

UM10802
NXP NFC Reader Library API

Rev. 1.0 — 07 April 20144 User manual

Document information

Info Content

Keywords NFC Reader Library, P2P, CLRC663, PN512, LPC1769, ISO18092,

Discovery Loop, LLCP, SNEP, NFC Forum Tag Type Operation, NFC

Forum, MIFARE, ISO14443.

Abstract This document provides detailed description of the NXP NFC Reader

Library API.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 2 of 205

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history

Rev Date Description

1.0 20140407 First Release

http://www.nxp.com/
mailto:salesaddresses@nxp.com

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 3 of 205

1. Audience

This document is intended to be used by software designers, developers and integrators

willing to develop NFC applications for NXP’s contactless reader ICs. The developer

should have prior knowledge and experience in C programming language and structured

programming in general.

2. Abstract

This document provides detailed description of the NXP NFC Reader Library API and it is

complement of a NXP NFC Reader Library User Manual [37]. This user manual is

intended to help software developers, implementers and integrators to get familiar with

the NFC Reader Library [3] and to learn how to work with it.

The document is divided in sections: after the introductory Sections 1 and 2, Section 3

provides an overview of the NFC Reader Library and its layered architecture. Sections 4,

5, 6, 7 and 8 provide a detailed description of the NFC Reader Library API.

Detailed description of the implementation and how to use it is explained in the user

manual NXP NFC Reader Library User Manual [37].

3. Introduction

3.1 Overview of the NFC Reader Library

The NXP NFC Reader Library [3] is a modular software library written in C language,

which provides an API that enables customers to create their own software stack and

applications for the NXP contactless reader ICs. This API facilitates the most common

operations required in NFC applications such as reading or writing data into contactless

cards or tags, exchanging data with other NFC-enabled devices or allowing NFC reader

ICs to emulate cards as well.

The NFC Reader Library is designed as a versatile and multi-layered architecture. From

bottom to top, the NFC Reader Library is composed of the following layers:

 Bus Abstraction Layer (BAL): Implements the communication interface between the

host device and the contactless reader IC.

 Hardware Abstraction Layer (HAL): Implements the hardware specific elements of

the contactless reader IC and executes native commands of the chip.

 Protocol Abstraction Layer (PAL): Implements the functions for contactless card

activation and contactless card protocols.

 Application Layer (AL): Implements the commands to work with several contactless

smart card technologies.

 NFC Forum Tag Type Operations (TOP): Implements an API for developers to

perform read and write operations on top of the four Tag Types defined in the NFC

Forum specifications.

 NFC Activity: Implements a routine for sensing the RF field to detect the presence of

contactless smart cards, NFC tags or other NFC-enabled devices in close proximity.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 4 of 205

 NFC P2P Package: Implements P2P functionality based on the NFC Forum defined

P2P protocol stack allowing two NFC devices to exchange data when they are

brought into proximity.

The NFC Reader Library also includes an additional layer named:

 Common Layer: Implements utilities independent of any card or hardware being used

during the project development.

Fig 1. Layered Structure of the NFC Reader Library

3.2 NFC Reader Library Software Stack

The main advantage provided by this modular and multi-layered approach is flexibility.

The Application Layer (AL), the NFC Activity component, the NFC P2P Package and the

Protocol Abstraction Layer (PAL) are hardware-independent. This means that their

functionality is not bound to or dependent on any specific hardware. Therefore, the

developers can use them seamlessly on top of any of the supported contactless reader

ICs implemented on the Hardware Abstraction Layer (HAL).

Similarly, the Application Layer (AL), the NFC Activity component, the NFC P2P

Package, the Protocol Abstraction Layer (PAL) and the Hardware Abstraction Layer

(HAL) are also platform-independent. This means that their functionality is not dependent

to any specific underlying communication interface with the host. Therefore, the

developers can use them seamlessly with any communication interface supported in the

Bus Abstraction Layer (BAL).

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 5 of 205

Fig 2. Hardware and Platform independent layers of the NFC Reader Library

In the following subsections, more details on the components and functionalities

implemented in each layer are provided.

3.2.1 Bus Abstraction Layer

The Bus Abstraction Layer implements the communication interface between the host

device and the contactless reader IC. The host device sends reader IC specific

commands and generic commands containing addresses and data bytes. The reader IC

responds to the host with data received from contactless cards or related information in

requested registers. The NFC Reader Library supports following communication

interfaces:

 LPC1769 SPI: Enables the communication with the LPC1769 board using the SPI

communication interface.

 LPC1769 I2C: Enables the communication with the LPC1769 board using the I2C

communication interface.

 Stub: General-purpose component for the implementation of customer specific

communication buses.

3.2.2 Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL) is responsible for the configuration and the

execution of native commands of a particular contactless reader IC. These functions are

mainly:

 Reading and writing from and into the reader’s registers.

 RF field management, receiver and transmitter configuration.

 Timers’ configuration.

 Resolving interrupt sources from the reader chip.

 FIFO management.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 6 of 205

The NFC Reader Library currently supports the following contactless readers:

 PN512 [14]: MFRC523 [11], MFRC522 [13]: Highly integrated reader ICs supporting

ISO/IEC 14443 Type A, ISO/IEC 14443 Type B, FeliCa and ISO/IEC 18092.

 CLRC663 [12]: Highly integrated reader IC with the highest RF output power fronted

supporting ISO/IEC 14443 Type A and Type B, FeliCa and Passive Initiator mode

according to ISO/IEC 18092; and its derivatives (MFRC631 [15], MFRC630 [16],

SLRC610 [17]).

The NFC Reader Library is built in a way where upper layers are hardware independent.

However, the developer must take into account the NFC capabilities of the selected NFC

reader IC. For instance, the CLRC663 reader IC only supports passive communication

mode whereas PN512 reader IC supports both active and passive communication

modes.

3.2.3 Protocol Abstraction Layer

The protocol abstraction layer inherits hardware-independent implementation of the

contactless protocol to be used for the communication.The NFC Reader Library supports

the following ISO/IEC contactless standards protocols:

 ISO14443-3A [18]: Contactless Proximity card air interface communication at

13.56MHz for the Type A and Jewel contactless cards.

 ISO14443-3B [18]: Contactless Proximity card air interface communication at

13.56MHz for the Type B contactless cards.

 ISO14443-4 [18]: Specifies a half-duplex block transmission protocol featuring the

special needs of a contactless environment and defines the activation and

deactivation sequence of the protocol.

 ISO14443-4A [18]: Transmission protocol for Type A contactless cards.

 MIFARE (R): Contains support for MIFARE authentication and data exchange.

 FeliCa (JIS: X6319) [9]: Contactless RFID smart card system from Sony.

 ISO/IEC 18092 Initiator [19]: NFC Interface and Protocol standard that enables NFC

Data Exchange protocol. Component for devices acting as communication initiators,

which implies RF field generation and transmission of communication establishment

request. Both active and passive modes are supported.

 ISO/IEC 18092 Target [19]: NFC Interface and Protocol standard that enables NFC

Data Exchange protocol. Component for devices acting as communication targets,

which implies listening of the RF field and the response to the communication

establishment requests. Both active and passive modes are supported.

3.2.4 Application Layer

The application layer implements the commands of contactless smart cards.The

Application Layer enables the developer to access a particular card API by using its

command set (e.g. reading, writing, modifying a sector etc.). The contactless card APIs

provided is the following:

 MIFARE Classic [4]: MIFARE Classic is compliant with ISO/IEC 14443 Type A up to

layer 3 and available with 1k and 4k memory and 7 Byte as well as 4 Byte UIDs.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 7 of 205

 MIFARE Ultralight [5], MIFARE Ultralight EV1 [6] and MIFARE Ultralight C [7]:

MIFARE Ultralight is compliant with ISO/IEC 14443 Type A up to layer 3.

 MIFARE DESFire [8]: MIFARE DESFire is fully compliant with ISO/IEC14443A (part

1 - 4) and uses a subset of ISO/IEC7816-4 commands. The selectable cryptographic

methods include 2KTDES, 3KTDES and AES128. The highly secure microcontroller

based IC is Common Criteria EAL4+ certified. The NFC Reader Library implements

the non-export controlled command set.

 FeliCa [9]: FeliCa is a contactless smart card developed by Sony, commonly used in

Japan. The command set is partly supported in the NFC Reader Library.

 Jewel/Topaz [10]: Jewel tags are compliant with ISO/IEC 14443 Type A up to layer

3, except for the anticollision procedure. They define a 7 byte UID and 120 bytes

memory configured in 15 blocks of 8 bytes.

 NFC Forum Tag Type Operations (TOP): Provides an abstraction of the underlying

hardware (tags) on which the data is stored. The TOP API facilitates the execution of

read and write operations on NFC Forum tags as the NFC Reader Library translates

these calls to the required specific read and write tag commands. The TOP API relies

and leverages on the Application Layer components.

3.2.5 NFC Activity

This component provides an easy way to set the contactless reader IC in a Discovery

Loop for detecting NFC contactless tags and P2P devices within the contactless reader

IC RF field range.

 Discovery Loop: Executes a loop running in a single thread. The application is

blocked until the Discovery Loop procedure is finished since the OSAL layer does not

provide thread creation capabilities. The Discovery Loop uses MCU timers for

measuring guard time intervals between technology detection.

Note: Depending on the manufacturer implementation, the Discovery Loop is also

referred to as the polling loop.

3.2.6 NFC P2P Package

This layer implements the NFC Forum standardized protocol stack for a Peer to Peer

communication with a NFC device. The NFC P2P package functionalities include the

correct management of the logical link between peers – according to LLCP protocol - and

the implementation of a client / server based architecture for the exchange of NDEF

messages delivered by an upper protocol layer of the P2P application – according to

SNEP protocol –.

 Logical Link Control Protocol (LLCP) [20]: LLCP is a link protocol layer that

specifies the procedural means for transferring of upper layer information units

between two NFC devices. It defines the logical link management and the

synchronous exchange of data between peers in a connection-oriented or

connectionless manner.

 Simple NDEF Exchange Protocol (SNEP) [21]: SNEP is an application-level

protocol running on top of LLCP suitable for exchanging of application data units, in

the form of NDEF messages between two NFC Devices. SNEP is a

request/response protocol based on a client/server architecture.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 8 of 205

3.2.7 Common Layer

The NFC Reader Library includes a set of utilities which are grouped and encapsulated

together in an independent layer called Common Layer. These utilities are not bound to

any specific card or hardware, and as such they are functional regardless of the reader

IC used. The modules implemented in the Common Layer are the following:

 Tools: This module provides 5, 8, 16 and 32 bit length CRC software calculation in

addition to the parity encoding and decoding.

 Key Store: Key handling software module for storing cryptographic keys used in the

authentication and encryption operations. Only the NFC Reader Library Export

Controlled version supports high secure key storage capabilities.

 ISO14443-4 CID Manager: This module is used when a CID needs to be assigned to

an ISO/IEC 14443-4 PICC or a CID is released by the PICC.

 Log: Useful module during debugging phase which enables a software tracing

mechanism that records information about components during project execution in

order to show them on the screen or store them to a file.

 OSAL utils: This module provides an API for timer and memory management related

applications in a software and hardware independent way for an easier and quicker

development.

3.2.8 Building a Project from bottom to top

In order to use the NFC Reader Library, a stack of components has to be initialized from

bottom to top. Every component in the software stack has to be initialized before it can

be used. The referred initialization of each layer generates a data context which feeds

the immediate upper layer. Some of the components may need a data context coming

from the same layer to be used as an entry point.

For instance, if we aim to develop a MIFARE DESFire application, we must previously

initialize the ISO/IEC14443 components of the underlying PAL layer. But in order to use

ISO/IEC14443 components, we must have previously initialized the contactless reader

component from the HAL layer, which similarly requires the previous initialization of the

communication interface between the contactless reader and the MCU in the BAL layer.

The Fig 3 illustrates the mentioned implementation for the initialization procedure of a

MIFARE DESFire application using a CLRC663 contactless reader and a MCU host.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 9 of 205

Fig 3. NFC Reader Library initialization procedure

3.3 NFC Reader Library and NFC Operating Modes

The NFC Reader Library provides developers with different APIs for building NFC

applications with NXP reader ICs. The NFC Reader Library should be initialized

according to the NFC application requirements and the NFC operating modes that will be

used. It is recommended to initialize only the required components in order to reduce the

code size. The NFC Reader Library implements the relevant NFC Forum specifications

associated to each operating mode.

 Read/Write mode: Support of NFC Forum Tag Type Operation specification to allow

hardware independent operations on top of the four NFC Forum Type Tags.

 Peer to Peer mode: Support of LLCP link layer protocol and SNEP application level

protocol to ensure a reliable communication with NFC Forum devices.

 Card Emulation: Support for card emulation will be implemented and made available

in future software releases.

The allowed transfer speeds and modulation schemes for each operation are out of the

scope of this document. For further details, please refer to the corresponding standards’

documentation.

3.3.1 Read/Write Mode

The Read/Write mode allows a NFC reader to perform read and write operations on any

contactless tag or card. The content of the card might be protected or be public.

For those use cases where the customer aims to reach as much audience as possible,

e.g. smart advertising, Read/Write mode leverages on the NFC Forum Data Exchange

Format (NDEF) for the data encapsulation and NFC Forum Tag Type platforms to

provide a hardware-independent solution.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 10 of 205

In order to operate on Read/Write mode, the layers and components to be considered

are shown in Fig 4.

Fig 4. NFC Reader Library - Read and Write relevant modules

3.3.2 Peer-to-Peer Mode

The Peer-to-Peer (P2P) mode allows two NFC devices to exchange information with

each other when they are brought into close proximity. The NFC P2P mode establishes a

bidirectional channel between the two NFC devices to exchange data such as contacts,

URLs, Bluetooth or Wi-Fi pairing information, and others.

The device starting the communication is called the Initiator device and the responding

device is called the Target device. P2P is the only mode supporting both Active and

Passive communication modes. In active communication mode both Initiator and Target

generate their own RF field. In passive communication mode, the target modulates the

RF field generated by the Initiator.

In order to enable the communication between existing NFC Forum devices, the NFC

Forum has released the LLCP link layer protocol specification and the SNEP application

layer specification.

If P2P is the selected operation mode, the layers and components to be considered are

shown in Fig 5.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 11 of 205

Fig 5. NFC Reader Library - P2P relevant modules

3.3.3 Card Emulation

The Card Emulation mode allows a NFC reader IC to emulate the behaviour of a

contactless card or tag. The card emulation functionalities will be available in next

releases of the NFC Reader Library.

3.4 NXP Export Controlled Reader Library

The Export Controlled version of the Reader Library [2] is an extension of the NXP

Reader Library which provides full support for MIFARE Plus and MIFARE DESFire cards

and enables the usage of Secure Application Module (SAM), designed to support secure

storage of cryptographic keys and the implementation of cryptographic functions in the

transactions between the contactless smart card and the contactless reader.

The distribution of the Export Controlled Reader Library software is subject to the

signature of a NDA with NXP since some modules are bound to export control

regulations. In order to sign a NDA with NXP please contact your NXP representative.

The NXP Export Controlled Reader Library can be downloaded from DocStore [30].

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 12 of 205

Fig 6. NXP Export Controlled Reader Library

4. NFC Reader Library API: Protocol Abstraction Layer (PAL)

In this section, the ISO/IEC 14443, MIFARE, FeliCa and ISO/IEC 18092 Initiator and

Target components defined in the Protocol Abstraction Layer (PAL) of the NFC Reader

Library are explained in depth.

4.1 ISO/IEC 14443

The ISO/IEC 14443 is the proximity contactless smartcard standard which describes the

communication between a proximity reader IC and a contactless smartcard. In particular,

it describes the physical characteristics of the cards, as well as the RF communication

parameters and the contactless protocol to setup the communication and allow the

exchange of data from the application layer.

The standard is divided into four different parts: Part 1 describes the physical

characteristics of the proximity contactless cards and the antennas. Part 2 specifies the

power, frequency and modulation of the RF field as well as the coding of the bits for the

communication. Part 3 explains how the communication between the reader IC and the

contactless smartcard is established. Finally, part 4 specifies the protocol for the

application layer to exchange data once the communication has been setup.

This standard provides two different flavours to perform the communication, which are

known as Type A and Type B. Although both types work at the same frequency and

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 13 of 205

power range, they use different kinds of bit coding and modulation techniques, as well as

a different protocol to establish the communication.

Both NXP CLRC 663 reader IC and NXP PN512 reader IC support Type A and Type B

communication.

In order to get familiar with the lower layers of the communication between a proximity

reader and a contactless smartcard, a brief introduction will be given to the parts 3 and 4

of this standard on the following subsections, as well as a description of the

corresponding functions from the library.

4.1.1 ISO/IEC 14443-3A

In this part of the standard, the Type A communication initialization is described. This

initialization consists of three steps. First, the reader IC checks if there are contactless

smartcards within its RF field. Second, if there is more than one contactless smartcard,

the anticollision algorithm is performed. And finally, the desired contactless smartcard is

selected.

The reader IC is the responsible for managing the different states of the contactless

smartcard. The state diagram of the contactless smartcard is illustrated in Fig 7,

Fig 7. Type A proximity contactless smartcard state diagram

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 14 of 205

If the card is not in the reader RF field, it is in the POWER-OFF state. Once the card is

powered, it enters the IDLE state. It stays in this state until it receives a REQA or WUPA

command from the reader IC, to which it shall answer with an ATQA command and

switches to READY state. In the READY state, the anticollision algorithm is performed.

This algorithm starts with the reader IC sending an anticollision command. All the cards

shall respond to this command with their UID (Unique Identifier). As different cards have

different UIDs, if there are more than one card answering at the same time, the reader IC

will be able to detect the collision and differentiate each card through their UID. The UID

of a card may consist of 4, 7 or 10 bytes, and therefore, the anticollision method is an

iterative process in which the number of iterations depends on the length of the UID of

the card selected.

Once a card is chosen, it is selected through the SELECT command. The card answers

with a SAK command, indicating if it is compliant with the ISO/IEC 14443-4 part of the

standard or if it supports other proprietary higher layer protocols, and enters the ACTIVE

state. In case the card is compliant with the ISO/IEC 14443-4A, the reader IC shall send

a RATS command (see 4.1.2.4). Otherwise, it sends another proprietary command to

begin with the higher layer dialog. The reader IC can also send a HLTA command,

making the card enter the HALT state. This state is similar to the IDLE state, with the

difference that in this state, the card ignores the REQA command and can only be driven

to the READY state through a WUPA command from the reader.

An example of an initialization dialog between a reader and a Type A card with a 7 bytes

UID is shown below:

Fig 8. ISO/IEC 14443-3A Operation Flow

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 15 of 205

For further details, please refer to the ISO/IEC 14443-3A standard [18].

The NFC Reader Library implementation of the ISO/IEC14443-3A is described below.

4.1.1.1 ISO/IEC 14443-3A Data Parameter Structure

A special structure has been defined in the NFC Reader Library in order to store the

parameters related to the ISO/IEC 14443-3A standard. This structure has been called

phpalI14443p3a_Sw_DataParams_t:

typedef struct{

 void * pHalDataParams;

 uint8_t abUid[10];

 uint8_t bUidLength;

 uint8_t bUidComplete;

} phpalI14443p3a_Sw_DataParams_t;

*pHalDataParams: Pointer to the underlying HAL parameter structure.

abUid[10]: Array holding the UID of the card in the ACTIVE state.

bUidLength: Length of the UID stored in abUid[]. Depending on the card, it may be 4, 7

or 10 bytes.

bUidComplete: If this variable value is 1 indicates that the UID is complete, a value of 0

means it is incomplete

4.1.1.2 Initialization ISO/IEC 14443-3a

This function initiates the PAL ISO/IEC 14443-3A component.

phStatus_t phpalI14443p3a_Sw_Init(

 phpalI14443p3a_Sw_DataParams_t * pDataParams, [In]

 uint16_t wSizeOfDataParams, [In]

 void * pHalDataParams); [In]

*pDataParams: Pointer to the PAL layer data parameter component.

wSizeOfDataParams: Specifies the size of the data parameter structure. It is

recommended to pass sizeof(phalMfc_Sw_DataParams_t).

*pHalDataParams: Pointer to the corresponding underlying HAL parameter component,

depending on the used reader.

This function may return the following values:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: wSizeOfDataParams does not match with the

defined size of the PAL phpalI14443p3a_Sw_DataParams_t structure.

4.1.1.3 Activate Card

This function changes the card status to ACTIVE state, whether it was in the HALT state

or it had not been activated yet. It performs the whole activation procedure, covering all

possible states and situations, as specified in ISO/IEC 14443-3A standard. Therefore,

most of the other functions from this module are called by this function, allowing it to

send different commands such as REQA, WUPA, Anticollision or SELECT.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 16 of 205

If the activation is successful, the complete UID of the activated card is acquired. Even

when there are more cards present in the RF field, the activation function ensures that

just one UID is captured (and therefore, only one card is activated).

phStatus_t phpalI14443p3a_ActivateCard(

 void * pDataParams, [In]

 uint8_t * pUidIn, [In]

 uint8_t bLenUidIn, [In]

 uint8_t * pUidOut, [Out]

 uint8_t * pLenUidOut, [Out]

 uint8_t * pSak, [Out]

 uint8_t * pMoreCardsAvailable); [Out]

*pDataParams: Pointer to the PAL layer data parameter component. UidLength and

Uidab attributes are changed during the execution of this function.

*pUidIn: Pointer to the UID of the card to be activated. If this variable is NULL and there

is at least one card in the reader RF field, it will be activated and the card UID will be

read.

bLenUidIn: Number of relevant bytes of the pUidIn array. It can take the values 0, 4, 7

and 10:

0 – It means that the UID is unknown. Therefore, the function begins with a REQA

command. At the end of the function, the complete UID of the card shall be captured.

4, 7, 10 – The function begins with a WUPA command.

*pUidOut: Pointer to the complete UID of the activated card.

*pLenUidOut: Length of pUidOut. Only values 4, 7 and 10 are possible.

*pSak: SAK command received from the card. It is one byte long and specifies the type

of card.

*pMoreCardsAvailable: Indicates whether one or more cards are within the reader RF

field at the same time.

PH_ON: More than one card is in the RF field. A collision occurred.

PH_OFF: Only one card in the reader RF.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: bLenUidIn is not equal to 0, 4, 7 or 10.

Other: Value returned by the underlying component.

4.1.1.4 Request A

This function transmits a request Type A command (REQA) and waits to receive an

answer to that request (ATQA). The data rate is automatically set to 106 kbit/s for both

receiver and transmitter. During this operation, the CRC module of the reader chip is

turned off for both reception and transmission signal. After the REQA command is

transmitted, the routine waits for any answer until a timeout event (timers T1, T0) occurs.

phStatus_t phpalI14443p3a_RequestA(

 void * pDataParams, [In]

 uint8_t * pAtqa); [Out]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 17 of 205

*pDataParams: Pointer to the PAL layer data parameter component.

*pAtqa: Pointer to ATQA. If the request process is successful, then the 2 bytes from the

ATQA received are written in this variable.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

Other: Value returned by the underlying component.

Note: If no answer to the REQA command is received nor any changes in the RF field

are detected by the reader before the timeout, the function terminates with a timeout

error. There are two time constants defined in the phpalI14443p3a_Sw_Int.h file that

determine the ATQA timeout: PHPAL_I14443P3A_EXT_TIME_US,

PHPAL_I14443P3A_SELECTION_TIME_US.

The resulting waiting time is the sum of the both values in microseconds.

4.1.1.5 Wake Up A

This function changes to ACTIVE state one card that is in HALT state.

phStatus_t phpalI14443p3a_WakeUpA(

 void * pDataParams, [In]

 uint8_t * pAtqa); [Out]

*pDataParams: Pointer to the PAL layer data parameter component.

*pAtqa Pointer to ATQA. If the wake up process is successful, then the 2 bytes from the

ATQA received are written in this variable.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response code received.

Other: Value returned by the underlying component.

4.1.1.6 Anticollision

This function is responsible for performing the Type A anticollision procedure. This is

performed through a process at which the reader IC obtains the whole UID of one of the

cards. The anticollision routine may perform 1 to 3 loops depending on the length of the

UID of the card chosen. The anticollision procedure is mandatory for ISO/IEC 14443A

compliant products, and all the NXP MIFARE products support this anticollision

procedure.

phStatus_t phpalI14443p3a_Anticollision(

 void * pDataParams, [In]

 uint8_t bCascadeLevel, [In]

 uint8_t * pUidIn, [In]

 uint8_t bNvbUidIn, [In]

 uint8_t * pUidOut, [Out]

 uint8_t * pNvbUidOut); [Out]

*pDataParams: Pointer to the PAL layer data parameter component.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 18 of 205

bCascadeLevel: Number of loop in which the anticollision procedure is at this moment.

This parameter may take three values:

#define PHPAL_I14443P3A_CASCADE_LEVEL_1 0x93

#define PHPAL_I14443P3A_CASCADE_LEVEL_2 0x95

#define PHPAL_I14443P3A_CASCADE_LEVEL_3 0x97

The reader transmits the current cascade level in the anticollision command. If this value

differs from the three values above, the command is invalid.

*pUidIn: Pointer to the UID of the card.

bNvbUidIn: Number of valid bits in the UID of the card currently processed by the

anticollision procedure. This variable consists of two parts: the four MSB (Most Significat

bit) keep the information of the number of complete valid bytes, and the four LSB (Least

Signicant bit) keep the number of remaining valid bits.

*pUidOut: Pointer to the array where the updated UID of the card is loaded. During the

operation of this function, the first byte of the UID may equal

PHPAL_I14443P3A_CASCADE_TAG, meaning that the UID is not complete yet, and

that another anticollision loop will be required.

*pNvbUidOut: Length of the UID array. It specifies how many bytes of the UID are

currently relevant.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: Invalid bCascadeLevel or invalid bNvbUidIn.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

Other: Value returned by the underlying component.

4.1.1.7 Selection

This function allows the reader to send a SELECT command. This function and

phpalI14443p3a_Anticollision() are both together implemented within the

phpalI14443p3a_ActivateCard() function.

After the SELECT command has been successfully sent, the card specified through the

UID responds with a SAK command indicating the card type (MIFARE Classis 1k, 4k,

MIFARE DESFire, etc.).

phStatus_t phpalI14443p3a_Select(

 void * pDataParams, [In]

 uint8_t bCascadeLevel, [In]

 uint8_t * pUidIn, [In]

 uint8_t * pSak); [Out]

*pDataParams: Pointer to the PAL layer data parameter component. This function sets

the pDataParam->UidComplete flag to 1 when the acquisition of the UID is completed

successfully.

bCascadeLevel: Number of loop in which the anticollision procedure is. This parameter

may take three values:

 #define PHPAL_I14443P3A_CASCADE_LEVEL_1 0x93

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 19 of 205

 #define PHPAL_I14443P3A_CASCADE_LEVEL_2 0x95

 #define PHPAL_I14443P3A_CASCADE_LEVEL_3 0x97

*pUidIn: UID of the card to be selected. This value should not be NULL, as the function

needs to know the whole UID of the card to be selected (or the part of it corresponding to

the current cascade level).

*pSak: The SAK value of the card. . In the special case of receiving a SAK value of 0x04,

this means that the UID of the selected card is not completed yet and a new loop in the

anticollision procedure is required.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Mismatch between the first byte of the UID and the

SAK. If the first byte of the UID is pUidIn[0] = PHPAL_I14443P3A_CASCADE_TAG, the

SAK received must be SAK = 0x04, and vice versa.

Other: Value returned by the underlying component.

4.1.1.8 Halt A

After a card has been activated, the reader can make the card enter into the HALT state.

The card can be later reactivated through a WUPA command, or using the

phpalI14443p3a_ActivateCard() function.

phStatus_t phpalI14443p3a_HaltA(

 void * pDataParams); [In]

*pDataParams: Pointer to the PAL layer data parameter component.

The values returned by the function can be:

PH_ERR_SUCCESS: The card has entered the HALT state successfully.

PH_ERR_PROTOCOL_ERROR: A protocol error has occurred and the card has not

entered the HALT state.

Other: Value returned by the underlying component.

4.1.1.9 Exchange

Most of the ISO/IEC 14443-3A related functions are based on a half-duplex bidirectional

communication between the reader IC and the card, in which the reader IC sends a

command and waits for a response from the card. This function gives the possibility to

the developer to send an array of bytes to the card and read the corresponding

response.

phStatus_t phpalI14443p3a_Exchange(

 void * pDataParams, [In]

 uint16_t wOption, [In]

 uint8_t * pTxBuffer, [In]

 uint16_t wTxLength, [In]

 uint8_t ** ppRxBuffer, [Out]

 uint16_t * pRxLength); [Out]

*pDataParams: Pointer to the PAL layer data parameter component.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 20 of 205

wOption: All ISO/IEC 14443-3 functions pass the value EXCHANGE_DEFAULT as the

default parameter.

*pTxBuffer: Pointer to the array of data to be transmitted. This array actually contains

the reader command defined by its byte code and the corresponding data.

wTxLength: Number of bytes to be transmitted.

**ppRxBuffer: Pointer to the received array of data.

*pRxLength: Pointer to the address where the information about the received data is.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

4.1.2 ISO/IEC 14443-4A

This part of the standard performs the transmission protocol negotiation for the Type A

communication. In this negotiation, both parties can increase the bit rate of the

communication (if supported by the card). Besides, both the reader IC and the card can

indicate the maximum frame size they accept, and the card can also inform the reader

about other parameters, such as the frame waiting time (time within the card shall start

the response frame after the end of the corresponding reader frame), or its compliancy

with CID (The CID is a logical address that allows the reader to keep up to 15 cards

activated at the same time, and to communicate with them without the need of sending

the others to the HALT state).

The communication negotiation is as follows. Once a Type A card is in the ACTIVE state

(and assuming that is ISO/IEC 14443-4 compliant) the reader sends a RATS (Request

Answer to Select) command indicating the maximum frame size that it accepts and the

CID assigned to the card. The card answers with an ATS (Answer To Select) command,

which may contain, optionally, its maximum frame size, the bit rates that it supports (106,

212, 424 or 848 Kbit/s), parameters related to the time between frames, indicators of

whether the card supports CID and NAD or not and other optional information.

If the card supports higher bit rates than 106 Kbit/s, the reader can send a Protocol

Parameter Selection (PPS) request indicating the speed at which the rest of the

communication will be performed. Once the card has answered to this command with a

PPS response, the communication is completely set up

For further details, please refer to the ISO/IEC 14443-4 standard [18].

The NFC Reader Library implementation regarding the part four of the ISO/IEC standard

is described below

4.1.2.1 ISO/IEC 14443-4A Data Parameter Structure

A special structure has been defined in the NFC Reader Library in order to store the

parameters related to the ISO/IEC 14443-4A standard. This structure has been called

phpalI14443p4a_Sw_DataParams_t:

typedef struct{

 void * pHalDataParams;

 uint8_t bCidSupported;

 uint8_t bNadSupported;

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 21 of 205

 uint8_t bCid;

 uint8_t bBitRateCaps;

 uint8_t bFwi;

 uint8_t bFsci;

 uint8_t bFsdi;

 uint8_t bDri;

 uint8_t bDsi;

} phpalI14443p4a_Sw_DataParams_t;

*pHalDataParams: Pointer to the underlying HAL layer data parameter component. This

attribute can only be assigned by phpalI14443p4_Sw_Init() (see 4.1.2.2).

bCidSupported: Card Identifier (CID) support flag. If the variable is non-zero, CID is

supported.

bNadSupported: NAD support flag. If the variable is non-zero, NAD is supported.

bCid: Card Identifier value assigned to the card. It is ignored if bCidSupported is zero.

The possible values it can take are in the range from 0 to 14. When a new CID is

required, the allocation function phCidManager_GetFreeCid() should be called. When a

card is deselected, the CID assigned to that card shall be released using the

phCidManager_FreeCid() function.

bBitRateCaps: Raw TA(1) byte of the ATS received. This byte contains the values

(known as divisors) with the information about the different bit rates that the card is able

to handle. No API function has been implemented in the NFC Reader Library to parse

this byte.

bFwi: Frame Waiting time Integer. Byte code that determines the Frame Waiting Time:

the time within the card shall start the response frame after the end of the corresponding

reader frame. The FWT is calculated by the following formula:
bFwiMHzFWT 2)56.13/16256(

The FWI can take values from 0 to 14. The reader waits for a response for a time of FWT

+ 60us. If no answer has been received within that time, the reader drops the

communication with the card.

bFsci: Frame Size for proximity Card Integer. It contains information about the maximal

number of bytes that the card is able to receive in a single frame. It can take values from

0 to 8. The corresponding maximum frame size is obtained according to the table below:

Table 1. bFsdi (bFsci) to FSD (FSC) conversion

bFsdi 0 1 2 3 4 5 6 7 8

FSD

(bytes)

16 24 32 40 48 64 96 128 256

bFsdi: Frame Size for proximity coupling Device (Reader) Integer. It contains information

about the maximal number of bytes that the reader is able to receive in a single frame. It

can take values from 0 to 8. The corresponding maximum frame size is obtained

according to the table above.

bDri: Divisor for the Reader to card communication. This parameter acts as a divisor

when referring to the bit duration. When referring to the bit rate, it behaves as a

multiplier. There are 4 legal values (listed in Table 2) defined for this parameter, each

representing a different bit rate.

bDsi: Divisor for the card to reader communication. This parameter acts as a divisor

when referring to the bit duration. When referring to the bit rate, it behaves as a

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 22 of 205

multiplier. There are 4 legal values (listed in Table 2) defined for this parameter, each

representing a different bit rate.

4.1.2.2 Initialization ISO/IEC 14443-4A Parameter Component

This function is used to assign initial values to the attributes of the

phpalI14443p4a_Sw_DataParams_t parameter component. The pointer to the underlying

HAL is the only attribute that can be assigned as an input argument. The values of the

corresponding ISO/IEC 14443-4 parameters are set during the RATS – ATS command

exchange procedure (see 4.1.2.4).

phStatus_t phpalI14443p4a_Sw_Init(

 phpalI14443p4a_Sw_DataParams_t * pDataParams, [In]

 uint16_t wSizeOfDataParams, [In]

 void * pHalDataParams); [In]

*pDataParams: Pointer to the phpalI14443p4a_Sw_DataParams_t parameter

component.

wSizeOfDataParams: Specifies the size of the data parameter structure. It is

recommended to pass sizeof(phpalI14443p4a_Sw_DataParams_t).

*pHalDataParams: Pointer to the underlying HAL layer data parameter component, .

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: wSizeOfDataParams does not match with the

defined size of the PAL phpalI14443p4_Sw_DataParams_t structure.

4.1.2.3 Activate Card

This function sends a RATS command (phpalI14443p3a_Rats()) followed by a PPS

command (phpalI14443p3a_Pps()) when appropriate.

If the reader does not want to increase the 106Kbit/s bit rate to a faster one, the PPS

sequence is not performed. The verification whether the card supports a different bit rate

for each direction has not been implemented. In the case this needs to be checked, the

whole TA(1) byte received is stored in phpalI14443p4a_Sw_DataParams_t-

>bBitRateCaps.

As specified in the ISO/IEC 14443 standard, the RATS command can be sent after a

successful selection of the card.

phStatus_t phpalI14443p4a_ActivateCard(

 void * pDataParams, [In]

 uint8_t bFsdi, [In]

 uint8_t bCid, [In]

 uint8_t bDri, [In]

 uint8_t bDsi, [In]

 uint8_t * pAts); [Out]

*pDataParams: Pointer to the phpalI14443p4a_Sw_DataParams_t parameter

component.

bFsdi: Frame Size for proximity coupling Device (Reader) Integer. It contains information

about the maximal number of bytes that the reader is able to receive in a single frame. It

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 23 of 205

can take values from 0 to 8. The corresponding maximum frame size is obtained

according to Table 1.

bCid: Card Identifier number.

bDri: Divisor for the reader to card communication. This parameter acts as a divisor

when referring to the bit duration. When referring to the bit rate, it behaves as a

multiplier. There are 4 legal values (listed in Table 2) defined for this parameter, each

representing a different bit rate.

bDsi: Divisor for the card to reader communication. This parameter acts as a divisor

when referring to the bit duration. When referring to the bit rate, it behaves as a

multiplier. There are 4 legal values (listed in Table 2) defined for this parameter, each

representing a different bit rate.

*pAts: Pointer to the buffer where the received ATS response is stored. Its content is

parsed by the function and stored in the data parameter component.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: Invalid value of bDri or bDsi (see Table 2).

PH_ERR_PROTOCOL_ERROR: Invalid response received.

Other: Value returned by the underlying component.

4.1.2.4 RATS

This function stores all the parameters obtained during the RATS – ATS command

exchange procedure. As specified in the ISO/IEC 14443 standard, the RATS command

(and consequently this API function) can be sent after a successful selection of the card

has been performed using the functions phpalI14443p3a_Select() or

phpalI14443p3a_ActivateCard() (see sections 4.1.1.7 or 4.1.1.3). As an alternative to this

function, see phpalI14443p4a_ActivateCard() in section 4.1.2.3, which also implements

the PPS procedure.

When receiving the ATS answer from the card, all the relevant information is parsed and

stored in the corresponding phpalI14443p4a_Sw_DataParams_t parameter component

in accordance with the ISO/IEC 14443-4 standard. Therefore, each attribute of the

parameter component will contain the information obtained from the ATS received, or its

default value, in case that parameter was not included in the ATS. By default, the

communication bit rate is set to 106kbit/s, and can be later renegotiated through the

phpalI14443p4a_Pps() function (see 4.1.2.5).

When this function is executed, the reader IC performs the following steps:

First, it sends a RATS command containing FSDI and CID. CID should be obtained from

the CID manager by calling the phCidManager_FreeCid() function.

Then, it waits for the ATS response from the card, or for the timeout. The timeout occurs

4833 + 60 (extension) microseconds after the end of the frame sent.

Finally, if the ATS is received, it parses and stores the relevant information in the

corresponding phpalI14443p4a_Sw_DataParams_t parameter component. The rules for

using the default values are implemented as well. If there is a disagreement with the

ISO/IEC 14443-4A part of the standard in the ATS received, the function returns a

protocol error.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 24 of 205

The TA(1) byte is not parsed nor tested its compliance with the ISO/IEC standard. Its raw

content is directly stored in the bBitRateCaps attribute of the

phpalI14443p4a_Sw_DataParams_t parameter component.

The function waits for a SFGT (Start-up Frame Guard Time) amount of time after having

received the ATS frame.

The frame waiting time is calculated from the FWI parameter, and the reader timeout is

set to this value.

If the card does not respond with a valid ATS frame, the reader sends a DESELECT

request command (repeatedly, as described in section 4.1.4.9). If this also fails, the

reader sends a HLTA command.

phStatus_t phpalI14443p4a_Rats(

 void * pDataParams: [In]

 uint8_t bFsdi: [In]

 uint8_t bCid [In]

 uint8_t * pAts); [Out]

*pDataParams: Pointer to the phpalI14443p4a_Sw_DataParams_t parameter

component.

bFsdi: Frame Size for proximity coupling Device (Reader) Integer. It contains information

about the maximal number of bytes that the reader is able to receive in a single frame. It

can take values from 0 to 8. The corresponding maximum frame size is obtained

according to Table 1.

bCid: Card Identifier value. The possible values it can take are those in the range from 0

to 14. When a new CID is required, the allocation function phCidManager_GetFreeCid()

should be called.

*pAts: Pointer to the buffer where the received ATS command is stored. Its content is

parsed by the function and stored in the data parameter component.

The values returned by the function can be:

PH_ERR_SUCCESS; Operation successful.

PH_ERR_PROTOCOL_ERROR; Invalid response received.

PH_ERR_INVALID_PARAMETER: bFsdi greater than 8 or bCid greater than 14.

Other; Value returned by the underlying component.

4.1.2.5 Protocol and Parameter Selection

This function performs the ISO/IEC 14443-4 PPS request command. For the moment,

this command can only be used to change the bit rate of the communication.

