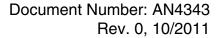
Freescale Semiconductor Application Note

P1022 QorlQ Integrated Processor Design Checklist

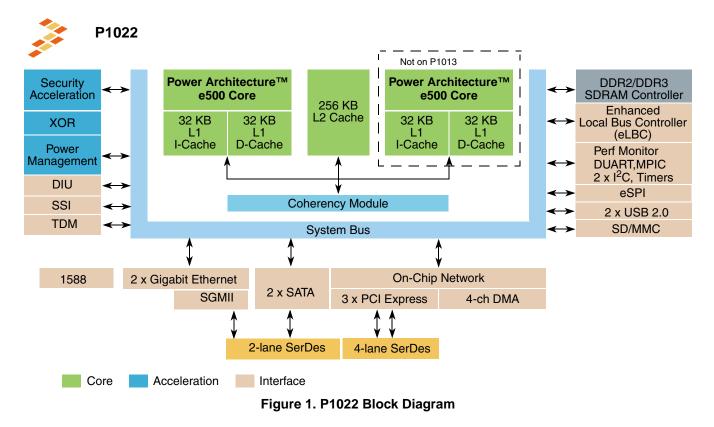
This design checklist provides recommendations for new designs based on the P1022 QorIQ integrated processor. The P1022 combines dual e500v2 processor cores built on Power Architecture® technology with system logic required for networking, wireless infrastructure, and telecommunications applications.


This document may also be useful in debugging newly designed systems by highlighting those aspects of a design that merit special attention during initial system start-up.

For updates to this document, see the website listed on the last page.

Contents

1.	Simplifying the First Phase of Design 2
2.	Power Design Considerations 4
3.	Power-on Reset and Reset Configurations 7
4.	Misc Debug and Test Interface Pin Recommendations $% \operatorname{Pin}$.
	11
5.	Device Pins and Recommended Test Points 12
6.	Clock Pin Recommendations 12
7.	DDR Interface Pin Recommendations 19
8.	DUART, IIC, and SSI Interface Pin Recommendations .
	20
9.	eSDHC Interface Pin Recommendations 21
10.	eSPI Interface Pin Recommendations 21
11.	USB Interface Pin Recommendations 22
12.	Ethernet Management Interface Pin Recommendations .
	23
13.	eTSEC Interface Pin Recommendations 23
14.	JTAG Interface Pin Recommendations 24
15.	eLBC Interface Pin Recommendations 27
16.	PIC Interface Pin Recommendations 31
17.	GPIO Interface Pin Recommendations 32
18.	SerDes Interface Pin Recommendations 32
19.	eTSEC IEEE 1588 Pin Recommendations 34
20.	System Control Pin Recommendations
21.	Reserved POR Configuration Pins 35
22.	Power Management
24.	No-Connect Pins
25.	Thermal Recommendations
26.	Revision History 40


Simplifying the First Phase of Design

1 Simplifying the First Phase of Design

This section outlines recommendations to simplify the first phase of design. Before designing a system with a P1022 QorIQ integrated processor, it is recommended that the designer be familiar with the available documentation, software, models, and tools.

1.1 P1022 Block Diagram

This figure shows the major functional units within the device.

1.2 Recommended References

This table lists helpful tools, training resources, and references, some of which may be available only under a non-disclosure agreement (NDA). Contact your local field applications engineer or sales representative to obtain a copy.

Table 1. P1022 Helpful To	ols and References
---------------------------	--------------------

ID	Name	Location				
	Related Documentation					
P1022RM	P1022 QorIQ Integrated Processor Reference Manual ¹	Contact your Freescale representative				
P1022CE	P1022 Chip Errata for the P1022 QorIQ Integrated Processor ²	Contact your Freescale representative				

P1022 QorlQ Integrated Processor Design Checklist, Rev. 0

ID	Name	Location	
P1022EC	P1022EC P1022 QorIQ Integrated Processor Hardware Specifications		
AN4039	PowerQUICC DDR3 SDRAM Controller Register Setting Considerations	www.freescale.com	
AN3369	PowerQUICC DDR2 SDRAM Controller Register Setting Considerations	www.freescale.com	
AN3939	DDR Interleaving for PowerQUICC and QorIQ Processors	www.freescale.com	
AN3659	Booting from On-Chip ROM (eSDHC or eSPI)	www.freescale.com	
AN2910	Hardware and Layout Design Considerations for DDR2 SDRAM Memory Interfaces	www.freescale.com	
AN3940	Hardware and Layout Design Considerations for DDR3 SDRAM Memory Interfaces	www.freescale.com	
AN3645	SEC 2/3x Descriptor Programmer's Guide	www.freescale.com	
AN2919	Determining the I ² C Frequency Divider Ratio for SCL	www.freescale.com	
AN4311	SerDes Reference Clock Interfacing and HSSI Measurements Recommendations	www.freescale.com	
AN2747	Power Supply Design for Power Architecture™ Processors	www.freescale.com	
	Software Tools		
I2CBOOTSEQ	Boot sequencer generator tool allows configuration of any memory-mapped register before the completion of power-on reset (POR). The register data to be changed is stored in an I2C EEPROM. The P1022 requires a particular data format for register changes as outlined in the P2020RM. The boot sequencer tool (I2CBOOTSEQ) is a C-code file. When compiled and given a sample data file, it will generate the appropriate raw data format as outlined in the P1022RM. The file that is generated is an s-record file that can be used to program the EEPROM.	Contact your Freescale representative.	
LBCUPMIBCG	UPM Programming tool features a GUI for a user-friendly programming interface. It allows programming of all three of the P1022's user-programmable machines. The GUI consists of a wave editor, a table editor, and a report generator. The user can edit the waveform directly or the RAM array directly. At the end of programming, the report generator will print out the UPM RAM array that can be used in a C-program.	Contact your Freescale representative.	
	Hardware Tools		
P1022DS	Development System including schematics, bill of materials, board errata list, User's Guide, and configuration guide 3	Contact your Freescale representative.	
	Recommended Models	•	
IBIS	To ensure first-path success, Freescale strongly recommends using the IBIS models for board-level simulations, especially for SerDes and DDR characteristics.	Contact your Freescale representative.	
BSDL	Use the BSDL files in board verification	Contact your Freescale representative.	
Flotherm	Use for thermal simulation. Especially without forced cooling or constant airflow, a thermal simulation must not be skipped.	Contact your Freescale representative.	

Table 1. P1022 Helpful Tools and References (continued)

Table 1. P1022 Helpful Tools and References (continued)

ID	Name	Location
	Training	
	Our third-party partners are part of an extensive Design Alliance Program. The current training partners can be found on our website under Design Alliance Program at www.freescale.com/alliances. Training material from Freescale Technology Forums are also available. These trainings modules are a valuable resource in understanding the P1022. This material is also available at our website listed on the back cover of this document	—

¹ The information in the P1022RM also applies to the P1013, with the exception that the P1013 is a single-core device.

² This chip errata document describes the latest fixes and work arounds for the P1022. It is strongly recommended that the chip errata document be thoroughly researched prior to starting a design with the P1022.

³ Design requirements in the device hardware specification and design checklist supersede the design/implementation of the P1022DS system.

1.3 Product Revisions

This table lists the processor version register (PVR) and system version register (SVR) values for the various P1022 silicon derivatives.

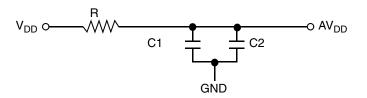
Device Number	No of Cores	Device Revision	e500 v2 Core Revision	PVR Value	PCI Device ID	JTAG ID	SVR Value	TEST_SEL
P1022E	2	1.1	5.0	0x8021_1151	0x0110	068E_601D	0x80EE_0011	1
P1022	2	1.1	5.0	0x8021_1151	0x0111	068E_601D	0x80E6_0011	1
P1013E	1	1.1	5.0	0x8021_1151	0x0118	068E_701D	0x80EF_0011	0
P1013	1	1.1	5.0	0x8021_1151	0x0119	068E_701D	0x80E7_0011	0

Table 2. P1022 QorlQ Product Revisions

Note: TEST_SEL must be pulled up for P1022 and pulled down for P1013.

2 Power Design Considerations

This section provides design considerations for the P1022 power supplies. For information about core and I/O power consumption numbers, and thermal characteristics for the P1022, see *P1022 QorIQ Integrated Processor Hardware Specifications* (P1022EC).


2.1 PLL Power Supply Filtering

Each of the PLLs is provided with power through independent power supply pins (AV_{DD}_PLAT, AV_{DD}_COREn, AV_{DD}_DDR, SDA_{VDD}, and SDA_{VDD2}, respectively). The AV_{DD} level should always be equivalent to V_{DD}, and these voltages must be derived directly from V_{DD} through a low-frequency filter scheme. For the low-power mode support, AV_{DD}_COREn should be derived from V_{DD} and AV_{DD}_PLAT and AV_{DD}_DDR from V_{DDC}.

The recommended solution for PLL filtering is to provide independent filter circuits per PLL power supply, as illustrated in Figure 2, one for each of the AVDD pins. By providing independent filters to each PLL, the opportunity to cause noise injection from one PLL to the other is reduced.

The PLL power supply filter noise in the PLL's resonant frequency ranges from 500 kHz to 10 MHz. It should be built with surface mount capacitors (SMTs) of size 0402 or smaller with minimum effective series inductance (ESL) of less than or equal to 0.5 nH. Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single, large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of 689 WB-TePBGA footprint, without the inductance of vias.

Notes: 1. R = $5\Omega \pm 5\%$ 2. C1 =10µF ± 10%, 0603 or smaller X5R with ESL <= 0.5nH 3.C2 = 1.0µF ± 10%, 0402 or smaller X5R with ESL <=0.5 nH

Figure 2. Power Supply Filter Circuit

NOTE

A higher capacitance value for C2 may be used to improve the filter as long as the other C2 parameters do not change (0402 body, X5R, ESL \leq 0.5 nH).

The SDAV_{DD} and SDAV_{DD2} signals provide power for the analog portions of the SerDes PLL. To ensure stability of the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one shown in Figure 3. For maximum effectiveness, the filter circuit is placed as closely as possible to the SDAV_{DD} and SDAV_{DD2} balls to ensure that it filters out as much noise as possible. The ground connection should be near the SDAV_{DD} and SDAV_{DD2} balls. The 0.003- μ F capacitor is closest to the balls, followed by two 2.2- μ F capacitors, and finally the 1- Ω resistor to the board supply plane. The capacitors are connected from SDAV_{DD} and SDAV_{DD2} to the ground plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. All traces should be kept short, wide, and direct.

