EECS 192 Progress Report

lan Krase, Daniel Lee, Nicholas Gan

1.

Current State of Project

Currently, our car is using largely the same hardware as we originally
constructed, with one change: we are adding a second camera (with a further scan
distance) to the top of our tower. Ways of bracing the tower to reduce mechanical
vibrations are under investigation, but it appears that the flexibility is actually mostly
within the car chassis. Active lighting is under consideration.

The electronics are largely as originally designed, and quite simple, with no
sensors besides the two encoders and two cameras. The boost
converter/microcontroller connection board has been equipped with a dip switch to
allow setting of configuration options, and the motor driver has been re-laid-out to use
surface mount FETs and match the dimensions of the motor and gearbox frame.

Our car runs five major modules that handles the following tasks: read and
process wheel encoder inputs, read and process linescan camera inputs, steering
control, motor speed control, and user interface. Each module is assigned it's own
thread to allow independent operation. Modules that are not functioning at full capacity
are the user interface, which is able to communicate via serial communications over
bluetooth but unable to transmit telemetry data, and the motor control, which currently
does not vary the velocity according to the track data.

The following subsystems require some debugging: the automatic gain control
in the linescan camera module which behaves oddly in bright light, steering algorithm
to handle bad data (e.g. noise or being blinded), and the telemetry output which is in
development.

Block storas pravious rack positions

| Line scan cameras . N_olse . Track_posmon . Fl Steering angle
Filter estimator control
o Speed Control
Steering Angle
¢ ESC
v
Automatic i
gain Specialcase | | 3 Pilot module
control recognizer "
Wheel encoders . N_olse . Flmotor speed [Steering servo, motor
Filter control controller
|
Debug
Telemetry

https://drive.draw.io/#G0B1WjvAmrn766dVRRYzZ6ZjBMb1U

|CAM1 | |CAM2 |
'y A

Unregulated Power

FRDM -
KL25Z

Regulated Power

{

r 2 MOTORS
| | TacH

Signals with Logic Level Power

2. Hardware Documentation
o Hardware Overview

In order to keep clear of mechanical attachments, and to make up for the
limitations of available CAD software, the electronics have been divided into two
boards: a motor driver board which is attached directly over the motor and gearbox
frame of the car, and a boost converter and control board which attaches to the top of
the FRDM-KL25Z microcontroller module. This unit is then attached over the steering
servo, making the cable to the sensors and servos short. To provide 5v power for logic
and for the servo, a 5V linear regulator is used. In addition to carrying the configuration
switches, linear regulator and boost converter, this board includes signal and
distribution to all part of the car, including 5V logic power and 7.2V boosted power for
the motor driver. A cable is used to attach a Sparkfun BlueSMIRF radio modem for
remote debugging.

To provide power, the Natcar and TFC legal 7.2V battery is directly connected
to the input for the motor controller. From the motor controller board is output
moderate-current battery voltage to the boost converter, which boosts the battery
voltage to 7.2V if it falls below this level due to a dying battery or internal resistance.
This 7.2V moderate-current boosted supply is then fed to the motor driver board
(where it powers the gate predriver) as well as to the FRDM-KL25Z module and a
moderate-current 5V linear regulator. The resulting 5V is used to power the servo and
sent to the motor driver board to provide logic level supply (after appropriate filtering.)

The motor drivers consist of a pair of simple half-bridges (providing only
forward rotation and braking), with the high-side N-channel FETs driven by a
MC33883 gate predriver. A toggle switch with detachable bamboo wand allows the
motors to be enabled and disabled without affecting any other part of the car. A set of
7400-series logic gates provides both level-shifting (the MC33883 is not natively

capable of being controlled by 3.3V CMOS signals) and enforces shoot-through
protection.

To measure the speed of the wheels, a pair of the ESG-designed reflective
sensors are mounted between the wheels and the frame, in position to read the
reflective disks on the backside of the wheels with two marks per revolution. Since the
car only travels forward, quadrature encoders are judged unnecessary.

A carbon and glass fiber tripod tower supports two mounts for TFC linescan
cameras at adjustable angle. Currently only the lower (scanning closer to the car)
mount is populated. It is planned that the upper mount will soon be added and used to
distinguish approaching curves from tracking error.

o Schematics and Board Layouts

UCC is BATTERY

>
= R
-+ = eio S==R
o T
g 5
BATT |51 .
uce
RMOT
—Rfi:l—’k E =" = 4
L .
| 5@ Ohm ,% —
DPOTSHMTAZ@ENPC [&
P2 [o 3 = [
A UaANg | RCNT Right Motor
- e [5w 1o | s
= 8 B00ST “
¢ SA
ST manst e | o ‘
-2 UI0GIC | & =
. e . 11 \‘;CC?
20 G_EN
SH1 iy ‘3 o ‘
= 22 1
T3 e i e N P
Right rMat Br ak. 7 IN_HS1 C_HS1 :
r ; | 1 G N
[= ORI R C3G§2 IN_LS1
2 O 1 , 1.3 o -
74AHCT1G043EY IN_LS2 SRC : :

