

 Rev. 3,2/2022

S32G Software Frequency Change
and Spread Spectrum for EMI
Optimization
by John Li (nxa08200)

The S32G supports the spread spectrum
function of the internal accelerator PLL,
ARM_PLL and DDR_PLL in addition to the
peripheral PLL. Under normal circumstances,
the PLL of the accelerator module and CPU does
not need to spread spectrum, because it is an
internal module, which is packaged inside the
chip. The peripheral PLL does not support spread
spectrum. Therefore, the method to actively
improve EMI that can be provided is mainly the
spread spectrum function of DDR_PLL, because
it is possible for DDR to radiate into the space
through, for example, termination resistors and
surface traces.

In addition to the spread spectrum, it may
also be necessary to adjust the frequency and the
center point of its harmonics to avoid some
sensitive frequencies such as navigation satellite
signals, so it is also necessary to adjust the
frequency of the DDR_PLL. In fact, because
S32G only supports center spread spectrum, in
order not to exceed the highest required
frequency, it will first reduce the frequency and
then spread the spectrum.

The default BSP of S32G initializes the
DDRC controller through Uboot that has been
loaded into the internal SRAM, so the above
functions can be achieved by setting the relevant
PLL registers through C code.

The self-designed bootloader may directly
set the DDRC controller through the M7 code,
and the related clock register settings can be set
according to the method described in this doc.

Ver. Comments Author

V1  Create the
doc

 John.Li

V2  Modified
according to
the
comments of
datasheet
and chipset
reference
manual V4

 John.Li

V4  Translate to
English

 John.Li

 S32G FC SSC

2

Contents

1 The Basic Concept of Spread Spectrum 3
2 Git the Uboot Source Codes for Testing 6
3 Change the DDR_PLL’s Frequency 7
4 Spread Spectrum of DDR_PLL 10
5 Summarize the Modified Source Code 18

 S32G FC SSC

 3

1 The Basic Concept of Spread Spectrum

EMI, that is, electromagnetic interference, refers to the influence of the electronic circuit system on

the surrounding electronic circuit system through conduction or radiation. The clock signal is often the

signal with the highest frequency and the steepest edge in the circuit system, and most EMI problems are

related to the clock signal. There are many ways to reduce EMI, including shielding, filtering, isolation,

ferrite rings, signal edge control, and adding power and GND planes to the PCB. The above methods can

be used flexibly in applications. Shielding is a relatively simple mechanical method with high cost and is

not suitable for handheld and portable devices. Filtering and signal edge control are effective for

low-frequency signals, but not suitable for high-speed signals that are currently widely used. In addition,

the use of passive components such as EMI/RFI filters will increase the cost; it is obviously

time-consuming to reduce EMI through the LAYOUT technique, and the means are not the same due to

different designs.

Spread Spectrum Clocking (Spread Spectrum Clocking) is another method to effectively reduce EMI.

Clock spreading disperses the energy concentrated in a narrow frequency range to a set wide frequency

range by means of frequency modulation. and the amplitude (energy) of the odd harmonic frequency to

achieve the purpose of reducing the peak value of the electromagnetic radiation of the system.

Frequency spreading modulates the original clock signal in a specific way. Linear and Hershey Kiss
are commonly used modulations. Generally, only linear spread spectrum is supported on embedded chips.

 S32G FC SSC

4

SSCG achieves the purpose of suppressing EMI peaks by modulating the frequency of the internal
integrated circuit of the clock. SSCG not only modulates the clock source, but other data, address and
control signals synchronized with the clock source are also modulated at the same time as the clock spread,
and the overall EMI peak will be reduced accordingly. Therefore, the clock spread is a system level. s
solution. This is the biggest advantage of SSCG over other EMI suppression measures.

There are three main control parameters for clock spreading: Modulation Rate, Modulation Depth,
and Modulation Profile.

1. Modulation speed

Modulation speed (MR) refers to the change speed of the output clock frequency fo within the set

modulation frequency range. The modulation speed should be much smaller than the frequency fc of the

source clock to avoid timing problems (setup/hold time, etc.), and should be higher than the frequency

range (20Hz~20KHz) of the sound recognizable by the human ear to avoid noise. In practical applications,

the modulation speed is generally selected from 30KHz to 120KHz.

2. Modulation depth

The modulation depth refers to the size by which the output clock frequency fo is shifted from the

source clock frequency fc at the modulation speed MR after frequency spreading. The modulation depth is

expressed as a percentage (%) of the offset (Δf) source clock frequency. The modulation depth determines

how much the EMI peak is reduced. Generally, the greater the modulation depth, the lower the EMI peak.