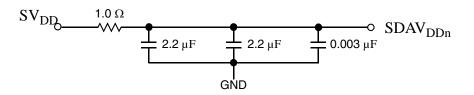


Figure 3. SerDes PLL Power Supply Filter

P1022 QorIQ Integrated Processor Design Checklist, Rev. 0

NOTE

- 0805 or smaller sized SMTs recommended
- $SDAV_{DDn}$ should be a filtered version of SV_{DD}
- Signals on the SerDes interface are fed from the XV_{DD} power plane

CAUTION

These filters are a necessary extension of the PLL circuitry and are compliant with the device specifications. Any deviation from the recommended filters is done at the user's risk.

2.2 Power Supply Decoupling Recommendations

Due to large address and data buses as well as high-operating frequencies, the device can generate transient power surges and high-frequency noise in its power supply, especially while driving large capacitive loads. To prevent the noise from reaching other components in the P1022 system, the device requires a clean, tightly regulated source of power.

The recommendations for ensuring a reliable power supply are as follows:

- Provide large power planes because immediate charge requirements by the device are always serviced from the power planes first. Refer to *AN3747*: Power Supply Design for PowerPCTM Processors.
- Place at least one decoupling capacitor at each V_{DDC}, V_{DD}, and B/G/L/OV_{DDn} pin of the device. These decoupling capacitors should have a value of 0.1 µF and receive their power from separate V_{DD}, V_{DDC}, B/G/L/OV_{DDn}, and GND planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.
- These capacitors should have a value of $0.1 \,\mu$ F. Only ceramic SMT capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.
- Several bulk storage capacitors should be distributed around the PCB, feeding the V_{DD}, V_{DDC}, BV_{DD}, OV_{DD}, OV_{DD2}, GV_{DD}, LV_{DD2}, and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors.
- Bulk capacitors should be placed as close as possible to the processor. The capacitors need to be selected to work well with the power supply so as to be able to handle the P1022's dynamic load requirements.
- These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary.
- They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors— $100 \ \mu F$ to $330 \ \mu F$ (AVX TPS tantalum or Sanyo OSCON).

2.3 SerDes Block Power Supply Decoupling

If the SerDes module is used, it requires a clean, tightly regulated source of power (SV_{DD} and XV_{DD}) to ensure low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling scheme is outlined below.

- Only SMT capacitors should be used to minimize inductance. Connections from all capacitors to power and ground should be done with multiple vias to further reduce inductance.
- Board should have at least one $0.1 \,\mu\text{F}$ SMT ceramic chip capacitors as close as possible for each supply ball of the device. If the board supports blind vias, these capacitors may be placed directly on the chip supply and ground connections. Where the board does not have blind vias, these capacitors should be placed in the central escape void, or if not possible, then in a ring around the device as close to the supply and ground connections as possible.
- There should be a 10- μ F ceramic chip capacitor on the power plane of the SV_{DD} and/or XV_{DD} planes, on the sides of the device where those planes are present. This should be done for all SerDes supplies.

2.4 Power Supplies Checklist

Table 3. Power Supplies Checklist for Designer

Item	Customer Comments	Completed
1. V_{DD} , AV_{DD} , n , XV_{DD} , and SV_{DD} power supplies have a voltage tolerance no greater than 5% from the nominal value. Refer to the hardware specification for more details.	_	—
2. Power supply selected is based on MAXIMUM power consumption. Refer to the hardware specification for more details.	_	—
3. Thermal design is based on THERMAL power consumption. Refer to the hardware specification for more details.	_	_
 Power-up sequence is within 50 ms. Refer to the hardware specification for more details. 	_	_
5. Recommend using large power planes to the extent possible.	—	—
6. Recommended PLL filter circuit is applied to AV _{DD} _PLAT, AV _{DD} _CORE0, AV _{DD} _CORE1 and AV _{DD} _DDR	_	—
 If SerDes is enabled, the recommended PLL filter circuit is applied to SDAV_{DD} and SDAV_{DD2} respectively. Otherwise, a filter is not required. 	_	_
8. PLL filter circuits are placed as close to the respective AV_{DD} pin as possible.	_	_
9. Decoupling capacitors of 0.1 μ F are placed at each V _{DD} , B/G/L/OV _{DDn} pin.	—	

3 Power-on Reset and Reset Configurations

3.1 Configuration and Timing

Various device functions are initialized by sampling certain signals during the assertion of $\overline{\text{HRESET}}$. These power-on reset (POR) inputs are pulled either high or low during this period. While these pins are generally

P1022 QorlQ Integrated Processor Design Checklist, Rev. 0

Power-on Reset and Reset Configurations

output pins during normal operation, they are treated as inputs while HRESET is asserted. HRESET must be asserted for a minimum of four clocks of SYSCLK before deasserting HRESET. When HRESET deasserts, the configuration pins are sampled and latched into registers, and the pins then take on their normal output circuit characteristics.

All the configuration pins have an internally gated 20 k Ω nominal pull-up resistor, enabled only during HRESET. If default values are desired, external logic must not load or drive such pins adversely. If this cannot be guaranteed, the value must be driven actively on the pin. If default values are not desired, a 4.7 k Ω pull-down resistor is recommended to pull the configuration pin to a valid logic low level.

An alternative to using pull-up and pull-down resistors to configure the POR pins is to use a PLD or similar device that drives the configuration signals to the P1022 when HRESET is asserted. The PLD must begin to drive these signals at least four SYSCLK cycles prior to the deassertion of HRESET (PLL configuration inputs must meet a 100 μ s set-up time to HRESET), hold their values for at least 8 SYSCLK cycles after the deassertion of HRESET, and then release the pins to high impedance afterward for normal device operation. For details about reset initialization timing specifications, see *P1022 QorIQ Integrated Processor Hardware Specifications*.

3.2 Configuration Settings

This table summarizes the customer-configurable device settings. Refer to the *P1022 QorIQ Integrated Processor Reference Manual* for a more detailed description of each configuration option.

Configuration Type	Functional Pins	Comments
CCB Clock PLL Ratio	DIU_DE, LAD12, LGPL1	There is no default value for this PLL ratio; these signals must be pulled to the desired value.
DDR PLL Ratio	UART_RTS0, TSEC_1588_PULSE_OUT1, LDP0	There is no default value for this PLL ratio; these signals must be pulled to the desired value.
e500 Core 0 PLL Ratio	LBCTL, LALE, LGPL2/LOE/LFRE	There is no default value for this PLL ratio; these signals must be pulled to the desired value.
e500 Core 1 PLL Ratio	LWE0, UART_SOUT1, READY_P1	There is no default value for this PLL ratio; these signals must be pulled to the desired value.
Boot ROM Location	CKSTP_OUT[0:1], TSEC1_TXD1, TRIG_OUT/READY_P0	Default: Local bus GPCM (32-bit ROM)
Host/Agent	LWE1/LBS1, LAD[18:19]	Default: P1022 acts as the Root Complex for all PCI Express interfaces.
SerDes I/O Port Selection	EC_MDC, UART_SOUT0, LAD[20:22]	Default: PCI-Express 1 uses x4 lanes, PCI-Express 2 and 3, SATA1 and 2 and SGMII1 and 2 are disabled.
CPU0 Boot Configuration	LAD27	CPU0 Boot configuration has the default value of 1

 Table 4. User Configuration Options

	•	
CPU1 Boot Configuration	LAD16	CPU1 Boot configuration has the default value of 1
Boot Sequencer	LGPL3/LFWP, LGPL5	Default: Boot sequencer is disabled. No I ² C ROM is accessed.
DDR SDRAM Type	LGPL0	Default: DDR controller is configured for DDR3
SerDes 1 Reference Clock Configuration	TSEC_1588_ALARM_OUT1	Default: SerDes1 expects a 100 MHz reference clock frequency
SerDes 2 Reference Clock Configuration	LAD10	Default: SerDes 2 expects a 100 MHz reference clock frequency
eTSEC1 Protocol	TSEC1_TXD0	Default: eTSEC1 Ethernet interface operates in RGMII mode.
eTSEC2 Protocol	TSEC1_TXD2	Default: eTSEC2 Ethernet interface operates in RGMII mode.
eLBC ECC Enable	ASLEEP	Default: eLBC ECC checking is enabled.
Platform Speed	LAD23	Default: Platform speed is at or above 266MHz.
Core 0 Speed	LAD24	Default: Core 0 clock frequency is greater than 450 MHz.
Core 1 Speed	LAD25	Default: Core 1 clock frequency is greater than 450 MHz.
DDR Speed	LAD26	Default: DDR controller clock frequency is greater than or equal to 450 MHz data rate.
General-Purpose POR	LAD[0:8], SDHC_DAT[2:1], USB1_D4,	Default: All 1 Can be used by SW to detect system config such as board ID. The general-purpose POR configuration register (GPPORCR) reports the value on cfg_gpinput[0:11] during POR.
Engineering Use POR	USB[0:3], UART_RTS1, LAD14	These POR configuration inputs may be used in the future to control functionality. It is advised that boards be built with the ability to pull down these pins.

Table 4. User Configuration Options (continued)

3.3 I/O Supply Voltage Setting

The P1022 is capable of supporting multiple power supply levels on the BV_{DD} and LV_{DD} I/O supplies. The following tables show the encoding used to select the voltage level for each I/O supply.

WARNING

Incorrect voltage select settings can lead to irreversible device damage.

LV _{DD} VSEL	I/O Voltage Level (V)
0	3.3
1	2.5

Table 5. Default Voltage Level for LV_{DD}

Table 6. Default Voltage Level for BV_DD

BV _{DD} VSEL [0:1]	I/O Voltage Level (V)
00	3.3
01	2.5
10	1.8
11	3.3

NOTE

For the 8-bit eSDHC interface, BV_{DD} should be at 3.3 V only, because the higher nibble of SDHC data pins are shared.

When the DIU functionality is used, only 3.3 V interfaces are supported on the eLBC.

4 Misc Debug and Test Interface Pin Recommendations

This section discusses the termination of debug and test pins on the device. This table shows how the debug and test pins should be connected.

