KW36 DATA CHANNEL'S RSSI TRACING AND MONITORING DEMONSTRATION SYSTEM OF MULTIPLE CONNECTIONS

SECURE CONNECTIONS FOR A SMARTER WORLD

NXP BLE Products for Automotive

Bluetooth in Automotive

Smart Mobile Devices as the Digital Key

- Secured information is sent to the vehicle to lock/unlock or start the engine, including RKE and PKE application.
- Combined with NFC and UWB for full security, convenience and standard compliancy (CCC)
- Enable Fleet management, Car Sharing and Car Rentals

The smartphone can communicate via BLE to the car either directly to the Body Control Unit or through the car key fob that acts like a gateway

Secure Key Fobs

٠

•

- BLE is integrated in the Key Fob to communicate directly with the car replacing SubGhz communication
- BLE can be use for location use case
 - Passive Entry Passive Start (PEPS)
 - Welcome light and vehicle customization settings
- Combined with NFC and UWB for full security, convenience and standard compliancy (CCC)

Vehicle Condition & Status Monitoring

 Leverage BLE in the car for monitoring & updating vehicle status to Driver Information System & Smart Phone

Tire Pressure Monitoring systems, customized seat settings, service reminders, trouble codes, etc.

In Vehicle Connectivity

KW3x – Auto BLE for Smart Access

The Industry's First Automotive-Qualified Bluetooth 5-Ready Wireless Microcontrollers (MCU) with integrated CAN-FD

Automotive and industrial qualified wireless MCUs (AECQ100-Grade 2 temperature range qualification)

Simplified integration of Bluetooth connectivity in cars, enabling automotive manufacturers to deliver added convenience for consumers

Complements NXP's automotive secure access portfolio (Classical with LF / Smart with NFC & UWB)

Wireless Ranging Techniques

RSSI-Based distance estimation

- Distance is calculated based on the free space path loss equation
- Low accuracy, due to the unknown additional losses
- Examples: LF solution in Passive Keyless Entry key fob for cars Bluetooth-based proximity

Time-of-Flight based Ranging

- One way Time-of-Flight: distance is $(t_{rx}-t_{tx})^*$ Speed of light
- Round-trip Time-of-Flight: Distance is $(t_{total} t_{proc})^*$ Speed of light
- Angle-of-Arrival + Time-of-Flight (ToF) / Phase Based Ranging
 - (PDE) can be used to provide 2D/3D positioning (not just ranging).

Phase-based distance estimation

- Distance is calculated based on the phase difference between a received continuous wave signal and a local reference signal
- Examples: LF solution in Passive Keyless Entry key fob for cars Bluetooth Phase Based Ranging

Smart BLE Car Key Application in Automotive

RKE

Wireless Ranging Techniques – RSSI

- Multipath sensitive
 - Constructive or destructive superposition
- Antenna sensitive
 - Different radiation pattern and polarization
- Application
 - Appropriate for discovery
 - Auxiliary information for advanced localization technique.

Description

>KW36 data channel's RSSI tracing and monitoring demonstration system of multiple BLE connections

- More and more car OEM are considering to use phone as the car key, which need to localize the driver's position, most tier-1 customers prefer to use RSSI based solution as it can be supported by current phone directly, while PDE and AOA is not compatible with current phone.
- Common RSSI Localization method is acquiring advertising channels, It's easy, but it is hard to make authentication, can be attacked easily and have low anti-interference ability as it only have 3 channels. So customers are asking for a new method to monitor the data channels with hopping.
- This demonstration system implement data channel's RSSI tracing and monitoring of 4 BLE connections at the same time, and designed a GUI to simplify the steps to setup the demo system, and view the result visually.

Block Diagram of Multiple Connections' Monitor

Setup Procedures:

 the master establishes a connection with the slave phone
 the master distributes information needed to the monitors through LIN
 the monitors starts monitoring connection

4. PC GUI was used to setup the system configuration and verify algorithm

CAN/LIN information:

- 1. Access Address
- 2. Connection Interval
- 3. Hop Increment
- 4. CRC Seed

Channel monitor

ANTI-RELAY SOLUTION

Typical Relay Attack

RSSI based solution– Monitoring one connection

Single-Connection Monitoring

- Single Bluetooth LE Connection
- Multiple monitoring devices
- Synchronize the first monitoring point by constantly monitoring specific channel

Information Needed

- Access Address
- Connection Interval
- Hop Increment
- CRC Seed

Operating Procedures

- 1. the master establishes a connection with the slave phone
- 2. the master distributes information needed to the monitors through LIN/CAN
- 3. the monitors starts monitoring connection

Hardware Prerequisites

Hardware requirements

- 3 Mini/micro USB cables
- 3 FRDM-KW36 boards B1 as master B2 as slave or a phone B3 as monitor
- Personal Computer
- Power adapter 12 V
- Three Dupont female-to-female wire

Board settings

 J_{2-9}

==================

- Connect 12 V adapter to J32 of board B3
- Unmount R34 and R27 resistors of board B3
- Connect J13-1 of the board B1 and B3
- Connect J13-2 of the board B1 and B3
- Connect J13-4 of the board B1 and B3

Note: When using autobaudrate feature connect J1-5 and

Prepare the Demo

1. Connect a mini/micro USB cable between the PC host and the OpenSDA USB port on the boards.

- 2. Open a serial terminal on PC for OpenSDA serial device with these settings:
 - 115200 baud rate
 - 8 data bits
 - No parity
 - One stop bit
 - No flow control
- 6. Download the program to the target board.

