

UM10721
NXP NFC Reader Library User Manual

Rev. 2.1 — 07 April 2014

270121

User Manual

COMPANY PUBLIC

Document information

Info Content

Keywords NFC Reader Library, P2P, CLRC663, PN512, LPC1769, ISO18092,

Discovery Loop, LLCP, SNEP, NFC Forum Tag Type Operation, NFC

Forum, MIFARE, ISO14443.

Abstract This document describes the implementation of the NFC Reader Library

and how to use it.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

2 of 82

Revision history

Rev Date Description

2.1 20140407 Description of API is moved to the new document – UM10802

2.0 20140221 Second release

1.3 20140205 Revision check. Minor changes.

1.2 20140131 Updated UM for the NFC Reader Library v3.010 software release

1.1 20130724 Change of descriptive title

1.0 20130613 First release

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

3 of 82

1. Audience

This document is intended to be used by software designers, developers and integrators

willing to develop NFC applications for NXP’s contactless reader ICs. The developer

should have prior knowledge and experience in C programming language and structured

programming in general.

2. Abstract

This document describes the implementation of the NFC Reader Library and how to use

it. This user manual is intended to help software developers, implementers and

integrators to get familiar with the NFC Reader Library and to learn how to work with it.

The document is divided in sections: after the introductory Sections 1 and 2, Section 3

provides an overview of the NFC Reader Library and its layered architecture. Section 4

describes the functionality of the sample projects included in the NFC Reader Library

release. In Sections 5, 6, 7 and 8 sample code examples are explained in depth. Section

9 describes the memory footprint of the NFC Reader Library components and how to

optimize the memory consumption. Section 10 provides the guidelines to port a project

into a different MCU. Section 11 provides a tutorial on how to create a new project from

scratch. Finally, Section 12 compiles the FAQs and Section 13 (Appendix) depicts all the

NFC Reader Library error codes.

Detailed description of the NFC Reader Library API is explained in a user manual

UM10802 - NXP NFC Reader Library API [37].

3. Introduction

3.1 Overview of the NXP NFC Reader Library

The NXP NFC Reader Library [3] is a modular software library written in C language,

which provides an API that enables customers to create their own software stack and

applications for the NXP contactless reader ICs. This API facilitates the most common

operations required in NFC applications such as reading or writing data into contactless

cards or tags, exchanging data with other NFC-enabled devices or allowing NFC reader

ICs to emulate cards as well.

The NFC Reader Library is designed as a versatile and multi-layered architecture. From

bottom to top, the NFC Reader Library is composed of the following layers:

 Bus Abstraction Layer (BAL): Implements the communication interface between the

host device and the contactless reader IC.

 Hardware Abstraction Layer (HAL): Implements the hardware specific elements of

the contactless reader IC and executes native commands of the chip.

 Protocol Abstraction Layer (PAL): Implements the functions for contactless card

activation and contactless card protocols.

 Application Layer (AL): Implements the commands to work with several contactless

smart card technologies.

 NFC Forum Tag Type Operations (TOP): Implements an API for developers to

perform read and write operations on top of the four Tag Types defined in the NFC

Forum specifications.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

4 of 82

 NFC Activity: Implements a routine for sensing the RF field to detect the presence of

contactless smart cards, NFC tags or other NFC-enabled devices in close proximity.

 NFC P2P Package: Implements P2P functionality based on the NFC Forum defined

P2P protocol stack allowing two NFC devices to exchange data when they are

brought into proximity.

The NFC Reader Library also includes an additional layer named:

 Common Layer: Implements utilities independent of any card or hardware being used

during the project development.

Fig 1. Layered Structure of the NFC Reader Library

3.2 NFC Reader Library Software Release Versioning Rule

The name of each of the releases of the NFC Reader Library includes information about

its version, allowing to differentiate and identify them easily. This versioning information

has the format of Trk.MAJ.min.patch+WkNumber.

 Trk: It is a one-digit number that represents the NFC Reader Library track.

 MAJ: It is a three-digit number. Digits 1 and 2 represent the Major number of the

release (e.g. the new release includes a Card Emulation API). Digit 3 means:

 ‘0’: The NFC Reader Library does not contain Crypto components.

 ‘1’: The NFC Reader Library contains Crypto components.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

5 of 82

 ‘2’: The NFC Reader Library contains Crypto components and is only for internal

use.

 min: It is a two-digit number that represents the Minor number of the release. It is

incremented when existing features have been enhanced and for intermediate

planned releases with bug fixes (e.g. optimization of specific layers such as

LLCP/SNEP).

 patch+WkNumber: It is a six-digit number. Digits 1 and 2 are the patch number.

Digits 3 to 6 represent the year and the week at which the version was released

(yyww). It is incremented when bugs from the field have been fixed.

For instance, the NxpRdLib_PublicRelease_V_3_010_00_001407 software release

version stands for:

 Trk: Its Track Number is (3).

 MAJ: Its Major version number is (01) and the release does not include Crypto

components (0).

 min: Its Minor version number is (00).

 patch+WkNumber: Its patch number is (00) and it was released the 7
th
 week of

2014.

3.3 NFC Reader Library Software Stack

The main advantage provided by this modular and multi-layered approach is flexibility.

The Application Layer (AL), the NFC Activity component, the NFC P2P Package and the

Protocol Abstraction Layer (PAL) are hardware-independent. This means that their

functionality is not bound to or dependent on any specific hardware. Therefore, the

developers can use them seamlessly on top of any of the supported contactless reader

ICs implemented on the Hardware Abstraction Layer (HAL).

Similarly, the Application Layer (AL), the NFC Activity component, the NFC P2P

Package, the Protocol Abstraction Layer (PAL) and the Hardware Abstraction Layer

(HAL) are also platform-independent. This means that their functionality is not dependent

to any specific underlying communication interface with the host. Therefore, the

developers can use them seamlessly with any communication interface supported in the

Bus Abstraction Layer (BAL).

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

6 of 82

Fig 2. Hardware and Platform independent layers of the NFC Reader Library

In the following subsections, more details on the components and functionalities

implemented in each layer are provided.

3.3.1 Bus Abstraction Layer

The Bus Abstraction Layer implements the communication interface between the host

device and the contactless reader IC. The host device sends reader IC specific

commands and generic commands containing addresses and data bytes. The reader IC

responds to the host with data received from contactless cards or related information in

requested registers. The NFC Reader Library supports following communication

interfaces:

 LPC1769 SPI: Enables the communication with the LPC1769 board using the SPI

communication interface.

 LPC1769 I2C: Enables the communication with the LPC1769 board using the I2C

communication interface.

 Stub: General-purpose component for the implementation of customer specific

communication buses.

3.3.2 Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL) is responsible for the configuration and the

execution of native commands of a particular contactless reader IC. These functions are

mainly:

 Reading and writing from and into the reader’s registers.

 RF field management, receiver and transmitter configuration.

 Timers’ configuration.

 Resolving interrupt sources from the reader chip.

 FIFO management.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

7 of 82

The NFC Reader Library currently supports the following contactless readers:

 PN512 [14]: MFRC523 [11], MFRC522 [13]: Highly integrated reader ICs supporting

ISO/IEC 14443 Type A, ISO/IEC 14443 Type B, FeliCa and ISO/IEC 18092.

 CLRC663 [12]: Highly integrated reader IC with the highest RF output power fronted

supporting ISO/IEC 14443 Type A and Type B, FeliCa and Passive Initiator mode

according to ISO/IEC 18092; and its derivatives (MFRC631 [15], MFRC630 [16],

SLRC610 [17]).

The NFC Reader Library is built in a way where upper layers are hardware independent.

However, the developer must take into account the NFC capabilities of the selected NFC

reader IC. For instance, the CLRC663 reader IC only supports passive communication

mode whereas PN512 reader IC supports both active and passive communication

modes.

3.3.3 Protocol Abstraction Layer

The protocol abstraction layer inherits hardware-independent implementation of the

contactless protocol to be used for the communication.The NFC Reader Library supports

the following ISO/IEC contactless standards protocols:

 ISO14443-3A [18]: Contactless Proximity card air interface communication at

13.56MHz for the Type A and Jewel contactless cards.

 ISO14443-3B [18]: Contactless Proximity card air interface communication at

13.56MHz for the Type B contactless cards.

 ISO14443-4 [18]: Specifies a half-duplex block transmission protocol featuring the

special needs of a contactless environment and defines the activation and

deactivation sequence of the protocol.

 ISO14443-4A [18]: Transmission protocol for Type A contactless cards.

 MIFARE (R): Contains support for MIFARE authentication and data exchange.

 FeliCa (JIS: X6319) [9]: Contactless RFID smart card system from Sony.

 ISO/IEC 18092 Initiator [19]: NFC Interface and Protocol standard that enables NFC

Data Exchange protocol. Component for devices acting as communication initiators,

which implies RF field generation and transmission of communication establishment

request. Both active and passive modes are supported.

 ISO/IEC 18092 Target [19]: NFC Interface and Protocol standard that enables NFC

Data Exchange protocol. Component for devices acting as communication targets,

which implies listening of the RF field and the response to the communication

establishment requests. Both active and passive modes are supported.

3.3.4 Application Layer

The application layer implements the commands of contactless smart cards.The

Application Layer enables the developer to access a particular card API by using its

command set (e.g. reading, writing, modifying a sector etc.). The contactless card APIs

provided is the following:

 MIFARE Classic [4]: MIFARE Classic is compliant with ISO/IEC 14443 Type A up to

layer 3 and available with 1k and 4k memory and 7 Byte as well as 4 Byte UIDs.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

8 of 82

 MIFARE Ultralight [5], MIFARE Ultralight EV1 [6] and MIFARE Ultralight C [7]:

MIFARE Ultralight is compliant with ISO/IEC 14443 Type A up to layer 3.

 MIFARE DESFire [8]: MIFARE DESFire is fully compliant with ISO/IEC14443A (part

1 - 4) and uses a subset of ISO/IEC7816-4 commands. The selectable cryptographic

methods include 2KTDES, 3KTDES and AES128. The highly secure microcontroller

based IC is Common Criteria EAL4+ certified. The NFC Reader Library implements

the non-export controlled command set.

 FeliCa [9]: FeliCa is a contactless smart card developed by Sony, commonly used in

Japan. The command set is partly supported in the NFC Reader Library.

 Jewel/Topaz [10]: Jewel tags are compliant with ISO/IEC 14443 Type A up to layer

3, except for the anticollision procedure. They define a 7 byte UID and 120 bytes

memory configured in 15 blocks of 8 bytes.

 NFC Forum Tag Type Operations (TOP): Provides an abstraction of the underlying

hardware (tags) on which the data is stored. The TOP API facilitates the execution of

read and write operations on NFC Forum tags as the NFC Reader Library translates

these calls to the required specific read and write tag commands. The TOP API relies

and leverages on the Application Layer components.

3.3.5 NFC Activity

This component provides an easy way to set the contactless reader IC in a Discovery

Loop for detecting NFC contactless tags and P2P devices within the contactless reader

IC RF field range.

 Discovery Loop: Executes a loop running in a single thread. The application is

blocked until the Discovery Loop procedure is finished since the OSAL layer does not

provide thread creation capabilities. The Discovery Loop uses MCU timers for

measuring guard time intervals between technology detection.

Note: Depending on the manufacturer implementation, the Discovery Loop is also

referred to as the polling loop.

3.3.6 NFC P2P Package

This layer implements the NFC Forum standardized protocol stack for a Peer to Peer

communication with a NFC device. The NFC P2P package functionalities include the

correct management of the logical link between peers – according to LLCP protocol - and

the implementation of a client / server based architecture for the exchange of NDEF

messages delivered by an upper protocol layer of the P2P application – according to

SNEP protocol –.

 Logical Link Control Protocol (LLCP) [20]: LLCP is a link protocol layer that

specifies the procedural means for transferring of upper layer information units

between two NFC devices. It defines the logical link management and the

synchronous exchange of data between peers in a connection-oriented or

connectionless manner.

 Simple NDEF Exchange Protocol (SNEP) [21]: SNEP is an application-level

protocol running on top of LLCP suitable for exchanging of application data units, in

the form of NDEF messages between two NFC Devices. SNEP is a

request/response protocol based on a client/server architecture.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

9 of 82

3.3.7 Common Layer

The NFC Reader Library includes a set of utilities which are grouped and encapsulated

together in an independent layer called Common Layer. These utilities are not bound to

any specific card or hardware, and as such they are functional regardless of the reader

IC used. The modules implemented in the Common Layer are the following:

 Tools: This module provides 5, 8, 16 and 32 bit length CRC software calculation in

addition to the parity encoding and decoding.

 Key Store: Key handling software module for storing cryptographic keys used in the

authentication and encryption operations. Only the NFC Reader Library Export

Controlled version supports high secure key storage capabilities.

 ISO14443-4 CID Manager: This module is used when a CID needs to be assigned to

an ISO/IEC 14443-4 PICC or a CID is released by the PICC.

 Log: Useful module during debugging phase which enables a software tracing

mechanism that records information about components during project execution in

order to show them on the screen or store them to a file.

 OSAL utils: This module provides an API for timer and memory management related

applications in a software and hardware independent way for an easier and quicker

development.

3.3.8 Building a Project from bottom to top

In order to use the NFC Reader Library, a stack of components has to be initialized from

bottom to top. Every component in the software stack has to be initialized before it can

be used. The referred initialization of each layer generates a data context which feeds

the immediate upper layer. Some of the components may need a data context coming

from the same layer to be used as an entry point.

For instance, if we aim to develop a MIFARE DESFire application, we must previously

initialize the ISO/IEC14443 components of the underlying PAL layer. But in order to use

ISO/IEC14443 components, we must have previously initialized the contactless reader

component from the HAL layer, which similarly requires the previous initialization of the

communication interface between the contactless reader and the MCU in the BAL layer.

The Fig 3 illustrates the mentioned implementation for the initialization procedure of a

MIFARE DESFire application using a CLRC663 contactless reader and a MCU host.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

10 of 82

Fig 3. NFC Reader Library initialization procedure

3.4 NFC Reader Library and NFC Operating Modes

The NFC Reader Library provides developers with different APIs for building NFC

applications with NXP reader ICs. The NFC Reader Library should be initialized

according to the NFC application requirements and the NFC operating modes that will be

used. It is recommended to initialize only the required components in order to reduce the

code size. The NFC Reader Library implements the relevant NFC Forum specifications

associated to each operating mode.

 Read/Write mode: Support of NFC Forum Tag Type Operation specification to allow

hardware independent operations on top of the four NFC Forum Type Tags.

 Peer to Peer mode: Support of LLCP link layer protocol and SNEP application level

protocol to ensure a reliable communication with NFC Forum devices.

 Card Emulation: Support for card emulation will be implemented and made available

in future software releases.

The allowed transfer speeds and modulation schemes for each operation are out of the

scope of this document. For further details, please refer to the corresponding standards’

documentation.

3.4.1 Read/Write Mode

The Read/Write mode allows a NFC reader to perform read and write operations on any

contactless tag or card. The content of the card might be protected or be public.

For those use cases where the customer aims to reach as much audience as possible,

e.g. smart advertising, Read/Write mode leverages on the NFC Forum Data Exchange

Format (NDEF) for the data encapsulation and NFC Forum Tag Type platforms to

provide a hardware-independent solution.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

11 of 82

In order to operate on Read/Write mode, the layers and components to be considered

are shown in Fig 4.

Fig 4. NFC Reader Library - Read and Write relevant modules

3.4.2 Peer-to-Peer Mode

The Peer-to-Peer (P2P) mode allows two NFC devices to exchange information with

each other when they are brought into close proximity. The NFC P2P mode establishes a

bidirectional channel between the two NFC devices to exchange data such as contacts,

URLs, Bluetooth or WiFi pairing information, and others.

The device starting the communication is called the Initiator device and the responding

device is called the Target device. P2P is the only mode supporting both Active and

Passive communication modes. In active communication mode both Initiator and Target

generate their own RF field. In passive communication mode, the target modulates the

RF field generated by the Initiator.

In order to enable the communication between existing NFC Forum devices, the NFC

Forum has released the LLCP link layer protocol specification and the SNEP application

layer specification.

If P2P is the selected operation mode, the layers and components to be considered are

shown in Fig 5.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

12 of 82

Fig 5. NFC Reader Library - P2P relevant modules

3.4.3 Card Emulation

The Card Emulation mode allows a NFC reader IC to emulate the behaviour of a

contactless card or tag. The card emulation functionalities will be available in next

releases of the NFC Reader Library.

3.5 NXP Export Controlled Reader Library

The Export Controlled version of the Reader Library [2] is an extension of the NXC

Reader Library [1] which provides full support for MIFARE Plus and MIFARE DESFire

cards and enables the usage of Secure Application Module (SAM), designed to support

secure storage of cryptographic keys and the implementation of cryptographic functions

in the transactions between the contactless smart card and the contactless reader.

The distribution of the Export Controlled Reader Library software is subject to the

signature of a NDA with NXP since some modules are bound to export control

regulations. In order to sign a NDA with NXP please contact your NXP representative.

The NXP Export Controlled Reader Library can be downloaded from DocStore [30].

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

13 of 82

Fig 6. NXP Export Controlled Reader Library

4. Sample projects included in the software release

The NFC Reader Library v3.010 release [3] includes four sample projects:

 PN512_LPC17xx_P2P_Active_Initiator

 PN512_LPC17xx_P2P_Initiator

 PN512_LPC17xx_P2P_Target

 RC663_LPC17xx_P2P_Initiator

These sample projects are prepared to be used with either PN512 or CLRC663 NXP

reader ICs (accordingly with the sample project name) and LPC1769 target board. They

implement a Discovery Loop that is permanently scanning for NFC tags and P2P devices

(for the Initiator projects) or waiting for a NFC Initiator device (for the Target project).

The four sample projects mentioned have configurable flags within the source code that

can be enabled or disabled to provide different behaviors. The configurable flags are:

 #define SNEP_SERVER: This flag sets the application to act as SNEP Server. The

application awaits incoming requests from the other peer.