The reader IC sends the desired bit rate to the card and waits for a response. Once the

confirmation response from the card is received, both reader IC and card are configured

to work at the new agreed bit rate. According to the ISO/IEC 14443 standard, a card can

be configured using a PPS command just subsequently after a RATS command

(phpalI14443p4a_Rats()). The verification whether the card supports a different bit rate

for each direction has not been implemented. In the case this needs to be checked, the

whole TA(1) byte received is stored in phpalI14443p4a_Sw_DataParams_t->bBitRateCaps.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 25 of 205

phStatus_t phpalI14443p4a_Pps(

 void * pDataParams, [In]

 uint8_t bDri, [In]

 uint8_t bDsi); [In]

*pDataParams: Pointer to the phpalI14443p4a_Sw_DataParams_t parameter

component. Its member bCid identifies the card.

bDri: Divisor for the reader to card communication. This parameter acts as a divisor

when referring to the bit duration. When referring to the bit rate, it behaves as a

multiplier. There are 4 legal values (listed in Table 2) defined for this parameter, each

representing a different bit rate.

bDsi: Divisor for the card to reader communication. This parameter acts as a divisor

when referring to the bit duration. When referring to the bit rate, it behaves as a

multiplier. There are 4 legal values (listed in Table 2) defined for this parameter, each

representing a different bit rate.

Table 2. DRI and DSI identifiers

DRI or DSI identifier Bit rate

PHPAL_I14443P4A_DATARATE_106 106 kbit/s

PHPAL_I14443P4A_DATARATE_212 212 kbit/s

PHPAL_I14443P4A_DATARATE_424 424 kbit/s

PHPAL_I14443P4A_DATARATE_848 848 kbit/s

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: Invalid value for bDri or bDsi used.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

Other: Value returned by the underlying component.

4.1.2.6 Get ISO/IEC 14443-4A Parameters

This function returns all the attributes of a phpalI14443p4a_Sw_DataParams_t

parameter component.

phStatus_t phpalI14443p4a_GetProtocolParams(

 void * pDataParams, [In]

 uint8_t * pCidEnabled, [Out]

 uint8_t * pCid, [Out]

 uint8_t * pNadSupported, [Out]

 uint8_t * pFwi, [Out]

 uint8_t * pFsdi, [Out]

 uint8_t * pFsci); [Out]

*pDataParams: Pointer to the phpalI14443p4a_Sw_DataParams_t parameter

component.

*pCidEnabled: Pointer to the CID enabling flag. If it is non-zero, it means that the CID is

enabled.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 26 of 205

*pCid: Pointer to the CID value. The possible values it can take are those in the range

from 0 to 14.

*pNadSupported: Pointer to the NAD support flag. If it is non-zero, it means that the CID

is enabled.

*pFwi: Frame Waiting time Integer. Byte code that determines the Frame Waiting Time:

the time within which the card shall start the response frame after the end of the

corresponding reader frame. The FWI can take values from 0 to 14.

*pFsdi: Frame Size for proximity coupling Device Integer. It contains information about

the maximal number of bytes that the reader is able to receive in a single frame. It can

take values from 0 to 8. The corresponding maximum frame size is obtained according to

Table 1.

*pFsci: Frame Size for proximity Card Integer. It contains information about the maximal

number of bytes that the card is able to receive in a single frame. It can take values from

0 to 8. The corresponding maximum frame size is obtained according to Table 1.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

4.1.3 ISO/IEC 14443-3B

In this part of the standard, the initialization of a Type B communication is described. This

initialization begins with an anticollision procedure in which the reader IC asks for the

UID of the different cards under its RF field at different randomly assigned time slots.

Once the reader IC has received the card’s UID, it can select it and begin with the higher

layer protocol communication, or it can send it to the HALT state.

The state diagram of the Type B card initialization is shown below:

Type B proximity card state diagram

When the card is out of the RF field generated by the reader IC, it is in the POWER-OFF

state. As soon as it is powered, it enters the IDLE state, where it waits for REQB or

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 27 of 205

WUPB commands with an adequate AFI (Application Family Identifier, allows the reader

IC to wake up only the cards from a certain application or family of applications). This

command includes an N parameter indicating the number of time slots in the anticollision

procedure. The card generates a random R number indicating the time slot at which the

card will answer. If this number is 1, the card enters the READY-DECLARED state and

sends an ATQB frame to the reader IC that includes its PUPI (a random identifier) and

other protocol information. If this is not the case, it enters the READY-REQUESTED

state. In this state, it waits for the reader IC to send a slot-MARKER with its R number, to

enter the READY-DECLARED state and send an ATQB frame.

If the reader IC wants to select a card in the READY-DECLARED state, it shall send an

ATTRIB command with its PUPI on it. This command may include, besides other protocol

information, information from the higher layer application as well. When receiving this

command, the card responds with an answer to ATTRIB command, which may also

contain information from the higher layer application. Once this frame is received by the

reader IC, the exchange of information from the higher layer starts.

The reader IC can also send a card in the READY-DECLARED state to the HALT state

through a HLTB command. This state is similar to the IDLE state, with the difference that

in this state the REQB command is ignored.

As we said before, the ATQB frame contains some protocol information about the card.

The most important parameter included is the PUPI, a 4-byte value that identifies the

card. It also informs about the bit rates at which the card is able to work (106, 212, 424 or

848 Kbit/s), the frame waiting time (time within the card shall start the response frame

after the end of the corresponding reader IC frame), the maximum frame size that it

admits on reception, its compliancy with the ISO/IEC 14443-4 part of the standard, or if it

supports CID or NAD addressing (The CID is a logical address that allows the reader IC

to keep up to 15 cards activated at the same time, and to communicate with them without

the need of sending the others to the HALT state).

On the other hand, the ATTRIB command selects the card through its PUPI, and

includes some protocol information about the reader IC. This information includes the bit

rates, at which the rest of the communication will be performed, the maximum frame size

that the reader IC admits on reception, the CID assigned to the card, and some

information about the frame timing.

An example of the Type B card initialization is shown below:

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 28 of 205

ISO/IEC 14443-3B Operation Flow

As we said before, the value of R is randomly chosen by the card, and shall always be

between 1 and N. As we can see in the figure above, the Slot-Marker commands do not

need to be called sequentially with incremental slot numbers.

The NFC Reader Library implementation of the ISO/IEC 14443-3B part is described

below.

4.1.3.1 ISO/IEC 14443-3B Data Parameter Structure

A special structure has been defined in the NFC Reader Library in order to store the

parameters related to the ISO/IEC 14443-3B standard. This structure has been called

phpalI14443p3b_Sw_DataParams_t.

typedef struct{

 void * pHalDataParams;

 uint8_t bExtAtqb;

 uint8_t pPupi[4];

 uint8_t pPupiValid;

 uint8_t bCidSupported;

 uint8_t bNadSupported;

 uint8_t bCid;

 uint8_t bFwi;

 uint8_t bFsci;

 uint8_t bFsdi;

 uint8_t bDri;

 uint8_t bDsi;

 uint8_t bAttribParam1;

 uint8_t *pHigherLayerInf;

 uint8_t wHigherLayerInfLen;

 uint8_t *pHigherLayerResp;

 uint8_t wHigherLayerRespSize;

 uint8_t wHigherLayerRespLen;

} phpalI14443p3b_Sw_DataParams_t;

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 29 of 205

*pHalDataParams: Pointer to the underlying HAL parameter structure.

bExtAtqb: Flag indicating whether the last ATQB received has the extended format.

pPupi[4]: Array containing the PUPI of the card.

pPupiValid: Flag indicating whether the stored PUPI is valid or not (0 if it is not valid).

bCidSupported: CID support flag. If it is non-zero, it means that the CID is enabled

bNadSupported: NAD support flag. If it is non-zero, it means that the NAD is enabled.

bCid: Card Identifier value. It is ignored if bCidSupported is zero. The possible values it

can take are those in the range from 0 to 14. When a new CID is required, the allocation

function phCidManager_GetFreeCid() should be called. When a card is deselected, the

CID assigned to that card shall be released using the phCidManager_FreeCid() function.

bFwi: Frame Waiting time Integer. Byte code that determines the Frame Waiting Time: It

is the time in which the card shall start the response frame after the end of the

corresponding reader frame. The FWT is calculated by the following formula:
bFwiMHzFWT 2)56.13/16256(

The FWI can take values from 0 to 14. The reader waits for a response for a time of FWT

+ 60us. If no answer has been received within that time, the reader drops the

communication with the card.

bFsci: Frame Size for proximity Card Integer. It contains information about the maximal

number of bytes that the card is able to receive in a single frame. It can take values from

0 to 8. The corresponding maximum frame size is obtained according to the table below:

Table 3. bFsdi (bFsci) to FSD (FSC) conversion

bFsdi 0 1 2 3 4 5 6 7 8

FSD

(bytes)

16 24 32 40 48 64 96 128 256

bFsdi: Frame Size for proximity coupling Device (Reader) Integer. It contains information

about the maximal number of bytes that the reader is able to receive in a single frame. It

can take values from 0 to 8. The corresponding maximum frame size is obtained

according to the table above.

bDri: Divisor for the reader to card communication. This parameter acts as a divisor

when referring to the bit duration. When referring to the bit rate, it behaves as a

multiplier. There are 4 legal values (listed in Table 2) defined for this parameter, each

representing a different bit rate.

bDsi: Divisor for the card to reader communication. This parameter acts as a divisor

when referring to the bit duration. When referring to the bit rate, it behaves as a

multiplier. There are 4 legal values (listed in Table 2) defined for this parameter, each

representing a different bit rate.

bAttribParam1: Raw Param1 byte of the ATTRIB command. This byte contains

information about the frame timing between the reader and the card. No API function has

been implemented in the NFC Reader Library to parse this byte.

*pHigherLayerInf: Pointer to the higher layer information to be sent in the ATTRIB

command.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 30 of 205

wHigherLayerInfLen: Length of the higher layer information to be sent in the ATTRIB

command.

*pHigherLayerResp: Pointer to the higher layer response received in the answer to

ATTRIB command.

wHigherLayerRespSize: Size of the buffer reserved for the higher layer response from

the answer to ATTRIB command.

wHigherLayerRespLen: Length of the higher layer response received in the answer to

ATTRIB command.

4.1.3.2 Initialization ISO/IEC 14443-3B Parameter Component

This function initializes the phpalI14443p4b_Sw_DataParams_t parameter component.

phStatus_t phpalI14443p3b_Sw_Init(

 phpalI14443p3b_Sw_DataParams_t * pDataParams, [In]

 uint16_t wSizeOfDataParams, [In]

 void * pHalDataParams); [In]

*pDataParams: Pointer to the phpalI14443p4b_Sw_DataParams_t parameter component.

wSizeOfDataParams: Specifies the size of the data parameter structure. It is

recommended to pass sizeof phpalI14443p4b_Sw_DataParams_t).

*pHalDataParams: Pointer to the corresponding underlying HAL parameter component.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: wSizeOfDataParams does not match with the defined

size of the PAL phpalI14443p3a_Sw_DataParams_t structure.

4.1.3.3 Get ISO/IEC 14443-3B Parameters

This function returns the main attributes of a phpalI14443p3b_Sw_DataParams_t

parameter component.

phStatus_t phpalI14443p3b_GetProtocolParams(

 void * pDataParams, [In]

 uint8_t * pCidEnabled, [Out]

 uint8_t * pCid, [Out]

 uint8_t * pNadSupported, [Out]

 uint8_t * pFwi, [Out]

 uint8_t * pFsdi, [Out]

 uint8_t * pFsci); [Out]

*pDataParams: Pointer to the phpalI14443p3b_Sw_DataParams_t parameter

component.

*pCidEnabled: Pointer to the CID enable flag. If it is non-zero, it means that the CID is

enabled.

*pCid: Pointer to the Card Identifier. The possible values it can take are those in the

range from 0 to 14.

*pNadSupported: Pointer to the NAD support flag. If it is non-zero, it means that the

NAD is enabled .

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 31 of 205

*pFwi: Frame Waiting time Integer. Byte code that determines the Frame Waiting Time:

the time within which the card shall start the response frame after the end of the

corresponding reader frame. The FWI can take values from 0 to 14.

*pFsdi: Frame Size for proximity coupling Device Integer. It contains information about

the maximal number of bytes that the reader is able to receive in a single frame. It can

take values from 0 to 8. The corresponding maximum frame size is obtained according to

Table 1.

*pFsci: Frame Size for proximity Card Integer. It contains information about the maximal

number of bytes that the card is able to receive in a single frame. It can take values from

0 to 8. The corresponding maximum frame size is obtained according to Table 1.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

4.1.3.4 Set Config ISO/IEC 14443-3B

This function is used to set the value of a certain attribute from the

phpalI14443p3b_Sw_DataParams_t data parameter component. Currently, only the

value of the bAttribParam1 attribute can be set. This attribute shall be set before

executing the phpalI14443p3b_Attrib function (see 4.1.3.12).

phStatus_t phpalI14443p3b_SetConfig(

 void * pDataParams, [In]

 uint16_t wConfig, [In]

 uint16_t wValue); [In]

*pDataParams: Pointer to the phpalI14443p3b_Sw_DataParams_t parameter

component.

wConfig: Configuration identifier that represents the desired attribute to be set.

Currently, the only admitted value is PHPAL_I14443P3B_CONFIG_ATTRIB_PARAM1.

wValue: Configuration value to which the wConfig identifier shall be set.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

Other: Value returned by the underlying component.

4.1.3.5 Get Config ISO/IEC 14443-3B

This function is used to get the value of a certain attribute from the

phpalI14443p3b_Sw_DataParams_t data parameter component. Currently, only the

value of the bAttribParam1 attribute can be acquired.

phStatus_t phpalI14443p3b_GetConfig(

 void * pDataParams, [In]

 uint16_t wConfig, [In]

 uint16_t * pValue); [In]

*pDataParams: Pointer to the phpalI14443p3b_Sw_DataParams_t parameter

component.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 32 of 205

wConfig: Configuration identifier that represents the desired attribute to be acquired.

Currently, the only admitted value is PHPAL_I14443P3B_CONFIG_ATTRIB_PARAM1.

*pValue: Pointer to the variable where the value of the attribute is returned.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

Other: Value returned by the underlying component.

4.1.3.6 Set Higher Layer Inf ISO/IEC 14443-3B

This function is used to set the higher layer information field of the ATTRIB command.

This attribute shall be set before executing the phpalI14443p3b_Attrib function (see

4.1.3.12).

phStatus_t phpalI14443p3b_SetHigherLayerInf(

 void * pDataParams, [In]

 uint16_t * pTxBuffer, [In]

 uint16_t wTxLength, [In]

 uint16_t * pRxBuffer, [In]

 uint16_t wRxBufSize); [In]

*pDataParams: Pointer to the phpalI14443p3b_Sw_DataParams_t parameter

component.

*pTxBuffer: Pointer to the higher layer information to be sent in the ATTRIB command. It

can be NULL if wTxLength is 0.

wTxLength: Length of the higher layer information to be sent in the ATTRIB command. It

can be 0.

*pRxBuffer: Pointer to the buffer reserved for the higher layer response from the answer

to ATTRIB command.

wRxLength: Size of the buffer reserved for the higher layer response from the answer to

ATTRIB command.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_USE_CONDITION: Feature not available.

4.1.3.7 Get Higher Layer Resp ISO/IEC 14443-3B

This function is used to get the higher layer response field from the answer to ATTRIB

command received.

phStatus_t phpalI14443p3b_GetHigherlayerResp(

 void * pDataParams, [In]

 uint16_t ** ppRxBuffer, [Out]

 uint16_t * pRxLength); [Out]

*pDataParams: Pointer to the phpalI14443p3b_Sw_DataParams_t parameter

component.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 33 of 205

**ppRxBuffer: Pointer to the higher layer response received in the answer to ATTRIB

command.

*pRxLength: Pointer to the length of the higher layer response received in the answer to

ATTRIB command.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_USE_CONDITION: Feature not available.

4.1.3.8 Activate Card

This function performs the whole Type B card initialization process , from its waking up

with a REQB or a WUPB command, until its selection through an ATTRIB command,

including the anticollision procedure, as specified in ISO/IEC 14443-3B.

If no PUPI is provided to the function, a REQB command is performed. If the PUPI is

given, a WUPB command is sent. If the activation is successful, the PUPI of the activated

card is acquired. Even when there are more cards present in the reader IC RF field, the

activation function ensures that just one card is selected.

phStatus_t phpalI14443p3b_ActivateCard(

 void * pDataParams, [In]

 uint8_t * pPupi, [In]

 uint8_t bPupiLength, [In]

 uint8_t bNumSlots, [In]

 uint8_t bAfi, [In]

 uint8_t bExtAtqb, [In]

 uint8_t bFsdi, [In]

 uint8_t bCid, [In]

 uint8_t bDri, [In]

 uint8_t bDsi, [In]

 uint8_t * pAtqb, [Out]

 uint8_t * pAtqbLen, [Out]

 uint8_t * pMbli, [Out]

 uint8_t * pMoreCardsAvailable); [Out]

*pDataParams: Pointer to the phpalI14443p3b_Sw_DataParams_t parameter

component.

*pPupi: Pointer to the PUPI of the card to be activated.

pPupiLength: Length of the given PUPI. It can take the values 0 and 4:

0 – means that the PUPI is unknown. Therefore, the function begins with a REQB

command. At the end of the function the PUPI of the card is captured.

4 – the function begins with a WUPB command.

bNumSlots: Parameter N from the REQB or ATQB command. It contains information

about the number of slots in the anticollision procedure. The number of slots is calculated

as Num_of_slots = 2
N
. The bNumSlots parameter can take values from 0 to 4.

bAfi: Application Family Identifier. To ignore this field, it shall be set to 0.

bExtAtqb: Flag to enable the extended format of the ATQB command.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 34 of 205

bFsdi: Frame Size for proximity coupling Device Integer. It contains information about

the maximal number of bytes that the reader IC is able to receive in a single frame. It can

take values from 0 to 8. The corresponding maximum frame size is obtained according to

Table 1.

bCid: Card Identifier.

bDri: Divisor for the reader to card communication. This parameter acts as a divisor

when referring to the bit duration. When referring to the bit rate, it behaves as a

multiplier. There are 4 legal values (listed in Table 2) defined for this parameter, each

representing a different bit rate.

bDsi: Divisor for the card to reader communication. This parameter acts as a divisor

when referring to the bit duration. When referring to the bit rate, it behaves as a

multiplier. There are 4 legal values (listed in Table 2) defined for this parameter, each

representing a different bit rate.

*pAtqb: Pointer to the buffer where the received ATQB response is stored. Its content is

parsed by the function and stored in the data parameter component.

*pAtqbLen: Pointer to the length of the ATQB response received.

*pMbli: Pointer to the Maximum Buffer Length Index. It contains information about the

Maximum Buffer Length of the card.

*pMoreCardsAvailable: Indicates whether one or more cards are under the Reader RF

field at the same time.

PH_ON: More cards available. A collision occurred.

PH_OFF: Just one card under reader IC RF field.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

Other: Value returned by the underlying component.

4.1.3.9 Request B

This function transmits a request Type B command (REQB) and waits to receive an

answer to that request (ATQB), or for a timeout, which would mean that none of the

cards had chosen the first slot in the anticollision procedure. The data rate is

automatically set to 106 kbit/s for both receiver and transmitter.

phStatus_t phpalI14443p3b_RequestB(

 void * pDataParams, [In]

 uint8_t bNumSlots, [In]

 uint8_t bAfi, [In]

 uint8_t bExtAtqb, [In]

 uint8_t * pAtqb, [Out]

 uint8_t * pAtqbLen); [Out]

*pDataParams: Pointer to the phpalI14443p3b_Sw_DataParams_t parameter

component.

bNumSlots: Parameter N from the REQB or ATQB command. It contains information

about the number of slots in the anticollision procedure. The number of slots is calculated

as Num_of_slots = 2
N
. The bNumSlots parameter can take values from 0 to 4.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 35 of 205

bAfi: Application Family Identifier. To ignore this field, it shall be set to 0.

bExtAtqb: Flag to enable the extended format of the ATQB command.

*pAtqb: Pointer to the buffer where the received ATQB response is stored. Its content is

parsed by the function and stored in the data parameter component.

*pAtqbLen: Pointer to the length of the ATQB response received.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

Other: Value returned by the underlying component.

4.1.3.10 Wake Up B

This function activates a card that was pushed to the HALT state previously.

phStatus_t phpalI14443p3b_WakeUpB(

 void * pDataParams, [In]

 uint8_t bNumSlots, [In]

 uint8_t bAfi, [In]

 uint8_t bExtAtqb, [In]

 uint8_t * pAtqb, [Out]

 uint8_t * pAtqbLen); [Out]

*pDataParams: Pointer to the phpalI14443p3b_Sw_DataParams_t parameter

component.

bNumSlots: Parameter N from the REQB or ATQB command. It contains information

about the number of slots in the anticollision procedure. The number of slots is calculated

as Num_of_slots = 2
N
. The bNumSlots parameter can take values from 0 to 4.

bAfi: Application Family Identifier. To ignore this field, it shall be set to 0.

bExtAtqb: Flag to enable the extended format of the ATQB command.

*pAtqb: Pointer to the buffer where the received ATQB response is stored. Its content is

parsed by the function and stored in the data parameter component.

*pAtqbLen: Pointer to the length of the ATQB response received.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

Other: Value returned by the underlying component.

4.1.3.11 Slot Marker

This function sends a Slot-MARKER command and stores the ATQB frame received.

phStatus_t phpalI14443p3b_SlotMarker(

 void * pDataParams, [In]

 uint8_t bSlotNumber, [In]

 uint8_t * pAtqb, [Out]

 uint8_t * pAtqbLen); [Out]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 36 of 205

*pDataParams: Pointer to the phpalI14443p3b_Sw_DataParams_t parameter

component.

bSlotNumber: Slot number . The possible values are those in the range from 1 to 15

(which represent the slots from 2 to 16).

*pAtqb: Pointer to the buffer where the received ATQB response is stored. Its content is

parsed by the function and stored in the data parameter component.

*pAtqbLen: Pointer to the length of the ATQB response received.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

Other: Value returned by the underlying component.

4.1.3.12 Attrib

This function sends an ATTRIB command to the chosen card in order to select this card

and begin with the data exchange. It also sets some communication parameters, such as

the bit rates.

If the developer wants to use frame timing parameters different to those by default, they

shall set the bAttribParam1 attribute from the parameter component to the proper value,

as defined in ISO/IEC 14443-3B. This can be done through the

phpalI14443p3b_SetConfig function (see 4.1.3.4). Similarly, the higher layer information

field can be set to a certain value through the phpalI14443p3b_SetHigherLayerInf()

function (see 4.1.3.6).

phStatus_t phpalI14443p3b_Attrib(

 void * pDataParams, [In]

 uint8_t * pAtqb, [In]

 uint8_t bAtqbLen, [In]

 uint8_t bFsdi, [In]

 uint8_t bCid, [In]

 uint8_t bDri, [In]

 uint8_t bDsi, [In]

 uint8_t * pMbli); [Out]

*pDataParams: Pointer to the phpalI14443p3b_Sw_DataParams_t parameter

component.

*pAtqb: Pointer to the buffer where the received ATQB response has been stored.

bAtqbLen: Length of the ATQB response received.

bFsdi: Frame Size for proximity coupling Device Integer. It contains information about

the maximal number of bytes that the reader IC is able to receive in a single frame. It can

take values from 0 to 8. The corresponding maximum frame size is obtained according to

Table 1.

bCid: Card Identifier.

bDri: Divisor for the reader to card communication. This parameter acts as a divisor

when referring to the bit duration. When referring to the bit rate, it behaves as a

multiplier. There are 4 legal values (listed in Table 2) defined for this parameter, each

representing a different bit rate.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 37 of 205

bDsi: Divisor for the card to reader communication. This parameter acts as a divisor

when referring to the bit duration. When referring to the bit rate, it behaves as a

multiplier. There are 4 legal values (listed in Table 2) defined for this parameter, each

representing a different bit rate.

*pMbli: Pointer to the Maximum Buffer Length Index. It contains information about the

Maximum Buffer Length of the card.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

Other: Value returned by the underlying component.

4.1.3.13 Halt B

After a card has been sent to the READY-DECLARED state, the reader IC can make the

card enter the HALT state. The card can be later reactivated through a WUPB command,

or using the phpalI14443p3b_ActivateCard() function.

phStatus_t phpalI14443p3a_HaltB(

 void * pDataParams); [In]

*pDataParams: Pointer to the phpalI14443p3b_Sw_DataParams_t parameter

component.

The values returned by the function can be:

PH_ERR_SUCCESS: The card has entered the HALT state successfully.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

Other: Value returned by the underlying component.

4.1.3.14 Exchange

Most of the ISO/IEC 14443-3A related functions are based on a half-duplex bidirectional

communication between the reader IC and the card, in which the reader IC sends a

command and waits for a response from the card. This function gives the possibility to

the developer to send an array of bytes to the card and read the corresponding

response.

phStatus_t phpalI14443p3b_Exchange(

 void * pDataParams, [In]

 uint16_t wOption, [In]

 uint8_t * pTxBuffer, [In]

 uint16_t wTxLength, [In]

 uint8_t ** ppRxBuffer, [Out]

 uint16_t * pRxLength); [Out]

*pDataParams: Pointer to the phpalI14443p3b_Sw_DataParams_t parameter

component.

wOption: All ISO/IEC 14443-3 functions pass the value EXCHANGE_DEFAULT as the

default parameter.

*pTxBuffer: Pointer to the array of data to be transmitted. This array actually contains is

the reader IC command defined by its byte code and the corresponding data.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 38 of 205

wTxLength: Number of bytes to be transmitted.

**ppRxBuffer: Pointer to the received array of data.

*pRxLength: Pointer to the address where the information about the received data is.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

4.1.4 ISO/IEC 14443-4

This part of the standard provides a means for the higher layer protocols of the card and

the reader to communicate one with each other, once the communication has been

initialized. All the block formats and the operations described are common for both Type

A and Type B communication, so the higher layer applications do not need to know what

protocols are being used underneath.

This part of the standard, besides describing the information blocks which allow higher

layer applications to exchange data, it defines other control blocks that allow the protocol

to perform other tasks such as confirming the correct reception of a frame, checking the

presence of a card, requesting an extension of the frame waiting time, or finishing the

communication and sending the card to the HALT state.

Furthermore, it includes other functionalities such as multi-activation (the reader is able

to hold several cards in the ACTIVE state simultaneously thanks to the CID field),

chaining (the reader and card are able to transmit information longer than the frame sizes

defined, by dividing it into several blocks), or power level indication (this functionality has

not been implemented in the Reader Library).

For further details on the ISO/IEC 14443-4, please refer to the standard [18].

The NFC Reader Library implementation of the ISO/IEC 14443-4 is described below.

4.1.4.1 ISO/IEC 14443-4 Data Parameter Structure

A special structure has been defined in the NFC Reader Library in order to store the

parameters related to the ISO/IEC 14443-4 standard. This structure has been called

phpalI14443p4a_Sw_DataParams_t. Besides the parameters defined in the standard,

there are also some state variables included in the structure for internal management

and advanced handling of the functions of the module. The values of the attributes can

be modified using the phpalI14443p4_SetConfig() function, or reset using the

phpalI14443p4_ResetProtocol() function (see 4.1.4.5 or 4.1.4.3 respectively).

typedef struct{

 void * pHalDataParams;

 uint8_t bStateNow;

 uint8_t bCidEnabled;

 uint8_t bCid;

 uint8_t bNadEnabled;

 uint8_t bNad;

 uint8_t bFwi;

 uint8_t bFsdi;

 uint8_t bFsci;

 uint8_t bPcbBlockNum;

 uint8_t bMaxRetryCount;

} phpalI14443p4_Sw_DataParams_t;

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 39 of 205

*pHalDataParams: Pointer to the underlying HAL layer data parameter component. This

attribute can only be assigned by phpalI14443p4_Sw_Init() (see 4.1.4.2).

bCidEnabled: Pointer to the CID enabling flag. If it is non-zero, it means that the CID is

enabled.

bCid: 4 bit Card Identifier. The possible values it can take are those in the range from 0

to 14. Ignored if bCidSupported is zero.

bNadEnabled: Node Address enable flag. Nonzero means NAD is enabled.

bNad: Node Address. Ignored if bNadEnabled is zero.

bFwi: Frame Waiting time Integer. Byte code that determines the Frame Waiting Time:

the time within which the card shall start the response frame after the end of the

corresponding reader frame. The FWT is calculated by the following formula:
bFwiMHzFWT 2)56.13/16256(

The FWI can take values from 0 to 14. The reader waits for a response for a time of FWT
+ 60us. If no answer has been received within that time, the reader drops the
communication with the card.
The FWI value is obtained at the initialization process from the ATS frame received when
using the phpalI14443p4a_Rats() function. The value is automatically stored in the
corresponding phpalI14443p4a_Sw_DataParams_t parameter component (see 4.1.2.1).
This value needs to be copied in the bFwi attribute of the
phpalI14443p4_Sw_DataParams_t parameter component (see 4.1.4.1), so that
afterwards phpalI14443p4_Exchange() and phpalI14443p4_PressCheck() functions are
appropriately performed.

bFsdi: Frame Size for proximity coupling Device Integer. It contains information about

the maximal number of bytes that the reader is able to receive in a single frame. It can

take values from 0 to 8. The corresponding maximum frame size is obtained according to

Table 1. The actual limit of the information field is smaller due to the prologue and

epilogue fields of the block.

bFsci: Frame Size for proximity Card Integer. It contains information about the maximal

number of bytes that the card is able to receive in a single frame. It can take values from

0 to 8. The corresponding maximum frame size is obtained according to Table 1. The

actual limit of the information field is smaller due to the prologue and epilogue fields of

the block.

bMaxRetryCount: When executing the phpalI14443p4_Exchange() or

phpalI14443p4_Deselect() functions a violation of the ISO/IEC 14443-4 protocol occurs,

a retransmission is performed. The number of retransmissions is restricted by this

attribute.

bStateNow: Current exchange data state. This is a state variable necessary for the

internal management, and should not be modified by the developer.

bPcbBlockNum: Block number of the current information block. This parameter is just

for internal management, and should not be modified by the developer, although the

phpalI14443p4_SetConfig() function (see 4.1.4.5) provides this option.

4.1.4.2 Init ISO/IEC 14443-4 Parameter Component

This function fills a given data parameter component with its default values.

phStatus_t phpalI14443p4_Sw_Init(

 phpalI14443p4_Sw_DataParams_t * pDataParams, [In]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 40 of 205

 uint16_t wSizeOfDataParams, [In]

 void * pHalDataParams); [In]

*pDataParams: Pointer to the phpalI14443p4_Sw_DataParams_t parameter component.

wSizeOfDataParams: Specifies the size of the data parameter structure. It is

recommended to pass sizeof(phpalI14443p4_Sw_DataParams_t).

*pHalDataParams: Pointer to the underlying HAL layer data parameter component,

depending on the used reader.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: wSizeOfDataParams does not match with the

defined size of the PAL phpalI14443p4_Sw_DataParams_t structure.

4.1.4.3 Reset Protocol ISO/IEC 14443-4

This function sets all the attributes from the phpalI14443p4_Sw_DataParams_t

parameter component to zero, or to their initial or default values as defined in the

ISO/IEC 14443-4 standard (see the table below).

phStatus_t phpalI14443p4_ResetProtocol(

 void * pDataParams); [In]

*pDataParams: Pointer to the phpalI14443p4_Sw_DataParams_t parameter component.

Table 4. Values after reset

attribute value Meaning

bCidEnabled NULL not enabled

bCid NULL 0

bNadEnabled NULL not enabled

bNad NULL 0

bFwi 4 4.8ms

bFsdi 0 16 bytes

bFsci 2 32 bytes

bMaxRetryCount 2 2

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

4.1.4.4 Set Protocol ISO/IEC 14443-4

This function sets most of the attributes from the phpalI14443p4_Sw_DataParams_t

parameter component. Some internal parameters such as state variables stay

untouched.

Once the initialization of the communication has been done (and after the

phpalI14443p4a_Rats() function has been executed see 4.1.2.4), it is recommended to

pass the output values of the phpalI14443p4a_GetProtocolParams() function (see

4.1.2.6) as the input parameters to this function.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 41 of 205

If the developer needs to set just one attribute he should consider using the

phpalI14443p4_SetConfig() function (see section 4.1.4.5).

phStatus_t phpalI14443p4_SetProtocol(

 void * pDataParams, [In]

 uint8_t bCidEnable, [In]

 uint8_t bCid, [In]

 uint8_t bNadEnable, [In]

 uint8_t bNad, [In]

 uint8_t bFwi, [In]

 uint8_t bFsdi, [In]

 uint8_t bFsci); [In]

*pDataParams: Pointer to the phpalI14443p4_Sw_DataParams_t parameter component.

bCidEnable: Pointer to the CID enabling flag. If it is non-zero, it means that the CID is

enabled.

bCid: 4 bit Card Identifier. The possible values it can take are those in the range from 0

to 14. Ignored if bCidSupported is zero.

bNadEnable: Node Address enable flag. Nonzero means CID is enabled.

bNad: Node Address. Ignored if bNadEnabled is zero.

bFwi: Frame Waiting time Integer. Byte code that determines the Frame Waiting Time:

the time within which the card shall start the response frame after the end of the

corresponding reader frame. The FWT is calculated by the following formula:
bFwiMHzFWT 2)56.13/16256(

The FWI can take values from 0 to 14. The reader waits for a response for a time of FWT

+ 60us. If no answer has been received within that time, the reader drops the

communication with the card.

The FWI value is obtained at the initialization process from the ATS frame received when

using the phpalI14443p4a_Rats() function. The value is automatically stored in the

corresponding phpalI14443p4a_Sw_DataParams_t parameter component (see 4.2.1).

This value needs to be copied in the bFwi attribute of the

phpalI14443p4_Sw_DataParams_t parameter component (see 4.1.4.1).

bFsdi Frame Size for proximity coupling Device Integer. It contains information about the

maximal number of bytes that the reader is able to receive in a single frame. It can take

values from 0 to 8. The corresponding maximum frame size is obtained according to

Table 1.

bFsci: Frame Size for proximity Card Integer. It contains information about the maximal

number of bytes that the card is able to receive in a single frame. It can take values from

0 to 8. The corresponding maximum frame size is obtained according to Table 1.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: At least one of the input attributes (among bCid,

bFwi, bFsdi and bFsci) has an invalid value.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 42 of 205

4.1.4.5 Set Config ISO/IEC 14443-4

This function is used to set a single attribute from the phpalI14443p4_Sw_DataParams_t

data parameter component. If the developer needs to set more than one attribute at the

same time he should consider using the phpalI14443p4_SetProtocol() function (see

section 4.1.4.4).

phStatus_t phpalI14443p4_SetConfig(

 void * pDataParams, [In]

 uint16_t wConfig, [In]

 uint16_t wValue); [In]

*pDataParams: Pointer to the phpalI14443p4_Sw_DataParams_t parameter component.

wConfig: Configuration identifier that represents the desired attribute to be set (see the

second column of Table 5).

wValue: Configuration value that the chosen attribute shall be set to (see the third

column of Table 5).

Table 5. Identifiers of attributes of phpalI14443p4_Sw_DataParams_t

The first column contains the attributes of the phpalI14443p4_Sw_DataParams_t parameter structure

as presented in section 4.1.4.1.

In the second column the identifiers used as the second input argument to point the attribute that

shall be set (or got) are shown

In the third column the legal values that can be assigned to each particular parameter are indicated

Attribute configuration identifier configuration value

bPcbBlockNum PHPAL_I14443P4_CONFIG_BLOCKNO
Only 0 or 1 are legal values

bCidEnabled, bCid PHPAL_I14443P4_CONFIG_CID
CID enabler << 8 | CID; CID from

0 to 14

bNadEnabled, bNad PHPAL_I14443P4_CONFIG_NAD
NAD enabler << 8 | NAD

bFwi PHPAL_I14443P4_CONFIG_FWI
From 0 to 14

bFsdi, bFsci PHPAL_I14443P4_CONFIG_FSI
FSDI << 8 | FSCI

bMaxRetryCount PHPAL_I14443P4_CONFIG_MAXRETRYCOUNT
from 0 to 255

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: The given configuration value is illegal for the

parameter indicated.

PH_ERR_UNSUPPORTED_PARAMETER: The given configuration is unknown.

4.1.4.6 Get Config ISO/IEC 14443-4

This function is used to get the value of a certain attribute from the

phpalI14443p4_Sw_DataParams_t data parameter component.

phStatus_t phpalI14443p4_GetConfig(

 void * pDataParams, [In]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 43 of 205

 uint16_t wConfig, [In]

 uint16_t *wValue); [In]

*pDataParams: Pointer to the phpalI14443p4_Sw_DataParams_t parameter component.

wConfig: Configuration identifier that represents the desired attribute to be set (see the

second column of Table 5).

*wValue: Pointer to the variable where the value of the attribute is returned, coded in the

format shown in the third column of Table 5.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_UNSUPPORTED_PARAMETER: The given configuration is unknown.

4.1.4.7 Exchange

This is the function responsible for the exchange of the information of the upper layer

applications. It is able to handle all the events related to the ISO/IEC 14443-4 data

communication:

 Encapsulating the data for transmission into one or more I-blocks (depending on

the value of FSC and the length of the message).

 Switching the block number.

 Handling the received acknowledgement blocks (both R(ACK) and R(NAK)).

 Handling unanswered frames and frame errors.

The developer just needs to process the data to be transmitted and the data received

from the upper layer, no knowledge about the structures of the frames or the operation of

the protocol is required.

MIFARE DESFire commands and other products compliant with part 4 of the ISO 14443

standard, should be transferred using this function.

phStatus_t phpalI14443p4_Exchange(

 void * pDataParams, [In]

 uint16_t wOption, [In]

 uint8_t * pTxBuffer, [In]

 uint16_t wTxLength, [In]

 uint8_t ** ppRxBuffer, [Out]

 uint16_t * pRxLength); [Out]

*pDataParams: Pointer to the phpalI14443p4_Sw_DataParams_t parameter component.

wOption: Option parameter. The possible values are described in the

src\NxpRdLib_PublicRelease\intfs0\phpalI14443p4.h file. In the case of a communication

with a MIFARE DESFire card, EXCHANGE_DEFAULT option can be used.

*pTxBuffer: Pointer to the application data to be transmitted.

wTxLength: Length of the application data to be transmitted.

**ppRxBuffer: Pointer to the buffer where the received application data from the card will

be stored.

*pRxLength: Pointer to the length of the application data received.

The values returned by the function can be:

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 44 of 205

PH_ERR_SUCCESS: Operation successful.

PHPAL_I14443P4_ERR_RECOVERY_FAILED: Expected frames from the card not

received (after the retransmissions).

PH_ERR_SUCCESS_CHAINING: Reception successful, but the receive buffer from the

card is full. The function needs to be called once again with wOption =

PH_EXCHANGE_RXCHAINING_BUFSIZE.

Other: Value returned by the underlying component.

4.1.4.8 Presence Check

This function performs the presence check procedure as described in ISO/IEC 14443-4.

The Reader sends a R(NAK) block to the card and waits for a R(ACK) response from it. If

a timeout error occurs, it means that the card is not there anymore. If, instead, the reader

receives a R(ACK) block, means that the card is still in its RF field.

phStatus_t phpalI14443p4_PresCheck(

 void * pDataParams); [In]

*pDataParams: Pointer to the phpalI14443p4_Sw_DataParams_t parameter component.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Incomplete block received or non-R(ACK) response

received.

Other: Value returned by the underlying component.

4.1.4.9 Deselect

This function is the responsible for deselecting a card that has been previously activated

through the phpalI14443p4a_Rats() function (see 4.1.2.4), as described in the ISO/IEC

14443-4 standard.

If a card has been deselected successfully, the exchange and presence check

procedures from this part of the protocol will not work with it until it is reactivated, using

the phpalI14443p4a_Rats() or phpalI14443p4a_ActivateCard() functions (see 4.1.2.4 or

4.1.2.3 respectively).

If the Deselect request is not answered by an error free Deselect response, it is

automatically retransmitted. The number of retransmissions is determined by the

bMaxRetryCount parameter (see 4.1.4.1). The developer shall take into account that a

successful deselect procedure shall be immediately followed by the execution of the

phCidManager_FreeCid() function, in order to release the CID number that had been

assigned to the card.

Once the card has been deselected, it enters de HALT state, which means that for

waking it up, the phpalI14443p3a_WakeUpA() function (see 4.1.1.5) needs to be

executed.

phStatus_t phpalI14443p4_Deselect(

 void * pDataParams); [In]

*pDataParams: Pointer to the phpalI14443p4_Sw_DataParams_t parameter component.

The values returned by the function can be:

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 45 of 205

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: No correct deselect response received when not

performing retransmissions (bMaxRetryCount=1).

