

 Rev. 2, 8/2024

S32G Add GD QSPI NOR Support
by John.Li NXA08200

This article describes the GD QSPI NOR
flash support on the S32G platform. The test
platform is:

 S32G3 RDB3+GD25LX256E 32MB
QSPI NOR flash.

G2 and G3 are basically the same in terms of
QSPI NOR controller, so this article should also
be applicable to G2 platform.

Ver. History Author

V1 Created this
doc

JohnLi

V2 Traslate to Eng. JohnLi

Content
1 Background and References 2

1.1 Background .. 2
1.2 References ... 3
1.3 Hardware Link .. 5

2 Lauterbach Script development(Optional) 6
2.1 Preparing the refer script .. 6
2.2 QuadSPI_ReadID .. 6
2.3 Configure QSPI NOR to DOPI mode 8
2.4 Use DOPI mode READ_8DTRD 11
2.5 Test report .. 13

3 Flash tool algorithm image development 15
3.1 Algorithms implemented by Flash SDK 15
3.2 Develop new flash source code 17
3.3 Test Report .. 21

4 Develop IVT Parameter Header 23
4.1 S32G QSPI Controllder configuration difference .. 25
4.2 QSPI Configuration Difference 30
4.3 Test Report .. 30

5 Develop MCAL Fls driver ... 31
5.1 MCAL Fls Driver Project Details 31
5.2 FlsMem Configuration page 35
5.3 MemCfg Configuration page 36
5.4 Test Report .. 51

6 Develop Bootloader Project Fls Drivedr 52
6.1 Bootloader Project Details 52
6.2 Difference of Bootloader and MCAL Fls Driver 54
6.3 Image Package .. 56
6.4 Test Report .. 58

7 Develop Linux Driver(Optional) 59
7.1 Linux GD Driver Details .. 59
7.2 Modification of Clock .. 60
7.3 In DTS add GD flash Support............................... 62
7.4 Modify source code and add flash information
structure ... 63
7.5 Modify the fixup of flash in source code to support
DTR mode ... 64
7.6 Turning Dummy Value to Solve the Misplacement
Problem ... 66
7.7 Test Report .. 67

 S32G ADD GD FLASH SUPPORT

2

1 Background and References

1.1 Background
This article takes GD GD25LX256E as an example to illustrate how to replace a new QSPI NOR flash

on the S32G platform. In addition to hardware connection, the software development process includes:

The description is as follows:
1. You can use Lauterbach script to drive QSPI NOR. There are two main application scenarios:
 When the board is brought up, the simplest ID reading driver of the Lauterbach script is used to

verify the hardware.
 When QSPI NOR fails to start for mass production products, Lauterbach script can be used to

simulate the behavior of ROM code reading QSPI NOR.
Another situation is:
 Use Lauterbach script to directly realize burning image, but this requires Lauterbach company to

provide driver script and algorithm image.
Lauterbach is used for debugging purposes, so it is not a part that must be developed, it is

optional.
2. Since the flash tool is required to burn the image, the QSPI NOR flash algorithm image used by the
flash tool needs to be developed first.
3. You can also use Lauterbach to debug the MCAL Fls driver and its test code directly.

1：develop Lauterbach driver script(optional)

2.A：develop flash tools algrithem image 2.B：develop MCAL Fls driver

3：develop IVT parameters header

4：develop Bootloader Fls driver

5：develop Linux driver (optional), include ATF/Uboot driver maybe

 S32G ADD GD FLASH SUPPORT

 3

4. The IVT QSPI NOR flash parameter header needs to be developed, so that the image burned in can
be quickly started.
5. Generally, the first image to start is the bootloader. The bootloader requires the support of the Fls
driver, which is mostly the same as the Fls driver in Mcal.
6. Generally speaking, only M7 can access QSPI NOR flash through MCAL or bootloader, so the
support of a QSPI NOR flash will be completed after completing the above two to five steps.
However, some customers will consider using Linux kernel in the production line to quickly burn
QSPI NOR flash, so they need to complete the Linux drive (optional).
7. Because most customers use Bootloader to load BL2 of ATF, while BL2 loads the rest of ATF from
eMMC, then ATF loads uboot from eMMC, and uboot loads the kernel, it is generally unnecessary to
implement ATF/Uboot QSPI NOR flash drive (as the most unlikely option).

1.2 References

This article is developed based on S32G3 RDB3 board+GD25LX256E QSPI NOR flash:

Catalog Name Catalog2 Comments

Doc S32G2RM.pdf

S32G3RM.pdf

S32G RM Download from www.nxp.com/s32g

SW

RTD

Mcal

SW32G_RTD_4.4_4.0.2 BSP SW+doc Dowload from www.nxp.com

Personal account

SW

Boot

loader

Platform_Software_Integration_S32G3_2023_02.exe

BSP SW+doc Dowload from www.nxp.com

Personal account

Doc S32G_Bootloader_V*.pdf Bootloader

Customization

Doc

https://community.nxp.com/

t5/NXP-Designs-Knowledge-Base/

S32G-Bootloader-Customzition/

ta-p/1519838

SW

Linux

BSP37 BSP Doc Dowload from www.nxp.com

Personal account

Tools S32Design Studio 3.4.3 or 3.5.3 S32DS Dowload from www.nxp.com

Personal account : Refer to the QuadSPI
configuration tool, compile Flash_SDK, and
Flash tool.

Doc AN13563: S32G QuadSPI Deep Dive Application

note
AppNotes Download from www.nxp.com/s32g

Some contents of this article overlap with it

Doc S32G_RTD_MCAL_V*.pdf AppNotes https://community.nxp.com/t5/

NXP-Designs-Knowledge-Base/

 S32G ADD GD FLASH SUPPORT

4

S32G-MCAL-customization-application-doc

/ta-p/1399899

RTD MCAL driver sample customization
doc

Doc AN12808: Quad SPI (QSPI) Timing Configuration

on the S32G2 Vehicle Network Processor

Application Note

AppNotes Download from www.nxp.com/s32g

Please refer to this document for register
configuration in high-speed mode.

Doc S32G_QSPINOR_Customization_*.pdf AppNotes 从nxp community下载

https://community.nxp.com/t5/

NXP-Designs-Knowledge-Base/

S32G-QSPI-Nor-customization-doc/t

a-p/1399906

For the configuration of flash timing header,

Flash tools SDK project customization (used
to develop the QSPI NOR binary of flash
tools)

For uboot customization and kernel driver
customization, please refer to this document.

Some contents of this article overlap with it

Doc MX25UW51245G.pdf Macronix

QSPI NOR

datasheet

Doc DS-00762-GD25LX256E-Rev1.1_Automotive.pdf GD

QSPI NOR

datasheet

Get the support from GD

Doc S32G_How_to_Develop_QSPI_Script_*.pdf QSPI
Lauterbach

Script
deveopment
doc

https://community.nxp.com/t5/

NXP-Designs-Knowledge-Base/

S32G-QSPI-Nor-customization-doc

/ta-p/1399906

Some contents of this article overlap with it

Note: Since this article develops each QSPI NOR flash related driver for the purpose of independent
testing, it does not consider the problem of matching all software versions. For officially developed
software version matching, it is recommended to use bundle release:

 S32G ADD GD FLASH SUPPORT

 5

www.nxp.com/s32g->S32G3->Design Resources->Software->Automotive Software Package
Manager->DOWNLOAD->input the account->S32G3->Integrated Software Bundle.

1.3 Hardware Link
The schematic diagram of S32G3 RDB3 connecting QSPI NOR is as follows: The MACRONIX

MX25UW51245G flash is used. Flash is generally designed to be pin to pin compatible, so we directly
replace it with GD25LX256E.

For hardware design related notes, please refer to section 3.1: Pin configuration of the document

<<AN13563.pdf: S32G QuadSPI Deep Dive>>.

 S32G ADD GD FLASH SUPPORT

6

On the software, NXP default release software already supports MX25UW51245G, so this article will
describe the software modification process by comparing it with GD25LX256E. At the same time,
sometimes refer to Micron MT35XU256 (512) ABA.

2 Lauterbach Script development(Optional)
Refer to the document <<S32G_How_to_Development_QSPI_Script_ *. Pdf>> to learn how to

develop the Lauterbach script driver. This paper compares the different configurations between the two
Flash models, mainly the LUT configurations. Consider two functions:

 QuadSPI_ReadID

 After switching to DOPI mode (QuadSPI_InitDOPI_DLL_AutoUpdateMode_100MHz), quickly
read QSPI NOR flash: QuadSPI_Read32BytesDOPI

2.1 Preparing the refer script

Copy
C:\NXP\SW32G_RTD_4.4_4.0.2\eclipse\plugins\Fls_TS_T40D11M40I2R0\examples\EBT\S32G3\Fls_
Example_S32G399A_M7\debug\device.cmm twice,Modify to device_gd_readid.cmm and
device_gd.cmm. Remove the parts irrelevant to M7_0 startup, Disable WDG and QSPI NOR.

2.2 QuadSPI_ReadID

device_gd _readid.cmm main function is:

GOSUB PERIPH_PLL

GOSUB PERIPH_DFS1_QSPI_66MHz

GOSUB QuadSPI_PinMux_CLKEnable

GOSUB QuadSPI_Init

GOSUB QuadSPI_ReadID

In addition, because BYTE SWAP is different, the following codes need to be modified:

 ; write sequence ID and assert Read id command

 Data.Set A:&QSPI_Cntl_BASE+0x08 %Long (5.<<24.) ; LUT25 and sequence

 PRINT "1st 0x" Data.Long(A:&QSPI_Cntl_BASE+0x200)>>24. " (Density)"

 PRINT "2nd 0x" (Data.Long(A:&QSPI_Cntl_BASE+0x200)>>16.)&0xFF " (Device ID)"

 PRINT "3rd 0x" (Data.Long(A:&QSPI_Cntl_BASE+0x200)>>8.)&0xFF " (Manufacture)"

 PRINT "4th 0x" Data.Long(A:&QSPI_Cntl_BASE+0x200)&0xFF

 S32G ADD GD FLASH SUPPORT

 7

QuadSPI_ReadID function call: (Note that according to JEDEC requirements, all QSPI NOR flash
manufacturer's ReadID commands should be the same).

|->

; write sequence ID and assert Read id command

 Data.Set A:&QSPI_Cntl_BASE+0x08 %Long (5.<<24.) ; LUT20 and sequence

Refer to MX25UW51245G design GD25LX256E command sequence：

 MX25U51245G(Reference) GD25LX256E(Design)

1：
Lauterbac
h code

;Program LUT25 with READ_ID

 Data.Set
A:&QSPI_Cntl_BASE+0x374 %LE %Long
0x0818049F ; SEQID 5

 Data.Set
A:&QSPI_Cntl_BASE+0x378 %LE %Long
0x00001C03

 Data.Set
A:&QSPI_Cntl_BASE+0x37C %LE %Long
0x0

;Program LUT25 with READ_ID

 Data.Set A:&QSPI_Cntl_BASE+0x374 %LE %Long
0x0818049F ; SEQID 5

 Data.Set A:&QSPI_Cntl_BASE+0x378 %LE %Long
0x00001C03 //0x00001C04

 Data.Set A:&QSPI_Cntl_BASE+0x37C %LE %Long
0x0

Details Instr(6bits
)

Pads(
2bits)

Operand(8bits) Instr(6bits) Pads(
2bits)

Operand(8bits)

049f 0x01(CM
D)

0x0(1
bit)

0x9F(RDID) 049f 0x01(CMD) 0x0(1
bit)

0x9F/0x9E(RDID)

0818 0x2(ADD
R)

0x0(1
bit)

0x18(24 Addr
bits to be sent
on 1 pad)

0818 0x2(ADDR) 0x0(1
bit)

0x18(24 Addr bits to be
sent on 1 pad)

1c03 0x7(REA
D)

0x0(1
bit)

0x3 write data
size in byte

1c04

1c03

0x7(READ) 0x0(1
bit)

0x4 write data size in
byte

Considering
compatibility, you can
also read only 3 bytes

Timing

diagram

Comment
s

The RDID instruction is for reading the
manufacturer ID of 1-byte and followed by

The Read Identification (RDID) command allows the
8-bit manufacturer identification to be read, followed by

 S32G ADD GD FLASH SUPPORT

8

Device ID of 2-byte

three Bytes of device identification. The device
identification indicates the memory type in the first Byte,
and the memory capacity of the device in the second Byte

Print PRINT "1st 0x" Data.Long(A:&QSPI_Cntl_BASE+0x200)>>24. " (Density)"

 PRINT "2nd 0x" (Data.Long(A:&QSPI_Cntl_BASE+0x200)>>16.)&0xFF " (Device ID)"

 PRINT "3rd 0x" (Data.Long(A:&QSPI_Cntl_BASE+0x200)>>8.)&0xFF " (Manufacture)"

 PRINT "4th 0x" Data.Long(A:&QSPI_Cntl_BASE+0x200)&0xFF

2.3 Configure QSPI NOR to DOPI mode

device_gd.cmm main function call:

GOSUB PERIPH_PLL_1600MHZ

GOSUB PERIPH_PLL_DFS1_800MHZ

GOSUB QuadSPI_PinMux_CLKEnable

GOSUB QuadSPI_InitDOPI_DLL_AutoUpdateMode_100MHz

GOSUB QuadSPI_Read32BytesDOPI

QuadSPI_InitDOPI_DLL_AutoUpdateMode_100MHz, call:

|-> ; write sequence ID and assert WriteEnable id command

 Data.Set A:&QSPI_Cntl_BASE+0x08 %Long (2.<<24.) ; sequence

|->

; We assume we are after a reset, in SPI mode 1X SDR

Data.Set A:&QSPI_Cntl_BASE+0x154 %LE %Long 0x00000002 //TX Buffer Data Regsiter=2

; Program LUT60 Write CONFIG2 REGISTER - SPI mode with value to switch to DOPI mode. From this point on,
all LUT seqs should be DDR OPI mode compatible

 Data.Set A:&QSPI_Cntl_BASE+0x08 %Long (12.<<24.) ; sequence

Refer MX25UW51245G design GD25LX256E Command sequence:

 MX25U51245G(Reference) GD25LX256E(Design)

Lauterbac
h code
(writeena
ble)

;Program LUT10 with WRITE_ENABLE

 Data.Set
A:&QSPI_Cntl_BASE+0x338 %LE %Long
0x00000406 ; SEQID 2

 Data.Set
A:&QSPI_Cntl_BASE+0x33C %LE %Long
0x0

;Program LUT10 with WRITE_ENABLE

 Data.Set A:&QSPI_Cntl_BASE+0x338 %LE %Long
0x00000406 ; SEQID 2

 Data.Set A:&QSPI_Cntl_BASE+0x33C %LE %Long
0x0

Details Instr(6bits Pads(Operand(8bits) Instr(6bits) Pads(Operand(8bits)

 S32G ADD GD FLASH SUPPORT

 9

) 2bits) 2bits)

0406 0x01(CM
D)

0x0(1
bit)

0x06(WREN) 0406 0x01(CMD) 0x0(1
bit)

0x06(WREN)

same

Timing

diagram

Comment
s

The Write Enable (WREN) instruction is for
setting Write Enable Latch (WEL) bit. For those
instructions like PP/
PP4B, 4PP/4PP4B, SE/SE4B,
BE32K/BE32K4B, BE/BE4B, CE, and WRSR,
which are intended to change the

device content WEL bit should be set every
time after the WREN instruction setting the
WEL bit.