 #define SNEP_CLIENT: This flag sets the application to act as SNEP Client. The

application sends a URI or a text message to the other peer.

 #define DEFAULT_SERVER: This flag sets the SNEP Default Server as the SNEP Server

type to be used.

 #define NON_DEFAULT_SERVER: This flag sets the SNEP Non-Default Server as the

SNEP Server type to be used.

 #define SNEP_PUT_REQUEST: This flag enables the SNEP PUT request message.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

14 of 82

 #define SNEP_GET_REQUEST: This flag enables the SNEP GET request message.

 #define DISCOVERY_MODE: This flag configures the reader IC communication role:

 Initiator: PHAC_DISCLOOP_SET_POLL_MODE | PHAC_DISCLOOP_SET_PAUSE_MODE

 Target: PHAC_DISCLOOP_SET_LISTEN_MODE

 #define POLL_TYPE: This flag configures the reader IC communication mode:

 Active: PHAC_DISCLOOP_CON_POLL_ACTIVE

 Passive: PHAC_DISCLOOP_CON_POLL_A | PHAC_DISCLOOP_CON_POLL_B

|PHAC_DISCLOOP_CON_POLL_F

 #define URIMESSAGE: This flag makes the SNEP Client to send a URI Message to the

other peer.

 #define TEXTMESSAGE: This flag makes the SNEP Client to send a Text Message to the

other peer.

Most of the source code is shared between the four projects, but they enable and disable

different macros in order to perform different operations.

Note: the reader IC used for the development of a project limits its NFC capabilities as it

is explained in UM10802 – NXP NFC Reader Library API [37].

4.1 PN512_LPC17xx_P2P_Active_Initiator Project

The PN512_LPC17xx_P2P_Active_Initiator project configures the reader IC to act as an

Initiator device in Active Communication mode:

 #define DISCOVERY_MODE PHAC_DISCLOOP_SET_POLL_MODE | PHAC_DISCLOOP_SET_PAUSE_MODE

 #define POLL_TYPE PHAC_DISCLOOP_CON_POLL_ACTIVE

Using this configuration, the reader IC can only communicate with another NFC device

supporting active communication mode. Tags are not detected since they are passive

elements.

4.2 PN512_LPC17xx_P2P_Initiator Project

The PN512_LPC17xx_P2P_Initiator project configures the reader IC to act as an Initiator

device in Passive Communication mode:

 #define DISCOVERY_MODE PHAC_DISCLOOP_SET_POLL_MODE | PHAC_DISCLOOP_SET_PAUSE_MODE

 #define POLL_TYPE PHAC_DISCLOOP_CON_POLL_A | PHAC_DISCLOOP_CON_POLL_B

|PHAC_DISCLOOP_CON_POLL_F

Using this configuration, the reader IC can communicate with Type A, B and F tags and

P2P devices supporting passive communication mode.

4.3 RC663_LPC17xx_P2P_Initiator Project

The RC663_LPC17xx_P2P_Initiator project configures the reader IC to act as an Initiator

device in Passive Communication mode. Note that the CLRC663 reader IC is a NFC-

ready device, so it does only support Passive communication mode.

 #define DISCOVERY_MODE PHAC_DISCLOOP_SET_POLL_MODE | PHAC_DISCLOOP_SET_PAUSE_MODE

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

15 of 82

 #define POLL_TYPE PHAC_DISCLOOP_CON_POLL_A | PHAC_DISCLOOP_CON_POLL_B

|PHAC_DISCLOOP_CON_POLL_F

Using this configuration, the reader IC can communicate with Types A, B and F tags and

P2P device supporting passive communication mode.

4.4 PN512_LPC17xx_P2P_Target Project

The PN512_LPC17xx_P2P_Target project configures the reader IC to act as a Target

device in Passive Communication mode:

 #define DISCOVERY_MODE PHAC_DISCLOOP_SET_LISTEN_MODE

Using this configuration, the reader IC waits for another NFC active device to start the

communication.

5. Example: P2P Application

The four sample projects included in the NFC Reader Library software release (see

Section 5) share the major part of the source code. For this reason, the

PN512_LPC17xx_P2P_Initiator sample project (see Section 4.2) is used as reference to

explain how to build a P2P application. The code fragments presented in the following

subsections are extracted from the sample project source code.

The sample P2P application explained in this section has the following development

workflow:

1. Initialization of the NFC Reader Library lower layer components.

2. Configuration and start of the discovery polling loop.

3. In case a P2P device is detected: Initialization of the LLCP and SNEP components.

The SNEP component implements either a SNEP Client or a SNEP Server.

4. In case no P2P device is detected, the loop is started again.

The Fig 7 illustrates the P2P application workflow:

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

16 of 82

Fig 7. P2P sample application development workflow

The explanation of this sample P2P application is divided into subsections. Section 5.1

initializes the NFC Reader Library components from BAL to PAL layers and the OSAL

layer. Section 5.2 details how to configure and start the Discovery Loop. Section 5.3

details how to implement a SNEP Client or a SNEP Server to enable the P2P

communication. Finally, Section 5.4 shows a sample application logic that selects the

message to be transmitted to the other peer.

Note: Some of the functions explained in NXP NFC Reader Library API user manuals are

not used in the following examples since they are called internally by upper layer

services in the stack.

5.1 NFC Reader Library Initialization

The first step to be completed in any project is the initialization of the NFC Reader

Library components required by the application. The set of components to be initialized

depends on the hardware in use and on the application to be developed.

The BAL layer is configured in accordance with the MCU and the communication

interface to be used. The project taken as reference (PN512_LPC17xx_P2P_Initiator)

uses the LPC1769 MCU.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

17 of 82

The HAL layer initializes the component that refers to the reader IC to be used. In this

case, PN512 Blueboard is used.

The PAL layer sets up the contactless protocols that are going to be used in the

application. This sample P2P application implements a Discovery Loop which is

permanently scanning for NFC P2P devices (A P2P device can use Type A or Type F

contactless protocols). Therefore, ISO/IEC 14443-A, FeliCa and ISO/IEC 18092

contactless protocols are initialized.

Finally, the OSAL component is also initialized as it is required for the Discovery Loop for

the calculation of time intervals between the sensing of different contactless protocols.

The OSAL is also required in P2P application to calculate time intervals for the

communication establishment and data exchange.

Fig 8 highlights in yellow the components that are going to be initialized in this section.

Fig 8. NFC Reader Library - Lower layer components initialization

Therefore, the following data parameter components shall be declared:

1 phbalReg_Lpc1768Spi_DataParams_t balReader; /* LPC1769 BAL component */

2 phhalHw_Rc523_DataParams_t hal; /* PN512 HAL componen */

3 phpalI14443p3a_Sw_DataParams_t palI14443p3a; /* PAL I14443-A component */

4 phpalI14443p4a_Sw_DataParams_t palI14443p4a; /* PAL I14443-4A component */

5 phpalI14443p4_Sw_DataParams_t palI14443p4; /* PAL I14443-4 component */

6 phpalFelica_Sw_DataParams_t palFelica; /* PAL Felica component */

7 phpalI18092mPI_Sw_DataParams_t palI18092mPI; /* PAL mPI component */

8 phpalMifare_Sw_DataParams_t palMifare; /* PAL Mifare component */

9 phOsal_Lpc17xx_DataParams_t osal; /* OSAL component holder */

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

18 of 82

5.1.1 BAL Layer Initialization

The BAL Layer is in charge of setting up the communication between the MCU and the

contactless reader. In this example, the LPC1769 SPI component is initialized.

10 /* Initialize the Reader BAL (Bus Abstraction Layer) component */

11 phbalReg_Lpc1768Spi_Init(&balReader, sizeof(phbalReg_Lpc1768Spi_DataParams_t));

5.1.2 HAL Layer Initialization

The next layer to be initialized is the HAL. The HAL layer is in charge of initializing the

contactless reader specifics. Therefore, the structure related with the PN512 contactless

reader (phhalHw_Rc523_Init) shall be used.

12 /* Initialize the Reader HAL (Hardware Abstraction Layer) component */

13 status = phhalHw_Rc523_Init(

14 &hal,

15 sizeof(phhalHw_Rc523_DataParams_t),

16 &balReader,

17 0,

18 bHalBufferTx,

19 sizeof(bHalBufferTx),

20 bHalBufferRx,

21 sizeof(bHalBufferRx));

The phhalHw_Rc523_Init() function selects the RS232 interface by default. As the SPI

interface is set up in the BAL layer, the developer needs to manually configure the HAL

layer to use SPI interface:

22 /* Set the parameter to use the SPI interface */

23 hal.bBalConnectionType = PHHAL_HW_BAL_CONNECTION_SPI;

Finally, the phbalReg_OpenPort() is called to establish a communication channel between

the MCU and the reader IC.

24 status = phbalReg_OpenPort(&balReader);

25 CHECK_SUCCESS(status);

5.1.3 PAL Layer Initialization

In the PAL Layer, the contactless protocols are initialized depending on which card or tag

we aim to establish a communication with. The Discovery Loop is configured to be

permanently scanning for NFC P2P devices (Type A and Type F contactless protocols).

Therefore, the ISO/IEC 14443-A, FeliCa and ISO/IEC 18092 contactless protocols are

initialized.

26 /* Initialize the I14443-A PAL layer */

27 status = phpalI14443p3a_Sw_Init(&palI14443p3a,

28 sizeof(phpalI14443p3a_Sw_DataParams_t), &hal);

29 CHECK_SUCCESS(status);

30

31 /* Initialize the I14443-A PAL component */

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

19 of 82

32 status = phpalI14443p4a_Sw_Init(&palI14443p4a,

33 sizeof(phpalI14443p4a_Sw_DataParams_t), &hal);

34 CHECK_SUCCESS(status);

35

36 /* Initialize the I14443-4 PAL component */

37 status = phpalI14443p4_Sw_Init(&palI14443p4,

38 sizeof(phpalI14443p4_Sw_DataParams_t), &hal);

39 CHECK_SUCCESS(status);

40

41 /* Initialize the Mifare PAL component */

42 status = phpalMifare_Sw_Init(&palMifare, sizeof(phpalMifare_Sw_DataParams_t),

43 &hal, &palI14443p4);

44 CHECK_SUCCESS(status);

45

46 /* Initialize PAL Felica PAL component */

47 status = phpalFelica_Sw_Init(&palFelica, sizeof(phpalFelica_Sw_DataParams_t),

48 &hal);

49 CHECK_SUCCESS(status);

50

51 /* Init 18092 PAL component */

52 status = phpalI18092mPI_Sw_Init(&palI18092mPI,

53 sizeof(phpalI18092mPI_Sw_DataParams_t), pHal);

54 CHECK_SUCCESS(status);

55

5.1.4 OSAL Layer Initialization

The Operating System Abstraction Layer provides abstraction of the MCU’s features to

the embedded software. In our case, the MCU in use is the LPC1769. The timers

components are also initialized as they will be used in P2P-based applications.

56 /* Initialize the LPC17xx timers component */

57 status = phOsal_Lpc17xx_Init(&osal);

58 CHECK_SUCCESS(status);

59

60 /* Initialize the timer component */

61 status = phOsal_Timer_Init(&osal);

62 CHECK_SUCCESS(status);

5.2 Discovery Loop

This section details the initialization and configuration of the Discovery Loop routine for

the detection of P2P devices. In Fig 9, the NFC Activity component is highlighted in

yellow and in grey the components that have already been initialized in the previous

section.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

20 of 82

Fig 9. NFC Reader Library - Discovery Loop component initialization and configuration

5.2.1 Discovery Loop Initialization

The first step is to declare and initialize the Discovery Loop component. The Discovery

Loop component initialization is done using the phacDiscLoop_Sw_Init function. This

function sets all the structure parameters to zero or to their default values.

63 /* Discovery Loop component declaration */

64 phacDiscLoop_Sw_DataParams_t discLoop;

65 /* Initialize the Discovery Loop component */

66 phacDiscLoop_Sw_Init(

67 &discLoop,

68 sizeof(phacDiscLoop_Sw_DataParams_t),

69 &hal,

70 &osal);

The Discovery Loop is a routine that sequentially sets the reader IC in different functional

configurations so it can discover the presence of tags or NFC devices in the field.

Therefore, it is required to set the pointer to the corresponding PAL component for each

technology to be sensed into the Discovery Loop structure. The PAL components have

ben initialized previously (see Section 5.1). The pointers to be set for the P2P application

are:

71 discLoop.pPal1443p3aDataParams = &palI14443p3a; //ISO/IEC 14443-3A PAL component

72 discLoop.pPal1443p4aDataParams = &palI14443p4a; //ISO/IEC 14443-4A PAL component

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

21 of 82

73 discLoop.pPal18092mPIDataParams = &palI18092mPI; //ISO/IEC 18092 PAL component

74 discLoop.pPalFelicaDataParams = &palFelica; //FeliCa PAL component

After this, it is required to configure the Discovery Loop according to the P2P application

requirements. The Discovery Loop parameters can be configured using the

phacDiscLoop_SetConfig() function.

5.2.2 Discovery Loop Configuration

The Discovery Loop configuration identifiers are listed in the

NxpRdLib_PublicRelease/intfs/phacDiscLoop.h file and the developer can recognize

them because they use the PHAC_DISCLOOP_CONFIG_XXX_XXX naming scheme. Each identifier

can be configured using the phacDiscLoop_SetConfig() function.

The PHAC_DISCLOOP_CONFIG_DETECT_TAGS, PHAC_DISCLOOP_CONFIG_MODE and

PHAC_DISCLOOP_CONFIG_NUM_POLL_LOOPS configurations are exaplined in this section.

5.2.2.1 Communication Mode Configuration

In NFC technology, both Active and Passive communication modes are possible. The

developer can configure the reader IC communication mode using the Discovery Loop

settings. The identifier to configure the reader IC communication mode is: #define

PHAC_DISCLOOP_CONFIG_DETECT_TAGS

The macros defined to set up the reader IC in Active or Passive communication modes

are the following:

Table 1. reader IC communication mode configuration

Communication mode Macro

Active Communication PHAC_DISCLOOP_CON_POLL_ACTIVE

Passive Communication

PHAC_DISCLOOP_CON_POLL_A

PHAC_DISCLOOP_CON_POLL_B

PHAC_DISCLOOP_CON_POLL_F

The Active communication mode can be configured in the Discovery Loop using the

phacDiscLoop_SetConfig() function in the following way:

75 /*Enable Technology type */

76 #define POLL_TYPE PHAC_DISCLOOP_CON_POLL_ACTIVE

77

78 /* Set for detection of TypeA and Type F P2P devices */

79 status = phacDiscLoop_SetConfig(

80 pDataParams,

81 PHAC_DISCLOOP_CONFIG_DETECT_TAGS,

82 POLL_TYPE);

Using this configuration, the reader IC senses the field for P2P active peers.

The Passive communication mode can be configured in the Discovery Loop using the

phacDiscLoop_SetConfig() function in the following way:

83 /*Enable Technology type */

84 #define POLL_TYPE

85 PHAC_DISCLOOP_CON_POLL_F | PHAC_DISCLOOP_CON_POLL_A

86

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

22 of 82

87 /* Set for detection of TypeA, TypeB and Type F tags */

88 status = phacDiscLoop_SetConfig(

89 pDataParams,

90 PHAC_DISCLOOP_CONFIG_DETECT_TAGS,

91 POLL_TYPE);

Using this configuration, the reader IC senses the field looking for P2P devices with

Passive communication mode capabilities using ISO 14443-A (Type A) or FeliCa (Type

F) contactless protocols.

5.2.2.2 Communication Role Configuration

Two communication roles are defined in NFC: Initiator and Target. The developer can

configure the reader IC to work either as an Initiator or as a Target using the Discovery

Loop settings. The identifier to configure the reader IC communication mode is: #define

PHAC_DISCLOOP_CONFIG_MODE

The macros defined to set up the reader IC as Initiator or Target are the following:

Table 2. reader IC communication role configuration

Communication role Macro

Initiator
PHAC_DISCLOOP_SET_POLL_MODE

PHAC_DISCLOOP_SET_PAUSE_MODE*

Target PHAC_DISCLOOP_SET_LISTEN_MODE

The PHAC_DISCLOOP_SET_PAUSE_MODE* flag enables a waiting time interval at the end of the

Discovery Loop procedure. This flag is used to stop the field scanning for a certain time

between two consecutive loops.

The Initiator role can be configured in the Discovery Loop using the

phacDiscLoop_SetConfig() function in the following way:

92 /*Define Poll and Pause mode */

93 #define DISCOVERY_MODE PHAC_DISCLOOP_SET_POLL_MODE | PHAC_DISCLOOP_SET_PAUSE_MODE

94

95 /* Set for poll and listen mode */

96 status = phacDiscLoop_SetConfig(

97 pDataParams,

98 PHAC_DISCLOOP_CONFIG_MODE,

99 DISCOVERY_MODE);

The PHAC_DISCLOOP_SET_POLL_MODE flag makes the Discovery Loop to poll through the

detection sequence defined in PHAC_DISCLOOP_CONFIG_DETECT_TAGS flag (see 5.2.2.1).