PHPAL_I14443P4_ERR_RECOVERY_FAILED: No correct deselect response received

after multiple deselect attempts.

Other: Value returned by the underlying component.

4.2 MIFARE

4.2.1 Technical Introduction

MIFARE is NXP’s well-known brand for a wide range of contactless IC products such as

MIFARE Classic, MIFARE Ultralight, MIFARE DESFire and MIFARE Plus. MIFARE

technology products are compliant with the international standard ISO/IEC 14443-A (see

Section 4.1.1). MIFARE technologies are widely used in more than 40 different

applications worldwide: transportation, access control, couponing …

The MIFARE component in the Protocol Abstraction Layer of the NFC Reader Library

defines the interface for MIFARE protocols in the Application Layer that are not part of

the ISO/IEC 14443 standard (MIFARE Classic, MIFARE Ultralight). These operations

include the authentication and the data exchange among others.

4.2.2 Parameter Structure

The MIFARE component parameter structure stores component parameters associated

to the layers with which the component interacts.

The MIFARE component takes the ISO/IEC 14443-4 component as input parameter in

order to provide support for both ISO/IEC 14443-3 compliant products such as MIFARE

Classic and MIFARE Ultralight and ISO/IEC 14443-4 compliant products such as

MIFARE Plus and MIFARE DESFire. It also takes the HAL component as input

parameter as it relies in the hardware for MIFARE specific operations that cannot be

performed by the software such as MIFARE Classic authentication.

typedef struct {

 void * pHalDataParams;

 void * pPalI14443p4DataParams;

} phpalMifare_Sw_DataParams_t;

* pHalDataParams: Pointer to the parameter structure of the underlying HAL layer

component.

* pPalI14443p4DataParams: Pointer to the ISO/IEC 14443-4 parameter structure.

4.2.3 Component Initialization

The MIFARE component is initialized calling the phpalMifare_Sw_Init() function. This

function takes the underlying HAL parameter component and the ISO/IEC 14443-4

component for the initialization of its parameter structure.

Once the component has successfully been initialized the rest of the MIFARE component

API functions can be called.

phStatus_t phpalMifare_Sw_Init(

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 46 of 205

 phpalMifare_Sw_DataParams_t *pDataParams, [In]

 uint16_t wSizeOfDataParams, [In]

 void * pHalDataParams, [In]

 void * pPalI14443p4DataParams); [In]

* pDataParams: Pointer to the MIFARE parameter component.

wSizeOfDataParams: Size of the phpalMifare_Sw_DataParams_t parameter component.

* pHalDataParams: Pointer to the underlying HAL parameter component.

* pPalI14443p4DataParams: Pointer to the ISO/IEC 14443-4 parameter component.

The values returned by the function can be:

PH_ERR_SUCCESS Operation successful.

Other: Value returned by the underlying component.

4.2.4 MIFARE API

The MIFARE API provides services to upper MIFARE-based application layer

components that are not covered by the ISO/IEC 14443 component.

4.2.4.1 ISO/IEC 14443-3 Data Exchange

This command is used for the data exchange between the contactless reader IC and the

ISO/IEC 14443-3 compliant MIFARE card. This command should not be directly called

by the developer since it is called internally by upper layer MIFARE product components.

When a Read command is executed, the reception buffer should be checked and when a

Write command is executed, the transmission buffer should be specified.

phStatus_t phpalMifare_ExchangeL3(

 void * pDataParams, [In]

 uint16_t wOption, [In]

 uint8_t * pTxBuffer, [In]

 uint16_t wTxLength, [In]

 uint8_t ** ppRxBuffer, [Out]

 uint16_t * pRxLength); [Out]

* pDataParams: Pointer to the MIFARE parameter component

phpalMifare_Sw_DataParams_t.

wOption: It indicates in which part of the stream is located the given data: in the first

part (PH_EXCHANGE_BUFFER_FIRST), in the middle part (PH_EXCHANGE_BUFFER_CONT) or in the last

part (PH_EXCHANGE_BUFFER_LAST).

* pTxBuffer: Data to be transmitted.

wTxLength: Length of the data to be transmitted.

** ppRxBuffer: Pointer to the received data.

* pRxLength: Length of the received data.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 47 of 205

4.2.4.2 ISO/IEC 14443-4 Data Exchange

This command is used for the data exchange between the contactless reader IC and the

ISO/IEC 14443-4 compliant MIFARE card.

phStatus_t phpalMifare_ExchangeL4(

 void * pDataParams, [In]

 uint16_t wOption, [In]

 uint8_t * pTxBuffer, [In]

 uint16_t wTxLength, [In]

 uint8_t ** ppRxBuffer, [Out]

 uint16_t * pRxLength); Out]

* pDataParams: Pointer to the MIFARE parameter component

phpalMifare_Sw_DataParams_t.

wOption: It indicates in which part of the stream is located the given data: in the first

part (PH_EXCHANGE_BUFFER_FIRST), in the middle part (PH_EXCHANGE_BUFFER_CONT) or in the last

part (PH_EXCHANGE_BUFFER_LAST).

* pTxBuffer: Data to be transmitted.

wTxLength: Length of the data to be transmitted.

** ppRxBuffer: Pointer to the received data.

* pRxLength: Length of the received data.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

4.2.4.3 MIFARE Proximity Check

The proximity check function is used in order to verify that the MIFARE IC is in close

proximity to the contactless reader. This functionality can be used to effectively prevent

relay attacks. The proximity check is based on a precise time measurement of challenge-

response pairs in combination with cryptographic methods.

This functionality is only available in MIFARE Plus cards configured in security level 3.

phStatus_t phpalMifare_ExchangePc(

 void * pDataParams, [In]

 uint16_t wOption, [In]

 uint8_t * pTxBuffer, [In]

 uint16_t wTxLength, [In]

 uint8_t ** ppRxBuffer, [Out]

 uint16_t * pRxLength); [Out]

* pDataParams: Pointer to the MIFARE parameter component

phpalMifare_Sw_DataParams_t.

wOption: It indicates in which part of the stream is located the given data: in the first

part (PH_EXCHANGE_BUFFER_FIRST), in the middle part (PH_EXCHANGE_BUFFER_CONT) or in the last

part (PH_EXCHANGE_BUFFER_LAST).

* pTxBuffer: Data to be transmitted.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 48 of 205

wTxLength: Length of the data to be transmitted.

** ppRxBuffer: Pointer to the received data.

* pRxLength: Length of the received data.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

4.2.4.4 Set Minimum FDT for Proximity Check

The Frame Delay Time (FDT), is defined as the time between the final pause transmitted

by the reader at the end of a message and the leading edge of the modulation pulse for

the start bit transmitted by the card.

This function allows the developer to set or reset the minimum FDT time used by the

reader for the proximity check functionality. The call to this function sets the FDT

configuration of the underlying HAL component.

phStatus_t phpalMifare_SetMinFdtPc(

 void * pDataParams, [In]

 uint16_t wValue); [In]

* pDataParams: Pointer to the MIFARE parameter component

phpalMifare_Sw_DataParams_t.

wValue: Option parameter for setting – 1 – or resetting – 0 – the FDT.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_IO_TIMEOUT: Timeout error.

PH_ERR_AUTH_ERROR: Authentication error.

Other: Value returned by the underlying component.

4.2.4.5 MIFARE Exchange Raw

This function is used to exchange raw data with MIFARE cards, which means that no

CRC and no parity bytes are exchanged.

phStatus_t phpalMifare_ExchangeRaw(

 void * pDataParams, [In]

 uint16_t wOption, [In]

 uint8_t * pTxBuffer, [In]

 uint16_t wTxLength, [In]

 uint8_t bTxLastBits, [In]

 uint8_t ** ppRxBuffer, [Out]

 uint16_t * pRxLength, [Out]

 uint8_t * pRxLastBits); [Out]

* pDataParams: Pointer to the MIFARE parameter component

phpalMifare_Sw_DataParams_t.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 49 of 205

wOption: It indicates in which part of the stream is located the given data: in the first

part (PH_EXCHANGE_BUFFER_FIRST), in the middle part (PH_EXCHANGE_BUFFER_CONT) or in the last

part (PH_EXCHANGE_BUFFER_LAST).

* pTxBuffer: Data to be transmitted.

wTxLength: Length of the data to be transmitted.

bTxLastBits: Number of valid bits of the last byte received.

** ppRxBuffer: Pointer to the received data.

* pRxLength: Length of the received data.

bRxLastBits: Number of valid bits of the last byte transmitted.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

4.2.4.6 MIFARE Classic Authentication with key number

This function allows to complete a MIFARE Classic authentication using key stored in the

Key Store module (see 8.1). The key to be used is identified by the key number and key

version input parameters.

phStatus_t phpalMifare_MfcAuthenticateKeyNo(

 void * pDataParams, [In]

 uint8_t bBlockNo, [In]

 uint8_t bKeyType, [In]

 uint16_t wKeyNo, [In]

 uint16_t wKeyVersion, [In]

 uint8_t * pUid); [In]

* pDataParams: Pointer to the MIFARE parameter component

phpalMifare_Sw_DataParams_t.

bBlockNo: MIFARE Classic memory block number to authenticate against.

bKeyType: MIFARE Classic key type to use for the authentication: #PHPAL_MIFARE_KEYA

or #PHPAL_MIFARE_KEYB.

wKeyNo: Number identifier of the key to use for the authentication.

wKeyVersion: Version of the key use for the authentication.

* pUid: UID of the MIFARE Classic card to authenticate with.

4.2.4.7 MIFARE Classic Authentication with input key

This function allows to complete MIFARE Classic authentication using a key passed as

an input parameter to the function.

phStatus_t phpalMifare_MfcAuthenticate(

 void * pDataParams, [In]

 uint8_t bBlockNo, [In]

 uint8_t bKeyType, [In]

 uint8_t * pKey, [In]

 uint8_t * pUid); [In]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 50 of 205

* pDataParams: Pointer to the MIFARE parameter component

phpalMifare_Sw_DataParams_t.

bBlockNo: MIFARE Classic memory block number to authenticate against.

bKeyType: MIFARE Classic key type to use for the authentication: #PHPAL_MIFARE_KEYA

or #PHPAL_MIFARE_KEYB.

* Key: MIFARE Classic key to use for the authentication.

* pUid: UID of the MIFARE Classic card to authenticate with.

4.3 FeliCa PAL

4.3.1 Technical Introduction

The FeliCa component in the Protocol Abstraction Layer implements the initialization and

the anticollision procedures according to the JIS X 6319-4 specification.

FeliCa cards are identified by an 8-byte identifier called Manufacture ID (IDm). This IDm

parameter defines both the Manufacturer Code (2 bytes) and the Card Identification

Number (6 bytes). Additionally, FeliCa defines the 8 byte Manufacture Parameter (PMm)

value, which defines the maximum response time parameter. This parameter is used by

the reader IC to determine the command response timeout for a particular card.

Fig 9. FeliCa IDm and PMm

A contactless reader IC communicating with FeliCa cards periodically sends ReqC

commands. FeliCa cards within the reader IC RF field shall respond to this request with

an ATQC message indicating the possibility to start the communication.

In order to avoid collisions when more than one card responds at the same time, FeliCa

implements a time slot based mechanism. The first time slot shall start after 512 x 64/fc

(approximately 2.417 ms) from the completion of the ReqC command. Each time slot

shall last 256 x 64/fc (approximately 1.208 ms). The number of time slots to sense during

the anticollision procedure is configurable. FeliCa cards on the field respond to the ReqC

command by sending an ATQC response at the beginning of the time slot. The time slot

on which the response message is transmitted is randomly selected. It is responsibility of

the reader IC to select the FeliCa card to communicate with.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 51 of 205

The Fig 10 shows an anticollision procedure example where four time slots are sensed

and two cards respond.

(A) Card processing time (approximately 2.417 ms)

(B) Time Slot duration (approximately 1.208 ms)

Fig 10. FeliCa anticollision example

4.3.2 Parameter Structure

The FeliCa PAL component defines its own parameter structure, which is used mainly to

store parameters associated to the FeliCa card with which the communication is being

performed.

typedef struct {

 void * pHalDataParams;

 uint8_t aIDmPMm[PHPAL_FELICA_IDM_LENGTH + PHPAL_FELICA_PMM_LENGTH];

 uint8_t bIDmPMmValid;

 uint8_t bLength;

} phpalFelica_Sw_DataParams_t;

* pHalDataParams: Pointer to the parameter structure of the underlying HAL layer

component.

aIDmPMm: Manufacture ID (IDm) and Manufacture Parameters (PMm) of the FeliCa

card (8 bytes + 8 bytes).

bIDmPMmValid: Indicates whether the stored IDm and PMm are valid, 1, or not, 0.

bLength: Current negotiated data length, which is used internally as a parameter for the

phpalFelica_Exchange() function.

4.3.3 Component Initialization

The FeliCa PAL component can be initialized using the phpalFelica_Sw_Init() function.

This function sets the pointer to the underlying HAL component on top of which the

FeliCa PAL component runs and initializes the FeliCa cards associated values to their

default values. The FeliCa PAL component must be initialized before the rest of the API

can be used for the detection, initialization and data exchange operations with FeliCa

cards.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 52 of 205

phStatus_t phpalFelica_Sw_Init(

 phpalFelica_Sw_DataParams_t * pDataParams, [In]

 uint16_t wSizeOfDataParams, [In]

 void * pHalDataParams); [In]

* pDataParams: Pointer to the FeliCa PAL parameter component.

wSizeOfDataParams: Size of the phpalFelica_Sw_DataParams_t parameter component.

* pHalDataParams: Pointer to the underlying HAL parameter component.

The values returned by the function can be:

PH_ERR_SUCCESS Operation successful.

Other: Value returned by the underlying component.

4.3.4 FeliCa PAL API

This section details the set of FeliCa PAL functions dedicated to the protocol initialization

setup and the anticollision procedure.

4.3.4.1 RequestC

RequestC is the command used by the contactless reader IC in order to detect whether

FeliCa cards exist in its RF field.

The reader IC waits until all FeliCa cards in all timeslots have had enough time to

respond with their ATQC response. The number of time slots to be sensed during the

anticollision procedure is defined by bNumTimeSlots argument.

Note: The function only returns the first response received.

phStatus_t phpalFelica_ReqC (

 void * pDataParams, [In]

 uint8_t * pSystemCode, [In]

 uint8_t bNumTimeSlots, [In]

 uint8_t * pRxBuffer); [Out]

* pDataParams: Pointer to the FeliCa parameter component

phpalFelica_Sw_DataParams_t.

* pSystemCode: The system code is used to specify the application by the reader IC

and is used to select the FeliCa card before sending the ATQC command. All FeliCa

cards should respond when the system code 0xFFFF is transmitted.

BNumTimeSlots: Number of timeslots to use for cards detection. see Table 6.

Table 6. Number of time slots to be used during the anticollision procedure

JIS X 6319-4

value
Number of timeslots NFC Reader Library identifier

0x00 1 Time Slot PHPAL_FELICA_NUMSLOTS_1

0x01 2 Time Slots PHPAL_FELICA_NUMSLOTS_2

0x03 4 Time Slots PHPAL_FELICA_NUMSLOTS_4

0x07 8 Time Slots PHPAL_FELICA_NUMSLOTS_8

0x0F 16 Time Slots PHPAL_FELICA_NUMSLOTS_16

* pRxBuffer: Identifier of the FeliCa card detected. (8 bytes IDm + 8 bytes PMm)

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 53 of 205

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: Invalid code for the number of time slots passed.

Other: Value returned by the underlying component.

4.3.4.2 Card Activation

The phpalFelica_ActivateCard() command is used in order to complete the activation of a

FeliCa card. This command internally calls the phpalFelica_ReqC() function for the

detection of FeliCa cards in the reader IC RF field. Additionally, the card activation can

be performed at the system level (see section 5.4) by indicating the service code to

address.

If a valid IDm is passed to this function, this value is stored as the current IDm and,

therefore, no real card activation is completed.

phStatus_t phpalFelica_ActivateCard(

 void* pDataParams, [In]

 uint8_t* pIDmPMm, [In]

 uint8_t bIDmPMmLength, [In]

 uint8_t * pSystemCode, [In]

 uint8_t bNumTimeSlots, [In]

 uint8_t * pRxBuffer, [Out]

 uint8_t * pRxLength, [Out]

 uint8_t * pMoreCardsAvailable); [Out]

* pDataParams: Pointer to the FeliCa parameter component

phpalFelica_Sw_DataParams_t.

* pIDmPMm: IDm followed by PMm. If this parameter is supplied then it is stored and no

real activation is performed.

BIDmPMmLength: pIDmPMm length. 16 bytes if IDm and PMm are supplied; 0 if not.

* pSystemCode: The system code is used to specify the application by the reader and

is used to select the FeliCa card before sending the ATQC command. All FeliCa cards

should respond when the system code 0xFFFF is transmitted.

BNumTimeSlots: Number of timeslots to use for cards detection. see Table 6.

* pRxBuffer: 8 bytes IDm + 8 bytes PMm

* pRxLength: Length of received data. 0 or 16

* pMoreCardsAvailable: Indicates whether there are more cards in the field or not.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: pIDmPmm length is not 16 bytes.

Other: Value returned by the underlying component.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 54 of 205

4.3.4.3 Exchange

The Exchange command is used for the data exchange between the contactless reader

IC and the FeliCa card. This command should not be directly called by the developer

since it is called internally by FeliCa Application Layer functions.

When a Read command is executed, the reception buffer should be checked and when a

Write command is executed, the transmission buffer should be specified.

phStatus_t phpalFelica_Exchange(

 void * pDataParams, [In]

 uint16_t wOption, [In]

 uint16_t wN, [In]

 uint8_t* pTxBuffer, [In]

 uint16_t wTxLength, [In]

 uint8_t ** ppRxBuffer, [Out]

 uint16_t * pRxLength); [Out]

* pDataParams: Pointer to the FeliCa parameter component

phpalFelica_Sw_DataParams_t.

WOption: It indicates in which part of the stream is located the given data: in the first

part (PH_EXCHANGE_BUFFER_FIRST), in the middle part (PH_EXCHANGE_BUFFER_CONT) or in the last

part (PH_EXCHANGE_BUFFER_LAST).

Wn: Number of blocks to exchange. This value is used to calculate the response

timeout.

pTxBuffer: Data to be transmitted. The length and IDm values are automatically added

by the NFC Reader Library implementation.

wTxLength: Length of the data to be transmitted.

** ppRxBuffer: Pointer to the received data. The response code, length and IDm values

are automatically removed by the NFC Reader implementation.

* pRxLength: Length of the received data.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: wTxLength exceeds the maximum allowed length of

data to be transmitted.

Other: Value returned by the underlying component.

4.3.4.4 Get Serial Number

This function is used to retrieve IDm and PMm values from a specific card.

phStatus_t phpalFelica_GetSerialNo(

 void * pDataParams, [In]

 uint8_t * pUidOut, [Out]

 uint8_t * pLenUidOut); [Out]

* pDataParams: Pointer to the FeliCa parameter component

phpalFelica_Sw_DataParams_t.

* pUidOut: IDm and PMm values of the FeliCa card.

* pLenUidOut: Length of pUidOut value. 16 bytes if a valid value is received; 0 if not.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 55 of 205

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_USE_CONDITION: No Serial number available at the moment.

Other: Value returned by the underlying component.

4.4 ISO/IEC 18092

4.4.1 Technical Introduction

4.4.1.1 ISO/IEC 18092 Standard

The ISO/IEC 18092 standard [19], also known as NFCIP-1, defines the interface and

protocol for simple wireless communication between two NFC devices. The RF layer

used in the ISO/IEC 18092 standard inherits from previous proximity contactless

technologies, more specifically from the ISO/IEC 14443-A protocol and Sony FeliCa (JIS-

6319-4).

According to the specification, a NFC reader can communicate with bitrates of 106 Kbps

(ISO/IEC 14443A modulation), 212 Kbps and 424 Kbps (FeliCa modulation).

The ISO/IEC 18092 component is responsible for encapsulating packets coming from

upper protocols, into final binary format that is used for the transmission on the RF field.

Since LLCP defines a bidirectional balanced communication mechanism where just one

packet can be transmitted per peer at a time, each time a packet is transmitted the

ISO/IEC 18092 component will wait for a response. If none response is received in the

negotiated period of time, the link will be considered broken.

NFCIP-1 defines two new terms to identify devices involved in the communication:

Initiator and Target (see section 4.4.1.2); and two new communication modes: Active and

Passive (see section 4.4.1.2). Therefore, NFCIP-1 covers four possible combinations:

Passive Initiator, Active Initiator, Passive Target and Active Target. The NFC Reader

Library implements the four possibilities. These new terms are further explained in the

following sections.

4.4.1.2 NFCIP-1 Devices

NFCIP-1 Communication Roles

The Peer-to-Peer operating mode, specified in the NFCIP-1 standard, defines a new

bidirectional communication scheme. Unlike in traditional smart card scenarios, both

devices are able to ask and respond. Therefore, NFCIP-1 mode defines the Initiator and

Target concepts.

Initiator

The device starting the communication and generating the RF field at 13.56 MHz.

Target

The device responding to the initiator communication establishment request either using

its own generated RF field or modulating the RF generated by the initiator.

NFCIP-1 Communication Modes

In the traditional smart card scenario, the reader is always supplying the power to the

smartcard. The Peer-to-Peer operating mode defines a new communication mode, the

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 56 of 205

active communication mode, where both the Initiator and the Target device have the

possibility to generate their own RF field to communicate.

Active communication

In the active communication mode, both the initiator and the target devices generate their

own RF field to transmit data. Once the data has been transmitted, the RF field is

switched off in order not to interfere with the RF field generated by the other peer.

Fig 11. Active communication scheme

The main advantage of implementing the active communication, compared to the passive

communication, is the larger coverage distance in case of the same bit rate, or the higher

bit rate in case of the same coverage distance. According to the ISO/IEC 18092

standard, higher bit rates than 424 kbps are expected for this communicating mode in

future standard updates.

Passive communication

In the passive communication mode, the initiator starts the communication and generates

its own RF field, which will be maintained until the communication is closed. This field is

used by the target as a mean to obtain energy and to transmit data using a load

modulation scheme.

Fig 12. Passive communication scheme

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 57 of 205

The passive communication mode inherits from the traditional smart card scenario. This

is the reason why some readers in the market only support this configuration.

NFCIP-1 Devices vs Reader ICs

The NFC Reader Library supports the four communication configurations defined by the

ISO/IEC 18092 standard: Passive Initiator, Active Initiator, Passive Target and Active

Target. However, not all the reader ICs available on the Hardware Abstraction Layer

support all the communication modes and roles.

Fig 13 depicts communication modes supported by NXPCLRC 663 reader IC and NXP

PN512 reader IC.

Fig 13. Figure title here

The PN512 reader IC supports all possible NFCIP-1 configurations whereas CLRC663

reader IC only provides support for Passive Initiator configuration.

4.4.1.3 ISO/IEC 18092 API Communication Flow

Two NFCIP-1 devices communicating with each other shall follow a well-established flow

of communication in order to succeed. The proposed communication flow that ensure the

correct functioning of the standard is shown in Fig 14.

For further details about each function, please consult the following sections where both

ISO/IEC 18092 Initiator API and ISO/IEC 18092 Target API are explained in detail.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 58 of 205

Fig 14. ISO/IEC 18092 Operation Flow

It is important to note that a developer may not need to make use of all these functions

since some of them are internally called by upper layer protocols such as LLCP, SNEP,

and others.

4.4.2 ISO/IEC 18092 Initiator

A NFC Reader configured as an Initiator is responsible for the 13.56 MHz RF field

generation and for initializing the communication. In order to initialize the communication,

the initiator sends ATR_REQ commands periodically, waiting for an ATR_RES response

from a target to complete the establishment of the communication.

It is during the communication setup when the reader IC indicates the communication

mode that is going to operate in: Active communication mode, Passive communication

mode or both. Available configurations in the NFC Reader Library can be found in the

header file: NxpRdLib_PublicRelease/intfs/phacDiscLoop.h file.

Table 7. ISO18092 PAL communication mode configuration

Parameter Description Value

PHAC_DISCLOOP_CON_POLL_A ISO/IEC 14443A Passive mode 0x01U

PHAC_DISCLOOP_CON_POLL_B ISO/IEC 14443B Passive mode 0x02U

PHAC_DISCLOOP_CON_POLL_F FeliCa Passive mode 0x04U

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 59 of 205

Parameter Description Value

PHAC_DISCLOOP_CON_POLL_ACTIVE ISO/IEC 18092 P2P Active mode 0x08U

ISO18092mPI PAL layer component defines its own phpalI18092mPI_Sw_DataParams_t

parameter structure in order to store the ISO/IEC 18092 protocol attributes that

configures the communication. These parameters are listed in the following table.

Table 8. Parameters from ISO18092 Initiator Pal component

On the right column there are default values given by the Initialization function (see section

4.4.2.1). Apart from these parameters, there are few other for internal management.

parameter description default init value

pHalDataParams
Pointer to the parameter structure of the

underlying HAL layer.
input parameter Init

bNfcIdValid Whether current NfcID is valid or not. PH_OFF

aNfcid3i NFC ID 10 bytes long identifier

input parameter

ATR_REQ (section

4.4.2.3)

bStateNow Current exchange state 0

bDID Device identifier NULL

bNADenabled NAD enabler PH_OFF

bNAD Node Address NULL

bWT Waiting timeout for a target 14 ()

bFSL Frame length 0 (means 64 bytes)

bPNI Packet number NULL

bDSi
Divisor Send from Parameter Select Request

(Initiator to target)
NULL (106kbit/s)

bDRi Divisor Receive initiator NULL (106kbit/s)

bMaxRetryCount
Maximum number of attempts to send a

Request looking for a valid Target.
2

bAtnDisabled ATN Disabler 0

bActiveMode Active mode configuration bit PH_OFF

4.4.2.1 Protocol Initialization

The first step to complete is the initialization of the component and the setup of the

phpalI18092mPI_Sw_DataParams_t parameter component. This function automatically calls

the phpalI18092mPI_ResetProtocol() function in order to set default values of the structure

and registers a pointer to the component of the underlying HAL layer.

phStatus_t phpalI18092mPI_Sw_Init(

 phpalI18092mPI_Sw_DataParams_t * pDataParams, [In]

 uint16_t wSizeOfDataParams, [In]

 void * pHalDataParams); [In]

*pDataParams: Pointer to the phpalI18092mPI_Sw_DataParams_t parameter structure.

wSizeOfDataParams: Size of the phpalI18092mPI_Sw_DataParams_t parameter component.

*pHalDataParams: Pointer to the underlying HAL component.

The values returned by the function can be:

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 60 of 205

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: Operation failed, invalid data parameters.

4.4.2.2 Reset Protocol

This function resets the values of given ISO18092mPI PAL structure parameter

component to the default values defined in Table 8.

phStatus_t phpalI18092mPI_ResetProtocol(

 void * pDataParams); [In]

*pDataParams: Pointer to the phpalI18092mPI_Sw_DataParams_t parameter component.

The value returned by the function is:

PH_ERR_SUCCESS: Operation successful.

4.4.2.3 Attribute Request

This function initializes the communication setup. It sends an ISO/IEC 18092 Attribute

Request command and listens for Attribute Responses coming from targets.

DID and NAD values received from Target’s Attribute Response are verified in order to

ensure that they match with the Initiator defined values. The Initiator timeout value is set

according to TO Timeout value defined in the Attribute Response command.

In case the whole communication setup procedure is successfully completed, the

ISO18092 PAL structure parameter will be filled in accordance with the negotiated

communication values.

Note: This function does not allow setting either BSi or BRi attributes of the ISO18092

communication protocol since those are not supported by the passive communication

mode. The send and receive rates are set by the phpalI18092mPI_Psl() function.

phStatus_t phpalI18092mPI_Atr(

 void * pDataParams, [In]

 uint8_t *pNfcid3i, [In]

 uint8_t bDid, [In]

 uint8_t bLri, [In]

 uint8_t bNadEnable, [In]

 uint8_t bNad, [In]

 uint8_t *pGi, [In]

 uint8_t bGiLength, [In]

 uint8_t *pAtrRes, [Out]

 uint8_t *pAtrResLength); [Out]

*pDataParams: Pointer to the phpalI18092mPI_Sw_DataParams_t parameter component.

*pNfcid3i: The application randomly generates 10 bytes value for the initiator. For

Passive communication mode 212 and 424 kbps the NFCID3i shall be replaced by

NFCID2t. In the Discovery Loop there is UID from phacDiscLoop_Sw_Int_DetectA() or

ID+PM from phacDiscLoop_Sw_Int_DetectF() used as NFCID2.

bDid: Device Identifier used for multiple data transport protocol activation with more than

one target. Value must be in range from 0 to 14. Zero disables DID usage.

bLri: Length Reduction of the Transport Data on the Initiator side for the supported

transmission rates. If this Lri value differs from the one received from the Target Attribute

Response, then the smaller value is selected for the communication. The negotiated

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 61 of 205

Length Reduction value is retained as FSL value in the phpalI18092mPI_Sw_DataParams_t

structure parameter.

Table 9. Table of Length Reduction values

The first column refers to LRi bits and how they are placed in the Protocol Parameter Initiator byte

or FSL byte defined by ISO18092 standard.

The second column refers to the number of bytes that the Initiator shall send in the Transport Data

field within DEP.

On the third column there are identifiers from the NFC Reader Library similar to the previous

columns.

LRi bits

ISO18092

Max byte count in the

DEP Transport Data
NFC Reader Library identifier

00 64 bytes PHPAL_I18092MPI_FRAMESIZE_64

01 128 bytes PHPAL_I18092MPI_FRAMESIZE_128

10 192 bytes PHPAL_I18092MPI_FRAMESIZE_192

11 254 bytes PHPAL_I18092MPI_FRAMESIZE_254

bNadEnable: Node Address enabler. Zero or PH_OFF disables NAD usage. PH_ON or any

nonzero value enables NAD.

bNad: Node Address used in DEP for logical addressing. This parameter is ignored if

bNadEnabled is equal to zero.

*pGi: Optional General Information bytes sent by the Initiator.

bGiLength: Number of General Information bytes sent by the Initiator.

*pAtrRes: Pointer to the Attribute Response command received from the Target.

*pAtrResLength: Attribute Response length.

The values returned by the function can be:

PH_ERR_INVALID_PARAMETER: bDid, bLri or bGiLength value out of .valid range.

PH_ERR_PROTOCOL_ERROR: The received response is not ISO/IEC 18092

compliant.

PH_ERR_IO_TIMEOUT: Timeout for reply expired, e.g. target removal.

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

4.4.2.4 Parameter Selection

This function provides the ISO/IEC 18092 initiator defined Parameter Selection Request

used to modify communication parameters such as the bit rate. After the command is

transmitted, the initiator listens for the Parameter Selection Response from the Target.

phStatus_t phpalI18092mPI_Psl(

 void * pDataParams, [In]

 uint8_t bDsi, [In]

 uint8_t bDri, [In]

 uint8_t bFsl); [In]

*pDataParams: Pointer to the phpalI18092mPI_Sw_DataParams_t parameter component.

bDsi: Divisor value for the initiator to target transmission data rate. Only the values from

Table 10 (column NFC Reader Library identifier) are accepted.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 62 of 205

Table 10. Table of Divisor Send/Receive

ISO18092

ISO18092

bit duration

Divisor D

Bit rate

Kbit/s

ISO18092

Divisor D
NFC Reader Library identifier

0 1 106 1 PHPAL_I18092MPI_DATARATE_106

1 2 212 2 PHPAL_I18092MPI_DATARATE_212

2 4 424 4 PHPAL_I18092MPI_DATARATE_424

bDri: Divisor value for the target to initiator transmission data rate. Only the values

defined in Table 10 (column NFC Reader Library identifier) are accepted.

bFsl: maximum value for the Frame Length. Valid values defined in Table 11.

Table 11. Table of valid Length Reduction values

LR Maximum Length

00 Only Byte 0 to Byte 63 is valid in the Transport Data

01 Only Byte 0 to Byte 127 is valid in the Transport Data

10 Only Byte 0 to Byte 191 is valid in the Transport Data

11 Only Byte 0 to Byte 255 is valid in the Transport Data

The values returned by the function can be:

PH_ERR_INVALID_PARAMETER: bDsi, bDri or bFsl value out of valid range.

PH_ERR_PROTOCOL_ERROR: Received response is not ISO/IEC 18092 compliant.

PH_ERR_IO_TIMEOUT: Timeout for reply expired, e.g. target removal.

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

4.4.2.5 Activate Card

This function integrates both the Attribute request and the Parameter Selection

commands in a single command.

phStatus_t phpalI18092mPI_Sw_ActivateCard(

 void * pDataParams, [In]

 uint8_t * pNfcid3i, [In]

 uint8_t bDid, [In]

 uint8_t bNadEnable, [In]

 uint8_t bNad, [In]

 uint8_t bDsi, [In]

 uint8_t bDri, [In]

 uint8_t bFsl, [In]

 uint8_t * pGi, [In]

 uint8_t bGiLength, [In]

 uint8_t * pAtrRes, [Out]

 uint8_t * pAtrResLength); [Out]

*pDataParams: Pointer to the phpalI18092mPI_Sw_DataParams_t parameter component.

*pNfcid3i: The application randomly generates 10 bytes value for the initiator. For

Passive communication mode 212 and 424 kbps the NFCID3i shall be replaced by

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 63 of 205

NFCID2t. In the Discovery Loop there is UID from phacDiscLoop_Sw_Int_DetectA() or

ID+PM from phacDiscLoop_Sw_Int_DetectF() used as NFCID2.

bDid: Device Identifier used for multiple data transport protocol activation with more than

one target. Value must be in range from 0 to 14. Zero disables DID usage.

bNadEnable: Node Address enabler. Zero or PH_OFF disables NAD usage. PH_ON or any

nonzero value enables NAD.

bNad: Node Address used in DEP for logical addressing. This parameter is ignored if

bNadEnabled is equal to zero.

bDsi: Divisor value for the initiator to target transmission data rate. Only the values from

Table 10 (column NFC Reader Library identifier) are accepted.

bDri: Divisor value for the target to initiator transmission data rate. Only the values

defined in Table 10 (column NFC Reader Library identifier) are accepted.

bFsl: maximum value for the Frame Length. Valid values defined in Table 11.

*pGi: Optional General Information bytes sent by the Initiator.

bGiLength: Number of General Information bytes sent by the Initiator.

*pAtrRes: Pointer to the Attribute Response command received from the Target.

*pAtrResLength: Attribute Response length.

The values returned by the function can be:

PH_ERR_INVALID_PARAMETER: bDid, bLri or bGiLength value out of .valid range.

PH_ERR_PROTOCOL_ERROR: The received response is not ISO/IEC 18092

compliant.

PH_ERR_IO_TIMEOUT: Timeout for reply expired, e.g. target removal.

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

4.4.2.6 Deselect

This function sends an ISO/IEC 18092 command with either Deselect Request or

Release Request, and then waits for either Deselect Response or Release Response.

These Deselect and Release commands may be useful if more than one Target device is

managed by the Initiator so that other Targets can be initialized.

phStatus_t phpalI18092mPI_Deselect(

 void * pDataParams, [In]

 uint8_t bDeselectCommand); [In]

*pDataParams: Pointer to the phpalI18092mPI_Sw_DataParams_t parameter component.

bDeselectCommand: Indicates whether Deselect or Release command is indicated.

PHPAL_I18092MPI_DESELECT_DSL for Deselect and PHPAL_I18092MPI_DESELECT_RLS for Release.

The values returned by the function can be:

PH_ERR_PROTOCOL_ERROR: Received response is not ISO/IEC 18092 compliant.

PH_ERR_IO_TIMEOUT: Timeout for reply expired, e.g. target removal.

PH_ERR_SUCCESS: Operation successful.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 64 of 205

Other: Value returned by the underlying component.

4.4.2.7 Exchange Data

This function sends the ISO/IEC 18092 defined Data Exchange Protocol Request

commands in order to transmit data to the target, and then waits for the Data Exchange

Response command. All the upper protocols and the packets transmitted between the

initiator and the target leverage on this function.

phStatus_t phpalI18092mPI_Exchange(

 void * pDataParams, [In]

 uint16_t wOption, [In]

 uint8_t * pTxBuffer, [In]

 uint16_t wTxLength, [In]

 uint8_t ** ppRxBuffer, [Out]

 uint16_t * pRxLength); [Out]

*pDataParams: Pointer to the phpalI18092mPI_Sw_DataParams_t parameter component.

wOption: Option parameter indicating how to send the DEP frame sequence according

to Table 12.

Table 12. Exchange options

NFC Reader Library identifier Functioning

PH_EXCHANGE_DEFAULT
Default exchange mode. Sufficient to perform NFC P2P

correctly

PH_EXCHANGE_BUFFERED_BIT ,

PH_EXCHANGE_LEAVE_BUFFER_BIT
Advanced buffer methods related to HAL buffer.

PH_EXCHANGE_TXCHAINING ,

PH_EXCHANGE_RXCHAINING,

PH_EXCHANGE_RXCHAINING_BUFSIZE

ISO18092 frame chaining. They don´t need to be set. If the data

to be exchanged is more than Frame Size configured by

phpalI18092mPI_Atr() Length Reduction or phpalI18092mPI_Psl(),

this function performs the chaining automatically. In result frame

of any size is transmitted correctly.

*pTxBuffer: Data to be transmitted from the initiator to the target.

wTxLength: Length of the data to be transmitted.

**ppRxBuffer: Pointer to the received data.

*pRxLength: Number of received data bytes.

The values returned by the function can be:

PH_ERR_INVALID_PARAMETER: Invalid flag bit in xOption used.

PH_ERR_PROTOCOL_ERROR: Received response is not ISO/IEC 18092 compliant.

PH_ERR_IO_TIMEOUT: Timeout for reply expired, e.g. target removal.

PHPAL_I18092MPI_ERR_RECOVERY_FAILED: Recovery failed, target does not

respond any more.

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

4.4.2.8 Presence Check

This function performs a presence check in order to determine whether the current target

is still in the RF field range or not. The reader transmits an ISO DEP packet marked as

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 65 of 205

Supervisory Attention PDU, and then listens for the Supervisory Attention Response from

the other device.

phStatus_t phpalI18092mPI_PresCheck(

 void * pDataParams); [In]

*pDataParams: Pointer to the phpalI18092mPI_Sw_DataParams_t parameter component.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Received response is not ISO/IEC 18092 compliant.

PH_ERR_IO_TIMEOUT: Timeout for reply expired, e.g. target removal.

PHPAL_I18092MPI_ERR_RECOVERY_FAILED: Recovery failed, target does not

respond any more.

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

4.4.3 ISO/IEC 18092 Target

A NFC Reader running in target configuration will respond to the ATR_REQ command

sent by the initiator with an ATR_RES response to complete the communication setup.

This response will be transmitted using its own generated RF field in case of active

communication or modulating the initiator generated RF field in case of passive

communication.

In order to set the NFC Reader in target mode, the DISCOVERY_MODE tag of the

Discovery Loop has to be set to PHAC_DISCLOOP_SET_LISTEN_MODE value. Information

regarding the Discovery Loop is provided in Section 6.

The phpalI18092mT_Sw_DataParams_t parameter structure of the ISO18092mT PAL used to

configure the reader in target mode consists of the following parameters.

Table 13. Parameters from ISO18092 Target Pal component

The right column contains the default values given by the Initialization function (see section

4.4.3.1). Besides these parameters, there are several more for internal management.

parameter description default init value

pHalDataParams
Pointer to the parameter structure of the

underlying HAL layer.
input parameter Init

bNfcIdValid Whether current NfcID is valid or not. PH_OFF

aNfcid3i NFC ID 10 bytes long identifier

input parameter

ATR_REQ (section

4.4.2.3)

aNfcid3t NFC ID 10 bytes long identifier of the initiator

bStateNow Current exchange state 0

bDid Device identifier NULL

bNADEnabled NAD enabler PH_OFF

bNad Node Address NULL

BWt Waiting timeout for a target 14 ()

bFsl Frame length 0 (means 64 bytes)

bPni Packet number NULL

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 66 of 205

parameter description default init value

bDst Sending divisor NULL (106kbit/s)

bDrt Receiving divisor NULL (106kbit/s)

bBsi Sending bit rate supported by the initiator 0

bBri Receiving bit rate supported by the initiator 0

BLri Length reduction value for the initiator 0 (means 64 bytes)

bBst Sending bit rate supported by the target 0

bBrt Receiving bit rate supported by the target 0

bLrt Length reduction value for the target 0 (means 64 bytes)

MaxRetryCount
Maximum number of attempts to send a

Request looking for a valid Target.
2

pGt
Optional General Information bytes for the

target.
NULL

bGtLength
Number of General Information bytes for the

target
0

bTo Timeout value 0

bTargetState Target state 0 (State none)

bRtoxDisabled Rtox disabler PH_OFF

bRtox Response timeout extension value 01 (Min Rtox value)

pSet_Interrupt Callback to interrupt function NULL

ovrTask
Pointer to the upper associated task

component
NULL

bCmdtype Command type 0 (Cmd Atttribute Reques)

phOsal Pointer to the associated OSAL component NULL

dwTimerId Timer ID for Rtox management 0xFFFF (Invalid timer)

rtoxStatus Rtox status 0

bActiveMode Active mode configuration bit PH_OFF

During the following subsections, the different functions used for the target device

management are presented.

