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Abstract 

The purpose of this project was to design and implement an autonomous, line-following, 

battery powered car.  The car was designed to meet the specifications of the Freescale Cup 

competition.  These specifications provided requirements for the microcontroller, batteries, motor 

driver, car size, and track size that would be used.  The car was built from a provided Freescale 

Cup car kit, which included everything necessary to construct and run the car.  The Freescale 

K25 microcontroller was used to control all aspects of the car, and was programmed using Matlab 

and Simulink.  A Matlab package was provided specifically for the Freescale Cup that added 

Simulink libraries for each part of the car (the steering servo, the motors, etc.).  To allow for line 

following, a 128 by 1 pixel camera was mounted to the front, center of the car.  Simulink was used 

to program the car to receive the data from the camera and produce an output to send to the 

steering servo.  To produce the output, a Proportional-Integral (PI) controller was used.  The PI 

controller provided proportional gain to respond to turns and integral gain to reduce the steady 

state error to zero when the car was going straight.  To help with turning, a differential wheel drive 

was implemented in Simulink that would allow for one wheel to slow down, or even stop, in the 

event of a sharp turn.  This allowed for the car to slow down while turning, ensuring that it did not 

lose the line.  An iterative process was used to tune the parameters of the PI controller and the 

differential drive.  Many iterations of testing and tuning were performed to reach the final result of 

the car completing the track unassisted at a moderate speed.  The car was able to complete a 

track with various size turns, two straight sections, and an intersection.  In the future, many 

enhancements can be made to the car to allow for better steering control, better speed control, 

and faster overall speed.  Upgrades to consider include a faster processor, another camera, wheel 

encoders, and a better controller model. 

Procedure 

  

The provided regulation Freescale Cup car components were first assembled to create 

two cars.  Each kit included a car body (including back wheel drive motors, 4 wheels, and a 

suspension), a stepper motor, a Freescale FRDM-KL25Z microcontroller, a FRDM-TFC motor 

controller shield, a bumper, steering control components, 2 batteries, a battery charger, and 

miscellaneous hardware (including screws).  All assembly and programming steps were executed 

on both cars/kits, so all future references will refer to a single car to reduce redundancy. 

 

 Referring to the Freescale Car Assembly Manual, the steering control unit of the Freescale 

car was assembled.  To do this, an Arduino was used to turn the steering servo to its’ 90° position, 

in order to center the servo such that it would be able to turn 90° in either the positive or negative 

direction before reaching the servo’s stop.  Centering the servo guaranteed that once the tie rods 

(connecting the servo to the wheels) were installed, the servo’s previously unknown position 

would not prevent the wheel’s from turning in a full range of motion, (the servo could have been 

positioned starting at its 0° position, at which point it would be unable to move in the negative 

direction, preventing the car from turning in one direction).  After centering the servo, the servo 



horn was assembled and attached in the center position of the servo, as shown in the Freescale 

Car Assembly Manual, in order to provide a point to attach the left and right wheels to the steering 

servo via a tie rod.  Specific care was taken in assembling the servo horn, as the servo horn 

assembly came with a number of components, specific to the manufacturer of the servo.  The 

servo was determined to be a Futaba model, so the servo horn components marked with “FU” on 

them were selected and assembled to create the horn.  The cover over the servo gear was then 

removed, and the servo horn was pushed down tightly onto the gear and screwed on to secure 

it.  The different servo makers have different gear sizes and number of teeth, so the various 

components allow the assembler to create a correctly fitting servo horn, as opposed to one that 

does not fit tightly, or is too small to fit onto the gear.  After connecting the servo horn, the servo 

was slid into the slot between the front two wheels with its horn centered and pointing straight up, 

and secured with two screws. 

 

 The tie rods, which connect the servo horn to the wheel, allowing the servo to control the 

direction of the wheels, were then assembled and installed.  Because the servo gear is not 

centered in the middle of the servo body, the gear (and therefore the horn) was not equidistant 

from the two wheels.  To remedy this, two different lengths were utilized for the tie rods, with the 

shorter tie rod connected to the wheel closest to the servo gear.  To create each tie rod, three 

pieces were used.  The middle bar, one of short length, and one of long length, was threaded on 

both ends, in order to attach to the mounting mechanism on either end.  On the wheel end of the 

rod, a joint piece was attached, allowing it to receive (and hold) a ball-shaped pin.  At the servo 

horn end, a joint with a circular hole through it was attached.  A ball bearing with a hole through it 

was then pressed into the hole in the connector using pliers, in order to allow the rod to pivot as 

the servo was turned.  The long and short tie rods were then connected to the servo horn by 

securing the ball bearings to the horn with screws on the side farthest and closest to the servo 

gear respectively.  With the servo side attached, the rods were adjusted by further twisting them 

into the connectors, shortening the length of the tie rod, until the ends of the rods could be moved 

inside the wheels, close to the wheel hitches.  Fine adjustments were then made, until it appeared 

that both wheels would be oriented straight when the hitches were attached to the tie rod. The 

boots/caps at the end of the tie rod were then attached to the wheel hitches, completing the 

steering unit.  As necessary, the wheel orientations received fine adjustments by turning the tie 

rods with pliers.  Afterwards, the bumper was attached to the front of the car using two tapered 

screws. 

