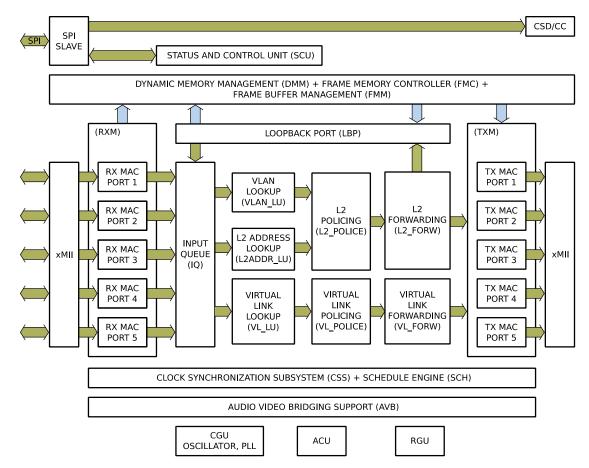

LS1021ATSN Board Overview

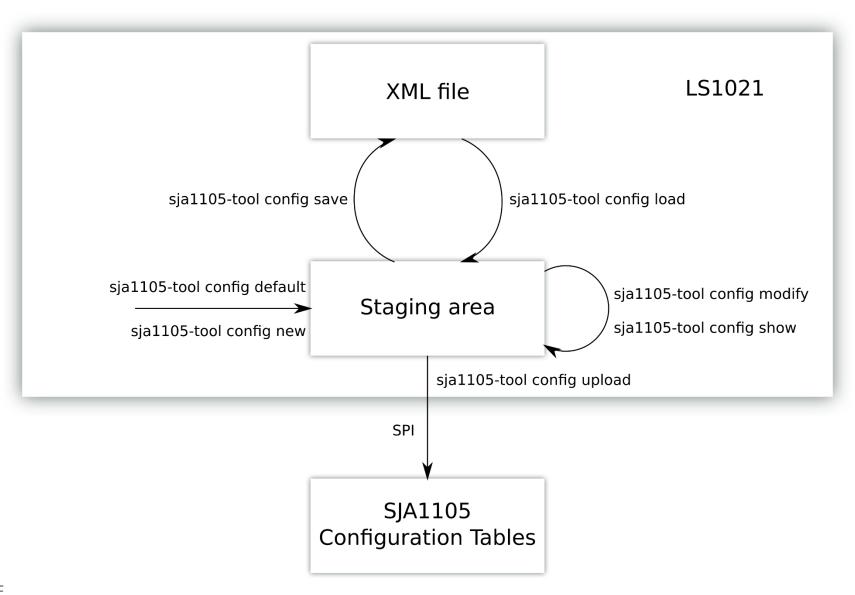


1 EXTERNAL USE

NXP SJA1105TEL Overview

- 5 port Ethernet switch for Automotive
 - MII, RMII, RGMII, 10/100/1000 Mbps, full duplex only
 - Store-and-forward architecture
 - 1024 entry MAC address learning table (static or dynamic)
 - Handles frames up to 2KB in size
 - Frame retagging, mirroring and replication
 - Support for 802.1Q VLAN frames and L2 QoS
 - Ingress and egress timestamping per port
 - Hardware forwarding for 1588v2 one-step sync messages
 - Ingress rate limiting (per-stream policing): 802.1Qci
 - Statistics for transmitted, received, dropped frames, buffer load
 - Time-aware traffic shaping: 802.1Qbv