Pin Name	Pin Used	Pin Not Used		
ASLEEP	This pin is a reset configuration pin that sets the eLBC ECC enable. It has an internal pull-up enabled only at reset and may be left floating if unconnected. This may need to be driven high (that is, by a PLD) if the device to which it is connected does not release this pin to high impedance during reset.			
LAD9	These pins have an internal pull-up enabled only at reset, they may be left floating if unconnected. Otherwise, they may need to be driven high (that is, by a PLD) if the device to which they are connected does not release these pins to high impedance during reset.			
LAD11				
LAD13				
LAD15				
LAD17				
LDP1				
USB1_STP				
IRQ_OUT				
TSEC1_TXD3				
TSEC_1588_CLOCK_OUT				
HRESET_REQ				
MDVAL	Select the settings through DBGMSR register	This pin is muxed with IRQ which is the default function of this pin. If not used and function is IRQ then tie high or low to the inactive state through a $2-10 \text{ k}\Omega$ resistor to OV _{DD} or GND, respectively.		
MSRCID[0:4]	Connect to a logic analyzer probe.	These pins are muxed with IRQs, which is the default function. If not used and function is IRQ then tie high or low to the inactive state through a $2-10 \text{ k}\Omega$ resistor to OV _{DD} or GND, respectively,		
TRIG_IN	_	Tie low through a 2–10 k Ω resistor to GND.		
TRIG_OUT/READY_P0	This pin is a reset configuration pin. It has a weak internal pull-up which is enabled only when the processor is in the reset state.	This pin may be left unconnected.		
READY_P1	This pin is a reset configuration pin that sets the Core1 PLL ratio. These pins require $4.7 \cdot k\Omega$ pull-up or pull-down resistors.			
TEST_SEL	This pin must be pulled up to OV_{DD2} (for P1022) or be pulled down to GND (for P1013). Refer Table 2			
SCAN_MODE	This pin must be pulled up through a 1 k Ω resistor to OV _{DD2}			

Table 7. Debug and Test Pin Recommendations

P1022 QorlQ Integrated Processor Design Checklist, Rev. 0

Device Pins and Recommended Test Points

5 Device Pins and Recommended Test Points

For easier debug, include the pins listed in this table on the board.

Table 8. Pins Recommended for Test Points

Test Point Pin	Helps Verify:
CLK_OUT	The various internal clocks, as selected by the CLKOCR register
SYSCLK	Input clock at the device pin
MDVAL and MSRCID[0:4]	Memory debug signals
TRIG_OUT	The end of the reset sequence
ASLEEP	The end of the reset sequence
TRIG_OUT/READY_P0	The end of the reset sequence for Core 0
READY_P1	The end of the reset sequence for Core 1
CKSTP_OUT	Core checkstop indication
HRESET_REQ	Proper boot sequencer functions and reset requests

6 Clock Pin Recommendations

The following are the clock inputs for the P1022:

- TSEC1_GTX_CLK125
- TSEC2_GTX_CLK125
- USB_CLK
- RTC_CLK
- SD1_REF_CLK/SD1_REF_CLK
- SD2_REF_CLK/SD2_REF_CLK
- SYSCLK
- DDRCLK (for asynchronous mode)

Spread spectrum is supported on SYSCLK, DDRCLK, and SD_REF_CLK. Refer to *P1022 QorIQ Integrated Processor Hardware Specifications* for details.

SD_REF_CLK/SD_REF_CLK are designed to work with spread spectrum clock for PCI Express protocol only. When using spread spectrum clocking for PCI Express, both ends of the link partners should use the same reference clock. For best results, a source without significant unintended modulation should be used.

For SATA protocol, the SerDes transmitter does not support spread spectrum clocking. This means SD2_REF_CLK/SD2_REF_CLK should not be clocked by a spread spectrum clock source when configured for SATA. The SerDes receiver does support spread spectrum clocking on receive, which means the SerDes receiver can receive data correctly from a SATA serial link partner using spread spectrum clocking.

The spread spectrum clocking cannot be used if the same SerDes reference clock is shared with other non-spread spectrum supported protocols. For example, if the spread spectrum clocking is desired on a

P1022 QorIQ Integrated Processor Design Checklist, Rev. 0

SerDes reference clock for PCI Express, and the same reference clock is used for any other protocol like SGMII due to SerDes lane usage mapping option, then spread spectrum clocking cannot be used at all.

This table shows how the clock pins should be connected.

Pin Name	Pin Used	Pin Not Used	
TSEC1_GTX_CLK125	TSEC1_GTX_CLK125 can be configured to feed eTSEC1 only or feed eTSEC1 and eTSEC2.	Pull high or low through a 2–10 $k\Omega$ resistor to LV_{DD2} or GND, respectively.	
TSEC2_GTX_CLK125	In case TSEC1_GTX_CLK125 is configured to feed only eTSEC1, TSEC2_GTX_CLK125 can be used to feed eTSEC2 by using PMUXCR[1588_USB_PWRFIT]. When used, these should be connected to a 125 MHz clock source.	Pull high or low through a 2–10 k Ω resistor to LV _{DD} or GND, respectively, or configure this pin as GPIO output and leave unconnected.	
DDRCLK	DDRCLK input is only required when the DDR controller is running in asynchronous mode. When running in asynchronous mode the same input oscillator can be used for both SYSCLK and DDRCLK.	It is recommended to tie this signal off to GND when the DDR controller is configured for synchronous mode (POR setting cfg_ddr_pll[0:2] = 111).	
RTC_CLK	The default source of the time base is the CCB clock divided by 32. For more details, see the <i>PowerPC e500 Core Complex Reference Manual</i> .	Pull high or low through a 2–10 $k\Omega$ resistor to OV_{DD2} or GND, respectively.	
SD1_REF_CLK/ SD1_REF_CLK	If the SerDes is enabled at POR, connect these pins to the appropriate input clock frequency as specified by the I/O port	These pins must be connected to GND.	
SD2_REF_CLK/ SD2_REF_CLK	selection POR pins. Set the corresponding SerDes reference clock configuration POR pin accordingly. For Serdes Reference clock interfacing, see AN4311: SerDes Reference Clock Interfacing and HSSI Measurements Recommendations.		
SYSCLK	This pin must always be connected to an input clock of 66–133 MHz.		
CLK_OUT	If clock out is enabled, the CLK_OUT signal is driven according to CLKOCR[CLK_SEL]. Note: CLK_OUT is for monitoring purposes only, not for clocking other devices.	This pin may be left unconnected. CLK_OUT signal is tristated.	

Table 9. Clock Pin Recommendations

6.1 System Clocking

This device includes six PLLs:

- The platform PLL generates the platform clock from the externally supplied SYSCLK input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio configuration bits as described in Section 6.1.3, "CCB/SYSCLK PLL Ratio."
- The e500 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e500 core clock and the platform clock is selected using the e500 PLL ratio configuration bits as described in Section 6.1.4, "e500 Core PLL Ratio."
- There is one PLL for each SerDes block.
- There is one PLL for the DDR for asynchronous operation.

Clock Pin Recommendations

6.1.1 Clock Ranges

This table provides the clocking range for the processor cores, platform, memory, and enhanced local bus.

Characteristic	Min	Мах	Unit	Note
e500 Core processor frequency	400	1200	MHz	1, 2, 4, 5
Platform/CCB clock frequency	266.67	533.33	MHz	1, 4
Enhanced Local Bus frequency	16.67	83	MHz	3, 4

Table 10. Processor Clocking Range

Note:

1. **Caution:** The CCB to SYSCLK ratio and e500 coreto CCB ratio settings must be chosen such that the SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 6.1.3, "CCB/SYSCLK PLL Ratio," and Section 6.1.4, "e500 Core PLL Ratio," for ratio settings.

2. The minimum e500 core frequency is based on the minimum platform frequency of 266.67 MHz.

3. The local bus clock speed on LCLK[0:1] is determined by the platform clock divided by the local bus ratio programmed in LCRR[CLKDIV]. See the *P1022 QorIQ Integrated Processor Reference Manual* for more information.

4. These values are preliminary and subject to change.

5. When designing with 1200 MHz part, contact your Freescale representative for specifications.

6.1.2 DDR Clocking Range

The DDR memory controller can run in either synchronous or asynchronous mode. When running in synchronous mode, the memory bus is clocked relative to the platform clock frequency. When running in asynchronous mode, the memory bus is clocked with its own dedicated PLL. This table provides the clocking specifications for the memory bus.

Table 11	. Memory	Bus	Clocking	Specifications
----------	----------	-----	----------	----------------

Characteristic	Min	Max	Unit	Note
DDR2 Memory bus clock speed	200	333	MHz	1, 2, 3, 4, 5
DDR3 Memory bus clock speed	333	400	MHz	1, 2, 3, 4, 5

Note:

1. Refer to Section 6.1.5, "DDR/DDRCLK PLL Ratio," for ratio settings.

- 2. The memory bus clock refers to the P1022 memory controllers' MCK[0:5] and MCK[0:5] output clocks, running at half of the DDR data rate.
- 3. In synchronous mode, the memory bus clock speed is half the platform clock frequency. In other words, the DDR data rate is the same as the platform frequency. If the desired DDR data rate is higher than the platform frequency, asynchronous mode must be used.
- 4. In asynchronous mode, the memory bus clock speed is dictated by its own PLL.
- 5. In asynchronous mode, if the ratio of the DDR data rate to the CCB clock rate is greater than 3:1 (that is, DDR=3:CCB=1), then the DDR performance monitor statistic accuracy cannot be guaranteed.

6.1.3 CCB/SYSCLK PLL Ratio

The CCB clock, also called the platform clock, is the clock that drives the e500 core complex bus (CCB). The frequency of the CCB is set using the following reset signals, as shown in the following table.

- SYSCLK input signal
- Binary value on DIU_DE, LAD12 and LGPL1 at power up

NOTE

There is no default value for this CCB/SYSCLK PLL ratio. The following signals must be pulled to the desired values for specified CCB/SYSCLK PLL ratio.

Binary Value of DIU_DE, LAD12, and LGPL1 Signals	CCB:SYSCLK Ratio
000	4:1
001	5:1
010	6:1
011	8:1
100	Reserved
101	Reserved
110	Reserved
111	Reserved

Table 12. CCB Clock Ratio

6.1.4 e500 Core PLL Ratio

The following two tables describe the clock ratio between the e500 core complex bus (CCB) and the e500 Core0 and Core1 clocks, respectively. The P1013 has only Core0.

The clock ratios are determined by the binary value of LBCTL, LALE, and LGPL2 at power up for Core0 and the binary values of LWE0, UART_SOUT1, and READY_P1 at power up for Core1. The ratios for Core 1 are not valid for P1013. See the following tables for the ratios.