 

 After assembling and connecting the steering control unit and bumper, the battery was 

mounted to the car body.  The kit came with two 7.2V batteries, which needed to be readily 

swappable in case one battery became low, which could negatively affect performance.  The body 

came with an in-place mount to rest the battery on, located beneath the suspension.  To secure 

the battery, a battery was laid across the mount beneath the suspension, and an adjustable zip-

tie was passed beneath the mount in two locations to hold the battery in place.  This allowed the 

battery to be attached securely, while also allowing it to be quickly removed and replaced.   The 

camera was then assembled by placing the camera lens over the line scan camera circuit board, 

and attaching it with 2 small metal screws.  After testing the camera in a variety of lighting 

conditions, it was discovered that bright light bled through the back of the camera disrupting stable 



reading of the line.  To remedy this, black electrical tape was wrapped around the back of the 

camera, to prevent light from bleeding into the camera and destroying the clarity of the captured 

signal. 

 

 The camera was then mounted on the front of the car, referring to the Freescale Car 

Assembly Manual.  The manual includes a 3D model of a mount that is printable using a 3D 

printer.  The three components of the 3D printable mount are shown in Figure 1. 

 

 

 
Figure 1. Three Pieces of the Camera Mount 

 

The base component was made as the support of the device, attaching to the car, and 

supporting a wooden dowel, the other two printed components, and the camera itself.  Once the 

base was printed, the resin supports created in the printing process were removed.  The base 

was then mounted directly on top of the servo by removing the plastic plate the servo was fit 

under, and replacing it with the base.  The base was then tightly screwed down using the same 

screws that once held the plate.  This placement kept the camera high off the ground, towards 

the front, and protected from immediately bumping into something (as it might have on the 

bumper).  Multiple wooden dowels were then filed down to fit snugly, without too much resistance, 

into the base, in order to provide a variety of heights for the camera.  Separately, the residue from 

the other two components was removed as they were printed.  The hinge was then slid into the 

slot in the camera mount component.  The longest of the available screws was then screwed 

directly through the three layers, attaching the hinge to the camera mount.  The camera was then 

attached via two screws, to the two screw holes closest to the camera mount component.  A 

wooden dowel was placed into the base, and the large hole in the hinge was slid down around 

the dowel.  A single thumb tack was used in the base to keep the dowel from moving, while 

another tack was used in the hinge to prevent it from turning or sliding down the dowel. 

  

The FRDM-KL25Z microcontroller was then mounted to the Freescale car body by screwing the 

two yellow plastic extensions shown in the Freescale Car Assembly Manual to the bottom of the 

microcontroller. The reverse ends were then screwed down to the screw holes on the top rear of 

the car, near the rear-wheel drive motors. Once the FRDM-KL25Z microcontroller was securely 

connected to the Freescale car, it was connected to the camera, battery connector, servo, and 

motors via the FRDM-TFC Motor Control Shield. Figure 2 shows the connections (and their color 

codes) made to the camera, standing upon the mount, with the black side of the cable connecting 

to ground, and the opposite side connected to AOUT. 



 

.  

Figure 2. Pinout from Line-Scan Camera 

 

 The same cable in Figure 2 was then connected to the K25’s motor shield’s camera 

connector, as shown in Figure 3.  The orientation of the multicolored cable remained the same as 

Figure 2, meaning that the black wire was connected to ground, and the yellow cable was 

connected to the AOUT of the camera. 

 



 
Figure 3. Camera and Servo Connectors on Motor Shield 

 

Figure 3 also shows the smaller servo connector, as it was connected to the motor 

controller shield.  It was connected with the ground pin (black) towards the interior of the board.  

After connecting the servo and camera, the motors and battery connector were connected to the 

motor controller shield.  The other connections were made using screw terminals on the right side 

of the car.  The battery connector was two stranded core wires, loose at one end, and part of a 

male connector (matching the battery’s female connector) on the other end.  The red wire of the 

battery connector was connected to the VBAT terminal, and the black wire was connected to the 

respective ground terminal, denoted GND (both at the center screw terminal).  The left  motor’s 

positive and negative terminal (red and black wires respectively) were connected to the B screw 

terminal, with the ground terminal connected to the terminal denoted ‘2’, and the positive/live wire 

connected to terminal ‘1’.  Similarly, the right motor was connected to the A screw terminal, with 

the red wire connected to the terminal denoted ‘1’, and the ground wire connected to the terminal 

denoted ‘2’.  Figure 4 shows the connections to the battery connector and motors, with the right 

motor’s connections on the left, the left motor’s connections on the right, and the battery connector 

connected in the center.  