The Target role can be configured in the Discovery Loop using the

phacDiscLoop_SetConfig() function in the following way:

100 /*Define Poll and Pause mode */

101 #define DISCOVERY_MODE PHAC_DISCLOOP_SET_LISTEN_MODE

102

103 /* Set for poll and listen mode */

104 status = phacDiscLoop_SetConfig(

105 pDataParams,

106 PHAC_DISCLOOP_CONFIG_MODE,

107 DISCOVERY_MODE);

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

23 of 82

5.2.2.3 Configuring the number of loop iterations

The number of iterations of the Discovery Loop can be configured using the

phacDiscLoop_SetConfig() function in the following way (e.g. five iterations):

108 /* Set number of polling loops to 5 */

109 status = phacDiscLoop_SetConfig(

110 pDataParams,

111 PHAC_DISCLOOP_CONFIG_NUM_POLL_LOOPS,

112 5);

5.2.3 Discovery Loop: Start

Once the Discovery Loop has been configured, the developer can start it. The function to

start the Discovery Loop is:

113 /* Start the Discovery Loop */

114 status = phacDiscLoop_Start(pDataParams);

5.2.4 Discovery Loop: P2P Device Detection

The detection of a P2P device shall be done after one loop iteration is completed. This

can be done using the phacDiscLoop_GetConfig() function and the

PHAC_DISCLOOP_CONFIG_TAGS_DETECTED identifier:

115 /* Get the Type tags or P2P devices detected info */

116 status = phacDiscLoop_GetConfig(pDataParams,

117 PHAC_DISCLOOP_CONFIG_TAGS_DETECTED,

118 &wTagsDetected);

There are bitmasks defined that can be used to check whether a particular Type Tag or

NFC device has been detected. To verify if a P2P device using ISO 14443-A protocol

was detected, the PHAC_DISCLOOP_TYPEA_DETECTED_TAG_P2P bitmask shall be used is:

119 if(PHAC_DISCLOOP_CHECK_ANDMASK(wTagsDetected, PHAC_DISCLOOP_TYPEA_DETECTED_TAG_ P2P)){

120 printf ("Type A P2P device detected ");

121

122 //

123 // Your application code to work with P2P devices

124 //

125 }

PHAC_DISCLOOP_CHECK_ANDMASK: Macro that logically ANDs two values. If the corresponding

bit is set, then non-zero value is returned. Otherwise, zero is returned.

&wTagsDetected: The binary map indicating which Type tags were found.

PHAC_DISCLOOP_TYPEA_DETECTED_TAG_P2P: P2P device using ISO 14443-A protocol macro.

5.3 NFC P2P Package

This section explains how to implement a P2P application which establishes a

bidirectional channel between the reader IC and another NFC device to exchange data

when they are brought into close proximity.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

24 of 82

In Fig 10, NFC P2P package components are highlighted in yellow and in grey, the

components that have already been initialized.

Fig 10. NFC Reader Library – NFC P2P package components

The NFC P2P package consists of two layers, the LLCP and the SNEP. Both of them

need to be initialized and used for setting up the P2P communication.

5.3.1 LLCP

In this section, how to initialize and how to configure the LLCP Component for enabling

the transmission of upper layer data units is explained.

The different tasks to be done by the developer in order to create a link connection with

the remote peer device, transmit upper layer data units and finally close the link

connection are described in this section.

5.3.1.1 LLCP Component Initialization

The LLCP component makes use of several structures (described in UM10802 [37]) for

the management of the connection between peers.

126 phlnLlcp_Fri_Transport_t LlcpTransport; /* LLCP transport layer component */

127 phlnLlcp_Fri_sLinkParameters_t LinkParam; /* LLCP link parameter */

128 phlnLlcp_Fri_t Llcp; /* LLCP pointer */

129 phHal_sRemoteDevInformation_t RemoteInfo; /* Remote Info component */

130 phlnLlcp_Fri_DataParams_t lnLlcpDataparams; /* LLCP Data Parameters */

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

25 of 82

LlcpTransport: LLCP Transport component management structure.

LinkParam: LLCP Link component management structure.

Llcp: LLCP component parameter structure.

RemoteInfo: Structure that stores remote peer device info.

lnLlcpDataparams: Structure that stores pointers to all the LLCP related structures.

In addition, a set of buffers and variables for the management of the component

behaviour are declared. These variables are out of the scope of this explanation.

When a valid remote peer device is detected by the Discovery Loop, the local peer is

ready for the initialization and configuration of the LLCP component. The LLCP

initialization involves that both the LLCP Link component and the LLCP Transport

component must be initialized.

The phHal_sRemoteDevInformation_t structure that handles the information of the remote

peer device must be manually initialized by the developer (described in UM10802 [37]).

This structure is defined within the phlnLlcp_Fri_Mac_t structure of the LLCP Mac

Mapping component, which is part of the LLCP component main structure.

131 if (PHAC_DISCLOOP_CHECK_ANDMASK(wTagsDetected, PHAC_DISCLOOP_TYPEA_DETECTED)) {

132 if (wTagsDetected & PHAC_DISCLOOP_TYPEA_DETECTED_TAG_P2P) {

133 printf("Type A device has been detected \n");

134

135 /* push the data to the LLCP protocol data structure */

136 RemoteInfo.SessionOpened = 1;

137 RemoteInfo.RemDevType = phlnLlcp_Fri_eNfcIP1_Target;

138 RemoteInfo.RemoteDevInfo.NfcIP_Info.ATRInfo_Length =

139 (discLoop.sTypeATargetInfo.sTypeA_P2P.bAtrResLength - 17);

140

141 memcpy(RemoteInfo.RemoteDevInfo.NfcIP_Info.ATRInfo,

142 &discLoop.sTypeATargetInfo.sTypeA_P2P.pAtrRes[17],

143 (discLoop.sTypeATargetInfo.sTypeA_P2P.bAtrResLength - 17));

The initialization of the LLCP component requires a set of callings to different functions

defined by the LLCP Component API, as well as the configuration of several structures.

The correct flow of calls to be made for both the LLCP Link component and the LLCP

Transport component is depicted in UM10802 [37].

144 phStatus_t NFC_LLCPInitialize(void) {

145 uint32_t DummyContext;

146 Llcp_running = true;

The LLCP link parameter values are initialized according to the default values defined by

the NFC Forum LLCP specification.

147 LinkParam.miu = 128; /* The remote Maximum Information Unit

148 LinkParam.lto = 100; /* The remote Link TimeOut (in 1/100s) */

149 LinkParam.wks = 0x0001; /* The remote Well-Known Services */

150 LinkParam.option = 0x00; /* The remote options */

151 bChecking = 0; /* Sync variable used for checkLlcp Callback */

The LLCP component initialization involves:

 Calling the LLCP component initialization function, which sets the pointers to the

structures handled by the main LLCP structure.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

26 of 82

 Calling the LLCP reset functions, this sets the default values of those structures.

152 status = phlnLlcp_Fri_Init(&lnLlcpDataparams, sizeof(lnLlcpDataparams),

153 &Llcp, &LinkParam, &LlcpTransport, &RemoteInfo, &pTxBuffer,

154 sizeof(pTxBuffer), &pRxBuffer, sizeof(pRxBuffer), &palI18092mPI);

155

156 status = phlnLlcp_Reset(&lnLlcpDataparams, &LinkCB, &DummyContext);

157 status = phlnLlcp_Transport_Reset(&lnLlcpDataparams);

The pointer to the OSAL component structure that is referenced by the phlnLlcp_Fri_t

structure for the correct management of the LTO timeout defined by the LLCP

component shall be manually added by the developer.

158 /* Assign the osal pointer to the LLCP after reset*/

159 Llcp.osal = &osal;

5.3.1.2 Link Activation

After the LLCP component initialization has been completed, the developer should

proceed to complete the link activation. This is a needed step before being able to create

the link connection at a later stage.

First of all the validity of the link to be activated is checked. To do that, the NFC Device

checks the LLCP link parameters received in the ATR from the remote peer device. The

execution of the source code that completes the initialization of the LLCP link shall be

stopped until the link is validated. The completion of this task is announced via a callback

function.

160 status = phlnLlcp_ChkLlcp(&lnLlcpDataparams, &ChkCb, (void*)

&DummyContext);

161

162 while (bChecking == 0);

163 CHECK_SUCCESS(status);

Once the link is already validated by the local peer, the link needs to be activated for the

transmission of upper layer services data units.

164 status = phlnLlcp_Activate(&lnLlcpDataparams);

165 return status;

166 }

LLCP Check Link Validity Callback function

The ChkCb() callback function defined by the phlnLlcp_ChkLlcp() function is executed

when the link validity check is completed. The bChecking variable announces the validity

of the link to the rest of the source code.

167 static void ChkCb (void *pContext, phStatus_t status) {

168 if(status != PH_ERR_SUCCESS)

169 printf("phlnLlcp_Fri_ChkLlcp callback function status = %d \n", status);

170

171 bChecking = 1;

172 }

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

27 of 82

LLCP Link Status Change Callback function

The LinkCb() callback function defined by the phlnLlcp_Reset() function informs about

the status change of the LLCP link.

173 static void LinkCB (void *pContext, phlnLlcp_Fri_eLinkStatus_t eLinkStatus) {

174 if (eLinkStatus == phlnLlcp_Fri_Mac_eLinkDeactivated)

175 Llcp_running = false;

176 }

5.3.1.3 Message Transmission and Reception

The LLCP component API defines a couple of functions for the transmission and the

reception of LLCP PDUs. These functions are not called directly by developers as they

are executed internally by upper layer services, in this case the SNEP protocol.

5.3.1.4 Link Closure

The LLCP link should remain active as long as the communication exists and should be

closed when the communication is finished.

The LLCP link is deactivated by calling the phlnLlcp_Deactivate() function, which

disconnects LLCP link connections sending DISC PDU data units to the remote peer

device. Optionally, the transmission of a Deselect Request packet in the ISO/IEC 18092

layer might be performed.

177 phStatus_t NFC_LlcpClose()

178 {

179 /* Deactivate the LLCP layer link */

180 status = phlnLlcp_Deactivate(&lnLlcpDataparams);

181 CHECK_SUCCESS(status);

182

183 /* De-select ISO18092 */

184 // status = phpalI18092mPI_Deselect(&palI18092mPI,

185 PHPAL_I18092MPI_DESELECT_DSL);

186

187 /* Developers code */

188

189 return status;

190 }

The LLCP link deactivation is notified to the application through the LinkCB() callback

function.

5.3.2 SNEP

The SNEP protocol enables the exchange of NDEF messages between two NFC devices

using P2P communication. The SNEP application can be divided into three categories:

the Session Establishment, the Data Exchange and the Session Release.

 The Session Establishment includes the creation of a SNEP Client or a SNEP Server

and establishing a connection between them.

 The Data Exchange requires sending PUT or GET requests from the SNEP Client to

the SNEP Server and receiving the corresponding responses from the SNEP Server.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

28 of 82

 The Session release disconnects and closes the communication channel.

5.3.2.1 SNEP Client

The SNEP Client application sends a PUT or a GET request to a SNEP Server peer in

order to either push data or retrieve data from the remote peer device. The following data

structures and variables will be used in the underlying sample code as part of the SNEP

Client implementation:

191 phnpSnep_Fri_Config_t pConfigInfo;

192 phnpSnep_Fri_DataParams_t npSnepDataParams;

193 uint32_t gSocketHandle = 0;

194 phnpSnep_Fri_ClientSession_t ClientSession;

195 phNfc_sData_t sGetData;

196 phNfc_sData_t sMessage;

pConfigInfo: Defines the SNEP Server type, Service name and Socket options.

npSnepDataParams: The SNEP Data Parameters structure.

gSocketHandle: Integer that uniquely identifies the connection session.

ClientSession: The SNEP Client Session data structure.

sGetData: Buffer data sent to the SNEP Server as part of a GET request.

sMessage: Buffer for Text message to be sent in a PUT request.

Additionally, the following callback functions must be implemented:

197 static void SnepClientConnection_CB();

198 static void SnepClientPutReq_CB();

199 static void SnepClientGetReq_CB();

SnepClientConnection_CB: Pointer to the SNEP Client connection callback function

SnepClientPutReq_CB: Pointer to the SNEP Client PUT request callback function.

SnepClientGetReq_CB: Pointer to the SNEP Client PUT request callback function.

SNEP Component Initialization

The first step is to declare and initialize the SNEP component. The SNEP Component

initialization is common for both the SNEP Client and the SNEP Server:

200 /* SNEP Fri Initialization */

201 status = phnpSnep_Fri_Init(&npSnepDataParams,

202 sizeof(npSnepDataParams),

203 &lnLlcpDataparams); // Pointer to the LLCP data parameter structure

The type of SNEP Server (Default or non-default server) to use has to be defined. The

NFC Forum compatible devices mandatorily support the SNEP Default server. The use

of a Default SNEP Server can be defined with:

204 /* Data parameter which defines the SNEP Server type and options.

205 phnpSnep_Fri_Config_t pConfigInfo;

206

207 /* For Default Server connection Service Name and length */

208 pConfigInfo.SnepServerType = phnpSnep_Fri_Server_Default;

The use of a non-Default SNEP Server can be defined with:

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

29 of 82

209 /* For Non Default Server connection Service Name and length */

210 pConfigInfo.SnepServerType = phnpSnep_Fri_Server_NonDefault;

211 pConfigInfo.SnepServerName = &ServerName_NonDef;

SNEP Client Initialization

The phnpSnep_Client_Init() function initializes the SNEP Client application and tries to

setup a connection channel with the SNEP Server. Once the connection is established

successfully, the SNEP Client can perform the action to either push (PUT) or retrieve

data (GET) from the SNEP Server. Note that the function also includes a reference to the

SNEP Client connect callback function.

212 status = phnpSnep_Client_Init(&npSnepDataParams,

213 &pConfigInfo,

214 gSocketHandle,

215 SnepClientConnection_CB,

216 &ClientSession,

217 (void*) &DummyContext_Client); //Client context to be passed (if any)

SNEP Client Connection Callback function

The SNEP Client connection callback function is triggered when the SNEP Client

receives the SNEP Server response on its connection request. The first step is to look at

the status variable value. The status variable stores the SNEP Server request result. If

the SNEP Server has accepted the connection request, then status==PHNPSNEP_FRI_

CONNECTION_SUCCESS

218 static void SnepClientConnection_CB(

219 void *pContext, /* Context of the connect call back */

220 uint32_t ConnHandle, /* ConnHandle */

221 phStatus_t status /* status code */)

222 {

223 if(status != PHNPSNEP_FRI_CONNECTION_SUCCESS)

224 {

225 printf("SNEP Client Connection Failed 0x=%x \n", status);

226 }

227 else

228 {

229 /* Set Flag indicating connection is Request Completed */

230 bSocketconnected = true;

231 gSocketHandle = ConnHandle;

232 }

233 }

SNEP Client PUT Request

The SNEP Client sends a PUT request to push data into the SNEP Server using the

phnpSnep_ClientReqPut() function. Note that the function also includes a reference to the

SNEP Client PUT request callback function.

234 status = phnpSnep_ClientReqPut(

235 &npSnepDataParams,

236 gSocketHandle,

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

30 of 82

237 &sMessage,

238 SnepClientPutReq_CB,

239 (void*) &DummyContext_Client); //Client context to be passed (if any).

SNEP Client PUT Request Callback function

The SNEP Client PUT request callback function is triggered after the SNEP Server

responds to the client previous PUT request. This callback function implements how the

SNEP Client application has to process the SNEP Server response. The status variable

stores the SNEP Server request result. The data sent by the SNEP Server as a response

is stored in the pReqResponse variable.

240 static void SnepClientPutReq_CB(

241 ph_NfcHandle ConnHandle,

242 void *pContext,

243 phStatus_t Status,

244 phNfc_sData_t *pReqResponse)

245 {

246 if (PH_ERR_SUCCESS == Status && NULL != pReqResponse)

247 {

248 sPutResponse.length = pReqResponse->length;

249 /* Copy the Response Data to the Local Buffer */

250 memcpy(sPutResponse.buffer, pReqResponse->buffer, pReqResponse->length);

251 }

252 else

253 {

254 /* No Data Received */

255 sPutResponse.length = 0;

256 }

257 /* Set Flag indicating SNEP Put Request is Completed */

258 bSnep_Put = true;

259 }

SNEP Client GET Request

The SNEP Client sends a GET request to retrieve data from the SNEP Server using the

phnpSnep_ClientReqGet() function. Note that the function also includes a reference to the

SNEP Client GET request callback function.

260 status = phnpSnep_ClientReqGet(

261 &npSnepDataParams,

262 gSocketHandle,

263 &sGetData,

264 iAcceptable_length,

265 SnepClientGetReq_CB,

266 (void*) &DummyContext_Client); //Client context to be passed (if any)

Note: The default SNEP Server does not support the SNEP Client GET Requests.

SNEP Client GET Request Callback function

The SNEP Client GET request callback function is triggered after the SNEP Server

responds to the client previous GET request. This callback function implements how the

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

31 of 82

SNEP Client application has to process the SNEP Server response. The status variable

stores the SNEP Server request result. The data sent by the SNEP Server as a response

is stored in the pReqResponse variable.

267 static void SnepClientGetReq_CB(

268 ph_NfcHandle ConnHandle,

269 void *pContext,

270 phStatus_t Status,

271 phNfc_sData_t *pReqResponse)

272 {

273 //your callback function code

274 }

SNEP Client de-Initialization

After the data exchange is completed, the communication channel has to be closed. This

is done with the following function:

275 /* SNEP Client De-Initialization */

276 status = phnpSnep_Client_DeInit(

277 &npSnepDataParams,

278 gSocketHandle);

5.3.2.2 SNEP Server

The SNEP Server application listens for incoming SNEP Client connection requests to

receive (PUT) or push (GET) application data. The SNEP Server processes the requests

and responds back to the SNEP Client. The following data structures and variables will

be used in the underlying sample code as part of the SNEP Server implementation:

279 phnpSnep_Fri_Config_t pConfigInfo;

280 phnpSnep_Fri_DataParams_t npSnepDataParams;

281 uint32_t gServer_SocketHandle ;

282 uint32_t gIncomingConnHandle[2];

283 phnpSnep_Fri_ServerSession_t ServerSession; /* One Server Session */

284 phnpSnep_Fri_ServerConnection_t pServerConnection[PHNPSNEP_MAX_SNEP_SERVER_CNT];

pConfigInfo: Defines the SNEP Server type, Service name and Socket options.

npSnepDataParams: The SNEP Data Parameters structure.

gServer_SocketHandle: The SNEP Server Socket handler.

ServerSession: The SNEP Server Session data structure.

