

NFC Reader Antenna Design 4 Optimization & Debugging

Renke Bienert

Session 04: Optimization & Debugging

17 March 2015

NFC Reader Antenna Design 4: Optimization & Debugging

- How can we guarantee proper functionality?
 - Measure the current consumption (ITVDD)
 - Measure field strength: ANT#5
 - Measure wave shapes: ANT#5
 - Measure & adjust the Rx level

- How can we optimize performance?
 - Use a sniffer
 - Use test & debug signals
 - Test receiver signals to optimize register settings
 - Show "good" and "bad" signals

What must be tested?

PCD: Proximity Coupling Device ("reader")

PICC: Proximity Chip Card ("card")

Hardware like in ANT#2 & ANT#3

CLRC663 "red board"

http://www.nxp.com/demoboard/CLEV663.html

PCB "antenna" from PNEV512B (matched in ANT#2)

http://www.nxp.com/demoboard/PNEV512B.html

Step #1: Current measurement Power supply of Red Board

Step #1: Current measurement Power supply of CLRC663

Step #1: Current measurement Connect Ampere meter

CL RC663 Red Board Top view

Step #1: Current measurement Connect Ampere meter

Step #1: Current measurement Connect Ampere meter

Tx On (no modulation)

Tx Off (no carrier)

Check under all possible loading conditions!

Step #1: Current measurement ITVDD under loading condition (phone)

Worst case loading (for this antenna): Phone in 5mm distance multimeter $ITVDD = 180mA \le 200mA!$

Step #2 & 3: Field strenght & Wave shapes ISO / IEC 10373-6 Reference PICC

Details will follow in ANT5 "Test & Qualification"

Step #3: Wave shapes Type A @ 106 kbit/s in 35mm

Step #3: Wave shapes Type B @ 106 kbit/s in 35mm

What must be tested?

Step #4: Adjust the Receiver

Connecting the Rx

Step #4: Adjust the Receiver Adjust the Rx level

- Switch on the Tx (continious carrier)
- Measure U_{RX} on RXN pin with a low capacitance probe (< 2 pF)
- If U_{RX} > 1.6Vpp -> Increase R₁
- If U_{RX} < 1.0Vpp -> Decrease R₁

Check under all loading conditions!

- ReferencePICC,
- Phone,
- different cards,
- etc.

Step #4: Adjust the Receiver Measure Rx with Load 1

Step #4: Adjust the Receiver Measure Rx without Load

What must be tested?

Done?

- What, if the Reader does not properly read a card?
- How do we know that we have the optimum performance?
- What are the best register settings?
- We need to look into debug and test signals!

Step #5a: Debug a problem Sniffer

Single turn coil, connected to high impedance scope probe

e.g. ISO/IEC 10373-6 Calibration coil

Step #5a: Debug a problem Sniffer with card

Sniffer does not load the reader (much).

Sniffer picks up the field ("unloaded"), i.e. $U = k \cdot H$.

Coupling between sniffer and card is high, i.e. we "see" the card response.

Step #5a: Debug a problem Alternative Sniffer with card

Low cost sniffer:

Shortcut the probe.

Place the loop on the card.

Step #5b: Debug a problem Unlock the CL RC663

Execute unlock sequence to enable test signals:

- Write ADR 0x66, 0x80
- Read ADR 0x66
- Write ADR 0x66, 0xC0
- Write ADR 0x66, 0xE0
- Read ADR 0x66
- Write ADR 0x66, 0xD0
- Read ADR 0x66
- Write ADR 0x66, 0xC3
- Read ADR 0x66

Step #5b: Debug a problem Configure AUX pins

Route the RC663 internal testbus to the AUX1 and AUX2:

- Write ADR 0x6C, 0x09
- Write ADR 0x6D, 0x09

Write ADR 0x65, 0xXY

X	AUX1	Y	AUX2
1	Q-Channel	1	Q-Channel
2	I-Channel	2	I-Channel
3	Filtered Q-Channel	3	Filtered Q-Channel
4	Filtered I-Channel	4	Filtered I-Channel
9	dpresent_sum	9	dpresent_sum
Α	BPSK_sum	A	BPSK_sum

Step #5b: Debug a problem Configure AUX pins: Script example

- //> -----unlock procedure
- > SR 66 80
- GR 66
- > SR 66 C0
- > SR 66 E0
- GR 66
- > SR 66 D0
- GR 66
- > SR 66 C3
- GR 66
- SR 6C 09 // route test bus AUX1
- SR 6D 09 // route test bus AUX2
- SR 65 12 // set Aux1/2 to I/Q
- SR 47 05 // set SIGOUT register: route Tx active signal to SIGOUT pin

Step #5c: Debug a problem Connect Testsignals

AUX1 and AUX 2

- Analog signal
- for debugging purpose
- very short traces
- configuration via registers

SigOut

- Digital Signal
- for debugging purpose
- for triggering a scope
- configuration via registers

Step #5: Debug a problem: Debug setup

Step #5: Debug a problem: Type A debug signal 1

Ch3:

Help

Buttons

Sniffer signal showing Load modulation of a MIFARE card (type A)

Ch2:

AUX1 = Q-Channel

Ch1:

AUX2 = I-Channel

Step #5: Debug a problem: Type A debug signal at close distance

Step #5: Debug a problem: Type A debug signal at medium distance

Step #5: Debug a problem: Type A debug signal, I-Channel = 0

Step #5: Debug a problem: Type A debug signal at large distance

Step #5: Debug a problem: Type B debug signal at small distance

Step #5: Debug a problem: "Good" type B debug signal

Step #5: Debug a problem: "Bad" type B debug signal

Step #5: Debug a problem: "Good" type B debug signal

Step #5: Debug a problem: "Bad" type B debug signal

Step #5: Debug a problem: Small type A response, "clean" reader

Step #5: Debug a problem: no response, "clean" reader

Step #5: Debug a problem: Strong type A response, "clean" reader

Step #5: Debug a problem: no response, "clean" reader

Step #5: Debug a problem: no response, "noisy" reader

Step #5: Debug a problem: Small type A response, "noisy" reader

Step #5: Debug a problem: Small type A response, "noisy" reader

Conclusion

- Check ITVDD
 - Under all loading conditions
- Power & Data transfer to the PICC
 - Field strength: ANT#5
 - Pulse shapes & modulation index: ANT#5

Part of compliance tests

- Data transfer from the PICC
 - Adjust the Rx Level (Low capacitance probe!)
 - Test and reduce noise level
 - Optimize receiver settings
 - Use a sniffer to control the RF
 - Unlock test bus & route test signal to test pins
 - Check the relevant test signals & optimize registers

Anything else?

Please do not hesitate to contact NXP.

nfc.readers@nxp.com www.nxp.com

Thank you!