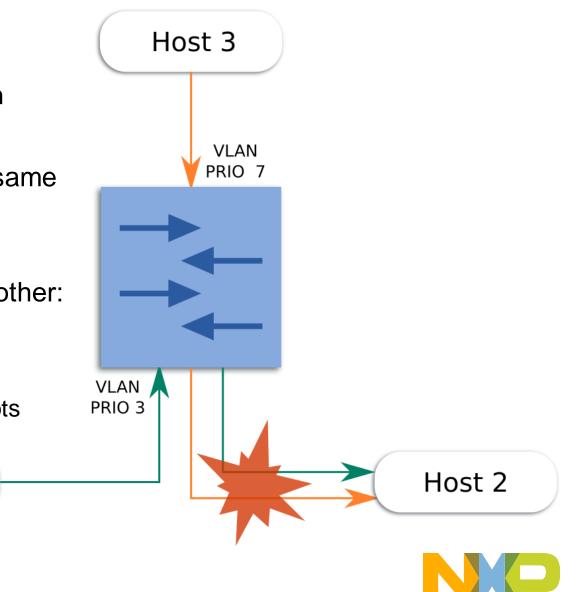
Block diagram of SJA1105TEL

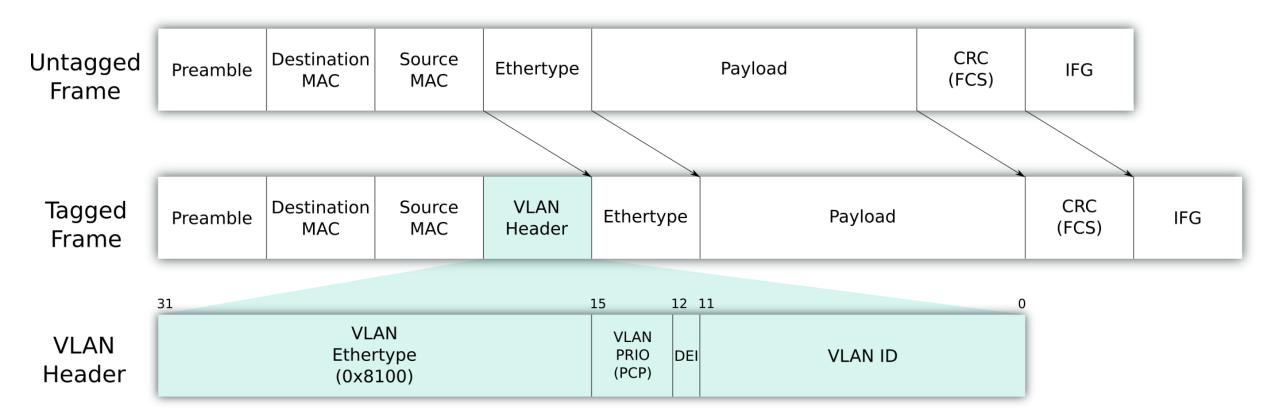


SJA1105-Tool Overview

- Linux userspace application for configuring the NXP SJA1105
- The tool supports:
 - Importing a configuration for the SJA1105 switch from an XML file
 - Exporting the current SJA1105 configuration as an XML file
 - Uploading the current SJA1105 configuration to the switch through its SPI interface
 - Inspecting the current SJA1105 configuration
 - On-the-fly modification of the current SJA1105 configuration through command line or scripting interface
- The tool accepts shorthand versions of commands as long as they are unambiguous
 - sja1105-tool configure show 12-policing-table can be written as sja1105-tool c sh 12-pol

SJA1105-Tool Overview

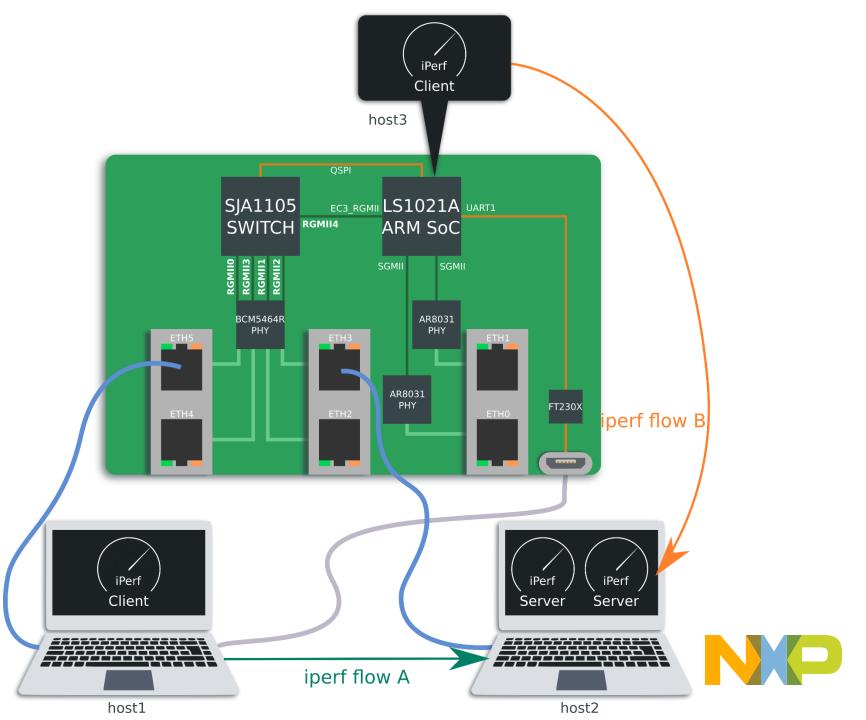



TSN Demo

- Overview
 - 3 host Linux machines connected through a switch
 - 2 TCP flows competing for bandwidth
 - Flows bottlenecked because they are sharing the same link towards Host 2
 - Combined throughput cannot exceed 1000Mbps
 - 3 approaches to isolate the flows' impact on each other:
 - Standard switch configuration: do nothing
 - Ingress Policing: rate-limit traffic coming from Host 3
 - Time Gating: schedule the 2 flows on different time slots