 
Figure 4. Motor and Battery Connections on Motor Shield 

 

 The battery could then be connected to the K25 by connecting the battery’s female 

connector to the newly attached battery connector on the K25.  With the battery, motors, servo, 

and camera all mounted and connected, the Freescale car had finally been assembled, and was 

ready to program.  While an assembly or C language implementation of a controller may have 

been more lightweight and produced higher performance, the rapid prototyping/development 

offered by Simulink through Matlab proved to be the more practical option given tight time 

constraints. 

  

To accomplish the necessary Matlab programming, Matlab had to be requested from the 

Mathworks Freescale Cup page.  The link to this download is provided in reference document 3.  

The option to “request software” was selected and an account was created.  Upon successful 

completion of the necessary forms, a MathWorks license was created and provided via email.  To 

download the software, the previously created Mathworks account was associated with the 

provided license and activation key.  This was done following the steps provided by reference 

document 4.  Once associated with a license the software was then downloaded and installed to 

the computer.  Download instructions are provided in reference document 5.  Upon successful 

installation of the Matlab software activation was required.  This activation occurred automatically 

as MathWorks prompted for account credentials.  While problems did not occur, MathWorks 



acknowledges that problems can occur with automatic activation due to firewall settings.  

Reference document 6 provides details for performing a manual activation of Matlab software.  A 

manual activation may also be necessary for a computer that does not have an internet 

connection.  At this point Matlab was successfully installed and was fully operational.  In order to 

interface with the Freescale FRDM-KL25Z board, the embedded coder support package was 

downloaded and installed.  The support package can be found on the MathWorks website, and is 

shown in reference document 8.  Double clicking on the file opens Matlab and launches the 

Support Package Installer which provides step by step instructions for installing the support 

package.   

 

The Embedded Coder Support Package for the Freescale FRDM-KL25Z allowed for code 

to be automatically built and generated.  The embedded coder supported the following 

peripherals: 14 digital I/Os, 6 analog inputs, 1 analog output, 3 serial Tx/Rx lines from on-board 

UARTS, and an RGB LED.  The support package also provided library blocks to interface the 

TFC-Shield which included the following peripherals: a line scan camera, dipswitch, two 

potentiometers, two push buttons, two servos, and two DC motors.  Before generating code on 

the board it was important to download the proper drivers for the Freescale FRDM-KL25Z, and to 

verify that the proper bootloader was operational on the Freescale FRDM-KL25Z board. 

 

In order to program the car, a Simulink model was created using the embedded support 

package for the FRDM-KL25Z board.  Simulink was used to build, load and run the created model 

directly on the FRDM-KL25Z platform.  Simulink did this by creating C code which was compatible 

with the FRDM-KL25Z.  A binary file could then be loaded onto the FRDM-KL25Z board thus 

programming the car.    

 

The version of Matlab used was R2014b.  The following provides the necessary steps for 

allowing the Freescale car to be programmed from the Matlab environment.  It is important to note 

that to perform a firmware update, a computer running Windows 7, or XP is necessary.  A PC 

running Windows 8 will not work to upgrade the FRDM-KL25Z firmware.  

 

1. Verify that the Freescale car contains the proper firmware.  This is done by connecting the 

car to the FRDM-KL25Z board via a USB mini type B cable.  Using File Explorer, navigate 

to the FRDM-KL25Z device.  Open the sda_info.htm and verify that the bootloader is 1.11 

and the application version is 1.14.  If both these parameters are correct then as of 

December 7, 2014 the FRDM-KL25Z board will be compatible with Matlab R2014b.  Figure 

5 shows the proper settings.   

2. If the application version is not correct follow the steps of reference document 8 to perform 

the update to the latest version.   



 
Figure 5 - FRDM-KL25Z Hardware Configuration 

     

3. The Freescale FRDM-KL25Z serial drivers then need to be installed to allow for serial 

programming of the microcontroller.  First download and install the P&E OpenSDA USB 

drivers from the link provided in reference document 9.  Download the 

PEDrivers_install.exe for Windows to perform a manual install.  At this point you will be 

prompted to create an OpenSDA account.    

 

4. Connect the USB cable from the computer to the FDRM-KL25Z board.  The board should 

appear in File Explorer as a storage drive labeled FRDM-KL25Z.  Verify that the board 

appears by going to the device manager and finding the FRDM-KL25Z entry under 

portable devices as seen in Figure 6.   

 



 
Figure 6 - FRDM-KL25Z Hardware Configuration before Downloading Serial 

Drivers 

 

5. From the Device Manager go to Ports and check if “OpenSDA - CDC Serial Port” is 

available.  If so then the driver installation is complete. “PEMicro/Freescale - CDC Serial 

Port" should be visible as shown in Figure 7.     

