USER GUIDE

LINUX DEVICE DRIVER
FOR
SC161S750
(SPI-UART BRIDGE)

User Guide NXP Semiconductors

TABLE OF CONTENTS
1. Overview 3

2. Installation 4
2.1 Source code download

2.2 Kernel source code modification

2.3 Adding the device node

2.4 Adding the driver to the LPP

2.5 Installing the driver 8

0 ~N D D

2.6 Loading the module 8
3. Hardware Connection 10
4. Understanding the Driver 11
4.1 Opening the driver 11
4.2 Setting baud rate 12
4.3 Setting hardware flow control 12
4.4 Setting word frame 12
4.5 Sending/Receiving data 14
4.6 Writing/Reading configuration registers 16
5. Sample Application Program 17
5.1 Installation 17
5.2 Hardware Connections 17
5.3 Description 18
6. Support 21

Page | 2

User Guide NXP Semiconductors

1. Overview

The SC161S750 is a bridge that provides I12C/8Rérface to a single-channel high
performance UART. It acts in slave mode only anad affer data rates up to SMbps. A driver is
written for the Linux platform that can communicatigh the device and is specifically coded for
LPC3250 board. But it can be modified to suppadneotdevelopment boards and is explained in
section 6.

This driver supports only the SPI interfacéii® UART. There is a separate driver for the 12C
interface. It uses the inbuilt SPI driver framewdwk linux 2.6 kernel running on LPC3250. It is
highly recommended to go through this manual betfisirg the driver.

Before accessing the driver, Linux OS hasdgtepared for LPC3250 using Linux Target
Image Builder (LTIB). LTIB is a tool that integratéhe build and configuration of the multiple
software packages and components required for iaalypmbedded Linux distribution. LTIB
greatly reduces the complexity of gathering, camiigg, and building all of these required
components. The source code is maintainedvatv.bitshrine.organd can be downloaded for
free.

The driver package consists of following folderside the ‘Driver’.

i) scl6is750_spi-1.1.tar.gz where driver source cediecated
i) scl6is750_spi which contains the spec file requioadstall the driver.

The files/folders inside the ‘Application’ are:
i) spitest-1.1.tar.gz contains a sample user-spadiaiimn program to test the driver.

i) spitest which contains the spec file required ttat the application program.
i) tx.txt/rx.txt are the text files to send/receiveadasing the driver.

Page | 3

User Guide NXP Semiconductors

2. Installation

In order to use this driver there is a needashe modification in the Linux kernel. But before
that we need to get the Linux operating systeminghon LPC3250. Following are the quick
steps that will download the Linux source code lrndg about the required modification.

2.1 Sour ce code download
The source code can be downloaded finbim//www.bitshrine.org/ltib/resources-download

It's better to use CVS to check out the latest baoid the platform by running the following
line:

$ cvs -z3 -d:pserver:anonymous@cvs.savannah.nomgmsources/Itib co -P ltib
This will create a folder called ‘Itib’ onehpresent working directory. Then move to the lItib
directory and run the following command:
$ cd ltib
Itib$./Itib

During the linux OS building, choose the platfioand then LTIB configuration box will
appear. Here, select the following option:

[*] leave the kernel source after building
The detailed OS installation instructions ceanfdund in 'phyCORE-LPC3250 Quick start for

Linux' that can downloaded frohttp://www.phytec.com/products/sbc/ARM-XScale/phyRE
ARM9-LPC3250.html

2.2 Kernel sour ce code modification

After LTIB is installed for LPC3250, the bdanitialization and configuration file has to be
changed. We need to create and add a new SPI davibe system that is used by the device
driver. For this, following is the code that has lbe modified inphy3250.clocated at
rpm/BUILD/linux/arch/arm/mach-Ipc3250 inside thilfolder.

Page | 4

User Guide NXP Semiconductors

static int __init phy3250_spi_board_register(void)

{
#if defined(CONFIG_SPI_SPIDEV) || defined(CONFIG] SPIDEV_MODULE)
static struct spi_board_info info[] ={

{
.modalias = "spideVv",
.max_speed_hz = 5000000,
.bus_num =0,
.chip_select =0,
.controller_data = &spiO_chip_info,
3

h

#elif defined(CONFIG_EEPROM_AT25) || defined(CONHEEPROM_AT25 MODULE)
static struct spi_eeprom eeprom = {
.name = "at25256a",
.byte_len = 0x8000,
.page_size = 64,
flags = EE_ADDR?2,
%

static struct spi_board_info info[] = {
{

.modalias = "at25",
.max_speed_hz = 5000000,
.bus_num =0,
.chip_select = 0,
.platform_data = &eeprom,
.controller_data = &spi0_chip_info,