In application, it is necessary to reasonably predict the acceptable frequency modulation range of the

system.

3. Modulation method

The modulation method (Modulation Profile) determines the manifestation of the EMI peak. Linear

and Hershey Kiss are two modulations commonly used in SSCG. Linear modulation is relatively simple.

As the name implies, the output clock frequency after linear modulation changes linearly. The

disadvantage of this modulation method, as shown in the figure below, is that the output spectral side

lobes are 1-2dB higher than the mid-frequency amplitude. As discussed earlier, the failure of EMI at any

frequency means the failure of the entire EMI test. Sidelobe radiation peaks may exceed the SPEC range,

the designer needs to take this into account

 S32G FC SSC

 5

According to the difference of the offset of the spread spectrum clock relative to the source clock, the

spread spectrum is divided into three categories: middle spread spectrum; downward spread spectrum;

upward spread spectrum. The center spread refers to: the center spread refers to the spread spectrum mode

in which the average frequency of the spread spectrum clock is the same as the frequency of the source

clock. In a system where the unmodulated output clock frequency is equal to the input clock frequency,

the output clock frequency fo after spread spectrum is determined by the frequency modulation method

(Linear or Hershey Kiss) at the MR speed, in the range of (fc-Δf) to (fc+Δf) changes within:

fo = fc ± Δf

For example, after a 100MHz clock is modulated at a depth of ±1% with mid-spread, the output clock

varies from 99MHz to 101MHz.

 S32G FC SSC

6

A major disadvantage of clock spreading is that it cannot be used in applications that are sensitive to

clock accuracy, such as Ethernet and CAN buses. When choosing clock spreading and modulation depth,

designers need to pay special attention to the additional jitter introduced by spreading and possible

setup/hold time issues, high bit error rates, and PLL loss of lock.

When the spread spectrum clock is output to the downstream PLL, note that the PLL behaves as a

low-pass filter, that is, it allows the low-frequency part of the input to pass, while attenuating the

high-frequency part. When the spread spectrum clock is input to the PLL, the PLL may not be able to lock

the frequency. It is important to ensure that the PLL must be able to detect frequency changes of the spread

spectrum clock and allow the spread spectrum clock to pass. The above depends on the bandwidth of the

PLL. If the bandwidth is too low, the PLL may not be able to detect the input clock reliably, causing

detection deviation and introducing a larger jitter to the system.

2 Git the Uboot Source Codes for Testing
Obtain the source code of Uboot and create a standalone compilation environment according to the

document <<S32G_Uboot_BSPxx_Vx-xxxxxxxx.doc>>(Owner: JohnLi Chinese Version). This doc uses
Uboot of BSP30.

Note that there is another way to initialize the DDRC controller with M7, and then put Uboot directly
from the storage device in the external LPDDR4, instead of placing Uboot in the internal SRAM of the
default BSP, in that case, the spread spectrum and frequency change code needs to be in the codes of M7,
which is not in the scope of this doc. This doc discusses the method used by the default BSP, which is
placed in the Uboot of the internal SRAM after startup to initialize the DDRC.

 S32G FC SSC

 7

3 Change the DDR_PLL’s Frequency
The purpose of frequency change is mainly to avoid overlapping with some sensitive signals such as

navigation satellites, as follows:

 GPS frequency band is:(1575.42 +/-10 MHz 1565.42~1585.42)。

 BeiDou frequency band is: (1561.098 +/-8 MHz 1553.098~1569.098)。

 GLONASS frequency band is: (1578.0625~1625.375)。

It can be seen that Beidou, GPS and grid Glonass are coincident and cover the frequency band from
1553 to 1625 (the edge of the inverted trapezoid has some triangular areas). So if you want to avoid this
frequency band perfectly, the DDR clock needs to be set to be smaller than 1553, (larger is generally not
supported, exceeding the maximum frequency required by the spec).

 S32G FC SSC

8

The crystal frequency of S32G is 40M, and the default DDR clock is 40X40=1600Mhz, so it needs to
be changed to 40X38=1520Mhz (note that only the integer multiplication is considered here, if you add
the decimal multiplication, it can be closer to 1553M , but considering that after the frequency is changed,
there are often requirements for spreading, so it is more reasonable to take the integer multiplier. In fact, in
Uboot, the current BSP30 code support for fractional multipliers still has problems).

In addition, please note that the spectrum requirement of the satellite signal is an inverted trapezoid,
so there is a certain space between the spectrum requirements of each positioning satellite signal, and the
frequency change and spread spectrum can be adjusted to meet the requirements closer to 1600Mhz.

