)

Parameters

• DeviceDataPtr: Pointer to LDD_TDeviceData - Device data structure pointer returned by Init method.

Return value

• Return value:LDD_TDriverState - The current driver status mask.

Following status masks defined in PE_Types.h can be used to check the current driver status.

PE_LDD_DRIVER_DISABLED_IN_CLOCK_CONFIGURATION - 1 - Driver is disabled in the current mode; 0 -
Driver is enabled in the current mode.

PE_LDD_DRIVER_DISABLED_BY_USER - 1 - Driver is disabled by the user; 0 - Driver is enabled by the user.

PE_LDD_DRIVER_BUSY - 1 - Driver is the BUSY state; 0 - Driver is in the IDLE state.

4 Events
This section describes component's events. Events are call-back functions called when an important event occurs. For more
general information on events, please see the Processor Expert user manual.

4.1 OnBlockReceived
This event is called when the requested number of data is moved to the input buffer.

Prototype

 void OnBlockReceived(LDD_TUserData *UserDataPtr)

Parameters

• UserDataPtr:LDD_TUserData - Pointer to the user or RTOS specific data. This pointer is passed as the parameter of
Init method.

Events

Serial_LDD, Rev 1, 12/2013

Freescale Semiconductor, Inc. 19

4.2 OnBlockSent
This event is called after the last character from the output buffer is moved to the transmitter.

Prototype

 void OnBlockSent(LDD_TUserData *UserDataPtr)

Parameters

• UserDataPtr:LDD_TUserData - Pointer to the user or RTOS specific data. This pointer is passed as the parameter of
Init method.

4.3 OnBreak
This event is called when a break occurs on the input channel.

The event is available only when both Interrupt service/event and Break signal properties are enabled.

Prototype

 void OnBreak(LDD_TUserData *UserDataPtr)

Parameters

• UserDataPtr:LDD_TUserData - Pointer to the user or RTOS specific data. This pointer is passed as the parameter of
Init method.

4.4 OnError
This event is called when a channel error (not the error returned by a given method) occurs. The errors can be read using
GetError method.

The event is available only when the Interrupt service/event property is enabled.

Prototype

 void OnError(LDD_TUserData *UserDataPtr)

Parameters

• UserDataPtr:LDD_TUserData - Pointer to the user or RTOS specific data. This pointer is passed as the parameter of
Init method.

4.5 OnTxComplete
This event indicates that the transmitter is finished transmitting all data, preamble, and break characters and is idle. It can be
used to determine when it is safe to switch a line driver (e.g. in RS-485 applications).

The event is available only when both Interrupt service/event and Transmitter properties are enabled.

Prototype

Events

Serial_LDD, Rev 1, 12/2013

20 Freescale Semiconductor, Inc.

 void OnTxComplete(LDD_TUserData *UserDataPtr)

Parameters

• UserDataPtr:LDD_TUserData - Pointer to the user or RTOS specific data. This pointer is passed as the parameter of
Init method.

5 Types and Constants
This section contains definitions of user types and constants. User types are derived from basic types and they are designed
for usage in the driver interface. They are declared in the generated code.

Type Definitions

• ComponentName_TComData = word User type for communication. Size of this type depends on the communication
data witdh.

• LDD_SERIAL_TError : user definition

Error flags.

• LDD_SERIAL_TSize : user definition

Buffer size or data length

• LDD_SERIAL_TParity = enum { PARITY_UNDEF, PARITY_NONE, PARITY_ODD, PARITY_EVEN,
PARITY_MARK, PARITY_SPACE } Parity type

PARITY_UNDEF – Undefined parity type

PARITY_NONE – No parity

PARITY_ODD – Odd parity

PARITY_EVEN – Even parity

PARITY_MARK – Force parity to high

PARITY_SPACE – Force parity to low

• LDD_SERIAL_TDataWidth = word Bit length

• LDD_SERIAL_TStopBitLen = enum { STOP_BIT_LEN_UNDEF, STOP_BIT_LEN_1, STOP_BIT_LEN_1_5,
STOP_BIT_LEN_2 } Stop-bit length