%
#else
static struct spi_board_info info[] = {
{
.modalias = "my_spi_driverl1"
.max_speed_hz = 1000000,
.bus_num =0,
.chip_select = 0,
.controller_data = &spi0_ghiinfo,

h
#endi
return spi_register_board_info(info, ARRAY _SIZE(j)1
}

Page | 5

User Guide NXP Semiconductors

arch_initcall(phy3250_spi_board_register);
Note: Locate the phy3250_spi_board_register codeadd my_spi_driverl as shown above.

Once a new SPI device is added to the code, kdrnel has to be reconfigured and
recompiled.

Itib$./Itib --configure

The LTIB configuration dialog will appear. 8et the option:
[*] always rebuild the kernel
[*] configure the kernel

Then save & exit.

Now the ‘Linux Kernel Configuration’ dialogueill appear. Go toDevice Driver->Misc
devices-=>EEPROM Support and make sure that ‘SPI EEPROM from most vendarsot set.
See the figure below.

File Edit View Te
.config - Linuw g 6.34 Configuration

EEPROM support
Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M>
modularizes features. Press <Esce<Esc» to exit, <7» for Help, </> for Search. Legend: [*] built-in [] excluded <M= module < > module capable

< > 12C EEPROMs from most vendors

<

< > 0ld 12C EEPROM reader

< > Maxim MAX6874/5 power supply supervisor
< > EEPROM 93CX6 support

EAIEE < Exit > < Help >

Figure 1. Linux kernel configuration

Page | 6

User Guide NXP Semiconductors

Next we need to make sure tiADNFIG_SPI_SPIDE\Ss also not set. If both of them are
unselected then, my_spi_driverl will be added aSRhdevice by the board initialization code.
Now go to Device Driver->SPI support and make sure that ‘User mode SPI device driver
support’ is not set. See the figure below.

File Edit view Terminal Help
.config - Linux Kernel v2.6.34 Configuration

SPI support
Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M>
modularizes features. Press <Esc»<Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded <M= module < > module capable

== SPI support
[*] Debug support for SPI drivers
** SPI Master Controller Drivers *=*
< > Utilities for Bitbanging SPI masters
<> CGPID-based bitbanging SPI Master
<¥> ARM AMBA PLE22 SSP controller (EXPERIMENTAL)
<> ¥ilinx SPI controller common module
<> [Designware SPI centroller core support
==* SPT Protocol Masters ===
i< » User mode SPI device driver support
<> Infineon TLEG2X® (for power switching)

<Exits> < Help>

Figure 2. Linux kernel configuration

2.3 Adding a device node

A static device node is created for the devddver by adding the major/minor number to the
file ltib/bin/device_table.txt. The driver takes GL%s the major number and 0 as the minor
number. But it can be changed to any different @gdrovided similar changes are also made in
sc16is750_spi.h file located in sc16is750_spi-argr folder.

Following line has to be added under ‘Norsyatem devices heading’ in device_table.txt:
/dev/sc750spi ¢ 755 0 O 156 O -- -

The new entry will create the node once tbeiaks are force rebuilt by executing the
following command on the terminal.

Page | 7

User Guide NXP Semiconductors

[tib$./Itib -p dev -f
2.4 Adding thedriver to thelocal package pool

The driver source code has to be addedeadoital package pool of LTIB before it can be
installed. When LTIB is installed on the systemciteates a local package directory at
opt/Itib/pkgs. The sc16is750_spi-1.1.tar.gz haBganoved to this directory. To do this, execute
the following command:
$ sudo mv /<path to the location of the tar filecI6is720_spi-1.1.tar.gz /opt/Itib/pkgs
25 Ingtalling the dver

The driver is installed using the spec filatticontains the package name, version, steps to

build, install and clean the package. This specifillocated in sc16is750_spi folder which must
be copied to Itib/dist/Ifs-5.1 folder by executitige following command:
$ mv /<path to the location of spec folder>/sc1&87spi /..../Itib/dist/Ifs-5.1

Then, move to the ltib directory to build aheploy the driver into the Linux root file system.