The Write Enable (WREN) command is for setting the
Write Enable Latch (WEL) bit. The Write Enable Latch
(WEL) bit must be set prior to every Page Program (PP),
Sector Erase (SE), Block Erase (BE), Chip Erase (CE),
Write Status Register (WRSR), Write Extended Address
Register (WEAR), Write Nonvolatile/Volatile configure
register and Erase/Program Security Registers command.

Lauterbac
h code
(switch to
DOPI
mode)

;Program LUT60 Write CONFIG2 REGISTER
- SPI mode
 Data.Set
A:&QSPI_Cntl_BASE+0x400 %LE %Long
0x08200472 ; SEQID 12
 Data.Set
A:&QSPI_Cntl_BASE+0x404 %LE %Long
0x00002001
 Data.Set
A:&QSPI_Cntl_BASE+0x408 %LE %Long
0x00000000

;Program LUT60 Write CONFIG2 REGISTER - SPI
mode
 Data.Set A:&QSPI_Cntl_BASE+0x400 %LE %Long
0x08180481 ; SEQID 12
 Data.Set A:&QSPI_Cntl_BASE+0x404 %LE %Long
0x00002001

 Data.Set A:&QSPI_Cntl_BASE+0x408 %LE %Long
0x00000000

Details Instr(6bits
)

Pads(
2bits)

Operand(8bits) Instr(6bits) Pads(
2bits)

Operand(8bits)

0472 0x01(CM
D)

0x0(1
bit)

0x72(WRCR2) 0481 0x01(CMD) 0x0(1
bit)

0xB1/81(WRCR)

0820 0x02(AD
DR)

0x0(1
bit)

0x20(32 Addr
bits to be sent
on 1 pad)

0818 0x02(ADD
R)

0x0(1
bit)

0x18(24 Addr bits to be
sent on 1 pad)

2001 0x8(WRI
TE)

0x0(1
bit)

0x01 write data
size in byte

2001 0x8(WRITE
)

0x0(1
bit)

0x01 write data size in
byte

Write
value
code:

; We assume we are after a reset, in SPI
mode 1X SDR

Data.Set
A:&QSPI_Cntl_BASE+0x154 %LE %Lo

; We assume we are after a reset, in SPI mode 1X
SDR

Data.Set A:&QSPI_Cntl_BASE+0x154 %LE %Long
0x000000e7 //TX Buffer Data Regsiter=0xe7 means

 S32G ADD GD FLASH SUPPORT

10

ng 0x00000002 //TX Buffer Data
Regsiter=2

Octal DTR with DQS

Timing

diagram

Comment
s

The WRCR2 instruction is for changing the
values of Configuration Register 2. Before
sending WRCR2 instruction,
the Write Enable (WREN) instruction must be
decoded and executed to set the Write Enable
Latch (WEL) bit in
advance.

The Write Nonvolatile/Volatile Configuration Register
(WRCR) command allows new values to be written to
the Nonvolatile/Volatile Configuration Register. Before
it can be accepted, a Write Enable (WREN) command
must previously have been executed

Note that for GD25LX256E:

Internal configuration register settings that cannot be directly accessed by the user during QSPI NOR
configuration. The user can use WRITE NOVOLATILE configuration register to change the default
configuration after power on. The information of the nonvolatile configuration register overwrites the
internal configuration register during power on or after reset.

The user can use WRITE VOLATILE configuration REGISTER to change the configuration during
device operation. After the command is executed, the information from the volatile configuration register
immediately overwrites the internal configuration register after the WRITE command is completed.

 S32G ADD GD FLASH SUPPORT

 11

Therefore, when writing the configuration register, use the command 0x81 to write the volatile
register, which takes effect directly.

2.4 Use DOPI mode READ_8DTRD

QuadSPI_Read32BytesDOPI, Call:

|->; write sequence ID and assert Read command

 Data.Set A:&QSPI_Cntl_BASE+0x08 %Long ((7.<<24.)+32.) ; sequence 7 + 32 bytes to be

Refer MX25UW51245G design GD25LX256E Command sequence:

Note that the MX25U51245G recommendation for the dummy setting
is:

So at 200Mhz, it is set to 0x14=20 clocks.

GD25LX256E recommendation:

 S32G ADD GD FLASH SUPPORT

12

It can be set to 0x10=16 clocks in 200Mhz OPI-DTR mode. Please refer to the table for specific
values:

 MX25U51245G(Reference) GD25LX256E(Design)

Lauterbac
h code

;Program LUT35 with 8DTRD - READ DOPI
mode

 Data.Set
A:&QSPI_Cntl_BASE+0x39C %LE %Long
0x471147EE ; SEQID 7

 Data.Set
A:&QSPI_Cntl_BASE+0x3A0 %LE %Long
0x0C142B20

 Data.Set
A:&QSPI_Cntl_BASE+0x3A4 %LE %Long
0x00003B01

 Data.Set
A:&QSPI_Cntl_BASE+0x3A8 %LE %Long
0x00000000

;Program LUT35 with 8DTRD - READ DOPI mode

 Data.Set A:&QSPI_Cntl_BASE+0x39C %LE %Long
0x470247FD ; SEQID 7

 Data.Set A:&QSPI_Cntl_BASE+0x3A0 %LE %Long
0x0F142B20

 Data.Set A:&QSPI_Cntl_BASE+0x3A4 %LE %Long
0x00003B01

 Data.Set A:&QSPI_Cntl_BASE+0x3A8 %LE %Long
0x00000000

Details Instr(6bits
)

Pads(
2bits)

Operand(8bits) Instr(6bits) Pads(
2bits)

Operand(8bits)

47ee 0x11(CM
D_DDR)

0x3(8
bit)

0xee
0x11(Octa I/O
DTR read)

47fd 0x11(CMD
_DDR)

0x3(8
bit)

0xfd (OCTAL I/O
FAST READ with DDR
ADDRESS and DATA)

4711 0x11(CM
D_DDR)

0x3(8
bit)

4702 0x11(CMD
_DDR)

0x3(8
bit)

0x02(0xfd 的补码)

2b20 0xA(ADD
R_DDR)

0x3(8
bit)

0x20(32 Addr
bits to be sent
on 4 pad)

2b20 0xA(ADDR
_DDR)

0x3(8
bit)

0x20(32 Addr bits to be
sent on 4 pad)

0c14 0x3(DUM
MY)

0x0(1
bit)

0x14(20
dummy cycles)

0f10 0x3(DUM
MY)

0x3(8
bit)

Dum
my
命令

0x10(16 dummy cycles)

 S32G ADD GD FLASH SUPPORT

 13

可用

1bit
or 3
bit

3b10 0x14(REA
D_DDR)

0x3(8
bit)

0x10(Read 16
Bytes on 4 pad)

3b10 0x14(REA
D_DDR)

0x3(8
bit)

0x10(Read 16 Bytes on
8 pad)

Timing

Diagram

Comment
s

The 8DTRD instruction enable DTR Octa
throughput of Serial Flash in read mode. An
DOPI Enable bit of

Configuration Register 2 must be set to "1"
before sending the DTR Octa READ
instruction.

The Octal I/O DTR Read command enables Double
Transfer Rate throughput on Octal I/O of Serial Flash in
read mode. The address (interleave on 8 I/O pins) is
latched on both rising and falling edge of SCLK, and data
(interleave on 8 I/O pins) shift out on both rising and
falling edge of SCLK. The 8-bit address can be
latched-in at one clock edge, and 8-bit data can be read
out at one clock edge, which means 8 bits at rising edge
of clock, the other 8 bits at falling edge of clock. The first
address Byte can be at any location. The address is
automatically increased to the next higher address after
each Byte data is shifted out, so the whole memory can
be read out at a single Octal I/O DTR Read command.
The address counter rolls over to 0 when the highest
address has been reached.

Print PRINT "1st 0x" Data.Long(A:&QSPI_Cntl_BASE+0x200)

 PRINT "2nd 0x" Data.Long(A:&QSPI_Cntl_BASE+0x204)

 PRINT "3rd 0x" Data.Long(A:&QSPI_Cntl_BASE+0x208)

 PRINT "4th 0x" Data.Long(A:&QSPI_Cntl_BASE+0x20C)

 PRINT "5th 0x" Data.Long(A:&QSPI_Cntl_BASE+0x210)

2.5 Test report

Set the RDB3 board to download mode, or burn the image with the wrong IVT head in QSPI NOR,
and start:

1. Run Lauterbach: t32marm.exe: File ->Open script...=device_gd_readid.cmm.

2. Then click the area command in the command bar to see the printed ID value in the RX buffer:

 S32G ADD GD FLASH SUPPORT

14

1. Run again Lauterbach: t32marm.exe：File->Open script…= device_gd.cmm。

2. Then in the menu View ->dump..., enter the address 0x0:

Start address
(hex) End address (hex)

Size
(KB)

40-bit Master
Description

32-bit Master
Description
(except M7)

M7 Description

HSE M7 Description

A53 CC
FlexNOC
Slave port

M7 Default
Cache
mode

M7
Bus

M7
Memory

Space

M7
Memory

Type

Code

0x00_0000_0000 0x00_1FFF_FFFF 524288 QSPI AHB Buffer s_flash WT AXIM Code Normal

It can be seen that the AHB address has read QSPI NOR content:

 S32G ADD GD FLASH SUPPORT

 15

3 Flash tool algorithm image development
Refer to <<AN13563: S32G QuadSPI Deep Dive Application Note>>, 5.3 Flash SDK usage，

Understand the image development method of Flash tool:

Image development is based on the following principles:

1. Generally speaking, Flash of different models from the same manufacturer will use the same
command word and the same register design.

2. At present, the existing algorithms of the S32DS flash tool are mirrored in the directory C: NXP
S32DS. 3.4 S32DS tools S32FlashTool flash, including:

Num. Company Model

1 Micron MT35XU02GCBA.bin

2 MACRONIX MX25UM51245G.bin

3 MX25UW12A45G_R52.bin

4 MX25UW51245G.bin

5 CYPRESS S26KL512S2.bin

6 S26KS512S.bin

7 S70FS01GS.bin

So if you use the flash of the above three companies, you can first try to use the image burning
algorithm similar to it to see whether it will succeed. First select the same model, then select the same
model but different sizes, and finally select the models and sizes that may be different.

3. QSPI NOR flash manufacturers will consider a certain degree of compatibility, so you can first
compare whether the command word and register definitions are the same.

4. Finally, we will consider according to 5.3 Flash SDK usage develops a new algorithm image.

3.1 Algorithms implemented by Flash SDK

According to 5.3 The Flash SDK usage shows that the algorithms implemented by the flash SDK
include:

 Read_id

/* SEQID 1 - ID Read */

 qspi_compose_lut_register(p_pb, SEQID_RDID, p_pb->read_id_cmd, p_pb->read_id_dummy, 0, 0,
p_pb->read_id_length, 0, 0);

 Erase_chipset

/* SEQID 5 - Chip Eraser*/

 qspi_compose_lut_register(p_pb, SEQID_CHIP_ERASE, CHIP_ERASE_CMD, 0, 0, 0, 0, 0, 0);

 S32G ADD GD FLASH SUPPORT

16

 Write_flash

/* SEQID 3 - Page program */

 qspi_compose_lut_register(p_pb, SEQID_PP, p_pb->page_program_cmd, p_pb->page_program_dummy,
p_pb->page_program_address_length,

 0, TX_BUFFER_SIZE, 1, 0);

 Dump_flash

/* SEQID 2 - Fast read (NOR) / read to internal buffer (NAND) */

 qspi_compose_lut_register(p_pb, SEQID_PAGE_READ, p_pb->page_read_cmd,
p_pb->page_read_dummy1,

 p_pb->page_read_address_length, p_pb->page_read_dummy2, p_pb->is_nand ? 0 :
RX_BUFFER_SIZE, 0, 0);

pb->read_id_cmd = READ_ID_CMD;

 pb->read_id_dummy = READ_ID_DUMMY;

 pb->read_id_length = READ_ID_LENGTH;

 pb->write_enable_cmd = WRITE_ENABLE_CMD;

 pb->page_program_cmd = PAGE_PROGRAM_CMD;

 pb->page_program_dummy = PAGE_PROGRAM_DUMMY;

 pb->page_program_address_length = PAGE_PROGRAM_ADDRESS_LENGTH;

 pb->page_read_cmd = PAGE_READ_CMD;

 pb->page_read_address_length = PAGE_READ_ADDRESS_LENGTH;

 pb->page_read_dummy1 = PAGE_READ_DUMMY1;

 pb->page_read_dummy2 = PAGE_READ_DUMMY2;

pb->write_any_register_cmd = WRITE_ANY_REGISTER_CMD;

 pb->write_any_register_address_length = WRITE_ANY_REGISTER_ADDRESS_LENGTH;

 pb->write_any_register_dummy = WRITE_ANY_REGISTER_DUMMY;

 pb->write_any_register_length = WRITE_ANY_REGISTER_LENGTH;

#define CHIP_ERASE_CMD 0x60

/*

 * Command definitions

 S32G ADD GD FLASH SUPPORT

 17

 */

#define READ_ID_CMD 0x9F

#define READ_ID_DUMMY 0

#define READ_ID_LENGTH 4

#define WRITE_ENABLE_CMD 0x06

#define PAGE_PROGRAM_CMD 0x12

#define PAGE_PROGRAM_DUMMY 0

#define PAGE_PROGRAM_ADDRESS_LENGTH 32

#define PAGE_READ_CMD 0x13

#define PAGE_READ_DUMMY1 0

#define PAGE_READ_ADDRESS_LENGTH 32

#define PAGE_READ_DUMMY2 0

#define CHIP_ERASE_CMD 0x60

#define WRITE_ANY_REGISTER_CMD 0x72

#define WRITE_ANY_REGISTER_LENGTH 1

#define WRITE_ANY_REGISTER_ADDRESS_LENGTH 32

#define WRITE_ANY_REGISTER_DUMMY 0

3.2 Develop new flash source code

Refer doc
C:\NXP\S32DS.3.4\S32DS\help\resources\howto\<<HOWTO_Use_FlashSDK_to_add_support_for_Qu
adSPI_flash_memory_devices_for_S32_Flash_Tool.pdf>>, to build S32DS FlashSDK project, Note:

 On FlashSDK:Release_FlashTemple right click->Build Configurations->Set Active:can switch to
Release or Debug Temple.

