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1. Current State of Project 

In general, we have been able to follow the checkpoints despite all kinds of accidents and 

intractable hardware and software bugs. As for hardware, we were able to assemble the second 

PCB last week, and it seems that all hardware is currently working as expected.  Our CPU and 

LED headlights run from a 5.3v voltage supply from LDO which is connected to the boost 

converter. Our servo is run from another 6v LDO connected to the boost converter to ensure its 

proper working. All sensors were connected to a 3.3v LDO which is directly connected to the 

battery. Motor is directly connected to the battery. All modules on the motor driver circuit 

including logic gates, gate driver and power MOSFET have been extensively debugged. Please 

see section 2 hardware documentation for more details. 

In terms of sensors, we have relied on one encoder and one camera for checkpoints up to 

now. We are planning to incorporate another camera this week. Figure 1a shows the overall 

block diagrams for the homework and simulation systems and the issues that still exist in our 

current state of the project.  

Software and software-to-hardware-integration has been the bottleneck for our project. 

Given that none of the teammates have taken CS162 Operating System, we were audaciously 

ignorant to assume we could implement 5+ threads on this processor and the end result was that 

we were wasting a lot of debugging things we did not know. The current working version still 

relies on barely functioning multi-threading process which we intend to replace with simple 

single control loop. We have 3 line detection algorithms to handle nearly all cases of line input. 

Our current speed detection is based on sampling in a fixed duration (10ms). This works but it 

stands in the way of automatic gain control so we are planning to replace it with interrupt-based 

speed reading. Motor and servo PID control have been implemented but PID constants have not 

been optimized in the real system.  What requires our immediate attention is the interrupt-based 

speed reading module which is essential to the robustness and controllability of the system but 

we have not been able to get it to work yet. Finally, the integration of different parts seems 

daunting but given the deterministic single loop control, we feel confident in debugging it if 

problems arise.  

 



 

Figure 1a: overall block diagram for the HW and SW systems 

 

 

 

 

 

 

 

 

 

 



2. Hardware Documentation 

a) Figure 1 shows our motor drive circuitry schematic  

 

Figure 1: motor drive circuitry schematic 

To prevent shot-through in the high and low MOSFET, we implemented logic gates 

protection. For the low side gate, the logic we implemented is  

LS = LS & (~HS); 

       For the high side gate, we implemented: 

    HS = HS & (~LS); 

 

 



 

b) We used two line sensors, two encoders, and one Bluetooth attached on the vehicle. Figure 2 

shows the schematic of the connection of sensor electronics.  

 

Figure 2: the schematic of the connection of sensor electronics 

c) Figure 3 shows the schematics of power supplies. 



 

Figure 3: the schematics of power supplies 

d) Figure 4 shows the top layout of the print circuit board (PCB). Figure 5 shows the bottom 

layout of the PCB 



 

Figure 4: the top layout of the print circuit board 



 

Figure 5: the bottom layout of the PCB 



3. Proposed Control Methods 

1) Velocity Control 

We face two problems to solve when considering about velocity control: the first one 

is what the most appropriate speed for a given input state is; the second is how to make the 

motor approach the appropriate speed. Both parts are necessary and we want to address 

both in detail. 

 

a) Target speed as a function of time: 

The reason for target speed as a function of time is that we the car can address 

different track pattern at different speed. For example, at S turn, if the speed is too high, 

the servo controller has not enough time to response and the tracking will fail. In 

contrast, in the straight-line situation, the speed limit is very high. Think of the track as 

a set of components each of different speed upper bounds. Then the maximum overall 

speed is achieved when we hit each upper bounds of speed for each component. So our 

goal is to find by experiment what the maximum speed we can go at each different 

pattern and try to come up with control algorithm to achieve optimum. 

Our current software structure sets the target speed as a continuous function of 

time. The speed is inversely proportional to the center tracking error 𝐸𝑐𝑎𝑚  by the 

following equation (P control): 

𝑉𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑆𝑝𝑒𝑒𝑑𝑛𝑜𝑟𝑚𝑎𝑙 − 𝐾𝑝𝑡𝑔𝑆𝑝𝑒𝑒𝑑 ∗ (𝑎𝑏𝑠(𝐸𝑐𝑎𝑚) − 𝑀𝑝𝑖𝑥𝑒𝑙𝐿𝑒𝑛𝑔𝑡ℎ) … … (1) 

When tracked center is within M pixels (e.g. M=10), our speed is greater than 

𝑆𝑝𝑒𝑒𝑑𝑛𝑜𝑟𝑚𝑎𝑙, otherwise smaller than 𝑆𝑝𝑒𝑒𝑑𝑛𝑜𝑟𝑚𝑎𝑙. This distinguishes the straight line 

and S-turn by curvature. 