STOP_BIT_LEN_UNDEF – Undefined stop-bit length

STOP_BIT_LEN_1 – Stop-bit length is equal to 1 bit

STOP_BIT_LEN_1_5 – Stop-bit length is equal to 1.5 bit

STOP_BIT_LEN_2 – Stop-bit length is equal to 2 bit

Types and Constants

Serial_LDD, Rev 1, 12/2013

Freescale Semiconductor, Inc. 21

• LDD_SERIAL_TBaudMode = byte Baud rate mode identifier

• LDD_SERIAL_TStats = struct { Communication statistics

uint32_t ReceivedChars; – Number of received characters

uint32_t SentChars; – Number of transmitted characters

uint32_t ReceivedBreaks; – Number of received break characters

uint32_t ParityErrors; – Number of receiver parity errors

uint32_t FramingErrors; – Number of receiver framing errors

uint32_t OverrunErrors; – Number of receiver overrun errors

uint32_t NoiseErrors; – Number of receiver noise errors

}

• LDD_SERIAL_TLoopMode = enum { LOOPMODE_UNDEF, LOOPMODE_NORMAL,
LOOPMODE_AUTO_ECHO, LOOPMODE_LOCAL_LOOPBACK, LOOPMODE_REMOTE_LOOPBACK }
Looping modes

LOOPMODE_UNDEF – Undefined looping mode

LOOPMODE_NORMAL – Normal mode (without looping)

LOOPMODE_AUTO_ECHO – Automatic echo mode. Automatically resends received data bit by bit. Transmitter is
disabled.

LOOPMODE_LOCAL_LOOPBACK – Local loopback mode. Transmitter output is internally connected to receiver
input.

LOOPMODE_REMOTE_LOOPBACK – Remote loopback mode. Receiver automatically resends data bit by bit.
Receiver and transmitter are disabled.

Constants

• ComponentName_BM_<Timing> - This notation describes constants used to specify several distinctive modes of
timing defined in the Baud rate property. The Runtime setting of the Baud rate property must be set to "from list of
values".

The <Timing> in the constant name denotes a value of the baudrate, e.g. 9600BAUD. These constants are used as a
parameter of the SelectBaudRate method.

• LDD_SERIAL_RX_PIN - Receiver pin mask.

• LDD_SERIAL_TX_PIN - Transmitter pin mask.

• LDD_SERIAL_CTS_PIN - CTS pin mask.

• LDD_SERIAL_RTS_PIN - RTS pin mask.

• LDD_SERIAL_ON_BLOCK_RECEIVED - OnBlockReceived event mask.

• LDD_SERIAL_ON_BLOCK_SENT - OnBlockSent event mask.

Types and Constants

Serial_LDD, Rev 1, 12/2013

22 Freescale Semiconductor, Inc.

• LDD_SERIAL_ON_BREAK - OnBreak event mask.

• LDD_SERIAL_ON_TXCOMPLETE - OnTxComplete event mask.

• LDD_SERIAL_ON_ERROR - OnError event mask.

6 Typical usage
This section contains examples of a typical usage of the component in user code. For general information please see the
section Component Code Typical Usage in Processor Expert user manual.

Examples of typical settings and usage of Serial_LDD component

1. Block reception/transmission, with interrupt service

2. Block reception/transmission, without interrupt service (polling)

Block reception/transmission, with interrupt service

The most of applications use a serial communication in the interrupt mode when an application is asynchronously notified by
a driver about transmission/reception events.

The following example demonstrates a simple "Hello world" application. The program waits until 'e' character is received and
then sends text "Hello world".

Required component setup :

• Interrupt service/event : Enabled

• DataWidth : 8 bits

• Receiver : Enabled

• Transmitter : Enabled

• Enabled in init. code : yes

• Methods to enable : SendBlock, ReceiveBlock

• Events to enable : OnBlockReceived

Content of ProcessorExpert.c:

volatile bool DataReceivedFlg = FALSE;
char OutData[] = "Hello world";
char InpData[10];
LDD_TError Error;
LDD_TDeviceData *MySerialPtr;

void main(void)
{
 . . .
 MySerialPtr = AS1_Init(NULL); /* Initialization of AS1 component */
 for(;;) {
 Error = AS1_ReceiveBlock(MySerialPtr, InpData, 1U); /* Start reception of one character
*/
 while (!DataReceivedFlg) { /* Wait until 'e' character is
received */
 }
 if (InpData[0] == 'e') {
 Error = AS1_SendBlock(MySerialPtr, OutData, sizeof(OutData)); /* Send block of characters */

Typical usage

Serial_LDD, Rev 1, 12/2013

Freescale Semiconductor, Inc. 23

 }
 DataReceivedFlg = FALSE;
 }
}

Content of Event.c:

extern volatile bool DataReceivedFlg;

void AS1_OnBlockReceived(LDD_TUserData *UserDataPtr)
{
 DataReceivedFlg = TRUE; /* Set DataReceivedFlg flag */
}

Block reception/transmission, without interrupt service (polling)

The simplest mode of the Serial component is setting with Interrupt service/event disabled (so called polling mode). The
driver doesn't use the interrupts in this mode, but provides events capability like in the interrupt mode. Main method of the
component simulates the interrupt driven behavior.