Binary Value of LBCTL, LALE, LGPL2 Signals	e500 core: CCB Clock Ratio	Binary Value of LBCTL, LALE, LGPL2 Signals	e500 core: CCB Clock Ratio
000	4:1	100	2:1
001	9:2	101	5:2
010	1:1	110	3:1
011	3:2	111	7:2

Table 13. e500 Core0 to CCB Clock Ratio

Binary Value of LWE0, UART_SOUT1, READY_P1 Signals	e500 core: CCB Clock Ratio	Binary Value of LWE0 , UART_SOUT1, READY_P1 Signals	e500 core: CCB Clock Ratio
000	4:1	100	2:1
001	9:2	101	5:2
010	1:1	110	3:1
011	3:2	111	7:2

Table 14. e500 Core1 to CCB Clock Ratio

6.1.5 DDR/DDRCLK PLL Ratio

The DDR memory controller complex can be synchronous with, or asynchronous to, the CCB, depending on configuration.

When synchronous mode is selected, the memory buses are clocked at half the CCB clock rate. The default mode of operation is the synchronous mode. The DDRCLKDR configuration register in the Global Utilities block allows the DDR controller to be run in a divided down mode where the DDR bus clock is half the speed of the default configuration. Changing these defaults must be completed prior to initialization of the DDR controller.

This table describes the clock ratio between the DDR memory controller complex and the DDR PLL reference clock, DDRCLK, which is not the memory bus clock.

Binary Value of UART_RTS0, TSEC_1588_PULSE_OUT1, LDP0 Signals	DDR:DDRCLK Ratio
000	3:1
001	4:1
010	6:1
011	8:1
100	10:1
101	12:1
110	Reserved
111	Synchronous mode (DDR data rate = CCB clock)

Table 15. DDR Clock Ratio

6.2 Frequency Options

This section discusses the frequency options.

Clock Pin Recommendations

6.2.1 Core to CCB Frequency Options

This table shows the expected core frequency values for specific core to CCB frequency ratio options.

Core to CCB Ratio	Platform /CCB Frequency (MHz)						
	267	267 333 400 480 5					
	Core I	Core Frequency (MHz)					
1:1		—	400	480	533		
1.5:1	400	500	600	720	800		
2:1	533	667	800	960	1067		
2.5:1	667	833	1000	1200	_		
3:1	800	999	1200	_	_		
3.5:1	933	—	—	_	_		
4:1	1067	—	_	_	_		

Table 16. Frequency Options for e500 Core Frequency

6.2.1.1 Platform to SYSCLK Frequency Options

This table shows the expected frequency values for the platform frequency while using a CCB clock to SYSCLK ratio in comparison to the memory bus clock speed.

CCB to SYSCLK Ratio	SYSCLK (MHz)			
	66.66	100	125	133.33
	Platform /CCB Frequency (MHz)			
4	267	400	500	533.33
5	333	500	_	—
6	400			—
8	533	-		—

Table 17. Frequency Options for Platform Frequency

6.2.1.2 DDRCLK to DDR Controller Operating Frequency Options

This table shows the expected frequency values for the DDR controller operating frequency when using an external asynchronous clock.

DDRC to DDRCLK Ratio	DDRCLK (MHz)			
	66.66	100	133.33	
	DDR Controller Frequency (MHz)			
3			400	
4		400	533	
6	400	600	800	
8	533	800	—	
10	667	_	_	
12	800	—	—	

Table 18. DDRCLK to DDR Controller Frequency (Data Rate)

6.3 Minimum Platform Frequency Requirements for High-Speed Interfaces

The "I/O Port Selection" section of the *P1022 QorIQ Integrated Processor Reference Manual* describes various high-speed interface configuration options. Note that the CCB clock frequency must be considered for proper operation of such interfaces as described below.

For proper PCI Express operation, the CCB clock frequency must be greater than:

527 MHz × (PCI Express link width)

8

See the "Link Width" section of the *P1022 QorIQ Integrated Processor Reference Manual* for PCI Express interface width details. Note that the 'PCI Express link width' in the above equation refers to the negotiated link width as the result of PCI Express link training, which may or may not be the same as the link width POR selection. See the "System PLL Ratio" section of the *P1022 QorIQ Integrated Processor Reference Manual* for details of selecting this ratio.

7 DDR Interface Pin Recommendations

This section discusses the termination of DDR pins on the device. This table shows how the DDR pins should be connected.

Pin Name	Pin Used	Pin Not Used	
MA[0:15]	Auto-precharge for DDR signaled on MA10 when DDR_SDRAM_CFG[PCHB8] = 0. Auto-precharge for DDR signaled on MA8 when DDR_SDRAM_CFG[PCHB8] = 1.	These pins may be left unconnected.	
MBA[0:2]	Connect to memory module or discrete memory	These pins may be left unconnected.	
MCAS	Connect to memory module or discrete memory	These pins may be left unconnected.	
MCK/MCK[0:5]	Unused MCK pins must be disabled via DDRCLKDR register.	These pins may be left unconnected. However, all unused MCK pins should be disabled via DDRCLKDR[DDR_MCKx_DIS] register at offset 0xE_0B28.	
MCKE[0:3]	These pins are actively driven during reset instead of being released to high impedance.	These pins may be left unconnected.	
MCS[0:3]	_	These pins may be left unconnected.	
MDIC[0:1]	For DDR2, MDIC0 is grounded through an 18.2- Ω (full-strength mode) or 36.4- Ω (half-strength mode) precision 1% resistor, and MDIC1 is connected to GVDD through an 18.2- Ω (full-strength mode) or 36.4- Ω (half-strength mode) precision 1% resistor. These pins are used for automatic calibration of the DDR IOs. The calibration resistor value for DDR3 should be 20- Ω (full-strength mode) or 40.2- Ω (half-strength mode).		
MDM[0:8]	_	These pins may be left unconnected.	
MDQ[0:63]			
MDQS[0:8]/ MDQS[0:8]	—		
MECC[0:7]	_		
MODT[0:3]			
MRAS			
MCAS			
MWE	—	1	
MVREF	DDR Reference Voltage: $0.49 \times \text{GVDD}$ to $0.51 \times \text{GVDD}$. MVREF can be generated using a divider from GV_{DD} as MVREF. Another option is to use supplies that generate GV_{DD} , VTT, and MVREF voltage. These methods help reduce differences between GV_{DD} and MVREF. MVREF generated from a separate regulator is not recommended as it will not track GV_{DD} as closely.		

Table 19. DDR Pin Recommendations

NOTE

When planning to use DDR3 at 800 MHz data rate, it is recommended to use a DDR3 DIMM or discrete DRAM rated at 1066 MHz data rate or more.

DUART, IIC, and SSI Interface Pin Recommendations

8 DUART, IIC, and SSI Interface Pin Recommendations

This section discusses the termination of DUART, IIC, and SSI pins on the device. This table shows how these pins should be connected.

Pin Name	Pin Used	Pin Not Used
UART_CTS0/SSI_RCK/ TDM_RCLK/GPIO3_[0]	Selected through PMUXCR[UART0_I2C1] with default as UART	Tie high through a 2–10 $k\Omega$ resistor to OV_{DD}
UART_CTS1/ IIC2_SCL/GPIO3_[4]	Selected through PMUXCR[UART1] with default as UART	Tie high through a 2–10 k Ω resistor to OV _{DD} .
UART_RTS0/ DMA_DDONE0/ GPIO3_[1]	This pin is a reset configuration pin that sets the DDR PLL ratio. This pin requires a 4.7-k Ω pull-up or pull-down resistor. Function selection through PMUXCR[UART0_I2C1] with default as UART	If the POR default is acceptable, this output pin may be left floating.
UART_RTS1/ IIC2_SDA/GPIO3_[5]	ENG_USE POR pin. The ENG_USE POR configuration input may be used in the future to control functionality. It is advised that boards be built with the ability to pull up or pull down. Function selection through PMUXCR[UART1] with default as UART	This output pin may be left floating.
UART_SIN0/ DMA_DREQ0/GPIO1_[31]	Selected through PMUXCR[UART0_I2C1] with default as UART	Tie low through a 2–10 k Ω resistor to GND.
UART_SIN1/GPIO3_[3]	Selected through PMUXCR[UART1] with default as UART	Tie low through a 2–10 k Ω resistor to GND.
UART_SOUT0/ DMA_DACK0/GPIO1_[30]	This pin is a reset configuration pin. It has a weak internal pull-up that is enabled only when the processor is in the reset state. Function selection through PMUXCR[UART0_I2C1] with default as UART	If the POR default is acceptable, this output pin may be left floating.
UART_SOUT1/GPIO3_[2]	The value of this pin at reset sets the e500 core clock to the CCB clock PLL ratio. These pins require $4.7 \cdot k\Omega$ pull-up or pull-down resistors. Function selection through PMUXCR[UART1] with default as UART.	This output pin may be left floating.
IIC1_SDA/SSI_RXD/ TDM_RXD	Selected through PMUXCR[UART0_I2C1] with default as IIC.	Tie high through a 2–10 k Ω resistor to OV_{DD}
IIC1_SCL/SSI_RFS/ TDM_RFS	Tie these open-drain signals high through a nominal 1 k Ω resistor to OV _{DD} . Optimum pull-up value depends on the capacitive loading of external devices and required operating speed.	
SSI_TCK/DMA_DACK1/ TDM_TCK/GPIO3_[6]	Selected through PMUXCR[SSI_DMA_TDM] with default as SSI.	Tie high through a 2–10 $k\Omega$ resistor to OV_{DD}
SSI_TFS/ DMA_DDONE1/ TDM_TFS/GPIO3_[7]		
SSI_TXD/DMA_DREQ1/ TDM_TXD/GPIO3_[8]		This output pin may be left floating.

Table 20. DUART, IIC and SSI Pin Recommendations

9 eSDHC Interface Pin Recommendations

This section discusses the termination of eSDHC pins on the device. Note that transient protection devices are required if these pins are connected to user-accessible card connectors.

This table shows how the eSDHC pins should be connected.