Host 1

VLAN Essentials


Use of VLAN tags in the demo

- SJA1105 has 3 main stages in its packet processing pipeline:
 - Ingress
 - Forwarding
 - Egress
- To distinguish between different flows, we configure the switch to assign a default ("native") VLAN header on frames in the ingress stage
- · We remove the VLAN tag on the egress stage
- The connected hosts (Host 1, Host 2, Host 3) are oblivious to this VLAN tagging
 - The switch receives untagged frames on ingress
 - The switch sends untagged frames on egress
 - The VLAN tag is only considered during the forwarding stage
- · Based on the default VLAN tagging, the flows get differentiated treatment
 - In the policing configuration, one of the flows is rate-limited on the ingress port
 - In the scheduling configuration, each flow gets its own time slot allocated

Host identities

- Host 1
 - Ethernet port ETH5
 - Switch port RGMII 0
- Host 2
 - Ethernet port ETH3
 - Switch port RGMII 2
- Host 3
 - LS1021
 - Switch port RGMII 4

Demo Preparation – iPerf server

- Host 2: Take note of the IP address given by the LS1021 DHCP server:
- \$ ip addr show dev eth0
- Start listening on the default TCP port 5001:
- **\$** iperf -s

Demo Preparation – iPerf flow from Host 1 to Host 2

 Host 1: Run this command to start a TCP iPerf flow towards Host 2 for 100 seconds:

\$ iperf -c <host-2-ip-address> -i 0.5 -t 100 -f m | tee
/dev/tty | awk '\$NF == "Mbits/sec" {print \$(NF-1); fflush();}'
| feedgnuplot --stream 0.5 --lines --exit --ymin 0 --ymax 1000
--xlabel "Time (1/2 seconds)" --ylabel "Bandwidth (Mbps)" -title "iPerf from Host 1 to Host 2" --xlen 30 --style 0
'linewidth 2 linecolor rgb "green"'

Demo Preparation – iPerf flow from Host 3 to Host 2

 Host 1: Run this command remotely on Host 3 to start a TCP iPerf flow towards Host 2 for 100 seconds:

\$ unbuffer ssh -tt root@172.15.0.1 "iperf -c <host-2-ipaddress> -i 0.5 -t 100 -f m" | tee /dev/tty | awk '\$NF == "Mbits/sec" {print \$(NF-1); fflush();}' | feedgnuplot --stream 0.5 --lines --exit --ymin 0 --ymax 1000 --xlabel "Time (1/2 seconds)" --ylabel "Bandwidth (Mbps)" --title "iPerf from Host 3 to Host 2" --xlen 30 --style 0 'linewidth 2 linecolor rgb "orange"'

- If UDP mode is used, then more relevant statistics can be gathered
 - Jitter = (TRi TRi-1) (TSi TSi-1) = variation of timestamp difference between consecutive packets, at sender vs at receiver
 - -<u>https://tools.ietf.org/html/rfc1889#appendix-A.8</u>
 - Loss rate = iPerf places sequence numbers in each sent UDP datagram, and counts all packets between the "expected" and the "received" sequence number as lost (even in they are just reordered)
 - -Bandwidth no longer depends on the TCP congestion window size
- But these statistics must now be collected at the server side

- Start two iPerf servers on Host 2:
- \$ mkfifo bw_pipe lost_pipe jitter_pipe
- \$ unbuffer iperf3 -s -p 5201 -f m | tee /dev/tty | awk -v host=host1 -f iperf.awk
- \$ unbuffer iperf3 -s -p 5202 -f m | tee /dev/tty | awk -v host=host3 -f iperf.awk
- Necessary files (show and iperf.awk) can be found here:

http://sw-stash.freescale.net/scm/dnind/ls1021atsn-demo, branch
embedded-world-show