Additionally, the following callback functions must be implemented:

285 static void SnepServerConnection_CB()

286 static void SnepServerPutNtf_CB()

287 static void SnepServerGetNtf_CB()

288 static void SnepServerRspNtf_CB()

SnepServerConnection_CB: Pointer to the SNEP Server connection callback function.

SnepServerPutNtf_CB: Pointer to the SNEP Server PUT request callback function.

SnepServerGetNtf_CB: Pointer to the SNEP Server GET request callback function.

SnepServerRspNtf_CB: Pointer to the SNEP Server send response callback.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

32 of 82

SNEP Component Initialization

The first step is to declare and initialize the SNEP component. The SNEP Component

initialization is common for both the SNEP Client and the SNEP Server cases as already

shown in previous Section 5.3.2.1.

SNEP Server Initialization

The phnpSnep_Server_Init() function initializes the SNEP Server application in order to

listen for incoming requests (pServerSession->Server_state =

phnpSnep_Fri_Server_Initialized). Note that the function also includes a reference to the

SNEP Server connect callback function.

289 /* SNEP Server Initialization */

290 status = phnpSnep_Server_Init(

291 &npSnepDataParams,

292 &pConfigInfo,

293 SnepServerConnection_CB,

294 &gServer_SocketHandle,

295 &ServerSession,

296 (void*) &DummyContext_server);

SNEP Server Connect Callback function

The SNEP Server Connect callback function implements the operations to be performed

by the SNEP Server application when it receives an incoming connection request from a

SNEP Client.

The first step is to look at the status variable value. For an incoming connection request,

the status==PHNPSNEP_FRI_INCOMING_CONNECTION. The SNEP Server can accept the

incoming connection requests calling the phnpSnep_Server_Accept() function.

The phnpSnep_Server_Accept() function creates a connection context between the SNEP

Server and the SNEP Client. Note that the function also includes a reference to the

SNEP Server PUT request and to the SNEP Server GET request callback functions.

297 static void SnepServerConnection_CB(

298 void *pContext,

299 uint32_t ConnHandle,

300 phStatus_t status)

301 {

302 if((NULL!= pContext) && (status == PHNPSNEP_FRI_INCOMING_CONNECTION))

303 {

304 gIncomingConnHandle[0] = ConnHandle;

305

306 status = phnpSnep_Server_Accept(

307 &npSnepDataParams,

308 &sAppReceiveBuffer,

309 &pConfigInfo.sOptions,

310 gServer_SocketHandle,

311 gIncomingConnHandle[0],

312 SnepServerPutNtf_CB,

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

33 of 82

313 SnepServerGetNtf_CB,

314 pContext);

315 }

316 else if((status != PHNPSNEP_FRI_INCOMING_CONNECTION) &&

317 (status != PHNPSNEP_FRI_CONNECTION_SUCCESS))

318 {

319 printf("SnepServerConnection_CB callback function Failedx \n", status);

320 }

321 /* Set Flag indicating Socket connection is completed */

322 bSocketconnected = true; }

SNEP Server PUT Request Callback function

The SNEP Server PUT request callback function implements the the operations to be

performed by the SNEP Server application when it receives a PUT request from the

SNEP Client.

The SNEP Client uses the PUT request to push data to the SNEP Server. This callback

function processes the incoming request, generates a response and sends it back to the

SNEP Client.

The SNEP Server sends the response to the SNEP Client using the

phnpSnep_ServerSendResponse() function. Note that the function also includes the response

status code (e.g. PH_ERR_SUCCESS) and a reference to the SNEP Server Send Response

callback function.

323 static void SnepServerPutNtf_CB(

324 void *pContext,

325 phStatus_t Status,

326 phNfc_sData_t *pDataInbox,

327 ph_NfcHandle ConnHandle)

328 {

329 phnpSnep_Fri_DataParams_t *pDataParams = &npSnepDataParams;

330 uint8_t Data[] = {'S','N','E','P',' ','D','A','T','A',' ','P','U','T','\0'};

331 phNfc_sData_t sPutData;

332 PutReqRecvdSize = 0;

333

334 /* Check pContext */

335 if (pContext== NULL)

336 return;

337

338 /* Reset the buffer length */

339 sPutResponse.length = 0;

340

341 if (PH_ERR_SUCCESS == Status)

342 {

343 if (NULL != pDataInbox && 0!= pDataInbox->length)

344 {

345 /* Local Buffer to store the data received for PUT Request */

346 sPutResponse.buffer = pAppTempBuffer;

347

348 sPutResponse.length = pDataInbox->length;

349 /* Copy Data to the Local Buffer */

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

34 of 82

350 memcpy(sPutResponse.buffer, pDataInbox->buffer, pDataInbox->length);

351

352 /* Data length Received for PUT request */

353 PutReqRecvdSize = pDataInbox->length;

354 }

355

356 /* NEXT STEP : SNEP Server response */

357 sPutData.buffer = &Data[0];

358 sPutData.length = sizeof(Data);

359

360 /* Clear Flag Indicating Put Request */

361 bPutReq_Complete = false;

362

363 phnpSnep_ServerSendResponse(

364 DataParams,

365 gIncomingConnHandle[0],

366 &sPutData,

367 PH_ERR_SUCCESS,

368 (ph_NfcHandle) SnepServerRspNtf_CB,

369 pContext);

370 /* Set Flag Indicating Put Request is completed */

371 bPutReq_Complete = true; }}

SNEP Server GET Request Callback function

The SNEP Server GET request callback function implements the operations to be

performed by the SNEP Server application when it receives a GET request from the

SNEP Client.

The SNEP Client uses the GET request to retrieve data from the SNEP Server. This

callback function processes the incoming request, generates a response and sends it to

the SNEP Client.

The SNEP Server sends the response to the SNEP Client using the

phnpSnep_ServerSendResponse() function. Note that the function also includes the response

status code (e.g. PH_ERR_SUCCESS) and a reference to the SNEP Server Send Response

callback function.

372 static void SnepServerGetNtf_CB(

373 void *pContext,

374 phStatus_t Status,

375 phNfc_sData_t *pDataInbox,

376 ph_NfcHandle ConnHandle)

377 {

378 phnpSnep_Fri_DataParams_t *pDataParams = &npSnepDataParams;

379

380 uint8_t Data[] = {'D', 'e', 'm', 'o', 'n', 's', 't', 'r', 'a', 't', 'i', 'o',

381 'n','\0'};

382 if (PH_ERR_SUCCESS == Status)

383 {

384 if(NULL != pDataInbox && 0 != pDataInbox->length)

385 {

386 /* NEXT STEP : SNEP Server response */

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

35 of 82

387

388 sPutGetData.buffer = pAppTempBuffer;

389 sPutGetData.length = PutReqRecvdSize;

390

391 /* Get the Response Data to the Local Buffer */

392 sGetResponse = *pDataInbox;

393 }

394 /* Send Default response message, if only GET request from client */

395 if(0== PutReqRecvdSize)

396 {

397 sPutGetData.buffer = Data;

398 sPutGetData.length = sizeof(Data);

399 }

400 phnpSnep_ServerSendResponse(

401 pDataParams,

402 gIncomingConnHandle[0],

403 &sPutGetData,

404 PH_ERR_SUCCESS,

405 SnepServerRspNtf_CB,

406 pContext);

407

408 /* Set Flag Indicating Get Request is completed */

409 bGetReq_Complete = true;

410 }

411 }

SNEP Server Response Callback function

The SNEP Server Response callback function implements the operations to be

performed by the SNEP Server application when a GET or PUT request has been

completed.

412 void SnepServerRspNtf_CB(

413 void *pContext,

414 phStatus_t Status,

415 ph_NfcHandle ConnHandle)

416 {

417 /* Check pContext */

418 if (pContext == NULL)

419 {

420 return;

421 }

422 bPutReq_Complete = true;

423 if(1==bGetReq_Complete)

424 {

425 /* Set Flag Indicating Put and/or Get Request is completed */

426 bSnep_RspComplete = true;

427 }

428 }

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

36 of 82

5.4 Application Logic

The application logic is the piece of code where the developer shall implement its

application functionality. This logic can be as simple or as complex as the project

requires. The PN512_LPC17xx_P2P_Initiator example is taken as reference. This project

transmits a NDEF message to the remote peer device, where two different messages

can be transmitted:

 NFC Well-known RTD Text Type message.

 NFC Well-known RTD URI Type message.

The NDEF message to be sent can be selected using their respective programming

defines.

429 #define URIMESSAGE /**< Enable URI message */

430 #define TEXTMESSAGE /**< Enable for 1024 bytes text message */

The NDEF message is stored in form of a phNfc_sData_t buffer type, which is defined by

the NFC Reader Library.

431 phStatus_t NPPClientDemo() {

432 phNfc_sData_t sMessage; /* Buffer for Text message */

433

434 #ifdef TEXTMESSAGE

435 static const uint8_t message[] = { 0xC1, 0x01, 0x00, 0x00, 0x04, 0x01,

436 0x54, 0x02, 0x65, 0x6E,

437 /* TEXT TO BE TRANSMITTED */ };

438 #endif /* TEXTMESSAGE */

439

440 #ifdef URIMESSAGE

441 static const uint8_t message[] = { 0xC1, 0x01, 0x00, 0x00, 0x00, 0x08,

442 0x55, 0x01,

443 'n', 'x', 'p', '.', 'c','o','m' };

444 #endif /* URIMESSAGE */

445

446 sMessage.buffer = (uint8_t *) message;

447 sMessage.length = sizeof(message);

The sMessage buffer containing the NDEF message to be transmitted, is passed as an

input parameter to the phnpSnep_ClientReqPut() function.

448 status = phnpSnep_ClientReqPut(&npSnepDataParams, gSocketHandle, &sMessage,

449 SnepClientPutReq_CB, (void*) &DummyContext_Client);

6. Example: Writing NDEF Application

This sample application explains how to use the NFC Forum Tag Type Operations API to

write a NDEF message in any of the four Type Tags defined by the NFC Forum

specifications (described in UM10802 [37]). The PN512_LPC17xx_P2P_Initiator sample

project (see Section 4.2) is used as reference to explain how to use the NFC Forum Tag

Type Operations API. The code fragments presented in the following subsections are

extracted from the sample project source code.

The sample application explained in this section has the following development workflow:

1. Initialization of the NFC Reader Library lower layer components.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

37 of 82

2. Configuration and start of the discovery polling loop.

3. In case a tag is detected: Initialization of the NFC Forum Tag Type Operations API to

write a NDEF message in the detected tag.

4. In case no tag is detected, the loop is started again.

The Fig 11 illustrates the application workflow:

Fig 11. Writing NDEF sample application development workflow

The explanation this sample application is divided into subsections. Section 6.1 initializes

the NFC Reader Library components from BAL to PAL and OSAL layers. Section 6.2

details how to configure and start the Discovery Loop for the detection of Type A, Type B

and Type F tags. Section 6.3 explains how to initialize the required components of the

Application Layer (AL). Finally, Section 6.4 shows a sample application logic that uses

the NFC Forum Tag Type Operations API to write a NDEF message into the detected

tag.

Note: Some of the functions explained in NXP NFC Reader Library API user manuals are

not used in the following examples since they are called internally by upper layer

services in the stack.

6.1 NFC Reader Library Initialization

The first step to be completed in any project is the initialization of the NFC Reader

Library components required by the application. The set of components to be initialized

depends on the hardware in use and on the application to be developed.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

38 of 82

The project taken as reference (PN512_LPC17xx_P2P_Initiator) uses the LPC1769

MCU (BAL) and the PN512 Blueboard (HAL).

The PAL layer sets up the contactless technologies that are going to be used in the

application. This application implements a Discovery Loop which is permanently sensing

for Type A, Type B and Type F tags. Therefore, ISO/IEC 14443-A, ISO/IEC 14443-B,

FeliCa contactless protocols are initialized.

Finally, the OSAL component is also initialized as it is required for the Discovery Loop to

define time intervals between the sensing of the field for different contactless protocols.

The Fig 12 highlights in yellow the components that are going to be initialized in this

section.

Fig 12. NFC Reader Library - Lower layer components initialization

Therefore, the following data parameter components shall be declared:

450 phbalReg_Lpc1768Spi_DataParams_t balReader; /* LPC1769 BAL component */

451 phhalHw_Rc523_DataParams_t hal; /* PN512 HAL componen */

452 phpalI14443p3a_Sw_DataParams_t palI14443p3a; /* PAL I14443-A component */

453 phpalI14443p4a_Sw_DataParams_t palI14443p4a; /* PAL I14443-4A component */

454 phpalI14443p3b_Sw_DataParams_t palI14443p3b; /* PAL I14443-B component */

455 phpalI14443p4_Sw_DataParams_t palI14443p4; /* PAL I14443-4 component */

456 phpalFelica_Sw_DataParams_t palFelica; /* PAL Felica component */

457 phpalMifare_Sw_DataParams_t palMifare; /* PAL Mifare component */

458 phOsal_Lpc17xx_DataParams_t osal; /* OSAL component holder */

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

39 of 82

6.1.1 BAL Layer Initialization

The BAL Layer is in charge of setting up the communication between the MCU and the

contactless reader. Further information about the BAL Layer initialization for the

LPC1769 SPI component be found in Section 5.1.1.

6.1.2 HAL Layer Initialization

The HAL layer is in charge of initializing the contactless reader specifics. Further

information about the HAL Layer initialization for the PN512 reader IC can be found in

Section 5.1.2.

6.1.3 PAL Layer Initialization

In the PAL Layer, specific contactless protocol components are initialized depending on

which card or tag we aim to establish a communication with. Further information about

the PAL Layer initialization for ISO/IEC 14443-A, ISO/IEC 14443-B and FeliCa protocols

can be found in Section 5.1.3

6.1.4 OSAL Layer Initialization

The Operating System Abstraction Layer provides abstraction of the MCU’s features to

the embedded software. Further information about the OSAL Layer initialization can be

found in Section 5.1.4.

6.2 Discovery Loop

This section details the configuration of the Discovery Loop routine for the detection of

the four NFC Forum Type Tags. In Fig 13, the Discovery Loop components are

highlighted in yellow and in grey the components that have already been initialized.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

40 of 82

Fig 13. NFC Reader Library - Discovery Loop component initialization and configuration

The Discovery Loop section provides the specific configuration details for this example.

An extended version of the Discovery Loop initialization and configuration can be found

in Section 5.2.

6.2.1 Discovery Loop Initialization

The Discovery Loop component initialization is done using the phacDiscLoop_Sw_Init

function.

459 /* Discovery Loop component declaration */

460 phacDiscLoop_Sw_DataParams_t discLoop;

461 /* Initialize the Discovery Loop component */

462 phacDiscLoop_Sw_Init(&discLoop, sizeof(phacDiscLoop_Sw_DataParams_t), &hal,

463 &osal);

The Discovery Loop pointers to the corresponding contactless protocols components

from the PAL layer for the sensing of Type A, Type B and Type F tags are:

464 discLoop.pPal1443p3aDataParams = &palI14443p3a; //ISO/IEC 14443-3A PAL component

465 discLoop.pPal1443p4aDataParams = &palI14443p4a; //ISO/IEC 14443-4A PAL component

466 discLoop.pPal1443p3bDataParams = &palI14443p3b; //ISO/IEC 14443-3B PAL component

467 discLoop.pPalFelicaDataParams = &palFelica; //FeliCa PAL component

The Discovery Loop parameters can be configured using the phacDiscLoop_SetConfig()

function.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

41 of 82

6.2.2 Discovery Loop Configuration

For the sensing of Type A, Type B and Type F tags, the Passive communication mode

shall be configured in the Discovery Loop. The Passive communication mode shall be

configured since tags are not powered devices. The phacDiscLoop_SetConfig() function

shall be used in the following way:

468 /*Enable Technology type */

469 #define POLL_TYPE

470 PHAC_DISCLOOP_CON_POLL_A |PHAC_DISCLOOP_CON_POLL_B | PHAC_DISCLOOP_CON_POLL_F

471

472 /* Set for detection of TypeA, TypeB and Type F tags */

473 status = phacDiscLoop_SetConfig(

474 pDataParams,

475 PHAC_DISCLOOP_CONFIG_DETECT_TAGS,

476 POLL_TYPE);

Additionally, the reader IC shall be configured as Initiator. The Initiator role can be

configured in the Discovery Loop using the phacDiscLoop_SetConfig() function in the

following way:

477 /*Define Poll and Pause mode */

478 #define DISCOVERY_MODE PHAC_DISCLOOP_SET_POLL_MODE | PHAC_DISCLOOP_SET_PAUSE_MODE

479

480 /* Set for poll and listen mode */

481 status = phacDiscLoop_SetConfig(

482 pDataParams,

483 PHAC_DISCLOOP_CONFIG_MODE,

484 DISCOVERY_MODE);

6.2.3 Discovery Loop: Start

After the setting up of the Discovery Loop parameters is completed, the developer can

start it. The function to be used to start the Discovery Loop is:

485 /* Start the Discovery Loop */

486 status = phacDiscLoop_Start(pDataParams);

6.2.4 Discovery Loop: NFC Type Tag detection

The detection of a NFC Forum Type Tags shall be done after one loop iteration is

completed. This can be done using the phacDiscLoop_GetConfig() function and the

PHAC_DISCLOOP_CONFIG_TAGS_DETECTED identifier:

487 /* Get the Type tags or P2P devices detected info */

488 status = phacDiscLoop_GetConfig(pDataParams,

489 PHAC_DISCLOOP_CONFIG_TAGS_DETECTED,

490 &wTagsDetected);

There are bitmasks defined that can be used to check whether a particular Type Tag or

NFC device has been detected. To verify if any NFC Forum Type Tags were detected,

the following bitmask shall be used:

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

42 of 82

491 if (PHAC_DISCLOOP_CHECK_ANDMASK(wTagsDetected,

492 PHAC_DISCLOOP_TYPEA_DETECTED_TAG_TYPE1)) {

493 printf ("Type A T1 tag detected ");

494 // Your application code

495 } else if (PHAC_DISCLOOP_CHECK_ANDMASK(wTagsDetected,

496 PHAC_DISCLOOP_TYPEA_DETECTED_TAG_TYPE2)) {

497 printf ("Type A T2 tag detected ");

498 // Your application code

499 } else if (PHAC_DISCLOOP_CHECK_ANDMASK(wTagsDetected,

500 PHAC_DISCLOOP_TYPEF_DETECTED_TAG_TYPE3)) {

501 printf ("Type 3 tag detected ");

502 // Your application code

503 } else if (PHAC_DISCLOOP_CHECK_ANDMASK(wTagsDetected,

504 PHAC_DISCLOOP_TYPEA_DETECTED_TAG_TYPE4A)) {

505 printf ("Type 4A tag detected ");

506 // Your application code

507 }

PHAC_DISCLOOP_CHECK_ANDMASK: Macro that logically ANDs two values. If the corresponding

bit is set, then non-zero value is returned. Otherwise, zero is returned.