 On FlashSDK:Release_FlashTemple right click-->Build Project, It can be compiled. The result is
in the Console window. The compiled image is in:
C:\NXP\S32DS.3.4\S32DS\tools\S32FlashTool\FlashSDK_Ext\Release_FlashTemplate\
FlashSDK.bin.

 S32G ADD GD FLASH SUPPORT

18

Develop a new Flash algorithm to drive the image. The main modifications are the
file:C:\NXP\S32DS.3.4\S32DS\tools\S32FlashTool\FlashSDK_Ext\Algo\Generic\
qspi_chip_commands.h.

Compare the command words of the two flash models with other definitions as follows (note that the
current Flash SDK uses low-speed SPI mode, not high-speed mode):

 MX25UM51245G GD25LX256E Comments
NOR 0 ///< NOR memory type

pb->is_nand = MEMTYPE;//=NOR=0, do
not support QSPI Nand NAND

1// NAND Memory type. not
supported

MEMTYPE NOR

BLOCK_PROTECT_MASK (x3C) //status register protect bit 5~2

TOP_BOTTOM_MASK (x08)
//configure register bit3 top area or bottom
area protect but GD have no this register, so
keep
//it to avoid compiling error. current flash tool
have no protect ability

WEL (1 << 1) ///<Write Enable Latch bit of configuration
register //should be status register

WIP (1 << 0) ///<Write in Progress bit of configuration
register //should be status register

BYTES_PER_PAGE (256) ///< page size in bytes //- 256 Bytes per
programmable page

NUMBER_OF_SECTORS (1024) (1024)

(8192)

number of flash sectors

Because the code uses sector program, the
sector needs to use 1024 and 4 * 1024 instead
of 8192 and 4 * 1024

BYTES_PER_SECTOR (64 * 1024) (64 * 1024)

(4 * 1024)

size of sector in bytes

REG_PROTECTION_ADD
R

0x00 address of the register that holds the
protection bits, if exists

REG_STATUS_ADDR 0x00 address of the register that holds the status
bits, if exists

READ_ID_CMD 0x9F 0x9F Refer 2.1

READ_ID_DUMMY 0 0

READ_ID_LENGTH 4 4

WRITE_ENABLE_CMD 0x06 0x06 Refer 2.1

PAGE_PROGRAM_CMD 0x12 0x12 9.19 Page Program (PP) (02H/12H)

sending Page Program command 3-Byte address PAGE_PROGRAM_DUMM 0 0

 S32G ADD GD FLASH SUPPORT

 19

Y or 4-Byte address on SI

0x12 is Four byte command word

PAGE_PROGRAM_ADDR
ESS_LENGTH

32 32

PAGE_READ_CMD 0x13 0x13 9.14 Read Data Bytes (READ) (03H/13H)

0x13 is Four byte command word

PAGE_READ_DUMMY1 0 0

PAGE_READ_ADDRESS_
LENGTH

32 32

PAGE_READ_DUMMY2 0 0

READ_STATUS_REGISTE
R_CMD

0x05 0x05 Refer 5.3.3.9

READ_STATUS_REGISTE
R_DUMMY

0 0

READ_STATUS_REGISTE
R_ADDRESS_LENGTH

0 0

READ_STATUS_REGISTE
R_LENGTH

1 1

WRITE_STATUS_REGIST
ER_CMD

0x01 0x01 Refer 2.2

WRITE_STATUS_REGIST
ER_DUMMY

0 0

WRITE_STATUS_REGIST
ER_ADDRESS_LENGTH

0 0

WRITE_STATUS_REGIST
ER_LENGTH

1 1

SECTOR_ERASE_CMD 0xDC 0xDC Refer 5.3.3.2

SECTOR_ERASE_DUMM
Y

0 0

SECTOR_ERASE_ADDRE
SS_LENGTH

32 32

SUBSECTOR_ERASE_CM
D

0x21 0x21

9.22 Sector Erase (SE) (20H/21H)
SUBSECTOR_ERASE_DU
MMY

0 0

 S32G ADD GD FLASH SUPPORT

20

SUBSECTOR_ERASE_AD
DRESS_LENGTH

32 32

CHIP_ERASE_CMD 0x60 0x60

CLEAR_STATUS_REGIST
ER_CMD

0 0 which means have no this command

READ_ANY_REGISTER_
CMD

0x71 0x85 Since the SPI line low speed mode is adopted,
the configure register does not need to be
operated.

Refer 5.3.3.8
READ_ANY_REGISTER_L
ENGTH

1 1

READ_ANY_REGISTER_
ADDRESS_LENGTH

32 24

READ_ANY_REGISTER_
DUMMY

0 0

WRITE_ANY_REGISTER_
CMD

0x72 0x81 Since the SPI line low speed mode is adopted,
the configure register does not need to be
operated.

Refer 2.2
WRITE_ANY_REGISTER_
LENGTH

1 1

WRITE_ANY_REGISTER_
ADDRESS_LENGTH

32 24

WRITE_ANY_REGISTER_
DUMMY

0 0

READ_ID_CMD1_OPI 0x9F 0x9F Refer 5.3.3.7

READ_ID_CMD2_OPI 0xF9 0xF9

READ_ID_DUMMY_OPI 0 0

READ_ID_LENGTH_OPI 4 4

Therefore, the source file does not need to be modified. You can work directly by compiling the
image directly.

Copy C:\NXP\S32DS.3.4\S32DS\tools\S32FlashTool\FlashSDK_Ext\Release_FlashTemplate\
FlashSDK.bin to C:\NXP\S32DS.3.4\S32DS\tools\S32FlashTool\flash. Rename to GD25LX256E.bin。
Then modify: C:\NXP\S32DS.3.4\S32DS\tools\S32FlashTool\configs\flash_devices.xml,add
GD25LX256E.bin in:

<algorithm>
 <id>GD25LX256E</id>
 <name>GD25LX256E</name>
 <path>flash/GD25LX256E.bin</path>
 </algorithm>

 S32G ADD GD FLASH SUPPORT

 21

In this way, you can see in the algorithm image drop-down box of the flash tool:

3.3 Test Report

 Use the Flash tool to load the algorithm：Upload target and algorithm to hardware:

 Use Get flash ID after success: check whether it is successful:

Same with datasheet.

 Then use the erasing function of Flash tool: Erase memory range to see whether the erasing is
successful:

 S32G ADD GD FLASH SUPPORT

22

 Test the flash tool's burning function:Upload file to device:

 Finally, the Flash tool was used to read the image burned in for comparison:

 S32G ADD GD FLASH SUPPORT

 23

4 Develop IVT Parameter Header
Refer doc <<AN13563: S32G QuadSPI Deep Dive Application note>>, Chapter 4 QuadSPI Boot and

doc<<S32G_QSPINOR_Customization_*.pdf>>, Chapter 4 S32G QSPI NOR flash parameter header
customization. The following is a comparison of the configurations of three flash models in 200Mhz,
DDR, External DQS, Auto Update/Bypass, and a comparison of the appropriate configurations of
GD25LX256E:

 Macronix
MX25UW51245G

Micron

MT35XU256ABA

GD

GD25LX256E

200Mhz 200Mhz 200Mhz

DDR DDR DDR

External DQS External DQS External DQS External DQS

Auto Update Auto Update Bypass Auto Update

Flash Port Connection A A A A

DLL Bypass mode No No Yes No

DLL Auto Update Mode Yes Yes No Yes

IPCR Enable Mode No No No No

SFLASH Clock Frequency 0xc8 0xc8 0xc8 0xc8

MCR 0x30f00cc 0x30f00cc 0x30f00cc 0x30f00cc

 DQS_FA_

SEL=3

DQS_FA_

SEL=3

DQS_FA_

SEL=3

DQS_FA_

SEL=3

FLSHCR 0x10303 0x10303 0x10303 0x10303

BFGENCR 0x0 0x0 0x0 0x0

DLLCRA 0xc280000c 0xc280000c 0x40000506 0xc280000c

DLLEN=1 DLLEN=1 DLLEN=0 DLLEN=1

FREQEN=1 FREQEN=1 FREQEN=1 FREQEN=1

DLL_REFCNTR=2 DLL_REFCNTR=2 DLL_REFCNTR=0 DLL_REFCNTR=2

 S32G ADD GD FLASH SUPPORT

24

DLLRES=8 DLLRES=8 DLLRES=0 DLLRES=8

SLV_FINE

_OFFSET=0

SLV_FINE

_OFFSET=0

SLV_FINE

_OFFSET=0

SLV_FINE

_OFFSET=0

SLV_DLY

_OFFSET-=0

SLV_DLY

_OFFSET-=0

SLV_DLY

_OFFSET-=0

SLV_DLY

_OFFSET-=0

SLV_DLY

_COARSE=0

SLV_DLY

_COARSE=0

SLV_DLY

_COARSE=5

SLV_DLY

_COARSE=0

SLAVE_AUTO

_UPDT

=1

SLAVE_AUTO

_UPDT

=1

SLAVE_AUTO

_UPDT

=0

SLAVE_AUTO

_UPDT

=1

SLV_EN=1 SLV_EN=1 SLV_EN=1 SLV_EN=1

SLV_DLL_

BYPASS=0

SLV_DLL_

BYPASS=0

SLV_DLL_

BYPASS=1

SLV_DLL_

BYPASS=0

SLV_UPD=0 SLV_UPD=0 SLV_UPD=0 SLV_UPD=0

PARITYCR 0x0 0x0 0x0 0x0

SFACR 0x20000 0x0 0x0 0x0

Byte Swapping=1 Byte Swapping=0 Byte Swapping=0 Byte Swapping=0

SMPR 0x44000000 0x44000000 0x44000000 0x44000000

DLCR 0x40ff40ff 0x40ff40ff 0x40ff40ff 0x40ff40ff

SFA1AD 0x20000000 0x20000000 0x20000000 0x20000000

SFA2AD 0x20000000 0x20000000 0x20000000 0x20000000

DLPR 0xaa553443 0xaa553443 0xaa553443 0xaa553443

SFAR 0x0 0x0 0x0 0x0

TBDR 0x0 0x0 0x0 0x0

lut[0] command sequence 0xee 0x47 0x11
0x47

0xfd 0x47 0x2 0x47 0xfd 0x47 0x2 0x47 0xfd 0x47 0x2 0x47

lut[1] command sequence 0x20 0x2b 0x14 0xf 0x20 0x2b 0x10 0xf 0x20 0x2b 0x10 0xf 0x20 0x2b 0x10 0xf

lut[2] command sequence 0x10 0x3b 0x0 0x0 0x10 0x3b 0x0 0x0 0x10 0x3b 0x0 0x0 0x10 0x3b 0x0 0x0

lut[3] command sequence 0 0 0 0

lut[…] command sequence 0 0 0 0

lut[79] command sequence 0 0 0 0

Flash Write Data[0] No/0byte/0x0/spi No/0byte/0x0/spi No/0byte/0x0/spi No/0byte/0x0/spi

 S32G ADD GD FLASH SUPPORT

 25

/0x6/0x0/0x0 /0x6/0x0/0x0 /0x6/0x0/0x0 /0x6/0x0/0x0

Flash Write Data[1] Yes/1byte/0x20/spi

/0x72/0x0/0x2

Yes/1byte/0x18/spi

/0x81/0x0/0xe7

Yes/1byte/0x18/spi

/0x81/0x0/0xe7

Yes/1byte/0x18/spi

/0x81/0x0/0xe7

Flash Write Data[…] 0 0 0 0

Flash Write Data[9] 0 0 0 0

It can be seen that the main differences are:

4.1 S32G QSPI Controllder configuration difference

1. IPCR Trigger

Because:

Therefore, it is not necessary to configure to IP interface mode, IPCR Trigger does not need to be
checked, and the registers to be configured for AHB mode are:

 S32G ADD GD FLASH SUPPORT

26

Therefore, it is necessary to ensure that:

 BUF0IND= BUF1IND= BUF2IND=0 //so BUFFER3=1024 bytes

 BUF3CR[ALLMST]=1 // All masters can access BUFFER3

 BUF3CR[ADATSZ]// It doesn't matter if the value is 0, it will be reset by the configuration of the
SEQID

 BFGEBCR[SEQID]=0 // The LUT is configured as 0, so the IVT header needs to configure the
fast read as LUT0.