. GND_A
Right Motor Foruard 742G@8SS0P 21 GuoT

GND2

Left Hotor Brake

ULOGIC
EETE
’Feg - Ic1p Cc2P IC3G$1 Left Motor Faruard 7226085500
GND
o¥io
Figure 1: Motor Driver
Battery Motor Driver board Boost converter - FRDM
Color coded Labelled and shield pins
andersons nonreversible
MTA connectors

Figure 2: Power connections

https://drive.draw.io/#G0B1WjvAmrn766azlaMWxqQnJxWFk

SU regulator for everything that needs 5U.
The FRDM does not produce 3SU.
Ut 5U
URONST vIN ouT £
Lo
L enasLe 2 2 apiusT 25 o
B = =l =
i R 5 5
= 218 gls]s
© 5] sPx293ez] | L
24
=k
oY@
x| =
el
GND

Battery pur from motor driver

Boost-regged 7.2U to all non-motor systems including

motor driver electronics

uBAT L1 o1 UBOOST
L
FIT68-7 rMERD835L
-~ =
1 L1137 =
~ T
z VSW a | o
2les 5 N
NFB 2
° 78
& E
= [[
= 5 5
w o T .
£ o | o o &
i
=
£3
3
o N
L
ok
FROM BOARD
a1
[N ——— L] PTA1 f—
— pren PTAZ —
— PTCZ2 PTAd peeeeee PRI
2 e PTAS —
_Ix ! prca PTA1Z — DBFUO
CE] pres PTA LT SIG
CE4) pTCE PTA1S pree L _S1G
[— PTAY? oo L DB
—| prcs
— prca pTB0 |— BATADOC
—| FTCI0 arg e CALL
— prCn pre2 [—CAOZ
S i iy .S PTB3 [—
COMCLK] pres PTBE |—
e] PTBE [—
BBEK | prear PTBI0 [—
PTBI1 [—
—| eto0
— POt
— pTD2
—| Fmo3
LEWMD | prpd
— piDs
— PTD&
—| o7 GND
T e =]
~sael | ere0 VREFH |— 2
P I = P.OV_VIN [— UBOOGST
— pTE2 P5V_USB [—
— PTE3 RESETPTA20 —
—{ PrES SDA_PTDS |—
—| eres
= =
R R
[=4 + FROM-KL 252
GND
UBDOST
EXT-UB

GND

GND

No pullups needed because internal pullups.

CE_DR
CONFIGL UsrPa
[oi] 1 c m
CE2 F] ; e 1_sn3
CB—; 4 cz [-&
CER 8 14
51}

[2]2] IEE— I P

[2

EMD 3

GND SERUOD

THIS PINOUT UNUERIFIED

= [CV -]
[5 (e GND 3
= L_TACH
~n < A
=1
1A 1
5 2
= Gy 3
=
-
BISIG & [l 5%[; R_TACH
=
@ g
(-3 =1
=1 M |
T R—]
[T T—1
Sci1 0 4l
12C

MOTOR DRIVER HEADERS

GNO
U

1
3
—LB00sST 3]
_uBAaT 4]

HD1

GMO.

LEWN
LBREK.
REWD
EBRK

NEEDS VERIFICATION

Figure 3: Boost Converter / Control Board Schematic

Figure 5: Boost Converter Board Layout

o

Pin Assignments Table

PTA1 PTC7 DIPSW8 PTE30 | (RTC)

PTA2 PTCO DIPSW1 PTE29 | PTC2

PTD4 PTC3 RF_RX PTE23 | PTB3
RMOTOR_FWD | PTA12 | PTC4 RF_TX LMOTOR_FWD PTE22 | PTB2 | cAM2_IN
SERVO PTA4 PTC5 DIPSW2 PTE21 | PTB1 | CAMLLIN

PTA5 PTC6 DIPSW4 PTE20 | PTBO

PTC8 PTC10

PTC9 PTC11 PTE5 (VIN) | TOBOOST

PTE4 (GND)

L_TACH PTA13 | PTC12 ([CAM_SI PTE3 (GND)

PTD5 PTC13 | CAM_CIK PTE2 (5V)

PTDO PTC16 | LMOTOR_BRK PTB11 | (3.3Vv) | OuT

PTD2 PTC17 | RMOTOR_BRK PTB10 | (RST)

PTD3 PTA16 | R_TACH PTB9 (3.3v)

PTD1 PTA17 | PBIN PTB8 (SDA)

(GND) | PTE31

(VREF) | (NC)

PTEO PTD6

PTE1 PTD?7

User USB Debug USB

Table 1: Pin Assignments

DIPSW1:8 Inputs for 1’s,2’s,4’s, and 8'’s of configuration
dipswitch
PBTN Input (with interrupt) for user pushbutton

R_TACH, L_TACH

Right and left encoder inputs (interrupts)