Software Prerequisites

Project Wireless_UART - B1 as master Located at SDK\boards \ frdmkw36 \ wireless_examples \ bluetooth \ w_uart_c-lin_m\ freertos

Project Wireless_UART - B2 as slaveLocated at
 SDK\boards \ frdmkw36 \ wireless_examples \ bluetooth \ w_uart\ freertos

Project Link_Monitor - B3 as monitor Located at

SDK\boards\frdmkw36\wireless_examples\genfsk\conn_test\freertos

Software log information print

💆 Tera Term - [未连接] VT 🛛 🚽 🗆 🗙	💆 Tera Term - [未连接] VT - ロ ×	■ Tera Term - [未连接] VT
文件(F) 编辑(E) 设置(S) 控制(O) 窗口(W) 帮助(H)	文件(F) 编辑(E) 设置(S) 控制(O) 窗口(W) 帮助(H)	文件(F) 编辑(E) 设置(S) 控制(O) 窗口(W) 帮助(H)
Lin Demo Master! Press SW2 to start scanning! Scanning Connected to device 0 as master. (2). Press SW2 to start scanning	<pre>Wireless UART starting as GAP Peripheral, press the role s witch to change it. Adver Drg. Pess SW2 to start advertising Connected to device 0 as slave. HopIncrement: 16 Connection Interval: 16 CRC seed: 00A3C1DC AA:: 7251E0EE [00-S]: Bluetooth LE-CAN-LIN Bridge Demo Copyright (c) 2018 NXP Semiconductor Type "help" to see all commands]</pre>	Lin Demo Slave! LIN slave initialized Awaiting data from Master Waiting for ble onnection Connection info:1 Connection info:2 DeviceId:0 3. Start monitoring Link Monitor Mode started RSSI = -35 dBm RSSI = -32 dBm RSSI = -32 dBm RSSI = -36 dBm RSSI = -36 dBm RSSI = -37 dBm RSSI = -32 dBm RSSI = -33 dBm RSSI = -34 dBm

RSSI based solution– Monitoring multiple connection

Multi-Connection Monitoring - Continuous processing

Instant Timing				
💺 🕎 🔍 🔲 🚡 · Origin: 318,682.34 ms · span: 128.86 ms · Bluetooth · WiFi HCI WCI WPAN Logic Misc · Display · Logic inputs 💷				
Müralase				
"S1" 54:6C:0E:AD:5				
"54" 54:6C:0E:83:3 conInterval; 100ms				
"S2" 54:6C:0E:AD:4				
"S3" 54:6C:0E:A0:5				
"MO" 18:04:ED:A0:	Ц	L	Ц	<u>u</u>
→ 4.999125 ms (8.0 slots)				
S1 S2 S3 S4	S1	S2	S3	S4

Multi-Connection Monitoring - Operating Procedures

- 1. the master establishes a connection with the slave phone 1;
- 2. the master distributes information needed to the monitor through CAN;
- 3. the monitors starts monitoring by constantly monitoring specific channel;
- 4. the master establishes a connection with the slave phone 2;
- 5. the master distributes information needed to the monitor through CAN;
- 6. the monitors starts monitoring connection 2 by monitoring a specific channel 5ms after connection 1 event;
- 7. same processing from connection 3 to connection n

Multi-Connection Monitoring – Flow Chart

Multi-Connection Monitoring - Continuous processing

Multi-Connection Monitoring - Split processing

Multi-Connection Monitoring - Operating Procedures

- 1. the master establishes a connection with the slave phone 1;
- 2. the master distributes information needed to the monitor through CAN;
- 3. the monitors starts monitoring by constantly monitoring specific channel;
- 4. the master establishes a connection with the slave phone 2;
- 5. the master distributes information needed to the monitor through CAN;
- 6. the monitors starts monitoring connection 2 by monitoring a specific channel 10ms after connection 1 event;
- 7. same processing from connection 3 to connection n

Multi-Connection Monitoring – Flow Chart

Multi-Connection Monitoring - Split processing

RSSI LOCALIZATION SOLUTION

KW36 Advantages

- RSSI indication associated with channel number in scanning event
- Support RSSI reporting in data packet in connection event
- Good RSSI accuracy, -3 to 3 dBm

KW36 RSSI Accuracy (-3dBm to 3dBm)

RSSI - 1m

RSSI - 5m

KW36 RSSI Localization Schemes

- Typical RSSI based localization schemes
 - Acquiring RSSI from advertising channels, no connection
 - Anchor scanning, tag advertising
 - Anchor adverting, tag scanning
 - Acquiring RSSI from data channel, with connection

KW36 RSSI Localization Schemes - Advertising

- Acquiring RSSI from advertising channels, no connection
- Anchor advertising, tag scanning

KW36 RSSI Localization Schemes - Advertising

- Acquiring RSSI from advertising channels, no connection
- Anchor scanning, tag advertising

KW36 RSSI Localization Schemes - Connection

- Acquiring RSSI from advertising channels, no connection
- Anchor scanning, tag advertising

KW36 based RSSI Localization Solution

- Advertising based scheme
- Anchor scanning
- Tag advertising
- Algorithm running on PC

SECURE CONNECTIONS FOR A SMARTER WORLD