Pin Name	Pin Used	Pin Not Used	
SDHC_DAT0/ GPIO1_[25]	10–100 kΩ pull-up resistor if used. Selected through PMUXCR[SDHC_GPIO_1]	This pin is muxed with GPIO with default function as SDHC. If configured as Output, may be left floating.	
SDHC_DAT[1:2]	10–100 k Ω pull-up resistor if used	If configured as SDHC, tie to inactive state through a 10–100 k Ω resistor.	
SDHC_DAT3	100-k Ω pull down needed if SDHC_DAT3 signal is used as a CD pin for SD cards. The 100-k Ω pull down is not needed for MMC cards or if SDHC_CD is used for card detection.Selected through PMUXCR[SDHC_GPIO_2]		
SPI_CS[0:3]/ SDHC_DAT[4:7]/ LAD[28:31]	10–100 kΩ pull-up resistor if used Selected through PMUXCR[SPI_eLBC]	These pins are muxed with SPI_CS with default function as SPI_CS. If configured as Output, may be left floating.	
GPIO1_[27]/ SDHC_CLK	Connect as needed	This pin is muxed with GPIO with default function as SDHC. If configured as Output, may be left floating.	
GPIO1_[24]/ SDHC_CMD	10–100 k Ω pull-up resistor if used. Selected through PMUXCR[SDHC_GPIO_1]	If configured as SDHC, tie to inactive state through 10–100 kΩ resistor.	
GPIO1_[28]/ SDHC_CD	Selected through PMUXCR[SDHC_GPIO_3] Connect as needed		
GPIO1_[29]/ SDHC_WP	Selected through PMUXCR[SDHC_GPIO_4] Connect as needed		

Table 21. eSDHC Pin Recommendations

10 eSPI Interface Pin Recommendations

This section discusses the termination of eSPI pins on the device. This table shows how the eSPI pins should be connected. SPI pins are multiplexed with the eLBC and SDHC[4:7] data lines, and 32 bit eLBC is not supported with SPI interface.

Table 22. eSPI Pin Recommendation	IS
-----------------------------------	----

Pin Name	Pin Used	Pin Not Used
SPI_MISO/LWE3/GPIO1_[18]	Connect as needed.	Connect through a 2–10 $k\Omega$ to BVDD
SPI_MOSI/LWE2/GPIO1_[17]	Selected through PMUXCR[SPI_eLBC]	
SPI_CS[0:3]/SDHC_DAT[4:7]/LAD[28:31]		Output pin may be left floating.
SPI_CLK/LDP2/GPIO1_[19]		

11 USB Interface Pin Recommendations

This section discusses the termination of USB pins on the device. This table shows how the USB pins should be connected.

USB1 is multiplexed with GPIO pins, selectable through PMUXCR[USB1_GPIO]. By default USB interface is enabled. The USB1 interface is on LV_{DD2} supply which is not switched off in deep-sleep mode.

The USB2 controller is multiplexed with eTSEC2 signals. The GPIO, USB, or eTSEC functionality is selected by configuring bits 11 to 16 of PMUXCR2 register. The default mode on this interface is GPIO.

The power fault pins of both USB interfaces is muxed on 1588 interface pins, which works on LV_{DD} supply.

Pin Name	Pin Used	Pin Not Used
USB1_NXT/GPIO2_[0]	Connect as needed.	Connect through
USB1_DIR/GPIO2_[3]		1 kΩ GND.
USB1_CLK/GPIO2_[2]		
USB1_D[5:7]/GP1O2_[6:4]		
USB1_D[0:4]/GPO2_[11:7]	These pins are reset configuration pins. They have a weak internal pull-up which is enabled only when the processor is in the reset state.	
USB1_STP/GPO2_[1]	Connect as needed. Note: This pin must not be pulled down during power-on reset.	Output pin may be left floating.
TSEC_1588_CLK_IN/GPIO1_[12]/ USB1_PWRFAULT	Connect as needed.	Connect through 1 kΩ GND.
TSEC_1588_TRIG_IN1/GPIO1_[13]/ TSEC2_GTX_CLK125/USB2_PWRFAULT		

Table 23. USB Pin Recommendations

NOTE

Reset for a USB PHY (physical layer transceiver) should not be deasserted prior to the HRESET deassertion of the device. The device may drive USB_STP signal low during the reset sequence due to the POR configuration. If the reset for the PHY deasserts before the deassertion of the device HRESET, the USB_DIR signal may be driven low by the PHY and the PHY may mistakenly treat the data as valid since USB_STP is also driven low. This can cause the PHY to hang. The reset for the USB PHY can be connected to the device HRESET signal such that both are deasserted at the same time.

12 Ethernet Management Interface Pin Recommendations

This section discusses the termination of the Ethernet management pins on the device. This table shows how the Ethernet management pins should be connected.

Pin Name	Pin Used	Pin Not Used
	This pin is a reset configuration pin. It has a weak internal pull-up that is enabled only when the processor is in the reset state.	If the POR default is acceptable, this output pin may be left floating.
EC_MDIO	Connect as needed.	Tie high or low through a 2–10 $k\Omega$ resistor to LV_{DD} or GND, respectively.

Table 24. Ethernet Management Pin Recommendations

NOTE

Ethernet management interface is on LV_{DD} power supply and is shared by both eTSEC interface.

13 eTSEC Interface Pin Recommendations

P1022 supports two eTSEC interfaces, which support RGMII and RMII modes. The RGMII/RMII selection is done by POR configuration.

GPIO is muxed on eTSEC1 interface, selectable through PMUXCR2[eTSEC1_GPIO].

eTSEC2 pins are shared with USB2 interface selectable through PMUXCR2 register, bits 11 to 16. The default configuration is GPIO.

This section discusses the termination of the Ethernet pins on the device. This table shows how the Ethernet pins should be connected.

Pin Name	Pin Used	Pin Not Used
TSEC1_GTX_CLK/ TSEC1_TX_CLK /GPIO2_17	Connect as needed.	These output pins may be left floating.
TSEC1_RX_CLK/ GPIO2_19/ TSEC1_RX_ER		Tie high or low through a 2–10 $k\Omega$ resistor to LV_{DD2} or GND, respectively.
TSEC1_RX_DV/ GPIO2_18		Tie low through a 2–10 k Ω resistor to GND.
TSEC1_RXD[3:0]/ GPIO2_[23:20]		Tie high or low through a 2–10 $k\Omega$ resistor to LV_{DD2} or GND, respectively.
TSEC1_TX_EN/ GPIO2_12	These pins require an external 4.7 k Ω pull-down resistor to prevent the PHY from seeing a valid Transmit Enable before it is actively driven (during reset).	This output pin may be left floating.

Table 25. Ethernet Pin Recommendations

Pin Name	Pin Used	Pin Not Used
TSEC1_TXD[3:0]/ GPIO2_[16:13]	These pins are reset configuration pins. They have a weak internal pull-up that is enabled only when the processor is in the reset state.	If the POR default is acceptable, these output pins may be left floating. TSEC1_TXD3 must not be pulled down during POR.
TSEC1_GTX_CLK125]/ GPIO2_24	See Table 9	
TSEC2_GTX_CLK/ TSEC2_TX_CLK/ GPIO1_[15]/ USB2_CLK	Connect as needed. Selected through PMUXCR2[eTSEC2_USB3].	The default function of these pins is GPIO. If configured as output, they may be left floating.
TSEC2_RX_CLK/ TSEC2_RX_ER/GPIO1_[7]	*	
TSEC2_RX_DV/ GPIO1_[6]	Connect as needed. Selected through PMUXCR2[eTSEC2_USB1].	
TSEC2_RXD[1:0]/ GPIO1_[9:8]/USB2_D[1:0]		
TSEC2_TX_EN/ GPIO1_[10]/USB2_STP		
TSEC2_TXD[1:0]/ GPIO1_[2:1]/USB2_D[5:4]	*	
TSEC2_TXD[3:2]/ GPIO1_[4:3]/USB2_D[7:6]	Connect as needed. Selected through PMUXCR2[eTSEC2_USB2].	
TSEC2_RXD[3:2]/ GPIO1_[11:10]/USB2_D[3:2]		

Table 25.	Ethernet Pin	Recommendations	(continued))
10010 201				,

NOTE

eTSEC1 interface is on LV_{DD2} power supply rail and eTSEC2 on LV_{DD} supply. The voltage level selection is through LVDD_VSEL, which is single control for both power supplies.

14 JTAG Interface Pin Recommendations

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 4. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions, as most have asynchronous behavior and spurious assertion will give unpredictable results.

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE Std 1149.1 specification, but it is provided on all processors built on Power Architecture technology. The device requires TRST to be asserted during power-on reset flow to ensure that the JTAG boundary logic does not interfere with normal chip operation. While the TAP controller can be forced to the reset state using only the TCK and TMS signals, generally systems assert TRST during the power-on reset flow. Simply tying TRST to HRESET is not practical because the JTAG interface is also used for accessing the common on-chip processor (COP), which implements the debug interface to the chip.

The COP function of these processors allow a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP interface connects primarily through the JTAG port of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert HRESET and TRST in order to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged along with these signals with logic.

The arrangement shown in Figure 4 allows the COP port to independently assert HRESET or TRST while ensuring that the target can drive HRESET as well.

The COP interface has a standard header, shown in Figure 5, for connection to the target system. This header is based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.

The COP header adds many benefits such as breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features. An inexpensive option can be to leave the COP header unpopulated until needed.

There is no standardized way to number the COP header, so emulator vendors have issued many different pin numbering schemes. Some COP headers are numbered top-to-bottom then left-to-right whereas others use left-to-right then top-to-bottom. Still others number the pins counterclockwise from pin 1 (as with an IC). Regardless of the numbering scheme, the signal placement recommended in Figure 4 is common to all known emulators.

