
 Touch Sensing Software
API Reference Manual

Document Number: TSSAPIRM
Rev. 7

08/2012

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice
to any products herein. Freescale Semiconductor makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor
does Freescale Semiconductor assume any liability arising out of the application or
use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical”
parameters that may be provided in Freescale Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals”, must be validated for
each customer application by customer’s technical experts. Freescale Semiconductor
does not convey any license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which
the failure of the Freescale Semiconductor product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended or unauthorized application, Buyer
shall indemnify and hold Freescale Semiconductor and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages,
and expenses, and reasonable attorney fees arising out of, directly or indirectly, any
claim of personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent regarding
the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 1994-2008 ARC™ International. All rights reserved.

© Freescale Semiconductor, Inc. 2010. All rights reserved.

Document Number: TSSAPIRM
Rev. 7
08/2012

Touch Sense Library Reference Manual, Rev. 7

Freescale Semiconductor iv

Chapter 1

Touch Sensing Software Library Overview
1.1 Introduction . 1-1
1.2 Library features . 1-1
1.3 Library architecture . 1-1
1.4 System base modules . 1-3

1.4.1 System setup module . 1-3
1.4.2 GPIO module . 1-4
1.4.3 Hardware timer module . 1-4

1.5 Capacitive sensing modules . 1-5
1.5.1 GPIO low level sensor method . 1-5
1.5.2 TSI low level sensor method . 1-5
1.5.3 TSI Lite low level sensor method . 1-6

1.6 Signal processing and decoding modules . 1-7
1.6.1 Key detector module . 1-7
1.6.2 Decoder module . 1-8

1.7 System configuration and management module . 1-8

Chapter 2

Low-Level Interface
2.1 System setup parameters . 2-1

2.1.1 Simple low level routines . 2-6
2.1.2 Instant delta values . 2-7
2.1.3 Instant signal values . 2-7
2.1.4 GPIO strength . 2-8
2.1.5 GPIO slew rate . 2-8
2.1.6 Default electrode level . 2-8
2.1.7 IIR filter . 2-9
2.1.8 Noise amplitude filter . 2-9
2.1.9 Shielding function . 2-9
2.1.10 Signal normalization . 2-10
2.1.11 Automatic sensitivity calibration . 2-11
2.1.12 Baseline initialization . 2-11
2.1.13 OnFault callback . 2-12
2.1.14 OnInit callback . 2-12
2.1.15 OnProximity callback . 2-13
2.1.16 Trigger function . 2-13
2.1.17 Low power control source . 2-13
2.1.18 Data corruption check . 2-14
2.1.19 Stuck-key function . 2-14
2.1.20 Negative baseline drop . 2-14
2.1.21 Automatic hardware recalibration . 2-15

Touch Sense Library Reference Manual, Rev. 7

Freescale Semiconductor v

2.1.22 FreeMASTER GUI support . 2-15
2.1.23 Control private data . 2-15
2.1.24 Diagnostic messages . 2-16
2.1.25 Number of electrodes . 2-16
2.1.26 Electrode GPIO pin . 2-16
2.1.27 Electrode type . 2-16
2.1.28 Number of controls . 2-17
2.1.29 Control type . 2-17
2.1.30 Number of electrodes assigned to control . 2-18
2.1.31 Control configuration and status structure . 2-18
2.1.32 Application callback . 2-18
2.1.33 Electrodes groups . 2-19
2.1.34 TSS hardware timer configuration . 2-19
2.1.35 Prescaler configuration of TSS hardware timer . 2-20
2.1.36 Timeout configuration of TSS hardware timer . 2-20
2.1.37 TSI autocalibration settings . 2-21
2.1.38 TSI active mode clock settings . 2-22
2.1.39 TSI low power mode clock settings . 2-23
2.1.40 TSI delta voltage settings . 2-23

2.2 Example of system setup parameters encoded in the TSS_SystemSetup.h 2-24
2.3 TSS version information . 2-26

Chapter 3

Application Interface
3.1 TSS initialization function . 3-2
3.2 TSS task function . 3-2
3.3 TSS task sequenced function . 3-3
3.4 TSS Library Configuration and Status Registers . 3-4

3.4.1 Writing to the Configuration and Status Registers . 3-4
3.4.2 Reading the Configuration and Status registers . 3-5
3.4.3 Configuration and Status registers list . 3-7
3.4.4 Faults register . 3-8
3.4.5 System Configuration register . 3-9
3.4.6 Number of Samples registers . 3-11
3.4.7 DC Tracker Rate register . 3-11
3.4.8 Response Time register . 3-12
3.4.9 Stuck-key Timeout register . 3-12
3.4.10 Low Power Scan Period register . 3-13
3.4.11 Low Power Electrode register . 3-13
3.4.12 Low Power Electrode Sensitivity register . 3-14
3.4.13 System Trigger register . 3-15
3.4.14 Auto Trigger Modulo Value register . 3-15
3.4.15 Sensitivity Configuration register . 3-16
3.4.16 Electrode enablers . 3-16

Touch Sense Library Reference Manual, Rev. 7

Freescale Semiconductor vi

3.4.17 Electrode status . 3-17
3.4.18 Configuration Checksum Register . 3-17

3.5 Keypad decoder API . 3-17
3.5.1 Writing to the Configuration and Status registers . 3-18
3.5.2 Reading the Configuration and Status registers . 3-18
3.5.3 Configuration and Status registers list . 3-20
3.5.4 Control ID register . 3-20
3.5.5 Control Configuration register . 3-21
3.5.6 Buffer Pointer register . 3-22
3.5.7 BufferReadIndex . 3-23
3.5.8 BufferWriteIndex . 3-23
3.5.9 Event Control and Status register . 3-24
3.5.10 MaxTouches register . 3-25
3.5.11 Auto Repeat Rate register . 3-26
3.5.12 Auto Repeat Start register . 3-26
3.5.13 Keypad Callback function . 3-27

3.6 Slider and Rotary decoder API . 3-28
3.6.1 Writing to the Configuration and Status registers . 3-28
3.6.2 Reading the Configuration and Status registers . 3-29
3.6.3 Configuration and Status registers list . 3-30
3.6.4 Control ID register . 3-31
3.6.5 Control configuration . 3-32
3.6.6 Dynamic Status register . 3-33
3.6.7 Static Status register . 3-33
3.6.8 Events Control register . 3-34
3.6.9 Auto-repeat Rate register . 3-35
3.6.10 Movement Timeout register . 3-36
3.6.11 Callback function . 3-36

3.7 Analog slider and analog rotary decoder API . 3-37
3.7.1 Writing to the Configuration and Status registers . 3-37
3.7.2 Reading the Configuration and Status registers . 3-38
3.7.3 Configuration and Status registers list . 3-40
3.7.4 Control ID register . 3-40
3.7.5 Control configuration . 3-41
3.7.6 Dynamic Status register . 3-42
3.7.7 Position register . 3-43
3.7.8 Events Control register . 3-43
3.7.9 Auto-repeat Rate register . 3-44
3.7.10 Movement Timeout register . 3-45
3.7.11 Range register . 3-45
3.7.12 Callback function . 3-46

3.8 Matrix decoder API . 3-46
3.8.1 Writing to the Configuration and Status registers . 3-47
3.8.2 Reading the Configuration and Status registers . 3-47
3.8.3 Configuration and Status registers list . 3-49

Touch Sense Library Reference Manual, Rev. 7

Freescale Semiconductor vii

3.8.4 Control ID register . 3-50
3.8.5 Control configuration . 3-51
3.8.6 Events Control register . 3-51
3.8.7 Auto-repeat Rate register . 3-52
3.8.8 Movement Timeout register . 3-53
3.8.9 Dynamic Status X register . 3-54
3.8.10 Dynamic Status Y register . 3-54
3.8.11 Position X register . 3-55
3.8.12 Position Y register . 3-55
3.8.13 Gesture distance X register . 3-56
3.8.14 Gesture distance Y register . 3-56
3.8.15 Range X register . 3-57
3.8.16 Range Y register . 3-57
3.8.17 Matrix callback function . 3-57

Chapter 4

Library Intermediate Layer Interfaces
4.1 Capacitive sensing and key detector interface . 4-1

4.1.1 Electrode sampling . 4-1
4.1.2 Low-level initialization . 4-2

4.2 Decoder interface . 4-3
4.2.1 Decoder main function . 4-4
4.2.2 Writing to the decoder schedule counter . 4-5
4.2.3 Reading the decoder schedule counter . 4-5
4.2.4 Reading the electrode boundaries in the control . 4-6
4.2.5 Reading the instant delta in the control . 4-6

A.1 GPIO Based Capacitive Touch Sensing Method . A-1
A.1.1 Electrode capacitive sensing algorithm . A-3

4.2.5.1 GPIO based low level Routine . 1-6
A.1.2 Selecting the proper timer frequency and external pull-up resistor A-7
A.1.3 MCU frequency . A-7
A.1.4 Voltage trip point (Vih) . A-7
A.1.5 Sensitivity and range . A-8

A.2 TSI Module Based Touch Sensing Method . A-9
A.2.1 TSIL sample electrode control . A-10

A.3 Key Detect Method . A-10
A.3.1 Key press detection . A-10
A.3.2 Triggering . A-11
A.3.3 Low power function . A-13
A.3.4 Proximity function . A-14
A.3.5 Automatic Sensitivity Calibration . A-14
A.3.6 Baseline tracking . A-15

A.3.6.1Negative baseline drop . 1-16
A.3.7 Debouncing . A-16

Touch Sense Library Reference Manual, Rev. 7

Freescale Semiconductor viii

A.3.8 IIR filter . A-16
A.3.9 Noise amplitude filter . A-17
A.3.10 Shielding function and Water tolerance . A-17

A.3.10.1Standard shielding function . 1-17
A.3.10.2Water tolerance mode . 1-17

A.4 Decoder Functions . A-18
A.4.1 Keypad . A-19
A.4.2 Rotary . A-19
A.4.3 Slider . A-20
A.4.4 Analog rotary . A-21
A.4.5 Analog Slider . A-22
A.4.6 Matrix . A-23

A.5 Glossary . A-23

Touch Sense Library Reference Manual, Rev. 7

ix Freescale Semiconductor

BookTitle, Rev. 0 Draft A

Freescale Semiconductor iii

Revision History
To provide the most up-to-date information, the revision of our documents on the World Wide Web are the
most current. Your printed copy may be an earlier revision. To verify you have the latest information
available, refer to:

http://www.freescale.com

The following revision history table summarizes changes in this document.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
© Freescale Semiconductor, Inc., 2012. All rights reserved.

Revision
Number

Revision
Date Description of Changes

Rev. 1 07/2009 Launch Release for TSS 0.2.1

Rev. 2 10/2009 Updated for TSS 1.0 release

Rev. 3 11/2009 Updated for TSS 1.1 release

Rev. 4 06/2010 Updated for TSS 2.0 release

Rev. 5 04/2011 Updated for TSS 2.5 release

Rev. 6 03/2012 Updated for TSS 2.6 release
Added a new text with the sections “TSI Lite low level sensor method”,“Simple low level
routines”,“Default electrode level”,“Shielding function”,“Stuck-key function”,“Negative baseline
drop”,“Control private data”,“TSS version information”,“Decoder interface”,“TSIL sample electrode
control”,“Negative baseline drop”

Rev. 7 08/2012 Updated for TSS 3.0 release
Added a new text with the sections “Signal normalization”,“Automatic sensitivity calibration”,“Baseline
initialization”,“Electrodes groups”,“Analog slider and analog rotary decoder API”,“Reading the instant
delta in the control”,“Proximity function”,“Automatic Sensitivity Calibration”,“Shielding function and
Water tolerance”,“Water tolerance mode”,“Analog rotary”,“Analog Slider”,“Matrix”

http://www.freescale.com

BookTitle, Rev. 0 Draft A

iv Freescale Semiconductor

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 1-1

Chapter 1
Touch Sensing Software Library Overview
This chapter describes features, architecture, and the software modules of the Touch Sensing Software
(TSS) library. The following chapters cover the library API functions and use of resources.

1.1 Introduction
The TSS library enables capacitive sensing for all Freescale S08 and ColdFire® V1, ColdFire+,
ARM®Cortex™-M4 based family microcontrollers (MCUs), and ARM®Cortex™-M0 based family
microcontrollers (MCUs), providing the common touch sense decoding structures such as keypad, rotary,
slider, analog slider, analog rotary, and matrix. It is implemented in a software layered architecture to
enable easy integration into the application code and migration to other Freescale MCUs and customer
customization.

1.2 Library features
The TSS library features include:

• Configurable number of electrodes from 1 to 64
• Configurable number of keypads, rotaries, sliders, analog sliders, analog rotaries, and matrixes
• Automatic electrode sensitivity calibration
• False detection prevention against external environment
• Electrode fault detection
• IIR and noise amplitude filters
• Shielding function
• Support for water-resistant touch systems
• Use of any standard MCU I/O as an electrode
• Touch Sense Input (TSI) module support
• One or more timer modules used with GPIO sampling algorithm
• Wakes from the MCU’s low power mode via the TSI module
• Three triggering modes supported (ALWAYS, SW, and AUTO when the TSI module is used)
• Library encoding is MISRA compliant
• Easy application integration achieved by a modular software layer architecture

1.3 Library architecture
The TSS library is implemented in a modular software layered approach shown in Figure 1-1. It provides
a framework for Freescale touch sensing solutions, allowing further integration of new modules for

Touch Sensing Software Library Overview

Touch Sensing Software API Reference Manual, Rev. 7

1-2 Freescale Semiconductor

application specific needs. It is structured only for linking the user application with the modules used in
the application code. In addition, it permits the use of the modules in a user application for any layer in the
library. Section 1.4, “System base modules” describes each module of the library.

Figure 1-1. TSS library architecture

Figure 1-2 is an example of the application project using the ARM Cortex-M4 version of library files. As
shown, the TSS folder contains all TSS library files.

Decoders

Key Detector

Detection Calibration
Algorithm

System
Configuration

and
Management

System
Setup

Keypad Rotary Slider Dec X

Algorithm

Timer

GPIO
METHOD

GPIO

METHOD
TSI

Analog Slider Analog Rotary Matrix

Touch Sensing Software Library Overview

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 1-3

Figure 1-2. Touch sensing software project

1.4 System base modules
This section provides an overview of the modules in the library and the source and header files that
constitute these modules. The user configuration and API of each module is explained in Chapter 2,
“Low-Level Interface.”

1.4.1 System setup module
Module description

The system setup module provides a compile time configuration interface to the user. In this module, a set
of parameters that require a pre-compile definition, such as, electrode numbers, MCU pins to be used by
each electrode, measurement method used by each electrode, and number of controls, can be configured.

Module files

This module contains the following files in open source:
• TSS_SystemSetup.h — Edit the TSS_SystemSetup.h file to customize it for the application

particular electrode structure requirements.
• TSS_SystemSetupVal.h — Checks if the application configuration defined n the

TSS_SystemSetup.h file is consistent. Do not edit the TSS_SystemSetupVal.h file.
• TSS_SystemSetupData.c — Creates the variables required for the TSS library that depend on the

electrode structure of a particular application. Do not edit this file.

Touch Sensing Software Library Overview

Touch Sensing Software API Reference Manual, Rev. 7

1-4 Freescale Semiconductor

1.4.2 GPIO module
Module description

The GPIO module provides an interface between upper layers of the library and the MCU GPIO pins. This
GPIO module is used by low-level routines for the default GPIO measurement method (detecting timeout
condition). It specifically provides the following functionalities:

• Configure GPIO as input
• Configure GPIO as output
• Read GPIO value
• Set GPIO bit value (write a 1 to the GPIO bit on its specific data register)
• Clear GPIO bit value (write a 0 to the GPIO bit on its specific data register)
• Determine GPIO electrode port register address and mask of this pin
• Set GPIO pin output strength high or low
• Read GPIO pin output strength value
• Set GPIO pin slew rate high or low
• Read GPIO pin slew rate

Module files

The TSS_GPIO.h file implements the GPIO module. It defines macros to configure and access the MCU
I/O pin values, pin output strength, and slew rate settings. The upper layer uses these macros to manipulate
the MCU I/O pins.

1.4.3 Hardware timer module
Module description

The hardware timer module provides the interface between the upper layers and the hardware timer
specified at compile time. This timer module is used by low-level routines for the default GPIO method to
detect timeout condition.

This module covers the following functions:
• Timer configuration

— Enable and disable interrupt
— Set prescaler
— Set and read timer module

• Timer start
• Timer stop
• Timer reset
• Set timer limit
• Read timer count
• Read 8 bits (low and high) of timer count

Touch Sensing Software Library Overview

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 1-5

• Read 16 bits of timer count
• Hardware timer interrupt vector number assignment
• TPM, FTM, and MTIM8 timer modules are supported

Module files

The TSS_Timer.h file in the source code implements macros required to access the timer hardware. The
hardware timer interrupt service routine is implemented in the TSS_Sensor.c file.

1.5 Capacitive sensing modules
This section provides an overview of the low-level capacitance measurement modules and the source and
header files that constitute these modules.

1.5.1 GPIO low level sensor method
Method description

The GPIO low level sensing method measures the capacitance using the GPIO capacitive touch sensing
method described in the Appendix A, “Touch Sensing Algorithms.” This method is in source code and
provides the following functions:

• Configuration of all electrodes to a default state. The default state is output-high to achieve lower
power consumption with external pull-up resistors.

• Initialization of the GPIO sensor method.
• Capacitance measurement of a specific electrode using GPIO method
• Hardware timer interrupt handling
• Driving an electrode pin as low-output state if a timer charge timeout is detected (probably

electrode shorted to the ground)
• Noise amplitude filter function

To improve noise immunity and increase system sensitivity, the electrode sampling function can integrate
several subsequent electrode sampling values.

The HCS08 and ColdFire V1 version of the TSS library automatically allocate the
TSS_HWTimerIsr(void) interrupt service routine in the appropriate interrupt vector. The ColdFire+, ARM
Cortex-M0, and ARM Cortex-M4 version of the TSS library needs manual allocation of this interrupt
service routine.

Method files

The TSS_SensorGPIO.c and TSS_SensorGPIO.h files implement this method. The GPIO method uses the
GPIO and timer module.

1.5.2 TSI low level sensor method
Method description

Touch Sensing Software Library Overview

Touch Sensing Software API Reference Manual, Rev. 7

1-6 Freescale Semiconductor

The TSI low level sensor method uses the TSI hardware (HW) peripheral module. Each TSI pin
implements the capacitive measurement of an electrode having individual programmable detection
thresholds and result registers. The TSI module can be functional in several low power modes and used to
wake the CPU when a touch event or proximity event is detected. The TSI method provides an interface
between the upper layers and the hardware. This module covers the following functions:

• TSI HW module initialization
• TSI HW module autocalibration
• MCU wakes from low power mode by a touch detection
• Triggering in all available modes (ALWAYS, software (SW), and AUTO)
• Starting the capacitance measurement on the pin
• Obtaining measured values

The HCS08 and ColdFire V1 version of the TSS library automatically allocate TSS_TSIxIsr(void)
interrupt service routine in the appropriate interrupt vector. The ColdFire+, ARM Cortex-M0, and ARM
Cortex-M4 version of the TSS library need manual allocation of this interrupt service routine.

Method files

The files TSS_SensorTSI.c and TSS_SensorTSI.h implement this method.

1.5.3 TSI Lite low level sensor method
Method Description

The TSI Lite Low Level Sensor method is a simplified algorithm for the second generation of Touch
Sensing Input (TSI) HW peripheral module. Unlike the “full” TSI method and ARM Cortex-M0 version
of TSI Lite, the HCS08 version does not enable to wake the device from the low power mode. The TSI
method provides an interface between the upper layers and the hardware. This module covers the
following functions:

• TSI HW module initialization
• TSI HW module autocalibration
• MCU wakes from low power mode by a touch detection on ARM Cortex-M0 version of TSI Lite
• Triggering in all available modes (ALWAYS, SW, and AUTO with external RTC, or LPTMR

trigger source)
• Starting the capacitance measurement on the pin
• Obtaining measured values

The HCS08 version of the TSS library automatically allocates TSS_TSIxIsr(void) interrupt service routine
in the appropriate interrupt vector. The ARM Cortex-M0 version of the TSS library needs manual
allocation of this interrupt service routine.

Method Files

The files TSS_SensorTSIL.c and TSS_SensorTSIL.h implement this method.

Touch Sensing Software Library Overview

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 1-7

1.6 Signal processing and decoding modules
This section provides an overview of the modules inside the precompiled library. The layer provides signal
processing, touch detection, and decoding of events.

1.6.1 Key detector module
Module description

The key detector module determines what electrodes are pressed or released based on the values obtained
by the capacitive sensing layer. It implements algorithms for identification of touched and released
electrodes by obtaining a baseline value (which is the "DC" value of the capacitance when no finger is
present) and comparing it to the immediate capacitance value.

The baseline is obtained by a low pass IIR-based filter which removes slow environment changes that
could cause a false electrode press detection, such as, air humidity, temperature, and other external
variations. A de-bounce function is also implemented in this module to eliminate false detections caused
by instantaneous noise.
The key detector module also contains an optional IIR filter for processing the capacitance signal. The fil-
ter processes values obtained from low-level routines and works with all low level sensor modules. Filter-
ing may help to eliminate high frequency noise modulated on the capacitance signal and other external
interference. The IIR equation is internally set to ratio 1/3 (current signal and previous signal).
The optional Shielding function is also processed in the module. The function enables to compensate
signal drift on an electrode by shielding electrode which measures overall environment noise. The function
may help to eliminate low frequency noise modulated on the capacitance signal, or protect the guarded
system from detecting false touches caused by water drops.

The key detector also provides an automatic sensitivity calibration function. The function periodically
adjusts the level of electrode sensitivity calculated according to the estimated noise level and touch
tracking information. The user does not need to set the sensitivity anymore, but the settings are still
availabe for more precise tuning.

The main output of this module is the indication of a finger presence or absence in each of the active
electrodes.

The key detector module also detects, reports, and acts on fault conditions during the scanning process.
Two main fault conditions are identified electrode short-circuited to supply voltage or ground. The same
conditions can be caused by a small capacitance (equal to a short circuit to supply voltage) or by a big
capacitance (equals to a short circuit to ground).

Main functions of the key detector module:
• Active electrodes detection pressed or not pressed
• Electrode detection debouncing
• Baseline generation
• IIR filtering of current capacitance signal
• Shielding function
• Sensitivity Autocalibration

Touch Sensing Software Library Overview

Touch Sensing Software API Reference Manual, Rev. 7

1-8 Freescale Semiconductor

• Electrode status reporting
• Fault reporting

Module files

The key detector module is implemented in the object code integrated inside the TSS_S08.lib,
TSS_CFV1.a, TSS_KXX_M4.a/.lib, and TSS_KXX_M0.a/.lib library files.

For more information regarding the electrode touch detection method, refer to A.2, “TSI Module Based
Touch Sensing Method.”

1.6.2 Decoder module
Module Description

Decoders provide the highest level of abstraction in the library. In this layer, the information about
touched-untouched electrodes is interpreted to present the status of a control in a behavioral way. Also,
additional functionalities can be provided by the decoders, like the use of FIFOs. It is important to
understand that the decoder-related code exists only once in memory. This implies that despite the number
of, for example rotary controls present in the system, only one rotary decoder resides in the memory.
Decoders can be seen as classes of an object oriented language. Each control has a decoder associated to
it, so the control becomes an instance of the decoder (an object). However, not all decoders are necessarily
instantiated in every system.

Decoder types supported by the library:
• Rotary
• Slider
• Keypad
• Analog rotary
• Analog slider
• Matrix

Module Files

The decoder module is implemented in the object code integrated in the TSS_S08.lib, TSS_CFV1.a,
TSS_KXX_M4.a/.lib, and TSS_KXX_M0.a/.lib library files. For more information about the Decoders
functionality, refer to A.4, “Decoder Functions.”

1.7 System configuration and management module
Module description

This module implements the configuration and management functions required to integrate the library in
the user application. The module contains the following functions:

• TSS_Init()— Initializes the TSS library.
• TSS_Task()— The function must be called periodically by the user application to provide CPU

time to the TSS library. All electrodes are processed during a single execution of this function, but

Touch Sensing Software Library Overview

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 1-9

the measured data are evaluated after at least two executions. The process status is reported by the
return value.

• TSS_TaskSeq()— It is an alternative to TSS_Task() function. It must also be called periodically
by the user application to provide the CPU time to the TSS library. The difference is that only a
single electrode is processed in one function execution. When the function is executed periodically,
it processes all electrodes and decoders. The status of the process is reported by the return value.

• TSS_SetSystemConfig()— Provides a way of configuring the TSS library during run-time.
• TSS_GetSystemConfig()— Provides reading of the TSS library registers during run-time.

This module can also perform integrity verification of the TSS RAM variables by executing a Checksum
check, if enabled. The verification is embedded in all functions provided by this module.

Module files

The system configuration and management module is implemented in the object code integrated in the
TSS_S08.lib, TSS_CFV1.a, TSS_KXX.a/.lib, and TSS_KXX_M0.a/.lib library files. The TSS_API.h file
provides headers and macros required to integrate functions and variables defined in the library files.

Touch Sensing Software Library Overview

Touch Sensing Software API Reference Manual, Rev. 7

1-10 Freescale Semiconductor

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 2-1

Chapter 2
Low-Level Interface
The low-level interface is implemented by the system setup module. The low-level interface can be
configured to specific application’s requirements by editing the TSS_SystemSetup.h file. This file
contains the system setup parameters that must be configured before application compilation and linking.
The TSS_SystemSetupVal.h file checks these parameters for a consistency. If the parameters are not
consistent, a compilation error message is issued. The TSS_SystemSetupData.c file creates the necessary
variables according to the system setup parameters.

The GPIO module and timer module are also part of the low-level interface. The GPIO module implements
macros and is implemented in a single TSS_GPIO.h file. The TSS timer module uses the timer overflow
interrupt for timeout checking in the GPIO measurement method. This interrupt service routine is
implemented in the TSS_Sensor.c file. The TSI module uses interrupts for measurement, autotriggering,
and low power wake function management.

All interrupt service routines are implemented in the appropriate TSS_SensorXXX.c file. The Section 2.1,
“System setup parameters” explains how to configure the TSS library in the user application.

2.1 System setup parameters
Table 2-1. System setup parameters

Parameter Range Description Used

Features Configuration

TSS_USE_SIMPLE_LOW_LEVEL 0-1 Enables the Simple Low
Level routines option

Optional, default value
depends on availability
for the MCU

TSS_USE_DELTA_LOG 0–1 Enables the instant delta
feature

Optional, default 0

TSS_USE_SIGNAL_LOG 0–1 Enables the instant signal
feature

Optional, default 0

TSS_USE_FREEMASTER_GUI 0-1 Enables FreeMASTER
GUI support

Optional, default 0

TSS_USE_CONTROL_PRIVATE_DATA 0-1 Enables Control Private
Data feature

Optional, default 0

TSS_USE_AUTO_SENS_CALIBRATION 0-1 Enables automatic
sensitivity calibration

Optional, default 0

TSS_USE_AUTO_SENS_CALIB_INIT_DURATION 0-255 Sets duration of an
automatic sensitivity
calibration initialization

Optional, default 100

TSS_USE_BASELINE_INIT_DURATION 0-255 Sets duration of a baseline
initialization

Optional, default 0

Signal Control Options

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

2-2 Freescale Semiconductor

TSS_USE_GPIO_STRENGTH 0–1 Enables strength on usable
pins for GPIO method.

Optional, default 0. Used
only for the GPIO
method.