4.4.3.1 Protocol Initialization

The ISO18092mT component must be initialized by calling its Init function in order to

setup the phpalI18092mT_Sw_DataParams_t parameter component. This function

automatically calls the phpalI18092mT_ResetProtocol() function in order to set the default

values of the structure and simultaneously registers a pointer to the component of the

underlying HAL layer.

The target configuration registers a callback to its enabling function.

phStatus_t phpalI18092mT_Sw_Init(

 phpalI18092mT_Sw_DataParams_t * pDataParams, [In]

 uint16_t wSizeOfDataParams, [In]

 void * pHalDataParams, [In]

 pInterruptSetCallback pSetInterrupt); [In]

*pDataParams: Pointer to the phpalI18092mT_Sw_DataParams_t parameter structure.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 67 of 205

wSizeOfDataParams: Size of the phpalI18092mT_Sw_DataParams_t parameter component.

*pHalDataParams: Pointer to the underlying HAL component.

pSetInterrupt: Pointer to the function that enables the callback interruption associated to

the ISO18092mT component.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: Operation failed, invalid data parameters.

4.4.3.2 Reset Protocol

This function reset values of given ISO18092mT PAL structure parameter component to

the default values defined in Table 13.

phStatus_t phpalI18092mT_ResetProtocol(

 void * pDataParams); [In]

*pDataParams: Pointer to the phpalI18092mT_Sw_DataParams_t parameter component.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Received response is not ISO/IEC 18092 compliant.

PH_ERR_IO_TIMEOUT: Timeout for reply expired, e.g. target removal.

4.4.3.3 RF Field Listening

A NFC Reader configured to act as a target device for communication shall sense the RF

field in order to listen for commands from the other peer. This function configures how

the listening is carried out on the target device.

This function initializes the buffer to be used according to the command expected to be

received. Therefore, the reception buffer will be configured based on the

phpalI18092mT_Sw_DataParams_t structure and bCmdType value at the particular moment

when the function is called.

phStatus_t phpalI18092mT_Listen (

 void * pDataParams, [In]

 uint16_t wOption [In]

 uint8_t ** ppRxBuffer, [Out]

 Uint16_t * pRxLength, [Out]

 void* context); [In]

*pDataParams: Pointer to the phpalI18092mT_Sw_DataParams_t parameter component.

wOption: Parameter indicating how to the send DEP frame sequence according to Table

12.

*ppRxBuffer: Pointer to the reception buffer to be initialized by the library core.

*pRxLength: Length of the reception buffer.

*context: Input context for the upper component defined in ovrTask value. It may be

NULL if it is not used.

The values returned by the function can be:

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 68 of 205

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Received response is not ISO/IEC 18092 compliant.

PH_ERR_IO_TIMEOUT: Timeout for reply expired, e.g. target removal.

Other: Value returned by the underlying component.

4.4.3.4 Attribute Response

A NFC Reader configured in target mode is periodically sensing the RF field looking for

ATR_REQ commands from an initiator trying to setup a communication.

When the target receives the ATR_REQ command from the initiator, it checks the validity

of the values received such as supported bit rates or the right configuration of DID and

NAD fields. If the request is considered valid, the target configures its own structure and

sends the ATR_RES response containing all the parameters that define the

communication channel.

The ATR_RES response to be sent to the initiator should have previously been defined

as it is explained in 4.4.2.3.

After the target device responds with the ATR_RES sequence, the communication

channel is considered established for the transmission of upper link layer packets.

phStatus_t phpalI18092mT_AtrRes (

 void * pDataParams, [In]

 uint8_t *pAtr, [In]

 Uint16_t wAtrLength); [In]

*pDataParams: Pointer to the phpalI18092mT_Sw_DataParams_t parameter component.

*pAtr: Received Attribute Request bytes coming from the initiator.

wAtrLength: Number of bytes of the received Attribute Request.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: The received response is not ISO/IEC 18092

compliant.

PH_ERR_IO_TIMEOUT: Timeout for reply expired, e.g. target removal.

Other: Value returned by the underlying component.

4.4.3.5 Set Attribute Response

A target receiving an ATR_REQ command will respond with an ATR_RES in order to

setup the communication channel. The ATR_RES shall be configured with the selected

parameters for the communication. This function sets the ATR_RES according to the

parameters defined by the developer.

phStatus_t phpalI18092mT_SetAtrRes (

 phpalI18092mT_Sw_DataParams_t * pDataParams, [In]

 uint8_t *pNfcid3t, [In]

 uint8_t bLrt, [In]

 uint8_t bNadEnable, [In]

 uint8_t bBst, [In]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 69 of 205

 uint8_t bBrt, [In]

 uint8_t bBTo, [In]

 uint8_t *pGt, [In]

 uint8_t bGtLength; [In]

*pDataParams: Pointer to the phpalI18092mT_Sw_DataParams_t parameter component.

*pNfcid3t: Randomly generated 10 bytes value by the application for the target device.
For Passive communication mode 212 and 424 kbps the NFCID3i shall be replaced by

NFCID2t. In the Discovery Loop there is UID from phacDiscLoop_Sw_Int_DetectA() or

ID+PM from phacDiscLoop_Sw_Int_DetectF() used as NFCID2.

bLrt: Length Reduction of the Transport Data on the target side for the supported

transmission rates indication. Negotiated Length Reduction value is retained as FSL

value in the phpalI18092mT_Sw_DataParams_t structure parameter. Available values are

included in Table 9.

bNadEnable: Node Address enabler. Zero or PH_OFF disables NAD usage. PH_ON or any

nonzero value enables NAD.

bBst: Bit rates supported by the target in sending direction.

bBrt: Bit rates supported by the target in receiving direction.

bTo: Timeout value used to code the Response Waiting Time.

*pGt: Optional General Information bytes sent by the target.

bGtLength: Number of General Information bytes sent by the target.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Received response is not ISO/IEC 18092 compliant.

PH_ERR_IO_TIMEOUT: Timeout for reply expired, e.g. target removal.

Other: Value returned by the underlying component.

4.4.3.6 Parameter Selection Response

This function responds to the ISO18092 Parameter Selection Request sent by the

initiator in order to trigger the modification of the communication parameters such as the

transmission bit rate.

The target validates the parameters proposed by the initiator and sends the response

indicating the acceptance and the new values for the communication parameters. The list

of expected values can be found in Table 10 and Table 11.

phStatus_t phpalI18092mT_PslRes(

 void * pDataParams, [In]

 uint8_t *pPslReq, [In]

 uint16_t wPslReqLength); [In]

*pDataParams: Pointer to the phpalI18092mT_Sw_DataParams_t parameter component.

*pPslReq: Received Parameter Selection Request bytes from the initiator.

wPslReqLength: Number of bytes of the received Parameter Selection Request.

The values returned by the function can be:

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 70 of 205

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Received response is not ISO/IEC 18092 compliant.

PH_ERR_IO_TIMEOUT: Timeout for reply expired, e.g. target removal.

Other: Value returned by the underlying component.

4.4.3.7 Deselect Response

This function responds to the ISO18092 Deselect Request sent by the initiator. After the

correct completion of the process, the initiator releases the DID assigned to the target;

and the target returns to the initially chosen state and enables the default bit rate for the

communication.

phStatus_t phpalI18092mT_DslRes(

 void * pDataParams, [In]

 uint8_t *pDslReq, [In]

 uint16_t wDslReqLength); [In]

*pDataParams: Pointer to the phpalI18092mT_Sw_DataParams_t parameter component.

*pDslReq: Received Deselect Request bytes coming from the initiator.

wDslReqLength: Number of bytes of the received Deselect Request.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Received response is not ISO/IEC 18092 compliant.

PH_ERR_IO_TIMEOUT: Timeout for reply expired, e.g. target removal.

Other: Value returned by the underlying component.

4.4.3.8 Release Response

This function responds to the ISO18092 Release Request sent by the initiator. Once the

target has been successfully released, both the initiator and the target return to their

initial state.

phStatus_t phpalI18092mT_RlsRes(

 void * pDataParams, [In]

 uint8_t *pRslReq, [In]

 uint16_t wRslReqLength); [In]

*pDataParams: Pointer to the phpalI18092mT_Sw_DataParams_t parameter component.

*pRslReq: Received Release Request bytes coming from the initiator

wRslReqLength: Number of bytes of the received Release Request

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Received response is not ISO/IEC 18092 compliant.

PH_ERR_IO_TIMEOUT: Timeout for reply expired, e.g. target removal.

Other: Value returned by the underlying component.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 71 of 205

4.4.3.9 Exchange Data Response

This function responds to the Data Exchange Protocol Request received from the

initiator. The target should process the received command and respond accordingly

within the defined timeout period. If the timeout period is not sufficient to complete the

task, it can ask for a Reception Timeout Extension time.

Since the name could lead to a misunderstanding, it is important to remark that the

communication is not a traditional request / response communication where the reader

asks and the smart card responds. Peer-to-Peer communication mode defines a

bidirectional channel where both the initiator and target are able send commands and

receive responses.

phStatus_t phpalI18092mT_DepSend(

 void * pDataParams, [In]

 uint16_t wOption, [In]

 uint8_t * pTxBuffer, [In]

 uint16_t wTxLength); [In]

*pDataParams: Pointer to the phpalI18092mT_Sw_DataParams_t parameter component.

wOption: Option parameter indicating how to send the DEP frame sequence according

to Table 12.

*pTxBuffer: Data to be transmitted from the target to the initiator.

wTxLength: Length of the data to be transmitted.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Received response is not ISO/IEC 18092 compliant.

PH_ERR_IO_TIMEOUT: Timeout for reply expired, e.g. target removal.

Other: Value returned by the underlying component.

5. NFC Reader Library API: Application Layer (AL)

In this section, the MIFARE Classic, MIFARE Ultralight, MIFARE DESFire, FeliCa, Jewel

Topaz and NFC Forum Tag Types operation components defined in the Application

Layer (AL) of the NFC Reader Library are explained in depth.

5.1 MIFARE Classic

5.1.1 Technical Introduction

The MIFARE Classic card was launched in 1994 and is the most widely used contactless

smart card IC in world. MIFARE Classic is compliant with the ISO/IEC 14443-3A

standard except for the authentication and encryption protocols that are based on the

Crypto-1 algorithm that (NXP proprietary). MIFARE Classic is widely used in -contactless

services such as public transport, access management, loyalty programs and many other

applications.

The MIFARE Classic memory is divided into 16 bytes data blocks, grouped together to

form sectors. MIFARE Classic is available in 1kbyte and 4Kbyte card ICs. The MIFARE

Classic 1KB product is divided into 16 sectors of 4 data blocks each.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 72 of 205

The MIFARE Classic 4KB product is divided in forty sectors. The first 32 sectors contain

4 data blocks and the 8 remaining sectors contain 16 data blocks.

The Fig 15 shows the memory map structure of the MIFARE Classic 1K chip.

Fig 15. MIFARE Classic 1KB memory map

Block 0 of sector 0 is called the Manufacturer Block and contains the IC manufacturer

data. This block is programmed during production and it cannot be changed afterwards.

Fig 16. MIFARE Classic 7 Bytes UID Manufacturer Block

The last block of every sector is known as the sector trailer. The sector trailer defines the

keys and access conditions of this sector. It holds the Secret Key A (bytes 0 to 5), the

access conditions (bytes 6 to 9) and Secret Key B (optional) from bytes 10 to 15. Before

any memory operation is performed in one block, the reader IC shall authenticate against

its sector.

Fig 17. MIFARE Classic Sector Trailer

5.1.2 MIFARE Classic Parameter Structure

The NFC Reader Library defines a structure in order to store the parameters related to

the MIFARE Classic operation. This structure is called phalMfc_Sw_DataParams_t.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 73 of 205

typedef struct{

 void * pPalMifareDataParams;

 void * pKeyStoreDataParams;

} phalMfc_Sw_DataParams_t;

* pPalMifareDataParams: Pointer to the MIFARE parameter structure on the PAL layer.

*pKeyStoreDataParams: Pointer to the Key Store parameter structure.

5.1.3 MIFARE Classic Component Initialization

This function initializes the MIFARE Classic component. It takes as inputs the MIFARE

component that provides ISO/IEC 14443-3A and MIFARE specific services and the key

store component that is needed for cryptographic operations.

phStatus_t phalMfc_Sw_Init(
 phalMfc_Sw_DataParams_t * pDataParams, [In]
 uint16_t wSizeOfDataParams, [In]
 void * pPalMifareDataParams, [In]
 void * pKeyStoreDataParams); [In]

*pDataParams: Pointer to the phalMfc_Sw_DataParams_t parameter component.

wSizeOfDataParams: Size of the phalMfc_Sw_DataParams_t parameter component.

*pPalMifareDataParams: Pointer to the underlying MIFARE PAL parameter component.

*pKeyStoreDataParams: Pointer to the Key Store parameter structure.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: wSizeOfDataParams does not agree with the defined size of

A MIFARE Classic component.

5.1.4 MIFARE Classic Authentication

This function authenticates the reader IC against a particular block of the MIFARE

Classic IC. The cryptographic algorithm used to complete this authentication is the

Crypto1, which is NXP proprietary. The algorithm shall be implemented on the underlying

hardware component in the HAL layer.

Once authenticated, any subsequent operation on the blocks within the same sector is

allowed.

phStatus_t phalMfc_Authenticate(
 void * pDataParams, [In]
 uint8_t bBlockNo, [In]
 uint8_t bKeyType, [In]
 uint16_t wKeyNumber, [In]
 uint16_t wKeyVersion, [In]
 uint8_t *pUid, [In]
 uint8_t bUidLength); [In]

*pDataParams: Pointer to the MIFARE Classic AL layer data parameter structure.

bBlockNo: Block number to authenticate against.

bKeyType: Can be either PHAL_MFC_KEYA or PHAL_MFC_KEYB.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 74 of 205

wKeyNumber: Key number used for authentication (position of the key in the Key Store)

*pUid: Pointer to the card UID to authenticate against.

bUidLength: UID length. Only lengths 4, 7 or 10 are valid.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_AUTH_ERROR: Authentication procedure failed. The key used may not match with

the key of a given block.

PH_ERR_INVALID_PARAMETER:

 bKeyType other than PHAL_MFC_KEYA or PHAL_MFC_KEYB.

 wKeyNo exceeds half of maximum possible number of keys in the EEPROM.

PH_ERR_IO_TIMEOUT: Authentication command itself did not succeeded while timeout from

timer1 terminated.

5.1.5 PersonalizeUID

This function configures the UID for an specific personalization option, which has direct
impact on the behavior during the anticollision and selection process. The execution of
this command requires previous authentication against sector 0. Once this function has
been executed and accepted by the card, the configuration is automatically locked.

Note: The configuration becomes effective after the card has been unselected or the field

is reset.

phStatus_t phalMfc_PersonalizeUid(
 void * pDataParams, [In]
 uint8_t bUidType); [In]

*pDataParams: Pointer to the phalMfc_Sw_DataParams_t parameter structure.

bUidType: It specifies the UID type.

 PHAL_MFC_UID_TYPE_UIDF0: Anticollision and selection with the double size UID

according to ISO/IEC14443-3.

 PHAL_MFC_UID_TYPE_UIDF1: Anticollision and selection with the double size UID

according to ISO/IEC 14443-3 and optional usage of a selection process shortcut.

 PHAL_MFC_UID_TYPE_UIDF2: Anticollision and selection with a single size random ID

according to ISO/IEC14443-3.

 PHAL_MFC_UID_TYPE_UIDF3: Anticollision and selection with a single size NUID according

to ISO/IEC 14443-3 where the NUID is calculated out of the 7-byte UID.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.1.6 MIFARE Classic Command Set

The command set supported by the MIFARE Classic component is:

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 75 of 205

5.1.6.1 Read

This function reads a MIFARE Classic data block and returns its 16 bytes of data.

phStatus_t phalMfc_ReadValue(
 void * pDataParams, [In]
 uint8_t bBlockNo, [In]
 uint8_t * pBlockData); [Out]

*pDataParams: Pointer to the phalMfc_Sw_DataParams_t parameter structure.

bBlockNo: MIFARE Classic block number to be read.

*pBlockDataValue: Pointer to a16 byte array where the read data is stored.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR:

 Other than 16 bytes are read from the MIFARE Classic card value block.

 Data or address bytes within the 16 byte reception buffer do not satisfy MIFARE

block data rules.

Other: Value returned by the underlying component.

5.1.6.2 Read Value

Value blocks allow to perform electronic purse functions (read, write, increment,

decrement, restore, transfer). The value blocks have a fixed data format, which permits

error detection, correction and a backup management. A value block can only be

generated through a write operation in the value block format.

 Value: It is a 4 byte signed value. For data integrity and security, a value is stored

three times (twice non-inverted, one inverted).

 Adr: It is a 1 byte address, which can be used to save the storage address of a block.

The address byte is stored four times, twice inverted and non-inverted.

The phalMfc_ReadValue function performs the MIFARE Classic Read function and,

additionally, it verifies the robustness of the 16 bytes received according to the Value

block format by calling the phalMfc_Int_CheckValueBlockFormat() function.

phStatus_t phalMfc_ReadValue(
 void * pDataParams, [In]
 uint8_t bBlockNo, [In]
 uint8_t * pValue, [Out]
 uint8_t * pAddrData); [Out]

*pDataParams: Pointer to the phalMfc_Sw_DataParams_t parameter structure.

bBlockNo: Block number to be read.

Fig 18. MIFARE Classic Value Block

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 76 of 205

*pValue: Pointer to a 4 byte array containing the value read from the data block.

*pAddrData: Pointer to one byte containing the address read from the data block.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR:

 Other than 16 bytes are read from the MIFARE Classic card value block.

 Data or address bytes within the 16 byte reception buffer do not satisfy MIFARE

block data rules.

Other: Value returned by the underlying component.

5.1.6.3 Write

This function writes 16 bytes of data in a MIFARE Classic data block.

phStatus_t phalMfc_WriteValue(
 void * pDataParams, [In]
 uint8_t bBlockNo, [In]
 uint8_t * pBlockData); [In]

*pDataParams: Pointer to the phalMfc_Sw_DataParams_t parameter structure.

bBlockNo: MIFARE Classic block where the data is written.

* pBlockData: 16 byte array of data containing the data to be written into the MIFARE

Classic block.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.1.6.4 Write Value

The phalMfc_WriteValue function receives the 4 byte input value as an input and it

creates the 16 byte formatted Value block structure (Fig 18) by internally calling the

phalMfc_Int_CreateValueBlock() function. After that, it performs a Write operation.

phStatus_t phalMfc_WriteValue(
 void * pDataParams, [In]
 uint8_t bBlockNo, [In]
 uint8_t * pValue, [In]
 uint8_t bAddrData); [In]

*pDataParams: Pointer to the phalMfc_Sw_DataParams_t parameter structure.

bBlockNo: MIFARE Classic block where the data is written

*pValue: 4 byte array containing the data to be written.

bAddrData: One byte array containing the address to be written.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 77 of 205

5.1.6.5 Increment

The MIFARE Increment operation performs an addition operation on the value store in a

certain Value Block and stores the result in a volatile memory.

Fig 19. MIFARE Classic Increment operation

In case of loss of energy during one transaction, the value stored in the volatile memory
will not be lost and not accessible anymore.

phStatus_t phalMfc_Increment(
 void * pDataParams, [In]
 uint8_t bBlockNo, [In]
 uint8_t * pValue); [In]

*pDataParams: Pointer to the phalMfc_Sw_DataParams_t data parameter structure.

bBlockNo: Block number to be incremented.

*pValue: 4 byte array containing the value (LSB first) to be incremented.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.1.6.6 Decrement

The MIFARE Decrement operation performs a subtraction operation on the value stored

in a certain Value Block and stores the result in a volatile memory.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 78 of 205

Fig 20. MIFARE Classic Decrement operation

In case of loss of energy during one transaction, the value stored in the volatile memory
will not be accessible anymore.

phStatus_t phalMfc_Decrement(
 void * pDataParams, [In]
 uint8_t bBlockNo, [In]
 uint8_t * pValue); [In]

*pDataParams: Pointer to phalMfc_Sw_DataParams_t parameter structure.

bBlockNo: Block number to be decremented.

*pValue: 4 byte array containing the value (LSB first) to be decremented.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.1.6.7 Restore

The Restore function copies the value of a certain Value Block into the volatile memory.

Fig 21. MIFARE Classic Restore operation

The function definition is:

phStatus_t phalMfc_Restore(
 void * pDataParams, [In]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 79 of 205

 uint8_t bBlockNo); [In]

*pDataParams: Pointer to the phalMfc_Sw_DataParams_t parameter structure.

bBlockNo: Block number the transfer buffer shall be restored from.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.1.6.8 Transfer

The Transfer function writes the value stored in the volatile memory into one MIFARE

Classic block.

Fig 22. MIFARE Classic Transfer operation

The function definition is:

phStatus_t phalMfc_Transfer(
 void * pDataParams, [In]
 uint8_t bBlockNo); [In]

*pDataParams: Pointer to the phalMfc_Sw_DataParams_t parameter structure.

bBlockNo: Bock number where the transfer buffer shall be transferred to.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.1.6.9 Increment Transfer

This function executes both an Increment and a Transfer command. The value in the

source block is copied into the volatile memory of the IC where it is incremented. The

obtained value is then transferred to the destination Block.

phStatus_t phalMfc_IncrementTransfer(
 *pDataParams, [In]
 uint8_t bSrcBlockNo, [In]
 uint8_t bDstBlockNo, [In]
 uint8_t * pValue); [In]

*pDataParams: Pointer to the phalMfc_Sw_DataParams_t parameter structure.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 80 of 205

bSrcBlockNo: The value in this block is the one to be incremented. The incremented

value is stored into this block until it is finally transferred to the destination block.

bDstBlockNo: The destination block number where the incremented value will be

stored.

*pValue: 4 byte array indicating the increment value.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.1.6.10 Decrement Transfer

This function executes both a Decrement and a Transfer command. The value in the

source block is copied into the volatile memory of the IC where it is decremented. The

obtained value is then transferred to the destination Block.

phStatus_t phalMfc_DecrementTransfer(
 void * pDataParams, [In]
 uint8_t bSrcBlockNo, [In]
 uint8_t bDstBlockNo, [In]
 uint8_t * pValue); [In]

*pDataParams: Pointer to the phalMfc_Sw_DataParams_t parameter structure.

bSrcBlockNo: The value in this block is the one to be decremented. The incremented

value is stored into this block until it is finally transferred to the destination block.

bDstBlockNo: The destination block number where the decremented value will be

stored.

*pValue: 4 byte value that is value from source block decremented by.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.1.6.11 Restore Transfer

This function executes both a Restore and a Transfer command respectively. The value

in the source block is copied into the volatile memory and then it is stored into the

destination Block.

phStatus_t phalMfc_RestoreTransfer(
 void * pDataParams, [In]
 uint8_t bSrcBlockNo, [In]
 uint8_t bDstBlockNo); [In]

*pDataParams: Pointer to the MIFARE Classic AL layer data parameter structure.

bSrcBlockNo: Block number to be transferred to the buffer.

bDstBlockNo: Block number where the data is stored.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 81 of 205

Other: Value returned by the underlying component.

5.2 MIFARE Ultralight Family

5.2.1 Technical Introduction

5.2.1.1 MIFARE Ultralight

MIFARE Ultralight cards [5] are primarily designed for limited use applications such as

public transportation or event ticketing. This product is designed to work on ISO/IEC

14443 Type A compliant environments.

The MIFARE Ultralight memory is organized in pages of 4 bytes. The MIFARE Ultralight

card has 7-byte UID and it is stored in the first two pages. Bytes 2 and 3 of page 2

represent the field programmable read-only locking mechanism that allows users to

individually lock each page by setting the corresponding bit to logic 1 to prevent further

write access. Page 3 is the One-Time-Programmable (OTP) page. These bits can be

written just once. The rest of the memory can be used by the users for data storage .

The Fig 23 depicts the reference memory map for MIFARE Ultraligth ICs. As it can be

observed, the memory map size for MIFARE Ultralight cards is 64 bytes.

Fig 23. MIFARE Ultralight memory map

MIFARE Ultralight does not implement any security features except the read-only locking

mechanism to avoid further writing operations.

5.2.1.2 MIFARE Ultralight EV1

The MIFARE Ultralight EV1 is succeeding the MIFARE Ultralight IC and is fully functional

backwards compatible. The MIFARE Ultralight EV1 IC memory size is either 80 bytes or

164 bytes.

MIFARE Ultralight EV1 ICs implement additional functionalities regarding security.

 ECC based originality signature for IC manufacturing check.

 32-bit password protection to prevent unauthorized access.

 3 independent 24-bit one-way counters.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 82 of 205

For further information regarding these features and how to use them in the NFC Reader

Library, please refer to the MIFARE Ultralight EV1 dedicated API in section 5.2.5.

5.2.1.3 MIFARE Ultralight C

MIFARE Ultralight C enhances security features of the MIFARE Ultralight family and is

fully functional backwards compatible. The MIFARE Ultralight C IC memory size is 192

bytes.

MIFARE Ultralight C implements an optional 3DES authentication to prevent

unauthorized memory operations.

For further information regarding these features and how to use them in the NFC Reader

Library, please refer to the MIFARE Ultralight C dedicated API in section 5.2.6.

5.2.2 MIFARE Ultralight Parameter Structure

A special structure is defined in the NFC Reader Library in order to store the parameters

related to the MIFARE Ultralight operation. This structure is called

phalMful_Sw_DataParams_t.

Note: the same parameter structure is used for both MIFARE Ultralight EV1 and MIFARE

Ultralight C.

typedef struct{
 void * pPalMifareDataParams;
 void * pKeyStoreDataParams;
 void * pCryptoDataParams;
 void * pCryptoRngDataParams;
} phalMful_Sw_DataParams_t;

* pPalMifareDataParams: Pointer to the MIFARE parameter structure on the PAL layer.

*pKeyStoreDataParams: Pointer to the Key Store parameter structure.

*pCryptoDataParams: Pointer to the phCrypto data parameter component (Only

available on the NXP Export Controlled version).

*pCryptoRnqDataParams: Pointer to the CryptoRng parameter component (Only

available on the NXP Export Controlled version).

5.2.3 MIFARE Ultralight Component Initialization

The following function initializes MIFARE Ultralight AL component.

phStatus_t phalMfu_Sw_Init(
 phalMful_Sw_DataParams_t * pDataParams, [In]
 uint16_t wSizeOfDataParams, [In]
 void * pPalMifareDataParams, [In]
 void * pKeyStoreDataParams, [In]
 void * pCryptoDataParams, [In]
 void * pCryptoRngDataParams); [In]

*pDataParams: Pointer to the phalMful_Sw_DataParams_t parameter structure.

wSizeOfDataParams: Specifies the size parameter structure.

*pPalMifareDataParams: Pointer to the palMifare parameter structure.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 83 of 205

*pKeyStoreDataParams: Pointer to the phKeystore parameter structure.

*pCryptoDataParams: Pointer to the phCrypto data parameters structure.

*pCryptoRngDataParams: Pointer to the parameter structure of the CryptoRng layer.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: wSizeOfDataParams does not agree with defined size of

MFUL component.

5.2.4 MIFARE Ultralight Command Set

This section explains MIFARE Ultralight operations that can be performed on a MIFARE

Ultralight IC memory. Since MIFARE Ultralight EV1 and MIFARE Ultralight C have been

designed to be fully backwards compatible, functions included in this section can also be

executed on MIFARE Ultralight EV1 and MIFARE Ultralight C cards.

5.2.4.1 Read

The MIFRE Ultralight Read command reads 16 bytes (4 pages) of data starting from the

page address passed in the function.

phStatus_t phalMful_Read(
 void * pDataParams, [In]
 uint8_t bAddress, [In]
 uint8_t * pData); [Out]

*pDataParams: Pointer to the phalMful_Sw_DataParams_t data parameter structure.

bAddress: Indicates the page on the card to start reading from. If it is out of range,

MFUL returns NAK.

*pData: Pointer to 16 byte data array containing the data read from the MIFARE

Ultralight card.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Number of received data differs from 16 bytes.

Other: Value returned by the underlying component.

5.2.4.2 Write

The MIFARE Ultralight Write command writes 4 bytes (1 page) to the addressed memory

page.

phStatus_t phalMful_Write(

 void * pDataParams, [In]

 uint8_t bAddress, [In]

 uint8_t * pData); [In]

*pDataParams: Pointer the phalMful_Sw_DataParams_t parameter structure.

bAddress: Card page to write into.

*pData: Pointer to 4 byte data array containing data to be written.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 84 of 205

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.2.4.3 Compatibility Write

This function performs MIFARE Ultralight Compatibility-Write command. The

Compatibility-Write command was implemented to accommodate the established

MIFARE reader infrastructure. Even though 16 bytes are transferred to the MIFARE

Ultralight, only the least significant 4 bytes (bytes 0 to 3) will be written to the specified

address.

phStatus_t phalMful_CompatibilityWrite(

 void * pDataParams, [In]

 uint8_t bAddress, [In]

 uint8_t * pData); [In]

*pDataParams: Pointer to the phalMful_Sw_DataParams_t parameter structure.

bAddress: Page on MIFARE Ultralight to write into.

*pData: Pointer to 16 byte data array containing data to be written.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.2.5 MIFARE Ultralight EV1 Command Set

The MIFARE Ultralight EV1 API extends the MIFARE Ultralight API in order to provide

the means to handle MIFARE Ultralight EV1 additional features, such as the new security

constraints that are explained in section 5.2.1.2.

5.2.5.1 Increment count

This function increments one of the three independent 24-bit one-way counters. These

counters are located out of the NVM memory of the MIFARE Ultralight card; therefore

they are not writable using MIFARE Ultralight WRITE commands.

The counters can be incremented by an arbitrary value. The increment value is valid

immediately and does not require a RF reset or re-activation. Once counter value

reaches FFFFFFh and an increment is performed via a valid INC_CNT command,

MIFARE Ultralight replies a NAK.

The phalMful_IncrCnt() function features anti-tearing support, thus no undefined values

originating from interrupted programing cycles are possible. The occurrence of a tearing

event can be checked using the phalMful_ChkTearingEvent() function.

phStatus_t phalMful_IncrCnt(

 void * pDataParams, [In]

 uint8_t bCntNum, [In]

 uint8_t * pCnt); [In]

*pDataParams: Pointer to the phalMful_Sw_DataParams_t parameter structure.

bCntNum: Identifier of the counter to be incremented. Values from 00 to 02.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 85 of 205

* pCnt: Increment value (LSB). The input value shall be 4 bytes. However, only the first

three data bytes are considered, the fourth byte is ignored.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.2.5.2 Read Count

This function retrieves the current value of one of the three independent 24-bit one-way

counters. These counters are located out of the NVM memory of the MIFARE Ultralight

card; therefore they are not readable using MIFARE Ultralight READ commands.

phStatus_t phalMful_ReadCnt(

 void * pDataParams, [In]

 uint8_t bCntNum, [In]

 uint8_t * pCntValue); [Out]

*pDataParams: Pointer to the phalMful_Sw_DataParams_t parameter structure.

bCntNum: Identifier of the counter to be read. Values from 00 to 02.

* pCnt: Retrieved counter value (LSB). 3 bytes are received.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Length of received data differs from 24 bytes.

Other: Value returned by the underlying component.

5.2.5.3 Check Tearing Event

The tearing event command allows the contactless reader to check whether a tearing

event happened on a specific counter during its update. If tearing is detected, the

developer should process accordingly.

phStatus_t phalMful_ChkTearingEvent(

 void * pDataParams, [In]

 uint8_t bCntNum, [In]

 uint8_t * pValidFlag); [Out]

*pDataParams: Pointer to the phalMful_Sw_DataParams_t parameter structure.

bCntNum: Identifier of the counter to be checked. Values from 00 to 02.

*pDataParams: One byte address containing the valid flag byte.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.2.5.4 Password Authentication

MFARE Ultralight EV1 defines an optional 32-bit password protection to prevent

unauthorized memory operations into configurable parts of the memory. This function

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 86 of 205

authenticates against the MIFARE Ultralight EV1 card in order to be able to complete

read/write operations.

phStatus_t phalMful_PwdAuth(

 void * pDataParams, [In]

 uint8_t * pPwd, [In]

 uint8_t * pPack); [Out]

*pDataParams: Pointer to the phalMful_Sw_DataParams_t parameter structure.

* pPwd: 4-byte array containing the password.

* pPack: 2-byte array that returns the password acknowledge bytes.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.2.5.5 Get Version

This function is used for retrieving information regarding MIFARE Ultralight EV1 IC. It

provides manufacturer data, product version and the storage size information.

phStatus_t phalMful_GetVersion(

 void * pDataParams, [In]

 uint8_t * pVersion); [Out]

*pDataParams: Pointer to the phalMful_Sw_DataParams_t parameter structure.

* pVersion: 8-byte array containing manufacturer, product version and storage size

information.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.2.5.6 Fast Read

The Fast Read functionality of MIFARE Ultralight EV1 offers the possibility to read the

desired number of pages in the same command.

phStatus_t phalMful_FastRead(

 void * pDataParams, [In]

 uint8_t bStartAddr, [In]

 uint8_t bEndAddr, [In]

 uint8_t ** pData, [Out]

 uint16_t * wNumBytes); [Out]

*pDataParams: Pointer to the phalMful_Sw_DataParams_t parameter structure.

bStartAddr: byte address that specifies the first block position to read.

bEndAddr: byte address that specifies the last block position to read.

** pData: Pointer to the data read from the card.

* wNumBytes: Value that indicates the number of bytes read from the card.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 87 of 205

PH_ERR_PROTOCOL_ERROR: Length of received data is not (bEndAddr – bStartAddr) * 4.

Other: Value returned by the underlying component.

5.2.5.7 Read Signature

MIFARE Ultralight EV1 implements a cryptographically supported originality check which

relies on the elliptic curve cryptography (ECC) asymmetric algorithm. With this feature, it

is possible to verify with a certain probability, that the ticket is using an NXP

Semiconductors manufactured silicon.

This signature can be retrieved using the READ_SIG command and can be verified using

the corresponding ECC public key in the PCD.

The originality signature is programmed during chip production and cannot be changed

afterwards.

phStatus_t phalMful_ReadSign(

 void * pDataParams, [In]

 uint8_t bAddr, [In]

 uint8_t ** pSignature); [Out]

*pDataParams: Pointer to the phalMful_Sw_DataParams_t parameter structure.

bAddr: This value shall be always set to 00.

**pSignature: 32-byte signature to be used for the originalty check.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Length of the retrieved signature is not 32-byte.

Other: Value returned by the underlying component.

5.2.6 MIFARE Ultralight C Command Set

The MIFARE Ultralight C API extends the MIFARE Ultralight API in order to provide the

means to handle MIFARE Ultralight C additional features, which basically includes the

optional 3DES based authentication procedure as is explained in 5.2.1.3.

5.2.6.1 Authenticate

This function executes the MIFARE Ultralight C authentication, which is based on 3DES

symmetric cryptography algorithm. Therefore, CRYPTO SYM module must be enabled in

order to make use of this function.

The key to be used for the authentication shall have previously been stored on the

underlying contactless reader hardware.

Note: this functionality is only available in the NXP Export Controlled version.

phStatus_t phalMful_UlcAuthenticate(

 void * pDataParams, [In]

 uint16_t wKeyNumber, [In]

 uint16_t wKeyVersion); [In]

*pDataParams: Pointer to the phalMful_Sw_DataParams_t parameter structure.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 88 of 205

wKeyNo: Number identifier of the key to use for the authentication.

wKeyVersion: Version of the key used for the authentication.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.3 MIFARE DESFire

5.3.1 Technical Introduction

MIFARE DESFire EV1 is a Common Criteria (EAL4+) certified product. MIFARE DESFire

[8] is based on open global standards for both air interface and cryptographic methods. It

is fully compliant with ISO/IEC 14443A-4 layer and provides the option to use a set of

ISO/IEC 7816-4 commands.

MIFARE DESFire EV1 is available in three memory sizes: 2, 4 or 8 Kbytes and can hold

up to 28 different applications and 32 files per application. Every application is

represented by its 3 bytes Application Identifier (AID) (AID 0x000000 is reserved for the

card Master level). Each file ID is represented by one byte, values from 0x00 to 0x1F.

Fig 24. Figure title here

A file can only be selected after the dedicated application where it is hold has been

selected. Once within the application, files can be accessed using the files’ IDs. Five

different types of files can be created within each application:

 Standard Data File: Data file normally used for storing static data (e.g: name).

 Back up Data File: Data file normally used for storing dynamic data.

 Value File: Data file normally used for storing numeric values.

 Linear Record File: Data file normally used for log or record transactions.

 Cyclic Record File: Data file normally used for log or record transactions.

Note: Cyclic record files can store Total number of records-1 unique values.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 89 of 205

MIFARE DESFire cryptographic methods can be independently attributed to each

application. Applications can define up to 14 keys, plus the “free” and “never” key.

MIFARE DESFire EV1 supports three types of crypto algorithms:

 TDES (Triple DES, 16-byte key length)

 3KTDES (Three-key Triple DES, 24-byte key length)

 AES (Standard AES-128, 16-byte key length)

In addition, the communication settings are used to set three different communication

modes.

 Plain: No encryption used

 Encrypted: DES, TDES or AES is used to encrypt the transferred data

 MACed: The data is transferred in plain, but a four or eight bytes message

authentication code is added to the message. The MAC/CMAC is calculated using

the crypto performed in the authentication.

The access rights and communication settings are attributed to the file level. At file

creation both the access rights and the communication setting have to be specified. This

means, depending on the file type, that a certain operation (e.g: read operation) can be

linked to a certain key.

Note: The NFC Reader Library only includes the MIFARE DESFire commands which are

not under Export controlled regulations. For the full MIFARE DESFire command set,

please refer to the NXP Export Controlled Library [2].

5.3.2 MIFARE DESFire Parameter Structure

A special structure has been defined in the NFC Reader Library in order to store the

parameters related to the MIFARE DESFire operation. This structure has been called

phalMfdf_Sw_DataParams_t.

typedef struct{

 void * pPalMifareDataParams;

 void * pKeyStoreDataParams;

 void * pCryptoDataParamsEnc;

 void * pCryptoRngDataParams;

 void * pHalDataParams;

 uint8_t bSessionKey[24];

 uint8_t bKeyNo;

 uint8_t bIv[16];

 uint8_t bAuthMode;

 uint8_t pAid[3];

 uint8_t bCryptoMethod;

 uint8_t bWrappedMode;

 uint16_t wCrc;

 uint32_t dwCrc;

 uint16_t wAdditionalInfo;

 uint16_t wPayLoadLen;

 uint8_t bLastBlockBuffer[16];

 uint8_t bLastBlockIndex;

} phalMfdf_Sw_DataParams_t;

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 90 of 205

* pPalMifareDataParams: Pointer to the MIFARE data parameter component on the

PAL layer.

*pKeyStoreDataParams: Pointer to the Key Store data parameter component.

*pCryptoDataParams: Pointer to the phCrypto data parameter component (Only

available on the NXP Export Controlled version).

*pCryptoRnqDataParams: Pointer to the CryptoRng data parameter component (Only

available on the NXP Export Controlled version).