- You can also view the statistics graphically with Gnuplot on Host 2:
- \$./show bw_pipe 0 1000 "Bandwidth (Mbps)" "UDP throughput for iPerf flows towards Host 2"
- \$./show lost_pipe 0 100 "Percentage" "UDP Packet loss or reordering"
- \$./show jitter_pipe 0 1 "Jitter (ms)" "Jitter for UDP iPerf
 flows"

- Host 1:
- **\$** iperf3 -c <host-2-ip-address> -p 5201 -u -b 0 -t 100
- Host 3:
- **\$** ssh -tt <u>root@172.15.0.1</u> "iperf3 -c <host-2-ip-address> -p 5202 -u -b 0 -t 100"

Standard configuration – Default Built-in config

- Host 3 (LS1021): prepare the SJA1105 switch with a sane, default built-in config:
- \$ sjal105-tool config default ls1021atsn
- \$ sjal105-tool config upload
- The built-in standard configuration is the same as the one supplied in the rootfs:
- \$ sjal105-tool config save standard.xml
- \$ sjal105-tool config load /etc/sjal105/standard-config.xml
- \$ sjal105-tool config save supplied-standard.xml
- \$ diff -s standard.xml supplied-standard.xml
- # Files are identical

Standard configuration – Ingress Policer

- The Policer inside SJA1105 is implemented as a Token Bucket Shaper
 - Bucket max size (also known as burst size) is called SMAX (maximum is 0xFFFF)
 - Bucket refill speed is *RATE* bytes per second (up to a maximum of 64000)
 - Each ingress packet removes from the bucket a number of tokens equal to its length in bytes
- The Policing table has 45 entries
 - One for each Ingress Port x VLAN PRIO (5 x 8)
 - One for Broadcast Traffic coming from each Ingress Port (5)
- Can also police based on maximum frame size
- L2 Ingress Policer is "deactivated"
 - This means that RATE and SMAX are set to maximum (0xFFFF, 0xFA00) for all entries

Standard configuration – Ingress Policer

[root@ls1021atsn ~] # sja1105-tool conf show 12-pol

L2 Policing Table: 40 entries

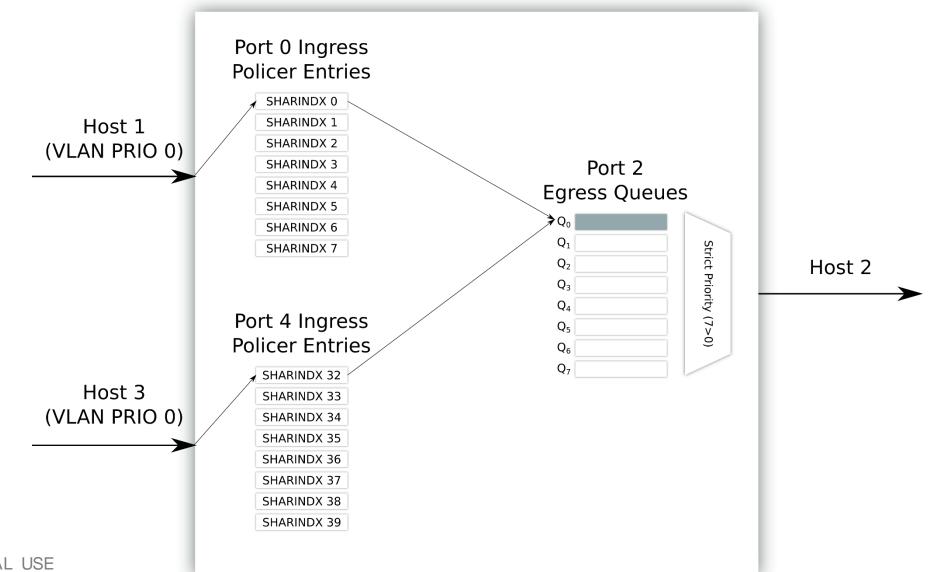
Entry 0:		Entry 1:		Entry 2:		Entry 3:		Entry 4:		
SHARINDX	0 x 0	SHARINDX	0x1	SHARINDX	0x2	SHARINDX	0x3	SHARINDX	0 x 4	
SMAX	OxFFFF									
RATE	0xFA00									
Entry 5:		Entry 6:		Entry 7:		Entry 8:		Entry 9:		
SHARINDX	0x5	SHARINDX	0x6	SHARINDX	0x7	SHARINDX	0x8	SHARINDX	0x9	
SMAX	OxFFFF									
RATE	0xfA00									
Entry 10:		Entry 11:		Entry 12:		Entry 13:		Entry 14:		
SHARINDX	0xA	SHARINDX	0xB	SHARINDX	0xC	SHARINDX	OxD	SHARINDX	OxE	
SMAX	OxFFFF									
RATE	0xFA00									

. . . .