TSS_USE_GPIO_SLEW_RATE 0–1 Enables slew rate on
usable pins for GPIO
method.

Optional, default 0. Used
only for theGPIO
method.

TSS_USE_IIR_FILTER 0–1 Enables IIR filter Optional, default 0

TSS_USE_NOISE_AMPLITUDE_FILTER 0–1 Enables noise amplitude
filter for GPIO method.

Optional, default 0. Used
only for theGPIO
method.

TSS_USE_SIGNAL_SHIELDING 0–1 Enables Signal Shielding
function

Optional, default 0

TSS_USE_SIGNAL_DIVIDER 0–1 Enables signal divider Optional, default 0

TSS_USE_SIGNAL_MULTIPLIER 0–1 Enables signal multiplier Optional, default 0

TSS_USE_DEFAULT_ELECTRODE_LEVEL_LOW 0–1 Sets low electrode level
between measurements for
GPIO method.

Optional, default 0. Used
only for the GPIO
method.

Callbacks Definition

TSS_ONFAULT_CALLBACK Any valid function
name. This callback
function must be
provided by the user.

This is the name of a
function that matches the
OnFault callback
prototype

Optional. If the macro is
not defined, the callback
is disabled.

TSS_ONINIT_CALLBACK Any valid function
name. This callback
function must be
provided by the user.

This is the name of a
function that matches the
OnInit callback prototype

Optional. If macro is not
defined, ‘TSS_fOnInit’
name is used.

TSS_ONPROXIMITY_CALLBACK Any valid function
name. This callback
function must be
provided by the user.

This is the name of a
function that matches the
OnProximity callback
prototype

Optional. If macro is not
defined, the proximity
function is disabled.

Definition of Function Control Source

TSS_USE_AUTOTRIGGER_SOURCE RTC, LPTMR, TSI,
TSI0, TSI1, UNUSED

Name of the hardware
device used for
management of TSS
AUTO triggering

Optional, default
UNUSED

TSS_USE_LOWPOWER_CONTROL_SOURCE TSI, TSI0, TSI1,
UNUSED

Name of hardware device
used for management of
the Low Power mode

Optional, default
UNUSED

Code Size Reduction Options

TSS_USE_DATA_CORRUPTION_CHECK 0–1 Enables compilation of
TSS RAM data
consistency check function

Optional, default 1

Table 2-1. System setup parameters (continued)

Parameter Range Description Used

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 2-3

TSS_USE_TRIGGER_FUNCTION 0-1 Enables compilation of
Triggering function

Optional, default 0

TSS_USE_STUCK_KEY 0-1 Enables compilation of
Stuck Key detection
function

Optional, default 1

TSS_USE_NEGATIVE_BASELINE_DROP 0-1 Enables compilation of
Negative Baseline Drop
function

Optional, default 1

TSS_USE_AUTO_HW_RECALIBRATION 0-1 Enables automatic
hardware recalibration

Optional, default 1

Debug Options

TSS_ENABLE_DIAGNOSTIC_MESSAGES 0–1 Enables diagnostic
messages during
compilation

Optional, default 0

Electrodes Configuration

TSS_N_ELECTRODES 1–64 Sets the number of
electrodes to be used by
the application

Always

TSS_Ex_P Any valid GPIO port on
the MCU

Configures the MCU
GPIO port to be used for
each electrode

Always, except TSI
module electrode

TSS_Ex_B Any valid GPIO pin on
the MCU

Configures the MCU
GPIO pin to be used for
each electrode

Always, except TSI
module electrode

TSS_Ex_TYPE GPIO, TSInCHm Determines the
measurement method for
an electrode

Optional, default GPIO

TSS_Ex_NOISE_AMPLITUDE_FILTER_SIZE 2–255 Determines the size of the
noise amplitude filter for
an electrode

Optional, default 255

TSS_Ex_SHIELD_ELECTRODE 0-63 Determines the number of
shielding electrode
assigned to this electrode

Optional, if defined then
the electrode is shielded.

TSS_Ex_SIGNAL_DIVIDER 0-255 Determines the value of
signal divider for this
electrode

Optional, if defined or
non zero then the
electrode uses divider.

TSS_Ex_SIGNAL_MULTIPLIER 0-255 Determines the value of
signal multiplier for this
electrode

Optional, if defined or
non zero then the
electrode uses multiplier.

Controls Configuration

TSS_N_CONTROLS 0–16 Sets the number of
controls to be used by the
application

Always

Table 2-1. System setup parameters (continued)

Parameter Range Description Used

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

2-4 Freescale Semiconductor

TSS_Cn_TYPE TSS_CT_KEYPAD
TSS_CT_SLIDER
TSS_CT_ROTARY
TSS_CT_ASLIDER
TSS_CT_AROTARY
TSS_CT_MATRIX

Determines the type of the
control

Always, if Controls > 0

TSS_Cn_ELECTRODES 1–16 for keypad
2–16 for slider
3–16 for rotary
2-16 for analog slider
3-16 for analog rotary

Determines the amount of
electrodes that composes
the control

Always, if Controls > 0
and matrix control is not
used

TSS_Cn_ELECTRODES_X 2-16 for matrix Determines the amount of
electrodes that compose
the matrix control on X
axis

Always, if Controls > 0
and matrix control is
used

TSS_Cn_ELECTRODES_Y 2-16 for matrix Determines the amount of
electrodes that compose
the matrix control on Y
axis

Always, if Controls > 0
and matrix control is
used

TSS_Cn_STRUCTURE Any valid name
selected by the user

Indicates the name of the
configuration and status
structure of the control. It
is used to create the
configuration and status
structure in a different file.
This structure is not
declared by users.

Always, if Controls > 0

TSS_Cn_CALLBACK Any valid function
name. This callback
function is created by
the user.

This is the name of a valid
function that matches the
callback prototype

Always, if Controls > 0

TSS_Cn_KEYS Any valid array defined
by an user

Defines the groups of
electrodes for group
decoder. Valid only for
keypad control.

Optional.

Peripheral Specific Configuration

TSS_HW_TIMER TPMx, FTMx, MTIMx Name of hardware timer
used for GPIO method.

Always for GPIO
method.

TSS_SENSOR_PRESCALER NA, depends on used
timer

Prescaler for all used
timers

Optional, default 2. If the
GPIO method is used.

TSS_SENSOR_TIMEOUT 128-65535, except
HCS08 where
128-511(2047 if IIR
filter is disabled) is used

Defines timeout for all
used timers

Optional, default 511. If
the GPIO method is
used.

Table 2-1. System setup parameters (continued)

Parameter Range Description Used

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 2-5

TSS_TSI_RESOLUTION 1–16 bits Defines resolution of TSI
in bits for autocalibration

Optional, default 11.
If the TSI module is
used.

TSS_TSI_EXTCHRG_LOW_LIMIT 0 — TSI module
EXTCHRG range

Defines low limit of
EXTCHRG for TSI
autocalibration

Optional, default 0.
If the TSI module is
used.

TSS_TSI_EXTCHRG_HIGH_LIMIT 0 — TSI module
EXTCHRG range

Defines high limit of
EXTCHRG for TSI
autocalibration

Optional, default 7.
If theTSI module is used.

TSS_TSI_PS_LOW_LIMIT 0–7 Defines low limit of PS for
TSI autocalibration

Optional, default 0.
If the TSI module is
used.

TSS_TSI_PS_HIGH_LIMIT 0– 7 Defines high limit of PS
for TSI autocalibration

Optional, default 7.
If the TSI module is
used.

TSS_TSI_AMCLKS 0 Bus Clock
1 MCGIRCLK
2 OSCERCLK
3 Not valid

Defines TSI Active mode
Clock Source

Optional if the TSI
module supports
AMCLKS function,
default 0. If the TSI
module is used.

TSS_TSI_AMCLKDIV 0 divider set to 1
1 divider set to 2048

Defines TSI Active Mode
Clock Divider

Optional if the TSI
module supports
AMCLKDIV function,
default 1. If the TSI
module is used.

TSS_TSI_AMPSC 0 ~ divided by 1
1 ~ divided by 2
2 ~ divided by 4
3 ~ divided by 8
4 ~ divided by 16
5 ~ divided by 32
6 ~ divided by 64
7 ~ divided by 128

Defines TSI Active Mode
Prescaler

Optional if TSI module
supports AMPSC
function, default 0. If the
TSI module is used.

TSS_TSI_LPCLKS 0 LPOCLK
1 VLPOSCCLK

Defines TSI Low Power
Mode Clock Source

Optional if TSI module
supports LPCLKS
function, default 0. If the
TSI module is used.

TSS_USE_DVOLT NA, depends on used
TSI module

Defines TSI Delta Voltage
value

Optional if TSI module
provides DVOLT
register, default is
maximum value.

Proximity Specific Configuration

TSS_SENSOR_PROX_PRESCALER NA, depends on used
timer

Prescaler for all used
timers in proximity mode

Optional, default 2. If the
GPIO method is used.

Table 2-1. System setup parameters (continued)

Parameter Range Description Used

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

2-6 Freescale Semiconductor

2.1.1 Simple low level routines
The TSS library implements two versions of some low level measurement methods. Note that some MCUs
may provide only one of these implementations.

• Standard low level routines provide full TSS functionality with background measurement. All
triggering modes are available, Auto triggering only if TSI measurement method is used at least on
one electrode.

• Simple low level routines are generally smaller but with limited functionality. The measurement is
consecutive and the TSS_Task needs to wait for end of measurement. Auto triggering function is
not available. The simple low level is also limited to just one TSI module per device.

To enable simple low level routines, use the following macro in the TSS_SystemSetup.h file:
#define TSS_USE_SIMPLE_LOW_LEVEL 1

Table 2-2 shows availability of the feature on MCU families and measurement methods.

TSS_SENSOR_PROX_TIMEOUT 128-65535, except
HCS08 where
128-511(2047 if IIR
filter is disabled) is used

Defines timeout for all
used timers in proximity
mode

Optional, default 511. If
the GPIO method is
used.

TSS_TSI_PROX_RESOLUTION 1–16 bits Defines resolution of TSI
in bits for autocalibration
in proximity mode

Optional, default 11.
If the TSI module is
used.

TSS_TSI_PROX_EXTCHRG_LOW_LIMIT 0 — TSI module
EXTCHRG range

Defines low limit of
EXTCHRG for TSI
autocalibration in
proximity mode

Optional, default 0.
If the TSI module is
used.

TSS_TSI_PROX_EXTCHRG_HIGH_LIMIT 0 — TSI module
EXTCHRG range

Defines high limit of
EXTCHRG for TSI
autocalibration in
proximity mode

Optional, default 7.
If theTSI module is used.

TSS_TSI_PROX_PS_LOW_LIMIT 0–7 Defines low limit of PS for
TSI autocalibration in
proximity mode

Optional, default 0.
If the TSI module is
used.

TSS_TSI_PROX_PS_HIGH_LIMIT 0– 7 Defines high limit of PS
for TSI autocalibration in
proximity mode

Optional, default 7.
If the TSI module is
used.

Table 2-1. System setup parameters (continued)

Parameter Range Description Used

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 2-7

If a configured feature is not available for the MCU, compilation is stopped with an error message.

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.2 Instant delta values
The TSS library can also be configured to keep track of the instant delta values by storing them in an array.
The instant delta function is automatically enabled if analog slider, analog rotary, or matrix control is used.

To enable this feature of the library use the following macro in the TSS_SystemSetup.h file:
#define TSS_USE_DELTA_LOG 1

If enabled, the TSS library instantiates an array declared as follows:
INT8 tss_ai8InstantDelta[TSS_N_ELECTRODES];

The library stores the instant delta value for each electrode every time the value is calculated. You can have
access to these values by reading the tss_ai8InstantDelta array, specifying the number of electrodes, and
using the standard C array addressing encoding. Access example of the tss_ai8InstantDelta array in C:

Temp = tss_ai8InstantDelta[n];

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.3 Instant signal values
The TSS library can also be configured to keep track of the instant signal values by storing them in an
array.

To enable this feature of the library, use the following macro in the TSS_SystemSetup.h file:
#define TSS_USE_SIGNAL_LOG 1

If enabled, the TSS library instantiates an array declared as follows:
UINT16 tss_au16InstantSignal[TSS_N_ELECTRODES];

Table 2-2. Simple low level availability

MCU Family Available Measurement
Methods Low Level Options

HCS08 GPIO/TSI Simple/Standard

Coldfire V1 GPIO Simple/Standard

Coldfire+ GPIO/TSI Standard

ARM Cortex-M0 GPIO/TSI Standard

ARM Cortex-M4 GPIO/TSI Standard

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

2-8 Freescale Semiconductor

The library stores the instant delta value for each electrode every time the value is calculated. You can have
access to these values by reading the tss_ai8InstantDelta array, specifying the number of electrodes, and
using the standard C array that addresses encoding.

Access example of the tss_au16InstantSignal array in C:
Temp = tss_au16InstantSignal[n];

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.4 GPIO strength
The TSS library can also enable the strength feature on the GPIO pins. When this option is enabled, the
TSS library enables the strength setting on each pin that provides this function. If it is not possible to use
this feature for a pin, a warning message is returned. The function is relevant only to the GPIO
measurement method.

To enable the strength feature, use the following definition:
#define TSS_USE_GPIO_STRENGTH 1

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.5 GPIO slew rate
The TSS library can enable the slew rate feature on the GPIO pins. If this option is enabled, then the TSS
library enables the slew rate setting on each pin that provides this function. If it is not possible to use this
feature for a pin, a warning message is returned. The function is relevant only to the GPIO measurement
method.

To enable the slew rate feature, use the following definition:
#define TSS_USE_GPIO_SLEW_RATE 1

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.6 Default electrode level
The TSS library can specify the default electrode pin voltage level in the idle state between each
measurement. The option is relevant only to the GPIO measurement method.

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 2-9

Normally it is recommended to keep the idle state High. If from any reason a Low state is needed then use
the following definition:

#define TSS_USE_DEFAULT_ELECTRODE_LEVEL_LOW 1

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.7 IIR filter
The TSS library can also enable the IIR filter feature. The filter processes current values obtained from the
low-level routines and works with all low level sensor modules. Filtering may help to eliminate
high-frequency noise modulated on the input signal and other external interferences. The IIR equation is
internally set to ratio 1/3 (current signal and previous signal).

To enable the IIR filter feature of the library, use the following definition:
#define TSS_USE_IIR_FILTER 1

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.8 Noise amplitude filter
The TSS library provides the noise amplitude filter function. The function processes each sample
measured by TSS low level sensor method. You can define the noise amplitude to be filtered. Noise peaks
greater than the defined amplitude filtered by the system, thus disregarding the noisy sample. A new
sample is taken to replace the rejected one. The function helps to eliminate high-frequency noise
modulated on the input signal and other external interference. The function is relevant only to the GPIO
measurement method. To enable this feature of the library, use the following definition:

#define TSS_USE_NOISE_AMPLITUDE_FILTER 1

If the function is enabled then the Noise Amplitude Filter Size of each electrode must be defined. To define
the noise amplitude filter size of electrodes, use the following definition:

#define TSS_En_NOISE_AMPLITUDE_FILTER_SIZE N

Where:
• n is the electrode number
• N is the size of the noise amplitude filter for the electrode in the range of 2–255

If the noise amplitude filter size is not defined for an electrode, the default value used is 255, and disables
the amplitude filter algorithm for the electrode.

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.9 Shielding function
The TSS library provides the Shielding function. The function enables compensate signal drift on the
common electrode by the special shielding electrode. The shielding electrode is not intended to be touched.

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

2-10 Freescale Semiconductor

It measures overall environmental noise affecting the system. The function may help eliminate low
frequency noise modulated on the capacitance signal, or protect the guarded system from detecting false
touches caused by water drops.

To enable the shielding feature of the library, use the following definition:
#define TSS_USE_SIGNAL_SHIELDING 1

If the function is enabled then each electrode may be assigned its shielding electrode. To assign shielding
electrode to electrode, use the following definition:

#define TSS_En_SHIELD_ELECTRODE N

Where:
• n is the electrode number
• N is the number of shielding electrode in the range 0-63

If an electrode does not have a shielding electrode assigned, the shielding of this electrode is disabled. It
is important to note that the DC-Tracker function and Negative Baseline Drop function are not performed
on shielding, or the shielded electrode.

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.10 Signal normalization
The TSS library provides the signal normalization function. This function enables to resize the raw
capacitive signal to the required level, which also affects the signal delta amplitude. This function is useful
for analog controls like an analog slider, analog rotary, and matrix where it is important to fit the signal
delta into the 127 range for the best performance of an analog position calculation.

The required signal level can be reached with the combination of a signal divider and multiplier value for
each electrode, separately.

To enable signal divider feature of the library, use the following definition:
#define TSS_USE_SIGNAL_DIVIDER 1

If the function is enabled the signal divider value of each electrode must then be defined. To define the
signal divider value of electrodes, use the following definition:

#define TSS_En_SIGNAL_DIVIDER N

Where:
• n is the electrode number
• N is the divider value in the range 0-255

If an electrode does not have a divider defined or equals 0, the dividing of this electrode signal is disabled.

To enable signal multiplier feature of the library, use the following definition:
#define TSS_USE_SIGNAL_MULTIPLIER 1

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 2-11

If the function is enabled then the signal multiplier value of each electrode must be defined. To define the
signal multiplier value for electrodes, use the following definition:

#define TSS_En_SIGNAL_MULTIPLIER N

Where:
• n is the electrode number
• N is the multiplier value in the range 0-255

If an electrode does not have a multiplier defined or equals 0, the multiplying of this electrode signal is
disabled. The final electrode signal value is defined by the equation En_SIGNAL = (En_SIGNAL *
TSS_En_SIGNAL_MULTIPLIER) / TSS_En_SIGNAL_DIVIDER.
To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.11 Automatic sensitivity calibration
The TSS library provides the automatic sensitivity calibration function. The function periodically adjusts
the level of electrode sensitivity calculated according to the estimated noise level and touch tracking
information. For more details of the automatic sensitivity function, refer to Section A.3.5, “Automatic
Sensitivity Calibration.”

To enable the Automatic Sensitivity Calibration feature of the library, use the following definition:
#define TSS_USE_AUTO_SENS_CALIBRATION 1

If the function is enabled the duration of initialization can be defined. To define the duration of
initizalization, use the following definition:

#define TSS_USE_AUTO_SENS_CALIB_INIT_DURATION N

Where:
• N is the initizalization duration value in the range 0-255. The number designates the number of the

executed TSS task.

The TSS does not evaluate touch during this initialization time. The longer duration can improve the better
estimation of noise level and the touch recognition reliability.
To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.12 Baseline initialization
The TSS library provides the setup of baseline initialization duration. The value defines how long the
electrode signal is averaged until it is used as initial baseline value. The TSS does not evaluate touch during
this initialization time. The longer duration can improve the noise immunity and touch recognition
reliability.

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

2-12 Freescale Semiconductor

To setup duration of baseline initialization, use the following definition:
#define TSS_USE_BASELINE_INIT_DURATION N

Where:
• N is the initizalization duration value in the range 0-255. The number designates the number of the

executed TSS task.
To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.13 OnFault callback
The TSS library enables the OnFault Callback function. This is an alternative to the SWI function of the
HCS08 version of the library used in TSS version 1.x. The OnFault callback function is available for all
versions of libraries, HCS08, ColdFire V, Coldfire+, ARMCortex-M4, and ARMCortex-M0. It is
recommended to handle fault events detected by the TSS code. The callback function is executed every
time the TSS detects a fault. The fault is also reported in the Fault register. Numeric parameter of the
callback function identifies the fault electrode. See more details about the fault function in Section 3.4.4,
“Faults register.”

To enable this feature of the library and definition of TSS_fOnFault callback name, use the following
definition:

#define TSS_ONFAULT_CALLBACK TSS_fOnFault

Where TSS_fOnFault is the callback function name defined in the application code

When the macro is not defined, no callback is invoked and this feature is disabled.

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.14 OnInit callback
The TSS library provides the OnInit Callback function. Use of this callback is mandatory. It must always
be defined in an user application. The function is intended for placement of hardware initialization. The
callback is executed during the TSS_Init function call, therefore every TSS reinitialization causes
hardware reinitialization. The function must perform initialization of peripherals used by the TSS, for
example enabling peripheral clock, setup pin multiplexers, and so on.

The standard callback name is TSS_fOnInit. To rename this callback function name use the following
definition:

#define TSS_ONINIT_CALLBACK TSS_fOnInit

Where TSS_fOnInit is the callback function name defined in the application code.

When the macro is not defined, the name TSS_fOnInit is used as the name of this callback function.

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”.

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 2-13

2.1.15 OnProximity callback
The TSS library provides the OnProximity Callback function. This callback is invoked when a touch is
detected on the proximity electrode while the proximity mode is enabled. For more details about the
proximity feature, refer to Section A.3.4, “Proximity function.”

To enable the proximity function and to define this callback function name use the following definition:
#define TSS_ONPROXIMITY_CALLBACK TSS_fOnProximity

Where TSS_fOnProximity is the callback function name defined in the application code.

When the macro is not defined, the proximity function is globally disabled in the TSS. If the proximity
function is enabled then the proximity specific options related with low level sensor can be defined. Refer
to Section 2.1.35, “Prescaler configuration of TSS hardware timer”, Section 2.1.36, “Timeout
configuration of TSS hardware timer” and Section 2.1.37, “TSI autocalibration settings”.

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.16 Trigger function
The TSS enables the use of the triggering function that allows you to control time when the capacitance
measurement is performed. Three Triggering modes are provided—ALWAYS, SW, and AUTO. For more
details of triggering function, refer to Section A.3.2, “Triggering.”

Enable triggering feature in TSS_SystemSetup.h.
#define TSS_USE_TRIGGER_FUNCTION 1

When not enabled, only the ALWAYS triggering method is available. The AUTO and SW triggering
method are further configured in runtime by writing to the System Trigger register and Auto Trigger
Modulo Value register by the TSS_SetSystemConfig function.

To enable the AUTO trigger feature, the following definition must also be used in the TSS_SystemSetup.h.
#define TSS_USE_AUTOTRIGGER_SOURCE source

Where source is the name of the device that controls the auto trigger function. The possible source options
are RTC, LPTMR, TSIx, or UNUSED.

If the auto trigger option is not available on the MCU, the TSS_SetSystemConfig function returns
TSS_ERROR_CONFSYS_TRIGGER_SOURCE_NA error code.

2.1.17 Low power control source
The TSS implements a low power function that enables to wake the MCU from Low Power mode if the
defined source device detects a touch event. For more details of the low power function, refer to
Section A.3.3, “Low power function.”

The peripheral module that is responsible for LowPower wakeup control and synchronization is defined
by the TSS_USE_LOWPOWER_CONTROL_SOURCE defined in the TSS_SystemSetup.h.

#define TSS_USE_LOWPOWER_CONTROL_SOURCE source

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

2-14 Freescale Semiconductor

Where source is the name of the device that controls the low power function. The possible options are
TSIx, or UNUSED.

The low power functionality is further configured in runtime by writing to the Low Power Scan Period
register, Low Power Electrode register, and Low Power Electrode Sensitivity register by the
TSS_SetSystemConfig function.

If the low power control source is not available on the MCU, the TSS_SetSystemConfig function returns
TSS_ERROR_CONFSYS_LOWPOWER_SOURCE_NA error code.

2.1.18 Data corruption check
The TSS library provides the data corruption detection method. When enabled, the interval data structures
are protected with checksum so any illegal modifications of the structures is detected and reported by Data
Corruption bit in the Faults register.

This feature is enabled by default. When disabled by defining
#define TSS_USE_DATA_CORRUPTION_CHECK 0

the feature is not available and the library code size is decreased.

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.19 Stuck-key function

The TSS library provides a Stuck-key detection feature. When enabled, the application is protected from
false permanent touches caused by external increase of the electrodes capacitance. The electrode is only
considered touched until the recalibration occurs. The function is configured by Stuck-key Enabler bit in
the System Configuration register and Stuck-key Timeout register.
This feature is enabled by default. When disabled by defining

#define TSS_USE_STUCK_KEY 0

the feature is not available and the library code size is decreased.

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.20 Negative baseline drop
The TSS library provides a negative baseline drop function. When enabled, the function adjusts the
baseline level if the signal level is too low below the baseline. For more details about the negative baseline
drop function, refer to Section A.3.6.1, “Negative baseline drop.”

This feature is enabled by default. When disabled by defining
#define TSS_USE_NEGATIVE_BASELINE_DROP 0

the feature is not available and the library code size is decreased.

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 2-15

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h”.

2.1.21 Automatic hardware recalibration
The TSS library provides an automatic hardware recalibration function. If an electrode fault is detected or
electrode enablers are changed, hardware recalibration is automatically executed for the system to adapt
to this situation. The electrode fault reason can be: capacitive signal overflow, electrode short to ground,
or peripheral module recalibration request.

This feature is enabled by default. When disabled by defining
#define TSS_USE_AUTO_HW_RECALIBRATION 0

the automatic hardware recalibration is not executed unless the hardware recalibration bit in the System
Config register is set.

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h”.

2.1.22 FreeMASTER GUI support
The TSS library can use the FreeMASTER Graphical User Interface (GUI) tool for visualization and
configuration of internal library variables. This tool also enables observing signal behavior, tune
sensitivities, setup the TSS system, controls registers, and so on.

To enable support of the FreeMASTER GUI, use the following definition:
#define TSS_USE_FREEMASTER_GUI 1

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.23 Control private data
The TSS library enables the application code to assign user data to control objects. The assignment is
represented by the data pointer which can be retrieved anytime by providing an index of the control.

To enable Control Private Data, use the following definition:
#define TSS_USE_CONTROL_PRIVATE_DATA 1

To assign user data to the control, use the following function:
void TSS_SetControlPrivateData(UINT8 u8CntrlNum, void * pData)

To retrieve pointer to the data, use the following function:
void * TSS_GetControlPrivateData(UINT8 u8CntrlNum)

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h”.

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

2-16 Freescale Semiconductor

2.1.24 Diagnostic messages
The TSS code tries to define as many compiler and infrastructure declarations as possible to achieve the
desired function. For example interrupt vector assignments are executed automatically in compiler tools
which enable it. When a compiler tool does not enable the library source code to make all necessary
declarations, it may be tricky to understand what needs to be done manually in the application code.

By defining the
#define TSS_ENABLE_DIAGNOSTIC_MESSAGES 1

the library issues the warning messages with instructions about all declarations that need to be executed in
the application.

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.25 Number of electrodes
To specify the number of electrodes in the TSS_SystemSetup.h file, use the following definition:

#define TSS_N_ELECTRODES N

Where:
• N is the number of electrodes in the range 1-64

For more details, refer to Table 2-1. To see an example of the configuration, refer to Section 2.2, “Example
of system setup parameters encoded in the TSS_SystemSetup.h.”

2.1.26 Electrode GPIO pin
To configure the electrode GPIO pin, use the following macros:

#define TSS_EnP X
#define TSS_EnB Y

Where:
• n is the electrode number. It can have a value from 0 to TSS_N_ELECTRODES-1.
• X is the port letter of the electrode pin. For instance, A, B, C, D, ...
• Y is the port pin number of the electrode

These macros are relevant only to the GPIO measurement method and need to be defined for each
electrode pin.

For more details, refer to Table 2-1. To see an example of the configuration, refer to Section 2.2, “Example
of system setup parameters encoded in the TSS_SystemSetup.h.”

2.1.27 Electrode type
The TSS library can also specify the measurement method for each electrode. This setting is applied for
all low-level routines.