*pHalDataParams: Pointer to the HAL data parameter component.

bSessionKey[24]: Session key for this authentication

bKeyNo: Key used for the mutual three pass authentication procedure.

bIV: MIFARE DESFire Initialization Vector. Its maximum size is 16-bytes. The

Initialization Vector is updated for each transaction.

bAuthMode: Type of authentication used (Authenticate 0x0A, AuthISO 0x1A, AuthAES

0xAA).

pAid: AID of the current selected application

bCryptoMethod: DES , 3DES, 3KDES or AES crypto methods.

bWrappedMode: Wrapped APDU mode. All native commands are wrapped into ISO

7816 APDUs.

wCrc: 2-Byte CRC initial value in Authenticate mode.

dwCrc: 4-Byte CRC initial value in AuthISO and AutheAES mode.

wAdditionalInfo: Specific error codes for MIFARE DESFire functions.

wPayLoadLen: The amount of data to be read. Required to verify the CRC.

bLastBlockBuffer[16]: Buffer used to store the last block of encrypted data in case of

chaining.

bLastBlockIndex: Last Block buffer index read during a transaction.

5.3.3 MIFARE DESFire Component Initialization

The following function initializes MIFARE DESFire AL component.

phStatus_t phalMfdf_Sw_Init(

phalMfdf_Sw_DataParams_t * pDataParams,

uint16_t wSizeOfDataParams, [In]

void * pPalMifareDataParams, [In]

void * pKeyStoreDataParams, [In]

void * pCryptoDataParamsEnc, [In]

void * pCryptoRngDataParams, [In]

 void * pHalDataParams); [In]

*pDataParams: Pointer to the MIFARE DESFire data parameter component.

wSizeofDataParams: Specifies the size of the data parameter component.

*pPalMifareDataParams: Pointer to the MIFARE PAL data parameter component.

*pKeyStoreDataParams: Pointer to the KeyStore data parameter component.

*pCryptoDataParamsEnc: Pointer to the Crypto Component context for encryption

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 91 of 205

*pCryptoRnqDataParams: Pointer to the CryptoRng data parameter component (Only

available on the NXP Export Controlled version).

*pHalDataParams: Pointer to the HAL data parameter component.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: wSizeOfDataParams does not agree with defined size of

MIFARE DESFire component.

5.3.4 MIFARE DESFire Command Set – Non-export controlled commands.

The MIFARE DESFire commands available in the NFC Reader Library are detailed and

explained in this section. For the complete command set, please refer to the NXP Export

controlled reference.

5.3.4.1 Create Application

The Create application command allows to create new application on the MIFARE

DESFire card. An application is defined by an Application ID (AID), which is implemented

as a 3 byte number. The AID 0x000000 is reserved as reference to the card root level.

phStatus_t phalMfdf_CreateApplication(

void * pDataParams, [In]

uint8_t bOption, [In]

uint8_t * pAid, [In]

uint8_t bKeySettings1, [In]

uint8_t bKeySettings2, [In]

uint8_t * pISOFileId, [In]

uint8_t * pISODFName, [In]

uint8_t bISODFNameLen); [In]

*pDataParams: Pointer to the MIFARE DESFire data parameter component.

bOption: Option field that indicates whether this application has ISO File IDs and DF

names.

*pAid: The Application AID. The AID shall be 3 bytes long.

bKeySettings1: Stores the Application Master Key Settings.

bKeySettings2: Stores and defines several settings such as the number of keys that can

be stored within the application for cryptographic purposes, the use or not of ISO Field

IDs and the crypto method of the application.

*pISOFileId: The ISO File ID of the application to be created. The ISO File IDs are used

for ISO/IEC 7816-4 file systems. This parameter is used to select the application using

the ISO Select command.

*pISODFNAme: The Dedicated File Name (DF-Name) of the Application. The

Application can be referenced using the DF-Name. Any DF name shall be coded on 1 to

16 bytes and each DF name shall be unique within the given card.

bISODFNameLen: The size of the ISO DF-Name.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 92 of 205

PH_ERR_INVALID_DATA_PARAMS: Some of the parameters given to the function do not match

with the expected variables.

Other: Value returned by the underlying component.

5.3.4.2 Select Application

The Select Application command allows to select one specific application for further

access. If the AID 0x000000 is indicated, the card level is selected.

phStatus_t phalMfdf_SelectApplication(

void * pDataParams, [In]

uint8_t * pAid); [In]

*pDataParams: Pointer to the MIFARE DESFire data parameter component.

*pAid: The AID of the application to be selected.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.3.4.3 Get Version

The Get Version command returns manufacturing related data of the card. Three frames

of manufacturing related data are returned. The first frame contains hardware related

information, the second frame contains software related information and the third frame

returns the unique serial number, batch number and date of production of the IC

phStatus_t phalMfdf_GetVersion(

void * pDataParams, [In]

uint8_t * pVerInfo); [Out]

*pDataParams: Pointer to the MIFARE DESFire data parameter component.

*pVerInfo: The 28 bytes version data returned by the card.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: The received response violates the contactless protocol.

Other: Value returned by the underlying component.

5.3.4.4 Create Standard Data File

The Create Standard data File command is used to create files for the storage of plain

user data within an existing application on the card.

phStatus_t phalMfdf_CreateStdDataFile(

void * pDataParams, [In]

uint8_t bOption, [In]

uint8_t bFileNo, [In]

uint8_t * pISOFileId, [In]

uint8_t bCommSett, [In]

uint8_t * pAccessRights, [In]

uint8_t * pFileSize); [In]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 93 of 205

*pDataParams: Pointer to the MIFARE DESFire data parameter component.

bOption: Option parameter. The 0x00 value means that pISOFileID is not provided. The

0x01 value means that pISOFileID is provided and valid.

bFileNo: The file number of the new file to be created within the range of 0x00 to 0x1F. If

a file with the same specified number already exists within the current application, an

error is returned.

*pISOFileId: The ISO File ID of the file to be created. The ISO File IDs are used for

ISO/IEC 7816-4 file systems. This parameter is used to select the file using the ISO

Select command.

bCommSett: It defines the communication settings. This settings define the level of

security for the communication between the card and the reader IC. There are three

options: Plain communication, Plain communication secured by MACing, or Enciphered

communication.

*pAccessRights: Two byte field defining the access rights for the new file (Read,

Read&Write or Write access).

*pFileSize: The size of the file to be created.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: Some of the parameters given to the function do not match

with the expected variables.

Other: Value returned by the underlying component.

5.3.4.5 Write Data

The Write Data command allows to write data in Standard Data Files and Backup Data

files.

phStatus_t phalMfdf_WriteData(

void * pDataParams, [In]

uint8_t bCommOption, [In]

uint8_t bFileNo, [In]

uint8_t * pOffset, [In]

uint8_t * pTxData, [In]

uint8_t * pTxDataLen); [In]

*pDataParams: Pointer to the MIFARE DESFire data parameter component.

bCommOption: It defines the communication settings. This settings define the level of

security for the communication between the card and the reader IC. There are three

options: Plain communication, Plain communication secured by MACing or Enciphered

communication.

bFileNo: The file number where the data will be written.

*pOffset: It specifies a certain offset (bytes) before starting writing the data into the file.

This can be used to start writing on a certain point of the file and not to overwrite

previous data.

*pTxData: The data to be written in the file.

*pTxDataLen: The length of the data to be written in the file.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 94 of 205

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: Some of the parameters given to the function do not match

with the expected variables.

PH_ERR_UNSOPORTED_PARAMETER: An introduced parameter is not supported by the function.

Other: Value returned by the underlying component.

5.3.4.6 ISO Select File

The ISO Select File selects a certain file in order to perform further operations. The

registered ISO AID of the MIFARE DESFire card is “0xD2780000850100”. When

selecting this application, the MIFARE DESFire is selected. This command is

implemented in compliance with ISO/IEC 7816-4 standard.

phStatus_t phalMfdf_IsoSelectFile(

void * pDataParams, [In]

uint8_t bOption, [In]

uint8_t bSelector, [In]

uint8_t * pFid, [In]

uint8_t * pDFname, [In]

uint8_t bDFnameLen, [In]

uint8_t ** ppFCI, [Out]

uint16_t * pwFCILen); [Out]

*pDataParams: Pointer to the MIFARE DESFire data parameter component.

bOption: This variable can take two values. If bOption is equal to 0x00, the FCI is

returned. If bOption is equal to 0x0C, the FCI is not returned

bSelector:: ISO Select mechanism. The value 0x00 is the ISO Select by the ISO File ID.

The 0x02 value is the ISO Select by EF (Elementary file). The 0x04 value is the ISO

Select by DF Name.

*pFid: The 2 bytes ISO File ID to be selected. The LSB is sent first.

*pDFname: The Dedicated File Name (DF-Name) of the application to be selected.

bDFnameLen: The length of the DF-name of the application to be selected.

**ppFCI: File control information. The FCI is the byte string available in the response to

the Select command.

*pwCILen: Length of the file control information returned.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: Some of the parameters given to the function do not match

with the expected variables.

Other: Value returned by the underlying component.

5.3.4.7 ISO Read Binary

The ISO Read Binary command reads a certain number of bytes from a file. This

command is implemented in compliance with ISO/IEC 7816-4 standard.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 95 of 205

phStatus_t phalMfdf_IsoReadBinary(

void * pDataParams, [In]

uint16_t wOption, [In]

uint8_t bOffset, [In]

uint8_t bSfid, [In]

uint8_t bBytesToRead, [In]

uint8_t ** ppRxBuffer, [Out]

uint16_t * pBytesRead); [Out]

*pDataParams: Pointer to the MIFARE DESFire data parameter component.

wOption: This field allows to set the data exchange mode between the card and the

reader IC. It can take two values: PH_EXCHANGE_DEFAULT or PH_EXCHANGE_RXCHAINING.

bOffset: It specifies a certain offset (bytes) before starting reading the data of the file.

This can be used to start reading on a certain point of the file.

bSfid: Short ISO File ID. This field is one byte length and it is used to uniquely identify

the Elementary File (EF).

bBytesToread: The number of bytes to be read. If this value is equal to zero, means that

the entire file shall be read.

**ppRxBuffer: The buffer where the read bytes are stored.

*pBytesReader: Number of bytes that have been read.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: Some of the parameters given to the function do not match

with the expected variables.

Other: Value returned by the underlying component.

5.3.4.8 ISO Update Binary

The ISO Update Binary command updates the bits already present in a file with the bits

given in the pData buffer. This command is implemented in compliance with ISO/IEC

7816-4

phStatus_t phalMfdf_IsoUpdateBinary(

void * pDataParams, [In]

uint8_t bOffset, [In]

uint8_t bSfid, [In]

uint8_t * pData, [In]

uint8_t bDataLen); [In]

*pDataParams: Pointer to the MIFARE DESFire data parameter component.

bOffset: Specifies a certain offset (bytes) before starting writing the data into the file.

This can be used to start writing on a certain point of the file and not to overwrite

previous data.

bSfid: Short ISO File ID. This field is one byte length and it is used to uniquely identify

the Elementary File (EF).

*pData: The data to be written into the file.

bDataLen: The length of the data to be written.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 96 of 205

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: Some of the parameters given to the function do not match

with the expected variables.

Other: Value returned by the underlying component.

5.4 FeliCa

5.4.1 Technical Introduction

FeliCa is a contactless smart card system developed by Sony. Mainly used in Japan, and

other countries such as Singapore. Primarily designed for electronic money cards, FeliCa

is nowadays widely used for different contactless services such as transportation, access

control and others.

The basic information unit used for the management of FeliCa cards is the block. Each

block has a fixed size of 16 bytes, and the total number of blocks on a certain chip

depends on the hardware IC. FeliCa supports simultaneous operations of up to 8 blocks.

Blocks are not addressed directly but relative to the service they belong to. Blocks are

defined within services that serve as files. These services are organized in areas that

serve as logical folders. Finally, these areas are structured in systems, which are the

normative unit to be handled and serve as logical cards. More than one system can exist

within a card.

Services, areas and systems are identified by their respective service codes, area codes

and system codes, which are all 2 bytes codes.

The Fig 25 depicts a sample FeliCa card memory map using DES cryptography.

Fig 25. FeliCa memory map

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 97 of 205

5.4.2 FeliCa Parameter Structure

The FeliCa AL component defines a parameter structure that is used for the exchange of

Application level commands with the Felica Card.

typedef struct {

 void * pPalFelicaDataParams;

 uint16_t wAdditionalInfo;

} phalFelica_Sw_DataParams_t;

* pPalFelicaDataParams: Pointer to the FeliCa parameter structure on the PAL layer.

wAdditionalInfo: It stores the last error code received from the FeliCa card.

5.4.3 FeliCa Component Initialization

The FeliCa AL component is initialized using the phalFelica_Sw_Init() function. The

initialization function takes the FeliCa PAL and FeliCA AL parameter structures as inputs.

The FeliCa AL component shall be initialized before its API can be used.

phStatus_t phalFelica_Sw_Init(

phalFelica_Sw_DataParams_t * pDataParams, [In]

uint16_t wSizeOfDataParams, [In]

void * pPalFelica_DataParams); [In]

* pDataParams: Pointer to the FeliCa AL parameter component.

wSizeOfDataParams: Size of the phalFelica_Sw_DataParams_t parameter component.

* pPalFelica_DataParams: Pointer to the underlying FeliCa PAL parameter component.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.4.4 FeliCa Command Set

The JIS X 6319-4 specification defines a set of commands to manage FeliCa cards.

Different commands can be executed depending on the mode the card is.

The NFC Reader Library implements the commands defined in mode 0, which is the

mode that does not require authentication. For the complete set of commands, please

refer to the Export Controller version of the NFC Reader Library [2].

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 98 of 205

Fig 26. FeliCa commands

5.4.4.1 Request Response

The Request Response command is used to retrieve the current FeliCa card mode.

phStatus_t phalFelica_RequestResponse (

 void *pDataParams, [In]

 uint8_t *pMode); [Out]

*pDataParams: Pointer to the FeliCa parameter component phalFelica_Sw_DataParams_t.

*pMode: Current mode on which the card is running: 0, 1 or 2.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

5.4.4.2 Request Service

The Request Service command is used to verify the existence of an area or a service. If

it exists, the Key Version associated to this area or service is acquired. Up to 16 areas or

services can be processed at a time.

If the specified area or service does not exist, the card shall return 0xFFFF.

phStatus_t phalFelica_RequestService (

 void *pDataParams, [In]

 uint8_t bTxNumServices, [In]

 uint8_t pTxServiceList, [In]

 uint8_t *pRxNumServices, [Out]

 uint8_t *pRxServiceList); [Out]

*pDataParams: Pointer to the FeliCa parameter component phalFelica_Sw_DataParams_t.

bTxNumServices: Number of services or areas for which the key version is being

consulted in this command.

* pTxServiceList: List with the service codes or area codes for which the key version is

being consulted message.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 99 of 205

* pRxNumServices: Number of the received services or areas.

* pRxServiceList: List of the received service Key Versions or area Key Version.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: No service codes supplied.

Other: Value returned by the underlying component.

5.4.4.3 Read

The Read command reads a set of services and blocks in a FeliCa card. A maximum

number of 8 services and 8 blocks shall be indicated. This Read command can only be

executed in non-authentication required services.

phStatus_t phalFelica_Read (

 void *pDataParams, [In]

 uint8_t bNumServices, [In]

 uint8_t *pServiceList, [In]

 uint8_t bTxNumBlocks, [In]

 uint8_t *pBlockList, [In]

 uint8_t bBlockListLength, [In]

 uint8_t *pRxNumBlocks, [Out]

 uint8_t *pBlockData); [Out]

*pDataParams: Pointer to the FeliCa parameter component phalFelica_Sw_DataParams_t.

bNumServices: Number of Services in the pServiceList list.

*pServiceList: List of Services identified by their associated Service Code.

bTxNumBlocks: Number of Blocks to be read.

*pBlockList: List of Blocks to be read.

bBlockListLength: Length of the list of blocks to be read.

*pRxNumBlocks: Number of blocks received from the card.

*pBlockData: Data received from the card – 16 x pRxNumBlocks –.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: No service codes or blocks supplied;

(bBlockListLength < bTxNumBlocks * 2) or (bBlockListLength > bTxNumBlocks * 3

bNumBlocks > 8.

Other: Value returned by the underlying component.

5.4.4.4 Write

The Write command stores data in a FeliCa card. This Write command can only be

executed in non-authentication required services.

phStatus_t phalFelica_Write (

 void *pDataParams, [In]

 uint8_t bNumServices, [In]

 uint8_t *pServiceList, [In]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 100 of 205

 uint8_t bNumBlocks, [In]

 uint8_t *pBlockList, [In]

 uint8_t bBlockListLength, [In]

 uint8_t *pBlockData); [In]

*pDataParams: Pointer to the FeliCa parameter component phalFelica_Sw_DataParams_t.

bNumServices: Number of Services in pServiceList list.

*pServiceList: List of Services identified by their associated Service Code.

bNumBlocks: Number of blocks to be written.

*pBlockList: List of Blocks to be written.

bBlockListLength: Length of the list of blocks to be written.

*pBlockData: Data to be stored on the card – 16 x bBlockListLength –.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: No service codes or blocks supplied;

(bBlockListLength < bTxNumBlocks * 2) or (bBlockListLength > bTxNumBlocks * 3);

bNumBlocks > 8.

Other: Value returned by the underlying component

5.5 Jewel / Topaz

5.5.1 Technical Introduction

The Topaz IC was developed by Innovision Research & Technology to address NFC and

RFID tagging applications, and is therefore compliant with the ISO/IEC 18092, ISO/IEC

21481 and ISO/IEC 14443A standards. The Topaz IC based tag is the one that the NFC

Forum has used to define the Type 1 Tag format.

The Topaz Tag utilizes two different memory mapping techniques depending on the

memory size of the tag (Static and Dynamic memory structures). The static memory

structure applies to a tag with a total physical memory size equal to 120 bytes. The

memory availability is 96 bytes for user data. The memory is divided into blocks of 8

bytes numbered from 0 to 14 (Eh). On the other hand, the Dynamic memory structure

model applies for tags with a physical memory larger than 120 bytes.

There is an additional 2-byte Header ROM (HR), where HR0=0x11 identifies the tag as a

Topaz IC for NFC NDEF data applications. HR1 is reserved for internal use and shall be

ignored.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 101 of 205

Fig 27. Topaz IC static memory map

5.5.2 Jewel/Topaz Parameter Structure

A special structure has been defined in the NFC Reader Library in order to store the

parameters related to the Topaz Tag operation. This structure has been called

phalT1T_Sw_DataParams_t.

typedef struct{

void * pPalI14443p3aDataParams;

uint8_t abHR[2];

uint8_t abUid[4];

} phalT1T_Sw_DataParams_t;

*pPalI14443p3aDataParams: Pointer to the ISO/IEC 14443-3A PAL data parameter

component.

abHR[2]: Stores the Header ROM bytes (HR0 and HR1).

abUid: Stores the Topaz Tag UID.

5.5.3 Jewel/Topaz Component Initialization

The following function initializes a Topaz component.

phStatus_t phalT1T_Sw_Init(

phalT1T_Sw_DataParams_t * pDataParams, [In]

uint16_t wSizeOfDataParams, [In]

void * pPalI14443p3aDataParams); [In]

*pDataParams: Pointer to the Topaz (T1T) data parameter component.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 102 of 205

wSizeofDataParams: Size of the Topaz (T1T) data parameter component.

*pPalI14443p3aDataParams: Pointer to the ISO/IEC 14443-3A PAL data parameter

component.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: Some of the parameters passed to the function do not match

with the expected variables.

5.5.4 Jewel/Topaz Command Set

The Jewel/Topaz command set is implemented within the NFC Reader Library. The

Jewel/Topaz commands are described and explained in this section.

5.5.4.1 Request A

The function phalT1T_RequestA() performs an ISO 14443-3A Request A command.

phStatus_t phalT1T_RequestA(

void * pDataParams, [In]

uint8_t * pAtqa); [Out]

*pDataParams: Pointer to the Topaz (T1T) data parameter component.

*pAtqa: Stores the Topaz Tag response (ATQA) to the Request A from the reader IC.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

PH_ERR_FRAMING_ERROR: Invalid BCC received.

Other: Value returned by the underlying component.

5.5.4.2 Read UID

The Read UID command reads the metal-mask header bytes (HR0 and HR1) and the

four least significant UID bytes from Block 0.

phStatus_t phalT1T_ReadUID(

void * pDataParams, [In]

uint8_t * pUid, [Out]

uint16_t * pLength); [Out]

*pDataParams: Pointer to the Topaz (T1T) data parameter component.

*pUid: The four least significant UID bytes from the Topaz tag.

*pLength: The number of received data bytes.

 The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

PH_ERR_FRAMING_ERROR: Invalid BCC received.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 103 of 205

Other: Value returned by the underlying component.

5.5.4.3 Read All

The Read All command reads the two Header ROM bytes followed by all the memory

blocks from 0x00 to 0x0E.

phStatus_t phalT1T_ReadAll(

void * pDataParams, [In]

uint8_t * pUid, [In]

uint8_t * pData, [Out]

uint16_t * pLength); [Out]

*pDataParams: Pointer to the Topaz (T1T) data parameter component.

*pUid: The four least significant UID bytes from the Topaz tag.

*pData: Buffer that stores all the read data from the tag.

*pLength: Number of received data bytes.

 The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

PH_ERR_FRAMING_ERROR: Invalid BCC received.

Other: Value returned by the underlying component.

5.5.4.4 Read Byte

The Read Byte commands reads a single EEPROM memory byte within blocks 0x00 to

0x0E.

phStatus_t phalT1T_ReadByte(

void * pDataParams, [In]

uint8_t * pUid, [In]

uint8_t bAddress, [In]

uint8_t * pData, [Out]

uint16_t * pLength); [Out]

*pDataParams: Pointer to the Topaz (T1T) data parameter component.

*pUid: The four least significant UID bytes from the Topaz tag.

bAddress: Address of the byte to be read.

*pData: Buffer containing the read data from the tag.

*pLength: Number of received data bytes.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

PH_ERR_FRAMING_ERROR: Invalid BCC received.

Other: Value returned by the underlying component.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 104 of 205

5.5.4.5 Write Erase Byte

The Write Erase command is used in a static memory structure to write a single memory

byte within blocks 0x00 to 0x0E. This command performs the erase-write cycle, which

means that it erases the target byte before it writes the new data.

phStatus_t phalT1T_WriteEraseByte(

void * pDataParams, [In]

uint8_t * pUid, [In]

uint8_t bAddress, [In]

uint8_t bTxData, [In]

uint8_t * pRxData, [Out]

uint16_t * pLength); [Out]

*pDataParams: Pointer to the Topaz (T1T) data parameter component.

*pUid: The four least significant UID bytes from the Topaz tag.

bAddress: Address of the byte to be written.

bTxData: Buffer containing the data to be written to the tag.

*pRxData: Buffer that stores the data retrieved from the tag.

*pLength: Number of received data bytes.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

PH_ERR_FRAMING_ERROR: Invalid BCC received.

Other: Value returned by the underlying component.

5.5.4.6 Write No Erase Byte

The Write No Erase command is used in static memory structure to write a single

memory byte within blocks 0x00 to 0x0E. This command does not erase the target before

writing the new data, and its execution time is approximately half of the Write Erase

command.

phStatus_t phalT1T_WriteNoEraseByte(

void * pDataParams, [In]

uint8_t * pUid, [In]

uint8_t bAddress, [In]

uint8_t bTxData, [In]

uint8_t * pRxData, [Out]

uint16_t * pLength); [Out]

*pDataParams: Pointer to the Topaz (T1T) data parameter component.

*pUid: The four least significant UID bytes from the Topaz tag.

bAddress: Address of the byte to be written.

bTxData: Buffer containing the data to be written to the tag.

*pRxData: Buffer that stores the data retrieved from the tag.

*pLength: Number of received data bytes.

The values returned by the function can be:

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 105 of 205

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

PH_ERR_FRAMING_ERROR: Invalid BCC received.

Other: Value returned by the underlying component.

5.5.4.7 Read Segment

The Read Segment command reads a complete segment of memory. A segment

consists of 16 blocks (128 bytes) of memory.

phStatus_t phalT1T_ReadSegment(

void * pDataParams, [In]

uint8_t * pUid, [In]

uint8_t bAddress, [In]

uint8_t * pData, [Out]

uint16_t * pLength); [Out]

*pDataParams: Pointer to the Topaz (T1T) data parameter component.

*pUid: The four least significant UID bytes from the Topaz tag.

bAddress: Address from which to start reading the segment.

*pData: Buffer containing the read data from the tag.

*pLength: Number of received data bytes.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

PH_ERR_FRAMING_ERROR: Invalid BCC received.

Other: Value returned by the underlying component.

5.5.4.8 Read Block

The Read Block (or Read 8 bytes) command reads a block of memory.

phStatus_t phalT1T_ReadBlock(

void * pDataParams, [In]

uint8_t * pUid, [In]

uint8_t bAddress, [In]

uint8_t * pData, [Out]

uint16_t * pLength); [Out]

*pDataParams: Pointer to the Topaz (T1T) data parameter component.

*pUid: The four least significant UID bytes from the Topaz tag.

bAddress: Address from which to start writing to the block.

*pData: Buffer containing the read data from the tag.

*pLength: Number of received data bytes.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 106 of 205

PH_ERR_PROTOCOL_ERROR: Invalid response received.

PH_ERR_FRAMING_ERROR: Invalid BCC received.

Other: Value returned by the underlying component.

5.5.4.9 Write Erase Block

The Write Erase Block (or Write 8 bytes) command performs an erase-write cycle over a

block, which means that it erases the target block before writing the new data.

phStatus_t phalT1T_WriteEraseBlock(

void * pDataParams, [In]

uint8_t * pUid, [In]

uint8_t bAddress, [In]

uint8_t * pTxData, [In]

uint8_t * pRxData, [Out]

uint16_t * pLength); [Out]

*pDataParams: Pointer to the Topaz (T1T) data parameter component.

*pUid: The four least significant UID bytes from the Topaz tag.

bAddress: Address from which to start writing to the block.

bTxData: Buffer containing the data to be written to the tag.

*pRxData: Buffer that stores the data retrieved from the tag.

*pLength: Number of received data bytes.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

PH_ERR_FRAMING_ERROR: Invalid BCC received.

Other: Value returned by the underlying component.

5.5.4.10 Write No Erase Block

The Write No Erase Block (or Write No Erase 8 bytes) command writes the new data a

block without previously erasing the content of the block. Therefore, its executing time is

approximately half of the Write Erase command.

phStatus_t phalT1T_WriteNoEraseBlock(

void * pDataParams, [In]

uint8_t * pUid, [In]

uint8_t bAddress, [In]

uint8_t * pTxData, [In]

uint8_t * pRxData, [Out]

uint16_t * pLength); [Out]

*pDataParams: Pointer to the Topaz (T1T) data parameter component.

*pUid: The four least significant UID bytes from the Topaz tag.

bAddress: Address from which to start writing to the block.

bTxData: Buffer containing the data to be written to the tag.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 107 of 205

*pRxData: Buffer that stores the data retrieved from the tag.

*pLength: Number of received data bytes.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_PROTOCOL_ERROR: Invalid response received.

PH_ERR_FRAMING_ERROR: Invalid BCC received.

Other: Value returned by the underlying component.

5.6 NFC Forum Tag Type Operations

5.6.1 Technical Introduction

Service providers developing smart card solutions usually offer different products to

provide a more complete solution. Each tag or smart card product have their own

memory map and their own set of functions to interact with it, and therefore, solutions

that are developed for a particular product are not applicable to others.

The NFC Forum standardization body has released the NFC Forum Platform which

consists of four NFC Forum Type Tag specifications [22][23][24][25]. These

specifications are independent of both the product and the technology although based on

existing contactless card products. The main objective of the NFC Forum Platform is to

provide abstraction of the underlying hardware where the data is stored. This way, any

NFC device acting in Read&Write mode is able to understand NDEF [26] formatted

messages on any NFC Forum tag and to interpret the operation to be completed with the

data.

Table 14 depicts available Type Tags and their reference products.

Table 14. NFC Forum Type Tag Platforms

NFC Forum Platform Reference Products

NFC Forum Type 1 Tag Innovision Topaz

NFC Forum Type 2 Tag NXP MIFARE Ultralight family, NXP NTAG family

NFC Forum Type 3 Tag Sony FeliCa

NFC Forum Type 4 Tag Tags compliant with ISO-7816 file structure

NXP MIFARE DESFire, NXP SmartMX with JCOP, and others.

NFC Forum Type Tag specifications define the data mapping and the way NFC Forum

Devices detect, read, and write NDEF data into a particular NFC Forum Tag in order to

achieve and maintain interchangeability and interoperability.

5.6.2 NFC Forum Tag Type Operations component

The objective of the NFC Forum Platform is to provide abstraction from the underlying

hardware on which the operation is being performed. The NFC Forum Tag Type

Operations component of the NFC Reader Library provides an API that allows customers

to complete NDEF related operations on NFC Forum Tags. The NFC Reader Library

translates these operations to the appropriate Type Tag API functions which implement

the specific Type Tag commands. The NFC Forum Tag Type Operations API relies and

leverages on the Application Layer components for these operations.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 108 of 205

Fig 28. NFC Forum Tag Type Operations component API

For instance, the NFC Forum Tag Type Operations component implements a function to

write NDEF messages into a tag (phalTop_Sw_WriteNdef()).If we are working with a Type

2 tag, the NFC Reader Library translates this call to the appropriate Type 2 Tag API

function (phalTop_Sw_Int_T2T_WriteNdef()). Similarly, phalTop_Sw_Int_T2T_WriteNdef(),

internally makes use of the write function implemented in the MIFARE Ultralight

component. This process is performed in a transparent way for the user.

Fig 29. NFC Forum Tag Type Operations API: Write NDEF function for a Type 2 Tag

5.6.3 NFC Forum Tag Type Operations structure

The NFC Forum Tag Type Operations component structure defined by the NFC Reader

Library provides abstraction of the underlying hardware where the NDEF operations are

being performed. In order to be able to operate with the four NFC Forum defined NFC

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 109 of 205

tags, the NFC Forum Tag Type Operations component structure stores pointers that

reference all the specific NFC Forum Type Tags.

The bTagType value that is defined within the phalTop_Sw_DataParams_t structure

identifies the detected card technology on which the commands are being executed in

order to be able to translate generic NDEF management commands to the card

technology specific commands as it is explained in Fig 29.

typedef struct phalTop_Sw_DataParams {

 uint8_t bTagType;

 void * pT1T;

 void * pT2T;

 void * pT3T;

 void * pT4T;

 void * pT5T;

} phalTop_Sw_DataParams_t;

*bTagType: Identifier of the underlying hardware Type Tag technology.

*pT1T: Pointer to the Type 1 Tag phalTop_T1T_t component structure.

*pT2T: Pointer to the Type 2 Tag phalTop_T2T_t component structure.

*pT3T: Pointer to the Type 3 Tag phalTop_T3T_t component structure.

*pT4T: Pointer to the Type 4 Tag phalTop_T4T_t component structure.

*pT5T: Pointer to the Type 5 Tag phalTop_T5T_t component structure (RFU).

The NFC Reader Library defines four structures to manage each NFC Forum Type Tag.

The definition of each structure is card technology dependent and therefore the variables

that are declared in each structure are completely different.

The explanation of the four Type Tag component structures is out of the scope of this

document. The only Type Tag component structure that is explained is the Type 2 Tag,

which belongs to the NXP MIFARE Ultralight reference product.

typedef struct phalTop_T2T {

 void * phalT2TDataParams;

 uint8_t bNdefPresence;

 uint8_t bVno;

 uint8_t bTms;

 uint8_t bRwa;

 uint16_t wNdefHeaderAddr;

 uint16_t wNdefMsgAddr;

 uint16_t wNdefLength;

 uint16_t wMaxNdefLength;

 uint8_t bMemoryTlvCount;

 phalTop_T2T_MemCtrlTlv_t asMemCtrlTvl[PHAL_TOP_T2T_MAX_MEM_CTRL_TLV];

 uint8_t bLockTlvCount;

 phalTop_T2T_LockCtrlTlv_t asLockCtrlTvl[PHAL_TOP_T2T_MAX_LOCK_CTRL_TLV];

 uint8_t bProprietaryTlvCount;

 phalTop_T2T_ProprietaryTlv_t asPropTvl[PHAL_TOP_T2T_MAX_PROPRIETARY_TLV];

 uint8_t bTerminatorTlvPresence;

 uint8_t bEraseProprietaryTlv;

 uint8_t bNdefFormatted;

 uint8_t bTagState;

 uint8_t bTagMemoryType;

 phalTop_T2T_Sector_t sSector;

}phalTop_T2T_t;

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 110 of 205

* phalT2TDataParams: Pointer to the reference application layer component structure

(In this case MIFARE Ultralight component).

bNdefPresence: Indicates the presence or absence of a NDEF message in the tag.

bVno: NFC Forum Type Tag specification version number with which the tag is

compliant.

bTms: Total data memory size of the tag (calculated as 8 x bTms).

bRwa: Tag read/write access privileges: initialized, read/write, read only.

wNdefHeaderAddr: Header offset of the first NDEF message.

wNdefMsgAddr: Start address of the NDEF message.

wNdefLength: Length of the NDEF message.

wMaxNdefLength: Maximum supported NDEF length depending on the TLV.

bMemoryTlvCount: Number of memory TLV present in the tag.

asMemCtrlTvl: Array of Memory control TLVs.

bLockTlvCount: Number of lock TLV present in the tag.

asLockCtrlTvl: Array of Lock control TLVs.

bProprietaryTlvCount: Number of proprietary TLV present in the tag.

asPropTvl: Array of proprietary TLVs.

bTerminatorTlvPresence: Indicates whether the terminator TLV is present in the tag.

bEraseProprietaryTlv: TLV during write; 1 - erase, 0 - don't erase.

bNdefFormatted: Indicates if the tag is formatted to store NDEF messages, which

implies the existence of a well-formatted Capability Container.

bTagState: Current state of the tag: initialized, .

Table 15. NFC Forum Type Tag Platforms

NFC Reader Library state Tag 2 Type state

PHAL_TOP_T2T_STATE_UNKNOWN Default initial state

PHAL_TOP_T2T_STATE_INITIALIZED Initialized state

PHAL_TOP_T2T_STATE_READONLY Read Only state

PHAL_TOP_T2T_STATE_READWRITE Read/Write state

* bTagMemoryType: Indicates the tag memory type: static (memory size equal to 64

bytes) or dynamic (memory size bigger than 64 bytes) according to bTms.

* sSector: Configuration details for the current sector.

5.6.4 NFC Forum Tag Type Operations API

The NFC Forum Tag Type Operations component offers a set of functions that allow

developers to manage NDEF Formatted data on NFC Forum Tags.

5.6.4.1 Init function

The phalTop_Sw_Init function initializes the NFC Forum Tag Type Operations

phalTop_Sw_DataParams_t component structure by setting the pointers to all NFC Forum

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 111 of 205

Tag Type components that are passed as input arguments to this function. If a specific

Type Tag is not going to be used in the application, the pointer should be set to NULL.

This function calls internally the phStatus_t phalTop_Reset() function that is responsible

for the initialization of the passed Type Tag structures.

phStatus_t phalTop_Sw_Init(

phalTop_Sw_DataParams_t * pDataParams, [In]

uint16_t wSizeOfDataParams, [In]

void * pTopT1T, [In]

void * pTopT2T, [In]

void * pTopT3T, [In]

void * pTopT4T, [In]

void * pTopT5T); [In]

*pDataParams: Pointer to the phalTop_Sw_DataParams_t component.

wSizeofDataParams: Size of the phalTop_Sw_Init data parameter component.

*pTopT1T: Pointer to the Type 1 Tag phalTop_T1T_t component structure.

*pTopT2T: Pointer to the Type 1 Tag phalTop_T1T_t component structure.

*pTopT3T: Pointer to the Type 1 Tag phalTop_T1T_t component structure.

*pTopT4T: Pointer to the Type 1 Tag phalTop_T1T_t component structure.

*pTopT5T: Pointer to the Type 5 Tag phalTop_T5T_t component structure (RFU).

5.6.4.2 Reset

The Reset function of the NFC Forum Tag Type Operations component resets the

phalTop_Sw_DataParams_t parameter structure to its default state by setting all the variables

to 0. The current state of all NFC Forum Tag Type Operations structures is set to the

default initial state.

This function is automatically called by the NFC Reader Library when the

phalTop_Sw_Init() function is called by the developer.

phStatus_t phalTop_Reset(

 phalTop_Sw_DataParams_t * pDataParams); [In]

*pDataParams: Pointer to the phalTop_Sw_DataParams_t component structure.

The value returned by the function is:

PH_ERR_SUCCESS Operation successful.

5.6.4.3 Check NDEF

This function checks whether there is a NDEF message stored in the card or not. The

result of this checking is returned to the user in pNdefPresence variable.

Before this function can be called by the developer, phalTop_Sw_DataParams_t structure

shall be updated according to the detected card technology. Function

phalTop_SetConfig() (see section 5.6.4.8) might be useful for completing this task.

Together with the NDEF presence checking, the function gathers information about card

specific configuration such as the specification version number, the total memory size,

operation configuration (e.g. read only, read/write) in order to fill in the fields defined at

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 112 of 205

the Type Tag structure. Therefore, this function shall be called before performing any

operation in a tag.

In order to check the presence of the NDEF message, the reader IC looks for the

Capability Container existence as it is defined in the corresponding NFC Forum Type

Tag specification. In addition, it searches for TLVs stored in the card to retrieve all

available information.

phStatus_t phalTop_CheckNdef(

 phalTop_Sw_DataParams_t * pDataParams, [In]

 uint8_t * pNdefPresence); [Out]

*pDataParams: Pointer to the phalTop_Sw_DataParams_t component structure.

pNdefPresence: Indicates whether there is a NDEF message stored in the card or not.

- 0: There is no NDEF message stored in the card.

- 1: There is a NDEF message stored in the card.

The value returned by the function is:

PH_ERR_SUCCESS Operation successful.

5.6.4.4 Format NDEF

This function configures the tag to store NDEF formatted data. It writes the Capability

Container according to the Type Tag specification that addresses the particular

technology of the card on which the operation is performed.

This function can be skipped when the card is already formatted for the correct storage of

NDEF messages. phalTop_Sw_CheckNdef() function, which shall be called before

executing this phStatus_t phalTop_FormatNdef() function, already checks for the existence

of a valid capability container in the tag and it stores the result in the bNdefFormatted field

of phalTop_Sw_DataParams_t structure. In order to get this value, phalTop_GetConfig()

function (see section 5.6.4.9) and PHAL_TOP_CONFIG_TAG_FORMATTABLE tag might be useful.

phStatus_t phalTop_FormatNdef(

 phalTop_Sw_DataParams_t * pDataParams); [In]

*pDataParams: Pointer to the phalTop_Sw_DataParams_t component structure.

The values returned by the function can be:

PH_ERR_SUCCESS Operation successful.

PH_ERR_INVALID_PARAMETER: A parameter value is invalid.

Other: Value returned by the underlying component.

5.6.4.5 Read NDEF

This function reads out a NDEF message from a tag. Prior to any tag operation, the

phalTop_CheckNdef() shall be called to validate if the tag contains a valid NDEF message.

The phalTop_ReadNdef function returns the whole NDEF message, including its header and

payload.

phStatus_t phalTop_ReadNdef(

 phalTop_Sw_DataParams_t * pDataParams, [In]

 uint8_t * pData, [Out]

 uint16_t * pLength); [Out]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 113 of 205

*pDataParams: Pointer to the phalTop_Sw_Init component.

*pData: The NDEF message read from the tag.

*pLength: The NDEF message length.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: A parameter value is invalid.

PH_ERR_PROTOCOL_ERROR: No valid NDEF present in the tag.

Other: Value returned by the underlying component.

5.6.4.6 Write NDEF

This function writes a NDEF message in the tag where the function is executed. Before

performing this operation, phalTop_CheckNdef() shall be called.

Additionally, if the tag is not already correctly formatted for the storage of NDEF

messages, which basically implies the existence of a valid Capability Container, the

phalTop_FormatNdef() function shall be called. The entire NDEF message should be

passed to the function (NDEF header and payload).

phStatus_t phalTop_WriteNdef(

 phalTop_Sw_DataParams_t * pDataParams, [In]

 uint8_t * pData, [Out]

 uint16_t wLength); [Out]

*pDataParams: Pointer to the phalTop_Sw_Init component.

*pData: The NDEF data to write to the tag.

wLength: The NDEF data length.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: A parameter value is invalid.

PH_ERR_PROTOCOL_ERR_NOT_FORMATTED: Non formatted tag.