&wTagsDetected: The binary map indicating which Type tags were found.

PHAC_DISCLOOP_TYPEA_DETECTED_TAG_TYPE1: Type 1 Tag detection macro.

PHAC_DISCLOOP_TYPEA_DETECTED_TAG_TYPE2: Type 2 Tag detection macro.

PHAC_DISCLOOP_TYPEA_DETECTED_TAG_TYPE3: Type 3 Tag detection macro.

PHAC_DISCLOOP_TYPEA_DETECTED_TAG_TYPE4A: Type 4 Tag detection macro.

6.3 AL Layer Initialization

The AL layer provides specific implementations of various contactless products. In this

example, the application operates with any of the four types of NFC Forum tags. The Fig

14 highlights in yellow the components that are going to be initialized in the Application

layer and in grey the components that have already been initialized.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

43 of 82

Fig 14. NFC Reader Library – Application Layer components

The following components must be initialized:

 Type 1 Tag: Initialize Jewel/Topaz (T1T AL) component.

 Type 2 Tag: Initialize MIFARE Ultralight component.

 Type 3 Tag: Initialize FeliCa component.

 Type 4 Tag: Initialize MIFARE DESFire component.

 NFC Tag Type Operations: An API to perform Read/Write operations on top of NFC

Forum Type Tags.

Therefore, the following data parameter components shall be declared:

508 phalMful_Sw_DataParams_t alMful; /* AL Ultralight component */

509 phalMfdf_Sw_DataParams_t alMfdf; /* AL Desfire component */

510 phalFelica_Sw_DataParams_t alFelica; /* AL Felica component */

511 phalT1T_Sw_DataParams_t alT1T; /* AL T1T component */

512 phalTop_Sw_DataParams_t tagtop; /* AL TOP component */

513 phalTop_T1T_t t1tparam; /* AL T1T TOP component */

514 phalTop_T2T_t t2tparam; /* AL T2T TOP component */

515 phalTop_T3T_t t3tparam; /* AL T3T TOP component */

516 phalTop_T4T_t t4tparam; /* AL T4T TOP component */

The initialization of these components can be done in the following way:

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

44 of 82

517 /* Initialize the T1T AL component */

518 status = phalT1T_Sw_Init(&alT1T, sizeof(phalT1T_Sw_DataParams_t), &palI14443p3a);

519 CHECK_SUCCESS(status);

520

521 /* Initialize the Mful AL component */

522 status = phalMful_Sw_Init(&alMful, sizeof(phalMful_Sw_DataParams_t), &palMifare,

523 NULL, NULL, NULL);

524 CHECK_SUCCESS(status);

525

526 /* Initialize the Felica AL component */

527 status = phalFelica_Sw_Init(&alFelica, sizeof(phalFelica_Sw_DataParams_t),

528 &palFelica);

529 CHECK_SUCCESS(status);

530

531 /* Initialize the MF DesFire EV1 component */

532 status = phalMfdf_Sw_Init(&alMfdf, sizeof(phalMfdf_Sw_DataParams_t), &palMifare,

533 NULL, NULL, NULL, &hal);

534 CHECK_SUCCESS(status);

After these components are declared and initialized, the NFC Forum Tag Type

Operations (TOP) component shall be initialized.

535 /* Initialize the NFC Forum Tag Type Operations component */

536 status = phalTop_Sw_Init(&tagop, sizeof(phalTop_Sw_DataParams_t), &t1tparam,

537 &t2tparam, &t3tparam, &t4tparam, NULL);

538 CHECK_SUCCESS(status);

The NFC Forum Tag Type Operations component relies on the AL components API for

the execution of Read / Write operations. Therefore, the corresponding AL component

associated to each the NFC Forum Tag Type must be previously initialized and has to be

referenced into the NFC Forum Tag Type Operations (TOP) component.

539 ((phalTop_T1T_t *)(tagop.pT1T))->phalT1TDataParams = &alT1T;

540 ((phalTop_T2T_t *)(tagop.pT2T))->phalT2TDataParams = &alMful;

541 ((phalTop_T3T_t *)(tagop.pT3T))->phalT3TDataParams = &alFelica;

542 ((phalTop_T4T_t *)(tagop.pT4T))->phalT4TDataParams = &alMfdf;

6.4 Application Logic

This example uses the Discovery Loop component for the detection and initialization of

tags in the field. Therefore, the operations to be performed on the tag shall be

programmed after the Discovery Loop detection procedure. After the detection and

activation of a tag, a NDEF message will be written into the detected tag.

543 status = phacDiscLoop_Start(pDataParams);

544

545 if ((status & PH_ERR_MASK) == PH_ERR_SUCCESS) {

546 /* Get the Type tags detected info */

547 status = phacDiscLoop_GetConfig(pDataParams,

548 PHAC_DISCLOOP_CONFIG_TAGS_DETECTED, &wTagsDetected);

549

550 if (PHAC_DISCLOOP_CHECK_ANDMASK(wTagsDetected,

551 PHAC_DISCLOOP_TYPEA_DETECTED_TAG_TYPE1)) {

552 printf ("Type A T1 tag detected ");

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

45 of 82

553 status = WriteNDEF(PHAL_TOP_TAG_TYPE_T1T_TAG);

554 } else if (PHAC_DISCLOOP_CHECK_ANDMASK(wTagsDetected,

555 PHAC_DISCLOOP_TYPEA_DETECTED_TAG_TYPE2)) {

556 printf ("Type A T2 tag detected ");

557 status = WriteNDEF(PHAL_TOP_TAG_TYPE_T2T_TAG);

558 } else if (PHAC_DISCLOOP_CHECK_ANDMASK(wTagsDetected,

559 PHAC_DISCLOOP_TYPEF_DETECTED_TAG_TYPE3)) {

560 printf ("Type 3 tag detected ");

561 status = WriteNDEF(PHAL_TOP_TAG_TYPE_T3T_TAG);

562 } else if (PHAC_DISCLOOP_CHECK_ANDMASK(wTagsDetected,

563 PHAC_DISCLOOP_TYPEA_DETECTED_TAG_TYPE4A)) {

564 printf ("Type 4A tag detected ");

565 status = WriteNDEF(PHAL_TOP_TAG_TYPE_T4T_TAG);

566 }

The PN512_LPC17xx_P2P_Initiator example implements a WriteNDEF() function. This

function declares the NDEF message to be written and uses the NFC Forum Tag Type

Operations API to deal with the underlying card technology. The Type tag is passed as

reference to the WriteNDEF() function.

First, the NDEF message to be written is declared:

567 phStatus_t WriteNDEF(uint8_t TopTagType){

568 phStatus_t status;

569 uint8_t bNdefData[16] = {0xD1, 0x01, 0x08, 0x55, 0x01, 0x6E, 0x78, 0x70,

570 0x2E, 0x63, 0x6F, 0x6D};

The identifier to configure the Type tag to be used by the NFC Forum Tag Type

Operations component is:

571 #define PHAL_TOP_CONFIG_TAG_TYPE

572 status = phalTop_SetConfig(&tagop, PHAL_TOP_CONFIG_TAG_TYPE, TopTagTypeDetected);

573 CHECK_SUCCESS(status);

Later, the CheckNdef() function is called to gather information about tag specific

configuration and to check the correct format of the tag. It also verifies whether there is

any previous NDEF message stored.

If the tag is not properly formatted for the storage of NDEF messages, the

phalTop_FormatNdef() function shall be called.

574 status = phalTop_CheckNdef(&tagop, &bNdefPresence);

575 CHECK_SUCCESS(status);

576

577 status = phalTop_GetConfig(&tagop, PHAL_TOP_CONFIG_TAG_FORMATTABLE,

578 &TagFormattable);

579

580 if(TagFormattable == PH_SUPPORTED && (bNdefPresence == false)) {

581 status = phalTop_FormatNdef(&tagop);

582 CHECK_SUCCESS(status);

583 }

Finally, the NDEF message is written in the tag memory by calling the phalTop_WriteNdef()

function. The NFC Reader Library core takes care of using the proper Type Tag

commands for this purpose.

584 if((TagFormattable == PH_SUPPORTED) || (bNdefPresence == true)) {

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

46 of 82

585 status = phalTop_WriteNdef(&tagop, bNdefData, wNdefLen);

586 CHECK_SUCCESS(status);

587 } else {

588 printf("\n Not an valid NDEF Tag\n");

589 return PH_ERR_SUCCESS;

590 }

591 return status;

592 }

7. Example: MIFARE Classic

The MIFARE Classic example explains the initialization of the NFC Reader Library layers

(from bottom to top) and the establishment of the communication with a MIFARE Classic

card. This example activates a MIFARE Classic card, retrieves its UID and writes one

data block on the MIFARE Classic IC memory. The Key Store component in the

Common Layer is also initialized as it is required to store MIFARE keys for cryptographic

and authentication operations

7.1 NFC Reader Library Initialization

The first step is to initialize the NFC Reader Library in accordance with the hardware and

the application to be developed. Similarly as with the previous examples, the hardware

used for this example is a LPC1769 MCU (BAL) and a PN512 reader IC (HAL). For a

MIFARE Classic application, the ISO/IEC 14443-3A and MIFARE PAL components are

required. Finally, the MIFARE Classic component in the AL layer shall be initialized in

order to use the MIFARE Classic command set. The Fig 15 highlights in yellow the

different components that are going to be initialized in this example.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

47 of 82

Fig 15. NFC Reader Library – MIFARE Classic application components initialization

Once the required components are identified, the data parameter structures used for all

the layers context initialization shall be created:

593 phbalReg_Lpc1768Spi_DataParams_t balReader; // LPC1769 BAL component

594 phhalHw_Rc523_DataParams_t hal; /* PN512 HAL componen */

595 phpalI14443p3a_Sw_DataParams_t I14443p3a; //ISO/IEC 14443-3A PAL LAYER

596 phpalMifare_Sw_DataParams_t palMifare; //MIFARE PAL LAYER

597 phalMfc_Sw_DataParams_t alMfc; //MIFARE Classic AL LAYER

598 phKeyStore_Sw_DataParams_t SwkeyStore; //Key Store Common LAYER

Further details on the initialization of the BAL, HAL and PAL layers can be found on the

examples Section 5.1 and Section 6.1. However, a brief summary of the initialization of

BAL, HAL and PAL components is shown here for convenience:

599 /* Initialize the Reader BAL (Bus Abstraction Layer) component */

600 phbalReg_Lpc1768Spi_Init(&balReader, sizeof(phbalReg_Lpc1768Spi_DataParams_t));

601

602 /* Initialize the Reader HAL (Hardware Abstraction Layer) component */

603 status = phhalHw_Rc523_Init(&hal, sizeof(phhalHw_Rc523_DataParams_t), &balReader,

604 0, bHalBufferTx, sizeof(bHalBufferTx), bHalBufferRx, sizeof(bHalBufferRx));

605

606 /* Set the parameter to use the SPI interface */

607 hal.bBalConnectionType = PHHAL_HW_BAL_CONNECTION_SPI;

608

609 /* Open the communication channel between the MCU and the reader IC

610 status = phbalReg_OpenPort(&balReader);

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

48 of 82

611 CHECK_SUCCESS(status);

612

613 /* Initialize the I14443-A PAL layer */

614 status = phpalI14443p3a_Sw_Init(&palI14443p3a,

615 sizeof(phpalI14443p3a_Sw_DataParams_t), &hal);

616 CHECK_SUCCESS(status);

Finally, the Application Layer (AL) is the top layer of the software stack, providing specific

implementations of various contactless technologies. To initialize the MIFARE Classic

component:

617 /* Initialize the Mifare Classic AL component

618 phalMfc_Sw_Init(&alMfc,

619 sizeof(phalMfc_Sw_DataParams_t), &palMifare, NULL);

7.2 Key Store Initialization

To perform any operation with a MIFARE Classic, the card needs to be activated and

authenticated in advance. For instance, before using any command or authentication

function, the software Key Store has to be initialized. For that purpose, the following

function can be used:

620 /* Initialize the keystore component */

621 PH_CHECK_SUCCESS_FCT(status, phKeyStore_Sw_Init(&SwkeyStore,

622 sizeof(phKeyStore_Sw_DataParams_t),

623 &pKeyEntries[0],NUMBER_OF_KEYENTRIES,&pKeyVersionPairs[0],

624 NUMBER_OF_KEYVERSIONPAIRS, &pKUCEntries[0], NUMBER_OF_KUCENTRIES));

Moreover, the key storage file system has to be formatted to a MIFARE key type

625 /* load a Key to the Store ;-) */

626 status = phKeyStore_FormatKeyEntry(&SwkeyStore, 1, PH_KEYSTORE_KEY_TYPE_MIFARE);

Then, we can store a MIFARE Crypto key in the Key Store. In this example, we store the

default MIFARE Classic key at delivery (0xFF 0xFF 0xFF 0xFF 0xFF 0xFF).

627 /* Mifare Classic card, set Key Store */

628 Status= phKeyStore_SetKey(&SwkeyStore, 1, 0, PH_KEYSTORE_KEY_TYPE_MIFARE,

629 &Key[0], 0);

7.3 MIFARE Classic Application Code

Once the NFC Reader Library components are initialized, the next step is to setup the

contactless reader to turn on the RF field, configure the protocol settings and activate

MIFARE Classic card. Firstly, we reset the PN512 configuration:

630 /* SoftReset the IC*/

631 phhalHw_Rc523_Cmd_SoftReset(&halReader);

Then the PN512 field generation is also reset:

632 /* Reset the Rf field */

633 phhalHw_FieldReset(&halReader);

The PN512 is reconfigured with the required register settings to work on ISO/IEC 14443

Type A card detection.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

49 of 82

634 /* Apply the type A protocol settings and activate the RF field. */

635 phhalHw_ApplyProtocolSettings(&halReader,

636 PHHAL_HW_CARDTYPE_ISO14443A);

Then, the phpalI14443p3a_ActivateCard function shall be called. The

phpalI14443p3a_ActivateCard function senses the field to detect the presence of MIFARE

Classic cards in the RF field and it proceeds to activate it (ReqA or WupA and

Anticollision/Select).

637 /* Activate the communication layer part 3 of the ISO 14443A standard. */

638 phpalI14443p3a_ActivateCard(&I14443p3a, NULL, 0x00, bUid, &bLength,

639 bSak, &bMoreCardsAvailable);

The type of card detected on the field can be determined by examining the value of the

bSak variable. For the MIFARE Classic, the SAK value is: 0x08.

640 /* Check if we have a card in the RF field. If so, check what card it is. */

641 if (PH_ERR_SUCCESS == status)

642 {

643 /* Check if there is a Mifare Classic card in the RF field */

644 if (0x08 == (*bSak & 0x08))

645 {

646 debug_printf_msg("Mifare Classic card detected");

647

648 //** YOUR MIFARE CLASSIC APPLICATION CODE HERE **//

649 }

At this point, the MIFARE Classic has been successfully detected and activated, and the

application code can be defined.

The first task is to get the card UID. The card UID is stored in the Block 0 of the Sector 0

of the IC. This manufacturer block is programmed and write-protected during the

production test. Authentication against Sector 0 before reading the UID value is required.

The authentication against the MIFARE Classic can be done in the following way:

650 /* Mifare Classic card, send authentication for sector 0 */

651 status = phalMfc_Authenticate(&alMfc, 0, PHHAL_HW_MFC_KEYA, 1, 0, bUid, bLength);

652 if(status)

653 {

654 debug_printf_msg("\n!!! Authentication was not successful.\n"

655 debug_printf_msg("\n/****** Abort of execution ******/");

656 return 0;

657 }

658 debug_printf_msg("\n**** Authentication successful");

After the authentication against the Sector 0 is successfully done, the block 0 can be

read in order to retrieve the UID. The UID can be either four bytes or seven bytes length.

To read any MIFARE Classic data block, the following function can be used:

659 /* Check the UID of the Classic card in the field */

660 phalMfc_Read(&alMfc, 0,&bBufferReader[0]));

The second part of this exercise is about writing some data on Block 4 of the memory

structure. Before writing, we need to authenticate with the corresponding sector. Block 4

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

50 of 82

belongs to Sector 1. As we have just discussed, an authentication request to Sector 1 is

sent:

661 /* Mifare Classic card, send authentication for sector 1 */

662 phalMfc_Authenticate(&alMfc, 4, PHHAL_HW_MFC_KEYA, 1, 0, bUid, bLength);

Afterwards, the data to be written into the block needs to be generated. For that purpose,

a function generating 16 bytes string is defined:

663 /* Fill block with data */

664 Fill_Block(bBufferReader, 15);

Finally, the MIFARE Write command requires a block address to store the 16 bytes. To

write a Block data into a MIFARE Classic, the following phalMfc_Write function can be

used:

665 /* Write data @ block 4 */

666 phalMfc_Write(&alMfc, 4, bBufferReader);

667 debug_printf_msg("\nWrite successful 16 bytes");

8. Example: MIFARE Ultralight

The MIFARE Ultralight example explains the initialization of the NFC Reader Library
layers (from bottom to top) and the establishment of the communication with a MIFARE
Ultralight card. The example writes data in a MIFARE Ultralight page and protects the
memory to avoid any further writing operations by making use the lock bytes.