18 EXTERNAL USE

Standard configuration – Native VLAN assignment

- Configurable through the MAC Configuration Table (5 entries, one per port)
- Native VLAN tags are added only if the switch received the packets as untagged
 - This case applies to the demo
- VLAN priorities are taken into consideration for the L2 Forwarding stage
- By default all ingress ports get VLAN priority 0 (best-effort)
- Default behavior is to remove VLAN tags from packets on egress


Standard configuration – Native VLAN assignment

[root@ls1021atsn ~] # sja1105-tool conf show mac-configuration-table
MAC Configuration Table: 5 entries

Entry 0:		Entry 1:
VLANPRIO	0x0	VLANPRIO 0x0
VLANID	0x0	VLANID 0x0
Entry 2:		Entry 3:
VLANPRIO	0x0	VLANPRIO 0x0
VLANID	0x0	VLANID 0x0
Entry 4:		
VLANPRIO	0x0	
VLANID	0x0	

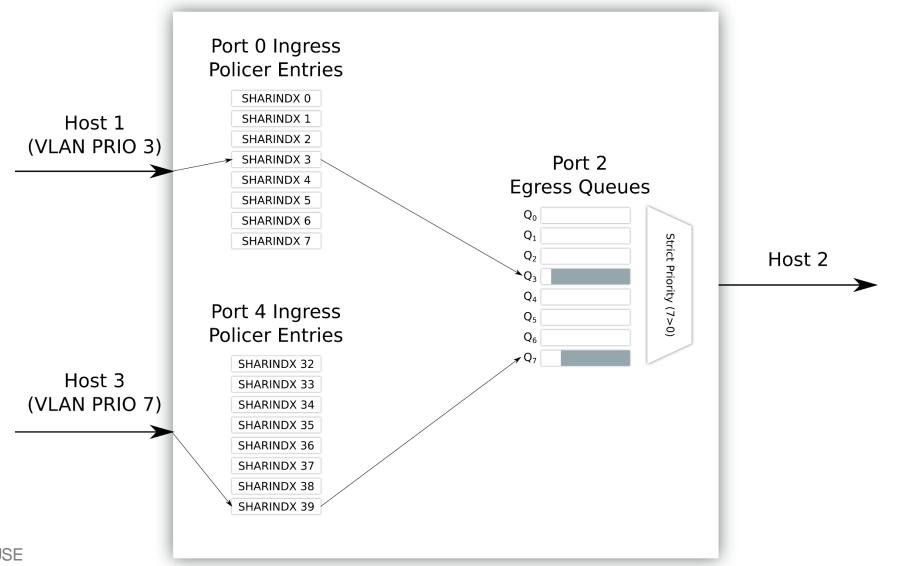
Standard configuration – Queuing Diagram

Standard configuration – Conclusions

- Individually, Host 3 gets around 600Mbps and Host 1 gets around 950Mbps
- Ran at the same time, Host 3 and Host 1 bandwidths oscillate
 - First Host 3 gets very low bandwidth (between 1 and 100Mbps)
 - After about 30s, the TCP congestion control algorithms reach to a steadier state
 - Bandwidth allocation is suboptimal (sum of the bandwidths is much lower than 1000Mbps)

Standard Prioritized configuration

- Assign native VLAN priority 3 to Host 1 and priority 7 to Host 3
 - This is done on a per-ingress port basis (Host 1 -> Port 0, Host 3 -> Port 4)
- On the egress port 2, if Host 3's queue is not empty, the switch will always prefer to send packets from that instead of Host 1's queue
- \$ sjal105-tool conf default ls1021atsn
- \$ sjal105-tool conf mod mac-config[0] vlanprio 3
- \$ sjal105-tool conf mod mac-config[4] vlanprio 7
- \$ sjal105-tool conf save prioritizing.xml
- \$ sjall05-tool conf upload


Standard Prioritized configuration – Native VLAN assignments

[root@ls1021atsn ~] # sjal105-tool conf show mac-configuration-table
MAC Configuration Table: 5 entries