 
Figure 7 - FRDM-KL25Z Hardware Configuration before Installing Drivers 

 



6. To update the drivers right click on “PEMicro/Freescale - CDC Serial Port” and select 

update driver software.  Browse to the location which the previously downloaded driver 

files were saved and point to this location thus allowing for location of the updated serial 

drivers.   

7. This completes the driver installation and the FRDM-KL25Z should appear as a serial port 

under Ports with no yellow exclamation point as shown in Figure 8.  

   

 
Figure 8 - FRDM-KL25Z showing proper install of Serial Drivers 

 

At this point a simple provided example project can be run on the hardware.  To 

accomplish this open the provided Simulink example project.  This is done by selecting the APPS 

tab from Matlab and then selecting the Freescale Cup Companion application.  This will provide 

a pop-up, at this point select “Show Examples”.  Select the first example which is titled, “Getting 

Started with Freescale FRDM-KL25Z Support Package”.  This document can also be found as 

reference document 10.  This reference document provides a preconfigured model which can be 

loaded onto the car to light the LED.  If problems occur, make sure drivers are up to date and 

simulation settings are exactly as specified in reference document 10.  At this point, the LED 

located on the FRDM-KL25Z should be illuminated with a red color.     

 

The developed algorithm was based heavily on classic control theory.  A closed feedback 

loop was used, as the measured position relative to the line was compared to the desired position 

relative to the line.  This allowed for the generation of an error signal which was then fed into the 

controller.  The controller compensated and amplified the error signal, in order to produce a 

position command.  Figure 9 shows a high level block diagram of the controller which was used.  

The Simulink model contained two major sections: steering controls, and speed control.   

 



 
Figure 9 - High Level Control System  

 

 

 

Steering Control 

 

The provided line scan data was accessible in Simulink by instantiating a line scan data 

block and choosing the sampling rate.  This data was provided as a 128 by 1 array of pixels.  

Values represented the intensity of sampled data where 65,536 indicate bright area (such as the 

white line) and a value of 0 represented a very dark area.  The index of the array corresponded 

to a particular pixel.  For example at index 1 the provided data was for pixel 1.  For more 

information on the line scan camera see reference document 2.  A sample of the digital output 

provided by the Simulink line scan camera is shown in Figure 10.     

 

     
Figure 10 - Sample Raw Line Scan Data 

 

To process the line scan data the following algorithm was generated to process the 

camera data and determine at which pixel the center of the line was currently located at.  The 

algorithm steps are as follows.   

 



1. Truncate 10 bits of each side of the line scan camera data to account for the lens which 

covered the outside pixels.   

2. Take the derivative of the truncated data using the definition of the derivative given by 

Equation 1.  This allowed for the generation of a new vector which contained the rate of 

change around each pixel.  With this information the edges of the black line could be more 

readily determined.  A sample derivative generated vector is shown in Figure 11.    

 

𝑓(𝑥) = (𝑓(𝑥 + 1) − 𝑓(𝑥 − 1))/2     (1) 

 

 
Figure 11 - Derivative vector generated from the raw data of Figure 10 

 

3. The minimum and maximum values of the derivative data were then determined to 

determine the location of the two edges of the line.  The derivative data was at a maximum 

at the edge location, due to the contrast that occurred between light and dark at these 

locations.   

4. The center point of the line was then determined by taking the average of the two edges.  

Thus this algorithm assumes that the center of the line is in the center of the two edges.  

 

This algorithm produced the pixel value for which the line was currently centered on, i.e. 

the cars’ current position.  This information was used to generate an error signal by taking the 

ideal center pixel (128/2 or 64) and subtracting the actual position found using the derivative 

method.  This error signal was then fed into a PI controller. 

 

The purpose of the PI controller was to take in an error signal and use this information to 

make a decision on how to command the steering servo.  To implement the controller the DC 

servo parameters were first experimented with in order to understand the available range of 

motion.  From this experimentation, all the way right, and all the way left values were found. These 

physical limitations were imposed on the controller thus preventing the command of an impossible 

position on the wheels.   The PI controller was generated using a built in Matlab PID controller 



block.  The controller was carefully tuned to obtain optimal results. The manual tuning method 

was used until performance was occurring as desired.  A value of 0 was chosen for the derivative 

control, shutting off the derivative term due to the jerky effect on the wheels with a derivative 

control term.  The proportional gain was set to 0.6.  A proportional gain higher than this value 

created a stability problem as the system oscillated around the value.  A proportional gain lower 

than this reduced the ability of the car to respond to changes in the system, which could mean 

losing the line at a drastic change.  An integral gain of 0.1 was used.  The integral gain allowed 

the proportional gain to be lowered to dampen the oscillations around the line experienced by the 

car.  The integral gain also helped to correct for long term error which was specifically important 

when the car was navigating a loop.  It was also important to enable anti-windup for the integrator.  