So the DDR frequency can be modified as follows:

#define S32G274A_REV2_FC_DDR_PLL_VCO_FREQ (1520 * MHZ)

#define S32G274A_REV2_FC_DDR_FREQ (760 * MHZ)

After modification and compilation, the following test results after Uboot starts:

=> clk dump

…

DDR_PLL_MUX : 40000000 Hz

DDR_PLL_VCO : 1520000000 Hz

DDR_PLL_PHI0 : 760000000 Hz

MC_CGM5_MUX0 : 760000000 Hz

DDR : 760000000 Hz

…

=>md 0x40044008 1

40044008: 00001026

So MFI changed from 40 (0x28) to 38 (0x26):

 S32G FC SSC

 9

=> md 0x40044010 1

40044010: 40000000

But MFN still=0.

According to the frequency multiplication formula of PLL:

 S32G FC SSC

10

So the frequency fpll_vco=((fpll_ref_40M/(rdiv=1))*(MFI=38))=40*38=1520.

The test results after the kernel is started are as follows:

root@s32g274ardb:~# cat /sys/kernel/debug/clk/clk_summary |grep ddr

 ddrpll_sel 0 0 0 40000000 0 0 50000

 ddr_part_block 0 0 0 40000000 0 0 50000

 ddrpll_vco 0 0 0 1520000000 0 0 50000

 ddrpll_phi0 0 0 0 760000000 0 0 50000

 ddr 0 0 0 760000000 0 0 50000

Actually use a spectrum analyzer (such as agilent E4404B 9KHz~6.7GHz ESA-E serials spectrum
analyzer).

(to be added in the future)

4 Spread Spectrum of DDR_PLL
Refer to the S32G chip manual description:

 S32G FC SSC

 11

 S32G FC SSC

12

 S32G FC SSC

 13

 Since S32G only supports center spread spectrum, it is necessary to move the center frequency point
to lower at least half of the spread spectrum depth before spreading, so as to prevent exceeding the
specified range when spreading upward. As follows, the frequency of DDR_VCO cannot be higher than
1600Mhz.

At present, the uboot code automatically calculates the multiplier coefficient. In the actual test, it is
found that if the multiplier with decimals is used, uboot of BSP30 will start the halt. So here is still an
integer multiplier to illustrate this situation:

 39X40Mhz=1560Mhz，38X40Mhz=1520Mhz。

So the parameters we need to set are:

 S32G FC SSC

14

 fMOD: modulation frequency.

Refer to the S32G datasheet description:

 Between: 30~64KHZ.

 MD: percentage of modulation depth.

Refer to the S32G chip manual description:

So for:

 1560Mhz: Max(MD %)=40*100/1560=2.564%, then the spread spectrum depth is
1560X2.564%=40Mhz (peak-to-peak, then the maximum frequency is
1560+40/2=1580Mhz<1600Mhz)

 1520Mhz: Max(MD %)=40*100/1520=2.6316%, then the spread spectrum depth is
1560X2.6316%=40Mhz (peak-to-peak value, then the maximum frequency is
1520+40/2=1540Mhz<1600Mhz)

Note that in the chip manual, the MD is peak-to-peak according to the diagram, so the calculation of
the highest frequency should be divided by 2. In addition, if the frequency is higher than 1600Mhz in the
case of the maximum spread spectrum depth, the maximum spread spectrum needs to be reduced to
prevent exceeding the specification requirements.

So the modulation frequency is from 30~64Khz, we choose the integer division multiple of
fref=40Mhz fmod=40K.

For spread spectrum after frequency change, change the frequency to 1520Mhz (mfi=38)

ldf=mfi(38)+(mfn(0)/18432)=mfi=38;

stepno=Fref(40*MHZ)/(2*S32G274A_REV2_SSC_MOD(40Khz)*rdiv(1))=500

stepsize=(S32G274A_REV2_SSC_MD(26)*ldf(38)*18432)/(1000*stepno(500))~=36(36.421632)
// Maximum spread of 26/1000, guaranteed integer multiplication.

 S32G FC SSC

 15

Since stepno/stepsize can only take an integer value, when the configuration is MD=2.6%,
Fmod=40K, it can be seen that for a VCO of 1520 (mfi=38), the rounding is closer to stepsize=36.

 For the spread spectrum of 1560, the frequency is 1576 (mfi=39)

ldf=mfi(39)+mfn(0)/18432=39

stepno=Fref(40*MHZ)/(2*S32G274A_REV2_SSC_MOD(40Khz)*rdiv(1))=500

stepsize=(S32G274A_REV2_SSC_MD(25)*ldf(39)*18432)/(1000*stepno(500))~=35(35.9424)

Relatively less close to the integer (note that because of the rounding of the C language, for values
greater than 0.5, the actual value is still an integer value, and the fractional part is rounded, so +1 may be
needed to get closer to the required value, but pay attention to the maximum The spread spectrum value
cannot be out of bounds and needs to be verified).