Other: Value returned by the underlying component.

5.6.4.7 Erase NDEF

The calling of this function leads to the removal of a NDEF Message from the tag

memory. The memory blocks of the tag where the NDEF message is stored are set to 0.

In addition, the Capability Container is erased from the tag (operation available only if the

CC block is not OTP).

phStatus_t phalTop_EraseNdef(

 phalTop_Sw_DataParams_t * pDataParams); [In]

*pDataParams: Pointer to the phalTop_Sw_DataParams_t component structure.

The values returned by the function can be:

PH_ERR_SUCCESS Operation successful.

Other: Value returned by the underlying component.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 114 of 205

5.6.4.8 Set Config

This function provides a user friendly way to modify some parameters defined in the

phalTop_Sw_DataParams component structure. This way, developers can make use of tags

defined in /intfs/phalTop.h file instead of going through the variables in the component

structure.

For instance, whenever a new card technology is detected, the developer may call this

function indicating PHAL_TOP_CONFIG_TAG_TYPE tag and the correct technology, defined in

Table 16, instead of setting the bTagType variable in phalTop_Sw_DataParams structure.

Table 16. NFC Forum Type Tag Platforms

NFC Forum Platform NFC Reader Configuration Tag

NFC Forum Type 1 Tag PHAL_TOP_TAG_TYPE_T3T_TAG

NFC Forum Type 2 Tag PHAL_TOP_TAG_TYPE_T3T_TAG

NFC Forum Type 3 Tag PHAL_TOP_TAG_TYPE_T3T_TAG

NFC Forum Type 4 Tag PHAL_TOP_TAG_TYPE_T3T_TAG

phStatus_t phalTop_SetConfig(

 phalTop_Sw_DataParams_t * pDataParams, [In]

 uint16_t wConfig, [In]

 uint16_t wValue); [In]

*pDataParams: Pointer to the phalTop_Sw_DataParams_t component structure.

wConfig: Variable identifier to be modified.

wValue: Value for the variable to be modified.

The values returned by the function can be:

PH_ERR_SUCCESS Operation successful.

INVALID_PARAMETER: Invalid identifier passed.

Other: Value returned by the underlying component.

5.6.4.9 Get Config

This function provides a user friendly way to retrieve some parameters defined in the

phalTop_Sw_DataParams component structure. The value of the variable identified by

wConfig value is returned at the wValue pointer.

phStatus_t phalTop_GetConfig(

 phalTop_Sw_DataParams_t * pDataParams, [In]

 uint16_t wConfig, [In]

 uint16_t * wValue); [Out]

*pDataParams: Pointer to the phalTop_Sw_DataParams_t component structure.

wConfig: Identifier of the variable to be retrieved.

wValue: Pointer where the value of the variable is retrieved.

The values returned by the function can be:

PH_ERR_SUCCESS Operation successful.

INVALID_PARAMETER: Invalid identifier passed

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 115 of 205

6. NFC Reader Library API: NFC Activity

In this section, the NFC Activity component is explained in depth. How to configure the

Discovery loop to detect NFC tags and NFC devices and how to set up the reader IC in

different communication and operation modes is presented.

6.1 Discovery Loop

6.1.1 Technical Introduction

NFC technology was approved under the ISO/IEC 18092 international standard and is

compatible with both ISO/IEC 14443 Type A and FeliCa contactless protocols. NFC

technology added support for ISO/IEC 14443 Type B and ISO/IEC 15693 contactless

protocols later on under the ISO/IEC 21481 standard. These contactless technologies

are supported differently depending on the operation mode, as it is shown in Fig 30.

Fig 30. NFC supported contactless standards

Normally, it is not known in advance what kind of contactless smart card or NFC device

will be presented to the reader IC and in which mode it will be operating. The Discovery

Loop, or also known as polling loop, includes the following functionalities:

 Technology detection: Detects whether there is another device or tag to

communicate with and, if so, what technologies it support.

 Collision resolution: Detects the presence of multiple devices or tags and

enumerates the different identifiers.

 Device activation: Activates a particular device or tag to establish a communication.

In the NFC Reader Library, the Discovery Loop is implemented as a routine that

sequentially sets the reader IC in different functional states and configurations so it can

discover the presence of tags or NFC devices in the RF field. This polling loop can be

customized by the developer. It can be configured to select which contactless

technologies should be scanned in the field and set the guard and pause intervals as

well.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 116 of 205

The Discovery Loop concept is illustrated graphically in Fig 31. The reader IC is

configured to go through several states and sense the field using a specific contactless

protocol. The sensing is done by sending initialization request commands looking for

other devices or tags to respond. If during the sensing interval there is a device or tag

operating in this specific technology within the range, the reader IC will receive the

response to that initialization and thus activate the communication channel to start

exchanging data.

Fig 31. Discovery Loop routine

Unlike HAL, the Discovery Loop uses MCU timers for measuring the guard times, instead

of the reader IC timers. Due to the fact the OSAL layer does not provide any thread

creation capabilities, the Discovery Loop can only run in the main thread called from the

upper application without any possibility of interruption, therefore the upper application is

blocked until the Discovery Loop routine exits.

6.1.2 Discovery Loop Data Parameter Structure

A special structure has been defined in the NFC Reader Library in order to store the

parameters related to the Discovery Loop. This structure has been called

phacDiscLoop_Sw_DataParams.

typedef struct phacDiscLoop_Sw_DataParams{

 uint8_t bDetectionConfiguration;

 uint16_t wGTa;

 uint16_t wGTb;

 uint16_t wGTf;

 uint16_t wGTbf;

 uint8_t bGTaUnit;

 uint8_t bGTbUnit;

 uint8_t bGTfUnit;

 uint8_t bGTbfUnit;

 uint8_t bNumPollLoops;

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 117 of 205

 uint8_t bState;

 uint16_t wTagsFound;

 uint8_t bBailOut;

 uint8_t bLoopMode;

 pErrHandlerCallback pErrHandler;

 uint16_t wPausePeriod;

 uint8_t bPausePeriodUnit;

 uint8_t bStopFlag;

 uint8_t bConColl;

 uint8_t bP2P_ACT_BaudRate;

 void * pHalDataParams;

 void * pPal1443p3aDataParams;

 void * pPal1443p4aDataParams;

 void * pPalFelicaDataParams;

 void * pPal1443p3bDataParams;

 void * pPal18092mPIDataParams;

 void * pPal18092mTDataParams;

 void * pAlT1TDataParams;

 void * pOsal;

 phacDiscLoop_TypeA_Tags_t sTypeATargetInfo;

 phacDiscLoop_TypeF_Tags_t sTypeFTargetInfo;

 phacDiscLoop_TypeB_Tags_t sTypeBTargetInfo;

 phacDiscLoop_TargetParams_t sTargetParams;

} phacDiscLoop_Sw_DataParams_t;

bDetectionConfiguration: This variable can be used to configure which contactless

technologies will be scanned for detection. The uint8_t bDetectionConfiguration

variable can be set to these values:

 PHAC_DISCLOOP_CON_POLL_A: Flag enabling detection of Type A tags.

 PHAC_DISCLOOP_CON_POLL_B: Flag enabling detection of Type B tags.

 PHAC_DISCLOOP_CON_POLL_F: Flag enabling detection of Type F tags.

 PHAC_DISCLOOP_CON_POLL_ACTIVE: Detection of active initiator mode.

wGTa,wGTb,wGtf and wGTbf: These variables can be used to set up guard time

intervals between sending commands for detecting different types of contactless

protocols can be configured using these variables.

 wGTa: The guard time before detection of Type A tags

 wGTb: The guard time before detection of Type B tags.

 wGtf: The guard time before detection of Type F tags

 wGtbf: The guard time for switching from Type B detection to Type F detection.

bGTaUnit, bGTbUnit, bGTfUnit and bGTbfUnit; These variables are used to set the

time unit magnitude) for the guard time and pause interval variables (can be miiliseconds

or microseconds):

 bGTaUnit: Time units for wGTa.

 bGTbUnit: Time units for wGTb.

 bGTfUnit: Time units for wGTf.

 bGTbfUnit: Time units for wGTbf.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 118 of 205

bNumPollLoops; The number of iterations of the Discovery Loop sequence can be

configured using the bNumPollLoop variable value. Each loop iteration goes through all the

sequences defined in the variable uint8_t bDetectionConfiguration.

bState; Indicates the current state of the discovery loop.

wTagsFound; The wTagsFound variable represents a binary map indicating which tags

and NFC devices have been detected during the Discovery Loop. The following bitmasks

are defined:

 PHAC_DISCLOOP_TYPEA_DETECTED_TAG_TYPE1

 PHAC_DISCLOOP_TYPEA_DETECTED_TAG_TYPE2

 PHAC_DISCLOOP_TYPEA_DETECTED_TAG_TYPE4A

 PHAC_DISCLOOP_TYPEA_DETECTED_TAG_NFC_DEP_TYPE4A

 PHAC_DISCLOOP_TYPEF_DETECTED_TAG_P2P

 PHAC_DISCLOOP_TYPEA_DETECTED_TAG_P2P

 PHAC_DISCLOOP_TYPEA_DETECTED

 PHAC_DISCLOOP_TYPEB_DETECTED

 PHAC_DISCLOOP_TYPEF_DETECTED

bBailOut;Two bail out flags can be used to exit from the Discovery Loop under the

following conditions:

 PHAC_DISCLOOP_CON_BAIL_OUT_A: As soon as a Type A tag is detected, it is activated

and the Discovery Loop stops without any further scanning for the detection of Type

B and F tags.

 PHAC_DISCLOOP_CON_BAIL_OUT_B: As soon as a Type B tag is detected, it is activated

and the Discovery Loop stops without any further scanning for the detection of Type

F tags.

bLoopMode; This variable holds the supported combinations of Poll, Listen and Pause

modes for the reader IC configuration. The allowed loop mode combinations are the

following:

 PHAC_DISCLOOP_SET_POLL_MODE | PHAC_DISCLOOP_SET_LISTEN_MODE

 PHAC_DISCLOOP_SET_POLL_MODE | PHAC_DISCLOOP_SET_PAUSE_MODE

 PHAC_DISCLOOP_SET_LISTEN_MODE

pErrHandler; Pointer to the user error handler function. The user error handler function

can be defined using this definition (typedef void(*pErrHandlerCallback)(phStatus_t).

wPausePeriod: This variable can be used to set up the pause interval. The pause time

interval is a period of time where the reader IC is not scanning the field.

bPausePeriodUnit; This variables is used to set the time unit magnitude of the

wPausePeriod. . The identifier PH_OSAL_TIMER_UNIT_US is used for setting the time unit

magnitude to microseconds and the PH_OSAL_TIMER_UNIT_MS identifier for setting the time

unit magnitude to milliseconds.

bStopFlag; This flag indicates that the discovery loop should exit. This flag can be

enabled by pErrHandlerCallback error handler.

bConColl: Holds the information whether collision resolution is required or not.

bP2P_ACT_BaudRate: Active Communication P2P Baud Rate.

* pHalDataParams; Pointer to the HAL layer parameter component. According to the

used reader chip phhalHw_Rc663_DataParams_t and phhalHw_Rc523_DataParams_t.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 119 of 205

* pPal1443p3aDataParams; Pointer to the ISO/IEC 14443-3A layer PAL data structure.

Required for Type A tag.

* pPal1443p4aDataParams; Pointer to the 14443-4A layer PAL data structure. Required

for Type A tag.

* pPalFelicaDataParams; Pointer to the FeliCa PAL data structure. Required for Type F

tag.

* pPal1443p3bDataParams; Pointer to the Type B 14443-3B PAL data structure.

Required for Type B tag.

* pPal18092mPIDataParams; Pointer to the 18092 MPI PAL data structure. Required for

Type F tag – passive initiator.

* pPal18092mTDataParams; Pointer to the 18092 MT PAL data structure. Required for

Type F tag– target.

* pAlT1TDataParams; Pointer to T1T AL data parameters.

* pOsal; Pointer to the OS layer component.

sTypeATargetInfo; Information gathered from Type A tags in the RF field.

sTypeFTargetInfo; Information gathered from Type F tags in the RF field.

sTypeBTargetInfo; Information gathered from Type B tags in the RF field.

sTargetParams; Information gathered from Type F – target in the RF field.

6.1.3 Discovery Loop Initialization

This function initializes the phacDiscLoop_Sw_DataParams_t data structure to the

default values. All the components that are passed as input arguments to this function

should be initialized before the call to start the Discovery Loop is made.

phStatus_t phacDiscLoop_Sw_Init(

 phacDiscLoop_Sw_DataParams_t *pDataParams, [In]

 uint16_t wSizeOfDataParams, [In]

 void *pHalDataParams, [In]

 void *pOsal); [In]

*pDataParams: Pointer to the phacDiscLoop_Sw_DataParams_t parameter component.

Pointers to the PAL components are initialized to zero by this function. The developer

has to specifically set them.

wSizeOfDataParams: Size of the phacDiscLoop_Sw_DataParams_t data parameter

component.

*pHalDataParams: Pointer to the HAL component according to the used reader chip (i.e.

phhalHw_Rc523_DataParams_t).

*pOsal: Pointer to the OSAL data parameters. Timers from the MCU are used in delay

loops and listening timeouts.

The values returned by the function can be:

PH_ERR_SUCCESS : Operation successful.

Other: Value returned by the underlying component.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 120 of 205

6.1.4 Discovery Loop Set Configuration

The developer can use the phacDiscLoop_SetConfig() function to set the configuration

parameters defined in the next section (see Section 6.1.6):

phStatus_t phacDiscLoop_SetConfig(

 void *pDataParams, [In]

 uint16_t wConfig, [In]

 uint16_t wValue [In]

*pDataParams: Pointer to the phacDiscLoop_Sw_DataParams_t parameter component.

wConfig: The configuration identifier to be set.

wValue: The configuration value to set.

The values returned by the function can be:

PH_ERR_SUCCESS : Operation successful.

PH_ERR_INVALID_PARAMETER: Invalid option/response received.

Other: Value returned by the underlying component.

All the configuration identifiers are listed in the file

NxpRdLib_PublicRelease/intfs/phacDiscLoop.h. The developer can recognize them

because they use the following naming scheme:

 PHAC_DISCLOOP_CONFIG_XXX_XXX

For instance, to set the number of iterations (or loops) of the Discovery Loop to five, this

can be configured with:

/* Set number of polling loops to 5 */

status = phacDiscLoop_SetConfig(pDataParams, PHAC_DISCLOOP_CONFIG_NUM_POLL_LOOPS,

5);

CHECK_SUCCESS(status);

pDataParams: Pointer to the phacDiscLoop_Sw_DataParams_t parameter component.

PHAC_DISCLOOP_CONFIG_NUM_POLL_LOOPS: The configuration identifier for the number of

iterations of the Discovery Loop.

5: The number of iterations to be set in the Discovery Loop routine.

6.1.5 Discovery Loop Get Configuration

The developer can use this function to get the configuration parameters of the Discovery

Loop:

phStatus_t phacDiscLoop_GetConfig(

 void *pDataParams, [In]

 uint16_t wConfig, [In]

 uint16_t *pvalue [Out]

*pDataParams: Pointer to the phacDiscLoop_Sw_DataParams_t parameter component.

wConfig: The configuration identifier.

*pValue: The returned configuration value.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 121 of 205

PH_ERR_INVALID_PARAMETER: Invalid option/response received.

Other: Value returned by the underlying component.

For instance, to obtain the tag types detected during one Discovery Loop iteration, this

can be done in the following way:

/* Get the tag types detected info */

status = phacDiscLoop_GetConfig(pDataParams, PHAC_DISCLOOP_CONFIG_TAGS_DETECTED,

&wTagsDetected);

pDataParams: Pointer to the phacDiscLoop_Sw_DataParams_t parameter component.

PHAC_DISCLOOP_CONFIG_TAGS_DETECTED: The configuration identifier for the tags detected

during one iteration of the Discovery Loop.

wTagsDetected: The binary map indicating which tag types were found.

It can be checked if one particular Type tag has been detected by using the defined

bitmasks. For instance, to inspect if a Type 2 tag has been detected, this can be done in

the following way:

if (PHAC_DISCLOOP_CHECK_ANDMASK(wTagsDetected, PHAC_DISCLOOP_TYPEA_DETECTED_TAG_TYPE2))

 printf ("Type A T2 tag detected ");

6.1.6 Discovery Loop Configurable Parameters

The Discovery Loop allows several configurations and fine tuning that allow developers

to set up their required Discovery Loop according their application needs. All the

configuration identifiers are listed in the file

NxpRdLib_PublicRelease/intfs/phacDiscLoop.h. The developer can recognize them

because they use the following naming scheme:

 PHAC_DISCLOOP_CONFIG_XXX_XXX

The developer can set their discovery loop settings using the phacDiscLoop_SetConfig()

function. Similarly, the developer can get the current setting using the

phacDiscLoop_GetConfig() function. The configuration identifier implemented are:

 #define PHAC_DISCLOOP_CONFIG_GTA_VALUE_US: Sets the guard time for Type A tag

detection in microseconds magnitude.

 #define PHAC_DISCLOOP_CONFIG_GTB_VALUE_US: Sets the guard time for Type B tag

detection in microsecond magnitude.

 #define PHAC_DISCLOOP_CONFIG_GTF_VALUE_US: Sets the guard time for Type F tag

detection in microsecond magnitude.

 #define PHAC_DISCLOOP_CONFIG_GTA_VALUE_MS: Sets the guard time for Type A tag

detection in millisecond magnitude.

 #define PHAC_DISCLOOP_CONFIG_GTB_VALUE_MS: Sets the guard time for Type B tag

detection in millisecond magnitude.

 #define PHAC_DISCLOOP_CONFIG_GTF_VALUE_MS: Sets the guard time for Type F tag

detection in millisecond magnitude.

 #define PHAC_DISCLOOP_CONFIG_MODE: Sets the polling mode options. The allowed loop

mode combinations are the following:

 PHAC_DISCLOOP_SET_POLL_MODE | PHAC_DISCLOOP_SET_LISTEN_MODE

 PHAC_DISCLOOP_SET_POLL_MODE | PHAC_DISCLOOP_SET_PAUSE_MODE

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 122 of 205

 PHAC_DISCLOOP_SET_LISTEN_MODE

 #define PHAC_DISCLOOP_CONFIG_NUM_POLL_LOOPS: Sets the number of iterations the

discovery loop will do.

 #define PHAC_DISCLOOP_CONFIG_TYPEA_POLL_LIMIT: Sets the number of times the polling

loop scans for Type A tags.

 #define PHAC_DISCLOOP_CONFIG_TYPEA_DEVICE_LIMIT: Sets the number of Type A tags

that can be detected.

 #define PHAC_DISCLOOP_CONFIG_TYPEB_DEVICE_LIMIT: Sets the number of Type B tags

that can be detected.

 #define PHAC_DISCLOOP_CONFIG_TYPEF_DEVICE_LIMIT: Sets the number of Type F tags

that can be detected.

 #define PHAC_DISCLOOP_CONFIG_TYPEB_POLL_LIMIT: Sets the number of times the polling

loop scans for Type B tags.

 #define PHAC_DISCLOOP_CONFIG_TYPEB_AFI_REQ: Sets the AFI to be used during REQB.

AFI shoulb be set to zero if it is required that all the cards should respond regardless

of AFI.

 #define PHAC_DISCLOOP_CONFIG_TYPEB_EXTATQB: Enables or disables extended ATQB

option.

 #define PHAC_DISCLOOP_CONFIG_TYPEB_FSDI: Sets the FSDI for the Type B tags.

 #define PHAC_DISCLOOP_CONFIG_TYPEB_CID: Sets the CID for Type B tags.

 #define PHAC_DISCLOOP_CONFIG_TYPEB_DRI: Sets the DRI for Type B tags.

 #define PHAC_DISCLOOP_CONFIG_TYPEB_DSI: Sets the DSI for Type B tags.

 #define PHAC_DISCLOOP_CONFIG_TYPEF_SYSTEM_CODE: Sets the system code for the

selection of FeliCa tags

 #define PHAC_DISCLOOP_CONFIG_TYPEF_TIME_SLOT: Sets the time slot for detecting Type F

tags.

 #define PHAC_DISCLOOP_CONFIG_TYPEF_POLL_LIMIT: Sets the number of times the polling

loop scans for Type F tags.

 #define PHAC_DISCLOOP_CONFIG_TAGS_DETECTED: Returns the tags that were detected.

 #define PHAC_DISCLOOP_CONFIG_GTA_VALUE: The time units used for GTA timer are

returned.

 #define PHAC_DISCLOOP_CONFIG_GTB_VALUE: The time units used for GTB timer are

returned.

 #define PHAC_DISCLOOP_CONFIG_GTF_VALUE: The time units used for GTF timer are

returned.

 #define PHAC_DISCLOOP_CONFIG_BAIL_OUT: Sets the bail-out parameter.

 #define PHAC_DISCLOOP_CONFIG_TYPEA_NR_TAGS_FOUND: Returns the number of Type A

tags found (GET).

 #define PHAC_DISCLOOP_CONFIG_TYPEA_NR_TAGS_ACTIVATED: Returns number of Type A

tags that are activated (GET).

 #define PHAC_DISCLOOP_CONFIG_TYPEB_NR_TAGS_FOUND: Returns the number of Type B

tags found (GET).

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 123 of 205

 #define PHAC_DISCLOOP_CONFIG_TYPEB_NR_TAGS_ACTIVATED: Returns number of Type B

tags that are activated (GET).

 #define PHAC_DISCLOOP_CONFIG_TYPEF_NR_TAGS_FOUND: Returns the number of Type F

tags found (GET).

 #define PHAC_DISCLOOP_CONFIG_TYPEF_NR_TAGS_ACTIVATED: Returns number of Type F

tags that are activated (GET).

 #define PHAC_DISCLOOP_CONFIG_TYPEA_I3P4_FSDI: Sets the Fsdi for the 14443-4A

communication.

 #define PHAC_DISCLOOP_CONFIG_TYPEA_I3P4_CID: Sets the CID for the 14443-4A

communication.

 #define PHAC_DISCLOOP_CONFIG_TYPEA_I3P4_DRI: Sets the Dri for the 14443-4A

communication.

 #define PHAC_DISCLOOP_CONFIG_TYPEA_I3P4_DSI: Sets the Dsi for the 14443-4A

communication.

 #define PHAC_DISCLOOP_CONFIG_TYPEA_P2P_DID: Sets DID for Type A P2P device

communication.

 #define PHAC_DISCLOOP_CONFIG_TYPEA_P2P_LRI: Sets LRi for Type A P2P device

communication

 #define PHAC_DISCLOOP_CONFIG_TYPEA_P2P_NAD_ENABLE: Enables NAD if wValue = 1.

Otherwise, it else disables NAD.

 #define PHAC_DISCLOOP_CONFIG_TYPEA_P2P_NAD: Sets the NAD for P2P device

communication.

 #define PHAC_DISCLOOP_CONFIG_TYPEA_P2P_GI_LEN: Sets the length of the General

Bytes.

 #define PHAC_DISCLOOP_CONFIG_TYPEA_P2P_ATR_RES_LEN: Sets the Attribute Response

length.

 #define PHAC_DISCLOOP_CONFIG_TYPEF_P2P_DID: Sets DID for Type F P2P device

communication.

 #define PHAC_DISCLOOP_CONFIG_TYPEF_P2P_LRI: Sets LRi for Type F P2P device

communication.

 #define PHAC_DISCLOOP_CONFIG_TYPEF_P2P_NAD_ENABLE: Enables NAD if wValue = 1.

Otherwise, it else disables NAD.

 #define PHAC_DISCLOOP_CONFIG_TYPEF_P2P_NAD: Sets the NAD for P2P device

communication.

 #define PHAC_DISCLOOP_CONFIG_TYPEF_P2P_GI_LEN: Sets the length of the General

Bytes.

 #define PHAC_DISCLOOP_CONFIG_TYPEF_P2P_ATR_RES_LEN: Sets the Attribute Response

length.

 #define PHAC_DISCLOOP_CONFIG_PAUSE_PERIOD: Sets the pause time interval.

 #define PHAC_DISCLOOP_CONFIG_PAUSE_PERIOD_MS: Sets the time magnitude for the pause

time interval.

 #define PHAC_DISCLOOP_CONFIG_DETECT_TAGS: Specifies the types of tags to be detected.

 #define PHAC_DISCLOOP_CONFIG_STOP: Option used to stop the discovery loop.

 #define PHAC_DISCLOOP_CONFIG_ANTI_COLL: Option to set anticollsion flag.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 124 of 205

 #define PHAC_DISCLOOP_CONFIG_TYPEF_BAUD: Sets get baud rate used for FeliCa

detection.

 #define PHAC_DISCLOOP_CONFIG_LISTEN_TIMEOUT: Sets the listen time in millisecond.

 #define PHAC_DISCLOOP_CONFIG_ACTIVE_BAUD: Sets the baud rate used for Active

communication.

6.1.7 Discovery Loop Start Routine

The Discovery Loop is started by calling the phStatus_t phacDiscLoop_Start() function.

This function takes the bLoopMode configured in phacDiscLoop_Sw_DataParams_t data

structure and starts the Discovery Loop accordingly (PHAC_DISCLOOP_SET_POLL_MODE,

PHAC_DISCLOOP_SET_PAUSE_MODE, PHAC_DISCLOOP_SET_LISTEN_MODE).All the settings must be

done before calling the start function.

phStatus_t phacDiscLoop_Start (void * pDataParams)

 *pDataParams: Pointer to the Discovery Loop parameter component.

6.1.8 Discovery Loop - Activate Card

The phacDiscLoop_Sw_ActivateCard() function activates the tag type referenced by a given

index. This function should follow a previous successful tag detection, passing the tag

type as the input argument. In case of a Type A tag according to the detected SAK the

tag is additionally activated as ISO14443-4A or ISO18092 for P2P.

Note: This function does not provide FeliCa tags activation since those are automatically
activated with the detection.

The phacDiscLoop_Sw_ActivateCard() function does not provide anticollision resolution,

since anticollision is implemented within the phacDiscLoop_Start() function.

phStatus_t phacDiscLoop_Sw_ActivateCard(

phacDiscLoop_Sw_DataParams_t *pDataParams, [In]

uint8_t bTagType, [In]

uint8_t bTagIndex); [In]

*pDataParams: Pointer to the phacDiscLoop_Sw_DataParams_t parameter component. If the

tag type is activated successfully, the tag component (i.e. phacDiscLoop_TypeA_Tags_t or

phacDiscLoop_TypeB_Tags_t or phacDiscLoop_TypeF_Tags_t data structure) is fulfilled with

the parameters of the activated tag.

bTagType: PHAC_DISCLOOP_TYPEA_ACTIVATE - activate Type A tags or

PHAC_DISCLOOP_TYPEB_ACTIVATE – activate Type B tags.

bTagIndex: The tag which has to be activated.

The values returned by the function can be:

PH_ERR_INVALID_PARAMETER: Invalid value of bTagType

PH_ERR_INVALID_DATA_PARAMS: bTagIndex is greater than number of previously found

(detected) tags.

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 125 of 205

7. NFC Reader Library API: NFC P2P Package

In this section, the LLCP and SNEP components are explained in depth. The proper use

of the LLCP and SNEP layers will allow the developers to develop an application that can

exchange data with another P2P device.

7.1 LLCP

7.1.1 Technical Introduction

The Logical Link Control Protocol (LLCP) NFC Forum’s specification [20] provides the

procedural means for the transfer of upper layer information units between two NFC

Forum Devices.

Located on top of the ISO/IEC 18092 Protocol Layer component, LLCP defines a set of

procedures that represent an abstraction of the data link service. This abstraction of the

RF field is provided by the LLC Medium Access Control component.

Fig 32. LLCP integration on top of the RF field

Two LLCP components exchange information in the form of LLC Protocol Data Units

(PDU). LLC PDUs exchange either LLC management data units such as CONNECT

PDU and DISC PDU or upper layer information encapsulated in I PDU and UI PDU.

7.1.1.1 LLCP Functionalities

According to the specification, these are the main functionalities to be implemented by

the LLCP protocol:

 Link Activation, Supervision and Deactivation: A NFC Device shall recognize

compatible LLCP devices that are brought into proximity, shall establish a LLCP Link,

shall supervise the connection to the remote peer device, and shall deactivate the

link if requested.

 Asynchronous Balanced Communication: In order to provide a balanced

communication between peers, a NFC device sending a packet to its peer shall wait

for its response before the transmission of the next packet.

 Protocol Multiplexing: The LLCP link protocol shall be able to accommodate several

instances of higher level protocols and at the same time allow multiple logical

connections to exist simultaneously. The NFC Reader Library is limited to establish

LLCP link connections with a maximum of 5 other devices.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 126 of 205

 Connectionless / Connection-oriented Transport: Both connectionless (minimal setup

with no reliability or flow control guarantees) and connection-oriented (sequenced

and guaranteed delivery of service data units) communications shall be supported.

7.1.1.2 LLCP Components

In order to provide the aforementioned functionalities, the LLCP specification defines a

set of logical components.

Fig 33. LLCP Components

 MAC Mapping: Integrates the LLC layer on top of the ISO/IEC 18092 standard.

Guarantees the reliability of the RF link, ensuring that all LLC PDU packets

transmitted by a peer are received by the other peer in a sequenced manner.

 Link Management: Provides link management from the LLC point of view and

handles the logical link communications from upper layer services.

 Connection-oriented Transport: A data transmission service with sequenced and

guaranteed delivery of service data units that requires connection establishment

before the LLCP PDU packets can be transmitted.

 Connectionless Transport: An unacknowledged data transmission service with

minimal protocol complexity that does not requires connection establishment.

7.1.2 LLCP Link Layer

The LLCP link layer component implemented in the Link Layer of the NFC P2P Package

of the NFC Reader Library is fully compliant with the NFC Forum LLCP specification [20].

The LLCP component purpose is to properly create, manage, maintain and disconnect a

communication channel between peers for the transfer of upper layer protocols

messages.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 127 of 205

Note: The structures and functions defined in the LLCP component API include the FRI

(Forum Reference Implementation) label to indicate compliancy with the NFC Forum

specification (i.e. phlnLlcp_Fri_DataParams_t)

7.1.2.1 LLCP Structure

The LLCP component defines two main structures for the correct implementation of the

functionalities that are associated to it.

LLCP Generic structure

The phlnLlcp_Fri_DataParams_t structure contains pointers to buffers and component

structures of the underlying components that need to be handled by the LLCP layer.

Therefore, the phlnLlcp_Fri_DataParams_t structure is the common input parameter for all

LLCP API functions.

typedef struct {

 phlnLlcp_Fri_t * pLlcp;

 phlnLlcp_sLinkParameters_t * pLinkParams;

 phlnLlcp_Fri_Transport_ * pLlcpSocketTable;

 void * pTxBuffer;

 uint16_t wTxBufferLength;

 void * pRxBuffer;

 uint16_t wRxBufferLength;

 phHal_sRemoteDevInformation_t * pRemoteDevInfo;

 void * pLowerDevice;

} phlnLlcp_Fri_DataParams_t;

*pLlcp: Pointer to the LLCP data parameter component.

*pLinkParams: Pointer to the phlnLlcp_sLinkParameters_t data parameter component.

*pLlcpSocketTable: Pointer to the phlnLlcp_Fri_Transport_t parameter component.

*pRemoteDeviceInfo: Pointer to the remote peer device information stored at the

phHal_sRemoteDevInformation_t parameter component. This information will be obtained

from the ATR Response command (see section 4.4.3.4) and should be filled by the

developer.

*pTxBuffer: Pointer to the transmission buffer.

wTxBufferLength: Length of the transmission buffer.

*pRxBuffer: Pointer to the reception buffer.

wRxBufferLength: Length of the reception buffer.

*pLowerDevice: Pointer to the underlying palI18092mPI or palI18092mT PAL data

parameter component.

LLCP FRI structure

In addition to the phlnLlcp_Fri t structure containing references to LLCP components,

the LLCP implementation defines its own structure in order to store LLCP configuration

values associated to the communication channel.

typedef struct {

 uint8_t state

 uint8_t nSymmetryCounter

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 128 of 205

 uint8_t version

 uint8_t pFrmrInfo [4]

 uint8_t pCtrlTxBuffer [10]

 uint8_t pCtrlTxBufferLength

 uint8_t bDiscPendingFlag

 uint8_t bFrmrPendingFlag

 uint16_t nRxBufferLength

 uint16_t nTxBufferLength

 phlnLlcp_Fri_sPacketHeader_t sFrmrHeader

 phlnLlcp_Fri_Mac_ePeerType_t eRole

 uint32_t hSymmTimer

 phlnLlcp_Fri_Recv_CB_t pfRecvCB

 uint8_t * pRxBuffer

 phlnLlcp_Fri_sPacketHeader_t * psSendHeader

 phlnLlcp_Fri_sPacketSequence_t * psSendSequence

 phNfc_sData_t * psSendInfo

 void * pLinkContext

 void * pChkContext

 void * pSendContext

 void * pRecvContext

 void * osal

 phlnLlcp_Fri_sLinkParameters_t sLocalParams

 phlnLlcp_Fri_sLinkParameters_t sRemoteParams

 phNfc_sData_t sRxBuffer

 phNfc_sData_t sTxBuffer

 phlnLlcp_Fri_LinkStatus_CB_t pfLink_CB

 phlnLlcp_Fri_Check_CB_t pfChk_CB

 phlnLlcp_Fri_Send_CB_t pfSendCB

 phlnLlcp_Fri_Mac_t MAC

} phlnLlcp_Fri_t;

State: Current state of the LLCP component. The Library defined values detailed in Table

17.

Table 17. States of the LLC state machine

Value NFC Library FRI STATE identifier Meaning

0 RESET_INIT Initial state

1 CHECKED
The remote peer device has been checked for

LLCP compliance

2 ACTIVATION The activation phase

3 PAX Parameter exchange phase

4 OPERATION_RECV Normal operation phase (ready to receive)

5 OPERATION_SEND Normal operation phase (ready to send)

6 DEACTIVATION The deactivation phase

nSymmetryCounter: Activity counter used to handle symmetry timeout.

version: Negotiated LLCP Protocol version.

pCtrlTxBuffer: Control frames buffer.

pCtrlTxBufferLength: Size of the control frames buffer.

bDiscPendingFlag: Pending flag of the Disconnect packet.

bFrmrPendingFlag: Pending flag of the Frame Reject packet.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 129 of 205

sFrmrHeader: Header of the Frame Reject packet.

pFrmrInfo: Info of the Frame Reject packet.

nRxBufferLength: Actual size of the reception buffer.

nTxBufferLength: Actual size of the transmission buffer.

eRole: Role of the peer in the communication.

hSymmTimer: Identifier of the timer that ensures the symmetry of the link.

*pRxBuffer: Base reception buffer.

*psSendHeader: Header of the transmission pending packet.

*psSendSequence: Sequence of the transmission pending packet.

*psSendInfo: Data of the transmission pending packet.

*pLinkContext: Context for the link status notification callback function.

*pChkContext: Context for the compliance checking callback function.

*pSendContext: Context for the sending result callback functions.

*pRecvContext: Context for the reception result callback functions.

*osal: Pointer to the OSAL component parameter.

sLocalParams: Pointer to the Local parameters.

sRemoteParams: Pointer to the Remote parameters.

sRxBuffer: Internal reception buffer. Should not exceed nRxBufferSize value.

sTxBuffer: Internal transmission buffer. Should not exceed nTxBufferSize value.

pfLink_CB: Pointer to the link status notification callback function.

pfChk_CB: Pointer to the compliance checking callback function.

pfSendCB: Pointer to the sending result callback functions.

pfRecvCB: Pointer to the reception result callback functions.

MAC: Pointer to the MAC Mapping component parameter.

7.1.2.2 Initialization of the LLCP component

The LLCP component must be initialized before it can be used for the link management.

The initialization function sets the references to the parameters structures and buffers.

phStatus_t phlnLlcp_Fri_Init(

 phlnLlcp_Fri_DataParams_t * pDataParams, [In]

 uint16_t wSizeOfDataParams, [In]

 phlnLlcp_t * pLlcp, [In]

 phlnLlcp_sLinkParameters_t * pLinkParams, [In]

 phlnLlcp_Transport_t * pLlcpSocketTable, [In]

 phHal_sRemoteDevInformation_t * pRemoteDevInfo, [In]

 void * pTxBuffer, [In]

 uint16_t wTxBufferLength, [In]

 void * pRxBuffer, [In]

 uint16_t wRxBufferLength, [In]

 void * pLowerDevice); [In]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 130 of 205

*pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t, the parameter component to be

initiated.

wSizeOfDataParams: Size of the pDataParams parameter component.

Rest of parameters: These parameters are members of phlnLlcp_Fri_DataParams_t (see

section 7.1.1.2). Only the content of *pRemoteDevInfo and *pLinkParams should be

manually defined by the developer, the rest of the parameter components are filled by

the function during its call.

The value returned by the function is:

PH_ERR_SUCCESS: Successful Operation.

Once the initialization has been successfully completed, the LLCP Reset function should

be called by the developer in order to initialize the phlnLlcp_Fri_DataParams_t structure to

the default values for the later LLC Link activation. This function automatically calls the

phlnLlcp_Reset and phlnLlcp_Fri_Mac_Reset functions of the LLC and the MAC Mapping

components for their automatic reset.

In addition to the parameters reset, the phlnLlcp_Reset function checks the validity of the

parameters that have been set during the initialization phase, such as the reception and

transmission buffer size depending on the defined Maximum Information Unit (MIU).

This reset function is a prerequisite for the correct execution of phlnLlcp_Activate() and

phlnLlcp_Deactivate().

phStatus_t phlnLlcp_Reset (

 void * pDataParams, [In]

 phlnLlcp_Fri_LinkStatus_CB_t pfLink_CB, [In]

 void * pContext); [In]

*pDataParams: Pointer to the phFriNfc_Llcp_t parameter component.

pfLink_CB: Pointer to the user defined link status notification callback that refers to the

activated or deactivated status of the link.

*pContext: Pointer to the input data to be processed by the callback function.

The values returned by the function can be:

NFCSTATUS_BUFFER_TOO_SMALL: Receive buffer is not large enough to support 131 bytes

(128 + 2 + 1 == MIU + Header + Sequence) or Transmit buffer is too small to support

maximum LLCP frame size (Header + Sequence + MIU)

NFCSTATUS_INVALID_PARAMETER: MIU in psLinkParams is lower than 128 bytes

PH_ERR_SUCCESS : Successful Operation.

Other: Value returned by the underlying component.

7.1.3 LLC MAC Mapping Component

The Medium Access Control component is placed on top of the Protocol Abstraction

Layer defined by the NFC Reader Library. Its main objective is to provide abstraction of

underlying RF standards to the LLC layer. This abstraction covers the functions of data

unit fragmentation if required, sequenced and error free delivery of data units, error

recovery management and the notification to the upper layer of unrecoverable

transmission errors.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 131 of 205

The MAC Mapping component is necessary for nearly all the LLCP layer link related

functionalities such as reception and transmission of packets and link activation and link

deactivation.

According to the NFC Reader Library P2P Package implementation, the LLC link API is

responsible for the MAC Mapping API management, and therefore the MAC Mapping

functions are not directly called by developers.

MAC Mapping Structure

The MAC layer component defines its own structure, which is responsible for the

management of the physical link between the two peers. This structure contains

information about the remote peer device and the data exchange status such as pending

messages, timeouts, among others.

Typedef struct {

 uint8_t RecvPending;

 uint8_t SendPending;

 phlnLlcp_Fri_Mac_eLinkStatus_t LinkState;

 phlnLlcp_Fri_Mac_ePeerType_t PeerRemoteDevType;

 phlnLlcp_Fri_Mac_LinkStatus_CB_t LinkStatus_Cb;

 phlnLlcp_Fri_Mac_Send_CB_t MacSend_Cb;

 phlnLlcp_Fri_Mac_Reveive_CB_t MacReceive_Cb;

 phNfc_sData_t *psReceiveBuffer;

 phNfc_sData_t *psSendBuffer;

 phHal_sRemoteDevInformation_t *psRemoteDevInfo; information;

 void *MacReceive_Context; context;

 void *LowerDevice;

 void *MacSend_Context;

 void *LinkStatus_Context;

 void *Osal;

 phNfc_sData_t sConfigParam;

 phlnLlcp_Fri_CplRt_t MacCompletionInfo;

 phlnLlcp_Fri_Mac_Interface_t LlcpMacInterface;

} phlnLlcp_Fri_Mac_t;

RecvPending: Pending flag for the reception.