Integrator windup refers to a situation in which a large error is generated which saturates the 

controller output and leads to overshooting when correcting thus leading to a system which 

becomes quickly unstable.  This problem was mitigated by initializing the integral to a desired 

value and also only allow for the operation of the integral part of the controller while the car was 

in the controllable region.   

 

Speed Control 

 

The implemented speed control was also implemented through the use of a controller fed 

by the same error signal as the steering control.  When zero error signal was encountered, both 

back wheels were powered with the same command.  When an error signal occurred the controller 

determined in which direction the car needed to turn and powered the back wheels accordingly 

thus reducing the error signal.  For example if the error signal indicated a turn to the left was 

necessary, the right wheel was powered with maximum power, while the left-wheel was 

underpowered.  This allowed for a sharper turning radius to occur and also provided basic variable 

speed control.   While a more complex algorithm could have been used, the differential drive 

linearly decreased the power provided to the motor that needed slowed.  A constant, considered 

a minimum, was used in the Simulink model to specify the lowest percentage of the ‘full’ (20 % of 

full power in the demo) drive power that any wheel could be slowed down.  In the demo, a 

maximum drive power of 80% was specified, meaning that the slowed wheel would only be driven 

at 80% of the local maximum of 20% of full power in a worst case turn.  To implement this, the 

power provided to the hindered wheel was calculated as a linear function of the difference 

between the local maximum (20% of full power), and the minimum differential drive power (80% 

of 20% equals 16% of full power), by reducing the maximum drive by 1/64th of difference between 

the maximum and minimum for every 1 unit in the error function (i.e. max - 20*[max-min]/64, for 

an error of 20).  A linear function was used in order to provide smooth compensation, where the 

car should only be compensating for a small difference in the error, whereas exponential functions 

may appear non-smooth, and allowing error to build until it makes a large correction.  Thus the 

linear function could help prevent oscillations by reacting to early/small errors and compensating 

for them. 

  



Simulink Model 

 

Figure 10 shows the complete Simulink system diagram.  The steering controller is shown 

on the top line of Figure 10.  This has the line scan data being generated using an exposure time 

of 10 mSec with a sample rate of 50 mSec.  The output data from the line scan camera block is 

fed to a data type conversion block to provide the correct data type to the following blocks.  The 

calcPos block calculates the current position using the derivative method.  This position is fed into 

the controller block which calculates the steering servo command to generate.  The second major 

controller is the speed controller shown in the middle of Figure 10.  This has the error signal fed 

into the Differential Drive Controller block and drives the two DC Motors (left and right wheels).  

At the bottom of the model, a battery read and battery indicator is shown for convenience such 

that an indicator is provided regarding the life of the battery. 

 

 
Figure 10 - Simulink Model 

 

 The calcPos block shown in Figure 10 performed the derivative method on the provided 

line scan camera data.  In this block a derivative vector was created and was populated with the 

rate of change around each pixel according to Equation 1.  From the derivative vector, the 

maximum and minimums of the vector were determined.  These values were understood to be 

the left and right edges of the black line.  To determine the center point of the line the two edges 

were then averaged together.  The code implementing the calcPos block is shown in Figure 11.  

The input to this block is camData, which is the 128 by 1 array from the line scan camera.  The 

output of this block is a single pixel value at which the line is currently centered around.  The 

range of the current position value output is from 0 to 128, with 64 being the steady state centered 

on the line position. 

 



   
Figure 11- calcPos Implementation 

 

 The calculated position produced by the calcPos block was then fed into the steering 

controller.  The implementation of the steering controller is shown in Figure 12. 

 

 
Figure 12- Implementation of Steering Controller 

 

 The input to the steering controller is the calculated position of the line.  The position signal 

was normalized by subtracting an offset of 64 from the actual car position.  The value of 64 was 

chosen as it corresponds to the centered position and the offset subtraction normalizes the 

position signal to zero when centered.  If the line was perfectly aligned, then the center of the line 

should be in the exact middle of the 128 pixels of the line scan camera. The normalized position 

signal was then fed into a PID controller block.  It is important to note that the PID controller must 

be operating on a discrete time domain to allow for code which can be compiled.  The PI controller 

also took as input a reset which allowed for an external reset of the controller.  This allowed the 

car to ignore any random noise which may have occurred before the car is on the track ready to 



begin the course.  By resetting the car right before the car began the course, the controller was 

able to begin in a known state allowing for deterministic behavior.  The output of the PI controller 

was a signal, centered on 0, which could be used to command the servo.  Positive values from 

the PI controller requested a right turn while negative values corresponded to a left turn.  A value 

of 0 corresponded to the car continuing straight.  Due to the mechanical installation of the servo, 

it was determined that an offset of 18.5 was required.  Therefore, to account for the offset, 18.5 

was added to the controller output to allow for the PI controller commands to translate to the 

necessary servo command.  The output of this controller was then sent to the steering servo.  It 

is important to note that the steering servo was programmed with hard-coded maximum and 

minimum limits.  These values prevented the servo from turning thru and angle that was not 

physically possible.  If the controller was to command a value outside of the acceptable range, 

the servo would only move to its hard-coded limits.     