Notice：

 In fact, setpno/setpsize is used to derive MD and Fmod, so the setting of the integer of the register
will affect the value of MD and Fmod, for example:

For 1520Mhz+2.57% spread spectrum:
S32G274A_REV2_SSC_MD=36X100X500/(18432*38)=2.57, and the 1520 spread spectrum depth
requirement is 2.6316% as above, which meets the requirements.

 For 1560Mhz+2.43% spread spectrum:
S32G274A_REV2_SSC_MD=35X100X500/(18432*39)=2.43, and the 1560 spread spectrum depth
requirement is 2.564% as above, which meets the requirements.

Therefore, when stepno and stepsize are integer values, make MD and Fmod meet the spec
requirements, and when they meet the requirements, try to make Fmod an integer.

 How to select the spread spectrum depth and the number of spread spectrum steps should be
matched with the actual EMI test results. There is no certain rule. It needs to be tested and
determined by itself. This doc does not make any rules.

The test results of the spread spectrum+frequency change to 1520Mhz+2.57% are as follows:

 Uboot Command:

=> md 0x40044000 7

40044000: 00000000 00000704 00001026 002401f4 &.......

40044010: 40000000 00000000 00000000 ...@........

So it should be:

 S32G FC SSC

16

 SSCGBYP=0: Spread spectrum function does not bypass.

 SPREADCTL=0: Set as center spread spectrum.

 S32G FC SSC

 17

SETPNO=0x1f4=500 steps

STEPSIZE=0x24=36:

Compared with the PLL-related register values before frequency conversion without spreading, the
values are as follows:

=> md 0x40044000 7

40044000: 00000000 00000704 00001028 40000000 (......@

40044010: 40000000 00000000 00000000 ...@........

=>

The test results of the spread spectrum and the frequency change to 1560Mhz+2.43% are as follows:

The code is modified to:

#ifdef CONFIG_EMI_FC

#define S32G274A_REV2_FC_DDR_PLL_VCO_FREQ (1560 * MHZ) //(1560 * MHZ)

#define S32G274A_REV2_FC_DDR_FREQ (780 * MHZ) //(780 * MHZ)

#ifdef CONFIG_EMI_SSC

#define KHZ (1000UL)

#define S32G274A_REV2_SSC_MD (25) //26%0 for 1520Mhz, 25%0 for 1560Mhz,

#define S32G274A_REV2_SSC_MOD (40 * KHZ)

#endif

#endif

 Uboot command:

=> clk dump

…

DDR_PLL_MUX : 40000000 Hz

DDR_PLL_VCO : 1560000000 Hz

 S32G FC SSC

18

DDR_PLL_PHI0 : 780000000 Hz

MC_CGM5_MUX0 : 780000000 Hz

DDR : 780000000 Hz

=> md 0x40044000 7

40044000: 00000000 00000704 00001027 002301f4 '.......

40044010: 40000000 00000000 00000000 ...@........

Actually use a spectrum analyzer (such as agilent E4404B 9KHz~6.7GHz ESA-E serials spectrum
analyzer).

 (to be added in the future)

5 Summarize the Modified Source Code
Uboot's ddr clock initialization process is:

init_sequence_f(common/board_f.c)

|->arch_cpu_init(arch/arm/cpu/armv8/s32/cpu.c)

| |-> enable_early_clocks(drivers/clk/s32/early_clocks.c)

| | |->enable_ddr_clock

| | | |->s32gen1_enable

Eventually the PLL will be found from source to end:

| | | | |->enable_module

| | | | | |->enable_pll

| | | | | | |->program_pll

The modified source code is as follows:

Configs/s32g274ardb2_defconfig
CONFIG_EMI_FC=y //Controls whether to turn on frequency conversion
CONFIG_EMI_SSC=y // Control whether to open frequency, we all open by default.