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 2-17

To configure the electrode measurement method type, use the following macros:
#define TSS_En_TYPE X

Where:
• n is the electrode number. It can have a value from 0 to TSS_N_ELECTRODES-1.
• X is the identifier of the measurement method and it can hold the following values:

— GPIO — For the GPIO based measurement method, default if type is not specified
— TSInCHm — For the TSI module based measurement method, where n is TSI module number

and m is channel number

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.28 Number of controls
To specify the number of controls in the application, use the following definition:

#define TSS_N_CONTROLS N

Where:
• N is the number of controls

Each control is an instance of a decoder object. The decoder objects supported are keypad, rotary, and
slider.

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.29 Control type
To specify the control type, use the following definition:

#define TSS_Cn_TYPE ControlType

Where:
• n is the control number in the range 0 to TSS_N_CONTROLS-1
• ControlType is the specification of control type

One definition is required for each control to specify its type. The ControlType can be replaced with
TSS_CT_KEYPAD, TSS_CT_SLIDER, TSS_CT_ROTARY, TSS_CT_ASLIDER,
TSS_CT_AROTARY, or TSS_CT_MATRIX. One macro is required for each control to specify its type,
starting with n equal to 0 to the TSS_N_CONTROLS-1.

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

2-18 Freescale Semiconductor

2.1.30 Number of electrodes assigned to control
To define the number of electrodes assigned to a given control except matrix control, use the following
definition:

#define TSS_Cn_ELECTRODES N

Where:
• n is the control number in the range 0 to TSS_N_CONTROLS-1
• N is the number of electrodes in the range 1 to 16 of control n

To define the number of electrodes assigned to the matrix control, use the following definitions:
#define TSS_Cn_ELECTRODES_X x
#define TSS_Cn_ELECTRODES_Y y

Where:
• n is the control number in the range 0 to TSS_N_CONTROLS-1
• x is the number of electrodes in the range 2 to 16 for the X horizontal axis of control n
• y is the number of electrodes in the range 2 to (16-TSS_Cn_ELECTRODES_X) for the Y vertical axis

of control n

Each control must have a definition specifying its number of electrodes. The electrodes are assigned to
controls sequentially, starting from electrode 0.

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.31 Control configuration and status structure
Each control must have its configuration and status (C&S) structure. This definition sets the name of the
control C&S structure. You can define any name for each control structure. However, you cannot have the
same name for different controls. TSS_SystemSetupData.c creates each control structure using the name
specified.

#define TSS_Cn_STRUCTURE Structname

Where:
• n is the number of the control in the range 0 to TSS_N_CONTROLS-1. All defined controls must have

a configuration macro of its control C&S structure name.
• Structname is the specific structure name.

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.32 Application callback
Each control has its own callback function. It is called by the TSS library in case of an event occurrence
in the control. To configure the callback function name for each control, use the following definition:

#define TSS_Cn_CALLBACK CallBackFunc

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 2-19

Where:
• n is the control number in the range 0 to TSS_N_CONTROLS-1
• CallBackFunc is the callback function

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.33 Electrodes groups
Keypad control provides an option to define electrodes groups. One key can be formed with more than one
electrode. To configure the groups, use the following definition:

#define TSS_Cn_KEYS {first,second,....}

Where:
• n is the control number in the range 0 to TSS_N_CONTROLS-1
• each element in the array is one key

The element of the array forms one key. One key consists of the maximum 16 electrodes. Each bit
represents one electrode. For instance number 0x55 (0b01010101) represents key formed by first, third,
fifth, and seventh electrode assigned to the keypad control. When not defined the default array of {0x01,
0x02, 0x04, 0x08, 0x10, ... } is used and forms each key with one electrode.

2.1.34 TSS hardware timer configuration
In case the application uses the GPIO measurement method, the TSS library requires the application to use
a TPM, FTM, or MTIM timer module. The timer selected for use by the TSS library is internally called
the hardware timer and needs to be defined in the TSS_SystemSetup.h. It is used for all electrodes of either
type.

If the hardware timer is needed, the following configuration must be performed by the user application:
• Configure the hardware timer name.
• Include the TSS_SET_SAMPLE_INTERRUPTED()macro in all the interrupt service routines anywhere

in the user application.
• Configure the timer prescaler and timer timeout, if needed. Configure the proximity timer prescaler

and proximity timer timeout, if the proximity function is enabled. For details refer to
Section 2.1.35, “Prescaler configuration of TSS hardware timer” and Section 2.1.36, “Timeout
configuration of TSS hardware timer”.

To configure the timer name, use the following macro in the TSS_SystemSetup.h
#define TSS_HW_TIMER timername

Where timername is the name of the TPMx, FTMx, or MTIMx timer to be configured by the application

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

2-20 Freescale Semiconductor

NOTE
If the hardware timer is used, then any interrupt service routine of the
application must call the TSS_SET_SAMPLE_INTERRUPTED()macro, which
signals the interrupt occurrence to the capacitive sensing module. If that
happens during the capacitive sensing method execution, the measured
value is considered invalid and is discarded. This limitation does not affect
the TSI based methods.

2.1.35 Prescaler configuration of TSS hardware timer
In case the application uses the GPIO measurement method, the TSS library requires using the timer for
measurement purposes. The timer prescaler may require to be adjusted to the application changing the
counter speed that is used to measure the capacitance. As described in Section A.1, “GPIO Based
Capacitive Touch Sensing Method,” the timer frequency depends on the MCU bus frequency. The timer
configuration uses a prescaler value to adjust the time frequency relative to the MCU bus frequency. This
adjustment is made using the following define present in the TSS_SystemSetup.h file:

#define TSS_SENSOR_PRESCALER X

Where:
• X is the value used to implement the 2^X timer prescaler. The value of 0 means no prescaler is used.

When the proximity function is enabled, the TSS configuration can be adjusted to proximity configuration
which is distinct to a normal TSS mode. The following macro is available for proximity feature
configuration:

#define TSS_SENSOR_PROX_PRESCALER X

Where:
• X is the value used to implement the 2^X timer prescaler for proximity mode. The value of 0 means

no prescaler is used.

Specifying the timer prescaler is optional. If not specified, the default value 2 (prescaler=4) is used.

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.1.36 Timeout configuration of TSS hardware timer
In case the application uses the GPIO measurement method, the TSS library requires using the timer for
measurement purposes. The timer overflow timeout may require to be adjusted for the application using a
non-standard electrode size with specific values of capacitance. The touch sense timer interrupt provides
an error handling if an electrode is never charged and the code to exit the electrode charge loop in the event
of a timeout. This ensures that the capacitive sensing module does not block the application execution. The
adjustment of the timer overflow timeout value is made using the following macro present in the
TSS_SystemSetup.h file:

#define TSS_SENSOR_TIMEOUT X

Where:

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 2-21

• X is the desired timeout value

When the proximity function is enabled, the TSS configuration can be adjusted to proximity configuration
which is distinct to a normal TSS mode. The following macro is available for proximity feature
configuration:

#define TSS_SENSOR_PROX_TIMEOUT X

Where:
• X is the desired timeout value for proximity mode

Specification of the timer overflow timeout is optional. If the timer overflow timeout is not specified, then
the default value of 511 is used. The range for the timeout value on the HCS08 family also depends on the
use of the IIR filter feature preventing the cumulated value overflow. If a slower time is needed, the
prescaler can be adjusted.

The HCS08 and ColdFire V1 version of the TSS library automatically allocates the timer overflow
interrupt vector for all the used TSS timers. The Coldfire+, ARM Cortex-M4, and ARM Cortex-M0
version of the TSS library need manual allocation of these interrupt service routines. It defines the interrupt
handler function as:

void TSS_HWTimerIsr(void)

for the hardware timer. The hardware timer interrupt handler function is implemented in the TSS_Sensor.c.

2.1.37 TSI autocalibration settings
The TSI module uses the electrode internal capacitance measurement unit that senses the capacitance of a
TSI pin and outputs a 16-bit result. This module is based on dual oscillator architecture. One oscillator has
its frequency depending on the electrode capacitance and the second one has a stable reference frequency.
Both oscillators have configuration parameters to ensure the best application performance.

To provide a simple setup procedure there is an autocalibration algorithm calculating the best
configuration of an External Oscillator Charge Current (EXTCHRG register value) and configuration of
an Electrode Oscillator Prescaler (PS register value). The aim of the autocalibration is reaching the defined
bit-resolution of signal values set by the TSS_TSI_RESOLUTION configuration parameter:

#define TSS_TSI_RESOLUTION n

Where:
• n is the requested resolution in bits, the default is 11.

Searching the best TSI register configuration by autocalibration algorithm can be controlled by limiting
the considered values. These limits can be configured by the following macros in the TSS_SystemSetup.h
file:

#define TSS_TSI_EXTCHRG_LOW_LIMIT X
#define TSS_TSI_EXTCHRG_HIGH_LIMIT Y
#define TSS_TSI_PS_LOW_LIMIT Z
#define TSS_TSI_PS_HIGH_LIMIT W

Where:
• X — Low Limit of External Oscillator Charge Current register, default is 0

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

2-22 Freescale Semiconductor

• Y — High Limit of External Oscillator Charge Current register. Range depends on TSI module
version used. Default value is set to maximum register value.

• Z — Low Limit of Electrode Oscillator Prescaler register value, default is 0
• W — High Limit of Electrode Oscillator Prescaler register. Range depends on TSI module version

used. Default is set to maximum register value.

When the proximity function is enabled, the TSS configuration can be adjusted to proximity configuration
which is distinct to a normal TSS mode. The following macros for configuration of TSI autocalibration in
the proximity mode are available:

#define TSS_TSI_PROX_RESOLUTION n
#define TSS_TSI_PROX_EXTCHRG_LOW_LIMIT X
#define TSS_TSI_PROX_EXTCHRG_HIGH_LIMIT Y
#define TSS_TSI_PROX_PS_LOW_LIMIT Z
#define TSS_TSI_PROX_PS_HIGH_LIMIT W

Where:
• n is the requested resolution in bits for proximity mode, the default is 11.
• X — Low Limit of External Oscillator Charge Current register for proximity mode, default is 0
• Y — High Limit of External Oscillator Charge Current register for proximity mode. Range

depends on TSI module version used. Default value is set to maximum register value.
• Z — Low Limit of Electrode Oscillator Prescaler register value for proximity mode, default is 0
• W — High Limit of Electrode Oscillator Prescaler register for proximity mode. Range depends on

TSI module version used. Default is set to maximum register value.

NOTE
If High and Low limit value of each range parameter is set to the same value
the autocalibration algorithm sets exactly the required value to the TSI
module registers.

2.1.38 TSI active mode clock settings
In active mode, the TSI module has its full function and is able to scan up to 16 electrodes. Some versions
of the TSI module can select active mode clock options. Most of the TSI modules implemented in
Coldfire+, ARM®Cortex™-M4, and ARM®Cortex™-M0 provide this option.

The following active clock source configuration options must be defined:
• Select the active mode clock source

#define TSS_TSI_AMCLKS clocksource

clocksource is the number of the active mode clock source placed into the TSI_SCANC
register.
– 0 — > Bus Clock.
– 1 — > MCGIRCLK.
– 2 — > OSCERCLK.
– 3 — > Not valid.

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 2-23

• Set up active mode clock source divider
#define TSS_TSI_AMCLKDIV divider

divider is the number of the active mode clock divider placed into the TSI_SCANC register.
– 0 — > Divider set to 1
– 1 — > Divider set to 2048

• Set up active mode prescaler
#define TSS_TSI_AMPSC prescaler

prescaler is the number of the active mode clock prescaler placed into the TSI_SCANC
register.
– 0 — > Input clock source divided by 1
– 1 — > Input clock source divided by 2
– 2 — > Input clock source divided by 4
– 3 — > Input clock source divided by 8
– 4 — > Input clock source divided by 16
– 5 — > Input clock source divided by 32
– 6 — > Input clock source divided by 64
– 7 — > Input clock source divided by 128

2.1.39 TSI low power mode clock settings
The TSI module is able to enter low power mode if the MCU enters one of the power saving modes. Some
versions of the TSI module can even wake the MCU from the low power mode. In low power mode, only
one electrode may be active and able to perform capacitance measurements. Most of theTSI modules
implemented in Coldfire+, ARM®Cortex™-M4, and ARM®Cortex™-M0 may provide a selection of low
power clock sources. The TSS does not use definitions if they are not applicable. To use the low power
mode feature, the low power source clock must be selected:

#define TSS_TSI_LPCLKS clocksource

Where clocksource is the number of the low power mode clock source placed into the TSI_GENCS
register.

In the low power mode the electrode scan unit is always configured to a periodical low power scan.

2.1.40 TSI delta voltage settings
Some versions of the TSI module provide configuration of the charge and discharge difference voltage
called Delta Voltage. The value is defined by the macro definition:

#define TSS_TSI_DVOLT dvoltvalue

Where:
• dvoltvalue is the delta voltage value placed into the TSI_GENCS register. For more details about

the feature refer to the manual of target MCU.

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

2-24 Freescale Semiconductor

To see an example of the configuration, refer to Section 2.2, “Example of system setup parameters encoded
in the TSS_SystemSetup.h.”

2.2 Example of system setup parameters encoded in the TSS_SystemSetup.h
/* TSS Features Configuration */
#define TSS_USE_SIMPLE_LOW_LEVEL 0
#define TSS_USE_DELTA_LOG 1
#define TSS_USE_SIGNAL_LOG 1
#define TSS_USE_FREEMASTER_GUI 1
#define TSS_USE_CONTROL_PRIVATE_DATA 0
#define TSS_USE_AUTO_SENS_CALIBRATION 1
#define TSS_USE_AUTO_SENS_CALIB_INIT_DURATION 100
#define TSS_USE_BASELINE_INIT_DUARTION 15

/* Signal Control Options */
#define TSS_USE_GPIO_STRENGTH 0
#define TSS_USE_SLEW_RATE 0
#define TSS_USE_IIR_FILTER 0
#define TSS_USE_NOISE_AMPLITUDE_FILTER 1
#define TSS_USE_SIGNAL_SHIELDING 1
#define TSS_USE_SIGNAL_DIVIDER 1
#define TSS_USE_SIGNAL_MULTIPLIER 1
#define TSS_USE_DEFAULT_ELECTRODE_LEVEL_LOW 0

/* Function Source Definition */
#define TSS_USE_AUTOTRIGGER_SOURCE TSI0
#define TSS_USE_LOW_POWER_CONTROL_SOURCE TSI0

/* Code Size Reduction Options */
#define TSS_USE_DATA_CORRUPTION_CHECK 1
#define TSS_USE_TRIGGER_FUNCTION 1
#define TSS_USE_STUCK_KEY 1
#define TSS_USE_NEGATIVE_BASELINE_DROP 1
#define TSS_USE_AUTO_HW_RECALIBRATION 1

/* Callback Definition */
#define TSS_ONFAULT_CALLBACK TSS_fOnFault
#define TSS_ONINIT_CALLBACK TSS_fOnInit
#define TSS_ONPROXIMITY_CALLBACK TSS_fOnProximity

/* Debug Options */
#define TSS_ENABLE_DIAGNOSTIC_MESSAGES 1

/* Electrode Configuration */
#define TSS_N_ELECTRODES 14 /* Number of electrodes in the system */

/* Electrode's GPIOs configuration */
#define TSS_E0_P A /* Electrode port */
#define TSS_E0_B 0 /* Electrode bit */
#define TSS_E1_P A /* Electrode port */
#define TSS_E1_B 2 /* Electrode bit */

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 2-25

#define TSS_E2_P B /* Electrode port */
#define TSS_E2_B 0 /* Electrode bit */
#define TSS_E3_P B /* Electrode port */
#define TSS_E3_B 1 /* Electrode bit */
#define TSS_E4_P A /* Electrode port */
#define TSS_E4_B 1 /* Electrode bit */
#define TSS_E5_P A /* Electrode port */
#define TSS_E5_B 3 /* Electrode bit */
#define TSS_E6_P B /* Electrode port */
#define TSS_E6_B 4 /* Electrode bit */
#define TSS_E7_P B /* Electrode port */
#define TSS_E7_B 3 /* Electrode bit */

/* Electrode measurement method specification */
#define TSS_E8_TYPE TSI0_CH5 /* Measurement Method for E8 */
#define TSS_E9_TYPE TSI0_CH0 /* Measurement Method for E9 */
#define TSS_E10_TYPE TSI0_CH1 /* Measurement Method for E10 */
#define TSS_E11_TYPE TSI0_CH2 /* Measurement Method for E11 */
#define TSS_E12_TYPE TSI0_CH8 /* Measurement Method for E12 */
#define TSS_E13_TYPE TSI0_CH9 /* Measurement Method for E13 */

/* Electrode’s noise amplitude filter size configuration */
#define TSS_E0_NOISE_AMPLITUDE_FILTER_SIZE 100/* Amplitude Filter size for E0 */
#define TSS_E1_NOISE_AMPLITUDE_FILTER_SIZE 150/* Amplitude Filter size for E1 */
#define TSS_E2_NOISE_AMPLITUDE_FILTER_SIZE 50/* Amplitude Filter size for E2 */

/* Shield Configuration */
#define TSS_E0_SHIELD_ELECTRODE 11 /* Assign shield electrode 11 to E0 */
#define TSS_E1_SHIELD_ELECTRODE 11 /* Assign shield electrode 11 to E1 */
#define TSS_E5_SHIELD_ELECTRODE 11 /* Assign shield electrode 11 to E5 */

/* Signal Divider Configuration */
#define TSS_E0_SIGNAL_DIVIDER 2 /* Assign signal divider to E0 */
#define TSS_E3_SIGNAL_DIVIDER 3 /* Assign signal divider to E3 */

/* Signal Multiplier Configuration */
#define TSS_E0_SIGNAL_MULTIPLIER 3 /* Assign signal multiplier to E0 */
#define TSS_E9_SIGNAL_MULTIPLIER 2 /* Assign signal multiplier to E9 */

/* Controls configuration */
#define TSS_N_CONTROLS 4
#define TSS_C0_TYPE TSS_CT_SLIDER /* Control type */
#define TSS_C0_ELECTRODES 3 /* Number of electrodes in the control */
#define TSS_C0_STRUCTURE cVolSlider /* Name of the C&S struct to create */
#define TSS_C0_CALLBACK VolCbk /* Identifier of the user's callback */
#define TSS_C1_TYPE TSS_CT_KEYPAD /*Control type */
#define TSS_C1_ELECTRODES 2 /* Number of electrodes in the control */
#define TSS_C1_KEYS {0x3,0x1,0x2} /* Keypad groups definition*/
#define TSS_C1_STRUCTURE cKey1 /* Name of the C&S struct to create */
#define TSS_C1_CALLBACK KeyCbk /* Identifier of the user's callback */
#define TSS_C2_TYPE TSS_CT_AROTARY /* Control type */
#define TSS_C2_ELECTRODES 3 /* Number of electrodes in the control */
#define TSS_C2_STRUCTURE cARotary /* Name of the C&S struct to create */

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

2-26 Freescale Semiconductor

#define TSS_C2_CALLBACK ARotCbk /* Identifier of the user's callback */
#define TSS_C3_TYPE TSS_CT_MATRIX /* Control type */
#define TSS_C3_ELECTRODES_X 3 /* Number of X electrodes in the control */
#define TSS_C3_ELECTRODES_Y 3 /* Number of Y electrodes in the control */
#define TSS_C3_STRUCTURE cMatrix /* Name of the C&S struct to create */
#define TSS_C3_CALLBACK MatCbk /* Identifier of the user's callback */

/* Timer Specific parameters */
#define TSS_HW_TIMER FTM1 /* Hardware Timer name */
#define TSS_SENSOR_PRESCALER 2 /* Prescaler for HW Timer */
#define TSS_SENSOR_TIMEOUT 511 /* Timeout for HW Timer */
#define TSS_SENSOR_PROX_PRESCALER 1 /* Prescaler in proximity mode */
#define TSS_SENSOR_PROX_TIMEOUT 1024 /* Timeout in proximity mode */

/* TSI Specific parameters */

/* Required TSI Configuration */
#define TSS_TSI_RESOLUTION 10/* TSI Resolution in bits */
#define TSS_TSI_EXTCHRG_LOW_LIMIT 1
#define TSS_TSI_EXTCHRG_HIGH_LIMIT 31
#define TSS_TSI_PS_LOW_LIMIT 0
#define TSS_TSI_PS_HIGH_LIMIT 7

/* Required TSI configuration in Proximity mode */
#define TSS_TSI_PROX_RESOLUTION 12/* TSI Resolution in bits */
#define TSS_TSI_PROX_EXTCHRG_LOW_LIMIT 10
#define TSS_TSI_PROX_EXTCHRG_HIGH_LIMIT 10
#define TSS_TSI_PROX_PS_LOW_LIMIT 7
#define TSS_TSI_PROX_PS_HIGH_LIMIT 7

/* Active Mode Clock Settings */
#define TSS_TSI_SCANC_AMCLKS 2 /*Set Input Active Mode Clock Source*/
#define TSS_TSI_SCANC_AMCLKDIV 1 /*Set Input Active Mode Clock Divider*/
#define TSS_TSI_SCANC_AMPSC 7 /*Set Input Active Mode Clock Prescaler*/

/* Low Power TSI definitions */
#define TSS_TSI_GENCS_LPCLKS 1 /* Set Low Power Mode Clock Source */

/* Delta Voltage configuration */
#define TSS_TSI_DVOLT 7 /* Set TSI Delta Voltage */

2.3 TSS version information
The TSS_API.h file provides information about the TSS release version. This may help to manage
versions of the TSS product in custom applications.

The information about TSS release version is provided by following macros in TSS_API.h file:
#define __TSS__ X
#define __TSS_MINOR__ Y

Low-Level Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 2-27

#define __TSS_PATCHLEVEL__ Z

#define __TSS_VERSION__ (__TSS__ * 10000 + __TSS_MINOR__ * 100 +
__TSS_PATCHLEVEL__)

Where:
• X — Major version of the TSS release
• Y — Minor version of the TSS release
• Z — Patch version of the TSS release

Macro __TSS_VERSION__ can be used directly for explicit detection of the latest software version.

Touch Sensing Software API Reference Manual, Rev. 7

-1 Freescale Semiconductor

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-2

Chapter 3
Application Interface
This section describes the TSS library initialization task function and how it is used by an application. It
also presents the configuration and status structure of the library and how to manipulate it using the
TSS_SetSystemConfig function.

Each control in the application has assigned configuration and status structure. Its parameters depend on
control type. This section covers the configuration and status structure for each control type and
information on how to manipulate them using the control configuration function. The section also
describes callback functions for each control type.

The TSS_API.h file contains the function prototypes and variables declaration of the application interface.
This file must be included in the applications source code that manages the TSS library.

3.1 TSS initialization function
This function initializes the data structures and low level routines of the library with default values. The
OnInit callback is executed during the function call. It is important to have the MCU and peripherals clock
configured before calling the TSS_Init()function or do it during the OnInit calback.

Function prototype

The TSS initialization function has the following prototype defined in the TSS_API.h file:
UINT8 TSS_Init(void);

Input parameters
None

Return value
The return value is an unsigned byte with the following possible return values defined in the file
TSS_StatusCodes.h:

3.2 TSS task function
This function must be called periodically by the application to give the TSS library a CPU time. The
TSS_Task() routine takes care of measurement initialization acquiring the sample and processing the
capacitance signal values. Depending on the measurement method selected for given electrodes, the
physical sampling is either performed by the HW module (for example,TSI) or directly by the TSS_Task()
routine. This influences the duration of the TSS_Task() execution as well as the number of times it must
be called before one full set of samples are taken and processed. Status of the processing is reported by the
TSS_Task() return value.

Return Value Description

TSS_STATUS_OK TSS initialization has succesfully finished

TSS_STATUS_RECALIBRATION_FAULT The fault occured during the recalibration of low level hardware

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-3 Freescale Semiconductor

Function prototype

The TSS task function has the following prototype defined in the TSS_API.h file:
UINT8 TSS_Task(void);

Input parameters
None

Return value
The return value is an unsigned byte with the following possible return values defined in the file
TSS_StatusCodes.h:

NOTE
It is not recommended to perform any TSS register changes during electrode processing, that is
until the TSS_Task() returns TSS_STATUS_OK.

3.3 TSS task sequenced function
The function TSS_TaskSeq() is a more “atomic” alternative to TSS_Task(). The TSS_TaskSeq()must
also be called periodically by the application to provide the CPU time to the TSS library. Only one
electrode is processed during a single call, the execution therefore takes less time and enables a smoother
multitasking of other processes which are handled simultaneously with the TSS_Task(). The principle for
two phase processing of electrodes is the same as in the TSS_Task(). As the function is periodically
executed, it processes all electrodes and decoders.

Function prototype

The TSS task sequenced function has the following prototype defined in the TSS_API.h file:
UINT8 TSS_TaskSeq(void);

Input parameters
None

Return value

The return value is an unsigned byte with the following possible return values defined in the file
TSS_StatusCodes.h:

Return Value Description

TSS_STATUS_OK TSS task finished the measurement of all electrodes and has
evaluated the values

TSS_STATUS_PROCESSING Measurement of electrodes in progress or the TSS task has not
finished the evaluation

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-4

NOTE
It is not recommended to perform any TSS register changes during electrode
array processing, that is until the TSS_TaskSeq() does not return
TSS_STATUS_OK.

3.4 TSS Library Configuration and Status Registers
The TSS library Control and Status (C&S) registers are the main application interface to the TSS library.
The application may use the registers to customize library operation and determine its status.

Although the C&S registers are located in RAM, they are read-only and declared as constant values for an
application. This prevents a user from modifying status values or corrupting it with invalid configuration
values.

3.4.1 Writing to the Configuration and Status Registers
To change values in the Configuration and Status register, the TSS_SetSystemConfig function must be
called. The function may reinitialize low level hardware if needed. The function is declared in the
TSS_API.h file.

Function prototype
UINT8 TSS_SetSystemConfig(UINT8 u8Parameter, UINT8 u8Value)

Input parameters

Return value

The return value is an unsigned byte with the following possible return values defined in the file
TSS_StatusCodes.h:

Return Value Description

TSS_STATUS_OK TSS sequenced task finished measurement of all electrodes and
evaluated the values

TSS_STATUS_PROCESSING Measurement of electrodes is in progress or the TSS sequenced task
has not finished the evaluation

Type Name Valid Range and Values Description

UINT8 u8Parameter Any of the parameter codes provided by the
configuration and status management

Code indicating the parameter configured

UINT8 u8Value Depends on the specific parameter configured The new desired value for the respective configuration
register

Return Value Description

TSS_STATUS_OK Configuration was done successfully

TSS_ERROR_CONFSYS_NOT_IDLE —

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-5 Freescale Semiconductor

3.4.2 Reading the Configuration and Status registers
To read values from the Configuration and Status register, the application can either access the system
structures directly or can use the TSS_GetSystemConfig function. The function is declared in the
TSS_API.h file.

Function prototype
UINT8 TSS_GetSystemConfig(UINT8 u8Parameter)

Input parameters

Return value

The return value corresponds to an actual unsigned byte value of a register specified by u8Parameter.

The second option is a direct access to the TSS register structure. The Configuration and Status registers
of the library are divided into two types. One set of registers is contained inside a structure, while the others
are declared in global arrays. Register structure is defined as follows.