 

        The DC motors A and B were powered by the Diff Drive Controller block shown in Figure 10.  

The differential drive controller had three inputs: maxspeed which indicated the maximum wheel 

speed, error which indicated the error generated by the steering controller (shown in Figure 12), 

and minspeed which indicated the minimum wheel speed.  The outputs of this controller are the 

motor speed values for both the left and the right DC motors.  It is important to note that the 

momentary switch shown in Figure 10 was used to switch between accepting an actual value.  

This allowed for the car to be placed into a hold state at which no power was sent to the wheels.  

This proved ideal as it was used to prevent the cars’ wheels from turning when not on the track.  

The differential drive controller consisted solely of the Matlab function shown in Figure 13.  The 

Matlab function produced a slowed wheel speed based on the error signal.  If an error signal was 

non-existent then the speed would be equal to the maximum speed thus allowing both wheels to 

turn at the same speed.  After computing the slowed speed signal, it was determined which wheel 

would get the max signal and which wheel would get the slowed signal.  This decision was based 

on the sign of the error function.  If the error function was positive, the line must be to the right of 

the car, and the right wheel is slowed.  This will allow for the left wheel to drive harder than the 

right wheel thus allowing for the car to turn sharper to the right.  If the error signal is negative, 

then the line must be off to the left.  Therefore, the slowed wheel is set to the left wheel thus 

allowing the right wheel to be driven harder than the left wheel allowing for the car to turn sharper 

to the right.   

 



    
Figure 13- Differential Drive Controller Implementation 

Results 

 The car was tested on a single track that included turns of various sizes, two straight 

portions, and an intersection.  A section of the track can be seen in Figure 14.  

 

 
Figure 14. A Portion of the Test Track 

 

An iterative process was used to tune the parameters of the controller to allow for the car to make 

it around all parts of the track. The PI controller, for steering, had two gain parameters, the 



proportional and the integral, that needed to be dialed in to the correct value. In addition the 

differential drive had a parameter that controlled how much a wheel was allowed to slow down, 

which also needed to be tuned. The process involved a lot of trial and error, in that, a parameter 

value was changed, the car was tested on the track, and, if it was unable to make it around for 

some reason, the process was repeated. Some errors that were seen included the car losing the 

line while going around a turn because it was either not turning sharp enough or was turning too 

sharp.  The PI controller causing the car to begin to turn back and forth (oscillate) until it eventually 

lost the line, or the error in the PI controller becoming too high (due to integral windup), causing 

the controller to tell the car to turn a certain direction indefinitely.  

  

Eventually the controllers were tuned well enough for the car to be able to make it around 

the track. To complete the track a constant, normalized speed of 0.2 was used. This meant that 

each DC motor was running at a maximum of 20% of the maximum speed. On the straight portions 

of the track the car maintained a constant speed and traveled in a simple straight line. Since there 

was no turn, the speed was simply the maximum speed of 0.2. As the car approached a turn, it 

would turn back and forth slightly at first and then begin to make the turn. This back and forth 

motion was caused by the PI controller overcorrecting the turn until it eventually evened out. As 

the turn progressed the differential drive controller would slow one wheel slightly which caused 

the car to slow down slightly during the turn. As the car left the turn, there was another small 

section of oscillation, in some cases, and then the car would straighten out and resume the 

constant speed. Overall, the car was able to make it around the entire track in around 44 seconds. 

While this was fairly quick, it could have been much faster because the maximum speed was only 

20 %.  

 

Analysis 

 

During the design, development and testing of the Freescale Car several issues were 

discovered.  These issues are mentioned here in order to mitigate the risk of those attempting to 

duplicate the obtained results.   

 

The 7.2V car battery should not be applied to the car during USB programming.  During 

the programming process, Simulink was seen to set various processor outputs during the 

programming process non-deterministically.  This created situations in which the processor 

outputs controlling the H-Bridge of the DC motors were active.  Therefore if the battery was 

enabled, the DC motors would spin at a maximum speed.  The same behavior was seen with the 

steering servo as it moved non-deterministically during programming.     