Use an empty flash. In the QSPI NOR flash startup mode, after the startup fails, connect the
lauterbach and confirm as

 S32G ADD GD FLASH SUPPORT

 27

follows:

Therefore, the default code configuration of ROM Code meets the requirements. In addition:

So the LUT0 used by ROM Code by default is:

2. DQS mode select

Refer doc <<AN13563: S32G QuadSPI Deep Dive Application note>>, Chapter 3.3.2. Supported
DQS sampling method, and doc <<AN12808: QSPI Timing Configuration>>, Chapter 3 Sampling the
read data from QSPI Flash memory, understand the DQS mode select.

 S32G ADD GD FLASH SUPPORT

28

Note:

 In order to improve the access speed, it is recommended to use the External DQS mode in the DDR
mode, while the DDR mode generally needs to work at more than 133Mhz, and usually works at
200Mhz. The maximum use of Pad loopback in the DDR mode can only be 66Mhz.

 For 133Mhz SDR mode, Pad loopback mode can be used instead of External DQS mode.

 External DQS mode requires QSPI NOR to output clock to S32G, so QSPI NOR itself and PCB
connection will affect the quality of DQS signal, so in addition to hardware measurement,
133Mhz SDR Pad loopback mode can also be used as a reference test.

2. Difference between Auto Update mode and Bypass mode:

Refer to <<AN13563: S32G QuadSPI Deep Dive Application note>>, chapter 3.3.3 DLL and DQS
delay chain and <<AN12808: QSPI Timing Configuration>>, Chapter 4: DQS delay circuits, learn
about the selection methods of DQS delay circuits,

The setting method of DLL Bypass mode is (dynamic code):

A. Set DLLCRA [SLV_EN]=1, DLLCRA [SLV_DLL_BYPASS]=1 DLLCRA
[SLAVE_AUTO_UPT]=0.

B. Program the following fields to provide the DQS delay DLLCRA [SLV_FINE_OFFSET],
DLLCRA [SLV_DLY_COARSE] and DLLCR [FREQEN] required for sampling. For supported
programming settings, see chip specific QuadSPI information.

C. Set DLLCRA [SLV_UPD]=1 to load these values into the slave delay chain.

D. Check the update status from the delay chain by polling DLLSR [SLVA_LOCK]=1, and clear
DLLCRA [SLV_UPD] after confirming the update status

So the final register setting is:

SLV_EN=1, SLV_DLL_BYPASS=1, SLAVE_AUTO_UPT=0, SLV_FINE_OFFSET=0 or a value
(fine call can be set to 0 first), SLV_DLY_COARSE=5, FREQEN=1 (200Mhz is set to 1133Mhz is set
to 0), SLV_UPD=changes from 1 to 0, and finally to 0.

The configuration method of DLL Auto Update mode is (dynamic code):

 S32G ADD GD FLASH SUPPORT

 29

A. Program DLLCRA [SLV_EN]=1, DLLCRA/SLV_DLL_BYPASS]=0, DLLCRA
[SLAVE_AUTO_UPT]=1.

B. Use DLLCRA [DLL_REFCNTR] and DLLCRA [DLLRES] to program the DLL configuration.
For supported DLL configuration settings, see chip specific QuadSPI information.

C. The slave settings are programmed to delay DQS by using the fields DLLCRA
[SLV_FINE_OFFSET], DLLCRA [SLV_DLY_OFFSET] and DLLCR [FFREQEN]. See chip specific
QuadSPI information for supported settings.

D. If the offset delay needs to be updated on the slave chain, the program DLLCRA [SLV_UPD]=1.

E. Enable DLL by programming DLLCRA [DLLEN]=1, and reset DLLCRA [SLV_UPD]=0. The
slave delay chain will be updated automatically, and can be checked by polling DLLSR
[SLVA_LOCK]==1

So the final register setting is:

SLV_EN=1, SLV_DLL_BYPASS=0, SLAVE_AUTO_UPT=1, DLL_REFCNTR=2, DLLRES=8,
SLV_FINE_OFFSET=0, SLV_DLY_OFFSET=0, FFREQEN=1, SLV_UPD=0 from 1, finally 0,
DLLEN=1.

3. BYTE Swapping difference:

Byte swapping define as follows:

Refer MX25UW51245G flash datasheet:

 S32G ADD GD FLASH SUPPORT

30

So for a word unit, the high byte comes first and the low byte comes last, so it needs to be set to swap
here. Micron and GD do not have this requirement.

4.2 QSPI Configuration Difference

 Refer to Section 2.3 to configure GD25LX256E Command Sequences using DOPI mode
READ_8DTRD

 Refer to section 2.2, configure QSPI NOR to DOPI mode, configure Flash Write Data, set
GD25LX256E Flash to write enable, and then set QSPI NOR to DOPI mode.

Store as: GD_QSPI_Parametes_200M_DDR__ExternalDQS_Autoupdate.bin

4.3 Test Report

Refer to the description in the document <<S32G_RTD_MCAL_V *. Pdf>>, compile a DIO lighting
example, pack it, and note:

 Configure QuadSPI parameters Select the IVT QSPI header image exported from S32DS:
GD_QSPI_Parameteres_200M_DDR__ExternalDQS_Autoupdate.bin.

 DCD section is used to initialize SRAM, or it is not necessary to select:
C:\NXP\Integration_Reference_Examples_S32G3_2023_02\code\framework\realtime\swc\boo
tloader\platforms\S32G3XX\res\flash\S32G3XX_DCD_InitSRAM.bin.

 The example of DIO lighting requires that GPIO switch SW11 be set to on.

Then set it to QSPI NOR startup mode, power on and start, you can see the U128 RGB light flashing.
Prove successful startup.

 S32G ADD GD FLASH SUPPORT

 31

Note:

With reference to the document <<S32G_QSPINOR_Customize_ *. Pdf>>, the larger image in
section 10.2 cannot be started from QSPI-NOR without a parameter header, so:

 If the IVT QSPI NOR parameter header development is not completed, you can use the default 1
bit low-speed mode of ROM to start a small image, such as the Bootloader image, to avoid block
bringing up.

 In order to accelerate the starting speed, it is recommended to complete the development of IVT
QSPI NOR parameter header and add parameter header in IVT.

 In order to accelerate the startup speed, it is recommended to use 200Mhz, DDR, External DQS,
Auto update mode to better adapt to temperature and other environmental factors, so if possible,
try to use Auto update mode.

 If there are problems in the final high-speed mode development, you can use 133Mhz SDR
Padloopback, bypass mode ->200 Mhz DDR external DQS bypass mode ->200 Mhz DDR
external DQS Auto update mode to gradually upgrade the development in order to avoid block
bringing up.

5 Develop MCAL Fls driver
Refer to the document <<AN13563: S32G QuadSPI Deep Dive Application note>>, chapter 6 Flash

Driver configuration method – EB tresos， Understand the development of Flash MCAL Fls driver. Note
that the development of the Fls driver can use Lauterbach debugging, so this work can be arranged flexibly
after the development of the Lauterbach script driver (optional), or after the development of the Flash tool
algorithm image/IVT parameter header.

In addition, NXP uses EB by default to configure Flash drivers, while some other Autosar vendors,
such as Vector, use Davinci configuration work to configure Flash drivers. The interfaces of the two are
different and the contents are the same. This article describes EB configuration.

As mentioned in the reference document, the Fls driver configuration includes three parts: the S32G
Flash controller, the Flash Memory and the Fls sector. If replaces a new Flash. The main work focuses on
the modification of the Flash Memory.

5.1 MCAL Fls Driver Project Details

5.1.1 MCAL Fls Driver Project

Take SW32G_RTD_4.4_4.0.2 as sample:

EB tresos Studio 27.1->File->Import->General->Existing Pojects into Workspace->Next->Select
root directory->Browse to C:\NXP\SW32G2_RTD_4.4_4.0.2\eclipse\plugins\
Fls_TS_T40D11M40I2R0\examples\EBT\ S32G3\ Fls_Example_S32G399A_M7\TresosProject

 S32G ADD GD FLASH SUPPORT

32

Copy projects intow workspace->Finish.

Right click the project name Fls_Example_S32G399A_M7, and select Generate Project. The
configuration source code file is generated. If you need to modify the configuration, save it and regenerate
it.

Open the properties of the EB project and select Configuration Project ->Code Generator. The
generated code will be placed in this relative path by default: ".. .. Generate". Therefore, after generating
the code according to the previous step, the code will be placed in this relative path. At this time, you need
to manually set all files in this relative directory (for example, the default workspace is under
C:\EB\tresos\), copy C:\EB\tresos\generate to C:\NXP\SW32G2_RTD_4.4_4.0.2\eclipse\plugins\
Fls_TS_T40D11M40I2R0\examples\EBT\S32G3\ Fls_Example_S32G399A_M7\generate\.

Open Make file:
C:\NXP\SW32G2_RTD_4.4_4.0.2\eclipse\plugins\Fls_TS_T40D11M40I2R0\examples\EBT\S32G

3\ Fls_Example_S32G399A_M7\project_parameters.mk
Modify the following parameters according to the path of your PC:
 TOOLCHAIN = gcc //Defaul MCAL using GCC.
 GCC_DIR= C:/NXP/S32DS.3.4/S32DS/build_tools/gcc_v9.2/gcc-9.2-arm32-eabi //S32DS GCC

compiler path
 TRESOS_DIR= C:/EB/tresos // The installation path of EB Tresos Studio corresponding to this

RTD.
 T32_DIR= C:/T32 //The installation path of Lauterbach's debugging software T32.
 PLUGINS_DIR // The path of RTD Plugins is relative by default, and generally does not need to

be modified.
 MCAL_MODULE_LIST := BaseNXP Det Rte Fls MemIf Mcu Port Rm // Other Mcal modules

that the Fls driver depends on.

In file Makefile defined:
ifneq (,$(findstring S32G3,$(EXAMPLE_DERIVATIVE)))

 FAMILY := S32G3XX
Launch Cygwin and enter:
C:\NXP\SW32G_RTD_4.4_4.0.2\eclipse\plugins\Fls_TS_T40D11M40I2R0\examples\EBT\S32G3\

Fls_Example_S32G399A_M7
 Input command:
make build
wait for compiling finished.

5.1.2 Fls driver source code

Main()

|->Mcu_Init(NULL_PTR);

|->Mcu_InitClock(McuClockSettingConfig_0);

|-> Mcu_DistributePllClock();

|->Port_Init(NULL_PTR);

 S32G ADD GD FLASH SUPPORT

 33

|-> Fls_Init(NULL_PTR);

| |->Fls_IPW_Init();

| | |->Fls_IPW_InitControllers

| | | |->Qspi_Ip_ControllerInit

| | | | |->Qspi_Ip_Disable

| | | | |->Qspi_Ip_ConfigureController

| | | | | |->Qspi_Ip_ConfigureControllerA

| | | | | | |->Qspi_Ip_SetMemMapSizeA

| | | | | | |->Qspi_Ip_SetIdleLineValuesA

| | | | | | |->Qspi_Ip_SetCenterAlignedStrobeA

| | | | | | |->Qspi_Ip_SetDifferentialClockA

| | | | | |->Qspi_Ip_SetSerialFlashAddress

| | | | | | |->Qspi_Ip_SetAddrOptions

| | | | | | |->Qspi_Ip_SetByteSwap

| | | | | |->Qspi_Ip_SetRxCfg

| | | | | |->Qspi_Ip_SetCsTime

| | | | | | |->Qspi_Ip_SetCsHoldTime

| | | | | | |->Qspi_Ip_SetCsSetupTime

| | | | | |->Qspi_Ip_ConfigureReadOptions

| | | | | | |->QSPI_DQS_Enable

| | | | | | |->QSPI_DQS_LatEnable

| | | | | | |->QSPI_DDR_Enable

| | | | | | |->Qspi_Ip_SetDataInHoldTime

| | | | | | |->Qspi_Ip_SetDQSSourceA

| | | | | | |->Qspi_Ip_SetRxDLLTapA

| | | | | |->Qspi_Ip_ConfigureChipOptions

| | | | |->Qspi_Ip_Enable

| | | | |->Qspi_Ip_SwReset

| | | | |->Qspi_Ip_ConfigureDLL

| | | | | |->Qspi_Ip_ConfigureDLLA

| |->Fls_IPW_InitMemories

| | |->Qspi_Ip_Init

//Reset QSPI

 S32G ADD GD FLASH SUPPORT

34

| | | |->Qspi_Ip_InitReset(instance, pConfig->initResetSettings.resetCmdLut,
pConfig->initResetSettings.resetCmdCount, state);

/

| | | | |->Qspi_Ip_InitLutSeq /* Copy sequence in LUT registers */

| | | | |->Qspi_Ip_IpCommand /* Run QSPI command */

| | | |->Qspi_Ip_InitDevice

| | | | |->Qspi_Ip_InitOperation

/ /Initialize (Reset) QSPI NOR to DTR-OPI mode according to the configuration on the InitConfiguration page.

case QSPI_IP_OP_TYPE_RMW_REG:

 /* Change a bitfield in the register */

 status = Qspi_Ip_InitRMWReg(instance, &initOperations[initOp]);

case QSPI_IP_OP_TYPE_QSPI_CFG:

 /* Re-initialize QSPI controller with the given configuration */

 (void)Qspi_Ip_ControllerDeinit(state->connection->qspiInstance);

 status = Qspi_Ip_ControllerInit(state->connection->qspiInstance, initOperations[initOp].ctrlCfgPtr);

| | |->Qspi_Ip_AhbReadEnable /* Configure the AHB reads for flash unit "cnt" */

| |->Fls_IPW_CheckDevicesId();

| | |->Fls_IPW_DeviceIdMatches

| | | |->Qspi_Ip_ReadId

Qspi_Ip_RunReadCommand(instance,

 state->configuration->readIdSettings.readIdLut,

 0U,

 data,

 NULL_PTR,

 state->configuration->readIdSettings.readIdSize);

|->Fls_InitBuffers();

|->Fls_Erase(LOGICAL_START_ADDR, NUMBER_OF_EXTERNAL_SECTOR *
EXTERNAL_SECTOR_SIZE);

| |-> FLS_JOB_ERASE : Fls_DoJobErase

| | |-> Fls_IPW_SectorErase

| | | |->Qspi_Ip_EraseBlock

| | | | |->Qspi_Ip_BasicErase

| | | | | |->Qspi_Ip_SerialflashSectorErase

| | | | | | |->Qspi_Ip_WriteEnable

 S32G ADD GD FLASH SUPPORT

 35

| | | | | | |->Qspi_Ip_RunCommand(instance, eraseLut, address);

|->Fls_Write(LOGICAL_START_ADDR, TxBuffer, FLS_BUF_SIZE);

…

|->Fls_Read(LOGICAL_START_ADDR, RxBuffer_IP, FLS_BUF_SIZE);

…

|->Fls_Compare(LOGICAL_START_ADDR, TxBuffer, FLS_BUF_SIZE);

…

|-> Fls_GetAhbData();

…

So pay attention to the reinitialization configuration of QSPI NOR in the InitConfiguration
configuration page.