In two-camera system, use the error of far camera to control speed to make sure 

we brake before S turn occurs.  

 

b) PID controller for drive motor 

Now, we are given target speed. Also, we assume we are given continuous and 

reliable speed measurement from encoder. The goal is clearly minimize the error 

between target speed and speed measurement. The acceleration should be as fast as 



possible and the overshoot should be within reasonable range. We propose to use 

discrete time incremental PID controller for this particular problem: 

𝑢𝑘 =  𝑢𝑘−1 + 𝐾𝑝(𝑒𝑘 − 𝑒𝑘−1) + 𝐾𝑖𝑒𝑘 + 𝐾𝑑(𝑒𝑘 − 2𝑒𝑘−1 + 𝑒𝑘−2) … … (2) 

Where 𝑒𝑘 represents the speed error (= current speed – target speed) of the kth 

loop iteration. The Ki term tries to bring the steady state error 𝑒𝑘 to zero but causes 

delay to fast change of target set point, while the Kd term reduces response time of the 

change in error, which gives us faster acceleration and deceleration. The exact 

determination of the PID parameters is done by experimenting on real track and looking 

at the real speed data using telemetry. Output is given a protection: 

 𝑢𝑘 = min(𝑢𝑀𝐴𝑋 , max(𝑢𝑘, 0)) ; 𝑀𝑜𝑡𝑒𝑟𝑃𝑊𝑀 = 𝑢𝑘 

2) Steering Control 

In steering control, we use the same form of incremental PID as drive motor. The 

equation is exactly the same: 

𝑢𝑘 =  𝑢𝑘−1 + 𝐾𝑝(𝑒𝑘 − 𝑒𝑘−1) + 𝐾𝑖𝑒𝑘 + 𝐾𝑑(𝑒𝑘 − 2𝑒𝑘−1 + 𝑒𝑘−2) … … (3) 

Where the 𝑒𝑘 term is the difference between measured center and reference center. 

The Ki term try to minimize the error term 𝑒𝑘 and the Kd term try to deal with the sharp 

turns. 

Integration protection should be implemented and the input should be smooth to avoid 

rapid shaking.  

The “No input” is one edge case where no camera data is found. In practice, it will be 

interpreted as that a sharp turning is not performed on time, so it will be soon leave the 

whole track (30cm overshoot maximum). One way to remedy is that when no center is 

found, the car use the last few inputs to determine which way the track is lost, and apply 

full steering to that direction. 

Also, very importantly, a good control strategy should allow flexible Kp, Ki, Kd at 

different input pattern. These can be tuned using real experiments. (Usually, PD control is 

enough). The K terms should also be related to current speed. At different speed, the same 

steering angle means different thing actually. 

A rigid set point is not always optimal. The reference center, which is usually 63, which is the 

center index of the line pixel from 0 to 127, can be changed to improve efficiency. When in circular 



arc, the steady state error should be constantly nonzero. Our Ki term takes care of this as it usually 

does. But we want it to move in the inner region of the circle so that it does not get off track but 

complete the circle more efficiently and remove the overshoot back and forth. We can temperately 

set the reference center to the direction of the arc a little bit to give better tracking 

The integrated control method is illustrated as following: 

[𝐾𝑝, 𝐾𝑖, 𝐾𝑑] = 𝑔𝑒𝑡_𝑃𝐼𝐷(𝑐𝑎𝑙𝑐𝑇𝑒𝑟𝑟𝑖𝑎𝑛𝑇𝑦𝑝𝑒( ), 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡); 

 𝑐𝑒𝑛𝑡𝑒𝑟𝑟𝑒𝑓 = 𝑔𝑒𝑡𝑅𝐸𝐹(𝑐𝑎𝑙𝑐𝑇𝑒𝑟𝑟𝑖𝑎𝑛𝑇𝑦𝑝𝑒( ), 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡); 

 𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑔𝑒𝑡𝐶𝑎𝑚𝐶𝑒𝑛𝑡𝑒𝑟( ); 

 𝑖𝑓 𝑐𝑒𝑛𝑡𝑒𝑟 = 𝑁𝑈𝐿𝐿: 

         𝑠𝑡𝑒𝑒𝑟 = 𝑠𝑖𝑔𝑛(𝑒𝑟𝑟𝑜𝑟𝑙𝑎𝑠𝑡) ∗ 𝑈𝑚𝑎𝑥; 

         𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑡𝑒𝑒𝑟( ); 

 𝑒𝑟𝑟𝑜𝑟𝑝𝑟𝑒𝑣 = 𝑒𝑟𝑟𝑜𝑟𝑙𝑎𝑠𝑡; 

 𝑒𝑟𝑟𝑜𝑟𝑙𝑎𝑠𝑡 = 𝑒𝑟𝑟𝑜𝑟𝑛𝑜𝑤; 

 𝑒𝑟𝑟𝑜𝑟𝑛𝑜𝑤 = 𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑐𝑒𝑛𝑡𝑒𝑟𝑟𝑒𝑓; 

 𝐴𝑝𝑝𝑙𝑦 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3); 

𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑡𝑒𝑒𝑟( ); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Interim Budget 

In general, we have been a high-cost team, not only in terms of the components that we 

needed replacement, but also mainly in terms of time commitment to almost every subsystem 

along the way.  