 

Various issues were also found with the line scan camera which greatly affected the 

performance of the data received from the car.  It was determined that the line scan camera was 

very sensitive to light being exposed to the backside of the camera.  This was noted in reference 

document 2 and was also found in the testing of the data.  This issue was mitigated through the 

use of electrical tape being placed over the back of the sensor.  The line scan camera also 

required a well-illuminated area such that it could provide accurate information regarding the 



contrast of what it was seeing.  While an LED headlamp was not used, it is recommended to 

mitigate this as an issue.  The parameters of position of the camera relative to the line, exposure 

and focus of the camera were also found to be important.  To tune these parameters to provide 

for best results an oscilloscope was used.  Each parameter was then tuned until the best possible 

results were obtained.  The characteristics of a good waveform included: a sharp contrast 

between light and dark areas, low levels of noise, and a reasonable line resolution.  The exposure 

time affected how long the camera took to complete a sample.  Due to the relatively low levels of 

light available it was important to use a relatively high exposure time.  By guaranteeing a quality 

light source the exposure time could be lowered.  This provides an advantage as the algorithm 

could then be run at a faster rate thus allowing for the car to navigate the track at higher speeds.  

 

The current algorithm has several limitations which restricted the operation of the car.  Due 

to the speed of the processor the control algorithms could only be run every 50 mSec or 20 times 

a second.  This limited the speed at which the car could be run as the car was able to cover too 

much distance between sampling its position and the system would quickly become unstable, 

thus leading to the loss of the line.  Also currently, for deterministic behavior to occur the line scan 

camera must be able to see both edges of the line.  If the car loses either of the two edges, the 

second edge will be determined by random noise thus leading the car to operate randomly.  This 

behavior could be improved by adding logic to handle the case at which an edge has been lost.  

By adding edge loss detection, the controller can take this into account and when making control 

decisions.  Also a rate limiter, could be implemented to prevent the commanded value from 

changing any faster than a specified limit.  This would be useful in terms of when the servo is 

commanded by the controller to move from control limit to control limit instantly.  This behavior is 

not mechanically possible as it is not possible for the car to move from one edge of the line to the 

other in 50 mSec, and therefore the steering servo should ignore these commands.         

 

Being new to Simulink, much time was spent handling issues in understanding the tool.  It 

is important to note the variable types of blocks.  If types do not match, depending on the block 

Simulink will not produce an error message but will instead interpret an input to a function as a 

type that it is not.  This leads to non-deterministic behavior so it is very important to make sure 

the output type of one block matches the input type of the block that it goes too.  The use of 

convert blocks can also be used to convert between data types.  Another Simulink problem that 

occurred was attempting to run the update algorithm too fast for the current processor.  While 

Simulink did not generate any errors, when run in hardware the code was unresponsive.  While 

never verified with 100% certainty, it is assumed that the processor was not given enough time to 

handle its interrupts before it was again being interrupted.  When the update speed of the 

algorithm was reduced normal behavior was once again observed.     

 

The implemented controller consisted of a PI controller only.  A derivative part was 

deemed not feasible due to the nature of the derivative controller as it would react to noise leading 

to a jittery behavior.  In order to make derivative control more feasible, the error signal must be 

filtered in way to eliminate frequency components that are not possible.  By implementing a filter, 

derivative control can be used, which will thus allow for a large increase in car performance.  

Another possible improvement to the controller would be to add in feed-forward control.   This 



would allow for the controller to anticipate changes and create a turn command ahead of time.  

For example if a second camera were to be acquired it could provide with a further look ahead to 

see upcoming turns.      

   

  During the implementation and testing of the car, the need for various improvements was 

realized. These improvements would be needed to allow for the car to travel faster around the 

track. The first improvement would be the addition of wheel encoders for each wheel. Currently, 

the speed of the car was affected by battery voltage because it was being controlled with a PWM 

signal with a constant duty cycle. The battery voltage varied from around 8.4 V to 6.4 V based on 

the level of charge. This meant that a duty cycle of 20% would drive the motor faster if the voltage 

was 8.4 V versus if the voltage was lower than 8.4 V. The addition of wheel encoders would allow 

the speed of each wheel to be accurately measured and controlled independent of battery voltage. 

Another improvement would be the addition of another camera. Another camera would allow for 

the car to look further ahead to know if a turn is going to occur in the near future. This would allow 

for some predictive speed control, meaning the car could travel faster on the straight portions and 

slow down for turns. To go along with this upgrade, a better speed controller would need to be 

implemented that could interpret the data from the second camera and alter the speed 

appropriately. The new speed controller would also have to include some electrical braking, 

meaning turning the motors in reverse in order to slow down faster. This would be necessary if 

the car was traveling very quickly into a turn and needed to slow down before the turn.  It would 

also be helpful to allow some of the parameters to be configured with various switches on the car 

rather than reprogramming the car just to change a couple controller parameters.  

 

 Another improvement that would help to drastically improve performance would be to 

create a more complete and tuned model and controller in Simulink. If an accurate model was 

constructed, which allowed for accurate simulations within Matlab the current steering controller 

could be converted to a more precise PID controller which would allow for more fine tuning in the 

steering control. The current motor controller would also need to be upgraded to handle the input 

from the wheel encoders and use PID loops to determine an output for each wheel.  In addition, 

if the complete system was modeled in Simulink, it could be used to precisely tune each of the 

controllers. All of these improvements would probably lead to the need for a faster microcontroller 

as well. The K25 only has a clock speed of 48 MHz and is easily overwhelmed if it is trying to do 

too many things at once. A faster processor would eliminate any bottleneck caused by the 

processor. In addition, a faster processor would allow for the sample time of the camera(s) to be 

set much lower meaning that the steering servo and the motors could be updated much more 

often. This would allow for the car to run faster because it could react to changes in the track 

faster.  