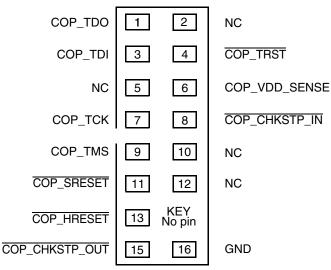
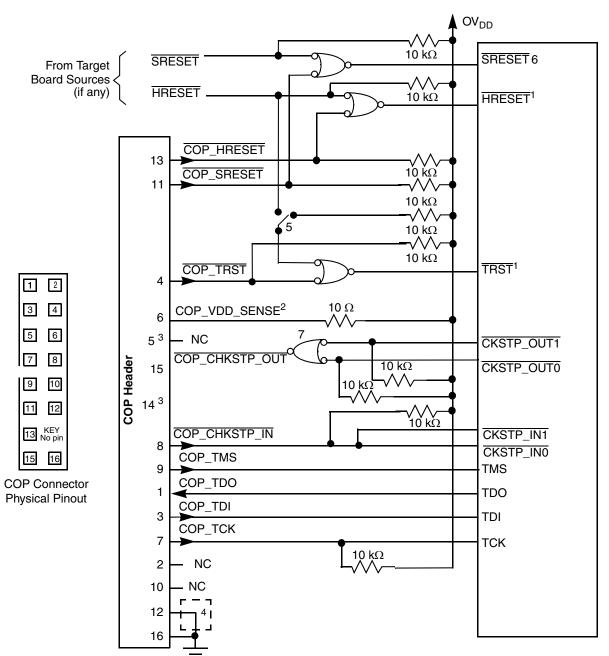



Figure 4. COP Connector Physical Pinout (Top View)

JTAG Interface Pin Recommendations

Notes:

- 1. The COP port and target board should be able to independently assert HRESET and TRST to the processor in order to fully control the processor as shown here.
- 2. Populate this with a 10– Ω (1/6W rating; 0402 or larger) resistor for short-circuit/current-limiting protection.
- 3. The KEY location (pin 14) is not physically present on the COP header.
- 4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for improved signal integrity.
- 5. This switch is included as a precaution for BSDL testing. The switch should be open during BSDL testing to avoid accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed or removed.
- 6. Asserting SRESET causes a machine check interrupt to the e500 core.
- 7. CKSTP_OUT0, CKSTP_OUT1 are POR muxed with cfg_romloc and may need to be separated.

Figure 5. JTAG Interface Connection

P1022 QorlQ Integrated Processor Design Checklist, Rev. 0

14.1 JTAG Pin Recommendations

If the JTAG interface and COP header are not used, Freescale recommends the following connections:

- TRST should be tied to HRESET through a $0-\Omega$ isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale recommends that the COP header be designed into the system as shown in Figure 5. If this is not possible, the isolation resistor will allow future access to TRST in case a JTAG interface may need to be wired onto the system in future debug situations.
- No pull-up/pull-down is required for TDI, TMS, or TDO.

This table shows how the JTAG pins should be connected.

Pin Name	Pin Used	Pin Not Used
ТСК	If COP is used, connect as needed and strap to OVDD2 via a 10 k Ω pull up.	If COP is unused, tie TCK to OVDD2 through a 10 k Ω resistor. This prevents TCK from changing state and reading incorrect data into the device.
TDI	This pin has a weak internal pull-up that is always enabled. Connect to Pin3 of the COP connector.	This pin may be left unconnected.
TDO	Connect to Pin1 of the COP connector.	This pin may be left unconnected.
TMS	This pin has a weak internal pull-up that is always enabled. Connect to Pin9 of the COP connector.	This pin may be left unconnected.
TRST	Connect as shown in Figure 5.	TRST should be tied to HRESET through a 0- Ω resistor.

 Table 26. JTAG Pin Recommendations

15 eLBC Interface Pin Recommendations

The eLBC, DIU, SPI, and eSDHC interfaces are muxed in P1022. The eLBC can support 32-bit (address and data), 28-bit address/16-bit data or 24-bit address/16-bit data configurations. In addition 8 or 16 bit NAND interface is also supported on eLBC. The DIU pins are shared with eLBC, which limit the usage of eLBC. When enabled through PMUXCR register, 8bit address/data and only 2 chip selects are supported on eLBC. Refer to the *P1022 QorIQ Integrated Processor Reference Manual* for details.

The eLBC and SPI pins are on BV_{DD} supply which can be 3.3/2.5/1.8V while the eSDHC is on OV_{DD} supply which can be 3.3V only. With eSDHC in 8-bit mode, BV_{DD} should be 3.3V which restricts eLBC to 3.3V only.

eLBC Interface Pin Recommendations

This section discusses the termination of local bus pins on the device. This table shows how the local bus pins should be connected.

Pin Name	Pin Used	Pin Not Used	
LAD[0:7]	These pins are reset configuration pins. They have a weak internal pull-up which is enabled only when the processor is in the reset state. The value of LAD[0:7] during reset sets the upper 8 bits of the GPPORCR Note that the LSB for the address = LAD[24:31]; and the MSB for the data is on LAD[0:7].	These pins may be left floating, if the general purpose POR configuration is not used.	
LAD8/DIU_R0	This pin is a reset configuration pins. It has a weak internal pull-up which is enabled only when the processor is in the reset state.	This pin may be left unconnected.	
LAD9/DIU_R1	This pin must not be pulled down during power-on reset.		
LAD10/DIU_R2	This pin is a reset configuration pin. It has a weak internal pull-up which is enabled only when the processor is in the reset state.	If the POR default is acceptable, this output pin may be left floating.	
LAD11/DIU_R3	This pin must not be pulled down during power-on reset.	This pin may be left unconnected.	
LAD12/DIU_R4	This pin is a reset configuration pin that sets the CCB clock PLL repull-down resistors.	atio. These pins require 4.7-k Ω pull-up or	
LAD13/DIU_R5	This pin must not be pulled down during power-on reset	This pin may be left unconnected.	
LAD14/DIU_R6	ENG_USE POR pin. The ENG_USE POR configuration inputs may be used in the future to control functionality. It is advised that boards be built with the ability to pull up or pull down.		
LAD15/DIU_R7	This pin must not be pulled down during power-on reset		
LAD16/DIU_G0	This pin is a reset configuration pin. It has a weak internal pull-up which is enabled only when the processor is in the reset state.	If the POR default is acceptable, this output pin may be left floating.	
LAD17/DIU_G1	This pin must not be pulled down during power-on reset	This pin may be left unconnected.	
LAD[18:22]/ DIU_G[2:6]	These pins are resetconfiguration pins. They have a weak internal pull-up which is enabled only when the processor is in the reset state.	If the POR default is acceptable, they may be left floating.	
LAD23/DIU_G7	This pin is a reset configuration pin that sets the platform speed rapull-down resistors.	ange. These pins require 4.7-k Ω pull-up or	
LAD24/ LCS7 / DIU_B0	This pin is a reset configuration pin that sets the Core 0 speed range. These pins require 4.7 -k Ω pull-up or pull-down resistors.		
LAD25/ LCS6 / DIU_B1	This pin is a reset configuration pin that sets the Core 1 speed range. These pins require 4.7-k Ω pull-up or pull-down resistors.		
LAD26/ <u>LCS5</u> / DIU_B2	This pin is a reset configuration pin that sets the DDR speed range. These pins require $4.7 \cdot k\Omega$ pull-up or pull-down resistors.		
LAD27/ LCS4 / DIU_B3	This pin is a reset configuration pin. It has a weak internal pull-up which is enabled only when the processor is in the reset state.	If the POR default is acceptable, this output pin may be left floating.	
SPI_CS[0:3]/ SDHC_DAT[4:7]/ LAD[28:31]	Note that the LSB for the address = LAD[24:31]; however, the MSB for the data is on LAD[0:7].	These output pins may be left floating.	

Table 27. Local Bus Pin Recommendations

Pin Name	Pin Used	Pin Not Used
LALE	This pin is a reset configuration pin that sets the Core 0 PLL ratio.	These pins require 4.7-k Ω pull-up or
LBCTL/DIU_B7	pull-down resistors.	
LCLK[0:1]	—	These output pins may be left floating.
LCS[0:1]		
LCS[2:3]/ DIU_B[5:4]		
LGPL0/LFCLE	This pin is a reset configuration pin. It has a weak internal pull-up which is enabled only when the processor is in the reset state.	If the POR defaults are acceptable, these output pins may be left floating.
LGPL1/LFALE	This pin is a reset configuration pin that sets the CCB clock PLL rapull-down resistors.	atio. These pins require 4.7-k Ω pull-up or
LGPL2/ <u>LOE</u> / LFRE	This pin is a reset configuration pin that sets the Core 0 PLL ratio. pull-down resistors.	These pins require 4.7-k Ω pull-up or
LGPL3/LFWP	This pin is a reset configuration pin. It has a weak internal pull-up which is enabled only when the processor is in the reset state.	If the POR default is acceptable, this output pin may be left floating.
LGPL4/ <u>LGTA</u> / LUPWAIT/ LPBSE/ LFRB	This pin should be pulled up whether u	lsed or not used.
LGPL5/ DIU_CLK_OUT	This pin is a reset configuration pin. It has a weak internal pull-up which is enabled only when the processor is in the reset state.	If the POR default is acceptable, this output pin may be left floating.
LWE0/LBS0/ LFWE	This pin is a reset configuration pin that sets the Core 1 PLL ratio. pull-down resistors.	These pins require 4.7-k Ω pull-up or
LWE1/LBS1/ DIU_B6	This pin is a reset configuration pin. It has a weak internal pull-up which is enabled only when the processor is in the reset state.	If the POR defaults are acceptable, these output pins may be left floating
LWE[2:3]/ LBS[2:3]	Selected through PMUXCR[SPI_eLBC]	These output pins may be left floating.
LDP0/ DIU_HSYNC	This pin is a reset configuration pin that sets the DDR PLL ratio. These pins require 4.7-k Ω pull-up or pull-down resistors. Add 2-10k Ω pull up to BVDD	
LDP1/ DIU_VSYNC	Add 2-10k Ω pull up to BVDD Note: This pin must not be pulled down during power-on reset.	This output pin may be left floating.
LDP2	This pin is muxed with SPI_CLK. It is selected through PMUXCR[SPI_eLBC] Add 2-10k Ω pull up to BVDD	Configure as SPI_CLK output that may be left open.
LDP3	This pin is muxed with $\overline{\text{LCS3}}$. It is selected through PMUXCR[eLBC_DIU] Add 2-10k Ω pull up to BVDD	Configure as LCS3 output that may be left open.

Note: DIU is selected through PMUXCR[eLBC_DIU].

15.1 Connecting Devices to the Local Bus

This figure shows an example of 32-bit GPCM mode with PMUXCR[eLBC_DIU]=00.

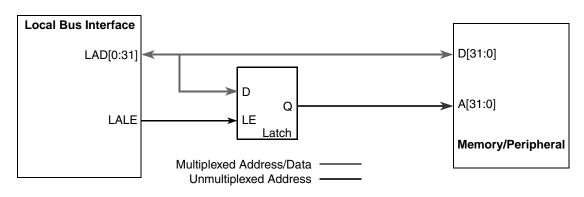


Figure 6. Local Bus Address Connection Example (32-bit GPCM)

This figure shows an example of 28-bit GPCM mode with PMUXCR[eLBC_DIU]=10.