TSS_ERROR_CONFSYS_ILLEGAL_PARAMETER Configuration was not successful due to illegal parameter
number

TSS_ERROR_CONFSYS_READ_ONLY_PARAMETER Configuration was not successful as the user attempted to
modify a read-only parameter

TSS_ERROR_CONFSYS_OUT_OF_RANGE Configuration was not successful as the new value was out
of the range

TSS_ERROR_CONFSYS_LOWPOWER_SOURCE_NA Configuration was not successful due to low power control
source device is not selected

TSS_ERROR_CONFSYS_INCORRECT_LOWPOWER_EL Configuration was not successful because the selected
electrode does not belong to the low power control source
device

TSS_ERROR_CONFSYS_TRIGGER_SOURCE_NA Configuration was not successful because the trigger source
device is not selected

TSS_ERROR_CONFSYS_PROXIMITY_CALLBACK_NA Configuration was not successful because proximity
callback was not defined

TSS_ERROR_CONFSYS_RECALIBRATION_FAULT Configuration was not successful due to the recalibration
fault

TSS_ERROR_CONFSYS_SHIELD_NA Configuration was not successful because shielding
functionality was not enabled

Type Name Valid Range and Values Description

UINT8 u8Parameter Any of the parameter codes provided by the
configuration and status management

Code indicating the parameter configured

Return Value Description

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-6

typedef struct{
volatile const TSS_SYSTEM_FAULTS Faults; /Note 1
volatile const TSS_SYSTEM_SYSCONF SystemConfig; //Note 2
volatile const UINT8 Reserved;
volatile const UINT8 NSamples;
volatile const UINT8 DCTrackerRate;
volatile const UINT8 ResponseTime;
volatile const UINT8 StuckKeyTimeout;
volatile const UINT8 LowPowerScanPeriod;
volatile const UINT8 LowPowerElectrode;
volatile const UINT8 LowPowerElectrodeSensitivity;
volatile const TSS_SYSTEM_TRIGGER SystemTrigger; //Note 3
volatile const UINT8 AutoTriggerModuloValue;

} TSS_CSSystem;

NOTE
1. The TSS_SYSTEM_FAULTS type is an eight bit-field structure described in Section 3.4.4, “Faults

register.”
2. The TSS_SYSTEM_SYSCONF type is an 16 bit-field structure described in Section 3.4.5,

“System Configuration register.”
3. The TSS_SYSTEM_TRIGGER type is an eight bit-field structure described in Section 3.4.13,

“System Trigger register.”

The TSS library configuration and control structure instance is named:

tss_CSSys

To read any variable inside this structure, use the standard C structure read statements. Access example of
the Fault register in C:

Temp = tss_CSSys.Faults;

To ensure a quick access to the electrode specific most critical configuration registers, the library defines
the following registers as global arrays.

• const unsigned char tss_au8Sensitivity[TSS_N_ELECTRODES];
• const unsigned char tss_au8ElectrodeEnablers[((TSS_N_ELECTRODES – 1)/8) + 1];
• const unsigned char tss_au8ElectrodeStatus[((TSS_N_ELECTRODES – 1)/8) + 1];
• const unsigned char tss_u8ConfigChecksum;

To read any of these registers, use the standard C array read statements. Access an example of the
au8Sensitivity register in C:

Temp = tss_au8Sensitivity[Electrode];

As mentioned above although the registers can be read directly as the part of the configuration structure
or from global arrays, they all must be written using the TSS_SetSystemConfig() function. For more
details, refer to Section 3.4.1, “Writing to the Configuration and Status Registers.”

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-7 Freescale Semiconductor

3.4.3 Configuration and Status registers list
Table 3-1. Configuration and Status registers

Register
Number

Size
[bytes] Register Name Section Initial value Brief Description

0x00 1 Faults Section 3.4.4, “Faults
register”

0x00 RW — Shows the faults generated
by the system.

0x01 2 SystemConfig Section 3.4.5,
“System
Configuration
register”

0x00 RW — Main configuration of the
TSS library.

0x02 1 NSamples Section 3.4.6,
“Number of Samples
registers”

0x08 RW — Determines the number of
samples scanned for a single
measurement.

0x03 1 DCTrackerRate Section 3.4.7, “DC
Tracker Rate register”

0x64 RW — Determines how often the
recalibration function will occur.
This number represents the number
of calls to the TSS task function is
required before recalibration.

0x04 1 ResponseTime Section 3.4.8,
“Response Time
register”

0x04 RW — Configures the number of
TSS task calls necessary to
determine if a key is pressed or not.

0x05 1 StuckKeyTimeout Section 3.4.9,
“Stuck-key Timeout
register”

0x00 RW — Configures the number of
TSS task calls necessary to detect a
key stuck.

0x06 1 LowPowerScanPeriod Section 3.4.10, “Low
Power Scan Period
register

0x0F RW — Determines value of the
low power scan period.

0x07 1 LowPowerElectrode Section 3.4.11, “Low
Power Electrode
register

0x00 RW — Number of the electrode
scanned in low power mode and
proximity mode.

0x08 1 LowPowerElectrodeSensitivi
ty

Section 3.4.12, “Low
Power Electrode
Sensitivity register

0x3F RW — Sensitivity of the electrode
¡’scanned in low power mode and
proximity mode.

0x09 1 SystemTrigger Section 3.4.13,
“System Trigger
register

0x01 RW — Configures TSS system
triggering modes.

0x0A 1 AutoTriggerModuloValue Section 3.4.14, “Auto
Trigger Modulo Value
register

0xFF RW — Defines the modulo value
of the Autotrigger clock source

0x0B A Sensitivity Section 3.4.15,
“Sensitivity
Configuration
register”

0x3F RW — Each byte represents the
sensitivity for each electrode. This
value is the required difference
between any instant value and the
baseline to indicate a touch.

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-8

3.4.4 Faults register
This register holds the information regarding why an electrode cannot be read. When this fault occurs, the
library stores the information about the causes of the fault. The HCS08 version of the library allows you
to enable a software interrupt to read the Faults register and determine what caused the fault. All HCS08,
ColdFire V1, Coldfire+ , ARM Cortex-M0, and ARM Cortex-M4 version allows you to use the OnFault
callback to handle the fault situation as indicated by the Fault register.

Figure 3-1. Faults register

0x0B + A B ElectrodeEnablers Section 3.4.16,
“Electrode enablers”

All electrodes
enabled (all
bytes in 0xFF)

RW — Each bit represents the
enabler of an electrode. If a bit is 0,
then the corresponding electrode
will not be scanned.

0x0B + A +
B

C ElectrodeStatus Section 3.4.17,
“Electrode status”

All electrodes in
0x00

R — Each bit represents the current
status of an electrode. 1 is electrode
detected as touched, and 0 is
electrode detected as untouched.

0x0B + A +
B + C

1 ConfigChecksum Section 3.4.18,
“Configuration
Checksum Register”

undetermined R — This register contains the
checksum value to guarantee the
validity of the information
contained in C&S registers.

Register Number = 0x00

 7 6 5 4 3 2 1 0

R SmallTriggerP
eriod

Data
Corruption

Small
Capacitor

Charge
TimeoutW

Reset: 0 0 0 0 0 0 0 0

Unimplemented or reserved

Table 3-1. Configuration and Status registers (continued)

Register
Number

Size
[bytes] Register Name Section Initial value Brief Description

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-9 Freescale Semiconductor

3.4.5 System Configuration register
This register is used to enable the library features. You can change these features depending on your
application needs.

Table 3-2. Faults register description

Signal Description

SmallTriggerPe
riod

Indicates if the trigger period is long enough to cover needs of the time for the scanning of all active electrodes. This
bit must be cleared by writing a 0 to it through the configuration function. If the SWI is enabled in the System
Configuration register, an interrupt will be generated if this condition is met. If the OnFault callback is enabled, then
the callback will be generated if this condition is met. The system will be disabled to prevent cyclic fault and needs
34to be reenabled.
1 — SmallTriggerPeriod detected
0 — No SmallTriggerPeriod detected

Data
Corruption

Indicates if a change in the system configuration data has been detected through an invalid direct access to memory.
This bit must be cleared by writing a 0 to it through the configuration function. If the SWI is enabled in the System
Configuration register, an interrupt is produced if this condition is met. If the OnFault callback is enabled, then the
callback will be generated if this condition is met. The system will be disabled to prevent cyclic fault and needs to
be reenabled. If the data corruption check function is not enabled in TSS_SystemSetup.h the bit is not functional,
refer to Section 2.1.18, “Data corruption check".
1 — Unaccounted change detected
0 — No invalid change detected

Small
Capacitor

Indicates if the required voltage level change was detected too fast in one or more electrodes. This bit must be
cleared by writing a 0 to it through the configuration function. If the SWI is enabled in the System Configuration
register, an interrupt will be produced if this condition is met. If the OnFault callback is enabled, then the callback
will be generated if this condition is met. The system will disable the electrode(s) that caused this fault. If automatic
hardware recalibration is enabled in TSS_SystemSetup.h then the hardware recalibration is also executed in the case
of electrode fault.
1 — Small capacitor detected
0 — No small capacitor detected

Charge
Timeout

Indicates if the capacitor did not reach the required voltage level during the configured time an one or more
electrodes. This bit must be cleared by writing a 0 to it through the configuration function. If the SWI is enabled in
the System Configuration register, an interrupt will be generated if this condition is met. If the OnFault callback is
enabled, then the callback will be generated if this condition is met. The system will disable the electrode(s) that
caused this fault. If automatic hardware recalibration is enabled in TSS_SystemSetup.h then the hardware
recalibration is also executed in the case of electrode fault.
1 — Charge timeout detected
0 — No timeout fault detected

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-10

Figure 3-2. System Configuration register

Register Number = 0x01

 15 14 13 12 11 10 9 8

R
System Enabler SWI Enabler DC-Tracker

Enabler
Stuck-key
Enabler Reserved Reserved Reserved

Water
Tolerance
EnablerW

Reset 0 0 0 0 0 0 0 0

 7 6 5 4 3 2 1 0

R Proximity
Enabler

Low Power
Enabler Reserved Reserved Reserved

Hardware
Recalibratio

n Starter

System
Reset

Manual
Recalibration

StarterW

Table 3-3. System Configuration register descriptions

Signal Description

System Enabler 1 — System is enable
0 — System is disable

SWI Enabler If any fault occurs (refer to Faults register), an SWI will be generated. This bit has effect only for the HCS08 version
of the TSS library. The OnFault callback can be used for the same purpose on all HCS08, ColdfireV1,
ARMCortex-M4 and ARMCortex-M0 versions of the TSS library.
1 — SWI is generated with any fault
0 — No SWI is generated by faults

DC-Tracker
Enabler

1 — The DC Tracker filtering mechanism is enabled
0 — The DC Tracker filtering mechanism is disabled

Stuck-key
Enabler

1 — Stuck-key is enabled
0 — Stuck-key is disabled

Water
Tolerance
Enabler

1 — Water tolerance is enabled
0 — Water tolerance is disabled

Proximity
Enabler

1 — Proximity Mode is enabled
0 — Proximity Mode is disabled

Low Power
Enabler

1 — Low Power Mode is enabled
0 — Low Power Mode is disabled

Hardware
Recalibration

Starter

Writing a 1 to this register schedules a low level hardware calibration for the next time the TSS task is executed.
The recalibration is performed only on electrodes which are not touched. If more electrodes belong to the same
hardware module then all these electrodes need to be released.

System Reset Writing a 1 to this register resets the system immediately

Manual
Recalibration

Starter

Writing a 1 to this register schedules a baseline calibration for the next time the TSS task is executed

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-11 Freescale Semiconductor

3.4.6 Number of Samples registers

Figure 3-3. Number of Samples register

3.4.7 DC Tracker Rate register

Figure 3-4. DC Tracker Rate register

Register Number = 0x02

 7 6 5 4 3 2 1 0

R
NSamples

W

Reset: 0 0 0 0 1 0 0 0

Table 3-4. Number of Samples register descriptions

Signal Description

NSamples Determines the number of capacitance samples acquired to obtain a single measurement. These samples are taken
per electrode per task execution.
1–32 — n samples taken

Register Number = 0x03

 7 6 5 4 3 2 1 0

R
DC Tracker Exec Rate

W

Reset: 0 1 1 0 0 1 0 0

Table 3-5. DC Tracker Rate register description

Signal Description

DC Tracker
Exec Rate

Determines how often the recalibration function occurs. This number represents the number of calls to The TSS task
function required before recalibration. If this register is set to 0, the DC tracker feature will be disabled.
0 — DC tracker feature disabled
1–255 — DC tracker executed every n task executions

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-12

3.4.8 Response Time register

Figure 3-5. Response Time register

3.4.9 Stuck-key Timeout register
This register configures how many times the library task must keep detecting a touch before it performs a
recalibration task. This feature allows you to protect your application from false permanent touches caused
by an external increase of the electrodes capacitance. The electrode is only considered touched until the
recalibration occurs. If the stuck-key function is not enabled in TSS_SystemSetup.h then writing to this
register is not possible, refer to Section 2.1.19, “Stuck-key function".

Figure 3-6. Stuck-key Timeout register

Register Number = 0x04

 7 6 5 4 3 2 1 0

R
Response time

W

Reset: 0 0 0 0 0 1 0 0

Table 3-6. Response Time register description

Signal Description

Response Time Determines the number of measurements required to detect the following:
 • Status change in any electrode
 • Initial recalibration
 • Capacitance Baseline shift
Capacitance samples are taken per task execution, and therefore this value represents the number of calls to the TSS
task function required for an electrode status change detection.
1–32 — n measurements used

Register Number = 0x05

 7 6 5 4 3 2 1 0

R
Stuck Key Timeout

W

Reset: 0 0 0 0 0 0 0 0

Table 3-7. Stuck-key Timeout register description

Signal Description

Stuck Key
Timeout

Determines how many task executions an electrode must be detected as touched before recalibrating that electrode
and then detect it was untouched. If this value is set to 0, the stuck key feature is disabled.
0 — Stuck key feature disabled
1–255 — Electrode recalibrated after n task executions.

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-13 Freescale Semiconductor

3.4.10 Low Power Scan Period register
This register represents the value of the scan period in the low power mode. The low power scan period
value is selected from the list of values, see Table 3-8. If the low power control source is not selected in
TSS_SystemSetup.h then writing to this register is not possible, refer to Section 2.1.17, “Low power
control source".

If TSI is used for the low power mode control source, the register content is mirrored to the
TSI_GENCS[LPSCNITV]. If the TSI does not provide the definition of the LPSCNITV then the low
power scan register is not used.

Figure 3-7. Low Power Scan Period register

3.4.11 Low Power Electrode register
This register represents the electrode number scanned in the low power mode or in proximity mode. In low
power mode and proximity mode, only one pin is active and is able to perform electrode capacitance
measurements.

The low power electrode number must be selected from the module related to the low power control source
defined by TSS_USE_LOWPOWER_CONTROL_SOURCE in TSS_SystemSetup.h. In case the
electrode did not match this condition, the System Setup Config Error is generated. If the low power

Register Number = 0x06

 7 6 5 4 3 2 1 0

R
Low Power Scan Period

W

Reset: 0 0 0 0 1 1 1 1

Table 3-8. Low Power Scan register description

Signal Description

Low Power
Scan Period

Determines scan period in low power mode. Only selection from the list of predefined values is allowed.
0000 -> 1 ms scan interval
0001 -> 5 ms scan interval
0010 -> 10 ms scan interval
0011 -> 15 ms scan interval
0100 -> 20 ms scan interval
0101 -> 30 ms scan interval
0110 -> 40 ms scan interval
0111 -> 50 ms scan interval
1000 -> 75 ms scan interval
1001 -> 100 ms scan interval
1010 -> 125 ms scan interval
1011 -> 150 ms scan interval
1100 -> 200 ms scan interval
1101 -> 300 ms scan interval
1110 -> 400 ms scan interval
1111 -> 500 ms scan interval

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-14

control source is not selected or neither proximity callback defined in TSS_SystemSetup.h then writing to
this register is not possible, refer to Section 2.1.17, “Low power control source".

If the TSI module is used as a low power control source, the register content is used to setup the
TSI_PEN[LPSP].

]

Figure 3-8. Low Power Electrode register

3.4.12 Low Power Electrode Sensitivity register
The Low Power Sensitivity register defines the sensitivity value used to wake from the low power mode
or sensitivity threshold for proximity detection. This sensitivity means relative delta threshold value from
a baseline level.

The low power control source device manages scanning the selected electrode during the Low Power
mode. When the electrode value exceeds a defined value the TSS wakes the device from the low power
mode and enters active mode. If the low power control source is not selected or neither proximity callback
defined in TSS_SystemSetup.h then writing to this register is not possible, refer to Section 2.1.17, “Low
power control source".

Figure 3-9. Low Power Electrode Sensitivity register

Register Number = 0x07

 7 6 5 4 3 2 1 0

R
Low Power Electrode Number

W

Reset: 0 0 0 0 0 0 0 0

Table 3-9. Low Power Electrode register description

Signal Description

Low Power
Electrode
Number

Number of the electrodes scanned in the low power mode or in proximity mode. The range of the electrode numbers
is 0 – 63

Register Number = 0x08

 7 6 5 4 3 2 1 0

R
Low Power Electrode Sensitivity

W

Reset: 0 0 1 1 1 1 1 1

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-15 Freescale Semiconductor

3.4.13 System Trigger register
This register is used to enable and set up the library trigger features. If the trigger function is not enabled
in TSS_SystemSetup.h then writing to this register is not possible, refer to Section 2.1.16, “Trigger
function".

.

Figure 3-10. System Trigger register

3.4.14 Auto Trigger Modulo Value register
If TSI module is used as a trigger source and AUTO triggering mode is selected then the Auto Trigger
Modulo Value register defines the period of regular scanning during the AUTO triggering mode. This is a
modulo value of the TSI active mode clock defined in the TSS_SystemSetup.h. Refer to Section 2.1.38,
“TSI active mode clock settings". If the trigger function is not enabled in TSS_SystemSetup.h then writing
to this register is not possible, refer to Section 2.1.16, “Trigger function".

Table 3-10. Low Power Electrode Sensitivity register description

Signal Description

Low Power
Electrode
Sensitivity

The sensitivity value for wakeup from low power mode. The range of the sensitivity is 1–255

Register Number = 0x09

 7 6 5 4 3 2 1 0

R
Reserved Reserved Reserved Reserved Reserved SWTrigger TriggerMode TriggerMode

W

Reset 0 0 0 0 0 0 0 1

Table 3-11. System Trigger register descriptions

Signal Description

TriggerMode 0x00 —> TSS_TRIGGER_MODE_AUTO
0x01 —> TSS_TRIGGER_MODE_ALWAYS
0x10 —> TSS_TRIGGER_MODE_SW
0x11 —> Reserved
TriggerMode is not set if SWTigger bit is set in the same moment.

SWTrigger Write only bit. This bit controls software triggering scan execution. In case the TSS_TRIGGER_MODE_SW is
selected, write 1 to the software trigger performs one scan cycle execution, otherwise the bit is not functional.

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-16

Figure 3-11. Auto Triger Modulo Value register

3.4.15 Sensitivity Configuration register
This set of registers contain a sensitivity value for each electrode. The sensitivity value is an 8-bit value
that represents the minimum difference between an instant signal value versus the baseline required to
indicate a touch. The sensitivity does not need to be set if Automatic Sensitivity Calibration is enabled,
refer to Section A.3.5, “Automatic Sensitivity Calibration.”

Figure 3-12. Sensitivity Configuration register

3.4.16 Electrode enablers
This set of registers contain the information about which electrode is enabled. Each bit represents one
electrode. Bit value 1 represents enabled electrode, and a 0 represents disabled electrode. It is important to
note that certain faults automatically disable electrodes and it is then up to the application to re-enable it.
If automatic hardware recalibration is enabled in TSS_SystemSetup.h then the hardware recalibration bit
is automatically set in the System Config register which leads to hardware recalibration in the next
TSS_Task execution.

Register Number = 0x0A

 7 6 5 4 3 2 1 0

R
Auto Trigger Modulo Value

W

Reset: 1 1 1 1 1 1 1 1

Table 3-12. Auto Trigger Modulo Value register description

Signal Description

Auto Trigger
modulo Value

The Auto Trigger Modulo Value register defines the period of scanning during the AUTO triggering mode

Register Number = 0x0B

 7 6 5 4 3 2 1 0

R
Sensitivity

W

Reset: 0 0 1 1 1 1 1 1

Table 3-13. Sensitivity Configuration register description

Signal Description

Sensitivity Represents the capacitance threshold for an electrode detected as touched, relative to the baseline value of that
electrode.
2–127 — Electrode sensitivity

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-17 Freescale Semiconductor

The arrangement of electrodes with bits is as follows:
• Register 0, bit 0 — Electrode 0
• Register 0, bit 1 — Electrode 1
• Register 0, bit 7 — Electrode 7
• Register 1, bit 0 — Electrode 8
• Register 1, bit 7 — Electrode 15
• And so on

If the electrode enabler settings are changed then hardware recalibration is scheduled for system adaptation
to the new electrode configurations. The hardware recalibration starter bit in the System Configuration
register is automatically set for this purpose, refer to Section 3.4.5, “System Configuration register".

3.4.17 Electrode status
This set of registers provides the electrode status (touched or untouched). Each bit represents one
electrode. A 1 represents a touched electrode, while a 0 represents an untouched electrode.

The arrangement of electrodes with bits is as follows:
• Register 0, bit 0 — Electrode 0
• Register 0, bit 1 — Electrode 1
• Register 0, bit 7 — Electrode 7
• Register 1, bit 0 — Electrode 8
• Register 1, bit 7 — Electrode 15
• etc

3.4.18 Configuration Checksum Register
This read-only register contains the checksum value to guarantee the validity of the information contained
in C&S registers. When the TSS_SetSystemConfig() function is called to update a C&S register, a
checksum algorithm is performed and the result is stored in this register. The TSS_Task() function checks
the integrity of this checksum. If it fails, the data corruption bit of the fault register is set. This function
can be disabled in TSS_SystemSetup.h by define TSS_USE_DATA_CORRUPTION_CHECK, refer to
Section 2.1.18, “Data corruption check.”

NOTE
If you write to the Configuration and Status registers directly without using
the TSS_SetSystemConfig() function, the Checksum register will not be
updated and the data corruption bit will be set on the next execution of the
TSS_Task() function.

3.5 Keypad decoder API
This section describes the keypad decoder API. It describes the keypad Configuration and Status registers,
the TSS_SetKeypadConfig() function used to write to these registers, and the data structure used for

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-18

reading this register. This section also describes the callback function and its parameters for keypad
control.

Each application keypad control has its respective Configuration and Status register and callback function.

3.5.1 Writing to the Configuration and Status registers
To change values in the Configuration and Status register, use the TSS_SetKeypadConfig function
declared in the TSS_API.h file.

Function prototype
UINT8 TSS_SetKeypadConfig(TSS_CONTROL_ID u8ControlId, UINT8 u8Parameter, UINT8 u8Value);

Input parameters
Return valueReturn value

Return value

The return value is an unsigned byte with the following possible return values defined in the file
TSS_StatusCodes.h:

3.5.2 Reading the Configuration and Status registers
There are two options how to read keypad Configuration and Status register structure. The first option uses
TSS function declared in the TSS_API.h file.

Type Name Valid range/values Description

 TSS_CONTROL_ID u8ControlId Any valid control Id of the
appropriate control type

Identifier of the control
configured, stored in the first
element of the control’s C&S
structure

UINT8 u8Parameter Any of the parameter codes
provided by keypad decoder

Code indicating the parameter
configured

UINT8 u8Value Depends on the specific
parameter configured

New desired value, for the
respective configuration register

Return Value Description

TSS_STATUS_OK Configuration was executed successfully

TSS_ERROR_KEYPAD_ILLEGAL_CONTROL_TYPE Configuration was not executed. The Id parameter did not match the
control type structure the user was trying to modify.

TSS_ERROR_KEYPAD_READ_ONLY_PARAMETER Configuration was not done as the user attempts to modify a read-only
parameter.

TSS_ERROR_KEYPAD_OUT_OF_RANGE Configuration was not done because the new value was out of the
established boundaries.

TSS_ERROR_KEYPAD_ILLEGAL_PARAMETER Configuration was not done due to an illegal parameter number.

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-19 Freescale Semiconductor

Function prototype
UINT8 TSS_GetKeypadConfig(TSS_CONTROL_ID u8ControlId, UINT8 u8Parameter);

Input parameters

Return value

The return value corresponds to the actual unsigned byte value of the keypad register specified by
u8ControlId and u8Parameter.

The second option is to directly access the configuration and status structure for the specific data. The
structure name is defined by the application in the TSS_SystemSetup.h file using the following definition:

#define TSS_Cn_STRUCTURE cKey0

Where n is the Control number starting from 0 to the number of controls minus one.

The cKey0 name is just an example. The user can define any other name for each control configuration
and status structure.

typedef struct{
const TSS_CONTROL_ID ControlId; //Note 1
const TSS_KEYPAD_CONTCONF ControlConfig; //Note 2
UINT8 BufferReadIndex;
const UINT8 BufferWriteIndex;
const TSS_KEYPAD_EVENTS Events; //Note 3
const UINT8 MaxTouches;
const UINT8 AutoRepeatRate;
const UINT8 AutoRepeatStart;
const UINT8 * const BufferPtr;

} TSS_CSKeypad;

NOTE
1. The TSS_CONTROL_ID type is an eight bit-field structure described in Section 3.5.4, “Control

ID register.”
2. The TSS_KEYPAD_CONTCONF type is an eight bit-field structure described in Section 3.5.5,

“Control Configuration register.”
3. The TSS_KEYPAD_EVENTS type is an eight bit-field structure described in Section 3.5.9,

“Event Control and Status register.”

Using the example of the structure cKey0, to read Control ID register use:
Temp = cKey0.ControlId;

Type Name Valid range/values Description

 TSS_CONTROL_ID u8ControlId Any valid control Id of the
appropriate control type

Identifier of the control
configured, stored in the first
element of the control’s C&S
structure

UINT8 u8Parameter Any of the parameter codes
provided by each decoder

Code indicating the parameter
configured

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-20

3.5.3 Configuration and Status registers list
The table below describes the keypad control Configuration and Status registers, Control ID Register.

3.5.4 Control ID register
This read-only register contains the control's identifier code.

Table 3-14. Keypad Control Configuration and Status registers

Register
Number Size [bytes] Register Name Section Initial value Brief Description

0x00 1 ControlId Section 3.5.4, “Control ID
register”

Application
dependable

R — Displays the control
type and control number

0x01 1 ControlConfig Section 3.5.5, “Control
Configuration register”

0x00 RW — Configures overall
enablers of the object

0x02 1 BufferReadIndex Section 3.5.7,
“BufferReadIndex”

0x00 RW — Index of the first
unread element of the
events buffer

0x03 1 BufferWriteIndex Section 3.5.8,
“BufferWriteIndex”

0x00 R — Index of the first free
element of the buffer

0x04 1 Event Control and
Status Register

Section 3.5.9, “Event
Control and Status
register”

0x00 RW — Configures the
events that will be reported
by the controller. This
Register holds the Max
Key and Buffer Overflow
Flags

0x05 1 MaxTouches Section 3.5.10,
“MaxTouches register”

0x00 RW — Configures the
maximum number of keys
that can be pressed at once.

0x06 1 AutoRepeatRate Section 3.5.11, “Auto
Repeat Rate register”

0x00 RW — Configures the rate
at which keys will be
reported when they are
kept pressed and no
movement is detected.

0x07 1 AutoRepeatStart Section 3.5.12, “Auto
Repeat Start register”

0x00 RW — Configures the time
between a touch and an
auto-repeat event when the
key is kept pressed.

0x08 1 BufferPtr Section 3.5.6, “Buffer
Pointer register”

Assigned at
precompile
time

R — Address of the buffer
where the events for each
controller are stored

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-21 Freescale Semiconductor

Figure 3-13. Control ID Register

NOTE
The control number is assigned in the system setup module. This value is
unique for all controls, implying each control has a particular number
regardless of its type. The first assigned control number is zero.