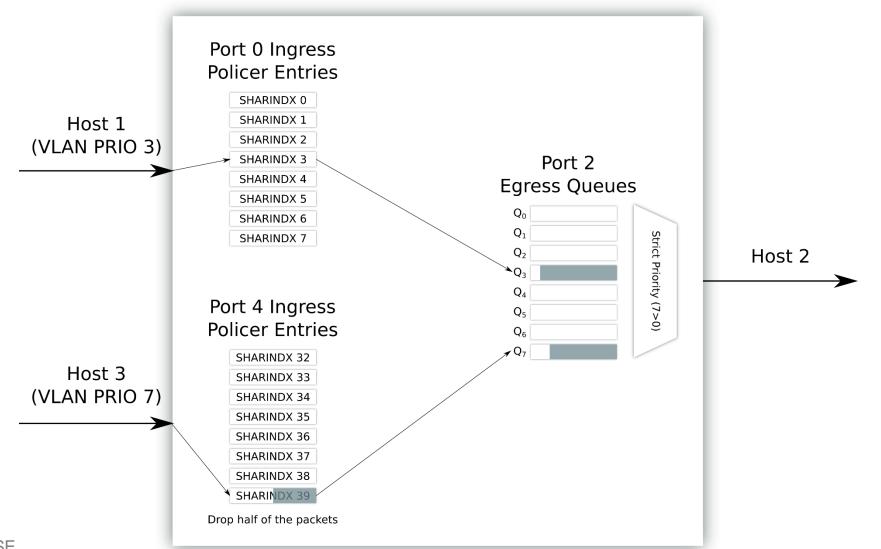
Entry 0:		Entry 1:
VLANPRIO	0x3	VLANPRIO 0x0
VLANID	0x0	VLANID 0x0
Entry 2:		Entry 3:
VLANPRIO	0x0	VLANPRIO 0x0
VLANID	0x0	VLANID 0x0
Entry 4:		
VLANPRIO	0x7	
VLANID	0x0	

Standard Prioritized configuration – Queuing Diagram

25 EXTERNAL USE

Standard Prioritized configuration - Conclusions

- Host 3 has higher priority, it always gets its 600Mbps
- Host 1 can only get the remaining 400Mbps

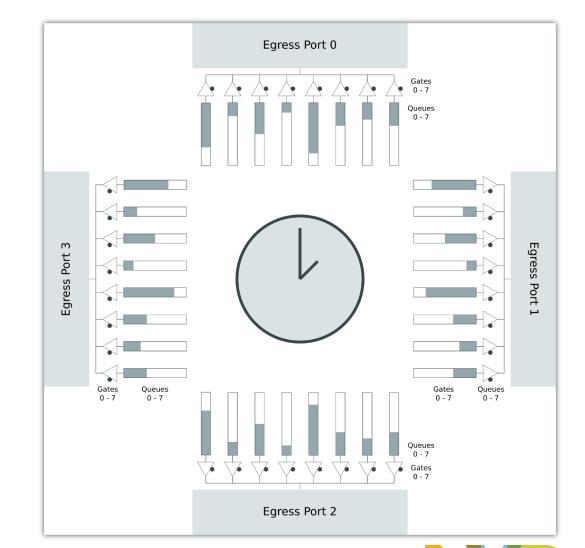


Policing configuration

- We can apply rate limiting on Host 3 so Host 1 can get more than 400Mbps
 Set the *RATE* value for Host 3 to 32000 (half of the maximum value)
- \$ sjal105-tool config load prioritizing.xml
- \$ sjal105-tool config mod l2-policing-table[39] rate 32000
- \$ sjal105-tool config save policing.xml
- \$ sjal105-tool config upload

Policing configuration – Queuing Diagram

28 EXTERNAL USE


Policing configuration - Conclusions

- Through a combination of prioritization and policing, we can obtain the desired bandwidth allocation for both Host 1 and Host 3 (500-500)
- This is done by dropping half of the packets from Host 3
 - This may not always be desirable

Scheduling configuration: Theory

- The Time-Aware Scheduler works by following the guidelines in 802.1Qbv
 - The 5 Egress Ports each have 8 Gates, which can be open or closed
 - Each Gate has 1 Queue associated with it
 - Whenever a Gate is open, packets from that Queue can be sent out the wire
 - An internal clock generates ticks each 200ns
 - At each tick, a new time slot can be created, where some Gates can be opened and some can be closed
- Can be configured to work effectively like TDM (Time Division Multiplexing) for Ethernet

