S32G Add GD QSPI NOR Support

by John.Li NXA08200

This article describes the GD QSPI NOR flash support on the S32G platform. The test platform is:

• S32G3 RDB3+GD25LX256E 32MB QSPI NOR flash.

G2 and G3 are basically the same in terms of QSPI NOR controller, so this article should also be applicable to G2 platform.

Ver.	History	Author
V1	• Created this doc	JohnLi
V2	• Traslate to Eng.	JohnLi

Content

1	Ba	ackground and References	2
	1.1	Background	2
	1.2	References	3
	1.3	Hardware Link	5
2	La	uterbach Script development(Optional)	6
	2.1	Preparing the refer script	6
	2.2	QuadSPI ReadID	6
	2.3	Configure QSPI NOR to DOPI mode	8
	2.4	Use DOPI mode READ 8DTRD	11
	2.5	Test report	13
3	Fla	ash tool algorithm image development	15
	3.1	Algorithms implemented by Flash SDK	15
	3.2	Develop new flash source code	17
	3.3	Test Report	21
4	De	evelop IVT Parameter Header	23
	4.1	S32G QSPI Controllder configuration difference	25
	4.2	QSPI Configuration Difference	30
	4.3	Test Report	30
5	De	evelop MCAL Fls driver	31
	5.1	MCAL FIs Driver Project Details	31
	5.2	FlsMem Configuration page	35
	5.3	MemCfg Configuration page	36
	5.4	Test Report	51
6	De	evelop Bootloader Project Fls Drivedr	52
	6.1	Bootloader Project Details	52
	6.2	Difference of Bootloader and MCAL Fls Driver	54
	6.3	Image Package	56
_	6.4	Test Report	58
7	_De	evelop Linux Driver(Optional)	59
	7.1	Linux GD Driver Details	59
	7.2	Modification of Clock	60
	7.3	In DTS add GD flash Support	62
	1.4	Modify source code and add flash information	~~
	stru	cture	63
	1.5	Modify the fixup of flash in source code to suppo	ort
	DIF	<pre>K mode</pre>	64
	1.6	I urning Dummy Value to Solve the Misplaceme	nt
		Diem	66
	1.1	rest Report	67

1 Background and References

1.1 Background

This article takes GD GD25LX256E as an example to illustrate how to replace a new QSPI NOR flash on the S32G platform. In addition to hardware connection, the software development process includes:

The description is as follows:

- 1. You can use Lauterbach script to drive QSPI NOR. There are two main application scenarios:
- When the board is brought up, the simplest ID reading driver of the Lauterbach script is used to verify the hardware.
- When QSPI NOR fails to start for mass production products, Lauterbach script can be used to simulate the behavior of ROM code reading QSPI NOR.

Another situation is:

• Use Lauterbach script to directly realize burning image, but this requires Lauterbach company to provide driver script and algorithm image.

Lauterbach is used for debugging purposes, so it is not a part that must be developed, it is optional.

2. Since the flash tool is required to burn the image, the QSPI NOR flash algorithm image used by the flash tool needs to be developed first.

3. You can also use Lauterbach to debug the MCAL Fls driver and its test code directly.

4. The IVT QSPI NOR flash parameter header needs to be developed, so that the image burned in can be quickly started.

5. Generally, the first image to start is the bootloader. The bootloader requires the support of the Fls driver, which is mostly the same as the Fls driver in Mcal.

6. Generally speaking, only M7 can access QSPI NOR flash through MCAL or bootloader, so the support of a QSPI NOR flash will be completed after completing the above two to five steps.

However, some customers will consider using Linux kernel in the production line to quickly burn QSPI NOR flash, so they need to complete the Linux drive (optional).

7. Because most customers use Bootloader to load BL2 of ATF, while BL2 loads the rest of ATF from eMMC, then ATF loads uboot from eMMC, and uboot loads the kernel, it is generally unnecessary to implement ATF/Uboot QSPI NOR flash drive (as the most unlikely option).

1.2 References

This article is developed based on S32G3 RDB3 board+GD25LX256E QSPI NOR flash:

Catalog	Name	Catalog2	Comments
Doc	S32G2RM.pdf	S32G RM	Download from <u>www.nxp.com/s32g</u>
	S32G3RM.pdf		
SW	SW32G_RTD_4.4_4.0.2	BSP SW+doc	Dowload from <u>www.nxp.com</u>
RTD			Personal account
Mcal			
SW	Platform_Software_Integration_S32G3_2023_02.exe	BSP SW+doc	Dowload from <u>www.nxp.com</u>
Boot			Personal account
loader			
Doc	S32G_Bootloader_V*.pdf	Bootloader	https://community.nxp.com/
		Customization	t5/NXP-Designs-Knowledge-Base/
		Doc	S32G-Bootloader-Customzition/
			ta-p/1519838
SW	BSP37	BSP Doc	Dowload from <u>www.nxp.com</u>
Linux			Personal account
Tools	S32Design Studio 3.4.3 or 3.5.3	S32DS	Dowload from <u>www.nxp.com</u>
			Personal account : Refer to the QuadSPI
			configuration tool, compile Flash_SDK, and Flash tool.
Doc	AN13563: S32G QuadSPI Deep Dive Application	AppNotes	Download from <u>www.nxp.com/s32g</u>
	note		Some contents of this article overlap with it
Doc	S32G_RTD_MCAL_V*.pdf	AppNotes	https://community.nxp.com/t5/
			NXP-Designs-Knowledge-Base/

	-		
			S32G-MCAL-customization-application-doc
			/ta-p/1399899
			RTD MCAL driver sample customization doc
Doc	AN12808: Quad SPI (QSPI) Timing Configuration	AppNotes	Download from <u>www.nxp.com/s32g</u>
	on the S32G2 Vehicle Network Processor Application Note		Please refer to this document for register configuration in high-speed mode.
Doc	S32G_QSPINOR_Customization_*.pdf	AppNotes	从 <u>nxp</u> community 下载
			https://community.nxp.com/t5/
			NXP-Designs-Knowledge-Base/
			S32G-QSPI-Nor-customization-doc/t
			a-p/1399906
			For the configuration of flash timing header,
			Flash tools SDK project customization (used to develop the QSPI NOR binary of flash tools)
			For uboot customization and kernel driver customization, please refer to this document.
			Some contents of this article overlap with it
Doc	MX25UW51245G.pdf	Macronix	
		QSPI NOR	
		datasheet	
Doc	DS-00762-GD25LX256E-Rev1.1_Automotive.pdf	GD	Get the support from GD
		QSPI NOR	
		datasheet	
Doc	S32G_How_to_Develop_QSPI_Script_*.pdf	QSPI	https://community.nxp.com/t5/
		Lauterbach	NXP-Designs-Knowledge-Base/
		Script deveopment doc	S32G-QSPI-Nor-customization-doc
			/ta-p/1399906
			Some contents of this article overlap with it

Note: Since this article develops each QSPI NOR flash related driver for the purpose of independent testing, it does not consider the problem of matching all software versions. For officially developed software version matching, it is recommended to use bundle release:

<u>www.nxp.com/s32g->S32G3->Design</u> Resources->Software->Automotive Software Package Manager->DOWNLOAD->input the account->S32G3->Integrated Software Bundle.

1.3 Hardware Link

The schematic diagram of S32G3 RDB3 connecting QSPI NOR is as follows: The MACRONIX MX25UW51245G flash is used. Flash is generally designed to be pin to pin compatible, so we directly replace it with GD25LX256E.

For hardware design related notes, please refer to section 3.1: Pin configuration of the document <<<AN13563.pdf: S32G QuadSPI Deep Dive>>.

On the software, NXP default release software already supports MX25UW51245G, so this article will describe the software modification process by comparing it with GD25LX256E. At the same time, sometimes refer to Micron MT35XU256 (512) ABA.

2 Lauterbach Script development(Optional)

Refer to the document <<S32G_How_to_Development_QSPI_Script_ *. Pdf>> to learn how to develop the Lauterbach script driver. This paper compares the different configurations between the two Flash models, mainly the LUT configurations. Consider two functions:

- QuadSPI_ReadID
- After switching to DOPI mode (QuadSPI_InitDOPI_DLL_AutoUpdateMode_100MHz), quickly read QSPI NOR flash: QuadSPI_Read32BytesDOPI

2.1 Preparing the refer script

Copy

C:\NXP\SW32G_RTD_4.4_4.0.2\eclipse\plugins\Fls_TS_T40D11M40I2R0\examples\EBT\S32G3\Fls_ Example_S32G399A_M7\debug\device.cmm twice,Modify to device_gd_readid.cmm and device_gd.cmm. Remove the parts irrelevant to M7_0 startup, Disable WDG and QSPI NOR.

2.2 QuadSPI_ReadID

device_gd _readid.cmm main function is:

GOSUB PERIPH_PLL

GOSUB PERIPH_DFS1_QSPI_66MHz

GOSUB QuadSPI_PinMux_CLKEnable

GOSUB QuadSPI_Init

GOSUB QuadSPI_ReadID

In addition, because BYTE SWAP is different, the following codes need to be modified:

; write sequence ID and assert Read id command

Data.Set A:&QSPI_Cntl_BASE+0x08 %Long (5.<<24.) ; LUT25 and sequence

PRINT "1st 0x" Data.Long(A:&QSPI_Cntl_BASE+0x200)>>24. " (Density)"

PRINT "2nd 0x" (Data.Long(A:&QSPI_Cntl_BASE+0x200)>>16.)&0xFF " (Device ID)"

PRINT "3rd 0x" (Data.Long(A:&QSPI_Cntl_BASE+0x200)>>8.)&0xFF " (Manufacture)"

PRINT "4th 0x" Data.Long(A:&QSPI_Cntl_BASE+0x200)&0xFF

QuadSPI_ReadID function call: (Note that according to JEDEC requirements, all QSPI NOR flash manufacturer's ReadID commands should be the same).

|->

; write sequence ID and assert Read id command

Data.Set A:&QSPI_Cntl_BASE+0x08 %Long (5.<<24.); LUT20 and sequence

Refer to MX25UW51245G design GD25LX256E command sequence:

	MX25U51245G(Reference)					GD25LX256E(Design)				
1: Lauterbac h code	 ;Program LUT25 with READ_ID Data.Set A:&QSPI_Cntl_BASE+0x374 %LE %Long 0x0818049F ; SEQID 5 Data.Set A:&QSPI_Cntl_BASE+0x378 %LE %Long 0x00001C03 Data.Set A:&QSPI_Cntl_BASE+0x37C %LE %Long 0x0 					m LUT25 with .Set A:&QSPI_ 049F ; S .Set A:&QSPI_ 01C03 //0x0000 .Set A:&QSPI_	READ_ Cntl_BA SEQID 5 Cntl_BA 1C04 Cntl_BA	ID ASE+0x374 %LE %Long S ASE+0x378 %LE %Long ASE+0x37C %LE %Long		
Details		Instr(6bits	Pads(2bits)	Operand(8bits)		Instr(6bits)	Pads(2bits)	Operand(8bits)		
	049f	0x01(CM D)	0x0(1 bit)	0x9F(RDID)	049f	0x01(CMD)	0x0(1 bit)	0x9F/0x9E(RDID)		
	0818 0x2(ADD 0x0(1 0x18(24 Addr R) bit) bits to be sent on 1 pad)		0x18(24 Addr bits to be sent on 1 pad)	0818	0x2(ADDR)	0x0(1 bit)	0x18(24 Addr bits to be sent on 1 pad)			
	1c03	0x7(REA D)	0x0(1 bit)	0x3 write data size in byte	1c04 1c03	0x7(READ)	0x0(1 bit)	0x4 write data size in byte Considering compatibility, you can also read only 3 bytes		
Timing	Figure 16. Read	Identification (RDID) Sequen	ce (SPI mode only	n		Figure 82. Rea	d Identification II	D Sequence Diagram (SPI)		
diagram	cs# scu si so	Mode 3 0 1 2 3 4 5 6 7 Mode 0 Command Mode 0 Finite Command High-Z	13 14 14 14 14 14 14 14 14 14 14 14 14 14	14 15 17 18 28 29 30 14 15 16 17 18 28 29 31 14 15 16 17 18 28 29 31 14 15 16 17 18 28 29 31 14 15 16 16 16 16 16 16 14 15 16	CS# SCLK SI SO CS# SCLK SI SO	0 1 2 3 4 5 0 1	6 7 8 9 10	11 12 13 14 15 16 17 18 19 20 21 22 23 11 12 13 14 15 16 17 18 19 20 21 22 23 11 12 13 14 15 16 17 18 19 20 21 22 23 11 12 13 14 15 16 17 18 19 20 21 22 23 12 23 20 20 20 20 20 21 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20		
Comment s	The RD manufac	ID instruction cturer ID of 1-	is for rebyte and	ading the followed by	The Read Identification (RDID) command allows the 8-bit manufacturer identification to be read, followed by					

	Device ID of 2	2-byte		three Bytes of device identification. The device identification indicates the memory type in the first Byte,				
	Table 11. ID Definitions							
	Command Type	MX25U51245G		and the memory capacity of the device in the second Byte				
	RDID 9Fh	Manufacturer ID Memory type C2 25	Memory density 3A					
Print	PRINT "1st	0x" Data.Long(A:&Q	SPI_Cntl_E	ASE+0x200)>>24. " (Density)"				
	PRINT "2nd	d 0x" (Data.Long(A:&	vQSPI_Cntl_	BASE+0x200)>>16.)&0xFF " (Device ID)"				
	PRINT "3rd	l 0x" (Data.Long(A:&	QSPI_Cntl_	BASE+0x200)>>8.)&0xFF "(Manufacture)"				
	PRINT "4th	0x" Data.Long(A:&0	QSPI Cntl E	3ASE+0x200)&0xFF				

2.3 Configure QSPI NOR to DOPI mode

device_gd.cmm main function call:

GOSUB PERIPH_PLL_1600MHZ

GOSUB PERIPH_PLL_DFS1_800MHZ

GOSUB QuadSPI_PinMux_CLKEnable

GOSUB QuadSPI_InitDOPI_DLL_AutoUpdateMode_100MHz

GOSUB QuadSPI_Read32BytesDOPI

QuadSPI_InitDOPI_DLL_AutoUpdateMode_100MHz, call:

->; write sequence ID and assert WriteEnable id command

Data.Set A:&QSPI_Cntl_BASE+0x08 %Long (2.<<24.) ; sequence

|->

; We assume we are after a reset, in SPI mode 1X SDR

Data.Set A:&QSPI_Cntl_BASE+0x154 %LE %Long 0x00000002 //TX Buffer Data Regsiter=2

; Program LUT60 Write CONFIG2 REGISTER - SPI mode with value to switch to DOPI mode. From this point on, all LUT seqs should be DDR OPI mode compatible

Data.Set A:&QSPI_Cntl_BASE+0x08 %Long (12.<<24.) ; sequence

Refer MX25UW51245G design GD25LX256E Command sequence:

	MX25U:	51245G(Refe	rence)		GD25LX256E(Design)				
Lauterbac h code (writeena ble)	;Program Data.S A:&QSP 0x00000 Data.S A:&QSP 0x0	n LUT10 with Set PI_Cntl_BASI 406 ; SE Set PI_Cntl_BASI	WRITE E+0x338 QID 2 E+0x33C	C_ENABLE %LE %Long C %LE %Long	;Progra Data 0x0000 Data 0x0	m LUT10 with .Set A:&QSPI_ 0406 ; SE .Set A:&QSPI_	WRITE Cntl_BA QID 2 Cntl_BA	_ENABLE SE+0x338 %LE %Long SE+0x33C %LE %Long	
Details		Instr(6bits	Pads(Operand(8bits)		Instr(6bits)	Pads(Operand(8bits)	