3.5.5 Control Configuration register
This register configures overall behavior of the object.

Figure 3-14. Control Configuration register

Register Number = 0x00

 7 6 5 4 3 2 1 0

R Control Type Control Number

W

Reset: —1

1 Application dependable.

— — — — — — —

Encoding Control Type

001 Keypad

010 Slider

011 Rotary

100 Analog slider

101 Analog rotary

110 Matrix

100-111 Reserved

Register Number = 0x01

 7 6 5 4 3 2 1 0

R
Control Enabler Callback

Enabler Idle Enabler Idle Scan Rate
W

Reset: 0 0 0 0 0 0 0 0

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-22

3.5.6 Buffer Pointer register
This register defines the base address of the event buffer for a specific control. The event buffer is a circular
buffer with 16 elements. It stores every touch or release event that occurs in the control, this depends on
the events enabled in the Events Register.

The Keypad Events Register has the following 8-bit format:

Figure 3-15. Buffer Pointer register

Table 3-15. Control Configuration register description

Signal Description

Control
Enabler

Global enabler for the control. This determines if the electrodes of the control are scanned for detection.
1 — Control enabled
0 — Control disabled

Callback
Enabler

Enables or disables the use of the callback function. If it is enabled, the function will be called when one of the active
events in the Events Configuration registers occurs.
1 — Callback enabled
0 — Callback disabled

Idle Enabler Enables the possibility of the control to enter an Idle state when none of its electrodes are active. When enabled, the
control electrodes are scanned for detection at the Idle Scan Rate, instead of each task execution. If disabled while
in Idle state, the control immediately exits this state.
1 — Idle state enabled
0 — Idle state disabled

Idle Scan Rate Determines the rate at which the electrodes of the control are scanned for detection while no touch is detected within
the control. Once a touch is detected, this parameter has no effect.
1–31 — Electrodes are scanned for every n executions of the touch sensing task.

Register Number = 0x02

 7 6 5 4 3 2 1 0

R Event Type Key Number

W

Reset: —1

1 Assigned at TSS_Init

— — — — — — —

Table 3-16. Buffer Pointer register description

Signal Description

Event Type Indicates the type of event registered in the buffer
1 — Release event
0 – Touch event

Key Number Determines the key within keypad control on which the event has occurred
0–15 — Key presenting the event

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-23 Freescale Semiconductor

3.5.7 BufferReadIndex
This register stores the index of the first unread element of the events buffer. This index is used to start
reading the data from the buffer until it reaches the value of the Buffer Write Index. The user is responsible
for updating this value after Read operation, which can be automatically done with the
TSS_KEYPAD_BUFFER_READ macro.

Figure 3-16. BufferReadIndex register

Macro prototype
#define TSS_KEYPAD_BUFFER_READ(destvar,kpcsStruct)

This macro allows you to store the first unread element from the event buffer and update the value of the
Buffer Write Index register. When using this macro provide two parameters; destvar, and kpcsStruct.

Input parameters

Return value
None

3.5.8 BufferWriteIndex
This register stores the index value of the first free element in the buffer that is located one element after
the last event captured. This register is automatically updated when new events are stored in the buffer,
and is provided for reference during the read operations. The user should read the buffer until this index is
reached. Comparison made by the TSS_KEYPAD_BUFFER_EMPTY macro is explained later in this
document.

Register Number = 0x03

 7 6 5 4 3 2 1 0

R
Index value

W

Reset: 0 0 0 0 0 0 0 0

Table 3-17. BufferReadIndex Register description

Signal Description

Index value Determines the index of the first unread event in the events buffer
0–15 — Index of first unread element

Type Name Description

UINT8 destvar Name of the variable where the first unread element is stored.

CSKeypad kpcsStruct Name of the controller structure defined in the TSS_SystemSetup.h header
file. Refer to Section 2.1.31, “Control configuration and status structure” for
more details on the structures name

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-24

Figure 3-17. BufferWriteIndex register

Macro prototype
#define TSS_KEYPAD_BUFFER_EMPTY(kpcsStruct)

This macro enables you to know when the events buffer is empty. The macro performs a comparison
between the Buffer Read Index and the Buffer Write Index.

Input parameters

Return value

The macro performs a comparison between the first unread element index in the buffer and the first free
element index. It means that all the elements in the buffer have been read when the two indexes are equal.
If all the elements have been read, it returns 1, if not, it returns 0.

3.5.9 Event Control and Status register
This register contains bits used to enable or disable events that call the control callback function. It also
contains the maximun keys and buffer overflow status flags.

Figure 3-18. Event Control and Status register

Register Number = 0x04

 7 6 5 4 3 2 1 0

R Index value

W

Reset: 0 0 0 0 0 0 0 0

Table 3-18. BufferWriteIndex register description

Signal Description

Index value Determines the index of the first free element in the events buffer.
0–15 — Index of the first free element

Type Name Description

CSKeypad kpcsStruct Name of the controller structure defined by the user in the
TSS_SystemSetup.h header file. Refer to Section 2.1.31,
“Control configuration and status structure” for more details on
the structures name

Register Number = 0x05

 7 6 5 4 3 2 1 0

R
Max Keys Flag

Buffer
Overflow

Flag

Keys
Exceeded
Enabler

Buffer
Full/Overflow

Enabler

Auto-Repeat
Enabler

Release
Event

Enabler

Touch Event
EnablerW

Reset: 0 0 0 0 0 0 0 0

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-25 Freescale Semiconductor

NOTE
If touch and release events are both disabled, the control is automatically
disabled and must be re-enabled by the user in the Control Configuration
Register.

3.5.10 MaxTouches register
The MaxTouches register defines the maximum number of keys reported per touch. This feature can be
used to control the function when bigger area than expected is touched. For example, a multiplexed array
of electrodes where only two keys are needed to detect a value or function. In this case, the MaxTouches
register is configured with a value of two.

Table 3-19. Event Control and Status register description

Signal Description

Max Keys Fault Flag that indicates if the limit of keys pressed at the same time has been exceeded. The limit is defined by the
MaxTouches Register. In this case, any further key touches will be ignored until one key is at least released. This
flag will be automatically cleared after the fault condition turns false.
1 — Limit exceeded
0 — No excess keys

Buffer
Overflow Flag

This flag indicates if more events have been produced than the buffer’s free space. In this case the newest events are
lost and no more events can be logged. This flag is cleared by writing a 0 to this bit.
1 — Buffer overflowed
0 — Free space available

Keys Exceeded
Enabler

If this bit is set and the callback function enabled, the decoder calls the control callback function after the limit for
pressed keys is exceeded.
1 — Event enabled
0 — Event disabled

Buffer
Overflow
Enabler

If this bit is set and the callback function enabled, the decoder calls the control callback function after the circular
buffer for events is full or has been overflown.
1 — Event enabled
0 — Event disabled

Auto-repeat
Enabler

If this bit is set, the decoder stores a new touch event in the events buffer at the specified rate in case one key remains
at least pressed for the time configured in the Auto-repeat Start register. If the control’s callback function is enabled,
it is called at the same rate.
1 — Auto-repeat enabled
0 — Auto-repeat disabled

Release Event
Enabler

If this bit is set, the decoder will store released events in the events buffer. If the control’s callback function is
enabled, it will be called if an event occurs.
1 — Event enabled
0 — Event disabled

Touch Event
Enabler

If this bit is set, the decoder stores touch events in the events buffer. If the control’s callback function is enabled, it
will be called if an event occurs.
1 — Event enabled
0 — Event disabled

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-26

Figure 3-19. MaxTouches register

3.5.11 Auto Repeat Rate register
This register contains the rate value at which the pressed keys are reported when kept pressed.

Figure 3-20. Auto Repeat Rate register

3.5.12 Auto Repeat Start register
This register defines the time difference between a touch event and its auto-repeat, that is considering the
key remains touched. During this time, no event will be generated. After this time elapses, a new event
will be generated and the auto-repeat rate register will control the new events timing, generating new touch
events at the specified rate. After this, the value of this register is not used by the decoder until a different
touch event is detected.

Register Number = 0x06

 7 6 5 4 3 2 1 0

R
0 0 0 0 Max Number of Touches

W

Reset: 0 0 0 0 0 0 0 0

Table 3-20. MaxTouches register description

Signal Description

Max Number of
Touches

Sets the limit for simultaneous active keys. If set to 0, no limit is established.
0 — No limit established
1–15 — Limit set to n keys

Register Number = 0x07

 7 6 5 4 3 2 1 0

R
Auto-repeat rate

W

Reset: 0 0 0 0 0 0 0 0

Figure 3-21. Auto Repeat Rate register description

Signal Description

Auto-repeat
Rate

Sets the rate where the pressed keys are reported when kept pressed. This value is a multiplier of the touch sensing
task execution rate. If set to 0, no auto-repeat occurs and the event will be automatically disabled in the Events
Register. The user must manually re-enable this event if desired.
0 — Auto-repeat feature disabled
1–255 — Touch event reported every n execution times

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-27 Freescale Semiconductor

Figure 3-22. Auto Repeat Start register

3.5.13 Keypad Callback function
This function is called by the decoder module if an event occurs and the callback function is enabled.
Callback functions are assigned to controls in the system setup module, and one callback may be assigned
to different controls in the system.

Function prototype
void CallbackFuncName(UINT8 u8ControlId)

CallbackFuncName for each control is defined in the following TSS_SystemSetup.h file macro:
#define TSS_Cn_CALLBACK fCallBack1

Where:
• n is the number of the control
• fCallBack1 is a name example

Input parameters

Return Value
None

3.6 Slider and Rotary decoder API
This section describes the API for slider and also rotary decoder. The rotary decoder API is equal to slider
so the section describes only the slider decoder with comments about differences. The

Register Number = 0x08

 7 6 5 4 3 2 1 0

R
Auto-repeat Start

W

Reset: 0 0 0 0 0 0 0 0

Table 3-21. Auto Repeat Start register description

Signal Description

Auto-repeat
Start

Sets the time a key must remain pressed before generating new events at the auto-repeat rate. This value is a
multiplier of the touch sensing task execution rate. If set to 0, the auto-repeat state will be entered immediately after
the last touch.
0–255 — Wait n execution times before auto-repeat.

Type Name Valid range/values Description

 UINT8 u8ControlId Any valid control ID of any
control in the system

Indicates to the user the control
that generated the event. This
parameter matches the controlled
field in the control C&S register.

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-28

TSS_SetSliderConfig() and TSS_SetRotaryConfig() function are used to write to the decoder registers, as
well as the TSS_GetSliderConfig() and TSS_GetRotaryConfig() are used for reading the registers. This
section also describes the callback function and its parameters for a slider and rotary controls. Each
application slider and rotary control has its respective Configuration and Status registers as well as
callback function.

3.6.1 Writing to the Configuration and Status registers
To change values in the Configuration and Status register, the TSS_SetSystemConfig function should be
called. This is declared in the TSS_API.h file.

Function prototype for Slider
UINT8 TSS_SetSliderConfig(TSS_CONTROL_ID u8ControlId, UINT8 u8Parameter, UINT8 u8Value);

Function prototype for Rotary
UINT8 TSS_SetRotaryConfig(TSS_CONTROL_ID u8ControlId, UINT8 u8Parameter, UINT8 u8Value);

Input parameters

Return value for Slider

The return value is an unsigned integer with the following possible return values defined in the file
TSS_API.h:

Return value for Rotary

The return value is an unsigned integer with the following possible return values defined in the file
TSS_StatusCodes.h.

Type Name Valid range/values Description

TSS_CONTROL_ID u8ControlId Any valid control Id of the
appropriate control type

Identifier of the control
configured, stored in the first
element of the control’s C&S
structure

UINT8 u8Parameter Any of the parameter codes
provided by slider decoder

Code indicating the parameter
configured

UINT8 u8Value Depends on the specific
parameter configured

New desired value, for the
respective configuration registers

Return Value Description

TSS_STATUS_OK Configuration was done successfully.

TSS_ERROR_ SLIDER _ILLEGAL_PARAMETER Configuration was not done due to an illegal parameter number.

TSS_ERROR_ SLIDER _READ_ONLY_PARAMETER Configuration was not done as the user attempts to modify a read-only
parameter.

TSS_ERROR_ SLIDER _OUT_OF_RANGE Configuration was not done because the new value was out of the
established boundaries.

TSS_ERROR_ SLIDER _ILLEGAL_CONTROL_TYPE Configuration was not done because the u8ControlId parameter did
not match the control type structure the user was trying to modify.

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-29 Freescale Semiconductor

3.6.2 Reading the Configuration and Status registers
There are two options how to access Configuration and Status register structure. The first option uses TSS
function declared in the TSS_API.h file.

Function prototype for Slider
UINT8 TSS_GetSliderConfig(TSS_CONTROL_ID u8ControlId, UINT8 u8Parameter);

Function prototype for Rotary
UINT8 TSS_GetRotaryConfig(TSS_CONTROL_ID u8ControlId, UINT8 u8Parameter);

Input parameters
Return value

Return value

The return value corresponds to actual unsigned byte value of control register specified by u8ControlId
and u8Parameter.

The second option is to directly access the configuration and status structure for the specific data. The
structure name is defined by the application in the TSS_SystemSetup.h file using the following definition:

#define TSS_Cn_STRUCTURE cStructure

Where n is the Control number starting from 0 going up to the number of controls minus one.

The cStructure name is just an example. The user can define any other name for each control configuration
and status structure.

typedef struct{
const TSS_CONTROL_ID ControlId; //Note 1
const TSS_SLIDER_CONTROL ControlConfig; //Note 2

Return Value Description

TSS_STATUS_OK Configuration was done successfully.

TSS_ERROR_ROTARY_ILLEGAL_PARAMETER Configuration was not done due to illegal parameter number.

TSS_ERROR_ROTARY_READ_ONLY_PARAMETER Configuration was not done as the user attempts to modify a
read-only parameter.

TSS_ERROR_ROTARY_OUT_OF_RANGE Configuration was not done because the new value was out of the
established boundaries

TSS_ERROR_ROTARY_ILLEGAL_CONTROL_TYPE Configuration was not done because the u8ControlId parameter did
not match the control type structure the user was trying to modify.

Type Name Valid range/values Description

 TSS_CONTROL_ID u8ControlId Any valid control Id of the
appropriate control type

Identifier of the control
configured, stored in the first
element of the control’s C&S
structure

UINT8 u8Parameter Any of the parameter codes
provided by each decoder

Code indicating the parameter
configured

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-30

const TSS_SLIDER_DYN DynamicStatus; //Note 3
const TSS_SLIDER_STAT StaticStatus; //Note 4
const TSS_SLIDER_EVENTS Events; //Note 5
const UINT8 AutoRepeatRate;
const UINT8 MovementTimeout;

} TSS_CSSlider;

typedef struct{
const TSS_CONTROL_ID ControlId; //Note 1
const TSS_SLIDER_CONTROL ControlConfig; //Note 2
const TSS_SLIDER_DYN DynamicStatus; //Note 3
const TSS_SLIDER_STAT StaticStatus; //Note 4
const TSS_SLIDER_EVENTS Events; //Note 5
const UINT8 AutoRepeatRate;
const UINT8 MovementTimeout;

} TSS_CSRotary;

NOTE
1. The TSS_CONTROL_ID type is an eight bit-field structure described in Section 3.6.4, “Control

ID register.”
2. The TSS_SLIDER_CONTROL type is an eight bit-field structure described in Section 3.6.5,

“Control configuration.”
3. The TSS_SLIDER_DYN type is an eight bit-field structure described in Section 3.6.6, “Dynamic

Status register.”
4. The TSS_SLIDER_STAT type is an eight bit-field structure described in Section 3.6.7, “Static

Status register.”
5. The SLIDER_EVENTS type is an eight bit-field structure described in Section 3.6.8, “Events

Control register.”

Using the example of the structure named cStructure, to read Control ID register use:
Temp = cStructure.ControlId;

3.6.3 Configuration and Status registers list
The table below contains the control Configuration and Status registers.

Table 3-22. Control Configuration and Status registers

Register
Number

Size
[bytes] Register Name Section Initial value Brief Description

0x00 1 ControlId Section 3.6.4, “Control ID
register”

Application
dependable

R — Displays the control
type and control number

0x01 1 ControlConfig Section 3.6.5, “Control
configuration”

0x00 RW — This register
configures overall enablers
of the object

0x02 1 DynamicStatus Section 3.6.6, “Dynamic
Status register”

0x00 R — Displays the
movement, direction and
displacement information

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-31 Freescale Semiconductor

3.6.4 Control ID register
This read-only register contains the control's identifier code.

Figure 3-23. Control ID register

0x03 1 StaticStatus Section 3.6.7, “Static
Status register”

0x00 R — Displays the touch
and absolute position
information. Hold the
invalid position status flag.

0x04 1 Events Section 3.6.8, “Events
Control register”

0x00 RW — Configures the
events that will call the
callback function.

0x05 1 AutoRepeatRate Section 3.6.9,
“Auto-repeat Rate
register”

0x00 RW — Configures the rate
at which keys will be
reported when they are
kept pressed and no
movement is detected.

0x06 1 MovementTimeout Section 3.6.10,
“Movement Timeout
register”

0x00 RW — Number of times
the decoder must detect a
no displacement before
reporting a hold event and
no movement.

Register Number = 0x00

 7 6 5 4 3 2 1 0

R Control Type Control Number

W

Reset: —1

1 Application dependable.

— — — — — — —

Encoding Control Type

001 Keypad

010 Slider

011 Rotary

100 Analog Slider

101 Analog Rotary

110 Matrix

111 Reserved

Table 3-22. Control Configuration and Status registers

Register
Number

Size
[bytes] Register Name Section Initial value Brief Description

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-32

NOTE
The control number is the one assigned in the system setup module. This
value is unique for all controls, implying each control has a particular
number regardless of its type. The first assigned control number is zero.

3.6.5 Control configuration
This register configures overall enablers of the object.

Figure 3-24. Control Configuration register

3.6.6 Dynamic Status register
This register contains the information about the movement over the electrodes assigned to the control.

Register Number = 0x01

 7 6 5 4 3 2 1 0

R
Control Enabler Callback

Enabler Idle Enabler Idle Scan Rate
W

Reset: 0 0 0 0 0 0 0 0

Table 3-23. Control Configuration register description

Signal Description

Control
Enabler

Global enabler for the control. This determines if the electrodes of the control are scanned for detection.
1 — Control enabled
0 — Control disabled

Callback
Enabler

Enables or disables the use of the callback function. If it is enabled, the function will be called when one of the active
events in the Events Configuration registers occurs.
1 — Callback enabled
0 — Callback disabled

Idle Enabler Enables the possibility of the control to enter an Idle state when none of its electrodes are active. When enabled, the
control electrodes will be scanned for detection at the Idle Scan Rate, instead of each task execution. If disabled
while in Idle state, the control will immediately exit this state.
1 — Idle state enabled
0 — Idle state disabled

Idle Scan Rate Determines the rate where the electrodes of the control will be scanned for detection while no touch is detected
within the control. Once a touch is detected, this parameter has no effect.
1–31 — Electrodes will be scanned every n executions of the touch sensing task.

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-33 Freescale Semiconductor

Figure 3-25. Dynamic Status register

3.6.7 Static Status register
This register displays the events, flags, and status of the electrodes in the control when no movement over
the electrodes is detected.

Figure 3-26. Static Status register

Table 3-25. Static Status register description

Register Number = 0x02

 7 6 5 4 3 2 1 0

R Movement Flag Direction 0 0 Displacement

W

Reset: 0 0 0 0 0 0 0 0

Table 3-24. Dynamic Status register description

Signal Description

Movement
Flag

Indicates if movement is being detected at the moment of reading.
1 — Movement detected
0 — Movement not detected

Direction Indicates the direction of movement. This bit remains with its last value even if movement has stop and is no longer
detected.
1 — Incremental (from Ex to Ey, where x < y)
0 — Decremental (from Ex to Ey, where x > y)

Displacement This value indicates the difference in positions from the last status to the new one. This indicates how many
positions have been advanced in the current direction of movement.
0–15 — Number of positions.

Register Number = 0x03

 7 6 5 4 3 2 1 0

R Touch Flag Invalid Position
Flag 0 Position

W

Reset: 0 0 0 0 0 0 0 0

Signal Description

Touch Flag Indicates if a touch in the control is being detected at the moment of reading.
1 — Touch detected
0 — Touch not detected

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-34

3.6.8 Events Control register
The register contains the bits used to enable or disable events that will call the control’s callback function.

Figure 3-27. Events Control register

Invalid Position
Flag

Indicates if an invalid combination of touched electrodes is being detected.
1 — Invalid position detected
0 — Valid position detected

Position This value indicates the absolute position within the control that is actuated.
0–31 — Absolute position

Register Number = 0x04

 7 6 5 4 3 2 1 0

R Release
Event

Enabler

Hold Auto-
Repeat Enabler

Hold Event
Enabler

Movement
Event

Enabler

Initial Touch
Event

EnablerW

Reset: 0 0 0 0 0 0 0 0

Table 3-26. Events Control Register description

Signal Description

Release Event
Enabler

If this bit is set and the callback function is enabled, the callback will be called when all the touched electrodes in
the control are released.
1 — Release event enabled
0 — Release event disabled

Hold
Auto-repeat

Enabler

If this bit is set, the Hold Event Enabler and the callback function are enabled. The callback is called at the rate
specified in the Auto-repeat Rate register for as long as one valid position is detected as touched in the control, and
no movement is detected.
1 — Auto-repeat feature enabled
0 — Auto-repeat disabled

Hold Event
Enabler

If this bit is set and the callback function enabled, the decoder calls the control’s callback function when the
movement stops and a constant touched position is detected after a certain period of time. This time is configurable
in the Movement Timeout register.
1 — Event enabled
0 — Event disabled

Movement
Event Enabler

If this bit is set and the callback function enabled, the decoder calls the control’s callback function every time a
displacement is detected.
1 — Event enabled
0 — Event disabled

Initial Touch
Event Enabler

If this bit is set and the callback function enabled, the decoder calls the control’s callback function when the control
transitions from an idle to an active state.
1 — Event enabled
0 — Event disabled

Signal Description

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-35 Freescale Semiconductor

NOTE
If none of the events are enabled, the control is automatically disabled and
must be re-enabled by the user in the Control Configuration Register.

3.6.9 Auto-repeat Rate register
The Auto-repeat Rate register contains the rate value where a hold event is reported when kept pressed
without movement.

Figure 3-28. Auto-repeat Rate register

NOTE
The Auto-repeat function works only if hold event is presented. The hold
event is delayed by the Movement Timeout function. If the Movement
Timeout register is set to 0, the Auto-repeat function stops to generate
callback, because the Hold event is no more reported.

3.6.10 Movement Timeout register
The register value defines how long the movement event stays reported after hold event is detected. The
delay is defined in number of TSS_Task() executions. The hold event represents the situation when the
movement stops and a constant touched position is detected.

Figure 3-29. Movement Timeout register

Register Number = 0x05

 7 6 5 4 3 2 1 0

R
Auto-repeat Rate

W

Reset: 0 0 0 0 0 0 0 0

Table 3-27. Auto-repeat Rate register description

Signal Description

Auto-repeat
Rate

The decoder will call the control’s callback function at the specified rate as long as a valid position is continuously
detected, the auto-repeat feature is enabled and no displacement occurs. If this register is set to 0, the auto-repeat
feature will be disabled in the events register.
0 — Auto-repeat feature disabled
1–254 — Callback is called every n task executions

Register Number = 0x06

 7 6 5 4 3 2 1 0

R
Movement timeout

W

Reset: 0 0 0 0 0 0 0 0

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-36

3.6.11 Callback function
The decoder module calls this function if an event occurs and the user did enable the callback function.
Callback functions are assigned to controls in the system setup module, and one callback may be assigned
to different controls in the system.

Function prototype
void CallbackFuncName(UINT8 u8ControlId)

The CallbackFuncName for each control is defined in the following TSS_SystemSetup.h file macro:
#define TSS_Cn_CALLBACK fCallBack3 /* Identifier of the user's callback */

Where:
• n is the number of the control
• fCallBack3 is a name example

Input parameters

Return value
None

3.7 Analog slider and analog rotary decoder API
This section describes the API for the analog slider and also the analog rotary decoder. The analog rotary
decoder API is equal to the analog slider so the section describes only the analog slider decoder with
comments about differences. The TSS_SetASliderConfig() and TSS_ASetRotaryConfig() function are
used to write to the decoder registers. And the TSS_GetASliderConfig() and TSS_GetARotaryConfig()
are used for reading the registers. This section also describes the callback function and its parameters for
an analog slider and analog rotary control. Each application analog slider and analog rotary control has its
respective Configuration and Status registers as well as callback function.

Table 3-28. Movement Timeout register description

Signal Description

Movement
Timeout

Determines how many execution times the decoder must detect no displacement before reporting no movement and
reporting a hold event.
0 — No limit established. Movement is reported until the control is detected as idle
1–254 — Report a hold event after n task executions

Type Name Valid Range/Values Description

UINT8 u8ControlId Any valid Control ID of any
control in the system.

Indicates to the user the control that
generated the event. This parameter
matches the controlled field in the control
C&S structure.

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-37 Freescale Semiconductor

3.7.1 Writing to the Configuration and Status registers
To change values in the Configuration and Status register, the TSS_SetSystemConfig function should be
called. This function is declared in the TSS_API.h file.

Function prototype for Analog Slider
UINT8 TSS_SetASliderConfig (TSS_CONTROL_ID u8ControlId, UINT8 u8Parameter, UINT8 u8Value)

Function prototype for Analog Rotary
UINT8 TSS_SetARotaryConfig (TSS_CONTROL_ID u8ControlId, UINT8 u8Parameter, UINT8 u8Value)

Input parameters

Return value for Analog Slider

The return value is an unsigned integer with the following possible return values defined in the file
TSS_StatusCodes.h.

Return value for Analog Rotary

The return value is an unsigned integer with the following possible return values defined in the file
TSS_StatusCodes.h.

Type Name Valid range and values Description

TSS_CONTROL_ID u8ControlId Any valid control Id of the
appropriate control type

Identifier of the control
configured, stored in the first
element of the control’s C&S
structure

UINT8 u8Parameter Any of the parameter codes
provided by the decoder

Code indicating the parameter
configured

UINT8 u8Value Depends on the specific
parameter configured

New desired value, for the
respective configuration registers

Return Value Description

TSS_STATUS_OK Configuration was executed successfully.

TSS_ERROR_ASLIDER_ILLEGAL_PARAMETER Configuration was not executed due to illegal parameter number.

TSS_ERROR_ASLIDER_ILLEGAL_VALUE Configuration was not executed due to illegal value

TSS_ERROR_ASLIDER_READ_ONLY_PARAMETER Configuration was not done as the user attempts to modify a
read-only parameter.

TSS_ERROR_ASLIDER_OUT_OF_RANGE Configuration was not executed because the new value was out of
the established boundaries

TSS_ERROR_ASLIDER_ILLEGAL_CONTROL_TYPE Configuration was not executed because the u8ControlId parameter
did not match the control type structure the user was trying to
modify.

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-38

3.7.2 Reading the Configuration and Status registers
There are two options on how to access rotary Configuration and Status register structure. The first option
uses the TSS function declared in the TSS_API.h file.

Function prototype for Analog Slider
UINT8 TSS_GetASliderConfig(TSS_CONTROL_ID u8ControlId, UINT8 u8Parameter);

Function prototype for Analog Rotary
UINT8 TSS_GetARotaryConfig(TSS_CONTROL_ID u8ControlId, UINT8 u8Parameter);

Return Value Description

TSS_STATUS_OK Configuration was executed successfully.