Scheduling configuration: Theory

- The user defines how many clock ticks each time slot takes
 - The individual time slots are called *subschedules*
- Once the Time-Aware Scheduler goes through each time slot in a round-robin fashion, it starts over again periodically

Faress Queues

- A complete period of *subschedules* is called a *schedule*
- On Egress Port 2 (toward Host 2), create a subschedule for VLAN PRIO 7 and one for PRIO 3
 - Host 1 is completely isolated from Host 3
 - Minimal interference, best utilization of bandwidth

Egress Scheduling at Port 2 (destports = 0b00100)

for Traffic Class 0		3 open = 0b1111(Gate = esmedia	(1		111)		Gate 7 o dia = 0b		
Subschedule for Host 1	Subschedule for Host 3	Subschedule for Host 1				Subschedule for Host 3				
				1	I I		1	I	I	I
					· · ·					
	>	= 8000)	ot (delta =	ms time slo	1.6	><	5000)	elta = 5	e slot (de	s tim
	→ riodic after 2.6m	hedule is ne	50						TERN	

Scheduling configuration: Theory

- The Schedule Table contains the definitions of all the subschedules
 - What egress ports is the subschedule active on
 - Which gates (egress queues for traffic classes) should be open and which should close
 - The duration of the subschedule, in 200ns increments
- The Schedule Table does NOT define how the subschedules are linked together
- SJA1105 allows for a total of 8 simultaneous schedules (for this demo we shall only use 1)
- Each schedule has a starting point and an ending point, defined as indices to subschedules from the Schedule Table
 - The starting point is defined in the Schedule Entry Points table
 - The ending point is defined in the Schedule Parameters table
- We want a single schedule with 2 subschedules
 - Create the 2 subschedules in schedule-table[0] and schedule-table[1]
 - Set the entry point to schedule-table[0] in the schedule-entry-points-table
 - Set the ending point to schedule-table[1] in the schedule-parameters-table

 Schedule table \$ sjal105-tool conf load prioritizing.xml Create two subschedules # \$ sja1105-tool conf mod schedule-table entry-count 2 # Set both subschedules to be active on egress Port 2 (towards Host 2) for i in 0 1; do sja1105-tool conf mod schedule-table[\$i] destports 0b00100; done S for i in 0 1; do sjall05-tool conf mod schedule-table[\$i] resmedia en 1; done Configure first subschedule to keep only gate 7 open (coming from Host 3) # \$ sja1105-tool conf mod schedule-table[0] resmedia 0b01111111 Configure first subschedule to keep only gate 3 open (coming from Host 1) # \$ sja1105-tool conf mod schedule-table[1] resmedia 0b11110111 # Allocate a 5000*200ns = 1ms time slot for first subschedule (Host 3) \$ sja1105-tool conf mod schedule-table[0] delta 5000 # Allocate a 8000*200ns = 1.6ms time slot for second subschedule (Host 1) \$ sjal105-tool conf mod schedule-table[1] delta 8000

• Schedule table – check if correct

\$ [root@ls1021atsn ~] # sja1105-tool conf show schedule-table

Schedule Table: 2 entries

Entry 0:		Entry 1:		
WINSTINDEX	0x0	WINSTINDEX	0x0	
WINEND	0x0	WINEND	0x0	
WINST	0x0	WINST	0x0	
DESTPORTS	0x4	DESTPORTS	0x4	
SETVALID	0x0	SETVALID	0x0	
TXEN	0x0	TXEN	0x0	
RESMEDIA_EN	0x1	RESMEDIA_EN	0x1	
RESMEDIA	0x7F	RESMEDIA	0xF7	
VLINDEX	0x0	VLINDEX	0x0	
DELTA	0x1388	DELTA	0x1F40	

- Schedule Entry Points table
- # Create an entry in the Schedule Entry Points table
- \$ sjal105-tool conf mod schedule-entry-points-table entrycount 1
- # The default configuration will work:
- # delta="0x0" address="0x0" => Start subschedule 0 at time 0

- Schedule Entry Points table check if correct
 [root@ls1021atsn ~] # sja1105-tool conf show schedule-entry points-table
 Schedule Entry Points Table: 1 entries
- || Entry 0:
 ||

 || SUBSCHINDX 0x0
 ||

 || DELTA
 0x0
 ||

 || ADDRESS
 0x0
 ||

Schedule Parameters table

- \$ sja1105-tool conf mod schedule-parameters-table entry-count 1
- \$ sjal105-tool conf mod schedule-parameters-table[0] subscheind "[1
 1 1 1 1 1 1]"
- # The Schedule Parameters table has a single entry.
- # For each schedule i in (0..7), subscheind[i] is the last
- # subschedule of that schedule. To be exact, it is an index
- # of that subschedule in the Schedule table.
- # Here we only care about the first "1" since only that refers
- # to our schedule (0). All the other schedules must be configured
- # such that they start and end at subschedule 1 (i.e. are disabled).