)	2bits)				2bits)				
	0406	0x01(CM D)	0x0(1 bit)	0x06(WREN)	0406	0x01(CMD)	0x0(1 bit)	0x06(WREN)			
Timing	Figure 12. Writ	te Enable (<mark>WREN)</mark> Sequ	ence (SPI Mod	le)	Figure 16. Write Enable Sequence Diagram (SPI)						
diagram		cs# = scuk M si [so =		2 3 4 5 6 7 Command	CS# SCLK		1 2 3	3 4 5 6 7 mmand			
Comment s	The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP/ PP4B, 4PP/4PP4B, SE/SE4B, BE32K/BE32K4B, BE/BE4B, CE, and WRSR, which are intended to change the device content WEL bit should be set every time after the WREN instruction setting the										
Lauterbac h code (switch to DOPI mode)	WEL bit. ;Program LUT60 Write CONFIG2 REGISTER - SPI mode Data.Set A:&QSPI_Cntl_BASE+0x400 %LE %Long 0x08200472 ; SEQID 12 Data.Set A:&QSPI_Cntl_BASE+0x404 %LE %Long 0x00002001 Data.Set A:&QSPI_Cntl_BASE+0x408 %LE %Long					m LUT60 Writ .Set A:&QSPI_ 0481 ; S .Set A:&QSPI_ 2001 .Set A:&QSPI_ 0000	e CONF Cntl_BA SEQID 1 Cntl_BA	IG2 REGISTER - SPI ASE+0x400 %LE %Long 2 ASE+0x404 %LE %Long ASE+0x408 %LE %Long			
Details		Instr(6bits	Pads(2bits)	Operand(8bits)		Instr(6bits)	Pads(2bits)	Operand(8bits)			
	0472	0x01(CM D)	0x0(1 bit)	0x72(WRCR2)	04 <mark>81</mark>	0x01(CMD)	0x0(1 bit)	0xB1/81(WRCR)			
	0820	0x02(AD DR)	0x0(1 bit)	0x20(32 Addr bits to be sent on 1 pad)	0818	0x02(ADD R)	0x0(1 bit)	0x18(24 Addr bits to be sent on 1 pad)			
	2001	0x8(WRI TE)	0x0(1 bit)	0x01 write data size in byte	$ \begin{array}{ c c c c c c c c } 2001 & 0x8(WRITE & 0x0(1 & 0x01 write data size in bit) & byte \end{array} $						
Write value code:	; W mo	de assume we de 1X SDR	are after	a reset, in SPI	; We assume we are after a reset, in SPI mode 1X SDR						
code.	Dat A:8	ta.Set &QSPI Cntl	BASE+0)x154 %LE %Lo	Data.Set A:&QSPI_Cntl_BASE+0x154 %LE %Long 0x000000e7 //TX Buffer Data Regsiter=0xe7 means						

	ng 0x0000002 //TV Puffer Date	Octal DTP with DOS										
	lig 0x0000002 // 1X Buller Data											
	Regsiter=2											
	Figure 31. Write Configuration Register 2 (WRCR2) Sequence (SPI Mode)		Figure 26 W	rite No	nvolat	ile/Vol:	atile Co	onfigura	ation F	Renist	er Sea	uence Diagram (SPI)
Timing	CS#	Figure 20. Write Nonvolatile/Volatile Comiguration Register Sequence Diagram (SPI)										
		CS#	·									
diagram		SCU		34 I П П	56	78 100	9		28 29	9303 1 П [31 32 3	33 34 35 36 37 38 39
	Command Address * CR2					ĽΗ.						
	SI 777 X31X30X29 (3X2X1X0X7X6X5X4X3X2X1X0X7	Command → I ← 24-bit address → Configuration register in										
	мяв мяв		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-I _{MS}	B		00		MSB	/00000000
	The WRCR2 instruction is for changing the											
Comment	The wreck2 instruction is for changing the $1 - 60 - 6 - 1 = 100$	The Write Nonvolatile/Volatile Configuration Register (WRCR) command allows new values to be written to										
s	values of Configuration Register 2. Before											
5	sending WRCR2 instruction,	the Neuropetite/Valatile Configuration Desister Defense										
	the Write Enable (WREN) instruction must be	the Nonvolatile/volatile Configuration Register. Before										
	lie white Endole (WREE) instruction must be	it can be accepted, a Write Enable (WREN) command must previously have been executed										
	decoded and executed to set the write Enable											
	Latch (WEL) bit in											
	advance					able 9	Volatile	Config	guratio	on Reg	gister	
	9-3. Configuration Register 2	Addr	Settings	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Description
	Address Bit Name Description Default			1	1	1	1	1	1	1	1	SPI with DQS (Default)
	Bit 0 SOPI (STR OPI Enable) 0 1= STR OPI enable 0 0 DDDh			1	1	0	1	1	1	1	1	SPI W/O DQS
	Bit 1 DOPI(DTR OPI Enable) U= DTR OPI disable 0 1= DTR OPI enable 0			1	1	1	0	0	1	1	1	Octal DTR with DQS
		<0>	<0> I/O mode	1	1	0	0	0	1	1	1	Octal DTR W/O DQS
				1	0	1	1	0	1	1	1	Octal STR with DQS
				1	0	0	1	0	1	1	1	Octal STR W/O DQS
		Others Reserved				Reserved						

Note that for GD25LX256E:

Internal configuration register settings that cannot be directly accessed by the user during QSPI NOR configuration. The user can use WRITE NOVOLATILE configuration register to change the default configuration after power on. The information of the nonvolatile configuration register overwrites the internal configuration register during power on or after reset.

The user can use WRITE VOLATILE configuration REGISTER to change the configuration during device operation. After the command is executed, the information from the volatile configuration register immediately overwrites the internal configuration register after the WRITE command is completed.

S32G ADD GD FLASH SUPPORT

Therefore, when writing the configuration register, use the command 0x81 to write the volatile register, which takes effect directly.

Write Volatile Configuration	81h	1-1-1	0	8-8-8	8-8-8	0	3(4)	1
Register		~			3			

2.4 Use DOPI mode READ_8DTRD

QuadSPI_Read32BytesDOPI, Call:

->; write sequence ID and assert Read command

Data.Set A:&QSPI_Cntl_BASE+0x08 %Long ((7.<<24.)+32.); sequence 7 + 32 bytes to be

Refer MX25UW51245G design GD25LX256E Command sequence:

Note that the MX25U51245G recommendation for the dummy setting

is: Table 1. Operating Frequency Comparison

	dia	Numbers of Dummy Cycle									
		6	8	10	12	14	16	18	20		
Octa I/O STR (MHz)	R Grade	66	84	104	133	155	166	173	200*		
Octa I/O DTR (MHz)	(-40°C to 105°C)	66	84	104	133	155	166	173	200*		

So at 200Mhz, it is set to 0x14=20 clocks.

GD25LX256E recommendation:

Table 10 Clock Frequencies of TFBGA-24 (5x5 Ball Array)

Number of Dummy Clock	Octal I/O F	AST READ	
Cycle	STR	DTR	OPIDIR
4	40	40	40
6	84	84	84
8	104	104	104
10	133	133	133
12	152	152	152
14	166	166	166
16 and above	166	200	200

It can be set to 0x10=16 clocks in 200Mhz OPI-DTR mode. Please refer to the table for specific values:

		Extended SPI Octal SPI						
Command name	Code	CMD-Addr- Data	Dummy Clock Cycles	CMD- Addr- Data (S-D-D)	CMD- Addr- Data (S-S-S)	Dummy Clock Cycles	Addr. Bytes	Data Bytes

Table 13 Commands (Extended/Octal SPI)

	MX25U51245G(Reference)				GD25LX256E(Design)				
Lauterbac	;Program	n LUT35 with	8DTRD	- READ DOPI	;Program LUT35 with 8DTRD - READ DOPI mode				
h code	mode Data.S	Set			Data 0x47 <mark>02</mark>	Data.Set A:&QSPI Cntl BASE+0x39C %LE %Long 0x470247FD ; SEQID 7			
	A:&QSF 0x47114	PI_Cntl_BASI 7EE ;	E+0x39C SEQID	C %LE %Long 7	Data 0x0 <mark>F</mark> 14	.Set A:&QSPI_ 2B20	Cntl_BA	ASE+0x3A0 %LE %Long	
	Data.S A:&QSP 0x0C142	Set PI_Cntl_BASI 2B20	E+0x3A() %LE %Long	Data 0x0000	.Set A:&QSPI_ 3B01	Cntl_BA	ASE+0x3A4 %LE %Long	
	Data.Set A:&QSPI_Cntl_BASE+0x3A4 %LE %Long 0x00003B01			Data.Set A:&QSPI_Cntl_BASE+0x3A8 %LE %Long 0x00000000					
	Data.Set A:&QSPI_Cntl_BASE+0x3A8 %LE %Long 0x00000000								
Details		Instr(6bits)	Pads(2bits)	Operand(8bits)		Instr(6bits)	Pads(2bits)	Operand(8bits)	
	47ee	0x11(CM D_DDR)	0x3(8 bit)	0xee 0x11(Octa I/O DTR read)	47 <mark>fd</mark>	0x11(CMD _DDR)	0x3(8 bit)	0xfd (OCTAL I/O FAST READ with DDR ADDRESS and DATA)	
	4711	0x11(CM D_DDR)	0x3(8 bit)		47 <mark>02</mark>	0x11(CMD _DDR)	0x3(8 bit)	0x <mark>02</mark> (0xfd的补码)	
	2b20	0xA(ADD R_DDR)	0x3(8 bit)	0x20(32 Addr bits to be sent on 4 pad)	2b20	0xA(ADDR _DDR)	0x3(8 bit)	0x20(32 Addr bits to be sent on 4 pad)	
	0c14	0x3(DUM MY)	0x0(1 bit)	0x14(20 dummy cycles)	0f10	0x3(DUM MY)	0x3(8 bit)	0x10(16 dummy cycles)	
							Dum my 命令		

							可用 1bit or 3		
							bit		
	3b10	0x14(REA D_DDR)	0x3(8 bit)	0x10(Read 16 Bytes on 4 pad)	3b10	0x14(REA D_DDR)	0x3(8 bit)	0x10(Read 16 Bytes on 8 pad)	
Timing	Figure 43. OCTA	Read Mode Sequence (DTR-	OPI Mode)			Figure 54. DTR O	ctal I/O Fast Read	I Sequence Diagram (OPI)	
Diagram						CS# 0 1 2 18 19 SCLK			
Comment s	The 8DT throughp DOPI Er Configur before se instructio	TRD instruction out of Serial F hable bit of ration Register ending the DT on.	be set to "1" READ	Abye Octal I/O DTR Fast ReadFDh1-8d-(8d)16p.8-4(8)1641 to explicitlyThe Octal I/O DTR Read command enables Double Transfer Rate throughput on Octal I/O of Serial Flash in read mode. The address (interleave on 8 I/O pins) is latched on both rising and falling edge of SCLK, and data (interleave on 8 I/O pins) shift out on both rising and falling edge of SCLK. The 8-bit address can be latched-in at one clock edge, and 8-bit data can be read out at one clock edge, which means 8 bits at rising edge of clock, the other 8 bits at falling edge of clock. The first address Byte can be at any location. The address is automatically increased to the next higher address after each Byte data is shifted out, so the whole memory can be read out at a single Octal I/O DTR Read command. The address counter rolls over to 0 when the highest					
Print	PRIN	T "1st 0x" Dat	ta.Long(A:&QSPI_Cntl_B	ASE+0x	200)			
	PRI	NT "2nd 0x"	Data.Lo	ng(A:&QSPI_Cnt	1_BASE+	+0x204)			
	PRI	NT "3rd 0x"]	Data.Lo	ng(A:&QSPI_Cntl	_BASE+	-0x208)			
	PRI	NT "4th 0x"]	Data.Lo1	ng(A:&QSPI_Cntl	_BASE+	0x20C)			
	PRIN	PRINT "5th 0x" Data.Long(A:&QSPI Cntl BASE+0x210)							

2.5 Test report

Set the RDB3 board to download mode, or burn the image with the wrong IVT head in QSPI NOR, and start:

- 1. Run Lauterbach: t32marm.exe: File ->Open script...=device_gd_readid.cmm.
- 2. Then click the area command in the command bar to see the printed ID value in the RX buffer:

file C:\Work\S32G\Application notes\qspi_nor\GD\development\1.lauterbach\device_gd _read 1st 0x19 (Density) 2nd 0x68 (Device ID) 3rd 0x0C8 (Manufacture) 4th 0x0FF

1. Run again Lauterbach: t32marm.exe: File->Open script...= device_gd.cmm.

file C:\Work\S32G\Application notes\qspi_nor\GD\development\1.lauterbach\device_gd.cmm
lst 0x0
2nd 0x68 (Device ID)
3rd 0x0C8 (Density)
4th 0x0FF (Manufacture)
lst 0x0C0C0000
2nd 0x0C0C0C0C
3rd 0x0C0C0C0C
5th 0x0C0C0C0C

2. Then in the menu View ->dump..., enter the address 0x0:

Start address (hex)	End address (hex)	Size (KB)	40-bit Master Description 32-bit Master Description (except M7) M7 Description HSE M7 Description	A53 CC FlexNOC Slave port	M7 Default Cache mode	M7 Bus	M7 Memory Space	M7 Memory Type
Code								
0x00_0000_0000	0x00_1FFF_FFFF	524288	QSPI AHB Buffer	s_flash	WT	AXIM	Code	Normal

It can be seen that the AHB address has read QSPI NOR content:

	B::Data.dump (0x0)	/DIALOG						8
	SD:0x0	ЙF	ind M	odify	Long ~	E	Track	He
	address	0	. 4	1 8	C	012345	6789ABCD	EF
1	SD:0000000	♦0C0C0000	0000000	0000000	0000000	NNF/F/F/F/ UUFFFF	********	77 ^
I	SD:0000010	0C0C0C0C	0000000	0000000	0C0C0C0C	777777	77777777	77 =
I	SD:0000020	0000000	0000000	0000000	0C0C0C0C	777777	********	77 -
I	SD:0000030	0C0C0C0C	0000000	0000000	0C0C0C0C	777777	*******	77 ×
I	SD:0000040	0C0C0C0C	0000000	0000000	0C0C0C0C	£\$\$\$\$\$	*******	22 ^
I	SD:0000050	0000000	0000000	0000000	0C0C0C0C	<u><u>É</u>ÉÉÉÉÉÉ</u>	222222222	ŻΫ
I	SD:0000060	0000000	0000000	0000000	0C0C0C0C	<u>ÊÊÊÊÊÊ</u>	ŹŹŹŹŹŹŹŹŹ	έ¥.
I	SD:0000070	0000000	0000000	0000000	0C0C0C0C	<u>\$\$\$\$</u> \$\$	*******	ŻŻ
	SD:0000080	FFFF00FF	FFFFFFF	FFFFFFF	FFFFFFF	ÊNÊÊÊÊ	ÊÊÊÊÊÊÊÊÊ	ÊÊ

3 Flash tool algorithm image development

Refer to <<AN13563: S32G QuadSPI Deep Dive Application Note>>, 5.3 Flash SDK usage, Understand the image development method of Flash tool:

Image development is based on the following principles:

1. Generally speaking, Flash of different models from the same manufacturer will use the same command word and the same register design.

2. At present, the existing algorithms of the S32DS flash tool are mirrored in the directory C: NXP S32DS. 3.4 S32DS tools S32FlashTool flash, including:

Num.	Company	Model
1	Micron	MT35XU02GCBA.bin
2	MACRONIX	MX25UM51245G.bin
3		MX25UW12A45G_R52.bin
4		MX25UW51245G.bin
5	CYPRESS	S26KL512S2.bin
6		\$26K\$512S.bin
7		S70FS01GS.bin

So if you use the flash of the above three companies, you can first try to use the image burning algorithm similar to it to see whether it will succeed. First select the same model, then select the same model but different sizes, and finally select the models and sizes that may be different.

3. QSPI NOR flash manufacturers will consider a certain degree of compatibility, so you can first compare whether the command word and register definitions are the same.

4. Finally, we will consider according to 5.3 Flash SDK usage develops a new algorithm image.

3.1 Algorithms implemented by Flash SDK

According to 5.3 The Flash SDK usage shows that the algorithms implemented by the flash SDK include:

```
• Read id
```

```
/* SEQID 1 - ID Read */
```

qspi compose lut register(p_pb, SEQID_RDID, p_pb->read_id_cmd, p_pb->read_id_dummy, 0, 0, p_pb->read_id_length, 0, 0);

```
• Erase_chipset
```

```
/* SEQID 5 - Chip Eraser*/
```

qspi_compose_lut_register(p_pb, SEQID_CHIP_ERASE, CHIP_ERASE_CMD, 0, 0, 0, 0, 0, 0);

• Write flash

/* SEQID 3 - Page program */

qspi compose lut register(p_pb, SEQID_PP, p_pb->page_program_cmd, p_pb->page_program_dummy, p_pb->page_program_address_length,

0, TX_BUFFER_SIZE, 1, 0);

• Dump_flash

/* SEQID 2 - Fast read (NOR) / read to internal buffer (NAND) */

qspi_compose_lut_register(p_pb, SEQID_PAGE_READ, p_pb->page_read_cmd, p_pb->page_read_dummy1,

p pb->page_read_address_length, p_pb->page_read_dummy2, p_pb->is_nand ? 0 : RX_BUFFER_SIZE, 0, 0);

pb->read_id_cmd = READ_ID_CMD;

pb->read_id_dummy = READ_ID_DUMMY;

pb->read_id_length = READ_ID_LENGTH;

pb->write_enable_cmd = WRITE_ENABLE_CMD;

pb->page program cmd = PAGE PROGRAM CMD;

pb->page_program_dummy = PAGE_PROGRAM_DUMMY;

pb->page_program_address_length = PAGE_PROGRAM_ADDRESS_LENGTH;

pb->page read cmd = PAGE READ CMD;

pb->page_read_address_length = PAGE_READ_ADDRESS_LENGTH;

pb->page_read_dummy1 = PAGE_READ_DUMMY1;

pb->page_read_dummy2 = PAGE_READ_DUMMY2;

pb->write_any_register_cmd = WRITE_ANY_REGISTER_CMD;

pb->write_any_register_address_length = WRITE_ANY_REGISTER_ADDRESS_LENGTH;

pb->write_any_register_dummy = WRITE_ANY_REGISTER_DUMMY;

pb->write_any_register_length = WRITE_ANY_REGISTER_LENGTH;

#define CHIP_ERASE_CMD

0x60

/*

* Command definitions

*/

#define READ_ID_CMD	0x9F		
#define READ_ID_DUMMY	0		
#define READ_ID_LENGTH	4		
#define WRITE_ENABLE_CMD	0x06		
#define PAGE_PROGRAM_CMD	0x12		
#define PAGE_PROGRAM_DUMMY	0		
#define PAGE_PROGRAM_ADDRESS_LENGTH	32		
#define PAGE_READ_CMD	0x13		
#define PAGE_READ_DUMMY1	0		
#define PAGE_READ_ADDRESS_LENGTH 32			
#define PAGE_READ_DUMMY2	0		
#define CHIP_ERASE_CMD			0x60
#define WRITE_ANY_REGISTER_CMD			0x72
#define WRITE_ANY_REGISTER_LENGTH		1	
#define WRITE_ANY_REGISTER_ADDRESS_LENGTH		32	
#define WRITE_ANY_REGISTER_DUMMY		0	

3.2 Develop new flash source code

Refer doc

C:\NXP\S32DS.3.4\S32DS\help\resources\howto\<<HOWTO_Use_FlashSDK_to_add_support_for_Qu adSPI_flash_memory_devices_for_S32_Flash_Tool.pdf>>, to build S32DS FlashSDK project, Note:

- On FlashSDK:Release_FlashTemple right click->Build Configurations->Set Active:can switch to Release or Debug Temple.
- On FlashSDK:Release_FlashTemple right click-->Build Project, It can be compiled. The result is in the Console window. The compiled image is in: C:\NXP\S32DS.3.4\S32DS\tools\S32FlashTool\FlashSDK_Ext\Release_FlashTemplate\ FlashSDK.bin.