The following example demonstrates a simple "Hello world" application. The program waits until 'e' character is received and
then sends text "Hello world".

Required component setup :

• Interrupt service/event : Disabled

• DataWidth : 8 bits

• Receiver : Enabled

• Transmitter : Enabled

• Enabled in init. code : yes

• Methods to enable : SendBlock, ReceiveBlock

• Events to enable : OnBlockReceived

Content of ProcessorExpert.c:

volatile bool DataReceivedFlg = FALSE;
char OutData[] = "Hello world";
char InpData[10];
LDD_TError Error;
LDD_TDeviceData *MySerialPtr;

void main(void)
{
 . . .
 MySerialPtr = AS1_Init(NULL); /* Initialization of AS1 component */
 for(;;) {
 Error = AS1_ReceiveBlock(MySerialPtr, InpData, 1U); /* Start reception of one character
*/
 while (!DataReceivedFlg) { /* Wait until 'e' character is
received */
 AS1_Main(MySerialPtr);
 }
 if (InpData[0] == 'e') {
 Error = AS1_SendBlock(MySerialPtr, OutData, sizeof(OutData)); /* Send block of characters */
 }
 DataReceivedFlg = FALSE;
 }
}

Content of Event.c:

extern volatile bool DataReceivedFlg;

Typical usage

Serial_LDD, Rev 1, 12/2013

24 Freescale Semiconductor, Inc.

void AS1_OnBlockReceived(LDD_TUserData *UserDataPtr)
{
 DataReceivedFlg = TRUE; /* Set DataReceivedFlg flag */
}

Typical usage

Serial_LDD, Rev 1, 12/2013

Freescale Semiconductor, Inc. 25

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and

software implementers to use Freescale products. There are no express

or implied copyright licenses granted hereunder to design or fabricate

any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to

any products herein. Freescale makes no warranty, representation, or

guarantee regarding the suitability of its products for any particular

purpose, nor does Freescale assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims

any and all liability, including without limitation consequential or

incidental damages. “Typical” parameters that may be provided in

Freescale data sheets and/or specifications can and do vary in different

applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer

application by customer's technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale

sells products pursuant to standard terms and conditions of sale, which

can be found at the following address: freescale.com/

SalesTermsandConditions.

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior,

ColdFire, ColdFire+, C-Ware, Energy Efficient Solutions logo, Kinetis,

mobileGT, PowerQUICC, Processor Expert, QorIQ, Qorivva, StarCore,

Symphony, and VortiQa are trademarks of Freescale Semiconductor,

Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, CoreNet,

Flexis, Layerscape, MagniV, MXC, Platform in a Package, QorIQ

Qonverge, QUICC Engine, Ready Play, SafeAssure, SafeAssure logo,

SMARTMOS, Tower, TurboLink, Vybrid, and Xtrinsic are trademarks of

Freescale Semiconductor, Inc. All other product or service names are

the property of their respective owners.

© 2013 Freescale Semiconductor, Inc.

Document Number N/A
Revision 1, 12/2013

http://www.freescale.com
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	General Information
	Properties
	Methods
	Init
	Deinit
	Enable
	Disable
	SendBlock
	ReceiveBlock
	CancelBlockTransmission
	CancelBlockReception
	GetError
	GetSentDataNum
	GetReceivedDataNum
	GetTxCompleteStatus
	SetEventMask
	GetEventMask
	SelectBaudRate
	GetSelectedBaudRate
	SetParity
	GetParity
	SetDataWidth
	GetDataWidth
	SetStopBitLength
	GetStopBitLength
	SetLoopMode
	GetLoopMode
	GetStats
	ClearStats
	SendBreak
	GetBreak
	TurnTxOn
	TurnTxOff
	TurnRxOn
	TurnRxOff
	ConnectPin
	Main
	SetOperationMode
	GetDriverState

	Events
	OnBlockReceived
	OnBlockSent
	OnBreak
	OnError
	OnTxComplete

	Types and Constants
	Typical usage