SendPending: Pending flag for the transmission.

LinkState: Information of the link status. NFC Reader Library defined values can be

found in Table 18.

Table 18. Link state values for MAC layer

Link status Identifier in the NFC Reader Library

Default link status phlnLlcp_Fri_Mac_eLinkDefault

Link activated phlnLlcp_Fri_Mac_eLinkActivated

Link deactivated phlnLlcp_Fri_Mac_eLinkDeactivated

PeerRemoteDevType: Information about the remote peer´s device role: Initiator or

Target.

LinkStatus_Cb: Callback function for link status.

MacSend_Cb: Callback function for MAC sending.

MacReceive_Cb: Callback function for MAC receiving.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 132 of 205

*psReceiveBuffer: Reception buffer.

*psSendBuffer: Transmission buffer.

*psRemoteDevInfo: The MAC layer has to be filled with information of the NFC device

detected in the RF field. Since there is no function providing this particular operation, it

must be done manually by the developer using the RemDevType parameter in

phNfc_sRemoteDevInformation_t component, which contains information of the peer

detected according to Table 19.

Table 19. Device type for MAC layer

In NFC Reader Library the MAC layer functionality is authorized for the following peer devices

Device type Identifier in the NFC Reader Library

ISO18092 P2P initiator phHal_eNfcIP1_Initiator

ISO18092 P2P target phHal_eNfcIP1_Target

*LinkStatus_Context: Context input for link status callback function.

*MacSend_Context: Context input for MAC sending callback function.

*MacReceive_Context: Context input for MAC receiving callback function.

*Osal: Pointer to the OSAL component parameter.

sConfigParam: Buffer for the configurations parameter.

*LowerDevice: Holds the completion routine information of the MAC Mapping Layer.

MacCompletionInfo: MAC completion routine for the lower layer

LlcpMacInterface: Generic interface structure with the lower layer. It defines five

function interfaces: check, activate, deactivate, send and receive.

MAC Mapping API

The MAC Mapping functionalities are managed by the NFC Reader Library core,

therefore there is no API exposed to the customer to handle this component.

MAC Mapping Structure

The MAC Mapping functionalities are managed by the NFC Reader Library core,

therefore there are no callback functions exposed to the customer by this component.

7.1.4 LLC Link Component

The LLC link component is responsible for the management of LLCP links between

peers. As a part of this management, the LLC link component implements the following

functionalities:

1. Link Check: phlnLlcp_ChkLlcp()

2. Link Activation: phlnLlcp_Activate()

3. Link Deactivation: phlnLlcp_Deactivate()

4. Packet transmission: phlnLlcp_Send()

5. Packet reception: phlnLlcp_Recv()

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 133 of 205

In order to be able to complete all these steps in the correct way, the LLC link should be

correctly initialized, which is ensured by a previous call to phlnLlcp_Reset() function (see

section7.1.2.2).

The Fig 34 shows the proposed flow for a correct execution of the LLCP Link component

with both functions and their associated callbacks.

Fig 34. LLCP Link Component operation flow

As it is explained in detail in the LLCP Link API section (see section 7.1.4.2), some of the

functions that are depicted in this flow should not be directly called by developers since

they are internally called by upper layer components such as the LLCP Transport

component.

7.1.4.1 LLC Link Structure

The LLC link component defines a structure containing specific configuration parameters

for a LLC link connection. Since LLC links do not have to be equal in both directions,

phlnLlcp_Fri_t structure (see section 7.1.2.1) stores a different entrance for each link

direction.

typedef struct phFriNfc_Llcp_sLinkParameters {

 uint16_t miu;

 uint16_t wks;

 uint8_t lto;

 uint8_t option;

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 134 of 205

} phlnLlcp_Fri_sLinkParameters_t;

Table 20. Parameters

In the right column there are default values given by the Initialization function (see section 7.1.2.2).

Apart from these parameters, there are few others for internal management.

Parameter Description Default init value

miu Maximum Information Unit 128 bytes

wks Well-Known Services 1

lto Link Timeout (in steps of 10 ms) 10 (means 100 msec)

option Options 0

The link characteristics shall be negotiated on the ISO/IEC 18092 communication setup.

The LLC link characteristics are exchanged and negotiated as part of the Attribute

Request command (see section 4.4.2.3) and/or using the Generic Information bytes (see

LLCP NFC Forum specification [20]).

7.1.4.2 LLC Link API

This section defines the functions provided by the NFC Reader Library in order to

complete the LLC Link specific functionalities.

Check

This function checks the Attribute Response coming from the remote peer device and

decides whether the MAC layer can be enabled for that device or not. It also enables the

internal connection between LLC layer and MAC layer.

The General Bytes received in the Attribute Response shall indicate the LLCP

capabilities by containing the LLC Magic Number (0x46, 0x66, 0x6D) defined in the

specification. The rest of data transmitted as part of the General Bytes is afterwards

associated to the remote link configuration parameters rather than sending Parameter

Exchange (PAX PDU) commands in the LLC Link layer.

phStatus_t phlnLlcp_ChkLlcp(

 void * pDataParams, [In]

 phlnLlcp_Check_CB_t pfCheck_CB, [In]

 void * pContext); [In]

*pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

pfCheck_CB: Pointer to the callback function that will be called when the link checking

procedure is completed.

*pContext: Pointer to the input data to be processed by the callback function.

The values returned by the function can be:

PH_ERR_SUCCESS: Successful Operation.

NFCSTATUS_INVALID_STATE: LLCP link is not in the PHFRINFC_LLCP_STATE_RESET_INIT state.

NFCSTATUS_INVALID_DEVICE: Device type unable to perform NFC P2P.

NFCSTATUS_FAILED: Attribute Response from remote peer device does not match with LLC

Magic Number.

Other: Value returned by the underlying component.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 135 of 205

Activate LLC Link

This function provides a basic LLC initial configuration and activates both the LLC link

and the MAC Mapping components. The LLC link state is changed from checked –

PHFRINFC_LLCP_STATE_CHECKED – to activated – PHFRINFC_LLCP_STATE_ACTIVATION –.

In order to activate the link, Maximum Information Unit (MIU), Well-Known Service list

(WKS), Link Timeout (LTO), and Option (OPT) values [20] of the remote peer device

must be known. These values should have been already received as part of the

Discovery Loop component, which implements ISO/IEC 18092 defined Attribute Request

procedure. However, if there is not LLCP Magic Number within the Attribute Response

and the local device plays the Initiator role, then the activation procedure PAX PDU with

local link parameters is transmitted to the remote peer device playing the Target role.

Once the successful activation of the LLC component is completed, a notification

regarding the link status change towards the service layer is done via the user defined

callback function pfLink_CB(). In case of unsuccessful link activation, the deactivation

callback function is automatically executed.

phStatus_t phlnLlcp_Activate(

 void * pDataParams); [In]

*pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t component.

The values returned by the function can be:

PH_ERR_SUCCESS: Successful Operation.

NFCSTATUS_INVALID_STATE: LLCP not in state PHFRINFC_LLCP_STATE_CHECKED

Other: Value returned by the underlying component.

Deactivate LLC Link

This function deactivates the MAC interface and disconnects the LLCP link. The LLCP

link connections are canceled by sending DISC PDU. If the sending operation is pending,

then the disconnect procedure is terminated.

After completing a successful LLC link deactivation, the service layer notifies the link

status change through a user defined callback function (pfLink_CB.)

phStatus_t phlnLlcp_Deactivate(

 void * pDataParams); [In]

*pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t component.

The values returned by the function can be:

PH_ERR_SUCCESS: Successful Operation.

NFCSTATUS_INVALID_STATE: LLCP link in a state other than

PHFRINFC_LLCP_STATE_OPERATION_RECV or PHFRINFC_LLCP_STATE_OPERATION_SEND.

NFCSTATUS_PENDING: the DISC PDU is not sent because the link is waiting for a status

notification related to a previous operation.

Other: Value returned by the underlying component.

Send PDU Packet via LLCP Link

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 136 of 205

This function is used to send a LLC PDU via the LLCP component. The packets must be

passed as a header - sequence field - information field sequence.

This function can only be called in a connection-oriented socket in the connected state.

Note: This function is called through other functions sending PDU packets via the LLCP

link. In order to send data packets, the developer should make use of the

phlnLlcp_Transport_Send() function, which sends data within the Information PDU frame

and assembles the header and sequence arguments automatically from a given LLCP

socket component parameters.

phStatus_t phlnLlcp_Send(

 void * pDataParams, [In]

 phlnLlcp_sPacketHeader_t * pHeader, [In]

 phlnLlcp_sPacketSequence_t * pSequence, [In]

 phNfc_sData_t * pInfo, [In]

 phlnLlcp_Send_CB_t pfSend_CB, [In]

 void * pContext); [In]

*pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

*pHeader: Pointer to the PDU packet header composed by command type, the Source

SAP and the Destination SAP values.

*pSequence: Pointer to the PDU packet sequence field.

*pInfo: Pointer to the PDU packet information field.

pfSend_CB: Pointer to the callback function to be called when the transmission of a

PDU packet via LLCP link is successfully executed.

*pContext: Pointer to the input data to be processed by the callback function.

The values returned by the function can be:

PH_ERR_SUCCESS: Successful Operation.

NFCSTATUS_REJECTED: Previous send operation has not been completed yet.

NFCSTATUS_PENDING: Previous receive operation has not been completed yet.

NFCSTATUS_INVALID_STATE: LLCP in a state other than PHFRINFC_LLCP_STATE_OPERATION_RECV

or PHFRINFC_LLCP_STATE_OPERATION_SEND.

Other: Value returned by the underlying component.

Receive PDU Packet on the LLC Link

This function sets a callback function in the internal LLC link structure for any transport

reception on the LLCP component.

Note: The link reception callback is mostly used for library internal purposes – receiving

the transport packets and further parsed –.

phStatus_t phlnLlcp_Recv(

 void * pDataParams, [In]

 phlnLlcp_Recv_CB_t pfRecv_CB, [In]

 void * pContext); [In]

*pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 137 of 205

pfRecv_CB: Callback function to be executed when any transport data on the LLCP

link is received. The NFC Reader Library internally assigns this callback function to

the transport reception callback function that is normally used by the developers.

*pContext: Pointer to the input data to be processed by the callback function.

The values returned by the function can be:

NFCSTATUS_SUCCESS: Successful Operation.

NFCSTATUS_REJECTED: Previously assigned callback (most probably the internal library

build-in transport receive callback) has not been executed yet.

7.1.4.3 LLC Link Callback functions

The LLC Link component defines a set of callback functions to inform about incoming

requests or changes in the links managed by the LLCP component.

Link Check CB

This callback function is executed when an incoming connection request (CONNECT

PDU) is received from a remote peer device.

Set by function: phlnLlcp_ChkLlcp()

Function prototype:

typedef void (*phFriNfc_Llcp_Check_CB_t) (

void *pContext,

NFCSTATUS status);

*pContext: Pointer to the input data to be processed by the callback function.

status: Status code for the callback function.

Link Status CB

This callback function is executed after the link status has changed to activated or

deactivated status.

Set by function: phlnLlcp_Reset()

Function prototype:

typedef void (*phFriNfc_Llcp_LinkStatus_CB_t) (

void *pContext,

phFriNfc_Llcp_eLinkStatus_t eLinkStatus);

*pContext: Pointer to the input data to be processed by the callback function.

eLinkStatus: New value for the link status: activated or deactivated.

Link Send CB

This callback function is called when a generic LLCP packet has been sent via the LLCP

link

Set by function: phlnLlcp_Send()

Function prototype:

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 138 of 205

typedef void (*phFriNfc_Llcp_Send_CB_t) (void *pContext,

NFCSTATUS stats);

*pContext: Pointer to the input data to be processed by the callback function.

status: Indicates the correct or incorrect completion of the transmission procedure.

Link Receive CB

This callback function is called when a generic LLCP packet has been received via the

LLCP link.

Note: This callback is busy by internal NFC Reader Library function.

Set by function: phlnLlcp_Receive()

Function prototype:

typedef void (*phFriNfc_Llcp_Recv_CB_t) (

 void *pContext,

 phNfc_sData_t *psData,

 NFCSTATUS status);

*pContext: Pointer to the input data to be processed by the callback function.

*psData: Pointer to the received data.

status: Indicates the correct or incorrect completion of the reception procedure.

7.1.5 LLC Transport Component

The LLC Transport component establishes the logical connections between the protocol

layer services. For the NFC Reader Library, the protocol running on top of the LLCP

component is SNEP.

The LLCP specification defines two types of transport services for the transmission of

upper layer data: connection-oriented and connectionless. The connection-oriented

transport provides a sequenced and guaranteed delivery of service data units according

to a previously established connection whereas the connectionless transport provides an

unacknowledged data transmission where no previous connection establishment is

required.

In line with two transport components identified, we differentiate two types of links:

 The Logical Data Link for Connectionless transport: A combination of source and

destination service access points (SSAP and DSAP) addresses used for

unnumbered information transfer.

 The Logical Data Link Connection for Connection-oriented transport: A unique

combination of SSAP and DSAP addresses used for numbered information transfer.

The Fig 35 shows an example flow of both functions and callbacks for the correct P2P

communication between two NFC Devices according to a connection-oriented transport

scheme.

This flow should only be taken as guidance since the functions to be called will vary

depending on whether the peer creates or listens and connects to a socket.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 139 of 205

Fig 35. LLCP Transport Component opeation flow

As it is explained in detail in the LLCP Transport API section (see section 7.1.5.2), some

of the functions that are described here should not be directly called by the developer

since they are called internally by upper layer components such as the SNEP protocol.

Service Access Points - SAP

A SAP is an identifying label of an upper service endpoint.

A LLCP link is uniquely determined by its Source Service Access Point (SSAP), and its

Destination Service Access Point (DSAP). These two values are part of LLC PDU

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 140 of 205

packets and are used by the remote LLC component to identify the destination

application layer service.

The LLCP specification defines a set of 15 SAP for well-known services; for instance the

SNEP protocol is identified by SAP 04. For those services that are not part of the

specification, the service access points can be discovered using the Service Discovery

Protocol (SDP).

The SAP assignment rules implemented by the NFC Reader Library are fully compliant

with LLCP 1.1 specification by NFC Forum.

Table 21. DSAP/SSAP values

DSAP/SSAP NFC Forum description

0 Link management

1 Designated well known service access point for the Service Discovery Protocol

2-15 Well-Known Service Access Points

16-31

Shall be assigned by the local LLC component to services registered by itself.

These registrations shall be made available by the local SDP instance for

discovery and use by a remote LLC.

32-63
Shall be assigned by the local LLC as the result of an upper layer service request

and shall not be available for discovery using the SDP

7.1.5.1 LLC Transport structure

The LLC Transport component handles a set of connections associated to upper protocol

services. Each LLC link is uniquely identified by its SSAP and DSAP.

The LLC transport structure is the entry point for the phlnLlcp_Fri_Transport_Socket_t

structure array, which holds information about transport connection between peers

associated to upper layer services.

The phlnLlcp_Fri_Transport structure maintains the list of all discovered and announced

SAPs and their current status. In order to facilitate the management of SAPs and their

associated service names, the phlnLlcp_Fri_Transport defines the pCachedServiceNames

parameter which connects both values.

struct phlnLlcp_Fri_Transport {

 uint8_t bSendPending;

 uint8_t bRecvPending;

 uint8_t bDmPending;

 uint8_t bFrmrPending;

 uint8_t socketIndex;

 uint8_t LinkStatusError;

 uint8_t nDiscoveryListSize;

 uint8_t nDiscoveryReqOffset;

 uint8_t nDiscoveryResOffset;

 uint8_t nDiscoveryResListSize;

 phlnLlcp_Fri_sPacketSequence_t sSequence;

 phlnLlcp_Fri_sPacketHeader_t sLlcpHeader;

 phlnLlcp_Fri_sPacketHeader_t sDmHeader;

 uint8_t DmInfoBuffer[3];

 uint8_t FrmrInfoBuffer[4];

 uint8_t DiscoveryResTidList[PHLNLLCP_FRI_SNL_RESPONSE_MAX];

 uint8_t nDiscoveryResSapList[PHLNLLCP_FRI_SNL_RESPONSE_MAX];

 uint8_t pDiscoveryBuffer[PHLNLLCP_FRI_MIU_DEFAULT];

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 141 of 205

 uint8_t *pnDiscoverySapList;

 uint8_t *pServiceNames[PHLNLLCP_FRI_NB_SOCKET_MAX];

 phNfc_sData_t *psDiscoveryServiceNameList;

 phlnLlcp_Fri_t *pLlcp;

 void *pLinkSendContext;

 void *pDiscoverContext;

 phlnLlcp_Fri_Send_CB_t pfLinkSendCb;

 phNfc_sData_t sDmPayload;

 pphlnLlcp_Fri_Cr_t pfDiscover_Cb;

 phlnLlcp_Fri_Transport_Socket_t pSocketTable[PHLNLLCP_FRI_NB_SOCKET_MAX];

 phlnLlcp_Fri_CachedServiceName_t

pCachedServiceNames[PHLNLLCP_FRI_SDP_ADVERTISED_NB];

};

bSendPending: Pending flag for PDU transmission.

bRecvPending: Pending flag for PDU reception.

bDmPending: Pending flag for Disconnect Mode PDU.

bFrmrPending: Pending flag for Frame Reject PDU.

socketIndex: Index of the socket from the socket table.

LinkStatusError: Link status error flag.

nDiscoveryListSize: Size of the discovered SAP values list.

nDiscoveryReqOffset: Offset for the request discovery list.

nDiscoveryResOffset: Offset for the response discovery list.

nDiscoveryResListSize: Size of the response discovery list.

sSequence: Packet sequence number for transmission and reception.

sLlcpHeader: Header of a LLCP component PDU according to the specification.

sDmHeader: Header field of the pending Disconnect Mode PDU.

sDmPayload: Payload of the pending Disconnect Mode PDU.

DmInfoBuffer: Information field of the pending Disconnect Mode PDU.

FrmrInfoBuffer: Information field of the pending Frame Reject PDU.

DiscoveryResTidList: List of Transaction Identifiers used to identify a remote service

name.

nDiscoveryResSapList: List of response SAP values.

*pDiscoveryBuffer: Discovery buffer.

*pnDiscoverySapList: List of discovered SAP values.

*pServiceNames: List of service names associated to discovered SAP values.

*psDiscoveryServiceNameList: Service discovery name.

*pLlcp: Pointer to the phlnLlcp_Fri_t component parameter.

*pLinkSendContext: Context input for the transport sending callback function.

*pDiscoverContext: Context input for the Discovery procedure callback function.

*pfLinkSendCb: Callback function for the link transmission.

pfDiscover_Cb: Callback function for the discovery procedure.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 142 of 205

pSocketTable: List of established sockets with the remote peer device according to the

phlnLlcp_Fri_Transport_Socket structure.

phlnLlcp_Fri_CachedServiceName_t: List of discovered services as a Service
name/SAP value table.

LLC Transport socket structure

The LLC transport socket structure stores information regarding a connection setup

between two upper layer services. Some of the setup parameters, such as the MIU and

the LTO value, are negotiated during the link setup and some others during the socket

connection setup.

As the phlnLlcp_Fri_Transport_Socket has a heavy structure with many arguments, only

show the most relevant variables are shown. The transmission and reception buffer

related variables and pending flags for LLCP PDU packets have been intentionally

omitted.

struct phlnLlcp_Fri_Transport_Socket {

 uint8_t socket_sSap;

 uint8_t socket_dSap;

 uint8_t remoteRW;

 uint8_t localRW;

 uint8_t nTid;

 phlnLlcp_Fri_Transport_sSocketOptions_t sSocketOption;

 uint32_t indexRwRead;

 uint32_t indexRwWrite;

 void *pOperationContext;

 phlnLlcp_Fri_TransportSocket_eSocketState_t eSocket_State;

 phlnLlcp_Fri_Transport_eSocketType_t eSocket_Type;

 pphlnLlcp_Fri_TransportSocketOperationCb_t pSocketOperationCb;

 phNfc_sData_t sServiceName;

};

socket_sSap: Source SAP identifying the local service.

socket_dSap: Destination SAP identifying the remote service.

remoteRW: Remote Receive Window (RM) value used for the sliding window
configuration in connection-oriented transports.

localRW: Local Receive Window (RM) value used for the sliding window configuration in
connection-oriented transports.

nTid: Transaction identified for the transport link.

sSocketOption: This structure stores the LLCP socket Receive Window and Maximum
Information Unit attributes.

indexRwRead: Receive Window index for reading access.

indexRwWrite: Receive Window index for writing access.

pOperationContext: Pointer to the content – input argument for LLCP Transport socket
component defined callback functions.

pfSocketOperation_Cb: Pointer to the LLCP Transport socket component defined
callback functions.

eSocket_State: Identifies the status of the LLC Transport socket. Valid values defined
by the NFC Reader Library can be found in Table 22.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 143 of 205

Table 22. Socket state valid values

NFC Reader Library identifier Socket state

TransportSocket_eSocketDefault Default state

TransportSocket_eSocketCreated Socket created

TransportSocket_eSocketBound Socket bound

TransportSocket_eSocketRegistered Socket registered

TransportSocket_eSocketConnected Socket connected

TransportSocket_eSocketConnecting Socket connecting

TransportSocket_eSocketAccepted Socket accepted

TransportSocket_eSocketDisconnected Socket disconnected

TransportSocket_eSocketDisconnecting Socket disconnecting

TransportSocket_eSocketRejected, Socket rejected

eSocket_Type: Type of LLC Transport connection. Valid values defined by the NFC

Reader Library can be found in Table 23.

Table 23. Transport connection valid values

NFC Reader Library identifier Transport communication

Transport_eDefaultType Default communication type

Transport_eConnectionOriented Connection-oriented communication

Transport_eConnectionLess Connection-less communication

sServiceName: Service Name identi fy ing the upper layer service.

7.1.5.2 LLC Transport API

Create LLCP Socket

This function creates a socket for a given LLCP link. The socket can be either

connection-oriented or connectionless.

If the socket is connection-oriented, the caller function must provide a working buffer to

the socket in order to handle the incoming data. This buffer must be large enough to fit

the reception window (RW * MIU).

Note: The options and working buffer are not required in case of listening sockets which

cannot be directly used for communication.

phStatus_t phlnLlcp_Transport_Socket(

 void * pDataParams, [In]

 phlnLlcp_Transport_eSocketType_t eType, [In]

 phlnLlcp_Transport_sSocketOptions_t * pOptions, [In]

 phNfc_sData_t * pWorkingBuffer, [In]

 phlnLlcp_Transport_Socket_t ** pLlcpSocket, [Out]

 phlnLlcp_TransportSocketErrCb_t pErr_Cb, [In]

 void * pContext); [In]

*pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

eType: Type of the socket to be created: connection-oriented or connectionless.

*pOptions: Configuration options for connection-oriented sockets.

*pWorkingBuffer: Working buffer to be used by connection-oriented sockets.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 144 of 205

**pLlcpSocket: Pointer to the socket to be filled with a socket found on the socket table.

pErr_Cb: Application callback function that shall be called whenever an error on the

socket occurs.

*pContext: Pointer to the input data to be processed by the error callback function.

The values returned by the function can be:

PH_ERR_SUCCESS: Successful Operation.

Other: Value returned by the underlying component.

Reset LLCP Socket

This function sets the transport structure and all the LLCP transport sockets to their

default states. The LLCP component structure must be previously reset for a correct

operation.

Once the reset operation has been performed, the reception of incoming LLCP packets

on the LLCP link is enabled.

phStatus_t phlnLlcp_Transport_Reset(

 void * pDataParams); [In]

*pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

The values returned by the function can be:

NFCSTATUS_SUCCESS: Successful operation.

Other: Value returned by the underlying component.

Bind a Socket to a Local Source SAP

This function binds a LLCP transport socket to a user defined SAP and service name.

The binding is only performed if the socket has been previously created.

Depending on whether an existing service name is given or not, the SAP assigned will

belong to either SDP advertised or unadvertised set of available SAPs (see Table 21).

phStatus_t phlnLlcp_Transport_Bind(

void * pDataParams, [In]

phlnLlcp_Transport_Socket_t * pLlcpSocket, [In]

uint8_t nSap, {In]

phNfc_sData_t *psServiceName); [In]

*pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

*pLlcpSocket: Pointer to the LLCP transport socket.

nSap: Local source SAP number to bind the given socket to. If this parameter is NULL, a

free SSAP is assigned dynamically according to Table 21.

*psServiceName: Pointer to the service name. If no service name (NULL) is specified,

nSAP is considered as unadvertised according to Table 21.

The values returned by the function can be:

NFCSTATUS_SUCCESS: Successful operation.

NFCSTATUS_INVALID_STATE: Attempt to bind a socket that has not been previously created

or that has been already bound.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 145 of 205

NFCSTATUS_ALREADY_REGISTERED: Passed nSAP already bound to another socket.

NFCSTATUS_INVALID_PARAMETER: SAP out of valid range or service name already in use.

NFCSTATUS_INSUFFICIENT_RESOURCES: There are no free SAPs available.

NFCSTATUS_NOT_ENOUGH_MEMORY: Insufficient memory space to store the given service name.

Connect

This function connects a socket with a SAP in the remote peer device. The connection

is performed only for connection-oriented sockets that are disconnected. If the socket

is not bound to a local SAP, it is implicitly bound to a free unadvertised SAP (see

Table 21).

According to the LLCP specification, if MIU, RW and Service Name values are different

from the default values, then these values are also sent to their remote peer.

phStatus_t phlnLlcp_Transport_Connect(

void * pDataParams, [In]

phlnLlcp_Transport_Socket_t * pLlcpSocket, [In]

uint8_t nSap, [In]

phlnLlcp_TransportSocketConnectCb_t pConnect_RspCb, [In]

void * pContext); [In]

*pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

*pLlcpSocket: Pointer to the LLCP transport socket.

nSap: The target SAP to connect to. It shall be in range from 2 to 63.

pConnect_RspCb: Callback function to be called when the connection operation is

completed (CC PDU packet is received from the remote peer device).

*pContext: Pointer to the input data to be processed by the callback function.

The values returned by the function can be:

PH_ERR_SUCCESS: Successful operation.

NFCSTATUS_INVALID_PARAMETER: Socket is not a connection-oriented socket or nSap value is

out of valid range (2-63).

NFCSTATUS_INVALID_STATE: The socket has neither been bound nor created, or the socket

has been already assigned to another service name.

NFCSTATUS_PENDING: Connection operation in progress; pConnect_RspCb() to be called upon

completion.

Other: Value returned by the underlying component.

Connect by URI

This function creates a connection between a given socket and a remote service

designated by a URI. If the socket has not been bound to a local SAP, it is implicitly

bound to a free unadvertised SAP (see Table 21).

phStatus_t phlnLlcp_Transport_ConnectByUri(

 void * pDataParams, [In]

phlnLlcp_Transport_Socket_t * pLlcpSocket, [In]

phNfc_sData_t * psUri [In]

phlnLlcp_TransportSocketConnectCb_t pConnect_RspCb, [In]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 146 of 205

void * pContext); [In]

*pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

*pLlcpSocket: Pointer to the LLCP transport socket.

*psUri: The URI corresponding to the DSAP in the remote peer device. The length of the

URI parameter is limited to 255 characters.

pConnect_RspCb: Callback function to be called when the connection operation is

completed (CC PDU packet is received from the remote peer device).

*pContext: Pointer to the input data to be processed by the callback function.

The values returned by the function can be:

PH_ERR_SUCCESS: Successful operation.

NFCSTATUS_INVALID_PARAMETER: The socket is not a connection-oriented socket, it has been

already connected, it is pending to connect or the URI address is longer than 255

characters.

NFCSTATUS_PENDING: Connection operation in progress; pConnect_RspCb() to be called upon

completion.

Other: Value returned by the underlying component.

Listen to Connection Requests

This function sets up a socket into listen mode for any incoming connection request

coming from a remote peer device. This step is mandatory for the LLCP connection

setup.

Listening is only allowed for connection-oriented sockets which are currently not

connected to other sockets. The listening remote peer device parses the incoming

connection request and processes it according to the DSAP and service name value. If

an invalid TLV data is received, and immediate response with FRMR PDU is sent.

Upon the reception of a connection request, the user defined pListen_Cb() callback

function is called in order to accept or reject the incoming connection request for that

particular LLCP socket.

Note: This function should be called once the socket has been bound to a particular SAP.

Without local SAP bound, the socket is not LLCP addressable.

phStatus_t phlnLlcp_Transport_Listen(

void * pDataParams, [In]

phlnLlcp_Transport_Socket_t * pLlcpSocket, [In]

phlnLlcp_TransportSocketListenCb_t pListen_Cb, [In]

void * pContext); [In]

*pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

*pLlcpSocket: Pointer to the LLCP transport socket.

pListen_Cb: Callback function to be called when the socket receives a connection

request.

*pContext: Pointer to the input data to be processed by the callback function.

The values returned by the function can be:

PH_ERR_SUCCESS: Successful Operation.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 147 of 205

NFCSTATUS_INVALID_PARAMETER: The socket is not a connection-oriented socket or it is

already listening for incoming requests.

NFCSTATUS_INVALID_STATE: The socket is not at bound state.

Accept an Incoming Connection Request

This function accepts an incoming connection request for a socket provided within the

listening callback. It switches the socket state to connected.

phStatus_t phlnLlcp_Transport_Accept(

 void * pDataParams, [In]

phlnLlcp_Transport_Socket_t * pLlcpSocket, [In]

phlnLlcp_Transport_sSocketOptions_t * pOptions, [In]

phNfc_sData_t * psWorkingBuffer, [In]

phlnLlcp_TransportSocketErrCb_t pErr_Cb, [In]

phlnLlcp_TransportSocketAcceptCb_t pAccept_RspCb, [In]

void * pContext); [In]

*pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

*pLlcpSocket: Pointer to the LLCP transport socket.

*pOptions: Options for the socket configuration.

*psWorkingBuffer: A working buffer to be used by the library.

pErr_Cb: Callback function that shall be called whenever an error occurs on the socket.

pAccept_RspCb: Callback function to be called when a connection request from a

remote peer device is received (CC PDU sent).

*pContext: Pointer to the input data to be processed by the Accept() callback function.

The values returned by the function can be:

PH_ERR_SUCCESS: Successful Operation.

NFCSTATUS_INVALID_PARAMETER: Socket is not a connection-oriented socket.

NFCSTATUS_INVALID_STATE: Socket is not at bound state.

Other: Value returned by the underlying component.

Reject a Connection Request

This function rejects an incoming connection request for a socket provided within the

listening callback. The socket is implicitly closed when the function is called.

phStatus_t phlnLlcp_Transport_Reject(

void * pDataParams, [In]

phlnLlcp_Transport_Socket_t * pLlcpSocket, [In]

phlnLlcp_TransportSocketRejectCb_t pReject_RspCb, [In]

void * pContext); [In]

pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

*pLlcpSocket: Pointer to the LLCP transport socket.

pReject_RspCb: Callback function to be called when rejection operation is completed.

*pContext: Pointer to the input data to be processed by the callback function.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 148 of 205

The values returned by the function can be:

PH_ERR_SUCCESS: Successful Operation.

NFCSTATUS_INVALID_PARAMETER: Socket is not at connection-oriented socket.

NFCSTATUS_INVALID_STATE: Socket is not a bound state.

Other: Value returned by the underlying component.

Disconnect Socket

This function disconnects a connection-oriented socket by sending a DISC PDU through

the LLC link. If the socket contains any data pending to be sent or received, then this

data is resolved before socket is disconnected.

Local and destination SAP shall both be cleared from the socket, but the socket itself

shall not be closed. First, the socket state is changed to disconnecting. When the socket

disconnection is successfully completed (DM PDU received and handled internally), the

upper layer is notified by the socket disconnection callback and the socket is left in

disconnected state.

Note: As soon as the socket is disconnected, both socket connected and socket

disconnected callbacks are set to NULL.

phStatus_t phlnLlcp_Transport_Disconnect(

void * pDataParams, [In]

phlnLlcp_Transport_Socket_t * pLlcpSocket, [In]

phlnLlcp_SocketDisconnectCb_t pDisconnect_RspCb, [In]

void * pContext); [In]

pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

*pLlcpSocket: Pointer to the LLCP transport socket.

pDisconnect_RspCb: Callback function to be called by phlnLlcp_Transport_Close()

function when the disconnection operation is completed.

*pContext: Pointer to the input data to be processed by the callback function.

The values returned by the function can be:

PH_ERR_SUCCESS: Successful Operation.

NFCSTATUS_INVALID_PARAMETER: Socket is not a connection-oriented socket.

NFCSTATUS_INVALID_STATE: Socket is not at connected state.

NFCSTATUS_PENDING: LLC link has data pending to be sent. Try later.

Other: Value returned by the underlying component.

Send Data Packet – Connection Oriented

This function sends data using a connection-oriented transport socket, which shall be

already in the connected state.

Data is transmitted using I PDU packets defined by the LLCP specification. SSAP and

DSAP values that are part of the I PDU packet header are obtained from the socket

parameter.

phStatus_t phlnLlcp_Transport_Send(

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 149 of 205

void * pDataParams, [In]

phlnLlcp_Transport_Socket_t * pLlcpSocket, [In]

phNfc_sData_t * pBuffer, [In]

phlnLlcp_TransportSocketSendCb_t pSend_RspCb, [In]

void * pContext); [In]

pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

*pLlcpSocket: Pointer to the LLCP transport socket.

*pBuffer: Buffer containing the data to be sent.

pSend_RspCb: Callback function to be called when the sending operation is completed.

*pContext: Pointer to the input data to be processed by the callback function.

The values returned by the function can be:

PH_ERR_SUCCESS: Successful Operation.

NFCSTATUS_INVALID_PARAMETER: Socket is not a connection-oriented socket or the data in

psBuffer is longer than the agreed MIU for sending.

NFCSTATUS_INVALID_STATE: The socket is not in a valid state to perform the requested

operation.

NFCSTATUS_REJECTED: LLC link has data pending to be sent. Try later.

NFCSTATUS_FAILED: Operation failed.

Other: Value returned by the underlying component.

Receive Data from a Socket – Connection Oriented

This function reads data from the LLCP transport socket. This function can only be called

on a connection-oriented socket.

The function reads the available data in the socket. The maximum number of bytes to be

read is limited by the size of the reception buffer. If there is no data available when the

function is called, the function waits for incoming data, and the response will be sent by

the callback function.

Once the data has been successfully received, the peer sends a RR PDU packet to

acknowledge the reception of the data.

Note: Calling this function from the API does not force the remote peer device to send

data.

phStatus_t phlnLlcp_Transport_Recv(

void * pDataParams, [In]

phlnLlcp_Transport_Socket_t * pLlcpSocket, [In]

phNfc_sData_t * pBuffer, [Out]

phlnLlcp_TransportSocketRecvCb_t pRecv_RspCb, [In]

void * pContext); [In]

pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

*pLlcpSocket: Pointer to the LLCP transport socket.

*pBuffer: Buffer prepared for the reception of the data.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 150 of 205

pRecv_RspCb: Callback function to be called when the received data is copied from the

socket buffer to the output pBuffer buffer. If the socket is pending for reception, this

callback will provide the data when the operation is completed.

*pContext: Pointer to the input data to be processed by the callback function.

The values returned by the function can be:

NFCSTATUS_SUCCESS: Successful Operation.

NFCSTATUS_INVALID_PARAMETER: Socket is not a connection-oriented socket

NFCSTATUS_REJECTED: Socket is already pending for reception.

NFCSTATUS_FAILED: Operation failed or socket is not connected.

Send Data Packet – Connectionless

This function sends data using a connectionless transport socket, which shall be already

in the connected state.

Data is transmitted using UI PDU packets defined by the LLCP specification. The DSAP

value is provided by the application.

phStatus_t phlnLlcp_Transport_SendTo(

void * pDataParams, [In]

phlnLlcp_Transport_Socket_t * pLlcpSocket, [In]

uint8_t nSap, [In]

phNfc_sData_t * pBuffer, [In]

phlnLlcp_TransportSocketSendCb_t pSend_RspCb, [In]

void * pContext); [In]

pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

*pLlcpSocket: Pointer to the LLCP transport socket.

nSap: Destination SAP of the service the data is sent to.

*pBuffer: Buffer containing the data to be sent.

pSend_RspCb: Callback function to be called when the sending operation is completed.

*pContext: Pointer to the input data to be processed by the callback function.

The values returned by the function can be:

NFCSTATUS_SUCCESS: Successful Operation.

NFCSTATUS_INVALID_PARAMETER: Socket is not a connectionless socket, the data in pBuffer

is longer than the agreed MIU for sending or the DSAP is out of the valid range (2-63).

NFCSTATUS_INVALID_STATE: Socket is not a connectionless socket.

NFCSTATUS_REJECTED: Socket cannot send data because is waiting for data to arrive from

the remote peer device. Try later.

NFCSTATUS_FAILED: Operation failed.

Close One Socket

This function closes a given LLCP transport connection-oriented or connectionless

socket previously created by phFriNfc_LlcpTransport_Socket() function.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 151 of 205

If the socket is connected, first it is disconnected and then it is closed. If the socket has

not been connected yet, it is closed by aborting it and setting it to NULL.

phStatus_t phlnLlcp_Transport_Close(

void * pDataParams [In]

phlnLlcp_Transport_Socket_t * pLlcpSocket); [In]

*pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

*pLlcpSocket: Pointer to the transport socket.

The values returned by the function can be:

NFCSTATUS_SUCCESS: Successful Operation.

Other: Value returned by the underlying component.

Close All the Sockets

This function closes all created sockets independently of their current states. In addition,

the information from the pCachedServiceName in phlnLlcp_Fri_Transport_t is completely

cleared.

phStatus_t phlnLlcp_Transport_CloseAll(

void * pDataParams); [In]

*pDataParams: Pointer to the phlnLlcp_Fri_DataParams_t parameter component.

The values returned by the function can be:

NFCSTATUS_SUCCESS: Successful Operation.

Other: Value returned by the underlying component.

7.1.5.3 Transport Layer Callback functions

The LLC component defines a set of callback functions to inform about incoming

requests, completion of transmitted requests and modifications in the sockets managed

by the transport layer.

LLCP Error CB

This callback function is executed when an error on the LLCP link occurs.

Set by function: phlnLlcp_Transport_Socket() or phlnLlcp_Transport_Accept()

Function prototype:

typedef void (*pphFriNfc_LlcpTransportSocketErrCb_t) (

 void* pContext,

 uint8_t nErrCode);

*pContext: Pointer to the input data to be processed in the callback function.

nErrCode: Indicates which error has occurred.

PHFRINFC_LLCP_ERR_NOT_BUSY_CONDITION: RR acknowledgement received from the remote

peer device after a negative acknowledgement (RNR).

PHFRINFC_LLCP_ERR_BUSY_CONDITION: Negative acknowledgement (RNR PDU) received from

the remote peer device.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 152 of 205

PHFRINFC_LLCP_ERR_FRAME_REJECTED: The remote peer device received an invalid packet and

subsequently sent a FRMR frame.

PHFRINFC_LLCP_ERR_DISCONNECTED: Disconnection request (DISC PDU) received from the

remote peer device.

LLCP Listen CB

This callback function is triggered when an incoming client connection request

(CONNECT PDU) is received.

Set by function: phlnLlcp_Transport_Listen()

Function prototype:

void (*pphFriNfc_LlcpTransportSocketListenCb_t) (

 void* pContext,

 phFriNfc_LlcpTransport_Socket_t *IncomingSocket);

*pContext: Pointer to the user data input to be processed in the callback function.

*IncomingSocket; Pointer to the socket that is bound to the SAP or service name that

the remote peer device is requesting to connect with.

LLCP Connect CB

This callback function is triggered when the procedure of connecting to a service in the

remote peer device is completed.

Set by function: phlnLlcp_Transport_Connect()

Function prototype:

typedef void (*pphFriNfc_LlcpTransportSocketConnectCb_t) (

 void* pContext,

 uint8_t nErrCode,

 NFCSTATUS status);

*pContext: Pointer to the user data input to be processed by the callback function.

nError: Error code defined by the NFC forum LLCP Disconnect mode.

status: Indicates the status of the connection procedure.

NFCSTATUS_SUCCESS: Connection successful. The data transmission may be performed.

NFCSTATUS_ABORTED: Connection rejected or socket closed by phlnLlcp_Transport_Close().