 $\label{eq:loss} Develop a new Flash algorithm to drive the image. The main modifications are the file:C:\NXP\S32DS.3.4\S32DS\tools\S32FlashTool\FlashSDK_Ext\Algo\Generic\qspi_chip_commands.h.$

Compare the command words of the two flash models with other definitions as follows (note that the current Flash SDK uses low-speed SPI mode, not high-speed mode):

	MX25UM51245G	GD25LX256E	Comments		
NOR	0 ///< NOR memory	type	pb->is nand = MEMTYPE://=NOR=0 do		
NAND	1// NAND Memory supported	type. not	not support QSPI Nand		
MEMTYPE	NOR				
BLOCK_PROTECT_MASK	(x3C)		//status register protect bit 5~2		
TOP_BOTTOM_MASK	(x08)		<pre>//configure register bit3 top area or bottom area protect but GD have no this register, so keep //it to avoid compiling error. current flash tool have no protect ability</pre>		
WEL	(1 << 1)		/// <write bit="" configuration<br="" enable="" latch="" of="">register //should be status register</write>		
WIP	(1 << 0)		/// <write be="" bit="" configuration="" in="" of="" progress="" register="" register<="" should="" status="" td=""></write>		
BYTES_PER_PAGE	(256)		///< page size in bytes //- 256 Bytes per programmable page		
NUMBER_OF_SECTORS	(1024)	(1024)	number of flash sectors		
		(8192)	Because the code uses sector program, the sector needs to use 1024 and 4 * 1024 instead of 8192 and 4 * 1024		
BYTES_PER_SECTOR	(64 * 1024)	(64 * 1024)	size of sector in bytes		
		(4 * 1024)			
REG_PROTECTION_ADD R	0x00		address of the register that holds the protection bits, if exists		
REG_STATUS_ADDR	0x00		address of the register that holds the status bits, if exists		
READ_ID_CMD	0x9F	0x9F	Refer 2.1		
READ ID DUMMY	0	0			
READ_ID_LENGTH	4	4			
WRITE ENABLE CMD	0x06	0x06	Refer 2.1		
PAGE PROGRAM CMD	0x12	0x12	9.19 Page Program (PP) (02H/12H)		
PAGE PROGRAM DUMM	0 0		sending Page Program command \rightarrow 3-Byte address		

V			or 4-Byte address on SI
Y			
PAGE_PROGRAM_ADDR ESS_LENGTH	32	32	Figure 35. Page Program experime darge min (4*1) Control 1 2 3 4 5 6 7 8 9 10 2 29 30 31 32 33 34 35 36 37 38 39 SCLK OPH Command 24-bit address MBB Add 45 46 47 48 49 50 51 52 33 54 55 SCLK MBB Add 44 54 64 74 84 90 51 52 33 54 55 SCLK OPH MBB MBB
PAGE_READ_CMD	0x13	0x13	9.14 Read Data Bytes (READ) (03H/13H)
PAGE READ DUMMY1	0	0	0x13 is Four byte command word
PAGE_READ_ADDRESS_ LENGTH	32	32	Figure 41. Read Data Bytes Sequence Diagram CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 34 45 56 6 7 8 9 10 28 29 30 31 32 34 45 56 37 38 39 SCLK
PAGE_READ_DUMMY2	0	0	SI Command
READ_STATUS_REGISTE R_CMD	0x05	0x05	Refer 5.3.3.9
READ_STATUS_REGISTE R DUMMY	0	0	
READ_STATUS_REGISTE R_ADDRESS_LENGTH	0	0	
READ_STATUS_REGISTE R LENGTH	1	1	
WRITE_STATUS_REGIST ER_CMD	0x01	0x01	Refer 2.2
WRITE_STATUS_REGIST ER_DUMMY	0	0	
WRITE_STATUS_REGIST ER ADDRESS LENGTH	0	0	
WRITE_STATUS_REGIST ER LENGTH	1	1	
SECTOR_ERASE_CMD	0xDC	0xDC	Refer 5.3.3.2
SECTOR_ERASE_DUMM Y	0	0	
SECTOR_ERASE_ADDRE SS_LENGTH	32	32	
SUBSECTOR_ERASE_CM D	0x21	0x21	9 22 Sector Frase (SE) (20H/21H)
SUBSECTOR_ERASE_DU MMY	0	0	7.22 Sector Liase (SE) (2011/2111)

SUBSECTOR_ERASE_AD DRESS_LENGTH	32	32	Figure 66. Sector Erase Sequence Diagram (DTR OPI) CS#
CHIP_ERASE_CMD	0x60	0x60	
CLEAR_STATUS_REGIST ER_CMD	0	0	which means have no this command
READ_ANY_REGISTER_ CMD	0x71	0x85	Since the SPI line low speed mode is adopted, the configure register does not need to be
READ_ANY_REGISTER_L ENGTH	1	1	operated. Refer 5.3.3.8
READ_ANY_REGISTER_ ADDRESS LENGTH	32	24	
READ_ANY_REGISTER_ DUMMY	0	0	
WRITE_ANY_REGISTER_ CMD	0x72	0x81	Since the SPI line low speed mode is adopted, the configure register does not need to be
WRITE_ANY_REGISTER_ LENGTH	1	1	operated. Refer 2.2
WRITE_ANY_REGISTER_ ADDRESS LENGTH	32	24	
WRITE_ANY_REGISTER_ DUMMY	0	0	
READ ID CMD1 OPI	0x9F	0x9F	Refer 5.3.3.7
READ ID CMD2 OPI	0xF9	0xF9	
READ_ID_DUMMY_OPI	0	0	
READ ID LENGTH OPI	4	4	

Therefore, the source file does not need to be modified. You can work directly by compiling the image directly.

 $Copy C: \NXP S32DS.3.4 S32DS \tools S32FlashTool FlashSDK_Ext \Release_FlashTemplate \FlashSDK.bin to C: \NXP S32DS.3.4 S32DS \tools S32FlashTool \flash. Rename to GD25LX256E.bin \Then modify: C: \NXP S32DS.3.4 S32DS \tools S32FlashTool \configs \flash_devices.xml, add GD25LX256E.bin in:$

<algorithm> <id>GD25LX256E</id> <name>GD25LX256E</name> <path>flash/GD25LX256E.bin</path> </algorithm>

In this way, you can see in the algorithm image drop-down box of the flash tool:

Initializatio	n	
Select targe	t and algorithm for uploading:	
Target	S32G3xxx	~
Algorithm	GD25LX256E	~
Secure s	erial bootloader:	

3.3 Test Report

• Use the Flash tool to load the algorithm: Upload target and algorithm to hardware:

Execution	
 Program fin 	ished successfully.
Flash algo	is loaded.
Device: Fla	ash Driver Template
Capacity:	64 MiB (67108864 bytes)

• Use Get flash ID after success: check whether it is successful:

Executio	n
Progra	am finished successfully.
Manuf.	ID=0x00C8
Device	ID=0x1968

Same with datasheet.

• Then use the erasing function of Flash tool: Erase memory range to see whether the erasing is successful:

Execution	
Program fi	inished successfully.
Progress:	60
Progress:	80
Progress:	100
Erase suc	cessful.

• Test the flash tool's burning function:Upload file to device:

Execution	
Program finished successfully.	
Data file is loaded.	
Time spent: 0.08 sec.	

• Finally, the Flash tool was used to read the image burned in for comparison:

Execution

① Program finished successfully.
Data file is stored.
Data is read. Time spent: 0.12 sec.

	100								-	-																										
会话,		X	* ≠	=	8	† †	<i>8</i> 4	3	\$	1																										
C:\Work\S	32G\	App	licat	ion I	note	s\qs	oi_no	or\G	D\te	st.b	in							~ ~	1	C:\Work\S3	2G\	Appl	icati	on n	otes	\dst	oi_no	or\G	D\te	st1.b	oin					
2023/11/2	1 9:0	09:52	2 4,0)96 ⁻	字节	<罵	状认:	> •												2023/11/2	2 14	:59:2	27 4	096	字†	5 <	默认	(> •								
0000000	00	00	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	00	00	0C			. ^	00000000	00	00	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C
00000010	00	00	00	0C	0C	0C	0C	0C	0C	0C	0C	0C	00	00	00	0C				00000010	00	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	9C	0C
00000020	00	0C	00	0C	0C	0C	0C	0C	0C	0C	0C	0C	00	0C	00	0C				00000020	00	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C
0000030	00	00	00	0C	0C	0C	0C	0C	0C	0C	0C	0C	00	00	00	0C				00000030	00	ØC	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C
00000040	00	00	00	0C	0C	0C	0C	0C	0C	0C	0C	0C	00	0C	00	0C				00000040	00	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C
00000050	00	00	00	0C	0C	0C	0C	0C	0C	0C	0C	0C	00	0C	00	0C				00000050	00	ØC	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C
00000066	00	00	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	00	0C	00	0C				00000060	00	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C
0000070	00	00	00	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	00	0C			•	00000070	00	ØC	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C	0C
00000080	00	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	· ŸŸŸ	VVVV	Ÿ	00000080	00	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF

4 Develop IVT Parameter Header

Refer doc <<AN13563: S32G QuadSPI Deep Dive Application note>>, Chapter 4 QuadSPI Boot and doc<S32G_QSPINOR_Customization_*.pdf>>, Chapter 4 S32G QSPI NOR flash parameter header customization. The following is a comparison of the configurations of three flash models in 200Mhz, DDR, External DQS, Auto Update/Bypass, and a comparison of the appropriate configurations of GD25LX256E:

	Macronix	Micron		GD
	MX25UW51245G	MT35XU256ABA		GD25LX256E
	200Mhz	200Mhz		200Mhz
	DDR	DDR		DDR
	External DQS	External DQS	External DQS	External DQS
	Auto Update	Auto Update	Bypass	Auto Update
Flash Port Connection	А	Α	Α	Α
DLL Bypass mode	No	No	Yes	No
DLL Auto Update Mode	Yes	Yes	No	Yes
IPCR Enable Mode	No	No	No	No
SFLASH Clock Frequency	0xc8	0xc8	0xc8	0xc8
MCR	0x30f00cc	0x30f00cc	0x30f00cc	0x30f00cc
	DQS_FA_	DQS_FA_	DQS_FA_	DQS_FA_
	SEL=3	SEL=3	SEL=3	SEL=3
FLSHCR	0x10303	0x10303	0x10303	0x10303
BFGENCR	0x0	0x0	0x0	0x0
DLLCRA	0xc280000c	0xc280000c	0x40000506	0xc280000c
	DLLEN=1	DLLEN=1	DLLEN=0	DLLEN=1
	FREQEN=1	FREQEN=1	FREQEN=1	FREQEN=1
	DLL REFCNTR=2	DLL REFCNTR=2	DLL REFCNTR=0	DLL REFCNTR=2

	DLLRES=8	DLLRES=8	DLLRES=0	DLLRES=8
	SLV_FINE	SLV_FINE	SLV_FINE	SLV_FINE
	OFFSET=0	OFFSET=0	OFFSET=0	OFFSET=0
	SLV_DLY	SLV_DLY	SLV_DLY	SLV_DLY
	OFFSET-=0	OFFSET-=0	OFFSET-=0	OFFSET-=0
	SLV_DLY	SLV_DLY	SLV_DLY	SLV_DLY
	COARSE=0	COARSE=0	COARSE=5	COARSE=0
	SLAVE_AUTO	SLAVE_AUTO	SLAVE_AUTO	SLAVE_AUTO
	_UPDT	_UPDT	_UPDT	_UPDT
	=1	=1	=0	=1
	SLV_EN=1	SLV_EN=1	SLV_EN=1	SLV_EN=1
	SLV_DLL_	SLV_DLL_	SLV_DLL_	SLV_DLL_
	BYPASS=0	BYPASS=0	BYPASS=1	BYPASS=0
	SLV UPD=0	SLV UPD=0	SLV UPD=0	SLV UPD=0
PARITYCR	0x0	0x0	0x0	0x0
SFACR	0x20000	0x0	0x0	0x0
	Byte Swapping=1	Byte Swapping=0	Byte Swapping=0	Byte Swapping=0
SMPR	0x44000000	0x44000000	0x44000000	0x44000000
DLCR	0x40ff40ff	0x40ff40ff	0x40ff40ff	0x40ff40ff
SFA1AD	0x20000000	0x20000000	0x20000000	0x20000000
SFA2AD	0x20000000	0x20000000	0x20000000	0x20000000
DLPR	0xaa553443	0xaa553443	0xaa553443	0xaa553443
SFAR	0x0	0x0	0x0	0x0
TBDR	0x0	0x0	0x0	0x0
lut[0] command sequence	0xee 0x47 0x11 0x47	0xfd 0x47 0x2 0x47	0xfd 0x47 0x2 0x47	0xfd 0x47 0x2 0x47
lut[1] command sequence	0x20 0x2b 0x14 0xf	0x20 0x2b 0x10 0xf	0x20 0x2b 0x10 0xf	0x20 0x2b <mark>0x10</mark> 0xf
lut[2] command sequence	0x10 0x3b 0x0 0x0	0x10 0x3b 0x0 0x0	0x10 0x3b 0x0 0x0	0x10 0x3b 0x0 0x0
lut[3] command sequence	0	0	0	0
lut[] command sequence	0	0	0	0
lut[79] command sequence	0	0	0	0
Flash Write Data[0]	No/0bvte/0x0/spi	No/0bvte/0x0/spi	No/0bvte/0x0/spi	No/0bvte/0x0/spi

	/0x6/0x0/0x0	/0x6/0x0/0x0	/0x6/0x0/0x0	/0x6/0x0/0x0
Flash Write Data[1]	Yes/1byte/0x20/spi	Yes/1byte/ <mark>0x18</mark> /spi	Yes/1byte/ <mark>0x18</mark> /spi	Yes/1byte/ <mark>0x18</mark> /spi
	/0x72/0x0/0x2	/0x81/0x0/0xe7	/0x81/0x0/0xe7	/0x81/0x0/0xe7
Flash Write Data[]	0	0	0	0
Flash Write Data[9]	0	0	0	0

It can be seen that the main differences are:

4.1 S32G QSPI Controllder configuration difference

1. IPCR Trigger

Because:

31.13.1.1 Functional description

Boot ROM supports boot from a variety of flash memories, providing flexibility for choosing the configuration parameters for which the controller must be programmed during boot. The configuration parameters can be based on product requirements. For better performance, the QuadSPI controller supports high-speed operations in DDR and SDR modes, which requires specific configurations to achieve correct data sampling at such a high rate. The QuadSPI controller supports reading data over an AHB interface or an IP interface—however, boot ROM supports only read via an AHB interface. Boot ROM does not support any write operations to QuadSPI flash memory.

Therefore, it is not necessary to configure to IP interface mode, IPCR Trigger does not need to be checked, and the registers to be configured for AHB mode are:

Figure 17. Read - AHB command

- 1. Configure flexible read AHB buffer size in BUFxIND
- Typically, BUF0IND=BUF1IND=BUF2IND = 0, which means the size of buffer0, buffer1, and buffer2 is 0. The buffer3 is 1024 bytes.
- 3. Configure for any read access routed to buffer0 ~ buffer3 in BUFxCR
- 4. Optionally, buffer3 may be configured as an "all master" buffer by writing 1 to BUF3CR[ALLMST]
- 5. Set the amount of data to be fetched from the flash memory on every missed access in BUFxCR[ADATSZ] field
- 6. Configure the correct sequence ID in the BFGEBCR[SEQID] field
- 7. Choose a start address for reading in the memory mapped area
- 8. Read data from the memory mapped area directly

Therefore, it is necessary to ensure that:

- BUF0IND= BUF1IND= BUF2IND=0 //so BUFFER3=1024 bytes
- BUF3CR[ALLMST]=1 // All masters can access BUFFER3
- BUF3CR[ADATSZ]// It doesn't matter if the value is 0, it will be reset by the configuration of the SEQID
- BFGEBCR[SEQID]=0 // The LUT is configured as 0, so the IVT header needs to configure the fast read as LUT0.

Use an empty flash. In the QSPI NOR flash startup mode, after the startup fails, connect the lauterbach and confirm as

follows:					
IPCR	00000000	SEQID	0 0000	PAR_EN	0
FLSHCR	00000303	TDH	0: Data aligned with the posedge of internal 3	TCSH	3
BUF0CR BUF1CR	0000000B 00000001	ADATSZ	00	MSTRID MSTRID	11 1
BUF2CR BUF3CR	00000002 80000003	ADATSZ ALLMST	00 1	MSTRID ADATSZ	2 00
BFGENCR	00000000	MSTRID PAR_EN	3	SEQID	0
BUF1IND BUF1IND BUF2IND	000000000000000000000000000000000000000	TPINDX0 TPINDX1 TPINDX2	00		

Therefore, the default code configuration of ROM Code meets the requirements. In addition:

LUTKEY	5AF05AF0 00000002	KEY UNLOCK	5AF05AF0 1	LOCK	0
LUT0	08180403	INSTR1	2	PAD1	0: 1 Pad
		OPRND1	18	INSTRO	1
		PAD0	0: 1 Pad	OPRNDO	03
LUT1	24001C08	INSTR1	9	PAD1	0: 1 Pad
		OPRND1	00	INSTRO	7
		PADO	0: 1 Pad	OPRND0	08
LUT2	00000000	INSTR1	0	PAD1	0: 1 Pad
		ODDND1	00	TNCTDO	0

So the LUT0 used by ROM Code by default is:

Instruction	Pad	Operand	Comment
CMD	Oh	3h	Read data byte command on one pad
ADDR	Oh	18h	24 address bits to be sent on one pad
	Tab	le continues on the next p	page
	\$32G	3 Reference Manual, Rev. 2,	09/2022
Reference Manual		Preliminary Information COMPANY CONFIDENTIA	2011 / 503 IL
IXP Semiconductors			

Instruction	Pad	Operand	Comment
READ	Oh	8h	Read 64 bits
JMP_ON_CS	Oh	Oh	Jump to instruction 0 (CMD)

2. DQS mode select

Refer doc <<AN13563: S32G QuadSPI Deep Dive Application note>>, Chapter 3.3.2. Supported DQS sampling method, and doc <<AN12808: QSPI Timing Configuration>>, Chapter 3 Sampling the read data from QSPI Flash memory, understand the DQS mode select.