See Section 5.4 for testing.

5.2 FlsMem Configuration page

Fls_Example_S32G399A_M7->somId(…)->Fls(…)->Fls->FlsMem-> FlsMem_0：

 Flash Device Name= Gigadevice

 Flash memory alignment (1 -> 16) =1 // Address alignment required for external Flash (1, 2 or 4
bytes...) in OCTA DTR mode (DOPI)

 Enable Ahb Direct Reads = Checked // After setting, QSpi_Ip_AhbReadEnable() will be called from
Fls_Init() to allow reading through AHB. The application can be read directly through the address
mapping of the Flash device. That is, in addition to the IP access method, you can also read the
content mapped by QSPI NOR flash from the AHB address starting with 0x0.

 Flash memory device initial configuration= /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI //
The configuration reference that will be used to initialize the Flash device.

 QSPI controller instance= /Fls/Fls/FlsConfigSet/FlsExternalDr/FlsController_0 // The QSPI
controller instance to which this Flash device is connected.

 // Note that the above two items are the configurations during QSPI NOR initialization. The
description of AN13563 is:

1. The bootROM booted by QuadSPI can be configured with external Flash, and high-speed
communication in OPI mode can be realized through the QuadSPI parameters of IVT.

2. The QuadSPI driver initializes the external Flash by sending the reset command to the external Flash.
After reset, the external Flash becomes the default state of SPI mode. You need to reconfigure the external
Flash and set the QuadSPI controller to the corresponding mode (usually OPI mode)

3. Re configure the external Flash and QuadSPI controllers in OPI mode for the Fls drive to improve QSPI
performance.

 S32G ADD GD FLASH SUPPORT

36

So Mcal Fls does not depend on the default state of Flash. It will reset to the initialization state, and
then reinitialize Flash. This is different from the Fls driver in Bootloader. Therefore, the Fls example has
two types of QSPI controller configurations to adapt to external Flash.

1. ControllerCfg_0 shows the configuration of SPI mode of external Flash. Used to initialize Flash in
SPI mode.

2. ControllerCfg_1 displays the configuration of OPI mode of external Flash. OPI mode for normal
operation.

 Connection type= QSPI_IP_SIDE_A1 // The connection type between the flash device and the
controller: QSPI_IP_SIDE_A1-A1 side serial Flash.

5.3 MemCfg Configuration page

Fls_Example_S32G399A_M7->somId(…)->Fls(…)->Fls->MemCfg-> MemCfg_DOPI：

5.3.1 Fls External Configuration page

 Flash device size (0x0 -> 0xffffffff) =0x2000000 // The size of this Flash device (in bytes),
GD25LX256E is 32MB.

 Flash device page size (0 -> 4294967295) =256 // The page size (in bytes) of this Flash device. The
page size is the maximum amount of data that the Flash device can write in a single write operation//
GD25LX256E is 256 Bytes per programmable page

 Read LUT index =/Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/Read_dopi // Reference to
the LUT sequence ID that will be used for the read operation, using DOPI mode.

 Write LUT index=/Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/Write_dopi // Reference to
the LUT sequence ID that will be used for write operations, using DOPI mode.

 Read Id LUT Index= /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/ReadId_dopi // Refer to
the LUT sequence ID, which will be used to read the device/manufacturer ID.

 Read Id size (0 -> 4)= 3 The size of the information returned by the readId command (in bytes)//
Generally, it is 1-byte manufacure id and 2-byte device id.

 S32G ADD GD FLASH SUPPORT

 37

 Fls Qspi Device Id = 0x19:68:C8 // QSPI NOR memory ID. If the related
"FLS_E_UNEXPECTED_FLASH_ID" error is enabled, the configured value will be checked
according to the value read from memory during initialization. Use the configured read_ID LUT
sequence to read the memory ID from the memory. Note: This parameter can only be configured
when using Read Id LUT index reference.。

GD25LX256E is:

And MX25UW51245G= 0x3A:81:C2

 Erase type 1 LUT index = /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/Erase_dopi // Erase
the LUT sequence ID reference for type 1.

 Erase type 1 size (1 -> 32)=12 // The size of the erased area (in bytes): 2 ^ size; For example, 0x0C
represents 4K bytes - Sector of 4K Byte

 Read status register LUT index - initialization =
/Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/ReadSR // Read the LUT sequence ID
reference of the status register command. This sequence is used for the initialization phase. For
example, if the initial state of Flash is SPI, this should be a SPI sequence.

 Read status register LUT index =
/Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/ReadSR_dopi // Read the LUT sequence ID
reference of the status register command. The normal mode is DOPI mode.

 Write status register LUT
index=/Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/WriteSR_dopi // LUT sequence ID
reference for write status register command.

 Status register write enable LUT
index=/Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/WriteEnable_dopi // Status register
writes LUT sequence ID reference of enable command

 Write enable LUT index=/Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/WriteEnable_dopi //
Write the LUT sequence ID reference of the enable command.

MX25UW51245G’s status register of is defined as follows:

 Size in bytes of status register (1 -> 4) =1 // Size of the status register (in bytes)

 Position of busy bit (0 -> 31)=0, busy bit active value (0 -> 1)=1

 Position of Write Enable bit (0 -> 31) =1

 S32G ADD GD FLASH SUPPORT

38

 Offset of block protection bits (0 -> 31) =2，Width of block protection bitfield (0 -> 32) =4 ，Value
of block protection bitfield (0 -> 15)

So the status registers of corresponding GD25LX256E are defined as follows: they are the same.

 Size in bytes of status register (1 -> 4) =1 // Size of the status register (in bytes)

 Position of busy bit (0 -> 31)=0, busy bit active value (0 -> 1)=1

 Position of Write Enable bit (0 -> 31) =1

 Offset of block protection bits (0 -> 31) =2，Width of block protection bitfield (0 -> 32)=5 ，Value
of block protection bitfield (0 -> 15)=0

 resetSettings.Reset LUT index= /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/RuntimeReset
// eference to the LUT sequence ID from the first command of the reset sequence. Reset command in
Runtime status.

 resetSettings. Number of reset commands (1 -> 255) =2 // Number of commands in reset sequence

 initResetSettings.Reset LUT index= /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/ InitReset
// Reference to the LUT sequence ID from the first command of the reset sequence. Reset command
in SPI 1 line mode during initialization.

 initResetSettings. Number of reset commands (1 -> 255) =2 / Number of commands in reset
sequence

 S32G ADD GD FLASH SUPPORT

 39

 Configure controller on flash Init= /Fls/Fls/FlsConfigSet/FlsExternalDr/ControllerCfg_SDR //
Initialization is in SPI SDR 1 line mode.

5.3.2 InitConfigureation Configuration page

This configuration page describes the list of operations that must be performed during initialization to
keep the memory in the required operation state. For example, activate XPI mode and 4-byte addressing.

5.3.2.1 Write_cr2_dopi

 Operation type = QSPI_IP_OP_TYPE_RMW_REG // he operation type can be one of the following:
QSPI_IP_OP_TYPE_RMW_REG - RMW command on external Flash register

 First LUT index= /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/RDCR // RDCR2 // Index of
the first command sequence in Lut; For the RMW type, this is the read command.//Note that the
DOPI mode is set in the configuration register 2 for MX25UW51245G, but in the configuration
register for GD25LX256E, so the name should be modified first to avoid misunderstanding. The
name of the subsequent FlsLUT table should also be modified accordingly

 Second LUT index= /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/WRCR // WRCR2 //
The index of the second command sequence in Lut is only used for RMW type, which is a write
command.

 Write Enable LUT Index= /Fls/Fls/FlsConfigSet/FlsExternalDr/MemCfg_DOPI/WriteEnable //
Write the index of the enable command, if necessary, before writing the command. For write and
RMW operations only.

 //MX25UW51245G’s configuration register 2 is defined as:

 Command address (0 -> 4294967295) =0 //address, if command use it

 Register size (1 -> 4) =1 //The size of the configuration register in bytes.

 Bit-field offset (0 -> 32) =1, Bit-field width (0 -> 32)=1, Bit-field value (0 -> 4294967295)=1

//GD25LX256E is:

 S32G ADD GD FLASH SUPPORT

40

So need configure to:

 Command address (0 -> 4294967295) =0 // address, if command use it

 Register size (1 -> 4) =1 // The size of the configuration register in bytes.

 Bit-field offset (0 -> 32) =0, Bit-field width (0 -> 32)=8, Bit-field value (0 ->
4294967295)=231=0xE7

5.3.2.2 Ext_dqs

 Operation type = QSPI_IP_OP_TYPE_QSPI_CFG // The operation type can be one of the following:
QSPI_IP_OP_TYPE_QSPI_CFG – Reconfigure QSPI controller

 Controller configuration = /Fls/Fls/FlsConfigSet/FlsExternalDr/ControllerCfg_DDR_DQS_External
// Reference to the configuration that will be used to initialize the controller. Only valid for
QSPI_IP_OP_TYPE_QSPI_CFG operation. After initializing QSPI NOR to DOPI mode,
reconfigure the control to DDR DQS external mode.

5.3.3 FlsLUT Configuration page

Configuration page used to configure the lookup table containing all instruction/operand sequences.
A sequence consists of a series of up to 8 instruction/operand pairs, which can store up to 4 LUTs. These
LUTs will be executed whenever a command is triggered to the external Flash. Note that this is the most
important part of modifying a new Flash, and it needs to be modified according to the data manual of QSPI
NOR.

Because previously in Chapter 2/4, we have analyzed:

 Read_dopi:

 MX25U51245G(Reference) GD25LX256E(Design)

 S32G ADD GD FLASH SUPPORT

 41

EB Conf.

 WriteEnable: do not change.

 MX25U51245G(Reference) GD25LX256E(Design)

EB Conf.

 WRCR2 modified to WRCR command sequence:

 MX25U51245G(Reference) GD25LX256E(Design)

EB Conf.

Therefore, this section only analyzes the remaining items:

5.3.3.1 Write_dopi

 MX25U51245G(Reference) GD25LX256E(Design)

EB Conf.

Details Instr(6bits
)

Pads(
2bits)

Operand(8bits) Instr(6bits) Pads(
2bits)

Operand(8bits)

4712 0x11(CM
D_DDR)

0x3(8
bit)

0x12
0xed(Page
Program
PP4B)

4782 0x11(CMD
_DDR)

0x3(8
bit)

0x82(Page program
DTR OPI)

47ed 0x11(CM
D_DDR)

0x3(8
bit)

477d 0x11(CMD
_DDR)

0x3(8
bit)

0x7d(0x82 inverted
code)

2b20 0xA(ADD
R_DDR)

0x3(8
bit)

0x20(32 Addr
bits to be sent
on 4 pad)

2b20 0xA(ADDR
_DDR)

0x3(8
bit)

0x20(32 Addr bits to be
sent on 4 pad)

3f10 0xF(WRI 0x3(8 0x10(write 16 3f10 0xF(WRIT 0x3(8 0x10(write 16 Bytes on

 S32G ADD GD FLASH SUPPORT

42

TE_DDR) bit) Bytes on 4 pad) E_DDR) bit) 4 pad)

Timing

Dialog

Comment
s

The Page Program (PP/PP3B/PP4B) instruction
is for programming the memory to be "0". A
Write Enable (WREN)
instruction must be executed to set the Write
Enable Latch (WEL) bit before sending each
Page Program (PP/

PP3B/PP4B) command.

The Octal Page Program command is for programming
the memory using eight pins: IO[7:0]. A Write Enable
(WREN) command must previously have been executed
to set the Write Enable Latch (WEL) bit before sending
the Page Program command.

Note that the native MX25U51245G uses the Page Program (PP/PP3B/PP4B) command 02h/12h,
which is the same as GD25LX256E. Here, it is modified as: Octal Page Program (82H/84H), so it is also
possible to use the old command word. Here, it can be modified or not modified.

5.3.3.2 Erase_dopi: same, do not need modification

 MX25U51245G(Reference) GD25LX256E(Design)

EB Conf.

Details Instr(6bits
)

Pads(
2bits)

Operand(8bits) Instr(6bits) Pads(
2bits)

Operand(8bits)

4721 0x11(CM
D_DDR)

0x3(8
bit)

0x21

0xde(Sector
Erase SE4B)

4721 0x11(CMD
_DDR)

0x3(8
bit)

0x21 (Sector Erase
DTR OPI)

47de 0x11(CM
D_DDR)

0x3(8
bit)

47de 0x11(CMD
_DDR)

0x3(8
bit)

0xde(0x21’s inverted
code)

2b20 0xA(ADD
R_DDR)

0x3(8
bit)

0x20(32 Addr
bits to be sent
on 4 pad)

2b20 0xA(ADDR
_DDR)

0x3(8
bit)

0x20(32 Addr bits to be
sent on 4 pad)

Timing

Dialog

9.22 Sector Erase (SE) (20H/21H)

 S32G ADD GD FLASH SUPPORT

 43

Comment
s

The Sector Erase (SE/SE3B/SE4B) instruction
is for erasing the data of the chosen sector to be
"1". The instruction
is used for any 4K-byte sector. A Write Enable
(WREN) instruction must execute to set the
Write Enable Latch (WEL)

bit before sending the Sector Erase
(SE/SE3B/SE4B).