TSS_ERROR_AROTARY_ILLEGAL_PARAMETER Configuration was not executed due to illegal parameter number.

TSS_ERROR_AROTARY_ILLEGAL_VALUE Configuration was not executed due to illegal value

TSS_ERROR_AROTARY_READ_ONLY_PARAMETER Configuration was not executed as the user attempts to modify a
read-only parameter.

TSS_ERROR_AROTARY_OUT_OF_RANGE Configuration was not executed because the new value was out of
the established boundaries

TSS_ERROR_AROTARY_ILLEGAL_CONTROL_TYPE Configuration was not executed because the u8ControlId parameter
did not match the control type structure the user was trying to
modify.

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-39 Freescale Semiconductor

Input parameters

Return value

The return value corresponds to an actual unsigned byte value for the control register specified by
u8ControlId and u8Parameter.

The second option enables you to directly access the configuration and status structure for specific data.
The structure name is defined by the application in the TSS_SystemSetup.h file using the following define:

#define TSS_Cn_STRUCTURE cStructure

Where n is the control number starting from 0 going up to the number of controls minus one.

The cStructure name is just an example. The user can define any other name for each control configuration
and status structure.

typedef struct{
const TSS_CONTROL_ID ControlId; //Note 1
const TSS_ASLIDER_CONTROL ControlConfig; //Note 2
const TSS_ASLIDER_DYN DynamicStatus; //Note 3
const UINT8 Position;
const TSS_ASLIDER_EVENTS Events; //Note 4
const UINT8 AutoRepeatRate;
const UINT8 MovementTimeout;
const UINT8 Range;

} TSS_CSASlider;

typedef struct{
const TSS_CONTROL_ID ControlId; //Note 1
const TSS_ASLIDER_CONTROL ControlConfig; //Note 2
const TSS_ASLIDER_DYN DynamicStatus; //Note 3
const UINT8 Position;
const TSS_ASLIDER_EVENTS Events; //Note 4
const UINT8 AutoRepeatRate;
const UINT8 MovementTimeout;
const UINT8 Range;

 } TSS_CSARotary;

NOTE
1. The TSS_CONTROL_ID type is an eight bit-field structure described in Section 3.7.4, “Control

ID register.”
2. The TSS_ASLIDER_CONTROL type is an eight bit-field structure described in Section 3.7.5,

“Control configuration.”

Type Name Valid range/values Description

 TSS_CONTROL_ID u8ControlId Any valid control Id of the
appropriate control type

Identifier of the control
configured, stored in the first
element of the control’s C&S
structure

UINT8 u8Parameter Any of the parameter codes
provided by each decoder

Code indicating the parameter
configured

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-40

3. The TSS_ASLIDER_DYN type is an eight bit-field structure described in Section 3.7.6, “Dynamic
Status register.”

4. The TSS_ASLIDER_EVENTS type is an eight bit-field structure described in Section 3.7.8,
“Events Control register.”

Using the example of the structure named cStructure, to read Control ID use:
Temp = cStructure.ControlId;

3.7.3 Configuration and Status registers list
The table below shows the control Configuration and Status registers.

3.7.4 Control ID register
This read-only register contains the control's identifier code.

Table 3-29. Control Configuration and Status registers

Register
Number Size [bytes] Register Name Section Initial value Brief Description

0x00 1 ControlId Section 3.7.4,
“Control ID register”

Application
dependable

R — Displays the control
type and control number

0x01 1 ControlConfig Section 3.7.5,
“Control
configuration”

0x00 RW — This register
configures overall enablers
of the object

0x02 1 DynamicStatus Section 3.7.6,
“Dynamic Status
register”

0x00 R — Displays the
movement, direction and
displacement information

0x03 1 Position Section 3.7.7,
“Position register”

0x00 R — Displays absolute
position information
within a defined range.

0x04 1 Events Section 3.7.8,
“Events Control
register”

0x00 RW — Configures the
events that call the callback
function.

0x05 1 AutoRepeatRate Section 3.7.9,
“Auto-repeat Rate
register”

0x00 RW — Configures the rate
where keys are reported
when they are kept pressed
and no movement is
detected.

0x06 1 MovementTimeout Section 3.7.10,
“Movement Timeout
register”

0x00 RW — Number of times
the decoder must detect a
no displacement before
reporting a hold event and
no movement.

0x07 1 Range Section 3.7.11,
“Range register”

0x40 RW - Defines the absolute
range within the position is
reported.

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-41 Freescale Semiconductor

Figure 3-30. Control ID register

NOTE
The control number is the one assigned in the system setup module. This
value is unique for all controls, implying each control has a particular
number regardless of its type. The first assigned control number is zero.

3.7.5 Control configuration
This register configures overall enablers of the object.

Figure 3-31. Control Configuration register

Register Number = 0x00

 7 6 5 4 3 2 1 0

R Control Type Control Number

W

Reset: —1

1 Application dependable.

— — — — — — —

Encoding Control Type

001 Keypad

010 Slider

011 Rotary

100 Analog slider

101 Analog rotary

110 Matrix

111 Reserved

Register Number = 0x01

 7 6 5 4 3 2 1 0

R
Control Enabler Callback

Enabler Idle Enabler Idle Scan Rate
W

Reset: 0 0 0 0 0 0 0 0

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-42

3.7.6 Dynamic Status register
This register contains the information regarding the movement over the electrodes assigned to the
controller.

Figure 3-32. Dynamic Status register

Table 3-30. Control configuration description

Signal Description

Control Enabler Global enabler for the control. This determines if the electrodes of the control are scanned for detection.
1 — Control enabled
0 — Control disabled

Callback
Enabler

Enables or disables the use of the callback function. If it is enabled, the function is called when one of the active
events in the Events Configuration registers occurs.
1 — Callback enabled
0 — Callback disabled

Idle Enabler Enables the possibility of the control to enter an Idle state when none of its electrodes are active. When enabled, the
control electrodes will be scanned for detection at the Idle Scan Rate, instead of each task execution. If disabled
while in Idle state, the control will immediately exit this state.
1 — Idle state enabled
0 — Idle state disabled

Idle Scan Rate This value determines the rate at which the electrodes of the control will be scanned for detection while no touch is
detected within the control. Once a touch is detected, this parameter has no effect.
1–31 — Electrodes will be scanned every n executions of the touch sensing task.

Register Number = 0x02

 7 6 5 4 3 2 1 0

R Movement Flag Direction Displacement

W

Reset: 0 0 0 0 0 0 0 0

Table 3-31. Dynamic Status register description

Signal Description

Movement Indicates if movement is being detected at the moment of reading.
1 — Movement detected
0 — Movement not detected

Direction Indicates the direction of movement. This bit remains with its last value even if movement has stopped and is no
longer detected.
1 — Incremental (from PositionX to PositionY, where X< Y)
0 — Decremental (from PositionX to PositionY, where X> Y)

Displacement This value indicates the difference in positions from the last status to the new one. This indicates how many
positions have been advanced in the current direction of movement.
0–63 — Number of positions.

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-43 Freescale Semiconductor

3.7.7 Position register
This Position register contains a absolute position within defined range.

Figure 3-33. Static Status register

3.7.8 Events Control register
The Event Control register contains the bits used to enable or disable events that will call the control’s
callback function.

Figure 3-34. Events Control register

Register Number = 0x03

 7 6 5 4 3 2 1 0

R Position

W

Reset: 0 0 0 0 0 0 0 0

Table 3-32. Position register description

Signal Description

Position Indicates the calculated absolute position within defined range.
0—Range - Number of the actual position

Register Number = 0x05

 7 6 5 4 3 2 1 0

R
Touch Invalid

Position

Release
Event

Enabler

Hold Auto-
Repeat Enabler

Hold Event
Enabler

Movement
Event

Enabler

Initial Touch
Event

EnablerW

Reset: 0 0 0 0 0 0 0 0

Table 3-33. Events Control register description

Signal Description

Touch This bit indicates if the touch has been detected on the control.
1 — Touch detected
0 — Touch not detected

Invalid Position This bit indicates if the invalid position has been detected on the control.
1 — Invalid position detected
0 — Invalid position not detected

Release Event
Enabler

If this bit is set and the callback function is enabled, the callback will be called when all the touched electrodes in
the control are released.
1 — Release event enabled
0 — Release event disabled

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-44

NOTE
If no of the events is enabled, the control is automatically disabled and must
be re-enabled by the user in the Control Configuration Register.

3.7.9 Auto-repeat Rate register
The Auto-repeat Rate register contains the rate value where hold event is reported when kept pressed
without movement.

Figure 3-35. Auto-repeat Rate register

Hold
Auto-repeat

Enabler

If this bit is set, the hold event enabler and the callback function are enabled, the callback will be called at the rate
specified in the Auto-repeat Rate register for as long as one valid position is detected as touched in the control and
no movement is detected.
1 — Auto-repeat feature enabled
0 — Auto-repeat disabled

Hold Event
Enabler

If this bit is set and the callback function enabled, the decoder will call the control’s callback function when the
movement stops and a constant touched position is detected after a certain period of time. This time is configurable
in the Movement Timeout Register.
1 — Event enabled
0 — Event disabled

Movement
Event Enabler

If this bit is set and the callback function enabled, the decoder will call the control’s callback function every time a
displacement is detected.
1 — Event enabled
0 — Event disabled

Initial Touch
Event Enabler

If this bit is set and the callback function enabled, the decoder will call the control’s callback function when the
control transitions from an idle to an active state.
1 — Event enabled
0 — Event disabled

Register Number = 0x05

 7 6 5 4 3 2 1 0

R
Auto-repeat start

W

Reset: 0 0 0 0 0 0 0 0

Table 3-34. Auto-repeat Rate register description

Signal Description

Auto-repeat
Rate

The decoder calls the control’s callback function at the specified rate as long as a valid position is continuously
detected, the auto-repeat feature is enabled and no displacement occurs. If this register is set to 0, the auto-repeat
feature will be disabled in the events register.
0 — Auto-repeat feature disabled
1–254 — Callback is called every n task executions

Table 3-33. Events Control register description

Signal Description

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-45 Freescale Semiconductor

NOTE
The Auto-repeat function works only if hold event is presented. The hold
event is delayed by the Movement Timeout function. If the Movement
Timeout register is set to 0, the Auto-repeat function stops to generate
callback, because the Hold event is no more reported.

3.7.10 Movement Timeout register
The register value defines how long the movement event stays reported after hold event is detected. The
delay is defined in number of TSS_Task() executions. The hold event represents the situation when the
movement stops and a constant touched position is detected.

Figure 3-36. Movement Timeout register

3.7.11 Range register
The range register value defines the absolute range within the position is reported.

Figure 3-37. Range register

Register Number = 0x06

 7 6 5 4 3 2 1 0

R
Movement timeout

W

Reset: 0 0 0 0 0 0 0 0

Table 3-35. Movement Timeout register description

Signal Description

Movement
Timeout

Determines how many execution times the decoder must detect no displacement before reporting no movement and
reporting a hold event.
0 — No limit established. Movement is reported until the control is detected as idle
1–254 — Report a hold event after n task executions

Register Number = 0x06

 7 6 5 4 3 2 1 0

R
Range

W

Reset: 0 1 0 0 0 0 0 0

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-46

3.7.12 Callback function
The decoder module calls this function if an event occurs and if the user enables the callback function.
Callback functions are assigned to controls in the system setup module, and one callback may be assigned
to different controls in the system.

Function prototype
void CallbackFuncName(UINT8 u8ControlId)

The CallbackFuncName for each control is defined in the following TSS_SystemSetup.h file macro:
#define TSS_Cn_CALLBACK fCallBack4

Where:
• n is the number of the control
• fCallBack4 is a name example

Input parameters

Return value
None

3.8 Matrix decoder API
This section describes the Matrix Decoder API. It describes the Matrix C&S registers, the
TSS_SetMatrixConfig() function used to write to these registers, and the TSS_GetMatrixConfig()
function and data structure used for reading the register. This section also describes the callback function
and its parameters for a Matrix control. Each Application Matrix control has its respective Configuration
and Status registers and a callback function.

3.8.1 Writing to the Configuration and Status registers
To change values in the Configuration and Status register, the TSS_SetSystemConfig function should be
called. This function is declared in the TSS_API.h file.

Table 3-36. Range register description

Signal Description

Range Defines the absolute range within the position is reported.
2— 255 for Analog slider
3— 255 for Analog rotary

Type Name Valid range/values Description

 UINT8 u8ControlId Any valid control ID of any
control in the system

Indicates to the user the control
that generated the event. This
parameter matches the controlled
field in the control C&S register.

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-47 Freescale Semiconductor

Function prototype
UINT8 TSS_SetMatrixConfig (TSS_CONTROL_ID u8ControlId, UINT8 u8Parameter, UINT8 u8Value)

Input parameters

Return value

The return value is an unsigned integer with the following possible return values defined in the file
TSS_StatusCodes.h.

3.8.2 Reading the Configuration and Status registers
There are two options how to access Configuration and Status register structure. The first option uses TSS
function declared in the TSS_API.h file.

Function prototype
UINT8 TSS_GetMatrixConfig(TSS_CONTROL_ID u8ControlId, UINT8 u8Parameter);

Input parameters

Type Name Valid range and values Description

TSS_CONTROL_ID u8ControlId Any valid control Id of the
appropriate control type

Identifier of the control
configured, stored in the first
element of the control’s C&S
structure

UINT8 u8Parameter Any of the parameter codes
provided by matrix decoder

Code indicating the parameter
configured

UINT8 u8Value Depends on the specific
parameter configured

New desired value, for the
respective configuration registers

Return Value Description

TSS_STATUS_OK Configuration was executed successfully.

TSS_ERROR_MATRIX_ILLEGAL_PARAMETER Configuration was not executed due to illegal parameter number.

TSS_ERROR_MATRIX_ILLEGAL_VALUE Configuration was not executed due to illegal value

TSS_ERROR_MATRIX_READ_ONLY_PARAMETER Configuration was not executed as the user attempts to modify a
read-only parameter.

TSS_ERROR_MATRIX_OUT_OF_RANGE Configuration was not executed because the new value was out of
the established boundaries

TSS_ERROR_MATRIX_ILLEGAL_CONTROL_TYPE Configuration was not executed because the u8ControlId parameter
did not match the control type structure the user was trying to
modify.

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-48

Return value

Return value

The return value corresponds to actual unsigned byte value of register specified by u8ControlId and
u8Parameter.

The second option enables you to directly access the configuration and status structure for specific data.
The structure name is defined by the application in the TSS_SystemSetup.h file using the following define:

#define TSS_Cn_STRUCTURE cMatrix

Where n is the control number starting from 0 going up to the number of controls minus one.

The cMatrix name is just an example. The user can define any other name for each control configuration
and status structure.

typedef struct{
const TSS_CONTROL_ID ControlId; //Note 1
const TSS_MATRIX_CONTROL ControlConfig; //Note 2
const TSS_MATRIX_EVENTS Events; //Note 3
const UINT8 AutoRepeatRate;
const UINT8 MovementTimeout;
const TSS_MATRIX_DYN DynamicStatusX; //Note 4
const TSS_MATRIX_DYN DynamicStatusY;
const UINT8 PositionX;
const UINT8 PositionY;
const UINT8 GestureDistanceX;
const UINT8 GestureDistanceY;
const UINT8 RangeX;
const UINT8 RangeY;

 } TSS_CSMatrix

NOTE
1. The TSS_CONTROL_ID type is an eight bit-field structure described in Section 3.8.4, “Control

ID register.”
2. The TSS_MATRIX_CONTROL type is an eight bit-field structure described in Section 3.8.5,

“Control configuration.”
3. The TSS_MATRIX_EVENTS type is an eight bit-field structure described in Section 3.8.6,

“Events Control register.”
4. The TSS_MATRIX_DYN type is an eight bit-field structure described in Section 3.8.9, “Dynamic

Status X register.”

Using the example of the structure named cMatrix, to read Control ID use:
Temp = cMatrix.ControlId;

Type Name Valid range/values Description

 TSS_CONTROL_ID u8ControlId Any valid control Id of the
appropriate control type

Identifier of the control
configured, stored in the first
element of the control’s C&S
structure

UINT8 u8Parameter Any of the parameter codes
provided by each decoder

Code indicating the parameter
configured

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-49 Freescale Semiconductor

3.8.3 Configuration and Status registers list
The table below presents the matrix control Configuration and Status registers.

Table 3-37. Matrix Control Configuration and Status registers

Register
Number Size [bytes] Register Name Section Initial value Brief Description

0x00 1 ControlId Section 3.8.4,
“Control ID register”

Application
dependable

R — Displays the control
type and control number

0x01 1 ControlConfig Section 3.8.5,
“Control
configuration”

0x00 RW — This register
configures overall enablers
of the object

0x02 1 Events Section 3.8.6,
“Events Control
register”

0x00 RW — Configures the
events that call the callback
function.

0x03 1 AutoRepeatRate Section 3.8.7,
“Auto-repeat Rate
register”

0x00 RW — Configures the rate
where keys are reported
when they are kept pressed
and no movement is
detected.

0x04 1 MovementTimeout Section 3.8.8,
“Movement Timeout
register”

0x00 RW — Number of times
the decoder must detect a
no displacement before
reporting a hold event and
no movement.

0x05 1 DynamicStatusX Section 3.8.9,
“Dynamic Status X
register”

0x00 R — Displays the
movement, direction and
displacement information
on X axis

0x06 1 DynamicStatusY Section 3.8.10,
“Dynamic Status Y
register”

0x00 R — Displays the
movement, direction and
displacement information
on Y axis

0x07 1 PositionX Section 3.8.11,
“Position X register”

0x00 R — Displays absolute
position information
within a defined range on
X axis.

0x08 1 PositionY Section 3.8.12,
“Position Y register”

0x00 R — Displays absolute
position information
within a defined range on
Y axis.

0x09 1 GestureDistanceX Section 3.8.13,
“Gesture distance X
register”

0x00 R — Displays relative
distance between two or
more positions within a
defined range on X axis.

0x0A 1 GestureDistanceY Section 3.8.14,
“Gesture distance Y
register”

0x00 R — Displays relative
distance between two or
more positions within a
defined range on Y axis.

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-50

3.8.4 Control ID register
This read-only register contains the control identifier code.

Figure 3-38. Control ID register

NOTE
The control number is the one assigned in the system setup module. This
value is unique for all controls, implying each control has a particular
number regardless of its type. The first assigned control number is zero.

3.8.5 Control configuration
This register configures overall enablers of the object.

0x0B 1 RangeX Section 3.8.15,
“Range X register”

0x40 R — Defines the absolute
range on X axis.

0x0C 1 RangeY Section 3.8.15,
“Range X register”

0x40 R — Defines the absolute
range on Y axis

Register Number = 0x00

 7 6 5 4 3 2 1 0

R Control Type Control Number

W

Reset: —1

1 Application dependable.

— — — — — — —

Encoding Control Type

001 Keypad

010 Slider

011 Rotary

100 Analog slider

101 Analog rotary

100 Matrix

111 Reserved

Table 3-37. Matrix Control Configuration and Status registers (continued)

Register
Number Size [bytes] Register Name Section Initial value Brief Description

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-51 Freescale Semiconductor

Figure 3-39. Control Configuration register

3.8.6 Events Control register
The Event Control register contains the bits used to enable or disable events that will call the control’s
callback function.

Figure 3-40. Events Control register

Register Number = 0x01

 7 6 5 4 3 2 1 0

R
Control Enabler Callback

Enabler Idle Enabler Idle Scan Rate
W

Reset: 0 0 0 0 0 0 0 0

Table 3-38. Control configuration description

Signal Description

Control Enabler Global enabler for the control. This determines if the electrodes of the control are scanned for detection.
1 — Control enabled
0 — Control disabled

Callback
Enabler

Enables or disables the use of the callback function. If it is enabled, the function is called when one of the active
events in the Events Configuration registers occurs.
1 — Callback enabled
0 — Callback disabled

Idle Enabler Enables the possibility of the control to enter an Idle state when none of its electrodes are active. When enabled, the
control electrodes will be scanned for detection at the Idle Scan Rate, instead of each task execution. If disabled
while in Idle state, the control will immediately exit this state.
1 — Idle state enabled
0 — Idle state disabled

Idle Scan Rate This value determines the rate at which the electrodes of the control will be scanned for detection while no touch is
detected within the control. Once a touch is detected, this parameter has no effect.
1–31 — Electrodes will be scanned every n executions of the touch sensing task.

Register Number = 0x02

 7 6 5 4 3 2 1 0

R
Touch Gesture Gestures

Enabler

Release
Event

Enabler

Hold Auto-
Repeat Enabler

Hold Event
Enabler

Movement
Event

Enabler

Initial Touch
Event

EnablerW

Reset: 0 0 0 0 0 0 0 0

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-52

NOTE
If no events are enabled, the control is automatically disabled and must be
re-enabled by the user in the Control Configuration Register.

3.8.7 Auto-repeat Rate register
The Auto-repeat Rate register contains the rate value where a hold event is reported when kept pressed
without movement.

Table 3-39. Events Control register description

Signal Description

Touch This bit indicates if the touch has been detected on the control.
1 — Touch detected
0 — Touch not detected

Gesture This bit indicates if the gesture has been detected on the control. The gesture is reported if at least two isolated
touches are detected within the control.
1 — Gesture detected
0 — Gesture not detected

Gestures
Enabler

If this bit is set, the gestures evaluation is enabled and the information about gesture starts write into the Gesture
Distance registers.This option also enables to generate callbacks on all enabled events, but the event source is
Gesture Distance register instead of Position register.
1 — Gestures enabled
0 — Release event disabled

Hold
Auto-repeat

Enabler

If this bit is set, the hold event enabler and the callback function are enabled, the callback will be called at the rate
specified in the Auto-repeat Rate register for as long as one valid position is detected as touched in the control and
no movement is detected.
1 — Auto-repeat feature enabled
0 — Auto-repeat disabled

Hold Event
Enabler

If this bit is set and the callback function enabled, the decoder will call the control’s callback function when the
movement stops and a constant touched position is detected after a certain period of time. This time is configurable
in the Movement Timeout Register.
1 — Event enabled
0 — Event disabled

Movement
Event Enabler

If this bit is set and the callback function enabled, the decoder will call the control’s callback function every time a
displacement is detected.
1 — Event enabled
0 — Event disabled

Initial Touch
Event Enabler

If this bit is set and the callback function enabled, the decoder will call the control’s callback function when the
control transitions from an idle to an active state.
1 — Event enabled
0 — Event disabled

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-53 Freescale Semiconductor

Figure 3-41. Auto-repeat Rate register

NOTE
The Auto-repeat function works only if hold event is presented. The hold
event is delayed by the Movement Timeout function. If the Movement
Timeout register is set to 0, the Auto-repeat function stops to generate
callback, because the Hold event is no longer reported.

3.8.8 Movement Timeout register
The register value defines how long the movement event stays reported after hold event is detected. The
delay is defined in number of TSS_Task() executions. The hold event represents the situation when the
movement stops and a constant touched position is detected.

Figure 3-42. Movement Timeout register

Register Number = 0x03

 7 6 5 4 3 2 1 0

R
Auto-repeat start

W

Reset: 0 0 0 0 0 0 0 0

Table 3-40. Auto-repeat Rate register description

Signal Description

Auto-repeat
Rate

The decoder calls the control’s callback function at the specified rate as long as a valid position is continuously
detected, the auto-repeat feature is enabled and no displacement occurs. If this register is set to 0, the auto-repeat
feature will be disabled in the events register.
0 — Auto-repeat feature disabled
1–254 — Callback is called every n task executions

Register Number = 0x04

 7 6 5 4 3 2 1 0

R
Movement timeout

W

Reset: 0 0 0 0 0 0 0 0

Table 3-41. Movement Timeout register description

Signal Description

Movement
Timeout

Determines how many execution times the decoder must detect no displacement before reporting no movement and
reporting a hold event.
0 — No limit established. Movement is reported until the control is detected as idle
1–254 — Report a hold event after n task executions

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-54

3.8.9 Dynamic Status X register
This register contains the information regarding the movement on X horizontal axis over the electrodes
assigned to the control. The information is based on Position X or Gesture Distance X register information.

Figure 3-43. Dynamic Status X register

3.8.10 Dynamic Status Y register
This register contains the information regarding the movement on Y vertical axis over the electrodes
assigned to the control. The information is based on Position Y or Gesture Distance Y register information.

Figure 3-44. Dynamic Status Y register

Register Number = 0x05

 7 6 5 4 3 2 1 0

R Movement Flag Direction Displacement

W

Reset: 0 0 0 0 0 0 0 0

Table 3-42. Dynamic Status X register description

Signal Description

Movement Indicates if movement on X axis is being detected at the moment of reading.
1 — Movement detected
0 — Movement not detected

Direction Indicates the direction of movement on X axis. This bit remains with its last value even if movement has stopped
and is no longer detected.
1 — Incremental (from PositionN to PositionM, where N < M)
0 — Decremental (from PositionN to PisitionM, where N > M)

Displacement This value indicates the difference in positions on X axis from the last status to the new one. This indicates how
many positions have been advanced in the current direction of movement.
0–63 — Number of positions.

Register Number = 0x06

 7 6 5 4 3 2 1 0

R Movement Flag Direction Displacement

W

Reset: 0 0 0 0 0 0 0 0

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-55 Freescale Semiconductor

3.8.11 Position X register
This Position X register contains absolute analog position within defined range on X horizontal axis.

Figure 3-45. Position X register

3.8.12 Position Y register
This Position Y register contains absolute analog position within defined range on Y vertical axis.

Figure 3-46. Position Y register

Table 3-43. Dynamic Status Y register description

Signal Description

Movement Indicates if movement on Y axis is being detected at the moment of reading.
1 — Movement detected
0 — Movement not detected

Direction Indicates the direction of movement on Y axis. This bit remains with its last value even if movement has stopped
and is no longer detected.
1 — Incremental (from PositionN to PositionM, where N < M)
0 — Decremental (from PositionN to PisitionM, where N > M)

Displacement This value indicates the difference in positions on Y axis from the last status to the new one. This indicates how
many positions have been advanced in the current direction of movement.
0–63 — Number of positions.

Register Number = 0x07

 7 6 5 4 3 2 1 0

R Position X

W

Reset: 0 0 0 0 0 0 0 0

Table 3-44. Position X register description

Signal Description

Position Indicates the calculated absolute analog position within defined range.
0—Range - Number of the actual position

Register Number = 0x08

 7 6 5 4 3 2 1 0

R Position Y

W

Reset: 0 0 0 0 0 0 0 0

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-56

3.8.13 Gesture distance X register
This Gesture Distance X register contains a calculated maximum distance between gesture analog
positions on X horizontal axis. The gesture event is reported if at least two isolated touches are detected
within control range.

Figure 3-47. Gesture Distance X register

3.8.14 Gesture distance Y register
This Gesture Distance Y register contains a calculated maximum distance between gesture analog
positions on Y vertical axis. The gesture event is reported if at least two isolated touches are detected
within control range.

Figure 3-48. Gesture Distance Y register

Table 3-45. Position Y register description

Signal Description

Position Indicates the calculated absolute analog position within defined range.
0—Range - Number of the actual position

Register Number = 0x09

 7 6 5 4 3 2 1 0

R Gesture Distance X

W

Reset: 0 0 0 0 0 0 0 0

Table 3-46. Gesture Distance X register description

Signal Description

Position Indicates calculated maximum distance between gesture analog positions on X horizontal axis.
0—Range - Number of the actual position

Register Number = 0x09

 7 6 5 4 3 2 1 0

R Gesture Distance Y

W

Reset: 0 0 0 0 0 0 0 0

Table 3-47. Gesture Distance Y register description

Signal Description

Position Indicates calculated maximum distance between gesture analog positions on Y vertical axis.
0—Range - Number of the actual position

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-57 Freescale Semiconductor

3.8.15 Range X register
The range register value defines the absolute range within the position on X horizontal axis and is reported.