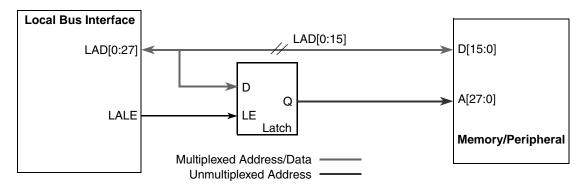


Figure 7. Local Bus Address Connection Example (28-bit GPCM)

This figure shows an example of 24-bit GPCM mode with PMUXCR[eLBC_DIU]=11.

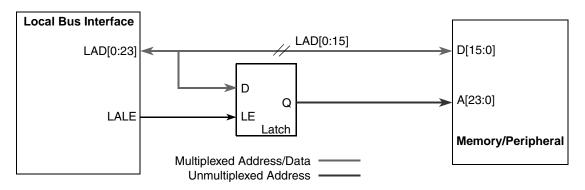


Figure 8. Local Bus Address Connection Example (24-bit GPCM)

This figure shows an example of DIU and 8-bit SRAM mode with PMUXCR[eLBC_DIU]=01.

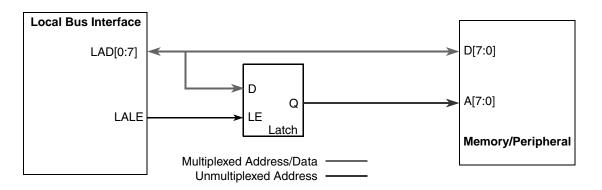


Figure 9. Local Bus Address Connection Example (8-bit GPCM)

16 PIC Interface Pin Recommendations

This section discusses the termination of programmable interrupt controller pins on the device.

The IRQ lines are muxed with DMA and GPIOs, selectable through PMUXCR[24:27]. In deep sleep mode IRQ[6:11] are powered OFF and these pins should be electrically isolated from external devices on the board.

This table shows how the PIC pins should be connected.

Pin Name	Pin Used	Pin Not Used
IRQ[0:5]/ GPIO2_[25:30]	Tie high or low to the inactive state through a 2-10 k Ω resistor to OVDD2 or GND, respectively.	Tie high or low to the inactive state through a 2-10 k Ω resistor to OVDD2 or GND, respectively. or configure these pins as GPIO output and leave them unconnected.
IRQ6/GPIO2_31	Tie high or low to the inactive state through a	Tie high or low to the inactive state through a
IRQ[7:11]/ GPIO3_[9:13]	2-10 k Ω resistor to OVDD or GND, respectively. When in deep sleep mode, OVDD supply is switched OFF and some leakage current might flow if any of these pins is tied to OVDD2.	2-10 $k\Omega$ resistor to OVDD or GND, respectively. or configure these pins as GPIO output and leave them unconnected.
IRQ_OUT/GPIO3_18	This pin requires a 2-10 k Ω pull-up to OVDD. This pin must not be pulled down during power-on-reset.	This output may be left floating.
MCP[0:1]/ GPIO3_[14:15]	Pull high through a 2–10 k Ω resistor to OV _{DD} .	
UDE[0:1]/ GPIO3_[16:17]		

Table 28. PIC Pin Recommendations

NOTE

When using one of these shared GPIO/IRQ pins as GPIO, the user must keep the associated IRQ masked in the PIC. These external IRQs are masked in the PIC by default.

17 GPIO Interface Pin Recommendations

This section discusses the termination of general purpose input/output (GPIO) pins on the device. There are 87 general purpose I/Os that are multiplexed with various functions.

This table shows how the GPIO pins should be connected.

Table 29.	GPIO	Pin	Recommendations

Pin Name	Pin Used	Pin Not Used
GPIO1_[15]/USB2_CLK/ TSEC2_GTX_CLK/ TSEC2_TX_CLK	Connect as needed. Selected through PMUXCR2[eTSEC2_USB3].	The default function of these pins is GPIO, if configured as output, they may be left floating.
GPIO1_[7]/ TSEC2_RX_CLK/ TSEC2_RX_ER		
GPIO1_[6]/ TSEC2_RX_DV	Connect as needed. Selected through PMUXCR2[eTSEC2_USB1].	
GPIO1_[9:8]/ TSEC2_RXD[1:0]/ USB2_D[1:0]		
GPIO1_[10]/ TSEC2_TX_EN/ USB2_STP		
GPIO1_[2:1]/ TSEC2_TXD[1:0]/ USB2_D[5:4]		
GPIO1_[4:3]/ TSEC2_TXD[3:2]/ USB2_D[7:6]	Connect as needed. Selected through PMUXCR2[eTSEC2_USB2].	
GPIO1_[11:10]/ TSEC2_RXD[3:2]/ USB2_D[3:2]		

18 SerDes Interface Pin Recommendations

This section discusses the termination of SerDes pins on the device. This table shows how the SerDes pins should be connected. Note that the SerDes must always have power applied to its supply pins. SerDes pins are used to interface to the PCI Express, SATA and SGMII interfaces.

Table 30. SerDes Pin Recommendations

Pin Name	Pin Used	Pin Not Used
SD1_RX[0:3]	_	These pins must be connected to GND.
SD1_RX[0:3]		
SD1_TX[0:3]	_	These pins must be left unconnected (float).
SD1_TX[0:3]		

Pin Name	Pin Used	Pin Not Used
SD1_REF_CLK	_	These pins must be connected to GND.
SD1_REF_CLK		
SD1_IMP_CAL_RX	This pin must be pulled down through a 200 $\Omega(\pm$	1%) resistor.
SD1_IMP_CAL_TX	This pin must be pulled down through a 100 $\Omega(\pm$	1%) resistor.
SD1_PLL_TPD	Do not connect	
SD1_PLL_TPA		
SD2_RX[0:3]	_	These pins must be connected to GND.
SD2_RX[0:3]		
SD2_TX[0:3]	_	These pins may be left unconnected (float).
SD2_TX[0:3]		
SD2_REF_CLK	_	These pins must be connected to GND.
SD2_REF_CLK		
SD2_IMP_CAL_RX	This pin must be pulled down through a 200 Ω (±1%) resistor.	
SD2_IMP_CAL_TX	This pin must be pulled down through a 100 $\Omega(\pm 1\%)$ resistor.	
SD2_PLL_TPD	Do not connect	
SD2_PLL_TPA		

 Table 30. SerDes Pin Recommendations (continued)

18.1 SATA Board layout Recommendations

- The length of the SATA differential pairs should be designed as short as possible. It should be controlled impedance line with differential impedance of 100Ω .
- The differential input voltage at P1022 serdes receiver input balls should be more than 275mV p-p.
- As per the SATA spec, the minimum Transmitter differential voltage at connector is 400mV. This provides a loss budget of 3.2dB for cable, connector and board.
- Assuming FR4 and approximately 0.32db/inch loss at 3Gbps data rate.
 - For a 3 inch trace length, budget for cable and connector are 2.2dB (approx. 0.5 m standard SATA cable)
- Trace length can be further optimized depending upon available margin in the system.
- The AC coupling capacitors on the Tx and Rx lines for SATA should be of 10 nF. Use 0402 or smaller size of AC coupling capacitors and place them close to the SATA connector to avoid layer switching between the capacitor and the SATA connector.
- Length mismatch between the differential pair should not exceed 5 mils.
- Route the traces as straight as possible with minimum bends and avoid using serpentine for matching lengths.
- All SATA connectors and cables should be SATA compliant. Refer to Chapter 6 of Serial ATA Revision 2.5.

Refer to AN307 "Hardware Design Considerations for PCI Express® and SMGII" for general differential routing guidelines

P1022 QorlQ Integrated Processor Design Checklist, Rev. 0

eTSEC IEEE 1588 Pin Recommendations

19 eTSEC IEEE 1588 Pin Recommendations

This section discusses the termination of eTSEC IEEE 1588 pins on the device. This table shows how the pins should be connected.

Pin Name	Pin Used	Pin Not Used
TSEC_1588_CLK_IN/ GPIO1_[12]/USB1_PWRFAULT	External timer reference clock input	Configure these pins as GPIO output and leave them unconnected.
TSEC_1588_TRIG_IN1/ GPIO1_[13]/USB2_PWRFAULT	_	
TSEC_1588_ALARM_OUT1/ GPO1_[14]	This pin is a reset configuration pin. It has a weak internal pull-up that is enabled only when the processor is in the reset state.	If the POR default is acceptable, this output pin may be left floating.
TSEC_1588_CLK_OUT/ This pin must NOT be pulled down during power-on reset. GPO1_[15] Finite production of the pulled down during power-on reset.		on reset.
TSEC_1588_PULSE_OUT1/ GPO1_[16]	This pin is a reset configuration pin that sets the DDR PLL ratio. These pins require 4.7-kΩ pull-up or pull-down resistors. See Section 6.1.5, "DDR/DDRCLK PLL Ratio."	

Table 31. eTSEC IEEE 1588 Pin Recommendations

20 System Control Pin Recommendations

This section discusses the termination of system control pins on the device. This table shows how the system control pins should be connected.

Table 32. System Control Pin Recommendations

Pin Name	Pin Used	Pin Not Used
CKSTP_IN0	Pull high through a 2–10 k Ω resistor to OV _{DD} . Connect to	Pull high through a 2–10 k Ω resistor to OV_{DD}
CKSTP_IN1	Pin8 of the COP connector (refer to Figure 4).	
CKSTP_OUT0	Pull this open-drain signal high through a 2–10 k Ω	If the POR default is acceptable, this output pin may be left floating.
CKSTP_OUT1	resistor to OV_{DD} . Connect to Pin15 of the COP connector (see Figure 4). This pin is a reset configuration pin. It has a weak internal pull-up that is enabled only when the processor is in the reset state.	may be left floating.
HRESET	Pull high through a 2–10 $k\Omega$ resistor to $\text{OV}_{\text{DD2}}.$ Connect to	o Pin13 of the COP connector (refer to Figure 4).
HRESET_REQ	Pull high through a 2–10 k Ω resistor to OV _{DD2} . This pin must NOT be pulled down during power-on reset.	This pin must NOT be pulled down during power-on reset.
SRESET	Pull high through a 2–10 $k\Omega$ resistor to OV_{DD} . Connect to Pin11 of the COP connector	Pull high through a 2–10 k Ω resistor to OV _{DD} .