CAM_S|

Shared Camera Start Capture output

CAM_CLK

Shared Camera Pixel Clock output

CAM1_IN, CAM2_IN

Camera 1 and 2 analog inputs

SEVO

Steering servo PPM output

RMOTOR_FWD, LMOTOR_FWD

PWM outputs for left and right motor-forward
pins on half-bridge

RF_RX, RF_TX

Serial UART IO for Bluetooth radio modem

RMOTOR_BRK, LMOTOR_BRK

Outputs to braking pins of half-bridge

3. Proposed Control Methods

o

Steering Control

Table 2: Pin Definitions

The latest code implements a proportional-integral controller. First, we
mapped our possible range of steering angles to floating points between 0 and
1 where 0 corresponds to left lock and 1 corresponds to right lock. Second, we
designed the line scan cameras to output a floating point value of 0 to
correspond to the leftmost point in its field of view and 1 to the rightmost point.

The control system takes in the sensed line position from the linescan
camera and subtracts the reference value corresponding to the center of the
camera’s field of view (we plan to make this reference an input value later). We
accumulate this calculated error for the integral part of the controller. We then
calculate the steering angle output as:

output = error X Kp + accumulatedError x Ki

A couple of improvements we plan on adding are: a differential part to
the controller for faster rise time, a memoization buffer to smooth out the data
output from linescan cameras so we can reduce jitter, additional tuning to the
automatic gain control so it will be less erratic in bright light, support for a
reference input, and a handler for situations when the linescan camera is
blinded (memoization may make this unnecessary). We also plan on merging
the linescan and steering control threads to reduce concurrency issues that
seem to happen in low exposure times.

4,

o Velocity Control

Currently, we have a proportional-integral controller similar to the one
used with the steering control. It takes in a target velocity, a float specifying
speed in m/s, and outputs a percentage increase or decrease from the current
PWM duty cycle to the motors in an attempt to make the car match that speed.
THe encoder captures the actual speed and feeds this information back to the
controller.

We have yet to implement a dynamic speed controller that responds to
detected line position. However, we’ve found through simulations that a speed
controller that varies speed about proportional to the rate of change of the error
from the linescan camera best. To achieve this, we will have a second linescan
camera look ahead of the camera used in steering controls. With the two
points of the line we can estimate the gradient of the track and decide on
whether to accelerate or brake.

Our dynamic speed controller will output the target speed for the motors
to aim for. It will take in a reference of ref = 1 — (lookahead — steering) where
lookahead and steering are the steering angles calculated from the lookahead
and steering cameras. Then it will apply a PID controller to that reference.
Given the time, we will add special cases to handle late hard braking and full
throttle acceleration.

o How do you propose to stabilize the system?

The biggest threat to stability we face was identified to delays in the
system. Even tiny time delays can move a system into instability. We
combated this issue by angling our cameras far forward such that we cancel
out the delay and possibly “look to the future”, as such improving stability.

Interim Budget

o Time Budget
The most time-consuming parts of the project thus far have been coding and
software debugging. We have spent comparatively little time on hardware, especially
recently, as we have not needed to make many modifications to our hardware past the
original build.

Car disassembly/reassembly: 3h
Tower Build 3h
Tower Design 1h
Electronics Design 12 h
Electronics Construction 6h
Misc HW time costs 4 h
Framework programming 12 h

Device Driver Programming 5h

o

Monetary Budget
No money has yet been spent out-of-pocket. A variety of items have been

purchased from class budget. A length of fiberglass rod was supplied from a group
member’s personal scrap bin.

5. Refined Proposal for Software Architecture

Currently, all planned software modules have been implemented in one form or

another. The major components are the line position estimator, automatic gain control,
variable speed control, steering control, and debug telemetry.

o

The line position estimator is not yet robust enough at crossings, memoization
of previous track position and track signal width detection are required.

AGC performance is subpar in high light conditions. Testing is required.

The speed control currently only attempts to maintain a constant speed.
Instead it should take in track data and speed up in straights, slow down in
turns, etc. Control is currently only PI.

steering control is currently only PI. Further testing is required to see if the D
component is necessary. Further tuning of constants to follow the improvement
of the AGC and line position estimator.

Having telemetry on currently prevents the use of serial commands through
bluetooth. Working to have the car accept commands through USB serial while
sending telemetry over bluetooth.

Block stores previous track positions

Line scan cameras

!

Automatic
gain
cantrol

Wheel encoders

. |Moise .| Track position .| PlSteering angle
Filter estimator | control Speed Gonirol
Steering Angle
ESC
Y
Special pase — » Pilot module
recognizer
. |Moise f Pl motor speed [Steering servo, mator
”| Filter - contral controller
|

Debug
Telemetry

Figure 6: Software block diagram

6. Additional Resources required

O O O O

Small battery to power active lighting

LEDs for active lighting (scavenged some from a burnt LED array)

Spare PCBs

Extra components, specifically transistors and motor driver boards in case of
emergency.

https://drive.draw.io/#G0B1WjvAmrn766dVRRYzZ6ZjBMb1U