Itib$ /.Itib -p sc16is750_spi.spec -m prep
Itib$ /.Itib -p sc16is750_spi.spec

2.6 Loading the module
Note:Please make the hardware connections before lo#fuiengnodule. See section 3.

After the successful completion of above stéps driver module spi_bridge.ko can be found
at /ltib/rootfs/lib/modules/<kernel_version>/miskattory. Now the board has to be booted with
the kernel ulmage and the rootfs directory hasetaéployed either using NFS or an SD card.
Information on how to deploy boot-loader, Linux kerand the root file system can be found at
www.lpclinux.com and www.phytec.com Once Linux is running on the board, you will see
something in the terminal output:

PHY3250>

Change the directory to the location wheeedhver is present and use insmod to install the

loadable kernel module.
Page | 8

User Guide NXP Semiconductors

PHY3250> cd lib/modules/<kernel-version>/misc
Before executing insmod, it is always safe to apyalsdware reset to sc16is750 device.

PHY~misc> insmod spi_bridge.ko

If the module is successfully loaded, the followlimgs are shown on the terminal.

Dev num allocation...done

Device registration...done
Interrupt line acquired successfully
PHY3250>

Page | 9

User Guide NXP Semiconductors

3. Hardwar e Connection

The LPC3250 has a SPI bus which is conndotéue SPI bus of sc16is750. Apart from this,
the driver sets GPI-4 of LPC3250 as the edge-fallirgger interrupt input pin. This pin is used
to receive interrupt from sc16is750 and so the IRE)-line from sc16is750 should be connected

to GPI-4.

Following are the pin connections between BP%D extension board and sc16is750.

DESCRIPTION SC161S750 (JP6) | LPC3250 (EXTENSION BOARD)
IRQ Pin 7 17D (GPI-4)
CS Pin 2 17B (SSELO)
MISO Pin 3 17A (MISOO)
MOSI Pin 4 17E (MOSIO0)
SCLK Pin 5 16F (SCKO)
GND Pin 6 3C (GND) OR ANY OTHER GND

The UART of sc16is750 can be connected to atimer development board or to serial
communication software like HyperTerminal (for Wavds) and minicom (for Linux). Then it
can be used to send and receive the data. Fordeseng, UART of sc16is750 was serially
connected to the HyperTerminal.

Page | 10

User Guide NXP Semiconductors

4. Understanding the Driver

The sc16is750 is a board from NXP Semicoraigdhat provides both I12C and SPI interface
to a high performance UART. The device driver istien specifically for LPC3250 board to
interact with sc16is750. It is a Linux driver artdsupports only SPI bus interface to UART.
There is a separate driver for the 12C to UART riatee. The driver utilizes inbuilt SPI
framework to send and receive the data. It custesnize configuration registers of sc16is750 to
obtain the best performance. The SPI bus of LPC3856onnected to the SPI bus of the
sc16is750 board for data transfer as explain sghction later. The driver can be accessed from
user-space by writing an application program a s$arop which is provided in the package.
Before delving into how the driver is accessed,dheer code should be read to understand its
working. Here is a brief explanation.

The driver uses two buffers of 2KB (2048 etders) each for transmission and reception of
data. So the data to be sent to sc16is750 via @Pshould not exceed more than 2KB characters
at a time. Else the size is automatically trunc&teKB by the driver. Similarly, all the received
data is stored in 2KB buffer and if the size exsgdte data is overwritten on the buffer thus
loosing the previous stored data. It is importdnat tthe received data that is kept stored in a
buffer by the driver is first read out by the uapplication before it exceeds the capacity.

After executing insmod, the user must write application program and perform the
following settings in sequence before trying todereceive the dat&lease do not attempt to
change any configuration register valublse the ioctl() command to set the baud rate, word
frame (parity, word length, no. of stop bits), haede flow control and to send/receive data.

Open the device file

Set the baud rate

Set Hardware Flow control
Set the word frame

Start sending/receiving

arwdE

4.1 Opening thedriver
The driver can be opened as follows:

int file;
file = open (“dev/sc750spi”, O_RDWR);

Page | 11

User Guide NXP Semiconductors

4.2 Setting baud rate

By default the baud rate for the UART istge1 15200 bps. But it can be configured to other
value. To set a different baud rate use the folhgndiommand:

unsigned long div_value;
div_value = op_freq/ (baudrate * 16);
ioctl(file, SET_BAUD, div_value);

Note:
SET_BAUD value is 0x0508 (see sc16is750_spi.h ensll6is750_spi-1.1 folder)
op_freq is the operating frequency of the sc16is¥bieh is 14745600.
baudrate is the baud rate that has be set for ARTUeg. 115200, 9600 etc)