25-24	DQS clock for sampling read data at flash memory A
DQS_FA_SEL	Selects DQS clock for sampling read data at flash memory A QuadSPI port
	00b - Reserved
	01b - Pad loopback
	10b - Reserved
	11b - External DQS
	NOTE
	In case of an padloopback selection to access port A, port B cannot be programmed for external DOS and vice versa

Note:

- In order to improve the access speed, it is recommended to use the External DQS mode in the DDR mode, while the DDR mode generally needs to work at more than 133Mhz, and usually works at 200Mhz. The maximum use of Pad loopback in the DDR mode can only be 66Mhz.
- For 133Mhz SDR mode, Pad loopback mode can be used instead of External DQS mode.
- External DQS mode requires QSPI NOR to output clock to S32G, so QSPI NOR itself and PCB connection will affect the quality of DQS signal, so in addition to hardware measurement, 133Mhz SDR Pad loopback mode can also be used as a reference test.
- 2. Difference between Auto Update mode and Bypass mode:

Refer to <<AN13563: S32G QuadSPI Deep Dive Application note>>, chapter 3.3.3 DLL and DQS delay chain and <<AN12808: QSPI Timing Configuration>>, Chapter 4: DQS delay circuits, learn about the selection methods of DQS delay circuits,

The setting method of DLL Bypass mode is (dynamic code):

A. Set DLLCRA [SLV_EN]=1, DLLCRA [SLV_DLL_BYPASS]=1 DLLCRA [SLAVE_AUTO_UPT]=0.

B. Program the following fields to provide the DQS delay DLLCRA [SLV_FINE_OFFSET], DLLCRA [SLV_DLY_COARSE] and DLLCR [FREQEN] required for sampling. For supported programming settings, see chip specific QuadSPI information.

C. Set DLLCRA [SLV_UPD]=1 to load these values into the slave delay chain.

D. Check the update status from the delay chain by polling DLLSR [SLVA_LOCK]=1, and clear DLLCRA [SLV_UPD] after confirming the update status

So the final register setting is:

SLV_EN=1, SLV_DLL_BYPASS=1, SLAVE_AUTO_UPT=0, SLV_FINE_OFFSET=0 or a value (fine call can be set to 0 first), SLV_DLY_COARSE=5, FREQEN=1 (200Mhz is set to 1133Mhz is set to 0), SLV_UPD=changes from 1 to 0, and finally to 0.

The configuration method of DLL Auto Update mode is (dynamic code):

A. Program DLLCRA [SLV_EN]=1, DLLCRA/SLV_DLL_BYPASS]=0, DLLCRA [SLAVE_AUTO_UPT]=1.

B. Use DLLCRA [DLL_REFCNTR] and DLLCRA [DLLRES] to program the DLL configuration. For supported DLL configuration settings, see chip specific QuadSPI information.

C. The slave settings are programmed to delay DQS by using the fields DLLCRA [SLV_FINE_OFFSET], DLLCRA [SLV_DLY_OFFSET] and DLLCR [FFREQEN]. See chip specific QuadSPI information for supported settings.

D. If the offset delay needs to be updated on the slave chain, the program DLLCRA [SLV_UPD]=1.

E. Enable DLL by programming DLLCRA [DLLEN]=1, and reset DLLCRA [SLV_UPD]=0. The slave delay chain will be updated automatically, and can be checked by polling DLLSR [SLVA_LOCK]==1

So the final register setting is:

SLV_EN=1, SLV_DLL_BYPASS=0, SLAVE_AUTO_UPT=1, DLL_REFCNTR=2, DLLRES=8, SLV_FINE_OFFSET=0, SLV_DLY_OFFSET=0, FFREQEN=1, SLV_UPD=0 from 1, finally 0, DLLEN=1.

3. BYTE Swapping difference:

Byte swapping define as follows:

Refer MX25UW51245G flash datasheet:

So for a word unit, the high byte comes first and the low byte comes last, so it needs to be set to swap here. Micron and GD do not have this requirement.

4.2 **QSPI** Configuration Difference

 Refer to Section 2.3 to configure GD25LX256E Command Sequences using DOPI mode READ_8DTRD

\$3 D:	Sequence 0				×
A	Add			Remo	ve
#	Instructio	on	Pins	Operand	
0	CMD_DDR	*	Eight Pads 👻	0xfd	
1	CMD_DDR	*	Eight Pads 💌	0x2	
2	ADDR_DDR	-	Eight Pads 🔹	0x20	ì
3	DUMMY	-	Eight Pads 🔹	0x10	;
4	READ_DDR	-	Eight Pads 👻	0x10	
5	STOP	-	One Pad 👻	0x0	

• Refer to section 2.2, configure QSPI NOR to DOPI mode, configure Flash Write Data, set GD25LX256E Flash to write enable, and then set QSPI NOR to DOPI mode.

Flash Write Data										
1	Add							Remove		
#	Address Valid	Configuration	Valid Address	PA	D	Command Op	Config/Status	Configuration		
0		0 Bytes 💌	0x0	SPI	*	0x6	0x0	0x0		
1	\checkmark	1 Byte 💌	0x18	SPI	*	0x81	0x0	0xe7		

Store as: GD_QSPI_Parametes_200M_DDR__ExternalDQS_Autoupdate.bin

4.3 Test Report

Refer to the description in the document <<S32G_RTD_MCAL_V *. Pdf>>, compile a DIO lighting example, pack it, and note:

- Configure QuadSPI parameters Select the IVT QSPI header image exported from S32DS: GD_QSPI_Parameteres_200M_DDR__ExternalDQS_Autoupdate.bin.
- DCD section is used to initialize SRAM, or it is not necessary to select: C:\NXP\Integration_Reference_Examples_S32G3_2023_02\code\framework\realtime\swc\boo tloader\platforms\S32G3XX\res\flash\S32G3XX_DCD_InitSRAM.bin.
- The example of DIO lighting requires that GPIO switch SW11 be set to on.

Then set it to QSPI NOR startup mode, power on and start, you can see the U128 RGB light flashing. Prove successful startup.

Note:

With reference to the document <<S32G_QSPINOR_Customize_ *. Pdf>>, the larger image in section 10.2 cannot be started from QSPI-NOR without a parameter header, so:

- If the IVT QSPI NOR parameter header development is not completed, you can use the default 1 bit low-speed mode of ROM to start a small image, such as the Bootloader image, to avoid block bringing up.
- In order to accelerate the starting speed, it is recommended to complete the development of IVT QSPI NOR parameter header and add parameter header in IVT.
- In order to accelerate the startup speed, it is recommended to use 200Mhz, DDR, External DQS, Auto update mode to better adapt to temperature and other environmental factors, so if possible, try to use Auto update mode.
- If there are problems in the final high-speed mode development, you can use 133Mhz SDR Padloopback, bypass mode ->200 Mhz DDR external DQS bypass mode ->200 Mhz DDR external DQS Auto update mode to gradually upgrade the development in order to avoid block bringing up.

5 Develop MCAL Fls driver

Refer to the document <<AN13563: S32G QuadSPI Deep Dive Application note>>, chapter 6 Flash Driver configuration method – EB tresos, Understand the development of Flash MCAL Fls driver. Note that the development of the Fls driver can use Lauterbach debugging, so this work can be arranged flexibly after the development of the Lauterbach script driver (optional), or after the development of the Flash tool algorithm image/IVT parameter header.

In addition, NXP uses EB by default to configure Flash drivers, while some other Autosar vendors, such as Vector, use Davinci configuration work to configure Flash drivers. The interfaces of the two are different and the contents are the same. This article describes EB configuration.

As mentioned in the reference document, the Fls driver configuration includes three parts: the S32G Flash controller, the Flash Memory and the Fls sector. If replaces a new Flash. The main work focuses on the modification of the Flash Memory.

5.1 MCAL FIs Driver Project Details

5.1.1 MCAL FIs Driver Project

Take SW32G_RTD_4.4_4.0.2 as sample:

EB tresos Studio 27.1->File->Import->General->Existing Pojects into Workspace->Next->Select root directory->Browse to C:\NXP\SW32G2_RTD_4.4_4.0.2\eclipse\plugins\ Fls_TS_T40D11M40I2R0\examples\EBT\ S32G3\Fls_Example_S32G399A_M7\TresosProject

Copy projects intow workspace->Finish.

Right click the project name Fls_Example_S32G399A_M7, and select Generate Project. The configuration source code file is generated. If you need to modify the configuration, save it and regenerate it.

Open the properties of the EB project and select Configuration Project ->Code Generator. The generated code will be placed in this relative path by default: ".... Generate". Therefore, after generating the code according to the previous step, the code will be placed in this relative path. At this time, you need to manually set all files in this relative directory (for example, the default workspace is under C:\EB\tresos\generate to C:\NXP\SW32G2_RTD_4.4_4.0.2\eclipse\plugins\

Fls_TS_T40D11M40I2R0\examples\EBT\S32G3\Fls_Example_S32G399A_M7\generate\. Open Make file:

C:\NXP\SW32G2_RTD_4.4_4.0.2\eclipse\plugins\Fls_TS_T40D11M40I2R0\examples\EBT\S32G 3\Fls_Example_S32G399A_M7\project_parameters.mk

Modify the following parameters according to the path of your PC:

- TOOLCHAIN = gcc //Defaul MCAL using GCC.
- GCC_DIR= C:/NXP/S32DS.3.4/S32DS/build_tools/gcc_v9.2/gcc-9.2-arm32-eabi //S32DS GCC compiler path
- TRESOS_DIR= C:/EB/tresos // The installation path of EB Tresos Studio corresponding to this RTD.
- T32_DIR= C:/T32 //The installation path of Lauterbach's debugging software T32.
- PLUGINS_DIR // The path of RTD Plugins is relative by default, and generally does not need to be modified.
- MCAL_MODULE_LIST := BaseNXP Det Rte Fls MemIf Mcu Port Rm // Other Mcal modules that the Fls driver depends on.

In file Makefile defined: ifneq (,\$(findstring S32G3,\$(EXAMPLE_DERIVATIVE)))

• FAMILY := S32G3XX

Launch Cygwin and enter:

C:\NXP\SW32G_RTD_4.4_4.0.2\eclipse\plugins\Fls_TS_T40D11M40I2R0\examples\EBT\S32G3\ Fls Example S32G399A M7

Input command: make build wait for compiling finished.

5.1.2 Fls driver source code

Main()

->Mcu_Init(NULL_PTR);

->Mcu_InitClock(McuClockSettingConfig_0);

-> Mcu DistributePllClock();

|->Port_Init(NULL_PTR);

<pre>-> Fls_Init(NULL_PTR);</pre>
->Fls_IPW_Init();
->Fls_IPW_InitControllers
->Qspi_Ip_ControllerInit
->Qspi_Ip_Disable
->Qspi_Ip_ConfigureController
->Qspi_Ip_ConfigureControllerA
->Qspi_Ip_SetMemMapSizeA
->Qspi_Ip_SetIdleLineValuesA
->Qspi_Ip_SetCenterAlignedStrobeA
->Qspi_Ip_SetDifferentialClockA
->Qspi_Ip_SetSerialFlashAddress
->Qspi_Ip_SetAddrOptions
->Qspi_Ip_SetByteSwap
->Qspi_Ip_SetRxCfg
->Qspi_Ip_SetCsTime
->Qspi_Ip_SetCsHoldTime
->Qspi_Ip_SetCsSetupTime
->Qspi_Ip_ConfigureReadOptions
->QSPI_DQS_Enable
->QSPI_DQS_LatEnable
->QSPI_DDR_Enable
->Qspi_Ip_SetDataInHoldTime
->Qspi_Ip_SetDQSSourceA
->Qspi_Ip_SetRxDLLTapA
->Qspi_Ip_ConfigureChipOptions
->Qspi_Ip_Enable
->Qspi_Ip_SwReset
->Qspi_Ip_ConfigureDLL
->Qspi_Ip_ConfigureDLLA
->Fls_IPW_InitMemories
->Qspi_Ip_Init
//Reset QSPI

| | |->Qspi Ip InitReset(instance, pConfig->initResetSettings.resetCmdLut, pConfig->initResetSettings.resetCmdCount, state); 1 | | ->Qspi Ip InitLutSeq /* Copy sequence in LUT registers */ | | |->Qspi Ip IpCommand /* Run QSPI command */ | |->Qspi_Ip_InitDevice | | | |->Qspi_Ip_InitOperation //Initialize (Reset) QSPI NOR to DTR-OPI mode according to the configuration on the InitConfiguration page. case QSPI IP OP TYPE RMW REG: /* Change a bitfield in the register */ status = Qspi Ip InitRMWReg(instance, &initOperations[initOp]); case QSPI IP OP TYPE QSPI CFG: /* Re-initialize QSPI controller with the given configuration */ (void)Qspi Ip ControllerDeinit(state->connection->qspiInstance); status = Qspi Ip ControllerInit(state->connection->qspiInstance, initOperations[initOp].ctrlCfgPtr); | |->Qspi Ip AhbReadEnable /* Configure the AHB reads for flash unit "cnt" */ | |->Fls IPW CheckDevicesId(); | | |->Fls IPW DeviceIdMatches | | | |->Qspi Ip ReadId Qspi Ip RunReadCommand(instance, state->configuration->readIdSettings.readIdLut, 0U. data, NULL PTR, state->configuration->readIdSettings.readIdSize); |->Fls InitBuffers(); ->FIs Erase(LOGICAL START ADDR, NUMBER OF EXTERNAL SECTOR * EXTERNAL SECTOR SIZE); | |-> FLS JOB ERASE : Fls DoJobErase -> Fls IPW SectorErase ->Qspi Ip EraseBlock | |->Qspi Ip BasicErase | | | ->Qspi_Ip_SerialflashSectorErase

| | | | | |->Qspi_Ip_WriteEnable

```
| | | | | | | ->Qspi_Ip_RunCommand(instance, eraseLut, address);
|->Fls_Write(LOGICAL_START_ADDR, TxBuffer, FLS_BUF_SIZE);
...
|->Fls_Read(LOGICAL_START_ADDR, RxBuffer_IP, FLS_BUF_SIZE);
...
|->Fls_Compare(LOGICAL_START_ADDR, TxBuffer, FLS_BUF_SIZE);
...
|-> Fls_GetAhbData();
...
```

So pay attention to the reinitialization configuration of QSPI NOR in the InitConfiguration configuration page.

See Section 5.4 for testing.

5.2 FIsMem Configuration page

Fls_Example_S32G399A_M7->somId(...)->Fls(...)->FlsMem->FlsMem_0:

- Flash Device Name= Gigadevice
- Flash memory alignment (1 -> 16) =1 // Address alignment required for external Flash (1, 2 or 4 bytes...) in OCTA DTR mode (DOPI)
- Enable Ahb Direct Reads = Checked // After setting, QSpi_Ip_AhbReadEnable() will be called from Fls_Init() to allow reading through AHB. The application can be read directly through the address mapping of the Flash device. That is, in addition to the IP access method, you can also read the content mapped by QSPI NOR flash from the AHB address starting with 0x0.
- Flash memory device initial configuration= /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI // The configuration reference that will be used to initialize the Flash device.
- QSPI controller instance= /Fls/Fls/FlsConfigSet/FlsExternalDr/FlsController_0 // The QSPI controller instance to which this Flash device is connected.
- // Note that the above two items are the configurations during QSPI NOR initialization. The description of AN13563 is:

1. The bootROM booted by QuadSPI can be configured with external Flash, and high-speed communication in OPI mode can be realized through the QuadSPI parameters of IVT.

2. The QuadSPI driver initializes the external Flash by sending the reset command to the external Flash. After reset, the external Flash becomes the default state of SPI mode. You need to reconfigure the external Flash and set the QuadSPI controller to the corresponding mode (usually OPI mode)

3. Re configure the external Flash and QuadSPI controllers in OPI mode for the Fls drive to improve QSPI performance.

So Mcal Fls does not depend on the default state of Flash. It will reset to the initialization state, and then reinitialize Flash. This is different from the Fls driver in Bootloader. Therefore, the Fls example has two types of QSPI controller configurations to adapt to external Flash.

1. ControllerCfg_0 shows the configuration of SPI mode of external Flash. Used to initialize Flash in SPI mode.

2. ControllerCfg_1 displays the configuration of OPI mode of external Flash. OPI mode for normal operation.

• Connection type=QSPI_IP_SIDE_A1 // The connection type between the flash device and the controller: QSPI_IP_SIDE_A1-A1 side serial Flash.

5.3 MemCfg Configuration page

Fls_Example_S32G399A_M7->somId(...)->Fls(...)->Fls->MemCfg-> MemCfg_DOPI:

5.3.1 FIs External Configuration page

- Flash device size (0x0 -> 0xffffffff) =0x2000000 // The size of this Flash device (in bytes), GD25LX256E is 32MB.
- Flash device page size (0 -> 4294967295) =256 // The page size (in bytes) of this Flash device. The page size is the maximum amount of data that the Flash device can write in a single write operation// GD25LX256E is 256 Bytes per programmable page
- Read LUT index =/Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/Read_dopi // Reference to the LUT sequence ID that will be used for the read operation, using DOPI mode.
- Write LUT index=/Fls/Fls/Fls/ConfigSet/FlsExternalDr/MemCfg_DOPI/Write_dopi // Reference to the LUT sequence ID that will be used for write operations, using DOPI mode.
- Read Id LUT Index= /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/ReadId_dopi // Refer to the LUT sequence ID, which will be used to read the device/manufacturer ID.
- Read Id size (0 -> 4)= 3 The size of the information returned by the readId command (in bytes)// Generally, it is 1-byte manufacure id and 2-byte device id.