Figure 3-49. Range X register

3.8.16 Range Y register
The range register value defines the absolute range within the position on Y vertical axis and is reported.

Figure 3-50. Range Y register

3.8.17 Matrix callback function
The decoder module calls this function if an event occurs and the user enables the callback function.
Callback functions are assigned to controls in the system setup module, and one callback may be assigned
to different controls in the system.

Function prototype
void CallbackFuncName(UINT8 u8ControlId)

Register Number = 0x06

 7 6 5 4 3 2 1 0

R
Range X

W

Reset: 0 1 0 0 0 0 0 0

Table 3-48. Range X register description

Signal Description

Range Defines the absolute range within the position on X horizontal axis reported.
2— 255 - Range value

Register Number = 0x06

 7 6 5 4 3 2 1 0

R
Range Y

W

Reset: 0 1 0 0 0 0 0 0

Table 3-49. Range Y register description

Signal Description

Range Defines the absolute range within the position on Y vertical axis is reported.
2— 255 - Range value

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 3-58

The CallbackFuncName for each control is defined in the following TSS_SystemSetup.h file macro:
#define TSS_Cn_CALLBACK fCallBack5

Where:
• n is the number of the control
• fCallBack5 is a name example

Input parameters

Return value
None

Type Name Valid range/values Description

 UINT8 u8ControlId Any valid control ID of any
control in the system

Indicates to the user the control
that generated the event. This
parameter matches the controlled
field in the control C&S register.

Application Interface

Touch Sensing Software API Reference Manual, Rev. 7

3-59 Freescale Semiconductor

Library Intermediate Layer Interfaces

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 4-1

Chapter 4
Library Intermediate Layer Interfaces
The TSS library architecture allows you to implement your modules depending on your application
requirements. You can customize your applications using a suitable library layer. To implement modules,
you need to understand how modules exchange information and communicate with each other. This
section describes the parameters and functions used by the library to establish communication between
layers. For more details on the TSS library architecture, refer to Section 1.3, “Library architecture.”

4.1 Capacitive sensing and key detector interface
The capacitive sensing layer senses each electrode declared in the system. Based on the information
provided by the capacitive sensing layer, the key detector layer determines if an electrode is being pressed
or not. Table 4-1 shows the global value where the charging time is stored.

The tss_u16CapSample global variable passes the acquired sensing data from the capacitive sensing layer
to the key detector layer. When the capacitive sensing layer senses an electrode, it stores the charging time
information into the tss_u16CapSample global variable. If you want to use your own capacitive sensing
module, the acquired value from the sensing module is passed to the upper layer by storing this value into
the tss_u16CapSample global variable.

4.1.1 Electrode sampling
The exchange of information between the capacitive sensing and key detector layers is performed using
the sensing function.

Function prototype
UINT8 (* const tss_faSampleElectrode[])(UINT8 u8ElecNum, UINT8 u8Command)

Function description
The key detector layer calls the sensing function each time it needs to sense an electrode. The
function
UINT8 (* const tss_faSampleElectrode[])(UINT8 u8ElecNum, UINT8 u8Command)

is used to select the appropriate sensing function according to the defined low level method (GPIO,
CTS). The sensing function allows both layers to exchange parameters. When the key detector
layer calls this function, it provides the electrode number that needs to be scanned and a command
for a measurement routine. When the sensing is completed, the capacitive sensing layer returns the
sensing state to the upper layer.

Table 4-1. Global variable description

Parameter Description

tss_u16CapSample Global 16 bits variable used to store the electrode charging time

Library Intermediate Layer Interfaces

Touch Sensing Software API Reference Manual, Rev. 7

4-2 Freescale Semiconductor

Input parameters

Return value

The function returns the resulting status of the electrode sensing to the key detector layer.

Possible return values are described below:

When a fault occurs, the key detector layer determines if the sense capacitance was too small, too large,
recalibration needed, or if another not standard state is detected.

4.1.2 Low-level initialization
The initialization of low level hardware from the Key Detector layers is performed by the Sensor Init
function.

Function prototype
UINT8 TSS_SensorInit(UINT8 u8Command)

Function description
The key detector layer calls the Sensor Init function each time it needs to change the configuration
of the low level hardware, or electrode. The function UINT8 TSS_SensorInit(UINT8
u8Command) is used to reconfigurate the entire low level, that is all electrodes regardless of

Type Name Valid range/values Description

UINT8 u8ElecNum Any valid Electrode number Number of electrodes to be scanned by the
capacitive sensing layer

UINT8 u8Command Any valid command:
TSS_SAMPLE_COMMAND_DUMMY
TSS_SAMPLE_COMMAND_RESTART
TSS_SAMPLE_COMMAND_PROCESS
TSS_SAMPLE_COMMAND_RECALIB
TSS_SAMPLE_COMMAND_GET_NEXT_ELECTRODE
TSS_SAMPLE_COMMAND_ENABLE_ELECTRODE

These commands are used for
management of the measurement process
and setting of the electrode from the upper
level

Return Value Description

TSS_SAMPLE_STATUS_OK Electrode sensing was successfully finished.

TSS_SAMPLE_STATUS_PROCESSING The electrode sensing process is still running.

TSS_SAMPLE_STATUS_CALIBRATION_CHANGED Electrode was recalibrated.

TSS_SAMPLE_RECALIB_REQUEST_LOCAP Electrode sensing was not successful done due to small capacitance
measured value. Recalibration is requested.

TSS_SAMPLE_RECALIB_REQUEST_HICAP Electrode sensing was not successful done due to high capacitance
measured value. Recalibration is requested.

TSS_SAMPLE_ERROR_SMALL_TRIGGER_PERIOD Small trigger period was detected

TSS_SAMPLE_ERROR_CHARGE_TIMEOUT Electrode sensing was not successful done due to charge timeout.

TSS_SAMPLE_ERROR_SMALL_CAP Electrode sensing was not successful done due to small capacity

Library Intermediate Layer Interfaces

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 4-3

measurement method. The Sensor Init function allows both layers to exchange parameters. When
the key detector layer calls this function, it provides a command for this function. When the
configuration of low level is completed, the Sensor Init function returns the state to the upper layer.

Input parameters

Return value

The function returns the resulting status of the configuration to the key detector layer.

Possible return values are described below.

4.2 Decoder interface
The decoders provide the highest level of abstraction in the library. In this layer, the key detector
information about touched and untouched electrodes is interpreted to present the status of a control in a
behavioral way. It is important to understand that decoder-related code exists only once in memory.
Decoders can be seen as classes of an object oriented language. Each control has a decoder associated to
it, so the control becomes an instance of the decoder (an object). However, not all decoders are necessarily
instantiated in every system. The TSS library supports Rotary, Slider, Analog rotary, Analog slider, Matrix,
and Keypad inside of the precompiled library files, but there is interface which allows to implement other
decoders externally. For more information about the Decoders functiona, refer to A.4, “Decoder
Functions.”

Type Name Valid range/values Description

UINT8 u8Command Any valid command:
 • TSS_INIT_COMMAND_DUMMY
 • TSS_INIT_COMMAND_INIT_MODULES
 • TSS_INIT_COMMAND_ENABLE_ELECTRODES
 • TSS_INIT_COMMAND_SET_NSAMPLES
 • TSS_INIT_COMMAND_INIT_TRIGGER
 • TSS_INIT_COMMAND_SW_TRIGGER
 • TSS_INIT_COMMAND_INIT_LOWPOWER
 • TSS_INIT_COMMAND_GOTO_LOWPOWER
 • TSS_INIT_COMMAND_RECALIBRATE

These commands are used to set the entire
low level hardware from the upper level

Return Value Description

TSS_INIT_STATUS_OK Configuration was successful.

TSS_INIT_STATUS_LOWPOWER_SET Configuration of Low Power function was successful.

TSS_INIT_STATUS_LOWPOWER_ELEC_SET Configuration of Low Power electrode was successful.

TSS_INIT_STATUS_TRIGGER_SET Configuration of Trigger was successful.

TSS_INIT_STATUS_AUTOTRIGGER_SET Configuration of Auto Trigger mode was successful.

TSS_INIT_STATUS_CALIBRATION_CHANGED Calibration was changed.

TSS_INIT_ERROR_RECALIB_FAULT Calibration was unsuccessful.

Library Intermediate Layer Interfaces

Touch Sensing Software API Reference Manual, Rev. 7

4-4 Freescale Semiconductor

4.2.1 Decoder main function
The exchange of information between the decoder and key detector layer is performed using the following
function.

Function prototype
UINT8 (* const tss_faDecoders[])(UINT8 u8CtrlNum, const UINT16 *pu16Buffer,
UINT8 u8Command)

Function description
The key detector layer calls the decoder function everytime electrodes are measured. The decoder
function allows both layers to exchange parameters. When the key detector layer calls this
function, it provides the control number which is processed, pointer to the data which provides the
electrode state information with signal change, and a command. When the decoder function
finishes processing, it returns the status to the lower layer.
The electrode state buffer always provides a pointer to the data of the electrodes related to the
control. The data consists of two 16 bit variables. The first variable provides information about the
touch state of the electrodes in the form of bit flags relative to the control (logic one is touch state,
zero is release state). The second variable provides information about the signal change of the
electrodes in the form of bit flags relative to the control (logic one represents signal change).

Input parameters

Return value

The function returns the resulting status of the decoder to the key detector layer.

Possible return values are described below:

Type Name Valid range/values Description

UINT8 u8CtrlNum Any valid control number Number of control to be processed

UINT16 *pu16Buffer Pointer to the electrode state data The pointer to the data which provides
electrode state information with signal
change information

UINT8 u8Command Any valid command:
TSS_DECODER_COMMAND_DUMMY
TSS_DECODER_COMMAND_PROCESS
TSS_DECODER_COMMAND_GET_TOUCH_STATUS
TSS_DECODER_COMMAND_GET_IDLE_SCAN_RATE
TSS_DECODER_COMMAND_INIT
TSS_DECODER_COMMAND_GET_ENABLE_STATUS
TSS_DECODER_COMMAND_GET_THRSHLD_RATIO

These commands are used for decoder
process management and decoder setting
from lower level

Return Value Description

TSS_DECODER_STATUS_OK Decoder processing successfully finished

TSS_DECODER_STATUS_TOUCHED The answer to the command
TSS_DECODER_COMMAND_GET_TOUCH_STATUS if at
least one electrode of the control is touched.

Library Intermediate Layer Interfaces

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor 4-5

4.2.2 Writing to the decoder schedule counter
The Key Detector provides an internal counter that can schedule decoder calls periodically after a defined
number of TSS_Task measurement cycles. The initialization of the control schedule counter is performed
by this function.

Function prototype
void TSS_KeyDetectorSetControlScheduleCounter(UINT8 u8CntrlNum, UINT8 u8Value)

Function description
The key detector layer decrements the control schedule counter after each electrode measurement
cycle is finished.

Input parameters

Return value

None

4.2.3 Reading the decoder schedule counter
The key detector provides an internal counter that can schedule a decoder call after a defined number of
TSS_Task measurement cycles. The status of this counter can be read by this function.

Function prototype
UINT8 TSS_KeyDetectorGetControlScheduleCounter(UINT8 u8CntrlNum)

Function description
The key detector layer decrements control schedule counter after each measurement cycle. The
function returns actual state of the counter

Input parameters

TSS_DECODER_ERROR_ILLEGAL_CONTROL_TYPE Called decoder type does not match with control type

TSS_DECODER_STATUS_BUSY Decoder is not ready to perform processing.

TSS_DECODER_STATUS_ENABLED The answer to the command
TSS_DECODER_COMMAND_GET_ENABLE_STATUS if de-
coder is enabled by the user.

Type Name Valid range/values Description

UINT8 u8CntrlNum Any valid control number Control index

UINT8 u8Value 1-255 Number of TSS_Task measurement cycles

Type Name Valid range/values Description

UINT8 u8CntrlNum Any valid control number Control index

Return Value Description

Library Intermediate Layer Interfaces

Touch Sensing Software API Reference Manual, Rev. 7

4-6 Freescale Semiconductor

Return value

The status of the control schedule counter.

4.2.4 Reading the electrode boundaries in the control
The key detector provides information about the maximum system electrode number assigned to the
control, refer to Section 2.1.30, “Number of electrodes assigned to control”. This can be helpful for finding
the electrode status buffer end provided to a decoder. The electrode boundary for the control can be read
by this function.

Function prototype
UINT8 TSS_KeyDetectorGetCntrlElecBound(UINT8 u8CntrlNum)

Function description
The function returns boundary of the last system electrode number assigned to the control.

Input parameters

Return value

The boundary of the last system electrode number assigned to the control.

4.2.5 Reading the instant delta in the control
The key detector provides information about the electrode instant delta value.

Function prototype
INT8 TSS_KeyDetectorGetInstantDelta(UINT8 u8ElecNum)

Function description
The function returns instant delta value for a defined electrode.

Input parameters

Return value

The instant delta value of a defined electrode.

Type Name Valid range/values Description

UINT8 u8CntrlNum Any valid control number Number of control which is required elec-
trode boundary for

Type Name Valid range/values Description

UINT8 u8ElecNum Any valid electrode number Number of instant delta electrode

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor A-1

Appendix A Touch Sensing Algorithms

A.1 GPIO Based Capacitive Touch Sensing Method
To measure the capacitance of an electrode, a Freescale MCU with GPIO and time measurement
capabilities is required. Figure A-1 shows the electric diagram of the circuit.

Figure A-1. Electrode equivalent circuit

The electrode connected to the MCU acts like a capacitor, and the external pull-up resistor limits the
current to charge the electrode.

The RC circuit charging time constant () is defined by the following equation:

Eqn. A-1

According to the equation, if the pull-up resistor remains the same, an increase in the capacitance will
increase the circuit charging time. The MCU measures the charging time and uses this value to determine
if the electrode has been touched or not. Figure A-2 shows the charging time of the electrode circuit.

MCU MCU

VCC

Electrode

VCC

Finger

Electrode

System’s base
capacitance

τ

τ RC=

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

A-2 Freescale Semiconductor

Figure A-2. RC capacitor charge curve

By default, the electrode is in output high state. When the measurement starts, the MCU sets the electrode
pin as output low to discharge the capacitor. Then, it sets the electrode pin as high impedance state, making
the capacitor start charging. This depends on the selected measurement method.

For the GPIO method, it is the input state of the GPIO pin. As the capacitor charges, the MCU enables a
counter and counts the time required to reach the pin threshold value, which is 0.7 VDD. Detection of this
state depends on the module function of the selected measurement method. After the threshold is reached,
the counter stops, stores the value and discharges the electrode. For more details on the electrode sensing
algorithm, refer to Section A.1.1, “Electrode capacitive sensing algorithm.”

As the electrode is touched, the finger capacitance is added to the capacitance of the electrode. This
increases the circuit capacitance, which increases the charge time measured by the timer.

t1t0

T1

0.7 VDD

t

Capacitor Voltage

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor A-3

Figure A-3. Charge Time of Capacitor with Finger Added Capacitance

As shown in Figure A-3:
• C1 — The charging time curve when there is no extra capacitance or when the electrode has not

been touched.
• C2 — The charging time curve when the electrode has been touched.
• T1 — The charging time when the electrode has not been touched.
• T2 — The charging time when the electrode has been touched.

Figure A-3 shows that when the capacitance increases due to the finger capacitance in the electrode, the
charging time increases. The TSS library uses the charging time difference to determine if the electrode is
touched or not.

A.1.1 Electrode capacitive sensing algorithm
Figure A-4 shows the Capacitive Sensing algorithm for the GPIO measurement method. The program
starts with recognition of command from Keydetector.

In the case of the RESTART command the function just reports the PROCESSING state and escapes,
because the GPIO based method does not need to do anything, but it is important for a unified API.

C1 C20.7 VDD

T1

T2

t1 t2
t

Capacitor Voltage

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

A-4 Freescale Semiconductor

In the PROCESS command the function, sets the returning value as OK, stops the counter and resets it,
and then clears the sample interrupt flag. Then the function continues in the main steps described below.

1. The Electrode Capacitive Sensing Algorithm sets up the used modules. Then the related low-level
measurement routine is called either in the form of optimized external UINT16
TSS_SampleElectrodeLowEx(void) low-level routine, or directly programmed code. In the case
of external low-level routine its type depends on the measurement method. For details about the
GPIO-based external low-level routine, refer to Section 4.2.5.1, “GPIO based low level Routine.”

2. The algorithm reads the timeout flag to determine if it is a valid sample. This step may lead to the
following outcomes:
— If the sample is not valid, the timeout return value is set and the number of remaining samples

is set to zero.
— If the sample is valid, the charging time value is stored and the number of remaining samples

is decremented by one.
— If the noise amplitude filter is enabled then the sample is additionally processed by this

algorithm.
3. The number of remaining samples is read. If the number of samples is zero, the status value is

returned and the program ends. Otherwise the algorithm goes back the discharge step repeating the
sampling process.

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor A-5

Figure A-4. Capacitive sensing algorithm

Start

Counter Stop
Counter Reset

Set Return Status = OK

Discharge Electrode (Configure
the pin as Low Output)

Sample one electrode by

Valid Sample?

Store Counter Value
Samples--

End

Status = Timeout
Samples = 0No

Yes

Return Status = OK / FAULT

Yes

No

low-level routine

Noise Amplitude

Apply Noise Amplitude Filter

Yes

Nofilter

Command?

Sample = 0?

Return Status = PROCESSING

RESTART

PROCESS

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

A-6 Freescale Semiconductor

4.2.5.1 GPIO based low level Routine

Figure A-5 shows the GPIO based low-level algorithm. This low-level routine can be realized either in the
form of the optimized external low level routine UINT16 TSS_SampleElectrodeLowEx(void), or it can
be directly programmed code in the GPIO Electrode Sensing Algorithm, see Section A.1.1, “Electrode
capacitive sensing algorithm.” It uses the hardware timer defined by the user. These instructions are the
same for all electrodes using the GPIO based measurement method.

The main steps of the GPIO based low-level routine are as follows.
1. Start the hardware timer.
2. Start charging the electrode by setting the GPIO pin to input state.
3. Wait for the electrode to be charged. This step may lead to the following results:

— If the electrode is not charged and the timeout value has not been reached, the algorithm
remains in this step.

— If the electrode is not charged and the timeout value has been reached, an interrupt occurs. The
timeout flag is set, and the program comes out of the waiting loop and stops the counter.

— If the electrode is charged before the timeout value is reached, the program comes out of the
waiting step and stops the counter.

4. The function returns the integer value of the hardware timer counter.

Figure A-5. GPIO based low level routine

Start

Counter Start

Configure Electrode pin as
High Impedance (Input)

Electrode
Charged?

Yes

No

End

Timeout
Interrupt?

Set Timeout Flag

No

Yes

Counter Stop

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor A-7

A.1.2 Selecting the proper timer frequency and external pull-up resistor
When using the TSS library and GPIO based measurement method, it is important to consider the
following parameters:

• Timer frequency
• Pull-up resistor value
• MCU power voltage

Any variation in these parameters will modify the library performance. A variation may also result in the
improvement of one aspect compromising the other. A commitment must be made when selecting the
value of these parameters so that the performance of the library meets the application needs. The sections
below describe the effect of these parameters on the library performance and provide comparison tables
so the user can choose the most suitable value.

A.1.3 MCU frequency
If the GPIO based measurement method is selected, then the library uses at least one timer module from
the MCU to count the charging time of the electrodes. The timer module depends on the frequency of the
clock used, therefore the frequency at which the MCU is configured is important. Because the frequency
determines the minimum capacitance value detected per count, the most desirable frequency is the
maximum allowed value.

The S08 microcontroller series are able to run at 10 Mhz when using the internal source clock oscillator,
having the timer module run at 2.5 Mhz.

Minimum amount of time to measure is:
1/2.5 MHz = 400ns

Maximum amount of time is:
255 * 400ns = 102us (because it is an 8-bit timer machine)

Therefore, using the 10 MHz frequency configuration, the minimum detected capacitance value per count
is:

Minimal — 0.6645 pF/count
Maximal — 0.1054 pF/count

A.1.4 Voltage trip point (Vih)
The equivalent value of capacitance measured in an electrode depends on the value where the MCU detects
the input as logic 1 (Vih). This value depends on the power voltage (VDD). Therefore, the voltage used to
power the MCU affects the time the MCU detects the electrode as charged. According to the datasheet of
the 9S08QG8 microcontroller, the value of Vih is as shown in Table A-1.

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

A-8 Freescale Semiconductor

Table A-1. Relationship between Vdd and Vih

A.1.5 Sensitivity and range
As explained in Section A.1, “GPIO Based Capacitive Touch Sensing Method,” the capacitance
measurement depends on the charging time of the RC circuit formed by the electrode and the pull-up
resistor. Any variation in the capacitance translates into the variation of the charging time of the equivalent
RC circuit. In addition, a variation in the resistor translates into a variation in the charging time. With the
proper resistor value, you can modify the capacitance range and the sensitivity to a range suitable for
application. Table A-2 shows the maximum capacitance range and capacitance resolution at different
pull-up resistance values from 500 k to 2 M Ohms.

Table A-2. Maximum capacitance range and resolution at different pull-up resistance values

The table shows that the maximum capacitance range and the minimum capacitance resolution decrease
when the pull-up resistance value is increased. Given that, the most desirable scenario occurs when the
capacitance resolution is the smallest possible value and the maximum capacitance range is the biggest
possible value. A commitment between these two values must be made to obtain the values that meet your
application.

Parameter Symbol Min Typical Max Unit

Input high voltage (VDD >
2.3 V)

Vih 0.7 x VDD V

 Input high voltage
(1.8 V < VDD < 2.3 V)

(all digital inputs)

0.85 x VDD V

Voltage Level Pull-up
Resistor

Cap Range
(max) (pF)

C Resolution
(min) (pF)

VDD > 2.3 V 500k 169.44 0.6645

VDD > 2.3 V 680k 124.59 0.4886

VDD > 2.3 V 810k 104.59 0.4102

VDD > 2.3 V 1M 84.72 0.3322

VDD > 2.3 V 1.5M 56.48 0.2215

VDD > 2.3 V 2M 42.36 0.1661

1.8 V < VDD < 2.3 V 500k 107.53 0.4217

1.8 V < VDD < 2.3 V 680k 79.07 0.3101

1.8 V < VDD < 2.3 V 810k 66.38 0.2603

1.8 V < VDD < 2.3 V 1M 53.77 0.2108

1.8 V < VDD < 2.3 V 1.5M 35.84 0.1406

1.8 V < VDD < 2.3 V 2M 26.88 0.1054

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor A-9

A.2 TSI Module Based Touch Sensing Method

The Touch Sensing Input (TSI) module provides capacitive touch sensing detection with high sensitivity
and enhanced robustness. Each TSI pin implements the capacitive measurement of an electrode having
individual result registers. The TSI module can be functional in several low power modes with an ultra low
current adder. The Freescale provides two versions of TSI modules at the moment.

The first version of the TSI module is implemented in Coldfire+ and ARM®Cortex™-M4 MCUs. This
kind of TSI module can wake the CPU in a touch event, measures all enabled electrodes in one automatic
cycle, provides automatic triggering inside the module, and so on. For more details on the TSI module
features, refer to an arbitrary reference manual of the MCU containing the TSI module inside. Figure A-6
is the block diagram for the TSI module.

Figure A-6. TSI module version 1 block diagram

The second version of the TSI module is simplified version of the first generation. It is implemented in the
S08PTxx and ARM®Cortex™-M0 MCUs at the moment. This kind of TSI module measures just one
enabled electrode in one measurement cycle and provides automatic triggering externally by the RTC, or
LPTMR timer. For more information on the TSI module features, refer to a reference manual of the MCU
containing the TSI module.

Figure A-7 shows the block diagram of the TSI module.

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

A-10 Freescale Semiconductor

Figure A-7. TSI module version 2 block diagram

A.2.1 TSIL sample electrode control
Touch Sensing Input Lite (TSIL) is an internal name of the TSI module version 2 as it is implemented in
the TSS library. The TSIL algorithm is placed into the separated file TSS_SensorTSIL.c. The TSI module
version 2 is implemented in the HCS08 MCU families with a smaller flash memory footprint. For this
purpose the TSS has implemented two versions of the TSIL low level routines.

• Standard Low Level routines provide full TSS functionality with background measurement. There
are three triggering modes available (Auto triggering only if the TSI measurement method is used
at least on one electrode).

• Simple Low Level routines are simpler with smaller size code. The measurement is consecutive,
but TSS_Task needs to wait for end of measurement. The auto triggering function is not available.
The simple low level is limited to a single TSI module only.

For more details how to select simple low level routines, refer to Section 2.1.1, “Simple low level
routines.”

A.3 Key Detect Method
The key detector module determines if an electrode has been touched. If the sample is reported as a valid
sample, the module compares the stored value of the charging time with the threshold value. Based on the
result, it determines the electrode's state, which can be released, touched, changing from released to touch,
and changing from touched to release. Along with this comparison, the key detector module uses a
de-bounce algorithm that prevents the library from false touches.

A.3.1 Key press detection
Figure A-8 shows the four states in which the electrodes can be found by the key detector module.

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor A-11

Figure A-8. Electrode states

State A

In this state, the electrode is not being touched and has not been touched for some time. This state can be
referred to as release state.

State B

In this state, the electrode changes from a release state to the touch state. In this state, the algorithm to
prevent false touches is used. If the required conditions are not met, the key detector module does not
report the touch event.

State C

In this state, the electrode has met all the conditions required to be considered as touch. Therefore, the key
detector module reports the electrode's status as touched to the event buffer or the event register depending
on the controller used.

State D

In this state, the electrode is making the transition from touched to release. This state uses algorithms to
avoid false releases.

A.3.2 Triggering
The standard measurement processing method runs in an asynchronous way, which means that electrodes
are measured one by one in a defined order without time synchronization. The triggering function allows
the user to control time when the measurement is performed. Three triggering modes of the capacitance
measurement process are provided by the TSS:

• ALWAYS — Common measurement process that starts the next measurement sequence of all
electrodes immediately after the last electrode finishes measurement. Immediately means as soon
as the TSS_Task is called after the previous measurement cycle finishes.

• SW — The user application starts the measurement sequence of all electrodes by toggling the SW
Trigger bit in the System trigger register. If the TSI method is used at least on one electrode, then

State A

State B

State C

State D

Electrode’s Capacitance

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

A-12 Freescale Semiconductor

precision of measurement start is higher due to background management by the TSI hardware
module. The user needs to enable the trigger function in the TSS_SystemSetup.h file.

• AUTO — The selected triggering source will control automatic start of the next measurement
execution in the defined auto trigger period. The user needs to define auto triggering source and
also enable trigger function in the TSS_SystemSetup.h file.

The TSS supports several options on how to configure the triggering function, as shown in the Table A-3
below.

Table A-3. Summary of Triggering function configuration

A compilation of trigger function code needs to be manually enabled in TSS_SystemSetup.h. To enable
the AUTO trigger function, the auto triggering source needs to be defined in the TSS_SystemSetup.h. For
more details on how to setup the trigger function refer to Section 2.1.16, “Trigger function.”