4.3 Setting hardwar e flow control

By default, there is no hardware flow coh&abled. In order to enable it use the following
command:

ioctl(file, HW_CONTROL, 0);

Note:
The third argument value does not matter. It casdie¢o '0'".
HW_CONTROL value is 0x0551 (see sc16is750_spi.ldescl6is750 spi-1.1 folder)

The hardware flow control can be disabletbisws:
ioctl(file, NO_HW_CONTROL, 0);
Note:
The third argument value does not matter. It casdie¢o '0'".
HW_CONTROL value is 0x0550 (see sc16is750_spi.ldénscl6is750 spi-1.1 folder)
4.4 Setting word frame
The sc16is750 also provides the option totlsetword frame. The word length, stop bits

length and the parity bit can be set by LCR regisfesc16is750. Use the following ioctl()

commands to configure them.
Page | 12

User Guide NXP Semiconductors

Parity set commands:

ioctl(file, NO_PARITY, 0); /[To set no parity
ioctl(file, ODD_PARITY, 0); /[To set odd parity
ioctl(file, EVEN_PARITY, 0); /[To set even parit

ioctl(file, FORCED_ONE_PARITY, 0); //To set foraete parity
ioctl (file, FORCED_ZERO_PARITY, 0); //To set Btzero parity

Note:
The third argument value does not matter. It casdieo '0'".
NO_PARITY value is 0x0750 (see sc16is750_spi.hdmsic16is750_spi-1.1 folder)
ODD_PARITY value is 0x0751.
EVEN_PARITY value is 0x0752.
FORCED_ONE_PARITY value is 0x0753.
FORCED_ZERO_PARITY value is 0x0754.

Word Length and Stop bit set commands:

ioctl (file, WL5_1SB, 0); //To set Word Lengtari no. of Stop Bits 1
ioctl (file, WL5_1 5SB, 0); /ITo set Word Lengtand no. of Stop Bits 1.5
ioctl (file, WL6_1SB, 0); /ITo set Word Lengtarl no. of Stop Bits 1
ioctl (file, WL6_2SB, 0); //To set Word Lengtar@l no. of Stop Bits 2
ioctl (file, WL7_1SB, 0); /ITo set Word Lengtand no. of Stop Bits 1
ioctl (file, WL7_2SB, 0); /ITo set Word Lengtandl no. of Stop Bits 2
ioctl (file, WL8_1SB, 0); //To set Word Lengtarl no. of Stop Bits 1
ioctl (file, WL8_2SB, 0); //To set Word Lengtar no. of Stop Bits 2
Note:

The third argument value does not matter. It casdieo '0'".

WL5_1SB value is 0x0850 (see sc16is750_spi.h insed®is750 spi-1.1 folder)
WL5_1 5SB value is 0x0851.

WL6_1SB value is 0x0852.

WL6_2SB value is 0x0853.

WL7_1SB value is 0x0854.

WL7_2SB value is 0x0855.

WL8_1SB value is 0x0856.

WL8_2SB value is 0x0857.

Page | 13

User Guide

NXP Semiconductors

4.5 Sending/Receiving data

Below is the pseudo code to explain how thea dammunication should be done using the

driver.

Transmission

1. Give the ioctl() command to tell the driver tha ttata has to be send via THR (Transmit
Holding Register).
ioctl(file, WRITE_THR, 0);
Note:
The third argument value does not matter. It casdieo '0'".
WRITE_THR value is 0x0507 (see sc16is750_spi.ldmsic16is750_ spi-1.1 folder)
2. Break the data into portion of 2048 characters.
3. Send each portion of data one after another usiitg()ycommand as follows:
write(file, buffer, sizeof(buffer));
Here buffer is the pointer to the location of timstfcharacter to be sent and size of the
buffer should not exceed 2048 characters. Alsditsebyte of the buffer should be set to
the register value. So if we need to send 5 charmdb the THR, we append THR
address (0x00) at the start of the buffer and tedeh of 6 characters is send.
E.qg.ioctl(file, buffer, 6) ;where buffer[0] = RHR address (0x00) and thé¢ Bedata bytes
follow.
4. Give a small delay between two write() commandshsb the driver has enough time to
complete first transmission.
Reception

The driver constantly saves the data in adoudf size 2048 KB as it is received. In case there
is an over flow then the driver looses the previdat and restarts saving the new incoming data
in that buffer. So care must be taken when datemnt to sc16is750 from the UART end. The
user can ask for the size of the received datadyng read() after this ioctl() command:

Page | 14

User Guide NXP Semiconductors

unsigned char ch[2];
ioctl(file, READ_RX_SIZE, 0);
read(file, ch, 0)

Note:
The third argument value does not matter. It casdid¢o 'O’
READ_RX_SIZE value is 0x0506 (see sc16is750_spside sc16is750_spi-1.1 folder)

The driver will send the received buffer satéch' location. So ch[0] will have the LSB and
ch[1] will have the USB. In order to retrieved thige in decimal format:

int size;
size = *(ch+1); //IMSB
size = (size*100) + (*ch); /[size = MSB*100 1SB

There are two ways to read the data received éytiver. Either the whole saved data can be
read out at once or just a part of it.

char *ch;

ioctl(file, READ_RHR, 0);
read(file, ch, count);

If count = 0, the whole data is read out of theelri
If count <> 0, data of size count is read out & dhiver.

To make it more clear, suppose the curreetaizhe received data is 1200 bytes (characters)
stored in a buffer of size 2KByte. If the read(jrooand is issued with the third argument set to
‘0’ then it will read out all 1200 bytes and statrat 'ch' pointer location. Now READ_RX_SIZE
issued with ioctl() will return 0. If the read() mmnand is issued with the third argument set to
‘200’ then it will read out only 200 characters astbre it at 'ch’ pointer location. Now
READ_RX_SIZE issued with ioctl() will return siz€Q0. (1200-200)

The following sample code will do the reading iohauink of 200 bytes:

Page | 15

User Guide NXP Semiconductors

char *ch = malloc(sizeof(char) * 200);
unsigned int size, count;

ioctl(file, READ_RX_SIZE, 0);

read(file, ch, 0);

size = *(ch+1); //IMSB

Size = (size*100) + (*ch); //size = MSB*100 + LSB

while(size > 0)

{
ioctl(file, READ_RHR, 0);
if(size> 200)
{
read(file,ch , 200);
size = size — 200;
}
else
{
read(file, ch, 0);
size = 0;
}
printf(“%s”, ch);
/[The delay will ensure that the previous readampleted before issue the next one.
delay(100);
}

4.6 Writing/Reading configuration registers
Any of the configuration registers of sc16is750wddaot be modifiedThe driver takes care

of the configuration in order to optimize the outdtiany of the register value is changed, it may
cause kernel panic.

Page | 16

User Guide NXP Semiconductors

5. Sample Application Program

The testing of the driver is done using thpliaption program that comes with the package.
To run the program, go through the part of installfaand hardware connections explained in
this section. This section also explains how a gser create its own application program and
what all care must be taken.

5.1 Installation

The application program has to be added tdadte package pool first and then it should be
installed using its spec file.

Adding the application program to LPP:

$ sudo mv /<path to the location of the tar filepitest-1.1.tar.gz /opt/Itib/pkgs
Adding the spec file to the spec directory:

$ mv /<path to the location of spec folder>/spitest/Itib/dist/Ifs-5.1

Then, move to the Itib directory to build adéeploy the application program into the linux
root file system.

Itib$ /.Itib -p spitest.spec -m prep
Itib$ /.Itib -p spitest.spec

There is rx.txt and tx.txt file that has to bepied to the ltib/rootfs/lib/modules/<kernel
version>/misc/ folder.

sudo mv /path to the location of rx.txt file/rx Axt/Itib/rootfs/lib/modules/<kernel version>/misc
sudo mv /path to the location of tx.txt file/rxtxt/Itib/rootfs/lib/modules/<kernel version>/misc

5.2 Hardwar e Connection

Hardware connection is the same as explamedction 3. It is important to serially connect
the UART of sc16is750 to the other system thatHhgserTerminal or minicom running on it.

Page | 17

User Guide NXP Semiconductors

5.3 Description

The application program is meant to guideser wn how to access a driver from user-space.
It uses the same methods to access the driverpdairged in section 4. The program provides a
menu that helps the user to do the following openat

Set Baud Rate

Set Hardware Flow Control (Auto CTS/RTS)
Set Word frame

Read Register

Write Register

Write Data

Read Data

I/0O Pins Control

©NOOAWDNE

Baud rate, hardware flow control and the word fraareeset as explained in section 4.