• Fls Qspi Device Id = 0x19:68:C8 // QSPI NOR memory ID. If the related

"FLS_E_UNEXPECTED_FLASH_ID" error is enabled, the configured value will be checked according to the value read from memory during initialization. Use the configured read_ID LUT sequence to read the memory ID from the memory. Note: This parameter can only be configured when using Read Id LUT index reference.

GD25LX256E is:

Table of ID Definitions GD25LX256E								
	Operation Code	M7-M0	ID23-ID16	ID15-ID8	ID7-ID0			
	9FH/9EH	C8	68	19	FF			

And MX25UW51245G= 0x3A:81:C2

Table 10. ID Definit

RDID	OFh	Manufacturer ID	Memory type	Memory density					
	9Fh	C2	81	3A					

- Erase type 1 LUT index = /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/Erase_dopi // Erase the LUT sequence ID reference for type 1.
- Erase type 1 size (1 -> 32)=12 // The size of the erased area (in bytes): 2 ^ size; For example, 0x0C represents 4K bytes Sector of 4K Byte
- Read status register LUT index initialization = /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/ReadSR // Read the LUT sequence ID reference of the status register command. This sequence is used for the initialization phase. For example, if the initial state of Flash is SPI, this should be a SPI sequence.
- Read status register LUT index = /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/ReadSR_dopi // Read the LUT sequence ID reference of the status register command. The normal mode is DOPI mode.
- Write status register LUT index=/Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/WriteSR_dopi // LUT sequence ID reference for write status register command.
- Status register write enable LUT index=/Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/WriteEnable_dopi // Status register writes LUT sequence ID reference of enable command
- Write enable LUT index=/Fls/Fls/Fls/ConfigSet/FlsExternalDr/MemCfg_DOPI/WriteEnable_dopi // Write the LUT sequence ID reference of the enable command.

MX25UW51245G's status register of is defined as follows:

- Size in bytes of status register $(1 \rightarrow 4) = 1 //$ Size of the status register (in bytes)
- Position of busy bit $(0 \rightarrow 31)=0$, busy bit active value $(0 \rightarrow 1)=1$
- Position of Write Enable bit $(0 \rightarrow 31) = 1$

• Offset of block protection bits (0 -> 31) =2, Width of block protection bitfield (0 -> 32) =4, Value of block protection bitfield (0 -> 15)

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Reserved	Reserved	BP3 (level of protected block)	BP2 (level of protected block)	BP1 (level of protected block)	BP0 (level of protected block)	WEL (write enable latch)	WIP (write in progress bit)
Reserved	Reserved	(note 1)	(note 1)	(note 1)	(note 1)	1=write enable 0=not write enable	1=write operation 0=not in write operation
Reserved	Reserved	Non-volatile bit	Non-volatile bit	Non-volatile bit	Non-volatile bit	volatile bit	volatile bit

Status Register

So the status registers of corresponding GD25LX256E are defined as follows: they are the same.

- Size in bytes of status register $(1 \rightarrow 4) = 1 //$ Size of the status register (in bytes)
- Position of busy bit $(0 \rightarrow 31)=0$, busy bit active value $(0 \rightarrow 1)=1$
- Position of Write Enable bit $(0 \rightarrow 31) = 1$
- Offset of block protection bits (0 -> 31) =2, Width of block protection bitfield (0 -> 32)=5, Value of block protection bitfield (0 -> 15)=0

No.	Bit Name	Description	Note
S7	SRP0	Status Register Protection	Non-volatile writable
S6	BP4	Block Protect Bits	Non-volatile writable
S5	BP3	Block Protect Bits	Non-volatile writable
S4	BP2	Block Protect Bits	Non-volatile writable
S3	BP1	Block Protect Bits	Non-volatile writable
S2	BP0	Block Protect Bits	Non-volatile writable
S1	WEL	Write Enable Latch	Volatile, read only
S0	WIP	Erase/Write In Progress	Volatile, read only

- resetSettings.Reset LUT index= /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/RuntimeReset // eference to the LUT sequence ID from the first command of the reset sequence. Reset command in Runtime status.
- resetSettings. Number of reset commands $(1 \rightarrow 255) = 2 //$ Number of commands in reset sequence
- initResetSettings.Reset LUT index= /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/ InitReset // Reference to the LUT sequence ID from the first command of the reset sequence. Reset command in SPI 1 line mode during initialization.
- initResetSettings. Number of reset commands (1 -> 255) =2 / Number of commands in reset sequence

• Configure controller on flash Init= /Fls/Fls/FlsConfigSet/FlsExternalDr/ControllerCfg_SDR // Initialization is in SPI SDR 1 line mode.

5.3.2 InitConfigureation Configuration page

This configuration page describes the list of operations that must be performed during initialization to keep the memory in the required operation state. For example, activate XPI mode and 4-byte addressing.

5.3.2.1 Write_cr2_dopi

- Operation type = QSPI_IP_OP_TYPE_RMW_REG // he operation type can be one of the following: QSPI_IP_OP_TYPE_RMW_REG - RMW command on external Flash register
- First LUT index= /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/RDCR // RDCR2 // Index of the first command sequence in Lut; For the RMW type, this is the read command.//Note that the DOPI mode is set in the configuration register 2 for MX25UW51245G, but in the configuration register for GD25LX256E, so the name should be modified first to avoid misunderstanding. The name of the subsequent FlsLUT table should also be modified accordingly
- Second LUT index= /Fls/Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/WRCR // WRCR2 // The index of the second command sequence in Lut is only used for RMW type, which is a write command.
- Write Enable LUT Index= /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/WriteEnable // Write the index of the enable command, if necessary, before writing the command. For write and RMW operations only.

Address Bit Name		Name	Description	Default	
2	DHO	CODI (CTD ODI Cashis)	0= STR OPI disable	0	
0006	BILU	SOPT (STR OPTENable)	1= STR OPI enable	U	
0000	Bit 1		0= DTR OPI disable	0	
		DOPI(DIR OPIEnable)	1= DTR OPI enable	U	
	Bit 0	DOSPEC (DTP DOS pro guelo)	0= 0 cycle	0	
		DUSPRC (DTR DUS pie-cycle)	1= 1 cycle	U	
200h	Dit 1	DOS (DOS on STR mode) 0= Disable		0	
	DICT	DOS (DOS ON STICINODE)	1= Enable	U	
	Bit [6:4]	DQSSKW (DQ to DQS Skew)	Refer to "DQ to DQS Skew Table"	000	
300h	Bit [2:0]	DC (Dummy cycle)	Refer to "Dummy Cycle and Frequency Table (MHz)"	000	
500h	Bit 0	PSB (Pattern Select Bit)	Refer to "Preamable Pattern Select Bit Table"	0	

• //MX25UW51245G's configuration register 2 is defined as:

- Command address (0 -> 4294967295) =0 //address, if command use it
- Register size $(1 \rightarrow 4) = 1$ //The size of the configuration register in bytes.
- Bit-field offset (0 -> 32) =1, Bit-field width (0 -> 32)=1, Bit-field value (0 -> 4294967295)=1 //GD25LX256E is:

Addr	Settings	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Description
		1	1	1	1	1	1	1	1	SPI with DQS (Default)
		1	1	0	1	1	1	1	1	SPI W/O DQS
		1	1	1	0	0	1	1	1	Octal DTR with DQS
<0>	I/O mode	1	1	0	0	0	1	1	1	Octal DTR W/O DQS
		1	0	1	1	0	1	1	1	Octal STR with DQS
		1	0	0	1	0	1	1	1	Octal STR W/O DQS
		Other	s							Reserved

Table 8. Nonvolatile Configuration Register

So need configure to:

- Command address $(0 \rightarrow 4294967295) = 0 // address$, if command use it
- Register size $(1 \rightarrow 4) = 1 //$ The size of the configuration register in bytes.
- Bit-field offset (0 -> 32) =0, Bit-field width (0 -> 32)=8, Bit-field value (0 -> 4294967295)=231=0xE7

5.3.2.2 Ext_dqs

- Operation type = QSPI_IP_OP_TYPE_QSPI_CFG // The operation type can be one of the following: QSPI_IP_OP_TYPE_QSPI_CFG - Reconfigure QSPI controller
- Controller configuration = /Fls/Fls/FlsConfigSet/FlsExternalDr/ControllerCfg_DDR_DQS_External // Reference to the configuration that will be used to initialize the controller. Only valid for QSPI_IP_OP_TYPE_QSPI_CFG operation. After initializing QSPI NOR to DOPI mode, reconfigure the control to DDR DQS external mode.

5.3.3 FIsLUT Configuration page

Configuration page used to configure the lookup table containing all instruction/operand sequences. A sequence consists of a series of up to 8 instruction/operand pairs, which can store up to 4 LUTs. These LUTs will be executed whenever a command is triggered to the external Flash. Note that this is the most important part of modifying a new Flash, and it needs to be modified according to the data manual of QSPI NOR.

Because previously in Chapter 2/4, we have analyzed:

• Read_dopi:							
	MX25U51245G(Reference)	GD25LX256E(Design)					

ED Conf	FisInstructionOperandPair		FlsInstructionOperandPair			21
EB Com.	Ind In Name III In Fis LUT Instruction	Fls LUT Pad Fls GOSPLIP LUT PADS 8 Oxee	Ind 🐸 Name	🗟 🖹 Fls LUT Instruction	Fls LUT Pad	Fls
	1 FIsInstructionOperandPair_1 I QSPI_IP_LUT_INSTR_CMD_DDR	QSPI_IP_LUT_PADS_8 Ox11 OSPI_IP_LUT_PADS_8 Ox20	0 FlsInstructionOperandPair_0 1 FlsInstructionOperandPair_1	QSPI_IP_LUT_INSTR_CMD_DDR QSPI_IP_LUT_INSTR_CMD_DDR	 QSPI_IP_LUT_PADS_8 QSPI_IP_LUT_PADS_8 	0xfd 0x2
	3 PFIshstuctionOperandPair 3 3 3 CSPI_IP_UD_INSTR_DUM_DUX	QSPLIP_LUT_PADS_8 a 0x14	2 PlsInstructionOperandPair_2	2 QSPI_IP_LUT_INSTR_ADDR_DDR	QSPI_IP_LUT_PADS_8	0x20
	4 🐱 FisinstructionOperandPair 4 📾 4 🕮 QSPI IP LUT INSTR READ DDR	CSPI IP LUT PADS 8 C 0x10	4 BisInstructionOperandPair_3	4 QSPI_IP_LUT_INSTR_DUMMY	QSPI_IP_LUT_PADS_8	0x10

• WriteEnable: do not change.

	MX25U51245G	G(Reference)		GD25LX256E(Design)						
EB Conf.	FisinstructionOperandPair Ind. Name I O FisinstructionOperandPair_0	FIs LUT Instruction FIs QSPI_IP_LUT_INSTR_CMD	Fis LUT Pad Fis GSPI_IP_LUT_PADS_1 Ox6	FisInstructionOperandPair Ind Name FisInstructionOperandPair_0	Fis LUT Instruction A G & QSPLIP_LUT_INSTR_CMD	 Fls LUT Pad QSPI_IP_LUT_PADS_1 	Fls0x6			

• WRCR2 modified to WRCR command sequence:

	MX25U51245G(Reference)		GD25LX256E(Design)							
EB Conf.	HistoryclionOperandPair Ind@ Name Image: I	 Fls 0x72 0x20 0x1 	FisinstructionOperandPair Ind., Name Ind., FisinstructionOperandPair Ind., FisinstructionOperandPair Ind., Ind., FisinstructionOperandPair, FisinstructionOperandPair, Image: State S							

Therefore, this section only analyzes the remaining items:

5.3.3.1 Write_dopi

	MX25U	51245G(Refe	rence)		GD25L	.X256E(Design)	
EB Conf.					■ FlsInstruction Ind ← Nan 0 ← FlsIns 1 ← FlsIns 2 ← FlsIns 3 ← FlsIns	nonOperandPair ne la constructionOperandPair (0 ie 0 i structionOperandPair (1 ie 1 i structionOperandPair (2 ie 2 i structionOperandPair (3 ie 3 ii	Fls LUT Instruct QSPI_IP_LUT_IN QSPI_IP_LUT_IN QSPI_IP_LUT_IN QSPI_IP_LUT_IN	tion FISLUT Pad FISLUT PADS B 75K STR_CMD_DDR CSPLIP_LUT_PADS B 0x82 STR_CMD_DDR CSPLIP_LUT_PADS B 0x7d STR_ADDR_DDR CSPLIP_LUT_PADS B 0x20 STR_WRITE_DDR QSPLIP_LUT_PADS B 0x10
Details		Instr(6bits	Pads(2bits)	Operand(8bits)		Instr(6bits)	Pads(2bits)	Operand(8bits)
	4712	0x11(CM D_DDR)	0x3(8 bit)	0x12 0xed(Page	47 <mark>82</mark>	0x11(CMD _DDR)	0x3(8 bit)	0x82(Page program DTR OPI)
	47ed	0x11(CM D_DDR)	0x3(8 bit)	Program PP4B)	47 <mark>7</mark> d	0x11(CMD _DDR)	0x3(8 bit)	0x7d(0x82 inverted code)
	2b20	0xA(ADD R_DDR)	0x3(8 bit)	0x20(32 Addr bits to be sent on 4 pad)	2b20	0xA(ADDR _DDR)	0x3(8 bit)	0x20(32 Addr bits to be sent on 4 pad)
	3f10	0xF(WRI	0x3(8	0x10(write 16	3f10	0xF(WRIT	0x3(8	0x10(write 16 Bytes on

		TE_DDR)	bit)	Bytes on 4 pad)		E_DDR)	bit)	4 pad)	
Timing	Figure 72. Page P	Program (PP) Sequence (DTR	-OPI Mode)	N'a all		Figure 60. I	Page Program S	equence Diagram (DTR OPI)
Dialog	CS# SCLK SIO[7:0]		312242210/11 ⁶ 0)/1 ⁶		сs# — sclк i0[7:0] 7	0 1 	Address	3 Data in Idr.XByte1XByte2X	
Comment s	The Pag is for pro Write En instruction Enable I Page Pro PP3B/PI	e Program (PI ogramming th hable (WREN on must be ex Latch (WEL) b ogram (PP/ P4B) comman	P/PP3B/I e memory) ecuted to pit befor d.	PP4B) instruction ry to be "0". A o set the Write e sending each	The Oc the mer (WREN to set th the Pag	tal Page Progra nory using eigl N) command m ne Write Enable e Program com	am comn ht pins: I ust previ e Latch (nmand.	nand is for O[7:0]. A ously have WEL) bit	r programming Write Enable e been executed before sending

Note that the native MX25U51245G uses the Page Program (PP/PP3B/PP4B) command 02h/12h, which is the same as GD25LX256E. Here, it is modified as: Octal Page Program (82H/84H), so it is also possible to use the old command word. Here, it can be modified or not modified.

5.3.3.2 Erase_dopi: same, do not need modification

	MX25U	51245G(Refe	rence)		GD25LX256E(Design)				
EB Conf.	FisinstructionOpp Ind. I Name Ind. I Fisinstructi I Fisinstructi I Fisinstructi	randPair	JT Instruction P_LUT_INSTR_CMD_D P_LUT_INSTR_CMD_D P_LUT_INSTR_ADDR_	Fis LUT Pad Fis GSPUP_UT_PLUT_PADS_8 docset orde orde ODR docset_PLUT_PADS_8 orde ODR OSPUP_UT_PADS_8 orde	Name Erase. Fis LUT Fisinstruct Ind Ind Na 0 Ind Fisinstruct 1 Ind Fisinstruct 2 Ind	dopi ctionOperandPair ionOperandPair me	Fls LUT Instructio QSPI_IP_LUT_INSTI QSPI_IP_LUT_INSTI QSPI_IP_LUT_INSTI		
Details		Instr(6bits)	Pads(2bits)	Operand(8bits)		Instr(6bits)	Pads(2bits)	Operand(8bits)	
	4721	0x11(CM D DDR)	0x3(8 bit)	0x21	4721	0x11(CMD DDR)	0x3(8 bit)	0x21 (Sector Erase DTR OPI)	
	47de	0x11(CM D_DDR)	0x3(8 bit)	0xde(Sector Erase SE4B)	47de	0x11(CMD _DDR)	0x3(8 bit)	0xde(0x21's inverted code)	
	2b20	0xA(ADD R_DDR)	0x3(8 bit)	0x20(32 Addr bits to be sent on 4 pad)	2b20	0xA(ADDR _DDR)	0x3(8 bit)	0x20(32 Addr bits to be sent on 4 pad)	
Timing Dialog	Figure 63. S	ector Erase (SE) Sequ CS# SCLK	ence (DTR-O	PI Mode)	9.22 Se	ector Erase (SE	C) (20H/2	21H)	
		SIO[7:0]	<u>]//////X21h</u> X	DEh A A A A A A A A A A A A A A A A A A A					

Comment s	The Sector Erase (SE/SE3B/SE4B) instruction is for erasing the data of the chosen sector to be "1". The instruction is used for any 4K-byte sector. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL)	Figure 66. Sector Erase Sequence Diagram (DTR OPI) CS# SCLK Command Address IO[7:0] CS# Command Address IO[7:0] Command Addr. Addr
	Write Enable Latch (WEL) bit before sending the Sector Erase (SE/SE3B/SE4B).	