8.1 NFC Reader Library Initialization

Similar to previous examples, the first step is to initialize the NFC Reader Library in

accordance with the hardware and the application to be developed. Again, the hardware

used for this example is a LPC1769 MCU (BAL) and a PN512 reader IC (HAL). For any

MIFARE Ultralight application, the ISO/IEC 14443-3A and MIFARE PAL components are

required. Finally, the MIFARE Ultralight component in the AL layer shall be initialized in

order to use the MIFARE Ultralight command set. The Fig 16 highlights in yellow the

different components that are going to be initialized in this example.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

51 of 82

Fig 16. NFC Reader Library – MIFARE Ultralight application components initialization

Once the required components are identified the data parameter structures used for all

the layers context initialization are created:

668 phbalReg_Lpc1768Spi_DataParams_t balReader; // LPC1769 BAL component

669 phhalHw_Rc523_DataParams_t hal; /* PN512 HAL componen */

670 phpalI14443p3a_Sw_DataParams_t I14443p3a; //ISO/IEC 14443-3A PAL LAYER

671 phpalMifare_Sw_DataParams_t palMifare; //MIFARE PAL LAYER

672 phalMfc_Sw_DataParams_t alMful; //MIFARE Ultralight AL LAYER

Further details on the initialization of the BAL, HAL and PAL layers can be found on the

examples Section 5.1 and Section 6.1. However, a brief summary of the initialization of

BAL, HAL and PAL components is shown here for convenience:

673 /* Initialize the Reader BAL (Bus Abstraction Layer) component */

674 phbalReg_Lpc1768Spi_Init(&balReader, sizeof(phbalReg_Lpc1768Spi_DataParams_t));

675

676 /* Initialize the Reader HAL (Hardware Abstraction Layer) component */

677 status = phhalHw_Rc523_Init(&hal, sizeof(phhalHw_Rc523_DataParams_t), &balReader,

678 0, bHalBufferTx, sizeof(bHalBufferTx), bHalBufferRx, sizeof(bHalBufferRx));

679

680 /* Set the parameter to use the SPI interface */

681 hal.bBalConnectionType = PHHAL_HW_BAL_CONNECTION_SPI;

682

683 /* Open the communication channel between the MCU and the reader IC

684 status = phbalReg_OpenPort(&balReader);

685 CHECK_SUCCESS(status);

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

52 of 82

686 /* Initialize the I14443-A PAL layer */

687 status = phpalI14443p3a_Sw_Init(&palI14443p3a,

688 sizeof(phpalI14443p3a_Sw_DataParams_t), &hal);

689 CHECK_SUCCESS(status);

Finally, the application layer is the top layer of the software stack, providing specific

implementations of various contactless technologies. To initialize the MIFARE Ultralight

component:

1 /* Initialize Ultralight(-C) AL component */

2 PH_CHECK_SUCCESS_FCT(status, phalMful_Sw_Init(&alMful,

3 sizeof(phalMful_Sw_DataParams_t), &palMifare, NULL,

4 NULL, NULL));

8.2 MIFARE Ultralight Application Code

Firstly, we write some user data on page 4. This is done using the phalMful_Write()

function.

5 uint8_t data_to_write[4] = {0x12U, 0x34U, 0x56U, 0x78U};

6 // we write page 4 of the ultralight

7 Status=phalMful_Write(&alMful, 0x04, data_to_write);

8 printf(" Written in page 4 0x12345678");

The byte 02h and 03h of page 02h represent the field programmable read-only locking

mechanism. Each page from 03h (OTP) to 0Eh can be individually locked by setting the

corresponding locking bit to logic 1 to prevent further write access. After locking, the

page becomes read-only memory. The content of bytes 0 and 1 of page 2 (BCC1 and

Internal bytes) are unaffected by the corresponding data bytes of the WRITE command.

For instance, to block all the MIFARE Ultralight memory, the following blocking command

shall be sent:

9 uint8_t blockingCommand[4]={0,0,0xFF,0xFF};

10 status= phalMful_Write(&alMful, 2, blockingCommand);

11 printf(" Blocked page 4");

Finally, to activate the new locking configuration, a REQA or WUPA command must be

carried out.

12 /* Reset the RF field */

13 status= phhalHw_FieldReset(pHal);

14

15 /* Apply the type A protocol settings and activate the RF field. */

16 status=phhalHw_ApplyProtocolSettings(pHal, PHHAL_HW_CARDTYPE_ISO14443A);

17

18 /* Activate the communication layer part 3 of the ISO 14443A standard. */

19 status = phpalI14443p3a_ActivateCard(&I14443p3a, NULL, 0x00, bUid, &bLength,bSak,

&bMoreCardsAvailable);

After sending the blocking command and carry out a REQA or WUPA command, any

further WRITE operation on the MIFARE Ultralight card will be refused and will return an

error.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

53 of 82

9. NFC Reader Library Memory Management

9.1 MCU Memory Size

Desktop computers and mobile platforms provide a large memory capacity and the code

size is not usually critical. However, on embedded programing development, the memory

is a limited resource with a well-defined storage size that shall be taken into account.

Each MCU has an amount of programmable memory space. Please refer to its datasheet

to know the amount of programmable memory space available in a certain MCU, or

consult it directly in the LPCXpresso IDE by clicking on the project properties and check

the memory details at “C/C++ Build / MCU Settings”. For instance, Fig 17 shows the

Flash memory size for the commercial LPCXpresso LPC1227/301 MCU (128Kbytes).

Fig 17. MCU Memory size

9.2 Project Memory Consumption

The developers shall ensure the project fits in the available MCU programmable memory.

Otherwise, the project cannot be executed and a buffer overflow error will be shown by

the LPCXpresso during project execution. The project size is displayed after the code

has been compiled and built.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

54 of 82

Fig 18. Project memory size

The total memory size of a project is the sum of the following three segments:

 Text: It holds space for everything that ends up in the Flash memory such as coding

functions.

 Data: It holds space for the initialized data such as static variables.

 Bss: It holds space for the uninitialized data that is represented by zero-valued bits in

memory.

9.3 NFC Reader Library Memory consumption

Importing the NFC Reader Library into a LPCXpresso IDE project does not occupy

memory space by itself. Only those modules that have been loaded in the application will

occupy space when the project is compiled and built. For instance, the P2P application of

Section 5, where several Application Layer (AL) modules are loaded, will consume a

larger memory than the MIFARE Ultralight example of Section 8, where only MIFARE

related modules are loaded. However, note that the NFC Reader Library imported is the

same.

9.3.1 Memory Footprint of NFC Reader Library Components

This section provides an approximate memory footprint of all the components that are

part of the NFC Reader Library. These values should be taken as a reference as they

might vary depending on the NFC Reader Library version.

Note: All the values indicated in this document have been measured in the release build

configuration (see section 12.7 for further details regarding debug and release modes).

Table 3. Memory footprint of NFC Reader Library components

Layer Component Code (byte) RAM (byte)

Application L

Tag Operation L

Type 1 Tag – Jewel / Topaz 4796 12

Type 2 Tag – MIFARE UL (EV1) 1132 18

Type 3 Tag – FeliCa 2012 36

Type 4 Tag – MIFARE DESFire 1274 20

Tap Operation 21824 228

MIFARE Classic 1328 10

MIFARE DESFire 17124 96

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

55 of 82

Layer Component Code (byte) RAM (byte)

NFC Activity Discovery Loop 4390 516

NFC P2P

Package

SNEP 4943
3196

LLCP 13864

Protocol AL ISO/IEC14443-3A & MIFARE 3250 28

ISO/IEC14443-3B 2316 35

ISO/IEC14443-4A & ISO/IEC14443-4 4114 31

FeliCa 1172 24

ISO/IEC18092 Initiator 4496 27

ISO/IEC18092 Target 4479 68

Hardware AL Hal common 846 -

Callback 390 60

RC663 15268 96

PN512/RC523 11524 88

Bus AL BAL common 358 -

SPI for LPC1769 414 4

I2C for LPC1769 246 4

Common Key Store Common 719 -

Key store RC663 492 8

Key Store SW 914 24

ISO/IEC 14443-4 CID Man 170 16

Tools (CRC, Parity) 1575 -

Log Module 379 -

OSAL Utils 1696 52

A LPCXpresso project includes the CMSIS source code, the MCU drivers on which the

project will be executed, and the application logic (see Section 11). Therefore, the project

code size is always larger than the sum of the NFC Reader Library components footprint.

For instance, the project from scratch that is created in Section 11, which only contains

the drivers for the communication with the LPC17xx MCU, leads to a 12kbyte size binary

file.

Fig 19. Memory footprint of a project from scratch

Considering the project size depicted in Fig 19 and the memory footprint of NFC Reader

Library components shown in Table 3, customers are able to foresee the memory size of

their projects.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

56 of 82

9.3.1.1 Memory footprint of a sample MIFARE Ultralight Read/Write project

The approximate memory consumption of a MIFARE Ultralight application is calculated in

this section. In order to optimize the memory consumption, all those modules that are not

necessary have been excluded from the build operation. Fig 20 depicts the components

required to communicate with a MIFARE Ultralight card.

Fig 20. MIFARE Ultralight Read/Write project layer architecture

According to values defined in Fig 19 and Table 3, the expected minimum project size for

a MIFARE Ultralight project is calculated in Table 4.

Table 4. Memory footprint of NFC Reader Library components

Layer Component Code (byte)

Application L Type 2 Tag – MIFARE UL (EV1) 1132

Protocol AL ISO/IEC14443-3A & MIFARE 3250

Hardware AL PN512/RC523 11524

Platform AL LPC1769SPI 414

Project from scratch memory footprint 12040

Expected memory footprint

28360

The expected memory footprint value calculated in Table 4 is referred to the NFC Library

components that are enabled during the build procedure. The value memory footprint of

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

57 of 82

the project includes also the application logic which is part of the “main.c” file of the

LPCXpresso project.

Fig 21 depicts the total memory size of a sample MIFARE Ultralight project developed in

LPCXpresso IDE occupies. Please note that the memory consumed is similar to the one

calculated in Table 4.

Fig 21. Sample MIFARE Ultralight Read/Write project binary file

9.3.1.2 Memory footprint of a sample P2P Initiator project

The sample project addressed in this section implements a P2P Initiator that transmits a

NDEF message to the remote peer device detected. In order to optimize the memory

consumption, all those modules that are not necessary have been excluded from the

build operation. Fig 22 depicts the components required to implement a P2P application

in Initiator mode.

Fig 22. PN512_LPC17xx_P2P_Initiator project layer architecture

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

58 of 82

According to the values defined in Fig 22 and Table 4, the expected minimum project

size for this P2P Initiator is calculated in Table 5.

Table 5. Memory footprint of NFC Reader Library components

Layer Component Code (byte)

NFC Activity Discovery Loop 4390

NFC P2P Package SNEP 4943

LLCP 13864

Protocol AL ISO/IEC14443-3A & MIFARE 3250

FeliCa 1172

ISO/IEC18092 Initiator 4496

Hardware AL PN512/RC523 11524

Bus AL LPC1769SPI 414

Common OSAL Utils 1696

Project from scratch memory footprint 12040

Expected memory footprint

57789

As it is explained in section 9.3.1.1, this expected memory footprint value corresponds to

the memory footprint occupied by the NFC Reader Library components. The application

logic implemented in “main.c” file for this particular example is much larger as there are

more components to initialize and manage.

Fig 23 depicts the total memory size of a sample P2P Initiator project developed in

LPCXpresso IDE. Please note that the memory consumed is similar to the one calculated

in Table 5.

Fig 23. PN512_LPC17xx_P2P_Initiator project binary file.

9.3.2 Scaling Down Memory Consumption

In order to optimize the memory consumption of a project, developers shall only load the

modules that are strictly mandatory in order to meet their application requirements. The

NFC Reader Library provides an easy way to load or unload modules. The complete list

of modules that can be included or excluded in the project compilation are defined in the

“NxpRdLib_PublicRelease/types/ph_NxpBuild.h” file.

#define NXPBUILD__PH_LOG – Includes the Log Component during project build.

// #define NXPBUILD__PH_LOG – Excludes the Log Component during project build.

For a comprehensive view of all the technical possibilities that should be considered by

developers, please see the AN1132 – How to Scale Down the NFC Reader Library [36].

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

59 of 82

10. Porting

10.1 NFC Reader Library

The NFC Reader Library has been implemented using a modular and a multi-layered

approach, where all its layers except the Bus Abstraction Layer are platform

independent. Therefore, upper layers of the software stack can be used independently

on the specific underlying communication interface with the host MCU.

The Bus Abstraction Layer implements the communication interface between the host

MCU and the contactless reader IC. The MCU sends reader IC specific commands and

the reader IC responds to the MCU with data received from contactless cards or related

information stored in requested registers.

Fig 24. Typical Reader Architecture

The current NFC Reader Library implements support for LPC1769 MCU with both SPI

and I2C communication interfaces.

The Bus Abstraction Layer components are bound to specific MCU functions. As a result,

to migrate to another MCU, a specific BAL component which supports this particular

MCU has to be developed.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

60 of 82

Fig 25. NFC Reader Library - BAL component extension

10.2 ARM Architecture based MCU Drivers

In addition to the modification of the Bus Abstraction Layer, MCU related files that are

part of the LPCXpresso project should be replaced. These files include the ‘CMSIS’

folder and hardware specific source files that are part of the ‘include’ folder.

CMSIS stands for Cortex Microcontroller Software Interface Standard and is a

specification defined by ARM for Cortex-M based systems which provide a vendor-

independent hardware abstraction layer for the Cortex-M processor series. The CMSIS

enables consistent and simple software interfaces to the processor and peripherals

registers. A summary of the source code files you can find within the CMSIS library is:

 Core_cmX.h: Provides access to Cortex-M core’s built-in peripherals

 Core_cmFunc.h: Provides inline helper functions for accessing register and

peripherals within the Cortex-M core.

 Core_cmInst.h: Provides inline helper functions for accessing instructions not

directly generated by compiler

 System_<mcu>.h: Contain the prototype/implementations for the SystemInit() and

SystemCoreClockUpdate().

Within the LPCXpresso IDE examples subdirectory (by default installed in

C:\nxp\LPCXpresso_6.0.2_151\lpcxpresso\Examples\CMSIS_CORE), several CMSIS

library projects can be found. Each of these CMSIS library projects contain the

appropriate CMSIS header files and source code for that specific MCU family.

10.3 Non-ARM Architecture based MCU Drivers

If a customer aims to port the NFC Reader Library to another MCU based on a non-ARM

architecture, the MCU specific drivers should be included as part of the LPCXpresso

project.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

61 of 82

This solution is out of the scope of this document.

11. How to create a new Project from Scratch

This tutorial guides developers on how to create a new project from scratch using

LPCXpresso v6 IDE and how to import the NFC Reader Library into the workspace. After

completing this process, the developers will have a clean project for start developing

NFC applications.

The hardware used to prepare this tutorial is a PN512 Blueboard connected to a

LPC1769 target board. In case another MCU is used, the steps for the creation of the

project remain equal but specific MCU drivers shall be used.

The developer shall follow three main steps in order to create a new project from scratch

with the NFC Reader Library:

5. Import the CMSIS Library.

6. Create a new project.

7. Import the NFC Reader Library and MCU drivers into the project.

11.1 Importing the CMSIS Library

CMSIS (Cortex Microcontroller Software Interface Standard) is a specification defined by

ARM for Cortex-M based systems which provides a vendor-independent hardware

abstraction layer for the Cortex-M processor series. CMSIS enables consistent and

simple software interfaces to the processor and peripherals registers.

Within the LPCXpresso IDE examples subdirectory (by default installed in

C:\nxp\LPCXpresso_6.0.2_151\lpcxpresso\Examples\CMSIS_CORE), the developers

can find several CMSIS library projects. Each of these CMSIS library projects contain the

appropriate CMSIS source code files for that specific MCU family.

In order to import the CMSIS library, open LPCXpresso IDE, click on “Import Project” and

then click “Browse” into the project archive (zip) label.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

62 of 82

Fig 26. Importing CMSIS Library into workspace (1)

Browse the “Examples” folder in your LPCXpresso IDE installation directory and select

“LPC17xx_LatestCMSISLibraries.zip” file and press “Next”.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

63 of 82

Fig 27. Importing CMSIS Library into workspace (2)

Pick the CMSIS project according to the MCU used in the project. In this example, the

“CMSIS_CORE_LPC17xx” is picked. Finally, click “Finish”.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

64 of 82

Fig 28. Importing CMSIS Library into workspace (3)

This operation imports the CMSIS source code into the LPCXPresso workspace. The

most important source code files that can be found within the CMSIS_CORE_LPC17xx

are:

 Core_cmX.h: Provides access to Cortex-M core’s built-in peripherals

 Core_cmFunc.h: Provides inline helper functions for accessing register and

peripherals within the Cortex-M core.

 Core_cmInst.h: Provides inline helper functions for accessing instructions not

directly generated by compiler

 System_<mcu>.h: Contain the prototype/implementations for the SystemInit() and

SystemCoreClockUpdate().

Once the CMSIS library is successfully imported, the LPCXpresso project explorer

should look this way:

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

65 of 82

Fig 29. Importing CMSIS Library into workspace (4)

11.2 Creating a new Project

After the CMSIS libraries are imported, a new project can be created. The new project

shall add the references to the CMSIS libraries that have just been imported. Click “New

Project” on the Quick Start Panel and select the LPC 175X_6x MCU family, then choose

“C Project (Semihosted)”. The explanation of what is semihosting can be found on

Section 12.8.

Fig 30. Creating a new Project (1)

In the next window, choose a name for the new project and click “Next”.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

66 of 82

Fig 31. Creating a new Project (2)

Then, the setup assistant guides the developer through a sequence of configurations

until the project is created. In most cases, the default configurations can be accepted.