 Schedule Parameters table - check if correct
 [root@ls1021atsn ~] # sja1105-tool conf show scheduleparameters-table

Schedule Parameters Table: 1 entries

|| Entry 0:

|| SUBSCHEIND [0x1 0x1 0x1 0x1 0x1 0x1 0x1 0x1 0x1]

Schedule Entry Points Parameters table

\$ sja1105-tool conf mod schedule-entry-points-parameters-table entry-count 1

- # Set the scheduling engine to run in standalone mode
- # (no clock correction/synchronization)
- # Other options include SAE AS6802 or internal PTP clock

\$ sja1105-tool conf mod schedule-entry-points-parameterstable[0] clksrc 1

- # Wrap everything up
- \$ sjal105-tool config save scheduling.xml
- \$ sja1105-tool config upload

Schedule Entry Points Parameters table - check if correct
 [root@ls1021atsn ~] # sja1105-tool conf show schedule-entry points-parameters-table

Schedule Entry Points Parameters Table: 1 entries

- # The Schedule Entry Points Parameters table contains
- # only one entry, which is global for all schedules.

Scheduling configuration: Conclusions

- Regardless of being run separately or simultaneously, Host 1 gets around 560Mbps and Host 3 gets around 360Mbps
 - The bandwidth ratio is the same as the ratio between time slot durations (delta 1ms and 1.6ms):
 - 360/(360+560) = 5000/(5000+8000) ~= 0.4
- The Time Aware Scheduler of the SJA1105 allows for finer-grained control over bandwidth allocation

UDP iPerf3 notes

- Client connections can also be started from <u>Windows</u> (Host 1)
- Only the iPerf server (Host 2) needs to run GNU/Linux for Gnuplot
- Need to run 2 separate iPerf servers (port 5201 and 5202) on Host 2
- Reasons for packet loss reported at the iPerf server:
 - Dropped by the Ingress Policer of SJA1105
 - sja1105-tool status port 4 counter **N_POLERR** seen in policing-config.xml
 - Tail drop at egress queue towards Host 2
 - sjall05-tool status port 2 counter N_QFULL seen in {standard, scheduling}-config.xml
 - Dropped at protocol level by iPerf server
 - Out of order packets: src/iperf udp.c: iperf udp recv()
 - Server receive timeouts? Seen in scheduling-config.xml

UDP iPerf3 notes

- In scheduling-config.xml, packets coming from Host 3 can arrive:
 - Early: if they were sent in the time slot where Gate 7 was open on SJA1105
 - Late: if they were sent outside of that time slot
- iPerf3 server experiences timeouts (?) and declares late packets as lost
 - Only experimental conclusion so far
- For the original time slot durations (1ms and 1.6ms), running both Host 1 and Host 3 at the same time only causes more congestion (which leads to *more timeouts*)
 - Both iPerf servers (5201 and 5202) experience high packet loss
 - Egress scheduler doesn't interrupt current sent frame when time slot expires
 - 1ms is not enough guard time to completely separate the flows

UDP iPerf3 notes

- If time slots are increased 10x (10ms, 16ms), this problem disappears
 - \$ sja1105-tool config modify schedule-table[0] delta 50000
 - \$ sja1105-tool config modify schedule-table[1] delta 80000
 - \$ sjal105-tool config upload
- Tradeoff is that jitter increases
- This is a non-problem if traffic is always sent in-band
 - Synchronization needed between egress qdisc in Linux TC and the SJA1105 switch
 - LS1021 kernel must always know when its gate is open on the TSN switch, and only send out packets in that interval

Final conclusion

- After running this guide, inside the home directory /home/root there will be 4 XML files:
 - standard.xml
 - prioritizing.xml
 - policing.xml
 - scheduling.xml
- The walkthrough must be followed only once. Afterwards, a specific config can be loaded like this:
- \$ sjal105-tool config load standard.xml
- \$ sjal105-tool config upload

SECURE CONNECTIONS FOR A SMARTER WORLD