 



Conclusion  

            The purpose of this project was to build, program, and demonstrate an autonomous, line-

following car. Due to the limited time of three weeks to complete this project, the minimum 

requirement was that the car had to complete the course unassisted. With the minimum 

requirement achieved, the remaining time was directed towards making the car move as fast as 

possible, without any significant changes. The result was a car that moved at a maximum of 20% 

of its maximum possible speed, and completed the track in 44 seconds. In order to attain the 

fastest possible time, the car must be able to move at the highest percentage of its maximum 

speed. The use of a faster processor, better steering control, and more efficient algorithms are 

key to achieving a faster track completion time. Overall this project provided great experience in 

hardware, software, and the interfacing and the interactions between the two.   

 

 

Appendix 

 

The reader is referred to other design documents and resources for additional details regarding 

the Freescale car. 

 

final_demo.mp4 - A video demonstrating the successful completion of a test track performed by 

the autonomous car.   

 

freescale_pid.slx - The Simulink model which was used to program the car. 

  



 

Reference Documents 

  

The reader is referred to other documents for additional details from which the Freescale Car 

design and development is heavily leveraged.  These documents may be specifically referenced 

or just generally useful.  

  

Car Assembly Documents 

 

1. Freescale Car Assembly Manual 

https://community.freescale.com/docs/DOC-1014 

 

2. Freescale Community - Line Scan Camera Use 

 https://community.freescale.com/docs/DOC-1030 

 

Matlab Documents 

 

3. Freescale Cup - Matlab Examples, tutorials and software request  

 http://www.mathworks.com/academia/student-competitions/freescale-cup/ 

 

4. Matlab Central Associating a license in the License Center  

http://www.mathworks.com/matlabcentral/answers/102871-how-do-i-associate-myself-

to-a-license-in-the-license-center 

 

5. Matlab Central Download MATLAB products that I am licensed for from MathWorks 

website 

http://www.mathworks.com/matlabcentral/answers/98268-how-do-i-download-matlab-

products-that-i-am-licensed-for-from-mathworks-website 

 

6. Installing MATLAB on a Computer that Doesn’t have Internet Access 

http://www.mathworks.com/matlabcentral/answers/105854-how-can-i-install-and-

activate-matlab-on-a-computer-that-doesn-t-have-internet-access 

7. Freescale FRDM-KL25Z Microcontroller Support from Embedded Coder 
 http://www.mathworks.com/hardware-support/frdm-kl25z.html 

 

8. OpenSDA Firmware Update Instructions 

  

 http://developer.mbed.org/media/uploads/chris/updating_the_opensda_firmware.pdf  

 

9. OpendSDA Support 

 

 http://www.pemicro.com/opensda/  

https://community.freescale.com/docs/DOC-1014
https://community.freescale.com/docs/DOC-1030
http://www.mathworks.com/academia/student-competitions/freescale-cup/
http://www.mathworks.com/matlabcentral/answers/102871-how-do-i-associate-myself-to-a-license-in-the-license-center
http://www.mathworks.com/matlabcentral/answers/102871-how-do-i-associate-myself-to-a-license-in-the-license-center
http://www.mathworks.com/matlabcentral/answers/98268-how-do-i-download-matlab-products-that-i-am-licensed-for-from-mathworks-website
http://www.mathworks.com/matlabcentral/answers/98268-how-do-i-download-matlab-products-that-i-am-licensed-for-from-mathworks-website
http://www.mathworks.com/matlabcentral/answers/105854-how-can-i-install-and-activate-matlab-on-a-computer-that-doesn-t-have-internet-access
http://www.mathworks.com/matlabcentral/answers/105854-how-can-i-install-and-activate-matlab-on-a-computer-that-doesn-t-have-internet-access
http://www.mathworks.com/hardware-support/frdm-kl25z.html
http://developer.mbed.org/media/uploads/chris/updating_the_opensda_firmware.pdf
http://www.pemicro.com/opensda/


10. MathWorks - Getting Started with Freescale FRDM-KL25Z Support Package 

 

http://www.mathworks.com/help/supportpkg/freedomboard/examples/getting-

started-with-freescale-frdm-kl25z-board-support-package.html  

http://www.mathworks.com/help/supportpkg/freedomboard/examples/getting-started-with-freescale-frdm-kl25z-board-support-package.html
http://www.mathworks.com/help/supportpkg/freedomboard/examples/getting-started-with-freescale-frdm-kl25z-board-support-package.html