The Sector Erase (SE) command is erased the all data of
the chosen sector. A Write Enable (WREN) command
must previously have been executed to set the Write
Enable Latch (WEL) bit.

5.3.3.3 ReadSR_dopi

 MX25U51245G(Reference) GD25LX256E(Design)

EB Conf.

Details Instr(6bits
)

Pads(
2bits)

Operand(8bits) Instr(6bits) Pads(
2bits)

Operand(8bits)

4705 0x11(CM
D_DDR)

0x3(8
bit)

0x05
0xfa(RDSR
DTR-OPI
mode)

4705 0x11(CMD
_DDR)

0x3(8
bit)

0x05 (RDSR DTR-OPI)

47fa 0x11(CM
D_DDR)

0x3(8
bit)

4702 0x11(CMD
_DDR)

0x3(8
bit)

0xfa(0x05 inverted
code)

2b20 0xA(ADD
R_DDR)

0x3(8
bit)

0x20(32 Addr
bits to be sent
on 4 pad)

0f14 0x3(DUM
MY)

0x3(8
bit)

0x14(20
dummy cycles)

0f08 0x3(DUM
MY)

0x3(8
bit)

0x08(8 dummy cycles)

1f01 0x7(REA
D)

0x3(8
bit)

0x1 (Read 1
Bytes on 4 pad)

2b01 0xE(READ
_DDR)

0x3(8
bit)

0x1(Read 1Byte on 8
pad)

Because it is 8bit
mode,change to
READ_DDR

 S32G ADD GD FLASH SUPPORT

44

Timing

Dialog

Comment
s

The RDSR instruction is for reading Status
Register Bits. The Read Status Register can be
read at any time (even
in program/erase/write status register
condition). It is recommended to check the
Write in Progress (WIP) bit before

sending a new instruction when a program,
erase, or write status register operation is in
progress

The Read Status Register (RDSR) command is for
reading the Status Register. The Status Register may be
read at any time, even while a Program, Erase or Write
Status Register cycle is in progress. When one of these
cycles is in progress, it is recommended to check the
Write in Progress (WIP) bit before sending a new
command to the device. It is also possible to read the
Status Register continuously. The SO will output Status
Register bits S7~S0.

5.3.3.4 WriteSR_dopi

 MX25U51245G(Reference) GD25LX256E(Design)

EB Conf.

Details Instr(6bits
)

Pads(
2bits)

Operand(8bits) Instr(6bits) Pads(
2bits)

Operand(8bits)

4701 0x11(CM
D_DDR)

0x3(8
bit)

0x01
0xfe(WRSR
DTR-OPI
Mode)

4701 0x11(CMD
_DDR)

0x3(8
bit)

0x01 (WRSR OPI)

47fe 0x11(CM
D_DDR)

0x3(8
bit)

47fe 0x11(CMD
_DDR)

0x3(8
bit)

0xfe(0x01 inverted
code)

2b20 0xA(ADD
R_DDR)

0x3(8
bit)

0x20(32 Addr
bits to be sent
on 4 pad)

2301 0x08(WRI
TE)

0x3(8
bit)

0x01(write 1
Bytes on 4 pad)

3F01 0xF(WRIT
E_DDR)

0x3(8
bit)

0x01(write 1 Bytes on 4
pad)

Because it is 8bit
mode,change to
WRITE_DDR

 S32G ADD GD FLASH SUPPORT

 45

Timing

Dialog

Comment
s

The WRSR instruction is for changing the
values of Status Register Bits and Configuration
Register Bits. Before
sending WRSR instruction, the Write Enable
(WREN) instruction must be decoded and
executed to set the Write
Enable Latch (WEL) bit in advance. The WRSR
instruction can change the value of Block
Protect (BP3, BP2, BP1,

BP0) bits to define the protected area of
memory

The Write Status Register (WRSR) command allows
new values to be written to the Status Register. Before it
can be accepted, a Write Enable (WREN) command must
previously have been executed. After the Write Enable
(WREN) command has been decoded and executed, the
device sets the Write Enable Latch (WEL).

5.3.3.5 WriteEnable_dopi: same, do not need modifcation

 MX25U51245G(Reference) GD25LX256E(Design)

EB Conf.

Details Instr(6bits
)

Pads(
2bits)

Operand(8bits) Instr(6bits) Pads(
2bits)

Operand(8bits)

4706 0x11(CM
D_DDR)

0x3(8
bit)

0x06

0xf9(WREN
DTR-OPI
Mode)

4706 0x11(CMD
_DDR)

0x3(8
bit)

0x06 (WREN OPI
Mode)

47f9 0x11(CM
D_DDR)

0x3(8
bit)

47f9 0x11(CMD
_DDR)

0x3(8
bit)

0xf9(0x06 inverted
code)

Timing

Dialog

Comment
s

The Write Enable (WREN) instruction is for
setting Write Enable Latch (WEL) bit. For those
instructions like PP/
PP3B/PP4B, SE/SE3B/SE4B,

The Write Enable (WREN) command is for setting the
Write Enable Latch (WEL) bit. The Write Enable Latch
(WEL) bit must be set prior to every Page Program (PP),
Sector Erase (SE), Block Erase (BE), Chip Erase (CE),

 S32G ADD GD FLASH SUPPORT

46

BE/BE3B/BE4B, CE, WRSR, WRCR2, SBL,
WRFBR, ESFBR, WRSCUR, WRLR,
WSPB and ESSPB which are intended to
change the device content WEL bit should be
set every time after the
WREN instruction setting the WEL bit. WREN
is is also required before initiation of
write-to-buffer sequence (WRBI

command).

Write Status Register (WRSR), Write Extended Address
Register (WEAR), Write Nonvolatile/Volatile configure
register and Erase/Program Security Registers command.

5.3.3.6 ResetEnable_dopi/Reset_dopi: same, do not need modifcation

 MX25U51245G(Reference) GD25LX256E(Design)

ResetEna
ble_dopi

EB Conf.

ResetEna
ble_dopi

Details

 Instr(6bits
)

Pads(
2bits)

Operand(8bits) Instr(6bits) Pads(
2bits)

Operand(8bits)

4766 0x11(CM
D_DDR)

0x3(8
bit)

0x66
0x99(RSTEN
DTR-OPI
mode)

4766 0x11(CMD
_DDR)

0x3(8
bit)

0x66 (RSTEN)

4799 0x11(CM
D_DDR)

0x3(8
bit)

4799 0x11(CMD
_DDR)

0x3(8
bit)

0x99(0x66 inverted
code)

Reset_do
pi

EB Conf.

Reset_do
pi

Details

 Instr(6bits
)

Pads(
2bits)

Operand(8bits) Instr(6bits) Pads(
2bits)

Operand(8bits)

4799 0x11(CM
D_DDR)

0x3(8
bit)

0x99
0x66(RST
DTR-OPI
mode)

4799 0x11(CMD
_DDR)

0x3(8
bit)

0x99 (RST)

4766 0x11(CM
D_DDR)

0x3(8
bit)

4766 0x11(CMD
_DDR)

0x3(8
bit)

0x66(0x99的补码)

Timing

Dialog

 S32G ADD GD FLASH SUPPORT

 47

Comment
s

The Software Reset operation combines two
instructions: Reset-Enable (RSTEN) command
following a Reset (RST)
command. It returns the device to a standby
mode. All the volatile bits and settings will be
cleared then, which
makes the device return to the default status as
power on.
To execute Reset command (RST), the
Reset-Enable (RSTEN) command must be
executed first to perform the
Reset operation. If there is any other command
to interrupt after the Reset-Enable command,
the Reset-Enable will
be invalid.
If the Reset command is executed during
program or erase operation, the operation will
be disabled, the data under
processing could be damaged or lost.

The reset time is different depending on the last
operation

If the Reset command is accepted, any on-going internal
operation will be terminated and the device will return to
its default power-on state and lose all the current volatile
settings, such as Volatile Status Register bits, Write
Enable Latch status (WEL), Program/Erase Suspend
status, Read Parameter setting (P7-P0), Deep Power
Down Mode, Continuous Read Mode bit setting
(M7-M0) .
When Flash is in OPI Mode, DTR Mode or Continuous
Read Mode (XIP), 66H&99H cannot reset Flash to
power-on state. Therefore, it is recommended to send the
following sequence to reset Flash in these modes:
1. 8CLK with IO<7:0>=all “H” or all “L”: ensure Flash
quit XIP mode
2. OPI format 66H/99H: ensure Flash in OPI mode and
DTR mode can be reset
3. SPI format 66H/99H: ensure Flash in SPI mode can be
reset

The “Enable Reset (66H)” and the “Reset (99H)”
commands can be issued in either SPI or OPI mode.

5.3.3.7 ReadId_dopi

 MX25U51245G(Reference) GD25LX256E(Design)

EB Conf.

Details Instr(6bits
)

Pads(
2bits)

Operand(8bits) Instr(6bits) Pads(
2bits)

Operand(8bits)

479f 0x11(CM
D_DDR)

0x3(8
bit)

0x9f
0x60(RDID
DTR-OPI
mode)

479f 0x11(CMD
_DDR)

0x3(8
bit)

0x9f/9e(RDID
DTR-OPI)

4760 0x11(CM
D_DDR)

0x3(8
bit)

4760 0x11(CMD
_DDR)

0x3(8
bit)

0x60/61(0x9f/9e
inverted code)

2b20 0xA(ADD
R_DDR)

0x3(8
bit)

0x20(32 Addr
bits to be sent
on 4 pad)

0f04 0x3(DUM
MY)

0x3(8
bit)

0x04(4 dummy
cycles)

0f08 0x3(DUM
MY)

0x3(8
bit)

0x08(8 dummy cycles)

1f04 0x07(REA
D)

0x3(8
bit)

0x04(Read 4
Bytes on 4 pad)

3b04 0xE(READ
_DDR)

0x3(8
bit)

0x04(Read 4 Bytes on 4
pad)

 S32G ADD GD FLASH SUPPORT

48

Because it is 8bit mode,
change to READ_DDR

Timing

Dialog

Comment
s

The RDID instruction is for reading the
manufacturer ID of 1-byte and followed by
Device ID of 2-byte. The Macronix

Manufacturer ID and Device ID are listed as
Table 10 ID Definitions

The Read Identification (RDID) command allows the
8-bit manufacturer identification to be read, followed by
three Bytes of device identification. The device
identification indicates the memory type in the first Byte,
and the memory capacity of the device in the second
Byte. The Read Identification (RDID) command while
an Erase or Program cycle is in progress, is not decoded,
and has no effect on the cycle that is in progress. The
Read Identification (RDID) command should not be
issued while the device is in Deep Power-Down Mode.

5.3.3.8 Change RDCR2 to RDCR

 MX25U51245G(Reference) GD25LX256E(Design)

EB Conf. RDCR2

RDCR:

Details Instr(6bits
)

Pads(
2bits)

Operand(8bits) Instr(6bits) Pads(
2bits)

Operand(8bits)

0471 0x01(CM
D)

0x0(1
bit)

0x71(RDCR2
SPI Mode)

0485 0x01(CMD
_)

0x0(1
bit)

0xb5/85 (Read
Nonvolatile/Volatile

Configuration Register)

Attention, read Volatile
register.

0820 0x02(AD
DR)

0x0(8
bit)

0x20(32 Addr
bits to be sent
on 4 pad)

0818 0x02(ADD
R)

0x0(1
bit)

0x18(24 Addr bits to be
sent on 1 pad)

 0c08 0x3(DUM
MY)

0x0(1
bit)

0x08(8 dummy cycles)

1c01 0x07(REA 0x0(1 0x01(Read 1 1c01 0x07(REA 0x0(1 0x01(Read 1 Bytes on 1

 S32G ADD GD FLASH SUPPORT

 49

D) bit) Bytes on 1 pad) D) bit) pad)

Timing

Dialog

Comment
s

The RDCR2 instruction is for reading
Configuration Register 2.

The Read Nonvolatile/Volatile Configuration Register
command is for reading the Nonvolatile/Volatile
Configuration Registers. It is followed by a 3-Byte
address (A23-A0) or a 4-Byte address (A31-A0) and a
dummy Byte, and each bit is latched-in on the rising edge
of SCLK. Then the Configuration Register, at that
address, is shifted out on SO, and each bit is shifted out,
at a Max frequency fC, on the falling edge of SCLK.
Read Nonvolatile/Volatile Configuration Register
command, while an Erase, Program or Write cycle is in
progress, is rejected without having any effects on the
cycle that is in progress.

5.3.3.9 ReadSR: same, do not need modifcation

 MX25U51245G(Reference) GD25LX256E(Design)

EB Conf.

Details Instr(6bits
)

Pads(
2bits)

Operand(8bits) Instr(6bits) Pads(
2bits)

Operand(8bits)

0405 0x01(CM
D

0x0(1
bit)

0x05(RDSR
SPI mode)

0405 0x01(CMD 0x0(1
bit)

0x05(RDSR SPI mode)

1c01 0x07(REA
D)

0x0(1
bit)

0x01(Read 1
Bytes on 1 pad)

1c01 0x07(REA
D)

0x0(1
bit)

0x01(Read 1 Bytes on 1
pad)

 S32G ADD GD FLASH SUPPORT

50

Timing

Dialog

Comment
s

The RDSR instruction is for reading Status
Register Bits. The Read Status Register can be
read at any time (even
in program/erase/write status register
condition). It is recommended to check the
Write in Progress (WIP) bit before

sending a new instruction when a program,
erase, or write status register operation is in
progress.

The Read Status Register (RDSR) command is for
reading the Status Register. The Status Register may be
read at any time, even while a Program, Erase or Write
Status Register cycle is in progress. When one of these
cycles is in progress, it is recommended to check the
Write in Progress (WIP) bit before sending a new
command to the device. It is also possible to read the
Status Register continuously. The SO will output Status
Register bits S7~S0

5.3.3.10 InitReset/ RuntimeReset: same, do not need modifcation

 MX25U51245G(Reference) GD25LX256E(Design)

InitRest

EB Conf.