Drivers/clk/Kconfig
config EMI_FC
 bool "enable S32G DDR PLL frequency changing "
 help
 Enable S32G DDR PLL frequency changing.

config EMI_SSC
 bool "enable S32G DDR PLL frequency spread spectrum clocking "
 help
 Enable S32G DDR PLL frequency spread spectrum clocking.

config EMI_DEBUG

 S32G FC SSC

 19

 bool "enable S32G DDR PLL EMI DEBUG "
 help
 Enable S32G DDR PLL EMI DEBUG.

uboot/include/dt-bindings/clock/s32gen1-clock-freq.h
#ifdef CONFIG_EMI_FC
#define S32G274A_REV2_FC_DDR_PLL_VCO_FREQ (1520 * MHZ) //(1560 * MHZ)
#define S32G274A_REV2_FC_DDR_FREQ (760 * MHZ) //(780 * MHZ)
#ifdef CONFIG_EMI_SSC
#define KHZ (1000UL)
#define S32G274A_REV2_SSC_MD (26) //26%0 for 1520Mhz, 25%0 for 1560Mhz,
#define S32G274A_REV2_SSC_MOD (40 * KHZ)//modulation frequency range is 30K to 64K from datasheet
#endif
#endif

Uboot/drivers/clk/s32/early_clocks.c
static int enable_ddr_clock(void)
{…
 ddr_pll_freq = S32GEN1_DDR_PLL_VCO_FREQ;
 ddr_freq = S32GEN1_DDR_FREQ;

}
#if defined(CONFIG_EMI_FC)
 ddr_pll_freq = S32G274A_REV2_FC_DDR_PLL_VCO_FREQ; //改频或改频作为展频基础

ddr_freq = S32G274A_REV2_FC_DDR_FREQ;
#else
…

Uboot/arch/arm/include/asm/arch-s32/s32-gen1/mc_cgm_regs.h
//johnli for emi //设置FM寄存器的宏
//johnli for emi
#if defined(CONFIG_EMI_SSC)

#define PLLDIG_PLLFM_SSCGBYP_SET(val)(PLLDIG_PLLFM_SSCGBYP_MASK & \
 ((val)<< PLLDIG_PLLFM_SSCGBYP_OFFSET))

#define PLLDIG_PLLFM_SPREADCTL_OFFSET (29)
#define PLLDIG_PLLFM_SPREADCTL_MASK (0x20000000)
#define PLLDIG_PLLFM_SPREADCTL_SET(val) (PLLDIG_PLLFM_SPREADCTL_MASK & \
 ((val)<< PLLDIG_PLLFM_SPREADCTL_OFFSET))

#define PLLDIG_PLLFM_STEPSIZE_OFFSET (16)
#define PLLDIG_PLLFM_STEPSIZE_MASK (0x03FF0000)
#define PLLDIG_PLLFM_STEPSIZE_SET(val) (PLLDIG_PLLFM_STEPSIZE_MASK & \
 ((val)<< PLLDIG_PLLFM_STEPSIZE_OFFSET))

#define PLLDIG_PLLFM_STEPNO_OFFSET (0)
#define PLLDIG_PLLFM_STEPNO_MASK (0x000007FF)
#define PLLDIG_PLLFM_STEPNO_SET(val) (PLLDIG_PLLFM_STEPNO_MASK & \

 S32G FC SSC

20

 ((val)<< PLLDIG_PLLFM_STEPNO_OFFSET))
#endif
//end

Uboot\drivers\clk\s32\enable_clk.c
static int program_pll(struct s32gen1_pll *pll, void *pll_addr,
 struct s32gen1_clk_priv *priv, u32 clk_src)
{
 …
 u32 rdiv = 1, mfi, mfn;
 //johnli for emi
#if defined(CONFIG_EMI_SSC)
 u32 stepno, stepsize,;
 float ldf;
#endif
 //end
…
 writel(PLLDIG_PLLFD_MFN_SET(mfn) |
 PLLDIG_PLLFD_SMDEN, PLLDIG_PLLFD(pll_addr)); // PLLDIG_PLLFD_SMDEN already set to 1
 //johnli for emi
 #if defined(CONFIG_EMI_SSC)

if(0x40044000 == pll_addr)//Spread spectrum for DDR PLL only
 {

ldf=(float)mfi+((float)mfn/18432); //for 1520Mhz clock, mfi=38(38X40=1520), mfn=0, so ldf=38
 stepno=(40*MHZ)/(2*S32G274A_REV2_SSC_MOD*rdiv); // 40M/(2X40K*1)=500
 stepsize=(uint)((S32G274A_REV2_SSC_MD*ldf*18432)/(1000*stepno)); // mdX38X18432/(100X500)= ?
//md/1000

 writel(PLLDIG_PLLFM_SSCGBYP_SET(0)|PLLDIG_PLLFM_SPREADCTL_SET
(0)|PLLDIG_PLLFM_STEPSIZE_SET (stepsize)|PLLDIG_PLLFM_STEPNO_SET(stepno),
PLLDIG_PLLFM(pll_addr));
}
 #endif
 //end
 ret = adjust_odiv_settings(pll, pll_addr, priv, odivs_mask, old_vco);
…