5.3.3.3 ReadSR_dopi

	MX25U	51245G(Refe	rence)		GD25LX256E(Design)				
EB Conf.	FisinstructionOpe Ind. w Name 0 Fisinstructic 1 Fisinstructic 2 Fisinstructic 3 Fisinstructic 4 Fisinstructic	And Pair and Pair and PerandPair, 0 = 0 = 0 = 0 SPL and OperandPair, 2 = 0 = 0 SPL and OperandPair, 2 = 2 = 0 SPL and OperandPair, 7 = 4 = 0 SPL and OperandPair, 7 = 4 = 0 SPL	UT Instruction IP_LUT_INSTR_CMD_I IP_LUT_INSTR_CMD_IP_LUT_INSTR_ADDR, IP_LUT_INSTR_DUMM IP_LUT_INSTR_READ	IFIs LUT Pad IFIs DDR GSPUP_LUT_PADS_8 0.45 DR GSPUP_LUT_PADS_8 0.46 DDR GSPUP_LUT_PADS_8 0.46 DDR GSPUP_LUT_PADS_8 0.42 Y II GSPUP_LUT_PADS_8 0.41 II GSPUP_LUT_PADS_8 0.41	Name & ReadS Fis LUT FisInstru Ind & Nat 0 & Fisin 1 & Fisin 2 & Fisin 3 & Fisin	R_dopi ctionOperandPair me R_R_R_R_R_R_R_R_R_R_R_R_R_R_R_R_R_R_R_	truction T_INSTR_CMD_DDR T_INSTR_CMD_DDR T_INSTR_DUMMY T_INSTR_READ_DDR		
Details		Instr(6bits	Pads(2bits)	Operand(8bits)		Instr(6bits)	Pads(2bits)	Operand(8bits)	
	4705	0x11(CM D DDR)	0x3(8 bit)	0x05 0xfa(RDSR DTR-OPI mode)	4705	0x11(CMD DDR)	0x3(8 bit)	0x05 (RDSR DTR-OPI)	
	47fa	0x11(CM D_DDR)	0x3(8 bit)		4702	0x11(CMD _DDR)	0x3(8 bit)	0xfa(0x05 inverted code)	
	2b20	0xA(ADD R_DDR)	0x3(8 bit)	0x20(32 Addr bits to be sent on 4 pad)					
	0f14	0x3(DUM MY)	0x3(8 bit)	0x14(20 dummy cycles)	0f <mark>08</mark>	0x3(DUM MY)	0x3(8 bit)	0x08(8 dummy cycles)	
	1f01	0x7(REA D)	0x3(8 bit)	0x1 (Read 1 Bytes on 4 pad)	2b01	0xE(READ _DDR)	0x3(8 bit)	0x1(Read 1Byte on 8 pad)	
								Because it is 8bit mode,change to READ_DDR	

5.3.3.4 WriteSR_dopi

	MX25U	51245G(Refe	rence)		GD25LX256E(Design)				
EB Conf.	FisinstructionOp Ind. Name O Fisinstructi 1 Fisinstructi 2 Fisinstructi 3 Fisinstructi	erandPair III - III - III - III - III - III onOperandPair, III - III - III - III onOperandPair, III - III - III - III onOperandPair, IIII - IIII - IIII onOperandPair, IIII - IIII onOperandPair, IIII - IIII onOperandPair, IIIII - IIIII onOperandPair, IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	UT Instruction JP_LUT_INSTR_CMD_[IP_LUT_INSTR_CMD_[IP_LUT_INSTR_ADDR JP_LUT_INSTR_WRITE	IFIs LUT Pad IFIs DDR III OSPILIP_LUT_PADS_8 IIII OSPILIP_LUT_PADS_8 DDR IIII OSPILIP_LUT_PADS_8 IIIII OSPILIP_LUT_PADS_8 DDR IIII OSPILIP_LUT_PADS_8 IIIII OSPILIP_LUT_PADS_8	Name De WriteS Fls LUT FlsInstruct Ind De Nar 0 De FlsIns 1 De FlsIns 2 De FlsIns	R, dopi tionOperandPair ne III Fis III Fis III tructionOperandPair, III III tructionOperandPair, III III tructionOperandPair, III	IFIS LUT Instructi O QSPI_IP_LUT_INS 1 QSPI_IP_LUT_INS 2 QSPI_IP_LUT_INS 2 QSPI_IP_LUT_INS	Image: Solution of the second secon	
Details		Instr(6bits	Pads(2bits)	Operand(8bits)		Instr(6bits)	Pads(2bits)	Operand(8bits)	
	4701	0x11(CM D_DDR)	0x3(8 bit)	0x01 0xfe(WRSR	4701	0x11(CMD _DDR)	0x3(8 bit)	0x01 (WRSR OPI)	
	47fe	0x11(CM D_DDR)	0x3(8 bit)	0xfe(WRSR DTR-OPI Mode)	47fe	0x11(CMD _DDR)	0x3(8 bit)	0xfe(0x01 inverted code)	
	2b20	0xA(ADD R_DDR)	0x3(8 bit)	0x20(32 Addr bits to be sent on 4 pad)					
	2301	0x08(WRI TE)	0x3(8 bit)	0x01(write 1 Bytes on 4 pad)	3F01	0xF(WRIT E_DDR)	0x3(8 bit)	0x01(write 1 Bytes on 4 pad)	
								Because it is 8bit mode,change to WRITE_DDR	

Timing Dialog	Figure 24. Write Status Register (WRSR) Sequence (DTR-OPI Mode) CS# SCLK SIO[7.0]	Figure 23. Write Status Register Sequence Diagram (OPI) CS# 0 1 SCLK 0 1 INC[7:0] ✓/// 01H SR7-0
Comment s	The WRSR instruction is for changing the values of Status Register Bits and Configuration Register Bits. Before sending WRSR instruction, the Write Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in advance. The WRSR instruction can change the value of Block Protect (BP3, BP2, BP1, BP0) bits to define the protected area of memory	The Write Status Register (WRSR) command allows new values to be written to the Status Register. Before it can be accepted, a Write Enable (WREN) command must previously have been executed. After the Write Enable (WREN) command has been decoded and executed, the device sets the Write Enable Latch (WEL).

5.3.3.5 WriteEnable_dopi: same, do not need modifcation

	MX25U	51245G(Refe	rence)		GD25LX256E(Design)				
EB Conf.	■ FIsInstructionOp Ind	erandPair DonOperandPair_0 Do 0 QSPL onOperandPair_1 Do 1 QSPL 0 QSPL	UT Instruction IP_LUT_INSTR_CMD_E IP_LUT_INSTR_CMD_E	Image: Figure 1 Figure 2 Figure 2	□ FishistructionOperandPair Ind ● Name □ □ If Is LUT Instruction □ If Is LUT Pad □ If Is. 0 ● FishistructionOperandPair.0 □ □ ○ If Is LUT Instruction □ □ FishistructionOperandPair.0 □ □ ○ □ ○ □ ○				
Details		Instr(6bits	Pads(2bits)	Operand(8bits)		Instr(6bits)	Pads(2bits)	Operand(8bits)	
	4706	0x11(CM D_DDR)	0x3(8 bit)	0x06	4706	0x11(CMD _DDR)	0x3(8 bit)	0x06 (WREN OPI Mode)	
	47f9	0x11(CM D_DDR)	0x3(8 bit)	DTR-OPI Mode)	47f9	0x11(CMD _DDR)	0x3(8 bit)	0xf9(0x06 inverted code)	
Timing	Figure 7. Write Enable (WREN) Sequence (DTR-OPI Mode)					Figure 17. Write Enable Sequence Diagram (OPI)			
Dialog	СS# SCLK SIO[7:0] ////////(Обh () F9h)					CS# SCLK K Command⊁ IO[7:0] 7/// 06H V////			
Comment s	The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP/ PP3B/PP4B, SE/SE3B/SE4B,					The Write Enable (WREN) command is for setting the Write Enable Latch (WEL) bit. The Write Enable Latch (WEL) bit must be set prior to every Page Program (PP), Sector Erase (SE) Block Erase (BE) Chin Erase (CE)			

BE/BE3B/BE4B, CE, WRSR, WRCR2, SBL,	Write Status Register (WRSR), Write Extended Address
WRFBR, ESFBR, WRSCUR, WRLR,	Register (WEAR), Write Nonvolatile/Volatile configure
WSPB and ESSPB which are intended to	register and Erase/Program Security Registers command.
change the device content WEL bit should be	
set every time after the	
WREN instruction setting the WEL bit. WREN	
is is also required before initiation of	
write-to-buffer sequence (WRBI	
commond)	
command).	

5.3.3.6 ResetEnable_dopi/Reset_dopi: same, do not need modifcation

	MX25U	51245G(Refe	rence)		GD25LX256E(Design)			
ResetEna ble_dopi EB Conf.	■ FlsInstructionOpe Ind Para Name 0 FlsInstructio 1 FlsInstructio	noperandPair_1	JT Instruction IP_LUT_INSTR_CMD_D IP_LUT_INSTR_CMD_D	In Fls LUT Pad In Fls DR Id SPL_IP_LUT_PADS_8 In 0x66 DR Id SPL_IP_LUT_PADS_8 In 0x99	HeinstructionOperandPair Ind Name Ind Fis.UIT Instruction InstructionOperandPair_1 III III GSP1/IP_LUT_INSTR_CMD_DDR InstructionOperandPair_1 IIII IIII GSP1/IP_LUT_INSTR_CMD_DDR InstructionOperandPair_1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			
ResetEna ble_dopi		Instr(6bits	Pads(2bits)	Operand(8bits)		Instr(6bits)	Pads(2bits)	Operand(8bits)
Details	4766	0x11(CM D DDR)	0x3(8 bit)	(8) 0x66 0x99(RSTEN) 0DTR-OPI mode)	4766	0x11(CMD DDR)	0x3(8 bit)	0x66 (RSTEN)
	4799	0x11(CM D_DDR)	0x3(8 bit)		4799	0x11(CMD _DDR)	0x3(8 bit)	0x99(0x66 inverted code)
Reset_do pi EB Conf.					Name Reset_dopi Fis LUT FisInstructionOperandPair Ind Name 0 FisInstructionOperandPair 0 FisInstructionOperandPair 1 FisInstructionOperandPair 1 FisInstructionOperandPair 0 FisInstructionOperandPair 1 FisInstructionOperandPair 0 FisInstructionOperandPair 0 FisInstructionOperandPair 0 FisInstructionOperandPair 0 Serie II ut PADS & a 0 Oserie II ut PADS & a 0 Oserie II ut PADS & a			
Reset_do pi		Instr(6bits	Pads(2bits)	Operand(8bits)		Instr(6bits)	Pads(2bits)	Operand(8bits)
Details	4799	0x11(CM D_DDR)	0x3(8 bit)	0x99 0x66(RST	4799	0x11(CMD _DDR)	0x3(8 bit)	0x99 (RST)
	47660x11(CM D_DDR)0x3(8 bit)DTR-OPI mode)	DTR-OPI mode)	4766	0x11(CMD _DDR)	0x3(8 bit)	0x66(0x99的补码)		
Timing Dialog	Figure 129. Res	cs#	inde)	Tong	Figure 112. Enable Reset and Reset command Sequence Diagram (OPI)			

Comment	The Software Reset operation combines two	If the Reset command is accepted, any on-going internal		
comment	instructions: Reset-Enable (RSTEN) command	operation will be terminated and the device will return to		
5	following a Reset (RST)	its default power-on state and lose all the current volatile		
	command. It returns the device to a standby	settings, such as Volatile Status Register bits, Write		
	mode. All the volatile bits and settings will be	Enable Latch status (WEL), Program/Erase Suspend		
	cleared then, which	status, Read Parameter setting (P7-P0), Deep Power		
	makes the device return to the default status as	Down Mode, Continuous Read Mode bit setting		
	power on.	(M7-M0).		
	To execute Reset command (RST), the	When Flash is in OPI Mode, DTR Mode or Continuous		
	Reset-Enable (RSTEN) command must be	Read Mode (XIP), 66H&99H cannot reset Flash to		
	executed first to perform the	power-on state. Therefore, it is recommended to send the		
	Reset operation. If there is any other command	following sequence to reset Flash in these modes:		
	to interrupt after the Reset-Enable command,	1. 8CLK with IO<7:0>=all "H" or all "L": ensure Flash		
	the Reset-Enable will	quit XIP mode		
	be invalid.	2. OPI format 66H/99H: ensure Flash in OPI mode and		
	If the Reset command is executed during	DTR mode can be reset		
	program or erase operation, the operation will	3. SPI format 66H/99H: ensure Flash in SPI mode can be		
	be disabled, the data under	reset		
	processing could be damaged or lost.	The "Enable Reset (66H)" and the "Reset (00H)"		
	The reset time is different depending on the last	commands can be issued in either SPI or OPI mode		
	operation	commands can be issued in cluter STT of OTT mode.		
	operation			

5.3.3.7 ReadId_dopi

	MX25U51245G(Reference)					GD25LX256E(Design)				
EB Conf.	FishtstuctionOperandPair Ind@ Name Ind@ FishtstuctionOperandPair_0 Ind@ SPI_IP_LUT_NSTR_CMO_DDR Ind_@ SPI_IP_LUT_PADS_8 Ind_@ SPI_IP_LUT_NSTR_ODR_DDR Ind_@ SPI_IP_LUT_NSTR_ODR_DDR Ind_@ SPI_IP_LUT_PADS_8 Ind_@ SPI_IP_LUT_NSTR_DDR_DDR InstructionOperandPair_0 Ind_@ SPI_IP_LUT_NSTR_DDR_DDR InstructionOperandPair_0 Ind_@ SPI_IP_LUT_NSTR_READ InstructionOperandPair_T Ind_@ SPI_IP_LUT_NSTR_READ InstructionOperandPair_T Ind_@ SPI_IP_LUT_NSTR_READ					GD23LA23OE(Design) Name Readid.dopi Fis.UUT FishistructionOperandPair Ind_ @ Name Ind_ @ Fis.UUT Instruction Ind_ @ Name Ind_ @ Fis.UUT Instruction Ind_ @ Name Ind_ @ GPU.P.UUT.NSTR_CMD_DDR Ind_ @ FishistructionOpe @ I ind QSPU.P.UUT.INSTR_CMD_DDR Ind SSPU.P.UUT.PADS.8 I ind QSPU.P.UUT.INSTR_CMD_DDR Ind QSPU.P.UUT.PADS.8 I ind QSPU.P.UUT.INSTR_READ_DDR Ind QSPU.P.UUT.PADS.8 I ind QSPU.P.UUT.PADS.8 India				
Details		Instr(6bits	Pads(2bits)	Operand(8bits)		Instr(6bits)	Pads(2bits)	Operand(8bits))	
	479f	0x11(CM D DDR)	0x3(8 bit)	0x9f 0x60(RDID	479f	0x11(CMD DDR)	0x3(8 bit)	0x9f/9e(RDID DTR-OPI)		
	4760	0x11(CM D_DDR)	0x3(8 bit)	DTR-OPI mode)	4760	0x11(CMD _DDR)	0x3(8 bit)	0x60/61(0x9f/ inverted code)	9e	
	2b20	0xA(ADD R_DDR)	0x3(8 bit)	0x20(32 Addr bits to be sent on 4 pad)						
	0f04	0x3(DUM MY)	0x3(8 bit)	0x04(4 dummy cycles)	0f0 <mark>8</mark>	0x3(DUM MY)	0x3(8 bit)	0x0 <mark>8(8</mark> dummy	у сус	cles)
	1f04	0x07(REA D)	0x3(8 bit)	0x04(Read 4 Bytes on 4 pad)	3b04	0xE(READ _DDR)	0x3(8 bit)	0x04(Read 4 E pad)	Bytes	s on 4

		Because it is 8bit mode, change to READ DDR
Timing Dialog	Figure 13. Read Identification (RDID) Sequence (DTR-OPI Mode) cs#	Figure 84. Read Identification ID Sequence Diagram (DTR, OPI) CS# 0 8 9 10 11 SCLK 0 8 9 10 11 IO[7:0] 7/// 9FH/9EH Dummy Pre-drive MID / DID / DID / DID / DID / DID / DID DID / DID / DID / DID / DID DQS Read 9Fh/9Eh 1-0-(1) 0 8-0-(8) 8 0 1 to 4
Comment s	The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The Macronix Manufacturer ID and Device ID are listed as <i>Table 10</i> ID Definitions	The Read Identification (RDID) command allows the 8-bit manufacturer identification to be read, followed by three Bytes of device identification. The device identification indicates the memory type in the first Byte, and the memory capacity of the device in the second Byte. The Read Identification (RDID) command while an Erase or Program cycle is in progress, is not decoded, and has no effect on the cycle that is in progress. The Read Identification (RDID) command should not be issued while the device is in Deep Power-Down Mode.