InitRest

Details

 Instr(6bits
)

Pads(
2bits)

Operand(8bits) Instr(6bits) Pads(
2bits)

Operand(8bits)

0466 0x01(CM
D)

0x0(1
bit)

0x66 (RSTEN
SPI mode)

0466 0x01(CMD) 0x0(1
bit)

0x66 (RSTEN SPI
mode)

0000 0x0(STOP
)

0x0(1
bit)

0x0 0000 0x0(STOP) 0x0(1
bit)

0x0

0499 0x01(CM
D)

0x0(1
bit)

0x99 (RST SPI
mode)

0499 0x01(CMD)

0x0(1
bit)

0x99 (RST SPI mode)

RuntimeR
eset

EB Conf.

RuntimeR
eset

Details

 Instr(6bits
)

Pads(
2bits)

Operand(8bits) Instr(6bits) Pads(
2bits)

Operand(8bits)

0666 0x01(CM
D)

0x2(4
bit)

0x66 (RSTEN
SPI mode)

0666 0x01(CMD) 0x1(1
bit)

0x66 (RSTEN SPI
mode)

0000 0x0(STOP
)

0x0(1
bit)

0x0 0000 0x0(STOP) 0x0(1
bit)

0x0

0699 0x01(CM 0x2(4 0x99 (RST SPI 0699 0x01(CMD) 0x1(1 0x99 (RST SPI mode)

 S32G ADD GD FLASH SUPPORT

 51

D)

bit) mode) bit)

Timing

Dialog

Comment
s

同 ResetEnable_dopi/Reset_dopi 同 ResetEnable_dopi/Reset_dopi

5.4 Test Report

Use Lauterbach load the script:
C:\NXP\SW32G_RTD_4.4_4.0.2\eclipse\plugins\Fls_TS_T40D11M40I2R0\examples\EBT\S32G3\Fls_
Example_S32G399A_M7\debug\run.cmm，Stop in main function entry, use Lauterbach to check Fls_Init,
Fls_Write, Fls_Read, function call result:

/* Compare data in external sector to TxBuffer buffer */

 Fls_Compare(LOGICAL_START_ADDR, TxBuffer, FLS_BUF_SIZE);

 while (MEMIF_IDLE != Fls_GetStatus())

 {

 Fls_MainFunction();

 }

 /* Check last job */

 ExampleAssert(MEMIF_JOB_OK == Fls_GetJobResult()); //可以看到写读后比较成功。

And Fls_GetAhbData call result, and then check address: (#define PHYSICAL_START_ADDR
0x11000U /* The HW start address corresponding to the logical address 0 */)：

 S32G ADD GD FLASH SUPPORT

52

It indicates that the write, IP read and AHB read data are consistent, which indicates that the drive
works normally.

6 Develop Bootloader Project Fls Drivedr

6.1 Bootloader Project Details

Taking the version Integration_Reference_Examples_S32G3_2023_02 as an example, create and
modify the Bootloader project according to the document <<S32G_Bootloader_V *. Pdf>>. Note:

 Because Bootloader uses QSPI NOR DMA driver to carry boot image, and uses IP driver to
operate QSPI NOR operation related to secure, we choose to remove XRDC and eMMC, but
retain secure boot function.

 Turn off the software debugging point.

 After removing eMMC, delete relevant eMMC boot sources in Boot Sources of Bootloader

 Deleted C:\EB\tresos\workspace\Bootloader_S32G3XX_ASR_4.4_M7\output\include, output,
src. Delete before generating to prevent old files left by previous generation.

 For GPT problems encountered during compilation, the <<S32G_Bootloader_V *. Pdf>>
document explains how to fix.

 S32G ADD GD FLASH SUPPORT

 53

 Since the IVT configuration SYS-IMG address is 0x81000, the corresponding modification:

 Compiling script modified as follows:

C:\NXP\Integration_Reference_Examples_S32G3_2023_02\code\framework\realtime\swc\boo
tloader\platforms\S32G3XX\build\configuration.bat

SET TRESOS_DIR=C:/EB/tresos

SET MAKE_DIR=C:/cygwin64

::SET GHS_DIR=

SET GCC_DIR=C:/NXP/S32DS.3.4/S32DS/build_tools/gcc_v9.2

SET TOOLCHAIN=gcc

SET CORE=m7

SET SRC_PATH_DRIVERS=C:/NXP/SW32_RTD_4.4_4.0.0/eclipse/plugins :: Note that this version of
Bootloader corresponds to the original RTD version 4.4_4.0.0 by default

:: SET SDHC_STACK_PATH=

:: SET SRC_PATH_SAF=

SET TRESOS_WORKSPACE_DIR=C:/EB/tresos/workspace/Bootloader_S32G3XX_ASR_4.4_M7/output

SET HSE_FIRMWARE_DIR=C:/NXP/HSE_FW_S32G3_0_2_16_1

 Note that the secure boot will burn the internal anti rollback counter fuse when executing the
publish sys img, so the secure boot function test will reduce the fuse resources of the counter.
Since this article focuses on the operation of QSPI NOR flash, we modify the code:

C:\NXP\Integration_Reference_Examples_S32G3_2023_02\code\framework\realtime\swc\bootload
er\generic\include\Bootloader.h

#define BL_ALIGN_4096B(x) BL_ALIGN_IMAGE_B(x, 12) //johnli Used to round the fls erase operation to 4KB

C:\NXP\Integration_Reference_Examples_S32G3_2023_02\code\framework\realtime\swc\bootload
er\platforms\S32G3XX\src\Bootloader_Specific.c

Bl_ConfigureSecureBoot

|-> // Comment out the operation of sys img publish

/*

 if (E_OK == status)

 {

 status = CryptoDal_GetSysImage(

 &Bl_HseSysImage[0], &u32SysImageOffSet, &u32SysImageSize);

 S32G ADD GD FLASH SUPPORT

54

 }

*/

volatile int debug_erase;

volatile int debug_write;

| |->Bl_SaveConfiguration

uint32_t u32SysImageSizeAligned = BL_ALIGN_4096B(u32SysImageSize); //johnli change from 1024 Modify
the code to prevent erase data from not being 4KB aligned.

 while(debug_erase); // Stop the code here to use Lauterbach to check the operation of the Fls IP driver | |
|->Fls_Erase(u32SysImageStorageAddr + u32SysImageOffset,

 u32SysImageSizeAligned);

while(debug_write);

| | |->Fls_Write(u32SysImageStorageAddr + u32SysImageOffset,

 (const uint8 *) pSysImage, u32SysImageSizeAligned);

 For the debug method of the Bootloader project, please refer to the document
<<S32G_Bootloader_V *. Pdf>>.

 For the corresponding modification details of the Bootloader project, refer to the project source file
issued with the document.

6.2 Difference of Bootloader and MCAL Fls Driver

For the modification of QSPI NOR configuration in MCAL Fls driver, the Bootloader still needs to be
modified accordingly. In addition, there are the following differences between them:

 Bootloader Fls MCAL Fls Comments

 MemCfg_0 Configuration Page

1 initResetSettings closed initResetSettings
open

Since Bootloader
uses the IVT QSPI
NOR parameter to
initialize QSPI
NOR, InitReset and
Init reconfiguration
are not considered
in the driver. In
FlsLUT

FastRead/Write has
no reference

2 initConfiguration closed

FlsLUT is the same, Migrate the configuration of
MCAL FlsLUT

initConfiguration
Open

FlsLUT is the same

 S32G ADD GD FLASH SUPPORT

 55

 FlsController Configuration Page

3 ControllerCfg_1 ControllerCfg_SDR=0 MCAL is initialized
to SDR mode, and
then in
initConfiguration,
after QSPI NOR is
initialized, switch to
DDR mode.
Bootloader does not
need it, but directly
initializes to DDR
mode

4 ControllerCfg_1. Fls Hw Unit Byte
Swapping=unchecked

ControllerCfg_1. Fls
Hw Unit Byte
Swapping=unchecked

Note that when
bootloader, IVT
will be initialized to
swapping=0, and
the default
bootloader is
configured as
Macronix=1. So
after bootloader is
copied and run to
Fls_init, subsequent
access to the AHB
address will cause
data inversion and
failure, so it must be
modified here

 ControllerCfg Configuration Page

5 Cfg_0 is set to DDR Loopback, autoupdate mode, but
this Cfg does not reference

Cfg_0 is set to SDR
Loopback, bypass
mode, and this Cfg is
the mode during
initialization

Cfg_1 is in DDR,
external DQS,
autoupdate mode

The Cfg_1 is the
same, the
Bootloader is
initialized to this
mode, and MCAL
Fls is reconfigured
to this mode in
initConfiguration

 General Configuration Page

 S32G ADD GD FLASH SUPPORT

56

6 Because the clock
configurations of
Bootloader and
MCAL are
different, the clock
related
configurations in
the corresponding
Fls drive are
different

 FlsSector Configuration Page

7 Sector
configuration in
Bootloader is
generally aligned
with the address of
the Bootloader
image, M7 image
and A53 ATF image
to be stored, and
Mcal is an example

6.3 Image Package

For image packaging and burning, please refer to the document <<S32G_Bootloader_V *. Pdf>>.
Note:

 The IVT head needs the version developed in Chapter 4.

 Select G3 version for SRAM initialization DCD script:
C:\NXP\Integration_Reference_Examples_S32G3_2023_02\code\framework\realtime\swc\boo
tloader\platforms\S32G3XX\res\flash\ S32G3XX_DCD_InitSRAM.bin.

 In addition, when you open the IVT tool, you need to preview and select a created G3 project, so
that you can use the G3 20MB SRAM memory to check for out of bounds.

 Since we have chosen to use secure boot, we need to add an HSE image: C: NXP
C:\NXP\HSE_FW_S32G3_0_2_16_1\hse\bin\
rev1.1_s32g3xx_hse_fw_0.20.0_2.16.1_pb221011.bin.pink

 Then it is also necessary to refer to the configuration of the Flash drive sector to adjust the
distribution of IVT images to avoid overlap:

 S32G ADD GD FLASH SUPPORT

 57

Sector is configured as:

So:

1. Start with 0x0 and store DCD (offset 0x100) and QSPI NOR header (offset 0x200) with size of
0x1000=4096.

2. Start with 0x1000 and store HSE FW and SYS-IMG with the size of 0xBF000=782336.

3. Use the part beginning with 0xc000 to store the bootloader image.

 S32G ADD GD FLASH SUPPORT

58

It can be seen that the images to be written are aligned to the 4KB Sector size.

6.4 Test Report
Use the Flash tool to burn the packaged Bootloader image into QSPI NOR flash, switch the startup

mode to QSPI NOR flash, and then power on again:
Run the script using Lauterbach:
C:\NXP\Integration_Reference_Examples_S32G3_2023_02\code\framework\realtime\swc\bootloa

der\platforms\S32G3XX\build\cmm\connect_s32g3xx_m7.cmm, Then the Bootloader code will stay at
the beginning. At this time, run the script to connect the debugger, that is, you can debug:

 S32G ADD GD FLASH SUPPORT

 59

When the code runs to while (debug_erase) in Bl_SaveConfiguration; After changing debug_erase to
0, you can continue to run. Check the execution of the function Fls_Erase, and check the execution of
Fls_Write in the same way.

7 Develop Linux Driver(Optional)
Refer to the document <<S32G_QSPINOR_Customize_ *. Pdf>>, Chapter 9: Software

Customization Linux Kernel to learn about the customization method of Linux drivers. There is already an
example of Micron MT35XU256ABA. Refer to the following to add GD25LX256E. Take BSP37 as an
example.

The QSPI NOR driver of ATF and Uboot is similar to the kernel, and will not be detailed in this
article.

7.1 Linux GD Driver Details

\BSP37\linux\drivers\mtd\spi-nor\Makefile:

spi-nor-objs += gigadevice.o
spi-nor-objs += macronix.o
spi-nor-objs += micron-st.o

\BSP37\linux\drivers\mtd\spi-nor\gigadevice.c, At present, it is relatively primitive. Because Micron
and GD flash are compatible, the source code of Micron can be used. You can refer to the example of
Micron MT35XU256ABA in <<S32G_QSPINOR_Customize_ *. Pdf>>. Note that the code of BSP37
already supports MT35XU512ABA:

\BSP37\linux\drivers\mtd\spi-nor\micron-st.c

static const struct flash_info micron_parts[] = {

 { "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512,

 SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |

 SPI_NOR_4B_OPCODES | SPI_NOR_OCTAL_DTR_READ |

 SPI_NOR_OCTAL_DTR_PP |

 SPI_NOR_IO_MODE_EN_VOLATILE)

 .fixups = &mt35xu512aba_fixups},

 S32G ADD GD FLASH SUPPORT

60

7.2 Modification of Clock

Linux QSPI NOR drive architecture is designed as:：drivers/mtd/spi-nor/core.c：

spi_nor_probe

|->spi_nor_scan

| |->spi_nor_get_flash_info

| | |->spi_nor_read_id

struct spi_mem_op op =

 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1), //#define SPINOR_OP_RDID
 0x9f /* Read JEDEC ID */

 SPI_MEM_OP_NO_ADDR,

 SPI_MEM_OP_NO_DUMMY,

 SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));

 ret = spi_mem_exec_op(nor->spimem, &op);

| | | |->spi_nor_search_part_by_id(manufacturers[i]->parts,

 manufacturers[i]->nparts,

 id);

!memcmp(parts[i].id, id, parts[i].id_len))

 return &parts[i];

Therefore, first read the ID value from the external QSPI NOR flash, and then use the ID value to
match the data structure array of QSPI NOR related information.