21 Reserved POR Configuration Pins

Several pins on the P1022 are marked reserved configuration as shown in this table. The reserved pins are unused POR configuration pins. It is highly recommended that the customer provide capability for setting these pins low to support new configuration options should they arise between revisions.

Pin Name	Pin Number	Comment
USB1_D0	V26	cfg_eng_use[0]
USB1_D1	V25	cfg_eng_use[1]
USB1_D2	W28	cfg_eng_use[2]
USB1_D3	V24	cfg_eng_use[3]
UART_RTS1	H26	cfg_eng_use[5]
LAD14	D13	cfg_eng_use[6]

Table 33. Reserved POR Configuration Pin List

22 Power Management

The P1022 processor implements sophisticated power-saving modes for managing energy consumption in both dynamic and static power modes. These include the traditional nap, doze plus the jog (dynamic frequency scaling) and packet lossless deep-sleep modes. Designers may leverage these modes to efficiently match work accomplished with the correct level of energy consumed. Refer to the *P1022 QorIQ Integrated Processor Reference Manual* for details.

22.1 Deep Sleep Design Checklist

In the deep sleep mode, power to a large portion of the chip is turned off to save power. Dynamically turning portions of the die on or off must be coordinated between the SoC and the system. Both should know when it is safe to apply or remove power and indicate when the process is completed.

When the I/O supplies are switched off, the corresponding I/Os should not be driven by any peripheral. It is recommended to switch off the peripheral devices connected to switched-off interfaces to avoid any damage to the device.

The wake up sources of the P1022 are eTSEC1, USB1, IRQ[0:5], General purpose timer and GPIOs. All the signals of above interfaces should remain powered up during deep sleep mode. The other signals which should remain powered during deep sleep are: HRESET, HRESET_REQ, SYS_CLK_IN, RTC_CLK, DDRCLK, ASLEEP, POWER_EN, POWER_OK, AV_{DD}_PLAT, AV_{DD}_DDR, all the I/Os of DDR controller and JTAG.

The P1022 RDK can be used as a reference design while designing a system with deep sleep mode. The six layered-board incorporates the advanced power features of the P1022 along with other peripherals.

	ltem	Customer Comments	Completed
1.	Requirements of External Power supply, refer to the <i>P1022 QorIQ Integrated Processor</i> Reference Manual.		
2.	Power sequencing for deep sleep mode, refer to the <i>P1022 QorIQ Integrated Processor Hardware Specifications.</i>		
3.	Inputs to the switched off I/O of the P1022 should not be driven.		
4.	All the pull up resistors should be connected to respective power supplies. Refer to the <i>P1022 QorIQ Integrated Processor Hardware Specifications</i> .		
5.	If SerDes is enabled, the respective clock inputs should not toggle in deep sleep state.		
6.	Power regulator is effective across the entire range from maximum power consumption to deep sleep power consumption.		
7.	Power supply to the wake up sources is separated from the switchable supply.		
8.	VDDC and VDD are supplied by the same power source. Ensure switching events do not trigger transient voltages, nor trip voltage monitors.		

Table 34. Deep Sleep Checklist for Designer

This table shows how the Power Management control pins should be connected.

Table 35. Power Management Control Signals

Pin Name	Pin used	Pin not used
POWER_EN	Directly connect to external power switch device. Negation of this signal indicates to the external power regulator to toggle the power switch to off mode	It may be left floating if unconnected.
POWER_OK	Directly connect to external power switch device. If there is no external source of POWER_OK, then the POWER_OK has to be tied to logic 1 on the board. In this case POWER_OK will always be asserted to the power management controller (PMC) and the software has to program the counter (PMRCCR[VRCNT]) to a large enough value, which will account for the voltage ramp time for power to become stable. If the e500 PLL is enabled before the power is stable it might become unpredictable and might not lock.	Pull high.
ASLEEP	This pin is a reset configuration pin that sets the eLBC ECC enable. This pin requires $4.7 \cdot k\Omega$ pull-up or pull-down resistors. This may need to be driven high (that is, by a PLD) if the device to which it is connected does not release this pin to high impedance during reset.	This pin has an internal pull-up enabled only at reset, it may be left floating if unconnected.

23 Power and Ground Signals

The P1022 has several power supplies and ground signals. When implementing deep sleep mode the switchable supplies and the Always ON supplies need to be separated.

Pin	Comment	Power Domain
AV _{DD} _CORE0	Power supply for e500 Core 0 PLL. (VDD through a filter)	Switchable
AV _{DD} _CORE1	Power supply for e500 Core 1 PLL. (VDD through a filter)	Switchable

Table 36. Power and Ground Pin Recommendations

P1022 QorIQ Integrated Processor Design Checklist, Rev. 0

Power and Ground Signals

Pin	Comment	Power Domain	
AV _{DD} _DDR	Power supply for DDR controller PLL (VDDC through a filter)	Always ON	
AV _{DD} _PLAT	Power supply for core complex bus PLL. (VDDC through a filter)	Always ON	
BV _{DD}	Power supply for local bus, eSPI, eSDHC, and DIU I/Os (1.8 V, 2.5 V/3.3 V)	Switchable	
GV _{DD}	Power supply for DDR I/Os (1.8 V / 1.5 V)	Always ON	
MVREF	DDR input reference voltage equal to approximately half of GVDD	Always ON	
LV _{DD2}	Power supply for TSEC1 and USB1 I/Os (2.5 V / 3.3 V)	Always ON	
LV _{DD}	Power supply for TSEC2, MII management and IEEE1588 I/Os (2.5 V / 3.5 V)	Switchable	
OV _{DD2}	Power supply for system control, power management, JTAG and a part of PIC I/Os (3.3 V)	Always ON	
OV _{DD}	Power supply for other standards' I/Os (3.3 V)	Switchable	
SDAV _{DD}	Power supply for SerDes1 PLL (1.0 V through a filter)	Switchable	
SDAV _{DD2}	Power supply for SerDes2 PLL (1.0 V through a filter)	Switchable	
SV _{DD}	Power supply for SerDes1 transceivers (1.0 V)	Switchable	
SV _{DD2}	Power supply for SerDes2 transceivers (1.0 V)	Switchable	
SV _{SS}	SerDes1 GND	_	
SV _{SS2}	SerDes2 GND	_	
XV _{DD2}	Pad Power for SerDes2 transceivers (1.0 V)	Switchable	
XV _{DD}	Pad Power for SerDes1 transceivers (1.0 V)	Switchable	
XVSS	Pad GND for SerDes1	_	
XVSS2	Pad GND for SerDes2	_	
VDD	Power supply Core and platform(1.0 V)	Switchable	
VDDC	Power supply for DDR, eTSEC, ECM and COP (1.0 V)	Always ON	
VSS		_	

Table 36. Power and Ground Pin Recommendations (continued)

NOTE

- It is recommended to derive all 1 V power supplies from V_{DDC}.
- All the power pins need to be tied to their corresponding voltages irrespective of whether the corresponding interfaces are used.
- All switchable supplies should be switched OFF in deep sleep mode, else it may cause irreversible damage to the device.
- LV_{DD}/LV_{DD2} voltage levels are selected through LVDD_SEL and cannot be tied to separate voltage levels.

24 No-Connect Pins

Table 37. No-Connect Pins

Pin	Comment
NC	The following pins should be left as no connects. AC10, AC9, AF23, AG23, AG26, AH23, AJ23, AJ24, AJ26, AJ27, W13, W14, W15, W17, Y13, Y14, Y15, Y17, AD26, B26, A27

25 Thermal Recommendations

This section provides information on thermal management.

25.1 Recommended Thermal Model

Information about Flotherm models of the package or thermal data not available in this document can be obtained from your local Freescale sales office.

25.2 Thermal Management for WB-TePBGA

This section provides thermal management information for the plastic ball grid array (WB-TePBGA) package for air-cooled applications. Proper thermal control design is primarily dependent on the system-level design—the heat sink, airflow, and thermal interface material.

The recommended attachment method to the heat sink is illustrated in this figure. The heat sink should be attached to the printed-circuit board with the spring force centered over the center of the package. This spring force should not exceed 10 pounds of force (45 Newton).

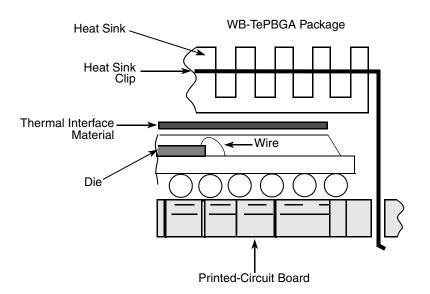
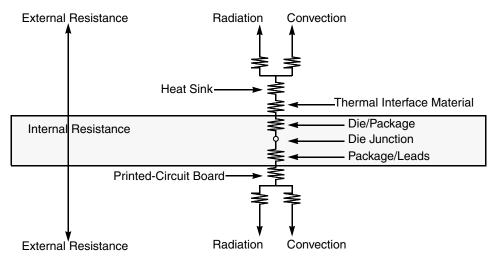


Figure 10. Package Exploded Cross-Sectional View

P1022 QorlQ Integrated Processor Design Checklist, Rev. 0


Thermal Recommendations

25.3 Internal Package Conduction Resistance

For the WB-TePBGA package, the intrinsic internal conduction thermal resistance paths are as follows:

- The die junction-to-case thermal resistance
- The die junction-to-board thermal resistance

This figure depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.

(Note the internal versus external package resistance)

Figure 11. Package with Heat Sink Mounted to a Printed-Circuit Board

With the WB-TePBGA package, heat flow is both to the board and to the heat sink. A thermal simulation is required to determine the performance in the application. A Flotherm thermal model of the part is available.

25.4 Minimizing Thermal Contact Resistance

A thermal interface material is required at the package-to-heat sink interface to minimize the thermal contact resistance. The performance of thermal interface materials improves with increasing contact pressure; this performance characteristic chart is generally provided by the thermal interface vendor. The recommended method of mounting heat sinks on the package is by means of a spring clip attachment to the printed-circuit board see Figure 10.

The system board designer can choose between several types of thermal interface. There are several commercially-available thermal interface materials to choose from in the industry.

26 Revision History

This table summarizes the revision history for this document.

Rev. Number	Date	Substantive Change(s)
0	10/2011	Initial release

Table 38. Document Revision History

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, PowerQUICC, and QorlQ are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2011 Freescale Semiconductor, Inc.

Document Number: AN4343 Rev. 0 10/2011