The first assistant window requests the developer to select the target MCU to be used. In

this guide, the LPC1769 MCU is selected, then click “Next”.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

67 of 82

Fig 32. Creating a new Project (3)

The CMSIS library option within the LPCXpresso IDE project wizard provides the

possibiliy to link the CMSIS library to the new project under creation. Note that the

appropriate CMSIS library project must have been imported into the workspace before

starting the “New Project” wizard, otherwise an error will be given when the wizard

attempts to create the project.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

68 of 82

Fig 33. Creating a new Project (4)

Then, the assistant asks the developer to enable or disable “Code Read Protect”

functionality. NXP Cortex MCUs provide a “Code Read Protect” mechanism to prevent

certain types of access to internal flash memory by external tools. This option can be left

by default. Then, click “Next” to continue.

Fig 34. Creating a new Project (5)

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

69 of 82

The last setup assistant window configures the “printf” options of the project. The

“semihosting C project” wizard provides two options to configure the implementation of

“printf” that will get pulled in from the “Redlib C” library:

 Use non-floating-point of printf: If the application does not pass floating point

numbers to printf(), the developer can select a non-floating-point variant of printf.

This will help to reduce the code size of your application.

 Use character-rather than string-based printf: The default printf() and puts()

functions make use of malloc() function to provide a temporary buffer on the heap in

order to generate the string to be displayed. Enable this option to switch to

“character-by-character” versions of these functions (which do not require additional

heap space).

These options can be left by default.

Fig 35. Creating a new Project (6)

After this setup, the “MyProject” project has been created. In order to ease the

development, LPCXpresso automatically generates an example application code in the

project main file, “main.c”.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

70 of 82

Fig 36. Creating a new Project (7)

The developer can check if the project has been successfully created by compiling and

executing the project. To do so, connect the PN512 Blueboard, click first on “Build” and

later on “Debug” on the QuickStart panel. If the operation is performed successfully, the

developer will see the “Hello World message” in the Console Window.

Fig 37. Compiling & Executing the project

11.3 Importing the NFC Reader Library and MCU drivers

After the MyProject project is created, the NFC Reader Library, the LPC1769 drivers and

LPC1769 configuration files should be imported into the project workspace. These

components can be imported by copying the source code files inside the src folder of the

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

71 of 82

project workspace. The LPC1769 drivers and the LPC1769 configuration files (include

folder) can be found in any of the sample projects (see Section 4) provided in the NFC

Reader Library release [3].

Fig 38. Import the NFC Reader Library and LPC1769 driver and LPC1769 configuration.

The MyProject project shall be properly configured for allowing the compilation and link of

the NFC Reader Library and the LPC1769 driver folder that have been just imported.

This step is completed by clicking on the project Properties and configuring the files to be

included during project build on the C/C++ Build Settings:

"${workspace_loc:/${ProjName}/src/NxpRdLib_PublicRelease/intfs}“

"${workspace_loc:/${ProjName}/src/NxpRdLib_PublicRelease/types}“

"${workspace_loc:/${ProjName}/src/include}“

"${workspace_loc:/${ProjName}/src/Drivers/include}"

Fig 39. Project properties configuration

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

72 of 82

The developers can quickly check that the configuration has successfully been

completed by compiling and executing the project and verify that the “Hello World”

message is written in the Console.

Fig 40. Compiling & Executing the project

11.4 Developing Customer Solutions

Once the whole project has been successfully created and configured, the developers

are able to program their own application logic using the API provided by the NFC

Reader Library.

12. FAQ

12.1 Does the NFC Reader Library allow the communication with existing
NFC-enabled phones?

The NFC Reader Library implements the NFC Forum reference protocol stack for the

Peer-to-Peer operating mode. Therefore, contactless solutions built according to the

protocols that have been explained in this document are able to communicate with any

NFC Forum Device.

Android Operating System is NFC Forum compliant since its version 4.0, also known as

Ice Cream Sandwich. Windows Phone Operating System is NFC Forum compliant since

its version 8.0 and Blackberry OS is NFC Forum compliant since its version 7.1.

12.2 Is it mandatory to use SNEP protocol for the P2P data exchange?

According to the protocol stack defined by the Peer-to-Peer operating mode, it is not

mandatory to use the application-level SNEP protocol. A developer could implement its

own communication logic on top of LLCP link-level protocol.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

73 of 82

However, we strongly recommend to use the SNEP protocol. Firstly, because it is

already implemented as part of the NFC Reader Library. Secondly, to ensure

interoperability when communicating with other NFC-enabled devices such as

smartphones, tablets, laptops, infrastructure readers, and other devices.

12.3 Why my Android phone does not respond to SNEP GET requests?

The current Android Operating System implementation is compliant with the SNEP

Default Server defined by the NFC Forum. The SNEP protocol specification mandates

the SNEP Default Server to only implement PUT requests and to return

“NOT_IMPLEMENTED” response code to GET requests.

12.4 Can I use any other LPC MCU rather than LPC1769 MCU with the
NFC Reader Library?

The implementation of the Peer-to-Peer protocol stack in the NFC Reader Library leads

to a project binary file that requires a large memory size. The LPC1769 MCU, which is

part of the LPC ConnectPlus family of NXP Semiconductors, perfectly fits the memory

requirements imposed by the NFC Reader Library thanks to its large memory capacity. If

there is a strong requirement to use another LPC MCU, the NFC Reader Library can be

ported.

12.5 Can I port the NFC Reader Library to other MCU platforms?

The NFC Reader Library has been implemented as a modular layer based protocol

stack. As it has been explained in the Introduction section, all the NFC Reader Library

layers except the Bus Abstraction Layer are platform independent. Therefore, anyone

can develop its own solution on any MCU platform as long as the Bus Abstraction Layer

is implemented accordingly.

In addition to the modification of the Bus Abstraction Layer, MCU related files, part of the

LPCXpresso project, should be adapted. These files include the ‘CMSIS’ folder and

hardware specific source files that are part of the ‘include’ folder.

12.6 What are the differences between I2C and SPI communication
protocols?

I²C and SPI protocols are well-suited for communications between integrated circuits and

for slow communication with on-board peripherals. Most modern microcontrollers have

hardware support for both protocols.

I²C is a multi-master protocol that uses 2 signal lines. The two I²C signals are called

‘serial data’ (SDA) and ‘serial clock’ (SCL). The I2C protocol specification states that the

IC that initiates a data transfer on the bus is considered the Bus Master. Consequently,

at that time, all the other ICs are regarded to be Bus Slaves. The protocol defines 7-bit

unique slave addresses. Each device connected to the bus has a unique address.

SPI is a single-master communication protocol. SPI is a protocol on 4 signal lines: a

clock signal named SCLK, sent from the bus master to all slaves, a slave select signal for

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

74 of 82

each slave, a data line from the master to the slaves, named MOSI (Master Out-Slave In)

and a data line from the slaves to the master, named MISO (Master In-Slave Out). This

means that one central device initiates all the communications with the slaves.

When the SPI master wishes to send data to a slave and/or request information from it, it

selects a slave by pulling the corresponding line low and it activates the clock signal at a

clock frequency usable by the master and the slave.

12.7 What are the differences between the debug and the release mode?

Debug and Release are different configurations for building your project. Debug mode is

generally used for debugging your project, and the Release mode for the final build for

end users.

The Debug mode does not optimize the binary it produces (as optimizations can greatly

complicate debugging), and generates additional data to aid debugging. The Release

mode enables optimizations and generates less (or no) extra debug data.

12.8 What is semihosting?

The main objective of semihosting is to allow I/O operations to be performed in a target

system. This mechanism is especially interesting during debugging phase where output

debug messages are shown on the screen in order to trace the execution of the program.

A representative application of semihosting is for strings being depicted on the IDE

screen by using printf function.

Semihosting basically indicates that part of the functionality is carried out by the host (the

PC with the debug tools running on it), and partly by the target board. This task is done

by piping messages over a serial cable to the PC where the IDE is running.

The performance achieved by programs performing operations is limited. Every time an

I/O operation is required, the processor is stopped until the data is delivered, making our

program to run slower than non semihosting enabled programs.

13. Appendix

13.1 Error Codes

The NFC Reader Library functions return codes that indicate success or failure of a

certain operation. The error codes are 2 bytes long (type uint16_t) and provide

information about the component on which the error has occurred (the first byte) and the

error code number itself (the second byte). If no error has occurred during the function

execution, 0x0000 (PH_ERR_SUCCESS) code is returned. Two masks ease the identification

of the error received. The formulas to process it are as follows:

 (0xFF00 & retunValue) or (PH_COMP_MASK & retunValue) for the component code

 (0x00FF & retunValue) or (PH_COMPID_MASK & retunValue) for the error code

The defined error codes can be found in ph_Status.h file placed in

NxpRdLib_PublicRelease/types folder.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

75 of 82

13.1.1 Error Code Examples

Some concrete examples on how to read error codes are provided. The developer

should be able to double check the error codes with the tables described in sections

below.

 Error code: 0xEF21

 0xEF: Log component.

 0x21: Invalid parameter supplied.

 Error code: 0x0502

 0x05: ISO14443-4A PAL component.

 0x02: Integrity error, wrong CRC or parity detected.

 Error code: 0x1007

 0x10: MIFARE Classic AL component.

 0x07: Authentication error.

13.1.2 Component Error Code

The component error code identifies on which component the error has occurred. For

instance, an error code in the form of 0x01xx means that some error has occurred in the

BAL layer, as shown in the following table.

Table 6. Component error codes

Component Code Component

0x0000U Generic component code

0x0100U BAL component

0x0200U HAL component

0x0300U ISO14443-3A PAL component

0x0400U ISO14443-3B PAL component

0x0500U ISO14443-4A PAL component

0x0600U ISO14443-4 PAL component

0x0700U MIFARE PAL component

0x0800U FeliCa PAL component

0x0900U ICode EPC/UID PAL component

0x0A00U ICode SLI/ISO15693 PAL component

0x0B00U ISO18000-3 Mode3 PAL component

0x0C00U ISO18092 Initiator mode PAL component

0x0D00U ISO18092 target mode PAL component

0x1000U MIFARE Classic AL component

0x1100U MIFARE Ultralight AL component

0x1200U MIFARE Plus AL component

0x1300U Virtual Card Architecture AL component

0x1400U FeliCa AL component

0x1500U ISO15693 AL component

0x1600U ICode SLI AL component

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

76 of 82

Component Code Component

0x1800U ISO18000-3 Mode3 AL component

0x1900U MIFARE DESFIRE EV1 AL component

0x1C00U Type 1 Tag AL component

0x4000U Discovery Loop NFC Activity component

0x6000U LLCP P2P Package component

0x6100U LLCP Core P2P Package component

0x6200U LLCP Mac Mappings P2P Package component

0x6300U LLCP Transport P2P Package component

0x6400U LLCP OVR HAL P2P Package component

0x7000U SNEP P2P Package component

0xE000U Cid Manager component

0xE100U CryptoSym component

0xE200U KeyStore component

0xE300U Tools component

0xE400U CryptoRng component

0xEF00U Log component

0xF000U OSAL component

13.1.3 Error Code

The error code describes what kind of error occurred. It provides the user with

information on why the error has happened and should help the user to identify the root

cause. The NFC Reader Library differentiates between errors related to the

communication with other components and errors derived from a wrong call of a function

of the API.

Table 7. Communication error codes

Error Code Communication error

0x0001U IO TIMEOUT – No reply received –

0x0002U INTEGRITY ERROR – Wrong CRC or parity detected –

0x0003U COLLISION ERROR – A collision occurred –

0x0004U BUFFER OVERFLOW – Buffer overflow –

0x0005U FRAMING ERROR – Invalid frame format –

0x0006U PROTOCOL ERROR – Received response violates protocol –

0x0007U AUTH ERROR – Authentication error –

0x0008U READ WRITE ERROR – A Read or Write error occurred in RAM/ROM or

Flash –

0x0009U TEMPERATURE ERROR – The RC sensors signal overheating –

0x000AU RF ERROR – Error on RF Interface –

0x000BU INTERFACE ERROR – An error occurred in RC communication –

0x000CU LENGTH ERROR – A length error occurred –

0x000DU RESOURCE ERROR – A resource error –

0x007FU INTERNAL ERROR- An internal error occurred -

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

77 of 82

Table 8. Parameter and command error codes

Error code Parameter and command error

0x0020U INVALID DATA_PARAMS – Invalid data parameters supplied –

0x0021U INVALID PARAMETER – Invalid parameter supplied–

0x0022U PARAMETER OVERFLOW – Reading/Writing a parameter would produce an

overflow –

0x0023U UNSUPPORTED PARAMETER – Parameter not supported –

0x0024U UNSUPPORTED COMMAND – Command not supported –

0x0025U USE CONDITION – Condition of use not satisfied –

0x0026U KEY – A key error occurred –

Table 9. NFC error codes

Error code Parameter and command error

0x0003U BUFFER TOO SMALL – Buffer provided by the caller is too small –

0x0006U INVALID DEVICE – Device specified value is invalid for the operation –

0x000CU INSUFFICIENT RESOURCES – Not enough resources available –

0x000DU PENDING – Returned by a non-blocking function to indicate that an internal

operation is in progress –

0x0011U INVALID STATE – Invalid state of the particular state machine –

0x0031U NOT INITIALIZED – The component has not been initialized –

0x0034U NOT REGISTERED – Fail during unregistration command on a non-

registered component –

0x0035U ALREADY REGISTERED – Fail during registration command on an already

registered component –

0x006FU BUSY – The system is busy with the previous operation –

14. References

[1] NXP Generic Reader Library, http://www.nxp.com/documents/software/200312.zip

[2] NXP Export Controlled Library. (Available in DocStore [30]).

[3] NFC Reader Library (To be published)

[4] Data Sheet MF1S503X MIFARE Classic 1K - Mainstream contactless smart card

IC for fast and easy solution development, available on

http://www.nxp.com/documents/data_sheet/MF1S503x.pdf

[5] Data Sheet - MIFARE Ultralight ; MF0ICU1, MIFARE Ultralight contactless single-

ticket IC, BU-ID Doc. No. 0286**
1
, available on

http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf

[6] Data Sheet – MIFARE Ultralight EV1- contactless ticket IC, available on

http://www.nxp.com/documents/data_sheet/MF0ULX1.pdf

[7] Data Sheet – MIFARE MF0ICU2 – MIFARE Ultralight C , available on

http://www.nxp.com/documents/short_data_sheet/MF0ICU2_SDS.pdf

http://www.nxp.com/documents/software/200312.zip
http://www.nxp.com/documents/data_sheet/MF1S503x.pdf
http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf
http://www.nxp.com/documents/data_sheet/MF0ULX1.pdf
http://www.nxp.com/documents/short_data_sheet/MF0ICU2_SDS.pdf

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

78 of 82

[8] Data Sheet - MIFARE DESFire; MF3ICDx21_41_81, MIFARE DESFire EV1

contactless multi-application IC, BU-ID Doc. No. 1340**, available on

http://www.nxp.com/documents/short_data_sheet/MF3ICDX21_41_81_SDS.pdf

[9] Data Sheet - JIS Standard JIS X 6319 Specification of implementation for

integrated circuit(s) cards - Part 4: High Speed proximity cards

[10] Data Sheet – Innovision Topaz,

http://downloads.acs.com.hk/drivers/en/TDS_TOPAZ.pdf

[11] Data sheet - MFRC523; Contactless reader IC, BU-ID Doc. No. 1152**, available

on http://www.nxp.com/documents/data_sheet/MFRC523.pdf

[12] Data sheet - CLRC663; Contactless reader IC, BU-ID Doc. No. 1711**, available

on http://www.nxp.com/documents/data_sheet/CLRC663.pdf

[13] Data sheet - MFRC522; Contactless reader IC, BU-ID Doc. No. 1121**, available

on http://www.nxp.com/documents/data_sheet/MFRC522.pdf

[14] Data sheet – PN512; Transmission module, BU-ID Doc. No. 1113**, available on

http://www.nxp.com/documents/data_sheet/PN512.pdf

[15] Data sheet – MFRC631; Contactless reader IC, BU-ID Doc. No. 2274**, available

on http://www.nxp.com/documents/data_sheet/MFRC631.pdf

[16] Data sheet – MFRC630; Contactless reader IC, BU-ID Doc. No. 2275**, available

on http://www.nxp.com/documents/data_sheet/MFRC630.pdf

[17] Data sheet – SLRC610; Contactless reader IC, BU-ID Doc. No. 2276**, available

on http://www.nxp.com/documents/data_sheet/SLRC610.pdf

[18] ISO/IEC Standard - ISO/IEC 14443 Identification cards - Contactless integrated

circuit cards - Proximity cards

[19] ISO/IEC Standard - ISO/IEC 18092 Information technology - Telecommunications

and information exchange between systems - Near Field Communication- Interface

and Protocol (NFCIP-1)