The JEDEC clock for ID reading is not high, as follows: MACRONIX MX25UW51245G flash
description is:

GD GD25LX256E is:

At present, the QSPI NOR clock initialized by the S32G Linux BSP is 200Mhz, so there is a risk of
incorrect ID reading (the ID value of GD25LX256E read using 200Mhz is incorrect in actual
measurement). Since the current Linux SPI NOR driver architecture does not have an API for raising the

 S32G ADD GD FLASH SUPPORT

 61

frequency after reading the ID, it is considered to use the frequency reduction directly in Linux, as shown
in the QSPI NOR clock tree in Linux:
periphpll_sel 1 1 0 40000000 0 0 50000
periphpll_vco 8 8 0 2000000000 0 0 50000
|->periphll_dfs1 1 1 0 800000000 0 0 50000

qspi_sel 1 1 0 800000000 0 0 50000
| |->qspi_2x 1 1 0 400000000 0 0 50000
| | |->qspi_1x 2 2 0 200000000 0 0 50000

MC_CGM_0_AC12_DC_0 divide by 2=400Mhz, and divide by 3=266Mhz。

Therefore, without modifying the root clock, the frequency is reduced from the original 200Mhz to
133Mhz for real use, and is modified to:

7.2.1 ATF Modification

Fdts\s32cc.dtsi：

mc_cgm0: mc_cgm0@40030000 {

 compatible = "nxp,s32cc-mc_cgm0";

 assigned-clocks =…

 <&plat_clks S32GEN1_CLK_QSPI_2X>;

 assigned-clock-parents =…

 <&plat_clks S32GEN1_CLK_PERIPH_PLL_PHI7>;

 assigned-clock-rates =…

 <S32GEN1_QSPI_2X_CLK_FREQ>;

 };

Include\dt-bindings\clock\s32gen1-clock-freq.h

#if defined(S32GEN1_QSPI_200MHZ)

#define S32GEN1_PERIPH_DFS1_FREQ (800 * MHZ)

#define S32GEN1_QSPI_CLK_FREQ (200 * MHZ)

#define S32GEN1_QSPI_2X_CLK_FREQ (2 * S32GEN1_QSPI_CLK_FREQ)

#elif defined(S32GEN1_QSPI_166MHZ)

#define S32GEN1_PERIPH_DFS1_FREQ (666666666)

#define S32GEN1_QSPI_CLK_FREQ (166666666)

#define S32GEN1_QSPI_2X_CLK_FREQ (333333333)

#elif defined(S32GEN1_QSPI_133MHZ)

#define S32GEN1_PERIPH_DFS1_FREQ (800 * MHZ)

#define S32GEN1_QSPI_CLK_FREQ (133333333)

#define S32GEN1_QSPI_2X_CLK_FREQ (2 * S32GEN1_QSPI_CLK_FREQ)

 S32G ADD GD FLASH SUPPORT

62

Plat\nxp\s32\s32g\s32g3\s32g399ardb3\include\platform_def.h

#define S32GEN1_QSPI_133MHZ //johnli for gd S32GEN1_QSPI_200MHZ 此值用用时钟初始化

Fdts\s32cc-nxp-flash-macronix.dtsi

&qspi {

 macronix_memory: mx25uw51245g@0 {

 compatible = "jedec,spi-nor";

 spi-max-frequency = <133333333>;\\<200000000>;

This DTS value is used for uboot drive settings, Therefore, there is no modification in Uboot.

7.2.2 Linux DTS Modification

Arch\arm64\boot\dts\freescale\s32cc.dtsi

qspi: spi@40134000 {…

spi-max-frequency =<133333333>;\\ <200000000>;

Arch\arm64\boot\dts\freescale\s32cc-nxp-flash-macronix.dtsi

&qspi {

 macronix_memory: mx25uw51245g@0 {

 compatible = "jedec,spi-nor";

 spi-max-frequency = <133333333>;\\<200000000>; \\ It is mainly modified here. This value is used to
set the Linux drive clock, so the clock is modified to 133Mhz.

7.3 In DTS add GD flash Support

\linux\arch\arm64\boot\dts\freescale\s32cc-nxp-flash-macronix.dtsi

&qspi {

// macronix_memory: mx25uw51245g@0 {

gigadevice_memory: gd25lx256e@0 {

 compatible = "jedec,spi-nor";

 spi-max-frequency = <200000000>;

 spi-tx-bus-width = <8>; //8bit mode

 spi-rx-bus-width = <8>;

 reg = <0>;

 force-soft-reset;

 inverted-cmd-ext; // The second byte of DDR mode command is in inverted mode

 memory-default-octal-dtr; //Support 8bit DDR mode

 S32G ADD GD FLASH SUPPORT

 63

\linux\arch\arm64\boot\dts\freescale\s32g-nxp-flash-macronix.dtsi

//&mcronix_memory {

&gigadevice_memory {

Then modify the compilation error:

diff --git a/arch/arm64/boot/dts/freescale/s32g2xxa-evb.dtsi b/arch/arm64/boot/dts/freescale/s32g2xxa-evb.dtsi

index a5df0a44bce2..8c866db48c05 100644

--- a/arch/arm64/boot/dts/freescale/s32g2xxa-evb.dtsi

+++ b/arch/arm64/boot/dts/freescale/s32g2xxa-evb.dtsi

+/*

 &qspi {

 mx25uw51245g@0 {

 spi-max-frequency = <166666666>;

 };

 };

+*/

diff --git a/arch/arm64/boot/dts/freescale/s32g3xxa-evb.dtsi b/arch/arm64/boot/dts/freescale/s32g3xxa-evb.dtsi

index 46845e7d0d3a..7083a9f9c297 100644

--- a/arch/arm64/boot/dts/freescale/s32g3xxa-evb.dtsi

+++ b/arch/arm64/boot/dts/freescale/s32g3xxa-evb.dtsi

+/*

 &qspi {

 mx25uw51245g@0 {

 spi-max-frequency = <166666666>;

 };

 };

+*/

7.4 Modify source code and add flash information structure

\BSP37\linux\drivers\mtd\spi-nor\micron-st.c

static const struct flash_info micron_parts[] = {

{ "mt35xu512aba"…,

 // Add a gd25lx256e. Note that the name should correspond to that in DTS.

 S32G ADD GD FLASH SUPPORT

64

{ "gd25lx256e ", INFO(0xc86819, 0, 4 * 1024, 8192, // ID refers to the previous article. Each sector is 4K, 8192
sectors in total

// The gd25lx256e does not need to operate the flag register, so the USE_FSR is removed, and the OCTAL_DTR
read and write operations are reset in the fixup, so SPI_NOR_OCTAL_DTR_READ and SPI_NOR_OCTAL_DTR_PP
do not need to be configured

 SECT_4K | SPI_NOR_OCTAL_READ |

 SPI_NOR_4B_OPCODES | SPI_NOR_OCTAL_DTR_READ |

 SPI_NOR_IO_MODE_EN_VOLATILE)

 .fixups = &mt35xu512aba_fixups},

7.5 Modify the fixup of flash in source code to support DTR mode

Driver/mtd/spi-nor/Macronix.c:

static struct spi_nor_fixups mx25uw51245g_fixups = {

 .default_init = mx25uw51245g_default_init, // Used to configure QSPI to enter DTR mode

 .post_bfpt = mx25uw51245g_post_bfpt_fixup, // DTR mode for configuring write operations

 .post_sfdp = mx25uw51245g_post_sfdp_fixup,// DTR mode for configuring write and read operations

};

So refer to the fixup configuration of mx25uw51245g, and modify:

static struct spi_nor_fixups mt35xu512aba_fixups = {

 .default_init = mt35xu512aba_default_init,

 .post_sfdp = mt35xu512aba_post_sfdp_fixup, // bfpt is a repeated operation and does not need

};

static int spi_nor_micron_octal_dtr_enable(struct spi_nor *nor, bool enable)

{

#if 0

// Keep the configuration of 16 dummy cycles in the configure register, and do not need to modify

 S32G ADD GD FLASH SUPPORT

 65

 if (enable) {

 /* Use 16 dummy cycles for memory array reads. */

…

 }

#endif

 ret = spi_nor_write_enable(nor);

…

 buf = SPINOR_MT_OCT_DTR; #define SPINOR_MT_OCT_DTR 0xe7 / Enable Octal
DTR. */

 op = (struct spi_mem_op)

 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 1),

 SPI_MEM_OP_ADDR(enable ? 3 : 4,

 SPINOR_REG_MT_CFR0V, 1), // #define SPINOR_REG_MT_CFR0V
 0x00 /* For setting octal DTR mode */

 SPI_MEM_OP_NO_DUMMY,

 SPI_MEM_OP_DATA_OUT(1, buf, 1));

 if (!enable)

 spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);

…

#if 0 // Verification code, not required

 /* Read flash ID to make sure the switch was successful. */

…

#endif

 return 0;

}

static void mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor)

{

 // Set the write operation to octal dtr mode

 nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;

 spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP_8_8_8_DTR],

 SPINOR_OP_PP_4B,
SNOR_PROTO_8_8_8_DTR);

 //end

 S32G ADD GD FLASH SUPPORT

66

 /* Set the Fast Read settings. */ //Set the read operation to cotal dtr mode

 nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;

 spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],

 0, 16/*johnli gd 20*/, SPINOR_OP_MT_DTR_RD,

 SNOR_PROTO_8_8_8_DTR);

 nor->params->rdsr_dummy = 8; //johnli gd, read statue register dummy

 nor->params->rdsr_addr_nbytes = 1;//johnli gd :0;

 nor->params->quad_enable = NULL;

}

7.6 Turning Dummy Value to Solve the Misplacement Problem

The dummy read by DTR in function mt35xu512aba_post_sfdp_fixup is configured as 16, which is
the same as the default configuration of the configuration register in QSPI NOR. After testing

root@s32g399ardb3:~# hexdump -v -n 0x100 /dev/mtd0

0000000 5b3e 8135 9776 160c 41a8 990c 66c4 1135

…

00000d0 77b8 a13e d49c 6f7d 2098 d6e2 d49b cb3e

00000e0 6fcf ffff ffff ffff ffff ffff ffff ffff

00000f0 ffff ffff ffff ffff ffff ffff ffff ffff

Therefore, the data is offset 2X15 bytes backward. According to the 8bit DTR mode, one clock
transmits two bytes, so the dummy value should be 15 clocks ahead.

Therefore, it should be set to 1. Modify:

spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],

 0, 1/*johnli gd 20*/, SPINOR_OP_MT_DTR_RD,

 SNOR_PROTO_8_8_8_DTR);

16 dummys

 S32G ADD GD FLASH SUPPORT

 67

Test passed：

root@s32g399ardb3:~# hexdump -v -n 0x100 /dev/mtd0

0000000 0335 5403 4062 4c55 1b60 78ad 8df9 e45e

…

00000f0 a13e d49c 6f7d 2098 d6e2 d49b cb3e 6fcf

The reason why the controller can work only when it does not match the dummy setting in QSPI NOR
flash requires the QSPI NOR flash manufacturer's instructions.

7.7 Test Report
Bunry the fsl-image-auto-s32g399ardb3.sdcard image to The TFcard and replace the ATF, Image,

and DTB, and then insert the RDB3 board. The startup mode is set to SDcard startup, the USDHC dial is
set to SD, connect the serial port and power supply, power on and start linux from the eMMC, and enter
the shell:
 Boot information:

root@s32g399ardb3:~# dmesg |grep spi
[0.671341] spi-nor spi6.0: gd25lx256e (32768 Kbytes)
[0.676482] spi-nor spi6.0: mtd .name = 0.spi, .size = 0x2000000 (32MiB), .erasesize = 0x00001000
(4KiB) .numeraseregions = 0
[0.688277] 7 fixed-partitions partitions found on MTD device 0.spi
[0.694658] Creating 7 MTD partitions on "0.spi":
[0.704940] mtd: partition "Flash-Image" extends beyond the end of device "0.spi" -- size truncated to 0x2000000
[0.741416] mtd: partition "Rootfs" extends beyond the end of device "0.spi" -- size truncated to 0xf10000

 Device file:
root@s32g399ardb3:~# ls /dev/mtd*
/dev/mtd0 /dev/mtd1 /dev/mtd2 /dev/mtd3 /dev/mtd4 /dev/mtd5 /dev/mtd6
/dev/mtd0ro /dev/mtd1ro /dev/mtd2ro /dev/mtd3ro /dev/mtd4ro /dev/mtd5ro /dev/mtd6r

 Clock:
root@s32g399ardb3:~# cat /sys/kernel/debug/clk/clk_summary |grep qspi
 qspi_flash1x 2 2 0 133333333 0 0 50000 Y
 qspi_flash2x 0 0 0 266666666 0 0 50000 Y
 qspi_ahb 0 0 0 132206143 0 0 50000 Y
 qspi_reg 0 0 0 132206143 0 0 50000 Y

 MTD flash device should be erased before use, because it can only be written from 1 to 0, and can be
read out after being erased, All are 0xff;

root@s32g399ardb3:~# mtd_debug erase /dev/mtd0 0 0x10000 // The erasure operation takes 4K byte sector size as the
address alignment and data alignment
Erased 65536 bytes from address 0x00000000 in flash
root@s32g399ardb3:~# hexdump -v -n 0x100 /dev/mtd0 // For read/write operations, the 256 byte page size is used as the
address alignment and data alignment

0000000 ffff ffff ffff ffff ffff ffff ffff ffff
…
00000f0 ffff ffff ffff ffff ffff ffff ffff ffff
0000100…
 Write data, read it several times to compare with each other, and compare with the original file. If it is

 S32G ADD GD FLASH SUPPORT

68

consistent, the drive works correctly.
dd if=/dev/random of=test.txt count=1 bs=256
1+0 records in
1+0 records out
256 bytes copied, 0.000168 s, 1.5 MB/s

root@s32g399ardb3:~# mtd_debug write /dev/mtd0 0 0x100 test.txt
Copied 256 bytes from test.txt to address 0x00000000 in flash

root@s32g399ardb3:~# hexdump -v -n 0x100 /dev/mtd0
0000000 0335 5403 4062 4c55 1b60 78ad 8df9 e45e
0000010 cac4 45e6 1d64 b9d0 9d41 cec9 81d0 5b3e
…
00000f0 a13e d49c 6f7d 2098 d6e2 d49b cb3e 6fcf

root@s32g399ardb3:~# hexdump -v -n 0x100 test.txt

0000000 0335 5403 4062 4c55 1b60 78ad 8df9 e45e

0000010 cac4 45e6 1d64 b9d0 9d41 cec9 81d0 5b3e

…

00000f0 a13e d49c 6f7d 2098 d6e2 d49b cb3e 6fcf