If the trigger function is enabled, writing to the System Trigger and Auto Trigger Modulo Value registers
by the TSS_SetSystemConfig function is then possible. The triggering mode can be selected by the Trigger
Mode selector in the System Trigger register. The Auto Trigger Modulo Value register defines the auto
trigger period only for the TSIx auto trigger source.

If the SW or AUTO trigger mode is selected, the TSS_Task function should be called as often as possible.
This period should be shorter than the used trigger period, otherwise the measured data will be lost and not
processed. This situation is reported as a fault by the Small Trigger Period bit in the Fault register. Also
the OnFault callback can be enabled to indicate this problematic condition.

Some versions of TSI modules can select active mode clock options. Most of the TSI modules
implemented in Coldfire+ and ARM®Cortex™-M4 may provide this option. If this kind of TSI module is
used as an auto trigger source and auto triggering mode is selected then the scan period will depend on
selection of TSI active mode clock settings. These settings are defined by TSS_TSI_AMCLKS,

Trigger Function
Enabling

Auto Trigger
Source Triggering Mode Measurement Period Note

Disabled UNUSED
(or not defined)

ALWAYS N/A Writing to Trigger registers is
disabled

Enabled UNUSED
(or not defined)

ALWAYS N/A —

SW Period defined by SW Trigger
Bit toggling

If TSI method is used in the
application then precision of
measurement start is higher.

RTC, LPTMR, TSIx ALWAYS N/A —

SW Period defined by SW Trigger
Bit toggling

—

AUTO If TSI auto trigger source is
used, the Auto Trigger Modulo
Value register defines the
measurement period. In the
case of RTC, or LPTMR auto
trigger source, the
measurement period is defined
by the timer setup.

If the RTC, or LPTMR is used the
user needs to manage the timer
initialization and interrupt service
routine.

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor A-13

TSS_TSI_AMCLKDIV, and TSS_TSI_AMPSC macros in TSS_SystemSetup.h. For more details about
these macro settings, refer to Section 2.1.38, “TSI active mode clock settings.”

If the RTC, or LPTMR timer is selected as auto trigger source for the TSI module then the period of the
triggering depends on the timer setup.

A.3.3 Low power function
The low power function enables to wake the MCU from low power mode if the defined source device
detects a touch. The TSS does not fully manage the MCU low power mode. The TSS just prepares the TSS
system and the selected lower power control source device for entering the MCU’s low power mode. Then
the user initiates entering into low power mode by himself. If low power control source device detects a
touch then it wakes the MCU. The user is then responsible for reconfiguring the TSS to a standard run
mode, or again initiates entering the LowPower mode. This function can be combined with the Proximity
function, refer to Section A.3.4, “Proximity function.”

The following steps show an example of typical use of low power function:
1. The peripheral module which is responsible for LowPower wake control and synchronization is

defined by the TSS_USE_LOWPOWER_CONTROL_SOURCE defined in TSS_SystemSetup.h.
For more details about this macro setting, refer to Section 2.1.17, “Low power control source.”

2. The user defines LowPowerScanPeriod, LowPowerElectrode, and LowPowerElectrodeSensitivity
registers by the TSS_SetSystemConfig. For more details about these registers, refer to
Section 3.4.10, “Low Power Scan Period register”, Section 3.4.11, “Low Power Electrode
register” and Section 3.4.12, “Low Power Electrode Sensitivity register”.

3. If the user wants to enter to MCU low power mode, the LowPowerEn bit has to be enabled in the
SystemConfig register by the TSS_SetSystemConfig function. For more details about this register,
refer to Section 3.4.5, “System Configuration register.” This action enables the TSS and a selected
low power control source device to wake from the low power mode. No execution of the TSS_Task
is now allowed.

4. The user may now force the MCU to enter low power mode by instructions related to the used
MCU platform.

5. If the selected lower power control source device detects a touch, the MCU wakes and the program
continues to run. The LowPowerEn bit is automatically disabled.

6. The user can now enter the low power mode as in step 3, or set the TSS to common running mode.

Some versions of TSI module can wake the MCU from low power mode. Most of TSI modules
implemented in Coldfire+, ARM®Cortex™-M4, and ARM®Cortex™-M0 provide this feature. If this
kind of TSI module is used, then the TSI module needs to be defined as source control of the low power
mode.

Some TSI modules provide definition of a low power mode clock source, so the macro TSS_TSI_LPCLKS
in the TSS_SystemSetup.h file needs to be defined. For more details about this macro setting, refer to
Section 2.1.39, “TSI low power mode clock settings.” The LPSCNITV register will be set directly from
LowPowerScanPeriod register. The longer scan period during the low power mode contributes to smaller
average power consumption.

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

A-14 Freescale Semiconductor

Some TSI modules need an external clock for low power functionality. The TSS_TSI_LPCLKS is not
defined in that case and the user is reposnsible for initialization of an external clock source for this purpose,
for example the LPTMR timer on ARM®Cortex™-M0 family.

A.3.4 Proximity function
The proximity function enables a detection of a finger presence even without a direct finger touch to the
electrode. The detection distance can be a few centimeters. To enable proximity function you need to have
a special designed electrode shape with a bigger electrode area. The proximity electrode can also wake the
MCU, if the proximity function is combined with the low power function described in Section A.3.3, “Low
power function”. In this case, the LowPowerElectrode, and LowPowerElectrodeSensitivity registers are
used for Low Power electrode and also for Proximity electrode settings. The dc-tracker function is disabled
in proximity mode.

The following steps show an example of typical use of the proximity function:
1. The OnProximity callback must be defined in TSS_SystemSetup.h file. This enables the proximity

feature in TSS. For more details about this callback definition, refer to Section 2.1.15,
“OnProximity callback.”

2. If the TSI measurement method is used, the user needs to define proximity configuration of TSI
autocalibration. In the case of the GPIO method the user must define proximity configuration of
the timer prescaler and timeout. For more details, refer to Section 2.1.37, “TSI autocalibration
settings”, Section 2.1.35, “Prescaler configuration of TSS hardware timer”, or Section 2.1.36,
“Timeout configuration of TSS hardware timer”.

3. The user defines LowPowerElectrode, and LowPowerElectrodeSensitivity registers by the
TSS_SetSystemConfig. For more details about these registers, refer to Section 3.4.11, “Low Power
Electrode register.” and Section 3.4.12, “Low Power Electrode Sensitivity register.”.

4. If the user wants to enter proximity mode, the ProximityEn bit has to be enabled in the
SystemConfig register by the TSS_SetSystemConfig function. For more details about this register,
refer to Section 3.4.5, “System Configuration register.” This action switches to TSI and GPIO
proximity configuration and initates hardware recalibration. Then it enables only the proximity
electrode and disables the others.

5. If low power mode is also enabled by the LowPowerEn bit then the user must enter the low power
mode at this moment. Otherwise, the application needs to execute periodically TSS_Task for
proximity detection.

6. If the proximity event is detected, then the OnProximity callback is called.
7. The user can now disable proximity mode by ProximityEn bit, or continue in the next proximity

event detection.

A.3.5 Automatic Sensitivity Calibration
The TSS library provides the automatic sensitivity calibration (ASC) function. The function periodically
adjusts the level of electrode sensitivity calculated according to the estimated noise level and touch
tracking information. The user does not need to set the electrode sensitivity anymore, but manual settings

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor A-15

are still availabe in the case for precise tuning. For more information on how to configure the ASC, refer
to Section 2.1.11, “Automatic sensitivity calibration.”

The three modes of sensitivity management:
1. The ASC enabled without Sensitivity configuration — The feature automatically manages

sensitivity for each electrode during the overall run of the application. Figure A-10 shows a
description of the ASC operation.

2. The ASC enabled with Sensitivity configuration — The first sensitivity configuration is used as
an initial value of sensitivity for the ASC feature. Then the feature automatically manages
sensitivity for each electrode. This approach can help ASC with better initial estimation of the
noise in the system.

3. The ASC disabled — The user needs to setup sensitivity manually and this value will be used until
the user changes the sensitivity register again.

Figure A-9. Automatic Sensitivity Calibration function

A.3.6 Baseline tracking

The electrode capacitance constantly varies due to environmental factors. These variations are usually
small, but sometimes can lead to spurious detections of the electrodes. Therefore, an algorithm is required
to avoid erratic behavior in the electrodes. Temperature changes, noise, humidity, are some factors that can
influence the electrode's capacitance. To ensure a robust performance, the library implements the baseline
tracking algorithm. The algorithm determines if the change in the electrode's capacitance was caused by a
touch or an environmental factor. The library also allows you to configure the rate at which the baseline is
updated. For more information on how to configure the baseline-tracking rate, refer to Section 3.4.7, “DC
Tracker Rate register.”

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

A-16 Freescale Semiconductor

A.3.6.1 Negative baseline drop

Negative baseline drop is an internal part of the standard baseline tracking algorithm. The function adjusts
baseline level if the signal level drops below the baseline. When a signal level is lower than the sensitivity
value in a negative direction below the baseline, then the baseline is set to a signal level. Figure A-10
shows a description of the function. The function helps to adapt the system to not have a predictable drop
of the signal caused by noise, or dynamic system recalibration. The refresh rate of negative baseline drop
is defined by the baseline-tracking rate. For more information how to configure the baseline-tracking rate,
refer to Section 3.4.7, “DC Tracker Rate register.” The function can be enabled or disabled by the
TSS_USE_NEGATIVE_BASELINE _DROP macro defined in the TSS_SystemSetup.h. For more details
about this macro setting, refer to Section 2.1.20, “Negative baseline drop.”

Figure A-10. Negative baseline drop

A.3.7 Debouncing
Because the electrodes are implemented as traces or planes of conductive material, they can behave like
antennas. Therefore, electric noise is induced in the electrodes. The noise induced, in an extreme scenario,
can lead to spurious touches or releases. The TSS library implements a configurable de-bounce algorithm
to ensure that the electrodes are properly detected even in noisy environments. The de-bounce algorithm
is implemented in the key detector layer. The debouncing rate is modified with the NSamples register that
defines how many samples need to be valid before considering a measured value as valid. Refer to
Section 3.4.6, “Number of Samples registers.”

A.3.8 IIR filter
The electrodes may induct the high frequency noise from the environment. In an extreme situation, the
noisy variances on the capacitive signal may lead to spurious touches or releases. The IIR filtration
implemented in the TSS library helps to eliminate this high frequency noise modulated on the capacitance
signal and other external interferences. The filter processes current capacitance values obtained from

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor A-17

low-level routines and works with all low Level Sensor modules. The IIR equation is internally set to ratio
1/3 (current signal and previous signal). For more information on how to enable the IIR filter, refer to
Section 2.1.7, “IIR filter.”

A.3.9 Noise amplitude filter
In addition to the IIR filter mentioned in the previous chapter, the TSS library also implements the noise
amplitude filtering function that may help to eliminate high-frequency noise modulated on the electrode’s
capacitance signal. The function is available only for the GPIO measurement method. The function
processes each sample measured by all low level sensor modules except the TSI module. Each sample
value is limited by the amplitude filter with a defined size. If a sample noise is bigger than the defined
amplitude, it is ignored. The function helps to eliminate high-frequency noise modulated on the input
signal and other external interference. For more information on how to enable the noise amplitude filter
function, refer to Section 2.1.8, “Noise amplitude filter.”

A.3.10 Shielding function and Water tolerance
The shielding function may further improve the TSS noise immunity and water tolerance. The function
compensates signal drift on a regular electrode by a special shielding electrode signal. The function can be
used in the standard shielding mode described in Section A.3.10.1, “Standard shielding function.” and
water tolerance mode described Section A.3.10.2, “Water tolerance mode.” It is important to note that the
DC-Tracker function and Negative Baseline Drop function are not performed on shielding, or shielded
electrode. For more information on how to enable the shielding function, refer to Section 2.1.9, “Shielding
function.”

A.3.10.1 Standard shielding function

The standard shielding function is intended mainly for suppression of RF noise interference. The shielding
electrode is not intended for a touch and measures overall environmental noise or unwanted interference
to the system. The user needs to avoid to touch the shield electrode mechanically during the design of
touchpad, for example place shielding electrode to the opposite side of the board. It may help to eliminate
low frequency noise modulated on the capacitance signal.

A.3.10.2 Water tolerance mode

The shielding function may also work in Water tolerance mode. The function is enabled by the
WaterToleranceEn bit in the System Config register. If Water Tolerance mode is enabled then the shielding
electrode compensates the signal drift on regular electrodes, and only to the threshold defined by the
Sensitivity register of the shielding electrode. If the signal drift is higher than the Sensitivity register value
then shield compensation is disabled and the regular electrodes provide a standard touch detection
function. The guarded system enables to eliminate influence of water droplets, but also to detect a touch
on regular electrodes if continuous water surface covers all electrodes. Tuning of the shielding Sensitivity
register is important for good performance. The user must design the shielding electrode to surround the
area of regular electrodes intended to be touched. The shielding electrode must not be directly touched.

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

A-18 Freescale Semiconductor

A.4 Decoder Functions
Capacitive sensors provide the possibility to replace the traditional on-off buttons and other devices like
potentiometers. Along with buttons, potentiometers are one of the commonly used mechanisms that
control electronic devices. However, unlike buttons, linear rotational sliders, or matrix require a specific
footprint as shown in Figure A-11.

Figure A-11. Linear slider, rotary sliders, and keypad configuration

Figure A-11 shows the different ways in which electrodes can be arranged depending on the application
needs. After using one of the configurations shown above, the information obtained from sensing the
electrode must be interpreted by the decoders. For instance, if a movement has occurred in one of the
sliders, the decoder must be able to present the related information from that movement. The interpretation
of the sensing information depends on the configuration. This means that the interpretation varies
depending on whether it is a rotary slider, linear slider, or a keypad.

8 - Electrode Rotary Wheel 8 - Electrode
Linear Slider

9 - Electrodes Keypad

2 - Electrode Analog Slider Analog Rotary
2 - Electrode 9 - Electrode Matrix

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor A-19

A.4.1 Keypad
Keypad is a basic configuration for the arranged electrodes shown in Figure A-11 since all that matters is
to determine which one of the electrodes has been touched. The Keypad Decoder is the module in charge
of handling the boundary checking, control of the events buffer, and report of events depending on the
user's configuration. The information needed when using a Keypad Decoder is presented in Table A-4.

The Keypad Decoder must be used when the user's application needs the electrodes to have like keyboard
keys. If the user needs to detect movement, another type of decoder must be used.

The Keypad decoder is capable of using groups of electrodes that need to be simultaneously touched for
reporting the defined key. This allows to create a control interface with more user inputs than the number
of physical electrodes.

A.4.2 Rotary
As mentioned in Section A.4, “Decoder Functions,” capacitive sensors provide the opportunity to control
a device like a potentiometer . To achieve this, a special electrode configuration must be used. Figure A-12
shows the electrode configuration needed to implement a rotary slider.

Figure A-12. Rotary slider configuration

The shape of the electrodes can be different, but the configuration must be the same. In other words, the
electrodes intended to form a rotary slider must be placed one after another forming a circle.

Table A-4. Events reported by the keypad decoder

Information Description

Touch When using a keypad type decoder, it must provide information regarding when a touch occurred in one of the
keypad’s electrodes.

Release The decoder must detect and inform the user when one of the electrodes that were pressed has been released.

Electrode The keypad decoder must provide information regarding the electrode where the event occurred

8 - Electrode Linear Slider

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

A-20 Freescale Semiconductor

For this type of electrodes, a keyboard decoder cannot be used, even when you still need to detect when a
touch has occurred there is more information that needs to be reported. The information needed is listed
in Table A-5 along with a brief explanation.

The Rotary Decoder determines the parameters listed in Table A-5 based on which electrodes have been
pressed and which are being pressed.

A.4.3 Slider
A linear slider control works in a similar way as the rotary slider . The same parameters must be reported
in both. Figure A-13 shows an arrangement of electrodes used for a typical linear slider. Like the rotary
slider, the shape of the electrodes can be changed but their position must remain as shown in the
Figure A-13.

Figure A-13. Linear slider configuration

The parameters that the Slider Decoder must determine and report are listed in the table below.

Table A-5. Events reported by the rotary decoder

Information Description

Direction Probably the most important feature that a slider must have is the ability to report the direction in which a
displacement has occurred. This is important because it allows detecting either a decrease or an increase in your
application.

Position The slider must be capable to report which electrode has been or is touched therefore it reports the position.

Displacement It is important to know the increment in positions when a displacement has occurred. In other words, how many
electrodes have been advanced in some displacement.

8

8 - Electrode Linear Slider

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor A-21

The slider decoder reports the parameters listed in Table A-6 by the interpretation of the past and current
touch and release events.

A.4.4 Analog rotary
An analog rotary control works similarly as the standard rotary, but with less electrodes and the calculated
position has a higher resolution. For example a 4 electrode analog rotary can provide an analog position
in the range 64. The shape of the electrodes needs to meet the condition that increases and decreases the
signal during the finger movement which needs to be linear. Figure A-14 shows an arrangement of
electrodes used for a typical analog rotary.

Figure A-14. Analog rotary configuration

The configuration must be the same. In other words, the electrodes intended to form a rotary slider must
be placed one after another forming a circle.

The Analog Rotary Decoder determines the parameters listed in Table A-7 based on which electrodes have
been pressed and which are being pressed.

Table A-6. Events reported by the slider decoder

Information Description

Direction Probably the most important feature that a slider must have is the ability to report the direction in which a
displacement has occurred. This is important because it allows detecting either a decrement or a increment in your
application.

Position The slider must be capable to report which electrode has been or is touched hence the report of the position.

Displacement It is important to know the increment in positions when a displacement has occurred, in other words, how many
electrodes have been advanced in some displacement.

4 - Electrode Analog Rotary

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

A-22 Freescale Semiconductor

A.4.5 Analog Slider
An analog slider control works similiar as the standard slider, but works with less electrodes and the
calculated position has a higher resolution. For example a 2 electrode analog slider can provide an analog
position in the range 128. The shape of the electrodes need to meet the condition that increases and
decreases the signal during the finger movement which needs to be linear. Figure A-15 shows an
arrangement of electrodes used for a typical analog slider.

Figure A-15. Analog slider configuration

The Analog Slider Decoder determines the parameters listed in Table A-8. This based on which electrodes
have been pressed and which are being pressed.

Table A-7. Events reported by the analog rotary decoder

Information Description

Direction Probably the most important feature that analog rotary must have is the ability to report the direction in which a
displacement has occurred. This is important because it allows detecting either a decrease or an increase in your
application.

Position The analog rotary must be capable to report the actual analog position

Displacement It is important to know the increment in positions when a displacement has occurred. In other words, how the
position has changed from the last report.

Table A-8. Events reported by the analog slider decoder

Information Description

Direction Probably the most important feature that a analog slider must have is the ability to report the direction in which a
displacement has occurred. This is important because it allows detecting either a decrease or an increase in your
application.

Position The analog slider must be able to report actual analog position.

Displacement It is important to know the increment in positions when a displacement has occurred. In other words, how the
position was changed from last report.

2 - Electrode Analog Slider

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

Freescale Semiconductor A-23

A.4.6 Matrix
An analog matrix works similarly as the analog slider, but the position is calculated in 2 dimensions
horizontal X, and vertical Y. Eeach axis has a defined range of postion calculation. The shape of the
electrodes need to meet the condition that increases and decreases the signal during the finger movement,
in any axis this needs to be linear. The next condition is that the columns and rows needs to be formed from
the electrodes. Figure A-16 shows an arrangement of electrodes used for a typical matrix.

Figure A-16. Matrix configuration

The Matrix Decoder determines the parameters listed in Table A-9. This based on which electrodes have
been pressed and which are being pressed.

A.5 Glossary

Table A-9. Events reported by the matrix decoder

Information Description

Direction X,
Direction Y

Probably the most important feature that a matrix must have is the ability to report the direction a displacement has
occurred. This is important because it allows detecting either a decrease or an increase in your application. The
information is reported for X and Y axis.

PositionX, PositionY The matrix must be capable to report actual analog position. The information is reported for X and Y axis.

DisplacementX,
DisplacementY

It is important to know the increment in positions when a displacement has occurred. That is, how the position was
changed from last report.The information is reported for X and Y axis.

Gesture The matrix is able to detect gesture presence. The gesture is situation at least two isolated touches are detected on
any axis.

GestureDistanceX,
GestureDistanceY

if the gesture event is detected then the maximum gesture distance is calculated. The information is reported for X
and Y axis.

API Application Programming Interface

MCU Microcontroller

TSS Touch Sensing Software

9 - Electrode Matrix

Touch Sensing Algorithms

Touch Sensing Software API Reference Manual, Rev. 7

A-24 Freescale Semiconductor

TSIL Touch Sensing Input Lite

ASC Automatic Sensitivity Calibration

	Revision History
	Chapter 1 Touch Sensing Software Library Overview
	1.1 Introduction
	1.2 Library features
	1.3 Library architecture
	1.4 System base modules
	1.4.1 System setup module
	1.4.2 GPIO module
	1.4.3 Hardware timer module

	1.5 Capacitive sensing modules
	1.5.1 GPIO low level sensor method
	1.5.2 TSI low level sensor method
	1.5.3 TSI Lite low level sensor method

	1.6 Signal processing and decoding modules
	1.6.1 Key detector module
	1.6.2 Decoder module

	1.7 System configuration and management module

	Chapter 2 Low-Level Interface
	2.1 System setup parameters
	2.1.1 Simple low level routines
	2.1.2 Instant delta values
	2.1.3 Instant signal values
	2.1.4 GPIO strength
	2.1.5 GPIO slew rate
	2.1.6 Default electrode level
	2.1.7 IIR filter
	2.1.8 Noise amplitude filter
	2.1.9 Shielding function
	2.1.10 Signal normalization
	2.1.11 Automatic sensitivity calibration
	2.1.12 Baseline initialization
	2.1.13 OnFault callback
	2.1.14 OnInit callback
	2.1.15 OnProximity callback
	2.1.16 Trigger function
	2.1.17 Low power control source
	2.1.18 Data corruption check
	2.1.19 Stuck-key function
	2.1.20 Negative baseline drop
	2.1.21 Automatic hardware recalibration
	2.1.22 FreeMASTER GUI support
	2.1.23 Control private data
	2.1.24 Diagnostic messages
	2.1.25 Number of electrodes
	2.1.26 Electrode GPIO pin
	2.1.27 Electrode type
	2.1.28 Number of controls
	2.1.29 Control type
	2.1.30 Number of electrodes assigned to control
	2.1.31 Control configuration and status structure
	2.1.32 Application callback
	2.1.33 Electrodes groups
	2.1.34 TSS hardware timer configuration
	2.1.35 Prescaler configuration of TSS hardware timer
	2.1.36 Timeout configuration of TSS hardware timer
	2.1.37 TSI autocalibration settings
	2.1.38 TSI active mode clock settings
	2.1.39 TSI low power mode clock settings
	2.1.40 TSI delta voltage settings

	2.2 Example of system setup parameters encoded in the TSS_SystemSetup.h
	2.3 TSS version information
	Chapter 3 Application Interface
	3.1 TSS initialization function
	3.2 TSS task function
	3.3 TSS task sequenced function
	3.4 TSS Library Configuration and Status Registers
	3.4.1 Writing to the Configuration and Status Registers
	3.4.2 Reading the Configuration and Status registers
	3.4.3 Configuration and Status registers list
	3.4.4 Faults register
	3.4.5 System Configuration register
	3.4.6 Number of Samples registers
	3.4.7 DC Tracker Rate register
	3.4.8 Response Time register
	3.4.9 Stuck-key Timeout register
	3.4.10 Low Power Scan Period register
	3.4.11 Low Power Electrode register
	3.4.12 Low Power Electrode Sensitivity register
	3.4.13 System Trigger register
	3.4.14 Auto Trigger Modulo Value register
	3.4.15 Sensitivity Configuration register
	3.4.16 Electrode enablers
	3.4.17 Electrode status
	3.4.18 Configuration Checksum Register

	3.5 Keypad decoder API
	3.5.1 Writing to the Configuration and Status registers
	3.5.2 Reading the Configuration and Status registers
	3.5.3 Configuration and Status registers list
	3.5.4 Control ID register
	3.5.5 Control Configuration register
	3.5.6 Buffer Pointer register
	3.5.7 BufferReadIndex
	3.5.8 BufferWriteIndex
	3.5.9 Event Control and Status register
	3.5.10 MaxTouches register
	3.5.11 Auto Repeat Rate register
	3.5.12 Auto Repeat Start register
	3.5.13 Keypad Callback function

	3.6 Slider and Rotary decoder API
	3.6.1 Writing to the Configuration and Status registers
	3.6.2 Reading the Configuration and Status registers
	3.6.3 Configuration and Status registers list
	3.6.4 Control ID register
	3.6.5 Control configuration
	3.6.6 Dynamic Status register
	3.6.7 Static Status register
	3.6.8 Events Control register
	3.6.9 Auto-repeat Rate register
	3.6.10 Movement Timeout register
	3.6.11 Callback function

	3.7 Analog slider and analog rotary decoder API
	3.7.1 Writing to the Configuration and Status registers
	3.7.2 Reading the Configuration and Status registers
	3.7.3 Configuration and Status registers list
	3.7.4 Control ID register
	3.7.5 Control configuration
	3.7.6 Dynamic Status register
	3.7.7 Position register
	3.7.8 Events Control register
	3.7.9 Auto-repeat Rate register
	3.7.10 Movement Timeout register
	3.7.11 Range register
	3.7.12 Callback function

	3.8 Matrix decoder API
	3.8.1 Writing to the Configuration and Status registers
	3.8.2 Reading the Configuration and Status registers
	3.8.3 Configuration and Status registers list
	3.8.4 Control ID register
	3.8.5 Control configuration
	3.8.6 Events Control register
	3.8.7 Auto-repeat Rate register
	3.8.8 Movement Timeout register
	3.8.9 Dynamic Status X register
	3.8.10 Dynamic Status Y register
	3.8.11 Position X register
	3.8.12 Position Y register
	3.8.13 Gesture distance X register
	3.8.14 Gesture distance Y register
	3.8.15 Range X register
	3.8.16 Range Y register
	3.8.17 Matrix callback function

	Chapter 4 Library Intermediate Layer Interfaces
	4.1 Capacitive sensing and key detector interface
	4.1.1 Electrode sampling
	4.1.2 Low-level initialization

	4.2 Decoder interface
	4.2.1 Decoder main function
	4.2.2 Writing to the decoder schedule counter
	4.2.3 Reading the decoder schedule counter
	4.2.4 Reading the electrode boundaries in the control
	4.2.5 Reading the instant delta in the control

	Appendix A Touch Sensing Algorithms
	A.1 GPIO Based Capacitive Touch Sensing Method
	A.1.1 Electrode capacitive sensing algorithm
	A.1.2 Selecting the proper timer frequency and external pull-up resistor
	A.1.3 MCU frequency
	A.1.4 Voltage trip point (Vih)
	A.1.5 Sensitivity and range

	A.2 TSI Module Based Touch Sensing Method
	A.2.1 TSIL sample electrode control

	A.3 Key Detect Method
	A.3.1 Key press detection
	A.3.2 Triggering
	A.3.3 Low power function
	A.3.4 Proximity function
	A.3.5 Automatic Sensitivity Calibration
	A.3.6 Baseline tracking
	A.3.7 Debouncing
	A.3.8 IIR filter
	A.3.9 Noise amplitude filter
	A.3.10 Shielding function and Water tolerance

	A.4 Decoder Functions
	A.4.1 Keypad
	A.4.2 Rotary
	A.4.3 Slider
	A.4.4 Analog rotary
	A.4.5 Analog Slider
	A.4.6 Matrix

	A.5 Glossary