Reading Registers

Not all the configuration registers of scl16i@7are accessible for reading directly. In many
cases, when a particular bit position in one regist set, it allows reading out other registers.
The application program takes care of all suchildeda the driver is ignorant of such conditions.
Suppose the user wants to read dbbhhianced Feature Registewhose address is 0x10
(obtained by 0x02<<3). This register is accessiniy when LCR = OxBF. But do not directly
set the LCR to OxBF, instead the value of LCR rstfread out and stored in a temporary
variable. Later LCR is set to OxBF and then EFRe& out. Once reading is done, LCR is again
set to its original value using the same temporagyster. Following sample code is given for
better explanation for the above condition.

unsigned char read_buffer[2], write_buffer[2], temp

write_buffer[0] = LCR,;

/lwriting LCR address first lets this register te tead by the following read() instruction.
write(file, write_buffer, 1);

read(file, temp, 1); //this will read LCR and stotén temp variable

Page | 18

User Guide NXP Semiconductors

write_buffer[1] = OxBF; //Setting LCR = OxBF
write(file, write_buffer, 2);

write_buffer[0] = EFR,;

write(file, write_buffer, 1);

read(file, read_buffer, 1);

printf("\nThe register value is %x", read_buffer])0]
write_buffer[0] = LCR,;

write_buffer[1] = temp; //Setting back the old rddCR value
write(file, write_buffer, 2);

Writing Regqister

Writing to a register should be completelyided. In cases like above sample program
where LCR has to be set to OXBF to read out EFReme precaution should be taken to reset
the LCR to its previous valueslso such changes should only be made when theme mata
transfer being done at that time. In other wortisre should not be any use of THR or RHR
when such temporary changes to configuration regisare being madé.is because the driver
works with the pre-defined set of values for thgisters and modifying them may cause the
driver to behave awkwardlyThe application does allow writing to ScratchpgRehgister (SPR)
though, because it is not used by the driver anygvhe

Write/Read Data

When the user selects option 6 from the mdmiptogram will send the data from tx.txt file
located inside lib/modules/<kernel version>/misicléo in a chunk of 200 bytes. The data can be
seen on the HyperTerminal running on the othersyserially connected to LPC3250 board.

Whatever data is send from the HyperTermiraal be received by the user by selecting
option 7 from the menu. Make sure the data transten HyperTerminal to the sc16is750 is
complete before choosing option 7. The best wag gait for a while to ensure that the driver is
not used while it is busy receiving the data frarh@s750. Once option 7 is selected, the size of
the data received by the driver is shown. Now ther @an either read out the whole data at once
or it can choose a fix size to read. Whatever gataad, it is stored in rx.txt file which can be
viewed anytime for cross verification.

Page | 19

User Guide NXP Semiconductors

1/0O pins control

The program also configures the 10Dir, IO8t#DIntEna registers to set the 8 GPIO pins as
input or output. The modifications in these regsteill not create any harm to the driver as
these registers are not utilized by the drivermyithe transmission of the data.

Note: Please read out the application program compldiefgre trying to create your own. It

provides a good understanding of how the driverlmaaccessed by the user. Once again, do not
try to modify any registers without prior knowledgkthe driver's working.

Page | 20

User Guide NXP Semiconductors

6. Support

The device driver uses some of the hardwaexiics of LPC3250. The interfacing of
LPC3250 with sc16is750 via SPI bus is interrupteini So the driver requests an interrupt line
on GPI-4 (General Purpose Input Register — 04) setd it as edge-falling trigger interrupt.
Following is the instruction to request an intetrlipe (according to the driver code):

request_irq(IRQ_LPC32XX_GPI_04, executethread, IRRISABLED, "intr_handler”, NULL);

Here IRQ_LPC32XX_GPI_04 is the interrupt liaocated for GPI-4 by the interrupt
controller of LPC3250. To set the interrupt asifigiedge:

set_irq_type(IRQ_LPC32XX_GPI_04, IRQ_TYPE_EDGE_RRQ);
Both these code lines are present inside spi5frobe() function of the driver. If this driver
has to be used for other development boards, tieealiove two lines of code has to be modified

according to their hardware specifiegst part of the driver code need not to be changed

Also the driver installation technique anddvaare connections as explained in section 2 and
3 respectively will get changed.

Page | 21

User Guide

Author:

Malay Jajodia

Dated Dec’ 2010

Distributed By:
NXP Semiconductors
1151, McKay Drive

San Jose, CA95131-1706

Ph: (408) 433-3960

NXP Semiconductors

Page | 22