5.3.3.8 Change RDCR2 to RDCR

	MX25U51245G(Reference)					GD25LX256E(Design)			
EB Conf.	RDCR2 FistruttorClonOperandPair Bit III Instruction Fis LUT Pad Fis. Fis LUT Fis LUT Pad Fis. Fis LUT Fis LUT Pad Fis. Fis LUT Fis LUT Fis LUT Fis LUT Fis LUT Fis LUT Fis LUT Fis LUT Fis LUT Fis LUT Fis LUT Fis LUT Fis LUT Fis LUT Fis LUT Fis LUT Fis LU					RDCR: Ind			
Details		Instr(6bits	Pads(2bits)	Operand(8bits)		Instr(6bits)	Pads(2bits)	Operand(8bits)	
	0471	0x01(CM D)	0x0(1 bit)	0x71(RDCR2 SPI Mode)	0485	0x01(CMD	0x0(1 bit)	0xb5/85 (Read Nonvolatile/Volatile Configuration Register) Attention, read Volatile register.	
	0820	0x02(AD DR)	0x0(8 bit)	0x20(32 Addr bits to be sent on 4 pad)	0818	0x02(ADD R)	0x0(1 bit)	0x18(24 Addr bits to be sent on 1 pad)	
					0c08	0x3(DUM MY)	0x0(1 bit)	0x08(8 dummy cycles)	
	1c01	0x07(REA	0x0(1	0x01(Read 1	1c01	0x07(REA	0x0(1	0x01(Read 1 Bytes on 1	

	D) bit) Bytes on 1 pad)	D) bit) pad)					
Timing	Figure 28. Read Configuration Register 2 (RDCR2) Sequence (SPI Mode)						
Dialog		Figure 35. Read Configuration Registers Sequence Diagram (SPI) CS# 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 SCLK 0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 SCLK Command 24-bit address -					
		Read Nonvolatile BGN 1-1-(1) 8 8-8-(8) 8-8-(8) 8 3(4) 1 Register Configuration 85h 1-1-(1) 8 8-8-(8) 8 3(4) 1 Register Image: Configuration 85h 1-1-(1) 8 8-8-(8) 8 3(4) 1					
Comment s	The RDCR2 instruction is for reading Configuration Register 2.	The Read Nonvolatile/Volatile Configuration Register command is for reading the Nonvolatile/Volatile Configuration Registers. It is followed by a 3-Byte address (A23-A0) or a 4-Byte address (A31-A0) and a dummy Byte, and each bit is latched-in on the rising edge of SCLK. Then the Configuration Register, at that address, is shifted out on SO, and each bit is shifted out, at a Max frequency fC, on the falling edge of SCLK. Read Nonvolatile/Volatile Configuration Register command, while an Erase, Program or Write cycle is in progress, is rejected without having any effects on the cycle that is in progress.					

5.3.3.9 ReadSR: same, do not need modifcation

EB Conf.	MX25U51245G(Reference)			GD25LX256E(Design)				
Details		Instr(6bits	Pads(2bits)	Operand(8bits)		Instr(6bits)	Pads(2bits)	Operand(8bits)
	0405	0x01(CM D	0x0(1 bit)	0x05(RDSR SPI mode)	0405	0x01(CMD	0x0(1 bit)	0x05(RDSR SPI mode)
	1c01	0x07(REA D)	0x0(1 bit)	0x01(Read 1 Bytes on 1 pad)	1c01	0x07(REA D)	0x0(1 bit)	0x01(Read 1 Bytes on 1 pad)

Timing Dialog	Figure 14. Read Status Register (RDSR) Sequence (SPI Mode) CS# SCLK 0 1 2 3 4 5 6 7 0 01 12 13 13 13 SCLK 0 0 0 0 0 10 11 12 13 14 15 SI Colspan="2">Colspan="2">Status Register Out Status Register Out Status Register Out Status Register Out<	Figure 29. Read Status Register Sequence Diagram (SPI) CS# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 SCLK
Comment s	The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even in program/erase/write status register condition). It is recommended to check the Write in Progress (WIP) bit before sending a new instruction when a program, erase, or write status register operation is in progress.	The Read Status Register (RDSR) command is for reading the Status Register. The Status Register may be read at any time, even while a Program, Erase or Write Status Register cycle is in progress. When one of these cycles is in progress, it is recommended to check the Write in Progress (WIP) bit before sending a new command to the device. It is also possible to read the Status Register continuously. The SO will output Status Register bits S7~S0

5.3.3.10 InitReset/ RuntimeReset: same, do not need modifcation

	MX25U51245G(Reference)					GD25LX256E(Design)					
InitRest EB Conf.	■ FkInstructionOperandPair ■ Fk LUT Instruction ■ Fk LUT Pad ■ Fk. 0 ● FkInstructionOperandPair_0 ■ 0 # QSPL/P_LUT [INSTR_CMD ■ QSPL/P_LUT [PADS_1 # 0.66 1 ● FkInstructionOperandPair_2 = 1 # QSPL/P_LUT [INSTR_CMD ■ QSPL/P_LUT [PADS_1 # 0.66 2 ● FkInstructionOperandPair_2 = 2 # QSPL/P_LUT [INSTR_CMD ■ QSPL/P_LUT [PADS_1 # 0.69					FishstructionOperandPair Image: Fish LUT Instruction Image: Fish LUT Instruction Image: Fish LUT Instruction Image: Fish LUT Instruction Image: Fish LUT InstructionOperandPair. Image: Fish LUT InstructionOperand					
InitRest Details		Instr(6bits	Pads(2bits)	Operand(8bits)		Instr(6bits)	:(6bits) Pads(Operand(8bits) 2bits)				
Details	0466	0x01(CM D)	0x0(1 bit)	0x66 (RSTEN SPI mode)	0466	0x01(CMD)	0x0(1 bit)	0x66 (RSTEN SPI mode)			
	0000	0x0(STOP)	0x0(1 bit)	0x0	0000	0x0(STOP)	0x0(1 bit)	0x0			
	0499	0x01(CM D)	0x0(1 bit)	0x99 (RST SPI mode)	0499	0x01(CMD)	0x0(1 bit)	0x99 (RST SPI mode)			
RuntimeR eset EB Conf.	FbinstructionOperandPair Image: Construction Image: Fis.LUT Paid Image: Fis.LUT Paid<			FIs.LUT.Pad FIs © OSPL/P_LUT_PADS_4 © 0x66 © OSPL/P_LUT_PADS_1 © 0x09 © OSPL/P_LUT_PADS_4 © 0x99	■ FisInstructionOperandPair Ind● Name ■ ■ Fis LUT Instruction ■ Fis LUT Pad ■ Fis						
RuntimeR eset		Instr(6bits	Pads(2bits)	Operand(8bits)		Instr(6bits)	Pads(2bits)	Operand(8bits)			
Details	0666	0x01(CM D)	0x2(4 bit)	0x66 (RSTEN SPI mode)	0666	0x01(CMD)	0x1(1 bit)	0x66 (RSTEN SPI mode)			
	0000	0x0(STOP)	0x0(1 bit)	0x0	0000	0x0(STOP)	0x0(1 bit)	0x0			
	0699	0x01(CM	0x2(4	0x99 (RST SPI	0699	0x01(CMD)	0x1(1	0x99 (RST SPI mode)			

		D)	bit)	mode)				bit)	
Timing	iming Figure 127. Reset Sequence (SPI mode)					Figure 111. Enable Reset and Reset command Sequence Diagram (
	Тяны								
Dialog	CS#								0 1 2 3 4 5 6 7
					SCLK	Ξ		UU	
		Command	\rightarrow	Command		7	Command		Command
	SIOO SIOO SIOO SIOO SIOO SIOO SIOO SIOO				SI	11	///X 66H	¥//	7///X 99H X//
					SO	_		H	gh-Z
Comment	同 Reset	Enable_doni/	Reset do	n	同 R	ese	etEnable_doni/l	Reset do	ini
s	, , 10000	uopu		-L-	, , , ,			u	·Ľ*

5.4 Test Report

Use Lauterbach load the script:

C:\NXP\SW32G_RTD_4.4_4.0.2\eclipse\plugins\Fls_TS_T40D11M40I2R0\examples\EBT\S32G3\Fls_ Example_S32G399A_M7\debug\run.cmm, Stop in main function entry, use Lauterbach to check Fls_Init, Fls_Write, Fls_Read, function call result:

```
/* Compare data in external sector to TxBuffer buffer */
Fls_Compare(LOGICAL_START_ADDR, TxBuffer, FLS_BUF_SIZE);
while (MEMIF_IDLE != Fls_GetStatus())
{
Fls_MainFunction();
}
/* Check last job */
ExampleAssert(MEMIF_JOB_OK == Fls_GetJobResult()); //可以看到写读后比较成功。
```

And Fls_GetAhbData call result, and then check address: (#define PHYSICAL_START_ADDR 0x11000U /* The HW start address corresponding to the logical address 0 */):

B::Var.View RxBuffer_AHB Image: Comparison of the comp	× > :::
Image: Bar Var. View TxBuffer Image: Description of the second	× > .::
B::Var.View RxBuffer_IP ■ RxBuffer_IP = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	2
Image: SD:0x11000 /DIALOG Image: SD:0x11000 Image: SD:0x11000 Image: SD:0x11000 Image: SD:0x1000 Image: SD:0x11000 Image: SD:0x1000 Image: SD:0x11000 Image: SD:0x1000 Image: SD:0x1000 Image: SD:0x1000 Image: SD:0x10000 Image: SD:0x10000	
SD:00011000 →03020100 07060504 0B0A0908 0F0E0DOC NASKEGALSTFLYPESSI SD:00011010 13121110 17161514 1B1A1918 IF1E1DIC DESEESSIS SD:00011020 23222120 27262524 2B2A2928 2F2E2D2C	

It indicates that the write, IP read and AHB read data are consistent, which indicates that the drive works normally.

6 Develop Bootloader Project Fls Drivedr

6.1 Bootloader Project Details

Taking the version Integration_Reference_Examples_S32G3_2023_02 as an example, create and modify the Bootloader project according to the document <<S32G_Bootloader_V *. Pdf>>. Note:

- Because Bootloader uses QSPI NOR DMA driver to carry boot image, and uses IP driver to operate QSPI NOR operation related to secure, we choose to remove XRDC and eMMC, but retain secure boot function.
- Turn off the software debugging point.
- After removing eMMC, delete relevant eMMC boot sources in Boot Sources of Bootloader
- Deleted C:\EB\tresos\workspace\Bootloader_S32G3XX_ASR_4.4_M7\output\include, output, src. Delete before generating to prevent old files left by previous generation.
- For GPT problems encountered during compilation, the <<S32G_Bootloader_V *. Pdf>> document explains how to fix.

• Since the IVT configuration SYS-IMG address is 0x81000, the corresponding modification:

Bootloader S32G3XX ASR 4.4 M7	Bootonaci	
Cortex-M (CORTEXM \$32G3XXM7)		
> 9 Base (V4.0.0, AS4.4.0)	Name 👝 Bootloader	
 Bootloader (V23.2.0, AS4.4.0) 	General Core Configuration Boot Sources Boot Triggers	
Bootloader	Secure BOOL Rey Descriptor	al/CryptoDal/CryptoDalBswConfig
 	HSE System Image Address (0x400 -> 0x400000)	

• Compiling script modified as follows:

 $\label{eq:linear} C:\NXP\Integration_Reference_Examples_S32G3_2023_02\code\framework\realtime\swc\bootloader\platforms\S32G3XX\build\configuration.bat$

SET TRESOS_DIR=C:/EB/tresos

SET MAKE_DIR=C:/cygwin64

::SET GHS_DIR=

SET GCC_DIR=C:/NXP/S32DS.3.4/S32DS/build_tools/gcc_v9.2

SET TOOLCHAIN=gcc

SET CORE=m7

SET SRC_PATH_DRIVERS=C:/NXP/SW32_RTD_4.4_4.0.0/eclipse/plugins :: Note that this version of Bootloader corresponds to the original RTD version 4.4_4.0.0 by default

:: SET SDHC_STACK_PATH=

:: SET SRC_PATH_SAF=

SET TRESOS_WORKSPACE_DIR=C:/EB/tresos/workspace/Bootloader_S32G3XX_ASR_4.4_M7/output

SET HSE_FIRMWARE_DIR=C:/NXP/HSE_FW_S32G3_0_2_16_1

• Note that the secure boot will burn the internal anti rollback counter fuse when executing the publish sys img, so the secure boot function test will reduce the fuse resources of the counter. Since this article focuses on the operation of QSPI NOR flash, we modify the code:

 $\label{eq:linear} C:\NXP\Integration_Reference_Examples_S32G3_2023_02\code\framework\realtime\swc\bootloader.h$

#define BL_ALIGN_4096B(x) BL_ALIGN_IMAGE_B(x, 12) //johnli Used to round the fls erase operation to 4KB

 $\label{eq:linear} C:\NXP\Integration_Reference_Examples_S32G3_2023_02\code\framework\realtime\swc\bootloader\platforms\S32G3XX\src\Bootloader_Specific.c$

Bl ConfigureSecureBoot

|-> // Comment out the operation of sys img publish

/*

if (E_OK == status)

{

status = CryptoDal_GetSysImage(

&B1_HseSysImage[0], &u32SysImageOffSet, &u32SysImageSize);

} */

volatile int debug_erase;

volatile int debug_write;

| |->Bl_SaveConfiguration

uint32_t u32SysImageSizeAligned = BL_ALIGN_4096B(u32SysImageSize); //johnli change from 1024 Modify the code to prevent erase data from not being 4KB aligned.

while(debug_erase); // Stop the code here to use Lauterbach to check the operation of the Fls IP driver | | ->Fls_Erase(u32SysImageStorageAddr + u32SysImageOffset,

u32SysImageSizeAligned);

while(debug_write);

| | ->Fls_Write(u32SysImageStorageAddr + u32SysImageOffset,

(const uint8 *) pSysImage, u32SysImageSizeAligned);

- For the debug method of the Bootloader project, please refer to the document <<<S32G_Bootloader_V *. Pdf>>.
- For the corresponding modification details of the Bootloader project, refer to the project source file issued with the document.

6.2 Difference of Bootloader and MCAL FIs Driver

For the modification of QSPI NOR configuration in MCAL Fls driver, the Bootloader still needs to be modified accordingly. In addition, there are the following differences between them:

	Bootloader Fls	MCAL Fls	Comments
	MemCfg_0 Configuration Page		
1	initResetSettings closed	initResetSettings open	Since Bootloader uses the IVT QSPI
2	initConfiguration closed FlsLUT is the same, Migrate the configuration of MCAL FlsLUT	initConfiguration Open FlsLUT is the same	NOR parameter to initialize QSPI NOR, InitReset and Init reconfiguration are not considered in the driver. In FlsLUT FastRead/Write has no reference

	FlsController Configuration Page		
3	ControllerCfg_1	ControllerCfg_SDR=0	MCAL is initialized to SDR mode, and then in initConfiguration, after QSPI NOR is initialized, switch to DDR mode. Bootloader does not need it, but directly initializes to DDR mode
4	ControllerCfg_1. Fls Hw Unit Byte Swapping=unchecked Fls (Fls) ** Bootloader (Bootloader) ControllerCfg Name © ControllerCfg_1 Fls controller FlsAhbBuffer Fls Hw Unit Column Address Width (0 -> 15) Fls Hw Unit Byte Swapping B _ & <	ControllerCfg_1. Fls Hw Unit Byte Swapping=unchecked	Note that when bootloader, IVT will be initialized to swapping=0, and the default bootloader is configured as Macronix=1. So after bootloader is copied and run to Fls_init, subsequent access to the AHB address will cause data inversion and failure, so it must be modified here
	ControllerCfg Configuration Page		
5	Cfg_0 is set to DDR Loopback, autoupdate mode, but this Cfg does not reference	Cfg_0 is set to SDR Loopback, bypass mode, and this Cfg is the mode during initialization	Cfg_1 is in DDR, external DQS, autoupdate mode The Cfg_1 is the same, the Bootloader is initialized to this mode, and MCAL Fls is reconfigured to this mode in initConfiguration
1	General Configuration Page		

6		Because the clock configurations of Bootloader and MCAL are different, the clock related configurations in the corresponding Fls drive are different
	FlsSector Configuration Page	
7		Sector configuration in Bootloader is generally aligned with the address of the Bootloader image, M7 image and A53 ATF image to be stored, and Mcal is an example

6.3 Image Package

For image packaging and burning, please refer to the document <<S32G_Bootloader_V *. Pdf>>. Note:

- The IVT head needs the version developed in Chapter 4.
- Select G3 version for SRAM initialization DCD script: C:\NXP\Integration_Reference_Examples_S32G3_2023_02\code\framework\realtime\swc\boo tloader\platforms\S32G3XX\res\flash\ S32G3XX_DCD_InitSRAM.bin.
- In addition, when you open the IVT tool, you need to preview and select a created G3 project, so that you can use the G3 20MB SRAM memory to check for out of bounds.
- Since we have chosen to use secure boot, we need to add an HSE image: C: NXP C:\NXP\HSE_FW_S32G3_0_2_16_1\hse\bin\ rev1.1 s32g3xx hse fw 0.20.0 2.16.1 pb221011.bin.pink
- Then it is also necessary to refer to the configuration of the Flash drive sector to adjust the distribution of IVT images to avoid overlap:

Sector is configured as:

Name 🛛	→ Fls											
General	ControllerCfg N	1emCf	g Fl	sController FlsMem	FlsSe	ctor Publis	hed	Inforr	nati	on		
E FI	sSector										Ŷ	€ + × ₪ 8
Ind.	. 🗁 Name		F	Fls Physical Sect.		Fls Numb	12	Fls	12	Fls Sector	12	Fls Sector
0	➢ FlsSector_0		0	FLS_EXT_SECTOR		1		16		4096		0 🖪
1	➢ FlsSector_1		1	FLS_EXT_SECTOR	•	1		16		782336		4096 🔒
2	FlsSector_2		2	FLS_EXT_SECTOR		1		16	12	4096	12	786432 🔒
3	➢ FlsSector_3		3	FLS_EXT_SECTOR	•	1		16		4096		790528 🔒
4	➢ FlsSector_4		4	FLS_EXT_SECTOR	•	1		16	12	4096	12	794624 🔒
5	➢ FlsSector_5		5	FLS_EXT_SECTOR	•	1		16		4096		798720 🔒
6	➢ FlsSector_6		6	FLS_EXT_SECTOR		1		16		4096		802816 🔒
7	FlsSector_7		7	FLS_EXT_SECTOR		1		16		4096		806912 🔒

So:

1. Start with 0x0 and store DCD (offset 0x100) and QSPI NOR header (offset 0x200) with size of 0x1000=4096.

2. Start with 0x1000 and store HSE FW and SYS-IMG with the size of 0xBF000=782336.

3. Use the part beginning with 0xc000 to store the bootloader image.

It can be seen that the images to be written are aligned to the 4KB Sector size.