Mechanical construction: Reg is totally in charge of all aspects of mechanical design. 

Total time spent is roughly 20 – 25 person-hours. 

Motor drive system: a simple system that gives us all kinds of headaches. Topology 

seems fine yet debugging has been a nightmare. We hold the highest record for gate driver chip 

kills. Total time spent is 50 – 75 person-hours.  

DC – DC converter: after the initial time investment in understanding how it works and a 

one-time explosion of capacitor soldered in the wrong direction, DC-DC converter has been a 

relatively low-cost area of our design. Total time spent is 25-30 person-hours. 

CPU board understanding: the CPU has not been kind to us at all. Not having worked 

with embedded system before, the behavior of it seems very strange to us. We strongly suggest 

that either the Professor or the TA should caution students next year against all pitfalls of using 

the board. Debugging the system such as looking for independent pins has been very time-

consuming and the time cost is still adding up. Total time spent is > 100 person - hours. 

Optical Sensor and encoders: we were able to get them to work relatively fast but the 

integration of different parts was very time-consuming. Total time spent on individual sensor: 25 

person-hours.  

Software: Again, the integration of parts is the most difficult and time-consuming step, 

especially when threads start to fight one another and we had no clue why everything just fell 

apart. Total time spent on all software and total integration > 75 person – hours.  

Out-of-pocket monetary cost: ~ 20-30 dollars per person.        

 

 

 



5. Refined Proposal for Software Architecture 

 After experimenting with multi-threads without much success, we have decided to forgo 

the multi-thread approach as we realize that we don’t have the necessary knowledge or make it 

work as we would wish. Therefore, to construct a more robust and easy to debug system, we are 

opting for the single deterministic loop approach to minimize problems brought by asynchronous 

threads. Figure 5a shows our software architecture of vehicle control loop. After the initialization 

of all variables as the system first starts, we enter our control loop. Inside the control loop, we 

will trigger two cameras and obtain their line readings. These readings are buffered since servo 

and motor decisions are not as fast as line readings. Then we pass the line data to our line 

detection algorithms to find the center of the track and to spot patterns that we have pre-

programmed for. PID control then kicks in to adjust servo and motor PWM. Threshold-based 

automatic gain control (control exposure time such that the white line/black line have certain 

values) then runs to determine how long we need to wait to start the next control cycle. IO is 

running during the wait time to print useful data for debugging and tuning. Other than the trigger 

camera input stage where we read from the line sensor, speed is measured by an interrupt based 

module where we measure the time elapsed from edge to edge in the encoder output and 

calculate the corresponding speed.  

 For the preliminary round, we need to have all modules listed below integrated and 

functioning properly. Other than the integration of the ISR into the main control loop, other 

pieces of the software should not have timing conflicts or result in difficult bugs. Given that most 

functions have been implemented, all that is left is testing and proper integration of different 

pieces. The most challenging task right now is to implement a robust interrupt-based speed 

reading module that functions properly when integrated into the whole control loop.  

 To switch from a multi-thread approach to a single control loop approach, we think 

roughly 5- 10 hours are required for the proper working of the system. On top of that, 5 – 10 

hours are required for the development of ISR based speed reading and the integration of which 

to the main control loop. After that, we expect another 10-20 hours of work in testing and tuning 

PID for optimal performance. Therefore, we expect at least 40 hours of work in software before 

the preliminary contest round. After that, we can experiment with fancier algorithms such as 

track memorization or better track recognition so that we can deal with some cases where our 



control is not a one-size-fits-all solution. The time on such fancier algorithms is estimated to be 

pretty large and we would like to limit ourselves from exploring too many options since the more 

variables we have, the harder we can comprehend and improve the car behavior.    

 

Figure 5a: software architecture of control loop 

 

6. Additional Resources required 

As we are almost done with all mechanical parts and electronic hardware, we are going 

full-speed with our software development and integration of different parts. One additional 

hardware we require is the roller for the encoder. We need an ideal material that has sufficient 

resistance to reliably roll the shaft of the encoder as our wheel rolls. Otherwise, we need more 

help understanding how software such as interrupt works on the mbed and debugging some 

peculiar behaviors. Ideally, we would like to have more resources to help us with the software 



development since the resources and documentation on the ARM mbed website are not as 

sufficient as we would like them to be.   

 