[20] Technical Specification Logical Link Control Protocol, NFCForum-TS-LLCP_1.1,

available on www.nxp.com/redirect/nfc-forum.org/specs/spec_license

[21] Technical Specification – Simple NDEF Exchange Protocol, NFCForum-TS-

SNEP_1.0, available on www.nxp.com/redirect/nfc-forum.org/specs/spec_license

[22] Technical Specification – Type 1 Tag Operation, NFCForum-TS-Type-1-Tag_1.1,

available on www.nxp.com/redirect/nfc-forum.org/specs/spec_license

[23] Technical Specification – Type 2 Tag Operation, NFCForum-TS-Type-2-Tag_1.1,

available on www.nxp.com/redirect/nfc-forum.org/specs/spec_license

[24] Technical Specification – Type 3 Tag Operation, NFCForum-TS-Type-3-Tag_1.1,

available on www.nxp.com/redirect/nfc-forum.org/specs/spec_license

[25] Technical Specification – Type 4 Tag Operation, NFCForum-TS-Type-4-Tag_2.0,

available on www.nxp.com/redirect/nfc-forum.org/specs/spec_license

[26] Technical Specification – NFC Data Exchange Format, NFCForum-TS-

NDEF_1.0, available on www.nxp.com/redirect/nfc-forum.org/specs/spec_license

[27] Application note - AN11211 Quick Start Up Guide RC663 Blueboard, available on

http://www.nxp.com/documents/application_note/AN11211.pdf

http://www.nxp.com/documents/short_data_sheet/MF3ICDX21_41_81_SDS.pdf
http://downloads.acs.com.hk/drivers/en/TDS_TOPAZ.pdf
http://www.nxp.com/documents/data_sheet/MFRC523.pdf
http://www.nxp.com/documents/data_sheet/CLRC663.pdf
http://www.nxp.com/documents/data_sheet/MFRC522.pdf
http://www.nxp.com/documents/data_sheet/PN512.pdf
http://www.nxp.com/documents/data_sheet/MFRC631.pdf
http://www.nxp.com/documents/data_sheet/MFRC630.pdf
http://www.nxp.com/documents/data_sheet/SLRC610.pdf
http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license
http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license
http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license
http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license
http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license
http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license
http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license
http://www.nxp.com/documents/application_note/AN11211.pdf

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

79 of 82

[28] Application note – AN11308 Quick Start Up Guide PNEV512B, available on

http://www.nxp.com/documents/application_note/AN11308.pdf

[29] LPCZone, http://www.nxp.com/techzones/microcontrollers-techzone/news.html

[30] NXP DocStore, https://www.docstore.nxp.com/flex/DocStoreApp.html#/l

[31] LPCXPresso IDE, http://www.lpcware.com/lpcxpresso/code-red

[32] LPCXpresso target boards, http://www.nxp.com/techzones/microcontrollers-

techzone/tools-ecosystem/lpcxpresso.html

[33] Application note - AN11211 CLEV663B Blueboard Quick Start Guide,

http://www.nxp.com/documents/application_note/AN11211.pdf

[34] Application note - AN11308 PNEV512B Blueboard Quick Start Guide,

http://www.nxp.com/documents/application_note/AN11308.pdf

[35] NXP Contactless reader IC Demoboards ordering,

http://www.nxp.com/products/identification_and_security/#demoboards

[36] Application note - AN11342 How to Scale Down the NXP Reader Library,

http://www.nxp.com/documents/application_note/AN11342.pdf

[37] Application note – AN10802 NXP NFC Reader Library API

http://www.nxp.com/documents/application_note/AN11308.pdf
http://www.nxp.com/techzones/microcontrollers-techzone/news.html
https://www.docstore.nxp.com/flex/DocStoreApp.html#/l
http://www.lpcware.com/lpcxpresso/code-red
http://www.nxp.com/techzones/microcontrollers-techzone/tools-ecosystem/lpcxpresso.html
http://www.nxp.com/techzones/microcontrollers-techzone/tools-ecosystem/lpcxpresso.html
http://www.nxp.com/documents/application_note/AN11211.pdf
http://www.nxp.com/documents/application_note/AN11308.pdf
http://www.nxp.com/products/identification_and_security/#demoboards
http://www.nxp.com/documents/application_note/AN11342.pdf

E
rro

r!
U

n
k
n

o
w

n

d
o

c
u

m
e
n

t
p

ro
p

e
rty

n
a
m

e
.

E
rro

r! U
n

k
n

o
w

n
 d

o
c
u

m
e
n

t p
ro

p
e
rty

 n
a
m

e
.

E
rro

r! U
n

k
n

o
w

n
 d

o
c
u

m
e
n

t p
ro

p
e
rty

 n
a
m

e
.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

UM10721 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User Manual
COMPANY PUBLIC

Rev. 2.1 — 07 April 2014
270121

80 of 82

15. Legal information

15.1 Definitions
Draft — The document is a draft version only. The content is still under

internal review and subject to formal approval, which may result in

modifications or additions. NXP Semiconductors does not give any

representations or warranties as to the accuracy or completeness of

information included herein and shall have no liability for the consequences

of use of such information.

15.2 Disclaimers
Limited warranty and liability — Information in this document is believed to

be accurate and reliable. However, NXP Semiconductors does not give any

representations or warranties, expressed or implied, as to the accuracy or

completeness of such information and shall have no liability for the

consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,

punitive, special or consequential damages (including - without limitation -

lost profits, lost savings, business interruption, costs related to the removal

or replacement of any products or rework charges) whether or not such

damages are based on tort (including negligence), warranty, breach of

contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason

whatsoever, NXP Semiconductors’ aggregate and cumulative liability

towards customer for the products described herein shall be limited in

accordance with the Terms and conditions of commercial sale of NXP

Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make

changes to information published in this document, including without

limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior

to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,

authorized or warranted to be suitable for use in life support, life-critical or

safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected

to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of

NXP Semiconductors products in such equipment or applications and

therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these

products are for illustrative purposes only. NXP Semiconductors makes no

representation or warranty that such applications will be suitable for the

specified use without further testing or modification.

Customers are responsible for the design and operation of their applications

and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or

customer product design. It is customer’s sole responsibility to determine

whether the NXP Semiconductors product is suitable and fit for the

customer’s applications and products planned, as well as for the planned

application and use of customer’s third party customer(s). Customers should

provide appropriate design and operating safeguards to minimize the risks

associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,

damage, costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by customer’s

third party customer(s). Customer is responsible for doing all necessary

testing for the customer’s applications and products using NXP

Semiconductors products in order to avoid a default of the applications and

the products or of the application or use by customer’s third party

customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein

may be subject to export control regulations. Export might require a prior

authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all

faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates

and their suppliers expressly disclaim all warranties, whether express,

implied or statutory, including but not limited to the implied warranties of non-

infringement, merchantability and fitness for a particular purpose. The entire

risk as to the quality, or arising out of the use or performance, of this product

remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be

liable to customer for any special, indirect, consequential, punitive or

incidental damages (including without limitation damages for loss of

business, business interruption, loss of use, loss of data or information, and

the like) arising out the use of or inability to use the product, whether or not

based on tort (including negligence), strict liability, breach of contract, breach

of warranty or any other theory, even if advised of the possibility of such

damages.

Notwithstanding any damages that customer might incur for any reason

whatsoever (including without limitation, all damages referenced above and

all direct or general damages), the entire liability of NXP Semiconductors, its

affiliates and their suppliers and customer’s exclusive remedy for all of the

foregoing shall be limited to actual damages incurred by customer based on

reasonable reliance up to the greater of the amount actually paid by

customer for the product or five dollars (US$5.00). The foregoing limitations,

exclusions and disclaimers shall apply to the maximum extent permitted by

applicable law, even if any remedy fails of its essential purpose.

15.3 Licenses

Purchase of NXP ICs with NFC technology

Purchase of an NXP Semiconductors IC that complies with one of the Near

Field Communication (NFC) standards ISO/IEC 18092 and ISO/IEC 21481

does not convey an implied license under any patent right infringed by

implementation of any of those standards.

Purchase of NXP ICs with ISO/IEC 14443 type B functionality

This NXP Semiconductors IC is ISO/IEC 14443 Type

B software enabled and is licensed under Innovatron’s

Contactless Card patents license for ISO/IEC 14443 B.

The license includes the right to use the IC in systems

and/or end-user equipment.

RATP/Innovatron

Technology

15.4 Trademarks
Notice: All referenced brands, product names, service names and

trademarks are property of their respective owners.

MIFARE — is a trademark of NXP B.V.

MIFARE Ultralight — is a trademark of NXP B.V.

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2014. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 07 April 2014
270121

Document identifier: UM10721

16. Contents

1. Audience .. 3
2. Abstract .. 3
3. Introduction ... 3
3.1 Overview of the NXP NFC Reader Library 3
3.2 NFC Reader Library Software Release

Versioning Rule .. 4
3.3 NFC Reader Library Software Stack 5
3.3.1 Bus Abstraction Layer .. 6
3.3.2 Hardware Abstraction Layer 6
3.3.3 Protocol Abstraction Layer 7
3.3.4 Application Layer .. 7
3.3.5 NFC Activity ... 8
3.3.6 NFC P2P Package ... 8
3.3.7 Common Layer ... 9
3.3.8 Building a Project from bottom to top 9
3.4 NFC Reader Library and NFC Operating Modes

 ... 10
3.4.1 Read/Write Mode ... 10
3.4.2 Peer-to-Peer Mode ... 11
3.4.3 Card Emulation .. 12
3.5 NXP Export Controlled Reader Library 12
4. Sample projects included in the software

release .. 13
4.1 PN512_LPC17xx_P2P_Active_Initiator Project 14
4.2 PN512_LPC17xx_P2P_Initiator Project 14
4.3 RC663_LPC17xx_P2P_Initiator Project 14
4.4 PN512_LPC17xx_P2P_Target Project 15
5. Example: P2P Application 15
5.1 NFC Reader Library Initialization 16
5.1.1 BAL Layer Initialization 18
5.1.2 HAL Layer Initialization 18
5.1.3 PAL Layer Initialization 18
5.1.4 OSAL Layer Initialization 19
5.2 Discovery Loop .. 19
5.2.1 Discovery Loop Initialization 20
5.2.2 Discovery Loop Configuration 21
5.2.2.1 Communication Mode Configuration 21
5.2.2.2 Communication Role Configuration 22
5.2.2.3 Configuring the number of loop iterations 23
5.2.3 Discovery Loop: Start 23
5.2.4 Discovery Loop: P2P Device Detection 23
5.3 NFC P2P Package ... 23
5.3.1 LLCP .. 24
5.3.1.1 LLCP Component Initialization 24
5.3.1.2 Link Activation .. 26
5.3.1.3 Message Transmission and Reception 27

5.3.1.4 Link Closure ... 27
5.3.2 SNEP.. 27
5.3.2.1 SNEP Client ... 28
5.3.2.2 SNEP Server .. 31
5.4 Application Logic .. 36
6. Example: Writing NDEF Application 36
6.1 NFC Reader Library Initialization 37
6.1.1 BAL Layer Initialization 39
6.1.2 HAL Layer Initialization 39
6.1.3 PAL Layer Initialization 39
6.1.4 OSAL Layer Initialization 39
6.2 Discovery Loop ... 39
6.2.1 Discovery Loop Initialization 40
6.2.2 Discovery Loop Configuration 41
6.2.3 Discovery Loop: Start 41
6.2.4 Discovery Loop: NFC Type Tag detection 41
6.3 AL Layer Initialization 42
6.4 Application Logic .. 44
7. Example: MIFARE Classic 46
7.1 NFC Reader Library Initialization 46
7.2 Key Store Initialization 48
7.3 MIFARE Classic Application Code 48
8. Example: MIFARE Ultralight 50
8.1 NFC Reader Library Initialization 50
8.2 MIFARE Ultralight Application Code 52
9. NFC Reader Library Memory Management 53
9.1 MCU Memory Size ... 53
9.2 Project Memory Consumption 53
9.3 NFC Reader Library Memory consumption 54
9.3.1 Memory Footprint of NFC Reader Library

Components ... 54
9.3.1.1 Memory footprint of a sample MIFARE Ultralight

Read/Write project .. 56
9.3.1.2 Memory footprint of a sample P2P Initiator

project... 57
9.3.2 Scaling Down Memory Consumption 58
10. Porting .. 59
10.1 NFC Reader Library ... 59
10.2 ARM Architecture based MCU Drivers 60
10.3 Non-ARM Architecture based MCU Drivers 60
11. How to create a new Project from Scratch 61
11.1 Importing the CMSIS Library 61
11.2 Creating a new Project 65
11.3 Importing the NFC Reader Library and MCU

drivers... 70

NXP Semiconductors UM10721
 NXP NFC Reader Library User Manual

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2014. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 07 April 2014
270121

Document identifier: UM10721

11.4 Developing Customer Solutions 72
12. FAQ ... 72
12.1 Does the NFC Reader Library allow the

communication with existing NFC-enabled

phones? ... 72
12.2 Is it mandatory to use SNEP protocol for the P2P

data exchange? .. 72
12.3 Why my Android phone does not respond to

SNEP GET requests? 73
12.4 Can I use any other LPC MCU rather than

LPC1769 MCU with the NFC Reader Library? . 73
12.5 Can I port the NFC Reader Library to other MCU

platforms? .. 73
12.6 What are the differences between I

2
C and SPI

communication protocols?................................ 73
12.7 What are the differences between the debug and

the release mode? ... 74
12.8 What is semihosting? 74
13. Appendix .. 74
13.1 Error Codes .. 74
13.1.1 Error Code Examples 75
13.1.2 Component Error Code 75
13.1.3 Error Code.. 76
14. References ... 77
15. Legal information .. 80
15.1 Definitions .. 80
15.2 Disclaimers... 80
15.3 Licenses ... 80
15.4 Trademarks .. 80
16. Contents ... 81

	1. Audience
	2. Abstract
	3. Introduction
	3.1 Overview of the NXP NFC Reader Library
	3.2 NFC Reader Library Software Release Versioning Rule
	3.3 NFC Reader Library Software Stack
	3.3.1 Bus Abstraction Layer
	3.3.2 Hardware Abstraction Layer
	3.3.3 Protocol Abstraction Layer
	3.3.4 Application Layer
	3.3.5 NFC Activity
	3.3.6 NFC P2P Package
	3.3.7 Common Layer
	3.3.8 Building a Project from bottom to top

	3.4 NFC Reader Library and NFC Operating Modes
	3.4.1 Read/Write Mode
	3.4.2 Peer-to-Peer Mode
	3.4.3 Card Emulation

	3.5 NXP Export Controlled Reader Library

	4. Sample projects included in the software release
	4.1 PN512_LPC17xx_P2P_Active_Initiator Project
	4.2 PN512_LPC17xx_P2P_Initiator Project
	4.3 RC663_LPC17xx_P2P_Initiator Project
	4.4 PN512_LPC17xx_P2P_Target Project

	5. Example: P2P Application
	5.1 NFC Reader Library Initialization
	5.1.1 BAL Layer Initialization
	5.1.2 HAL Layer Initialization
	5.1.3 PAL Layer Initialization
	5.1.4 OSAL Layer Initialization

	5.2 Discovery Loop
	5.2.1 Discovery Loop Initialization
	5.2.2 Discovery Loop Configuration
	5.2.2.1 Communication Mode Configuration
	5.2.2.2 Communication Role Configuration
	5.2.2.3 Configuring the number of loop iterations

	5.2.3 Discovery Loop: Start
	5.2.4 Discovery Loop: P2P Device Detection

	5.3 NFC P2P Package
	5.3.1 LLCP
	5.3.1.1 LLCP Component Initialization
	5.3.1.2 Link Activation
	LLCP Check Link Validity Callback function
	LLCP Link Status Change Callback function

	5.3.1.3 Message Transmission and Reception
	5.3.1.4 Link Closure

	5.3.2 SNEP
	5.3.2.1 SNEP Client
	SNEP Component Initialization
	SNEP Client Initialization
	SNEP Client Connection Callback function
	SNEP Client PUT Request
	SNEP Client PUT Request Callback function
	SNEP Client GET Request
	SNEP Client GET Request Callback function
	SNEP Client de-Initialization

	5.3.2.2 SNEP Server
	SNEP Component Initialization
	SNEP Server Initialization
	SNEP Server Connect Callback function
	SNEP Server PUT Request Callback function
	SNEP Server GET Request Callback function
	SNEP Server Response Callback function

	5.4 Application Logic

	6. Example: Writing NDEF Application
	6.1 NFC Reader Library Initialization
	6.1.1 BAL Layer Initialization
	6.1.2 HAL Layer Initialization
	6.1.3 PAL Layer Initialization
	6.1.4 OSAL Layer Initialization

	6.2 Discovery Loop
	6.2.1 Discovery Loop Initialization
	6.2.2 Discovery Loop Configuration
	6.2.3 Discovery Loop: Start
	6.2.4 Discovery Loop: NFC Type Tag detection

	6.3 AL Layer Initialization
	6.4 Application Logic

	7. Example: MIFARE Classic
	7.1 NFC Reader Library Initialization
	7.2 Key Store Initialization
	7.3 MIFARE Classic Application Code

	8. Example: MIFARE Ultralight
	8.1 NFC Reader Library Initialization
	8.2 MIFARE Ultralight Application Code

	9. NFC Reader Library Memory Management
	9.1 MCU Memory Size
	9.2 Project Memory Consumption
	9.3 NFC Reader Library Memory consumption
	9.3.1 Memory Footprint of NFC Reader Library Components
	9.3.1.1 Memory footprint of a sample MIFARE Ultralight Read/Write project
	9.3.1.2 Memory footprint of a sample P2P Initiator project

	9.3.2 Scaling Down Memory Consumption

	10. Porting
	10.1 NFC Reader Library
	10.2 ARM Architecture based MCU Drivers
	10.3 Non-ARM Architecture based MCU Drivers

	11. How to create a new Project from Scratch
	11.1 Importing the CMSIS Library
	11.2 Creating a new Project
	11.3 Importing the NFC Reader Library and MCU drivers
	11.4 Developing Customer Solutions

	12. FAQ
	12.1 Does the NFC Reader Library allow the communication with existing NFC-enabled phones?
	12.2 Is it mandatory to use SNEP protocol for the P2P data exchange?
	12.3 Why my Android phone does not respond to SNEP GET requests?
	12.4 Can I use any other LPC MCU rather than LPC1769 MCU with the NFC Reader Library?
	12.5 Can I port the NFC Reader Library to other MCU platforms?
	12.6 What are the differences between I2C and SPI communication protocols?
	12.7 What are the differences between the debug and the release mode?
	12.8 What is semihosting?

	13. Appendix
	13.1 Error Codes
	13.1.1 Error Code Examples
	13.1.2 Component Error Code
	13.1.3 Error Code

	14. References
	15. Legal information
	15.1 Definitions
	15.2 Disclaimers
	15.3 Licenses
	15.4 Trademarks

	16. Contents