6.4 Test Report

Use the Flash tool to burn the packaged Bootloader image into QSPI NOR flash, switch the startup mode to QSPI NOR flash, and then power on again:

Run the script using Lauterbach:

C:\NXP\Integration_Reference_Examples_S32G3_2023_02\code\framework\realtime\swc\bootloa der\platforms\S32G3XX\build\cmm\connect_s32g3xx_m7.cmm, Then the Bootloader code will stay at the beginning. At this time, run the script to connect the debugger, that is, you can debug:

	uint32_t u32SysImageSizeAligned = BL_ALIGN_4096B(u32SysImageSize); //johnli change from 1024
641	while(debug_erase); //johnli for test
642	Fls_Erase(u32SysImageStorageAddr + u32SysImageOffset,
	u32SysImageSizeAligned);
644	while (MEMIF_IDLE != Fls_GetStatus())
646	<pre>{ Fls_MainFunction();</pre>
648 649	} while(debug_write); //johnli for test Fls Write(u32SysTmageStorageAddr + u32SysTmageOffset
0.5	(const uint8 *) pSysImage, u32SysImageSizeAligned);

When the code runs to while (debug_erase) in Bl_SaveConfiguration; After changing debug_erase to 0, you can continue to run. Check the execution of the function Fls_Erase, and check the execution of Fls_Write in the same way.

7 Develop Linux Driver(Optional)

Refer to the document <<S32G_QSPINOR_Customize_*. Pdf>>, Chapter 9: Software Customization Linux Kernel to learn about the customization method of Linux drivers. There is already an example of Micron MT35XU256ABA. Refer to the following to add GD25LX256E. Take BSP37 as an example.

The QSPI NOR driver of ATF and Uboot is similar to the kernel, and will not be detailed in this article.

7.1 Linux GD Driver Details

\BSP37\linux\drivers\mtd\spi-nor\Makefile:

spi-nor-objs	+= gigadevice.o
spi-nor-objs	+= macronix.o
spi-nor-objs	+= micron-st.o

\BSP37\linux\drivers\mtd\spi-nor\gigadevice.c, At present, it is relatively primitive. Because Micron and GD flash are compatible, the source code of Micron can be used. You can refer to the example of Micron MT35XU256ABA in <<S32G_QSPINOR_Customize_*. Pdf>>. Note that the code of BSP37 already supports MT35XU512ABA:

 $BSP37\linux\drivers\mtd\spi-nor\micron-st.c$

static const struct flash_info micron_parts[] = {

{ "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512,

SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ | SPI_NOR_4B_OPCODES | SPI_NOR_OCTAL_DTR_READ | SPI_NOR_OCTAL_DTR_PP | SPI_NOR_IO_MODE_EN_VOLATILE)

.fixups = &mt35xu512aba_fixups},

7.2 Modification of Clock

Linux QSPI NOR drive architecture is designed as:: drivers/mtd/spi-nor/core.c:

spi_nor_probe

|->spi_nor_scan

| |->spi_nor_get_flash_info

| | |->spi_nor_read_id

struct spi_mem_op op =

```
0x9f /* Read JEDEC ID */
```

SPI_MEM_OP_NO_ADDR,

SPI_MEM_OP_NO_DUMMY,

SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));

ret = spi_mem_exec_op(nor->spimem, &op);

| | |->spi_nor_search_part_by_id(manufacturers[i]->parts,

manufacturers[i]->nparts,

id);

!memcmp(parts[i].id, id, parts[i].id_len))

return &parts[i];

Therefore, first read the ID value from the external QSPI NOR flash, and then use the ID value to match the data structure array of QSPI NOR related information.

The JEDEC clock for ID reading is not high, as follows: MACRONIX MX25UW51245G flash description is:

Symbol	Alt.	Parameter	Min.	Тур.	Max.	Unit
FO CLIK	50	Clock frequency for SPI commands (except Read operation)			133	MHz
ISCLK		Clock frequency for OPI commands			200	MHz

GD GD25LX256E is:

Symbol	Parameter	Min.	Тур.	Max.	Unit.
fc1	Serial Clock Frequency for all instructions except Read (03H, 13H) in STR mode			166	MHz

At present, the QSPI NOR clock initialized by the S32G Linux BSP is 200Mhz, so there is a risk of incorrect ID reading (the ID value of GD25LX256E read using 200Mhz is incorrect in actual measurement). Since the current Linux SPI NOR driver architecture does not have an API for raising the

frequency after reading the ID, it is considered to use the frequency reduction directly in Linux, as shown in the QSPI NOR clock tree in Linux: periphpll_sel 1 1 0 40000000 0 0 50000 periphpll vco 8 8 0 2000000000 0 0 50000 |->periphll_dfs1 1 1 0 800000000 0 0 50000 qspi_sel 1 1 0 800000000 0 0 50000 | |->qspi 2x 1 1 0 40000000 0 0 50000

| | |->qspi_1x 2 2 0 20000000 0 0 50000

MC_CGM_0_AC12_DC_0 divide by 2=400Mhz, and divide by 3=266Mhz.

Therefore, without modifying the root clock, the frequency is reduced from the original 200Mhz to 133Mhz for real use, and is modified to:

7.2.1 ATF Modification

Fdts\s32cc.dtsi:

mc_cgm0: mc_cgm0@40030000 {

compatible = "nxp,s32cc-mc_cgm0";
assigned-clocks =
<&plat_clks S32GEN1_CLK_QSPI_2X>;
assigned-clock-parents =
<&plat_clks S32GEN1_CLK_PERIPH_PLL_PHI7>;
assigned-clock-rates =
<\$32GEN1_QSPI_2X_CLK_FREQ>;
};
Include\dt-bindings\clock\s32gen1-clock-freq.h
#if defined(S32GEN1_QSPI_200MHZ)
#define S32GEN1_PERIPH_DFS1_FREQ (800 * MHZ)
#define S32GEN1_QSPI_CLK_FREQ (200 * MHZ)
#define S32GEN1_QSPI_2X_CLK_FREQ (2 * S32GEN1_QSPI_CLK_FREQ)
#elif defined(S32GEN1_QSPI_166MHZ)
#define S32GEN1_PERIPH_DFS1_FREQ (666666666666666666666666666666666666
#define S32GEN1_QSPI_CLK_FREQ (1666666666)
#define S32GEN1_QSPI_2X_CLK_FREQ (333333333)
#elif defined(S32GEN1_QSPI_133MHZ)
#define S32GEN1_PERIPH_DFS1_FREQ (800 * MHZ)
#define S32GEN1_QSPI_CLK_FREQ (13333333)
#define S32GEN1_QSPI_2X_CLK_FREQ (2 * S32GEN1_QSPI_CLK_FREQ)

 $Plat\nxp\s32\s32g\s32g3\s32g399ardb3\include\platform_def.h$

#define S32GEN1 QSPI 133MHZ //johnli for gd S32GEN1 QSPI 200MHZ 此值用用时钟初始化

Fdts\s32cc-nxp-flash-macronix.dtsi

&qspi {

macronix_memory: mx25uw51245g@0 {

compatible = "jedec,spi-nor";

spi-max-frequency = <133333333>;\\<200000000>;

This DTS value is used for uboot drive settings, Therefore, there is no modification in Uboot.

7.2.2 Linux DTS Modification

Arch\arm64\boot\dts\freescale\s32cc.dtsi

qspi: spi@40134000 {...

spi-max-frequency =<133333333>;\\ <20000000>;

Arch\arm64\boot\dts\freescale\s32cc-nxp-flash-macronix.dtsi

&qspi {

macronix_memory: mx25uw51245g@0 {

compatible = "jedec,spi-nor";

spi-max-frequency = <13333333>;\\<20000000>; \\ It is mainly modified here. This value is used to set the Linux drive clock, so the clock is modified to 133Mhz.

7.3 In DTS add GD flash Support

 $\label{eq:linux} \label{eq:linux} \lab$

&qspi {

```
// macronix_memory: mx25uw51245g@0 {
```

gigadevice_memory: gd251x256e@0 {

```
compatible = "jedec,spi-nor";
```

spi-max-frequency = <20000000>;

spi-tx-bus-width = <8>; //8bit mode

spi-rx-bus-width = <8>;

reg = <0>;

force-soft-reset;

inverted-cmd-ext; // The second byte of DDR mode command is in inverted mode memory-default-octal-dtr; //Support 8bit DDR mode

```
\label{eq:linux} \lab
```

```
//&mcronix_memory {
```

```
&gigadevice_memory {
```

Then modify the compilation error:

```
diff --git a/arch/arm64/boot/dts/freescale/s32g2xxa-evb.dtsi b/arch/arm64/boot/dts/freescale/s32g2xxa-evb.dtsi
```

```
index a5df0a44bce2..8c866db48c05 100644
```

```
--- a/arch/arm64/boot/dts/freescale/s32g2xxa-evb.dtsi
```

```
+++ b/arch/arm64/boot/dts/freescale/s32g2xxa-evb.dtsi
```

+/*

&qspi {

mx25uw51245g@0 {

spi-max-frequency = <166666666;

};

};

+*/

```
diff --git a/arch/arm64/boot/dts/freescale/s32g3xxa-evb.dtsi b/arch/arm64/boot/dts/freescale/s32g3xxa-evb.dtsi index 46845e7d0d3a..7083a9f9c297 100644
```

```
--- a/arch/arm64/boot/dts/freescale/s32g3xxa-evb.dtsi
```

```
+++ b/arch/arm64/boot/dts/freescale/s32g3xxa-evb.dtsi
```

+/*

&qspi {

```
mx25uw51245g@0 {
```

```
spi-max-frequency = <1666666666;
```

};

}; +*/

7.4 Modify source code and add flash information structure

 $BSP37\linux\drivers\mtd\spi-nor\micron-st.c$

```
static const struct flash_info micron_parts[] = {
```

{ "mt35xu512aba"...,

 $/\!/$ Add a gd251x256e. Note that the name should correspond to that in DTS.

3 MEMORY ORGANIZATION

GD25LX256E

Each device has	Each block has	Each sector has	Each page has	
32M	64/32K	4K	256	Bytes
128K	256/128	16	-	pages
8K	16/8	-	-	sectors
512/1K	-	-	-	blocks

{ "gd25lx256e ", INFO(0xc86819, 0, 4 * 1024, 8192, // ID refers to the previous article. Each sector is 4K, 8192 sectors in total

// The gd25lx256e does not need to operate the flag register, so the USE_FSR is removed, and the OCTAL_DTR read and write operations are reset in the fixup, so SPI_NOR_OCTAL_DTR_READ and SPI_NOR_OCTAL_DTR_PP do not need to be configured

SECT_4K | SPI_NOR_OCTAL_READ |

SPI_NOR_4B_OPCODES | SPI_NOR_OCTAL_DTR_READ |

SPI_NOR_IO_MODE_EN_VOLATILE)

.fixups = &mt35xu512aba_fixups},

7.5 Modify the fixup of flash in source code to support DTR mode

Driver/mtd/spi-nor/Macronix.c:

static struct spi_nor_fixups mx25uw51245g_fixups = {

.default_init = mx25uw51245g_default_init, // Used to configure QSPI to enter DTR mode

.post_bfpt = mx25uw51245g_post_bfpt_fixup, // DTR mode for configuring write operations

.post_sfdp = mx25uw51245g_post_sfdp_fixup,// DTR mode for configuring write and read operations

};

So refer to the fixup configuration of mx25uw51245g, and modify:

static struct spi nor fixups mt35xu512aba fixups = {

.default init = mt35xu512aba default init,

.post_sfdp = mt35xu512aba_post_sfdp_fixup, // bfpt is a repeated operation and does not need

};

static int spi_nor_micron_octal_dtr_enable(struct spi_nor *nor, bool enable)

{

#if <mark>0</mark>

// Keep the configuration of 16 dummy cycles in the configure register, and do not need to modify

if (enable) { /* Use 16 dummy cycles for memory array reads. */ . . . } #endif ret = spi nor write enable(nor); . . . 0xe7 /* Enable Octal *buf = SPINOR MT OCT DTR; #define SPINOR MT OCT DTR DTR. */ op = (struct spi mem op) SPI MEM OP(SPI MEM OP CMD(SPINOR OP MT WR ANY REG, 1), SPI MEM OP ADDR(enable ? 3 : 4, SPINOR REG MT CFR0V, 1), // #define SPINOR REG MT CFR0V 0x00 /* For setting octal DTR mode */ SPI MEM OP NO DUMMY, SPI MEM OP DATA OUT(1, buf, 1)); if (!enable) spi nor spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR); ... #if 0 // Verification code, not required /* Read flash ID to make sure the switch was successful. */ . . . #endif return 0; } static void mt35xu512aba post sfdp_fixup(struct spi_nor *nor) { // Set the write operation to octal dtr mode nor->params->hwcaps.mask |= SNOR HWCAPS PP 8 8 8 DTR; spi nor set pp settings(&nor->params->page programs[SNOR CMD PP 8 8 8 DTR], SPINOR OP PP 4B, SNOR PROTO 8 8 8 DTR); //end

/* Set the Fast Read settings. */ //Set the read operation to cotal dtr mode
nor->params->hwcaps.mask = SNOR_HWCAPS_READ_8_8_8_DTR;
spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
0, 16/*johnli gd 20*/, SPINOR_OP_MT_DTR_RD,
SNOR_PROTO_8_8_8_DTR);
nor->params->rdsr_dummy = 8; //johnli gd, read statue register dummy
nor->params->rdsr_addr_nbytes = 1;//johnli gd :0;
nor->params->quad_enable = NULL;
}

7.6 Turning Dummy Value to Solve the Misplacement Problem

The dummy read by DTR in function mt35xu512aba_post_sfdp_fixup is configured as 16, which is the same as the default configuration of the configuration register in QSPI NOR. After testing

Therefore, the data is offset 2X15 bytes backward. According to the 8bit DTR mode, one clock transmits two bytes, so the dummy value should be 15 clocks ahead.

Therefore, it should be set to 1. Modify:

Test passed:

root@s32g399ardb3:~# hexdump -v -n 0x100 /dev/mtd0

0000000 0335 5403 4062 4c55 1b60 78ad 8df9 e45e

...

00000f0 a13e d49c 6f7d 2098 d6e2 d49b cb3e 6fcf

The reason why the controller can work only when it does not match the dummy setting in QSPI NOR flash requires the QSPI NOR flash manufacturer's instructions.

7.7 Test Report

Bunry the fsl-image-auto-s32g399ardb3.sdcard image to The TFcard and replace the ATF, Image, and DTB, and then insert the RDB3 board. The startup mode is set to SDcard startup, the USDHC dial is set to SD, connect the serial port and power supply, power on and start linux from the eMMC, and enter the shell:

• Boot information:
root@s32g399ardb3:~# dmesg grep spi
[0.671341] spi-nor spi6.0: gd251x256e (32768 Kbytes)
[0.676482] spi-nor spi6.0: mtd .name = 0.spi, .size = 0x2000000 (32MiB), .erasesize = 0x00001000
(4KiB) .numeraseregions = 0
[0.688277] 7 fixed-partitions partitions found on MTD device 0.spi
[0.694658] Creating 7 MTD partitions on "0.spi":
[0.704940] mtd: partition "Flash-Image" extends beyond the end of device "0.spi" size truncated to 0x2000000
[0.741416] mtd: partition "Rootfs" extends beyond the end of device "0.spi" size truncated to 0xf10000
• Device file:
root@s32g399ardb3:~# ls /dev/mtd*
/dev/mtd0 /dev/mtd1 /dev/mtd2 /dev/mtd3 /dev/mtd4 /dev/mtd5 /dev/mtd6
/dev/mtd0ro /dev/mtd1ro /dev/mtd2ro /dev/mtd3ro /dev/mtd4ro /dev/mtd5ro /dev/mtd6r
• Clock:
root@s32g399ardb3:~# cat /sys/kernel/debug/clk/clk_summary grep qspi
qspi_flash1x 2 2 0 13333333 0 0 50000 Y
qspi_flash2x 0 0 0 266666666 0 0 50000 Y
qspi_ahb 0 0 0 132206143 0 0 50000 Y
qspi_reg 0 0 0 132206143 0 0 50000 Y
• MTD flash device should be erased before use, because it can only be written from 1 to 0, and can be
read out after being erased, All are 0xff;
root@s32g399ardb3:~# mtd_debug erase /dev/mtd0 0 0x10000 // The erasure operation takes 4K byte sector size as the
address alignment and data alignment

Erased 65536 bytes from address 0x00000000 in flash

root@s32g399ardb3:~# hexdump -v -n 0x100 /dev/mtd0 // For read/write operations, the 256 byte page size is used as the address alignment and data alignment

• Write data, read it several times to compare with each other, and compare with the original file. If it is

consistent, the drive works correctly. dd if=/dev/random of=test.txt count=1 bs=256 1+0 records in 1+0 records out 256 bytes copied, 0.000168 s, 1.5 MB/s

root@s32g399ardb3:~# mtd_debug write /dev/mtd0 0 0x100 test.txt Copied 256 bytes from test.txt to address 0x00000000 in flash

root@s32g399ardb3:~# hexdump -v -n 0x100 /dev/mtd0 0000000 0335 5403 4062 4c55 1b60 78ad 8df9 e45e 0000010 cac4 45e6 1d64 b9d0 9d41 cec9 81d0 5b3e ...

00000f0 a13e d49c 6f7d 2098 d6e2 d49b cb3e 6fcf

root@s32g399ardb3:~# hexdump -v -n 0x100 test.txt 0000000 0335 5403 4062 4c55 1b60 78ad 8df9 e45e 0000010 cac4 45e6 1d64 b9d0 9d41 cec9 81d0 5b3e

...

00000f0 a13e d49c 6f7d 2098 d6e2 d49b cb3e 6fcf