NFCSTATUS_FAILED: Connection not confirmed on the remote side, and therefore not

created.

LLCP Disconnect CB

This callback function is triggered when the disconnecting procedure with a remote peer

device is completed.

Set by function: phlnLlcp_Transport_Disconnect()

Function prototype:

typedef void (*pphFriNfc_LlcpTransportSocketDisconnectCb_t) (

 void* pContext,

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 153 of 205

 NFCSTATUS status);

*pContext: Pointer to the data input to be processed by the callback function.

status: Indicates the status of the disconnection procedure.

NFCSTATUS_SUCCESS: Disconnection has been confirmed by the remote side.

LLCP Accept CB

This callback function is called when the local server confirms (sent CC PDU) the

connection request (CONNECT PDU) from the remote client.

Set by function: phlnLlcp_Transport_Accept()

Function prototype:

void (*pphFriNfc_LlcpTransportSocketAcceptCb_t) (

 void* pContext,

 NFCSTATUS status);

*pContext: Pointer to the input data to be processed by the callback function.

status: Indicates the status of the acceptance procedure from the connection request.

NFCSTATUS_SUCCESS: Disconnection has been confirmed by the remote peer device.

LLCP Reject CB

This callback function is triggered when the rejection of an incoming Connection Request

from a remote peer device is completed.

Set by function: phlnLlcp_Transport_Reject()

Function prototype:

typedef void (*pphFriNfc_LlcpTransportSocketRejectCb_t) (

 void* pContext,

 NFCSTATUS status);

*pContext: Pointer to the input data to be processed in the callback function.

status: Indicates the status of the rejection procedure of the disconnection request.

NFCSTATUS_SUCCESS: The DM PDU has been sent successfully.

LLCP Send CB

This callback function is triggered when the transmission of a packet (I PDU) to the

remote peer device is completed.

Set by function: phlnLlcp_Transport_Send() or phlnLlcp_Transport_SendTo()

Function prototype:

typedef void (*pphFriNfc_LlcpTransportSocketSendCb_t) (

 void* pContext,

 NFCSTATUS status);

*pContext: Pointer to the input data to be processed in the callback function.

status: Indicates the status of the transmission procedure from the connection request.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 154 of 205

NFCSTATUS_SUCCESS: The data (I PDU frame) has been successfully transmitted.

LLCP Receive CB

This callback function is triggered when the local peer device receives a data packet (I

PDU) from the remote peer device in connection-oriented mode.

Set by function: phlnLlcp_Transport_Send(

Function prototype:

typedef void (*pphFriNfc_LlcpTransportSocketRecvCb_t) (

 void* pContext,

 NFCSTATUS status);

*pContext: Pointer to the input data to be processed in the callback function.

status: Indicates the status of the reception procedure.

NFCSTATUS_SUCCESS: The incoming packet has been received without an error in

accordance with the LLCP specification.

LLCP Receive CB

This callback function is called when the local peer receives a data packet (UI PDU) from

the remote peer device in connectionless mode.

Set by function:

Function prototype:

typedef void (*pphFriNfc_LlcpTransportSocketRecvFromCb_t) (

 void* pContext,

 uint8_t ssap,

 NFCSTATUS status);

*pContext: Pointer to the input data to be processed in the callback function.

ssap: Source SAP for the incoming data.

status: Indicates the status of the reception procedure.

NFCSTATUS_SUCCESS: The incoming packet has been received without an error in

accordance with the LLCP specification.

7.2 SNEP

7.2.1 Technical Introduction

The Simple NDEF Exchange Protocol (SNEP) [21] is a request/response application

level protocol for the exchange of application data units in the form of NDEF messages

between two NFC Forum compliant devices.

A SNEP Client sends a request to a SNEP Server to either retrieve data from the server

with the GET method or push data to the server using the PUT method. The SNEP

Server performs the action indicated by the request method using the information

provided. Then, it responds with a NDEF message that contains the response code and

application data, if required.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 155 of 205

The requests are always sent by the SNEP Client and responses are sent by the SNEP

Server.

Fig 36. SNEP Communication

Exchanging SNEP messages requires a reliable transport protocol. In the NFC Forum

architecture, SNEP is a protocol layer on top of the Logical Link Control Protocol (LLCP).

SNEP messages should be transmitted over LLCP data link connections using the LLCP

connection-oriented transport service.

NDEF messages can easily be larger than the Maximum Information Unit (MIU)

supported by the LLCP data link connection that a SNEP Client establishes with a SNEP

Server. The SNEP layer handles fragmentation and reassembly. In the NFC Reader

Library, the fragmentation and reassembly of messages is transparent to developers.

The NFC Reader Library supports the Simple NDEF Exchange Protocol (SNEP) 1.0 as

specified in the NFC Forum. Both the SNEP Client and the SNEP Server are

implemented in the NFC Reader Library.

Remark: The SNEP specification defines a Default SNEP Server with well-known LLCP

service access point (SAP) address number 4 and service name urn:nfc:sn:snep.

Certified NFC Forum devices must have the Default SNEP Server implemented. The

Default SNEP Server only implements the PUT request and the NDEF message could be

rejected if it is larger than 1024 bytes, though smartphones generally support more.

Remark: The NFC Reader Library supports hosting just one SNEP object, which could

be a SNEP Client or SNEP Server instance. The default SNEP Server instance supports

one server-client connection due to memory limitations. The limit is set in the #define

PHNPSNEP_FRI_MAX_SNEP_SERVER_CONN variable in

NxpRdLib_PublicRelease/intfs/phnpSnep.h. Incrementing the number of possible

concurrent connections will consume more RAM memory.

7.2.2 SNEP Client Application

The SNEP Client application is a component which sends a PUT or GET request to a

SNEP Server peer in order to either send information or to retrieve data from the remote

peer device.

7.2.2.1 SNEP Client Data Structures

The SNEP Client data structures are used to store and organize SNEP Client application

operation data. There are three SNEP data structures implemented: the SNEP

Configuration structure, the SNEP Client session structure and the SNEP Client

PUT/GET request context structure.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 156 of 205

SNEP Configuration Structure

This structure contains information about the SNEP Server that the SNEP Client has to

connect to. This instance is used as the input argument in phnpSnep_Client_Init()

function.

typedef struct {

 phnpSnep_Fri_Server_type_t SnepServerType;

 phNfc_sData_t *SnepServerName;

 phlnLlcp_Fri_sSocketOptions_t sOptions:

}phnpSnep_Fri_Config_t, *pphnpSnep_Fri_Config_t

SnepServerType: Defines the SNEP Server Type. It could be:

 phnpSnep_Fri_Server_Default: The default SNEP Server name is “urn:nfc:sn:snep”. In

compliance with the SNEP NFC Forum specification [21], the responses to a GET

request are not implemented.

 phnpSnep_Fri_Server_NonDefault: Server name taken from SnepServerName structure

(see below).

*SnepServerName: SNEP Server name string. This string is used only if SnepServerType

== phnpSnep_Fri_Server_NonDefault.

sOptions: LLCP socket options of the local peer. The members RW and MIU determine

size of the SNEP and LLCP working buffer.

SNEP Client Session Structure

The SNEP Client instance is called and implemented as a Client Session in the NFC

Reader Library. It stores the necessary SNEP Client parameters running on an MCU or

computer. Only the sWorkingBuffer has to be initialized directly by the developer. The

remaining fields are entirely managed by the NFC Reader Library. Once the SNEP

module is running, the data structure should not be modified.

typedef struct{

 ph_NfcHandle SnepClientHandle;

 ph_NfcHandle hRemoteDevHandle;

 uint32_t iMiu;

 uint32_t iRemoteMiu;

 uint8_t SnepClientVersion;

 phNfc_sData_t sWorkingBuffer;

 phnpSnep_Fri_Client_status_t Client_state;

 pphnpSnep_Fri_ConnectCB_t pConnectionCb;

 void *pClientContext;

 pphnpSnep_Fri_ReqCb_t pReqCb;

 void *pReqCbContext;

 phnpSnep_Fri_putGetDataContext_t putGetDataContext;

 uint32_t acceptableLength;

 phnpSnep_Fri_Config_t *pSnepClientInitDataParams;

 uint8_t bChunking;

 void *pSnepDataParamsContext;

}phnpSnep_Fri_ClientSession_t, *pphnpSnep_Fri_ClientSession_t;

hSnepClientHandle: SNEP Client Data link connection handler. The value is assigned

by the phnpSnep_Client_Init() function. The handler is used to access the client-server

connection by other SNEP Client API functions.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 157 of 205

hRemoteDevHandle: Remote device handler for the peer device.

iMiu: Local MIU for LLCP connection. Set by phnpSnep_Client_Init() function. The MIU

determines the maximum length of the SNEP packet.

iRemoteMiu: Taken from the remote peer device during LLCP initialization. In case no

value is received from the remote peer device, the default value is taken (128 bytes).

SnepClientVersion: SNEP protocol version supported is 1.0. This value is hardcoded in

phnpSnep_Fri.h, and it must not be changed.

#define PHNPSNEP_FRI_VERSION_MAJOR 1

#define PHNPSNEP_FRI_VERSION_MINOR 0

sWorkingBuffer; Working buffer for the LLCP socket. Its length is calculated within the

NFC Reader Library using two socket options (MIU and RW). The buffer needs to be

initialized by the developer before the SNEP module starts running.

Client_state: SNEP Client status, for internal library purpose.

pConnectionCb: Callback function triggered when the SNEP Client is initialized and

connected to SNEP Server.

*pClientContext: Upper layer context to be passed in the connect callback function.

pReqCb: Callback function triggered after completion of a PUT or a GET request with

either success or failure.

*pReqCbContext: Pointer to a context to be passed to the request callback function.

putGetDataContext: Pointer to a SNEP packet data and related parameters instance.

acceptableLength: Acceptable length of the GET request.

*pSnepClientInitDataParams: Defines the SNEP Server type.

bChunking: Chunking buffer flag, not implemented.

*pSnepDataParamsContext: Pointer to the SNEP data parameter component.

SNEP Client PUT/GET Request Context Structure

This structure contains parameters directly related to the SNEP Client data exchange.

The pSnepPacket, preqResponse and pChunkingBuffer members must be initialized by the

developer. All the remaining structure members are completely managed by the NFC

Reader Library. Once the SNEP module is running, the values of the structure should not

be changed.

typedef struct{

 uint32_t iDataSent;

 uint32_t iDataReceived;

 phNfc_sData_t *pSnepPacket;

 uint8_t bWaitForContinue;

 uint8_t bContinueReceived;

 phNfc_sData_t *pReqResponse;

 phNfc_sData_t *pChunkingBuffer;

}phnpSnep_Fri_putGetDataContext_t, *pphnpSnep_Fri_putGetDataContext_t;

iDataSent: The number of PUT request data sent so far. Header bytes do not count.

iDataReceived: The number of data bytes received so far.

*pSnepPacket: SNEP message with a PUT or a GET request. The buffer needs to be

initialized before the SNEP module starts running.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 158 of 205

bWaitForContinue: Flag indicating whether to wait for a CONTINUE response from the

server. This is an internal flag to ensure correct SNEP Client performance.

bContinueReceived: Flag indicating that the server has received a CONTINUE

response from the server. The client continues sending the remaining SNEP message

(pSnepPacket).

*pReqResponse: Response data received from the SNEP Server (except header). May

be null in case of a PUT request. It is passed to the pphnpSnep_Fri_ReqCb_t application

layer notification callback. The buffer needs to be initialized before the SNEP module

starts running.

*pChunkingBuffer: This buffer temporarily holds SNEP fragments that have just been

received from or are transmitted to the server (in other words, the data passed to the

LLCP link). The buffer needs to be initialized by the developers. The size of the buffer

needs to be larger than two server LLCP MIU vs. client LLCP MIU. The buffer is shared

for both sent and received data, one at a time. The buffer needs to be initialized before

the SNEP module starts running.

7.2.2.2 SNEP Client API

The general workflow to build a SNEP Client application using the NFC Reader Library

requires initializing the SNEP module to store the SNEP Client context. Then, the SNEP

Client session has to be initialized to create a LLCP connection with the SNEP Server

peer. After the successful connection setup, the SNEP Client can then perform PUT or

GET operations to either retrieve or push data to the SNEP Server. Finally, after the data

exchange is completed, the SNEP Client session has to be removed to close and erase

the LLCP connection with the SNEP Server.

The workflow to build a SNEP Client application is depicted in Fig 37.

Fig 37. SNEP Client application workflow

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 159 of 205

The creation of a LLCP socket connection with the SNEP Server and sending PUT/GET

requests requires interaction with the SNEP Server. Timeouts and expiration times are

implemented between peers. For instance, after a LLCP socket connection request, the

SNEP Server should accept or reject the connection and respond accordingly in a

specified time frame. Notification events are implemented in the form of callback

functions. More information regarding the SNEP Client callback functions is available in

Section 7.2.2.3. The SNEP Client API functions are detailed below:

SNEP Module Initialization

The SNEP module initialization creates a SNEP object. A SNEP object instance is needed

if either a SNEP Client or a SNEP Server is implemented. The SNEP object structure

components (phnpSnep_Fri_DataParams) are:

typedef phnpSnep_Fri_DataParams_t{

void *plnLlcpDataParams,
phnpSnep_Fri_ClientContext_t gpClientContext,
phnpSnep_Fri_ServerContext_t gpServerContext,

void *pOsal };

*plnLlcpDataParams: Pointer to the phlnLlcp_Fri_DataParams_t LLCP Data Parameter

component.

gpClientContext: SNEP Client context. Maintains all active SNEP Client entries.

gpServerContext: SNEP Server context. Maintains all active SNEP Server entries.

*pOsal: Pointer to the OSAL component parameter. Required for timers and dynamic

memory allocation. The valid OSAL pointer is taken from the underlying LLCP layer.

The SNEP object is initialized with the phnpSnep_Fri_Init function:

phStatus_t phnpSnep_Fri_Init (

 phnpSnep_Fri_DataParams_t *pDataParams, [In]

 uint16_t wSizeOfDataParams, [In]

 void *plnLlcpDataparams); [In]

*pDataParams: Pointer to the SNEP object component phnpSnep_Fri_DataParams_t

wSizeOfDataParams: The component size: sizeof(phnpSnep_Fri_DataParams_t)

*plnLlcpDataparams: Pointer to the underlying LLCP component.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

SNEP Client Initialization

The phnpSnep_Client_Init() function creates and configures a SNEP Client over LLCP

transport protocol.

phStatus_t phnpSnep_Client_Init(

 void *pDataParams, [In]

 phnpSnep_Fri_Config_t *pConfigInfo, [In]

 ph_NfcHandle hRemDevHandle, [In]

 pphnpSnep_Fri_ConnectCB_t pConnClientCb, [In]

 phnpSnep_Fri_ClientSession_t *pClientSession, [In]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 160 of 205

 void *pContext); [In]

*pDataParams: Pointer to the SNEP parameter component phnpSnep_Fri_DataParams_t

*pConfigInfo: Contains the SNEP Server information which the client has to connect to.

Stores information like server name, MIU and RW (receive window) for the LLCP layer.

hRemDevHandle: Remote peer device handler.

pConnClientCb: Pointer to a callback function that is triggered when the SNEP Client is

initialized and connected to the SNEP Server.

*pClientSession: SNEP Client instance.

*pContext: Pointer to the input data to be processed by the callback function.

The values returned by the function can be:

PH_ERR_SUCCESS Operation successful.

Other: Value returned by the underlying component.

SNEP Client PUT Request

This function encapsulates the application data into SNEP packet(s) and sends them to

the SNEP Server peer. The application layer is notified about the completion of this

request via a callback function.

phStatus_t phnpSnep_ClientReqPut(

 void *pDataParams, [In]

 ph_NfcHandle ConnHandle, [In]

 phNfc_sData_t *pPutData, [In]

 pphnpSnep_Fri_ReqCb_t fCbPut, [In]

 void *cbContext); [In]

*pDataParams: Pointer to the SNEP parameter component phnpSnep_Fri_DataParams_t

ConnHandle: Connection handler to a SNEP Client session. It is identified uniquely.

*pPutData: Pointer to the data to be transmitted to a SNEP Server.

fCbPut: Callback function triggered after the success or failure of a PUT request.

*cbContext: Pointer to a context to be passed to callback function .

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

SNEP Client GET Request

The phnpSnep_ClientReqGet function generates and sends a GET request to a SNEP Server

peer. The application is notified about the incoming SNEP Server response via its

callback function.

phStatus_t phnpSnep_ClientReqGet(

 void *pDataParams, [In]

 ph_NfcHandle ConnHandle, [In]

 phNfc_sData_t *pGetData, [Out]

 uint32_t acceptable_length, [In]

 pphnpSnep_Fri_ReqCb_t fCbGet, [In]

 void *cbContext); [In]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 161 of 205

*pDataParams: Pointer to the SNEP parameter component phnpSnep_Fri_DataParams_t

ConnHandle: Connection handler to a SNEP Client session. It is identified uniquely.

*pGetData: Pointer to the data to be sent to the SNEP Server as part of a GET request.

fCbGet: Callback function triggered when a response from the SNEP Server is received.

acceptable_length: Maximum data length (SNEP packet information field) that the

SNEP Client is able to receive as a response from a server.

cbContext: Pointer to a context to be passed to the callback function when called.

The values returned by the function can be:

PH_ERR_INSUFFICIENT_RESOURCES: An internal buffer is not available.

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

SNEP Client de-Initialization

The phnpSnep_Client_DeInit function removes a SNEP Client session and closes the

LLCP socket used by the SNEP Client session.

Remark: The memory used by the SNEP session is not released. Only the link pointing

to the SNEP Client instance is set to NULL.

phStatus_t phnpSnep_Client_DeInit(

 void *pDataParams, [In]

 ph_NfcHandle ConnHandle) [In]

*pDataParams: Pointer to the SNEP parameter component phnpSnep_Fri_DataParams_t

ConnHandle: Connection handler to SNEP Client session. It is identified uniquely.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

7.2.2.3 SNEP Client Callback functions

The callback functions are triggered in the SNEP Client side as notification events. For

instance, a callback function is called when the SNEP Server accepts the connection

request coming from a SNEP Client. The callback functions prototypes are defined within

the SNEP Client source code, but the specific functionality has to be implemented by the

developers. Two callback functions are defined in the SNEP Client side: the SNEP Client

connect callback function and the SNEP Client request callback function.

The details about these two callback functions are provided below.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 162 of 205

Fig 38. Callback function triggered by a function of the NFC Reader Library

SNEP Client Connect Callback function

The pphnpSnep_Fri_ConnectCB_t callback function is triggered as a response of a SNEP

Server to a SNEP Client connection request. The caller is implemented as the LLCP

connect callback. The developer is in charge of implementing the functionality of the

callback function.

Set by function: phnpSnep_Client_Init()

Function prototype:

typedef void(*pphnpSnep_Fri_ConnectCB_t) (

 void *pContext, [In]

 uint32_t ConnHandle, [Out]

 phStatus_t Status); [Out]

*pContext: Pointer to the input data to be processed by the callback function.

ConnHandle: Connection handler that uniquely identifies the SNEP Client session.

Status: Informs about the operation success or failure.

PHNPSNEP_FRI_CONNECTION_SUCCESS: LLCP socket successfully established for a SNEP Client

server connection.

PHNPSNEP_FRI_CONNECTION_FAILED: SNEP Client server connection failed.

SNEP Client Request Callback function

The pphnpSnep_Fri_ReqCb_t callback function is triggered after the completion of a PUT or

a GET request with either success or failure. The status of completion is received via the

Status function parameter. The developer is in charge of implementing the functionality of

the callback function.

Set by function: phnpSnep_ClientReqPut(), phnpSnep_ClientReqGet()

Function prototype:

typedef void(*pphnpSnep_Fri_ReqCb_t) (

 ph_NfcHandle ConnHandle, [In]

 void *pContext, [In]

 phStatus_t Status, [Out]

 phNfc_sData_t *pReqResponse); [Out]

ConnHandle: Connection handler which uniquely identifies a SNEP Client (session).

*pContext: Pointer to the input data to be processed by the callback function.

Status: Status of the response callback.

PHNPSNEP_FRI_STATUS_REQUEST_REJECT_FAILED: Client intended to reject but the REJECT

request sending has failed.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 163 of 205

PHNPSNEP_FRI_STATUS_REQUEST_CONTINUE_FAILED: Client intended to continue but the

CONTINUE request sending has failed.

PHNPSNEP_FRI_STATUS_REQUEST_REJECT

*pReqResponse: Received response from a SNEP Server. May be NULL for PUT

request.

7.2.3 SNEP Server Application

The SNEP Server application is a component which listens for incoming SNEP Client

connection requests to receive or push application data. After the completion of the

required action, the SNEP Server responds with a SNEP message containing the

response code, which indicates the result of the operation. In case of a GET request, it

also responds with application data.

7.2.3.1 SNEP Server Data Structures

The SNEP Server data structures are used to store and organize data related to the

operation of a SNEP Server application. There are four data structures: the SNEP

Configuration structure, the SNEP Server session structure, the SNEP Server connection

structure and the SNEP Server response context structure.

SNEP Configuration Structure

This structure contains information about the SNEP Server that the SNEP Client has to

connect to. This instance is used as the input argument in phnpSnep_Client_Init()

function.

typedef struct {

 phnpSnep_Fri_Server_type_t SnepServerType;

 phNfc_sData_t *SnepServerName;

 phlnLlcp_Fri_sSocketOptions_t sOptions:

}phnpSnep_Fri_Config_t, *pphnpSnep_Fri_Config_t

SnepServerType: Defines the SNEP Server Type. It could be:

 phnpSnep_Fri_Server_Default: The default SNEP Server name is “urn:nfc:sn:snep”. In

compliance with the SNEP NFC Forum specification [21], the responses to a GET

request are not implemented.

 phnpSnep_Fri_Server_NonDefault: Server name taken from SnepServerName structure

(see below)

*SnepServerName: SNEP Server name string. This string is used only if SnepServerType

== phnpSnep_Fri_Server_NonDefault.

sOptions: LLCP socket options of the local peer. The members RW and MIU determine

the size of the SNEP and LLCP working buffer.

SNEP Server Session Structure

The SNEP Server instance is called and implemented as a Server Session. It stores the

parameters for a SNEP Server management. The sWorkingBuffer and

pServerConnection[] must be initialized directly by the developers. All the remaining

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 164 of 205

members are completely managed by the SNEP Server implementation. Once the SNEP

module is running, the variables shall not be changed.

typedef struct{

 ph_NfcHandle hSnepServerHandle;

 uint8_t SnepServerSap;

 uint8_t SnepServerVersion;

 uint8_t SnepServerType;

 phNfc_sData_t sWorkingBuffer;

 phnpSnep_Fri_Server_status_t Server_state;

 phnpSnep_Fri_ServerConnection_t *pServerConnection[];

 uint8_t CurrentConnCnt;

 pphnpSnep_Fri_ConnectCB_t ConnectionCb;

 void *pListenContext;

}pphnpSnep_Fri_ServerSession_t;

hSnepServerHandle: SNEP Client Data link connection handler. The value is assigned

by the phnpSnep_Server_Init() function. The handler is used to access a particular server-

client connection by other SNEP Client API functions.

SnepServerSap: SAP on the LLCP that the SNEP Server is bound to. The 0x04 is

hardcoded for a SNEP default server and 0x15 for a non-default SNEP Server. Set by

the phnpSnep_Server_Init() function.

SnepServerVersion: SNEP protocol version supported by the Server. Use SNEP 1.0

version.

SnepServerType: SNEP Server type initialized. This value is taken from

hnpSnep_Fri_Config_t component.

sWorkingBuffer: Working buffer for the LLCP socket. The buffer needs to be initialized

before the SNEP module starts running. The length of the buffer is calculated and

assigned by the NFC Reader Library (taking MIU and RW socket options given to

phnpSnep_Server_Init()) This buffer is shown below:

uint8_t workingBuffer[256];

phnpSnep_Fri_ServerSession_t ServerSession;

ServerSession.sWorkingBuffer.buffer = workingBuffer;

Server_state: SNEP Server status. For internal management.

*pServerConnection[]: Table of SNEP Server connections. Each connection is specified

by the phnpSnep_Fri_ServerConnection_t component, which needs to be assigned by the

developer before starting the SNEP module.

phnpSnep_Fri_ServerConnection_t pServerConnection;

phnpSnep_Fri_ServerSession_t ServerSession;

ServerSession.pServerConnection[count] = &pServerConnection

CurrentConnCnt: Current number of clients connected to the server. The member is

incremented when a client connection request is accepted on the server side by the

phnpSnep_Server_Accept() function. So far, only one server-client connection is supported.

pConnectionCb: Callback function triggered when a SNEP Client request is received or

the connection has been accepted by the SNEP Server.

*pListenContext: Application layer context passed to the above callback.

SNEP Server Connection Structure _

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 165 of 205

This structure keeps pointers to buffers and variables related to a particular SNEP

Server-Client connection. The sConnWorkingBuffer and pSnepWorkingBuffer must be

initialized directly by the developers. All the other members are entirely managed by the

NFC Reader Library. The structure values shall not be modified after the SNEP module

is running.

typedef struct {

 ph_NfcHandle hSnepServerConnHandle;

 ph_NfcHandle hRemoteDevHandle;

 uint8_t SnepServerVersion;

 uint32_t iInboxSize;

 uint32_t iDataTobeReceived;

 phNfc_sData_t *pDataInbox;

 pphnpSnep_Fri_Put_ntf_t pPutNtfCb;

 void *pContextForPutCb;

 pphnpSnep_Fri_Get_ntf_t pGetNtfCb;

 phNfc_sData_t sConnWorkingBuffer;

 phNfc_sData_t *pSnepWorkingBuffer;

 void *pContextForGetCb;

 phnpSnep_Fri_sendResponseDataContext_t responseDataContext;

 uint32_t iMiu;

 uint32_t iRemoteMiu;

 phnpSnep_Fri_Server_status_t ServerConnectionState;

 void *pConnectionContext;

 void *pSnepDataParamsContext;

}pphnpSnep_Fri_ServerConnection_t

hSnepServerConnHandle: SNEP Server-client connection handler (related to an LLCP

socket).

 hRemoteDevHandle: Remote device handler for the peer device.

SnepServerVersion: SNEP protocol version supported by the SNEP Server.

iInboxSize: Buffer size to pick up the data received from a PUT request. Set by

phnpSnep_Server_Accept() function. For the default SNEP Server it shall be 1024 bytes at

least.

iDataTobeReceived: Size of the NDEF message to be read. For internal use.

 *pDataInbox: SNEP connection inbox. Buffer to pick up data received from a PUT

request. Set by phnpSnep_Server_Accept(). It is linked to the pSnepWorkingBuffer.

pPutNtfCb: Callback function triggered when an incoming PUT request from a SNEP

Client.

*pContextForPutCb: Context passed to the above PUT request callback.

pGetNtfCb: Callback function triggered after an incoming GET request from a SNEP

Client.

sConnWorkingBuffer: Working buffer for the LLCP connection The buffer needs to be

initialized by the developer. It shall be initialized before the SNEP module starts running.

The length of the buffer is calculated and assigned by the implementation (from the MIU

and the RW socket options given to phnpSnep_Server_Init())

uint8_t sConnWorkingBuffer[];

phnpSnep_Fri_ServerConnection_t pServerConnection;

 pServerConnection->sConnWorkingBuffer.length = sizeof(sConnWorkingBuffer);

 pServerConnection->sConnWorkingBuffer.buffer = sConnWorkingBuffer;

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 166 of 205

*pSnepWorkingBuffer: The working buffer for the SNEP connection. It is used to store

the NDEF message fragments during the data exchange. It must be initiated directly by

the developers before the SNEP module starts phnpSnep_Fri_ServerConnection_t

 pServerConnection;

phNfc_sData_t pSnepWorkingBuffer;

pServerConnection->pSnepWorkingBuffer = &pSnepWorkingBuffer;

*pContextForGetCb: Context passed to the above GET request callback.

phnpSnep_Fri_sendResponseDataContext_t responseDataContext:

Context of the data transfer transaction.

iMiu: Local MIU (size of information frame of the LLCP). The parameter determines the

size of the SNEP fragment. Set by phnpSnep_Server_Accept() function.

iRemoteMiu: Remote MIU for the LLCP connection. Determines the length of the SNEP

fragment transmitted from the SNEP Server to the SNEP Client. Set by the

phnpSnep_Server_Accept() function. Taken from the LLCP connection procedure or set by

the NFC Reader Library to 128 bytes.

ServerConnectionState: Connection status.

*pConnectionContext: Context passed to:

 Connection callback when server sends connection response.

 PUT and GET request callbacks whenever called.

*pSnepDataParamsContext: Pointer to the phnpSnep_Fri_DataParams_t SNEP data

parameter component.

SNEP Server Response Context Structure

This structure stores parameters directly related to the SNEP Server data exchange. The

pSnepPacket and pChunkingBuffer shall be initialized by the developers. All the remaining

members are completely managed by the implementation. The structure values shall not

be modified after the SNEP module is running.

typedef struct{

 uint32_t iAcceptableLength;

 uint8_t bIsExcessData;

 uint32_t iDataSent;

 phNfc_sData_t *pSnepPacket;

 uint8_t bWaitForContinue;

 uint8_t bContinueReceived;

 phNfc_sData_t *pChunkingBuffer;

 pphnpSnep_Fri_Protocol_SendRspCb_t fSendCompleteCb;

 void *cbContext;

}pphnpSnep_Fri_sendResponseDataContext_t;

iAcceptableLength: Acceptable length. This value is taken from the Acceptable length

field of the client GET request. The server uses the parameter to decide if it is required to

indicate EXCESS DATA response to the client.

bIsExcessData: Flag to indicate excess data.

iDataSent: Number of data sent so far (related to a SNEP message GET request).

*pSnepPacket: Prepared SNEP packet to be sent as the SNEP Server response.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 167 of 205

bWaitForContinue: Flag indicating whether to wait for CONTINUE request from client.

Internal flag to ensure the correct SNEP Server performance.

bContinueReceived: Flag indicating that the server has received a CONTINUE request

from the client. The server continues sending the remaining part of the SNEP message

(pSnepPacket).

*pChunkingBuffer: This buffer temporarily stores SNEP fragments that have just been.

The buffer is shared for both sent and received data.

fSendCompleteCb: Callback function triggered when a response to a SNEP Client is

sent.

*cbContext: Pointer to the application layer context passed to above PUT request

callback.

7.2.3.2 SNEP Server API

The general workflow to build a SNEP Server application using the NFC Reader Library

requires initializing the SNEP module to store the SNEP Server context. After that, the

SNEP Server session has to be initialized to set the SNEP Server in listening state for

incoming SNEP Client requests, in order to accept and process them accordingly.

Finally, after the data exchange is completed, the SNEP Server session has to close the

communication channel. The workflow to build a SNEP Client application is depicted in

Fig 39.

Fig 39. SNEP Server application workflow

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 168 of 205

A SNEP Server in the listening phase is capable of accepting SNEP Client requests. The

connection establishment and the data exchange generate notification events which

trigger callback functions. More information of the SNEP Server callback functions is

available in Section 7.2.3.3. The SNEP Server API functions are detailed here following:

SNEP Module Initialization

The SNEP module initialization creates a SNEP object. A SNEP object instance is needed

if either a SNEP Client or server is implemented. The SNEP object structure components

(phnpSnep_Fri_DataParams) are:

typedef phnpSnep_Fri_DataParams_t{

void *plnLlcpDataParams,
phnpSnep_Fri_ClientContext_t gpClientContext,
phnpSnep_Fri_ServerContext_t gpServerContext,

void *pOsal};

*plnLlcpDataParams: Pointer to the phlnLlcp_Fri_DataParams_t LLCP Data Parameter

component.

gpClientContext: SNEP Client context. It saves all active SNEP Client entries.

gpServerContext: SNEP Server context. It saves all active SNEP Server entries.

*pOsal: Pointer to the OSAL component parameter. Needed for the timers and for the

dynamic memory allocation. The valid OSAL pointer is taken from the underlying LLCP

layer.

The SNEP object is initialized with the phnpSnep_Fri_Init function:

phStatus_t phnpSnep_Fri_Init (

 phnpSnep_Fri_DataParams_t *pDataParams, [In]

 uint16_t wSizeOfDataParams, [In]

 void *plnLlcpDataparams); [In]

*pDataParams: Pointer to the SNEP object component phnpSnep_Fri_DataParams_t

wSizeOfDataParams: The component size: sizeof(phnpSnep_Fri_DataParams_t)

*plnLlcpDataparams: Pointer to the underlying LLCP component.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

SNEP Server Initialization

The phStatus_t phnpSnep_Server_Init function creates and configures a SNEP Server

over LLCP. The SNEP Server initialization binds a service access point (SAP) with a

service name. The default SAP of SNEP Server is 0x04 and the default SNEP Server

service name is “urn:nfc:sn:snep”. It can also bind it to a non-default service name with

the hardcoded SAP 0x15 and custom service name. Additionally, it sets the SNEP

Server into listening mode to connection requests from SNEP Clients.

phStatus_t phnpSnep_Server_Init(

 void *pDataParams, [In]

 phnpSnep_Fri_Config_t *pConfigInfo, [In]

 pphnpSnep_Fri_ConnectCB_t pConnCb, [In]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 169 of 205

 ph_NfcHandle *pServerHandle, [Out]

 phnpSnep_Fri_ServerSession_t *pServerSession, [In]

 void *pContext); [In]

*pDataParams: Pointer to the SNEP parameter component phnpSnep_Fri_DataParams_t.

*pConfigInfo: Contains the SNEP Server name, type, LLCP socket options.

*pConnCb: Callback function which is called when the SNEP Server receives a

connection request from a SNEP Client. The callback is also called when the connection

is accepted.

*pServerHandle: Assigned handler to the SNEP Server (session). The handler should

be used as reference of the server session in the SNEP API.

*pServerSession: Pointer to a SNEP Server (session).

*pContext: Pointer to the input data to be processed by the callback function.

The values returned by the function can be:

PH_ERR_INVALID_PARAMETER: Default server and name also given or non-default server and

no server name given.

NFCSTATUS_ALREADY_REGISTERED: When pConfigInfo->SnepServerType ==

phnpSnep_Fri_Server_Default and SAP==0x04 already occupied.

PH_ERR_INSUFFICIENT_RESOURCES: Some of the given references are invalid.

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

SNEP Server Accept Connection

This function accepts an incoming connection request from a SNEP Client. Once a

connection request from a SNEP Client is received, this phnpSnep_Server_Accept()

function should be called. The phnpSnep_Server_Accept should be called inside the

pphnpSnep_Fri_ConnectCB_t () connection callback, which has been previously set by the

phnpSnep_Server_Init() function.

phStatus_t phnpSnep_Server_Accept(

 phnpSnep_Fri_DataParams_t *pDataParams, [In]

 phNfc_sData_t *pDataInbox, [In]

 phlnLlcp_Fri_Transport_sSocketOptions_t *pSockOps, [In]

 ph_NfcHandle hRemoteDevHandle, [In]

 ph_NfcHandle ServerHandle, [In]

 ph_NfcHandle ConnHandle, [In]

 pphnpSnep_Fri_Put_ntf_t pPutNtfCb, [In]

 pphnpSnep_Fri_Get_ntf_t pGetNtfCb, [In]

 void *pContext); [In]

*pDataParams: Pointer to the phnpSnep_Fri_DataParams_t SNEP parameter component.

*pDataInbox: Pointer to the SNEP inbox buffer. The pDataInbox buffer size must be at

least of 1024 bytes (Default SNEP Server), otherwise it will return an error.

*pSockOps: MIU and RW options for a LLCP socket used for a communication with a

particular SNEP Client. The size of MIU and RW determine the size of the working buffer.

hRemoteDevHandle: Remote peer device handler.

ServerHandle: Server Session handler (obtained by the phnpSnep_Server_Init() function.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 170 of 205

ConnHandle: Handler to incoming connection with a SNEP Client. It is obtained via a

connect callback pphnpSnep_Fri_ConnectCB_t.The connection handler is unique and

represents a connection with particular SNEP Client.

pPutNtfCb: Put Notification callback for incoming data. The callback shall be called

when the PUT request from a SNEP Client is received.

pGetNtfCb: Get Notification callback for incoming data request. The callback shall be

called when the GET request from a SNEP is client received.

*pContext: Application layer data to be passed to the above PUT and GET request

callbacks functions.

The values returned by the function can be:

PH_ERR_INVALID_PARAMETER: Running default server with pDataInbox->length < 1024

PH_ERR_INSUFFICIENT_RESOURCES: Some of the SNEP Server related components or internal

buffer not allocated.

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

SNEP Server Response

This function sends a response to a SNEP Client. This function should be called inside

the pphnpSnep_Fri_Put_ntf_t or pphnpSnep_Fri_Get_ntf_t callback functions depending if

the SNEP Client performed a GET or PUT operation.

phStatus_t phnpSnep_ServerSendResponse (

 void *pDataParams, [In]

 ph_NfcHandle ConnHandle, [In]

 phNfc_sData_t *pResponseData, [In]

 phStatus_t responseStatus, [In]

 pphnpSnep_Fri_Protocol_SendRspCb_t fSendCompleteCb, [In]

 void *cbContext); [In]

*pDataParams: Pointer to the phnpSnep_Fri_DataParams_t SNEP parameter component.

ConnHandle: Handler to a connection with the SNEP Client. The value of the handler

should be obtained via a PUT or GET request callback. The connection handler is unique

and represents a connection with a particular SNEP Client.

*pResponseData: Pointer to the phNfc_sData_t structure storing the response data to be

sent to the SNEP Client.

responseStatus: Response status code.

fSendCompleteCb: The callback function to be called when the response has been

sent.

*cbContext: Application layer content to be passed to the callback function.

The values returned by the function can be:

PH_ERR_INSUFFICIENT_RESOURCES: Some of the SNEP Server related components or internal

buffer not allocated

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 171 of 205

SNEP Server de-Initialization

This function removes the SNEP Server handler and closes all adjacent connections.

The memory space occupied by the instance of the server session is not released as

only an internal reference is cancelled.

phStatus_t phnpSnep_Server_DeInit (

 void *pDataParams, [In]

 ph_NfcHandle ServerHandle); [In]

*pDataParams: Pointer to the SNEP parameter component phnpSnep_Fri_DataParams_t.

ServerHandle: Handler to a server session to be removed.

The values returned by the function can be:

PH_ERR_NOT_INITIALISED: Invalid handle to a server session.

PH_ERR_SUCCESS: Operation successful.

Other: Value returned by the underlying component.

7.2.3.3 SNEP Server Callback functions

The callback functions are triggered in the SNEP Server side as notification events. For

instance, a callback function is called when the SNEP Server has just received a

connection request from a SNEP Client or after the completion of a SNEP Client PUT

request. The callback functions prototypes are defined but their implementation is in

hands of the developer.

There are four callback functions defined: the SNEP Server connect callback function,

the SNEP Server PUT request callback function, the SNEP Server GET request callback

function and the SNEP Server Send response callback function. The details of these four

callback functions are provided below.

Fig 40. Callback function triggered by a function of the NFC Reader Library

SNEP Server Connect Callback function

This callback function is called when:

 The SNEP Server has just received a connection request from a client.

 The SNEP Server has just accepted a connection request. The server-client

connection has just been established.

A particular event is recognized according to the 3
rd

 input argument status.

Set by function: phnpSnep_Server_Init()

Function prototype:

typedef void(*pphnpSnep_Fri_ConnectCB_t) (

 void *pContext, [In]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 172 of 205

 uint32_t ConnHandle, [Out]

 phStatus_t Status); [Out]

*pContext: Pointer to the input data to be processed by the callback function. Depending

on the caller, one of two possible contexts may be returned:

 Listen context: The last argument passed to the phnpSnep_Server_Init() function. This

context is returned when the third parameter is Status ==

PHNPSNEP_FRI_INCOMING_CONNECTION.

 Connection context: The last argument passed to the phnpSnep_Server_Accept()

function. This context is returned when the third parameter is Status ==

PHNPSNEP_FRI_CONNECTION_SUCCESS or PHNPSNEP_FRI_CONNECTION_FAILED.

ConnHandle: Connection handler between the server and a particular client. It is

assigned as unique to distinguish from other server client connections on the SNEP

layer.

Status: Status referring about the connection state:

PHNPSNEP_FRI_INCOMING_CONNECTION: A connection request from a SNEP Client has been

received.

PHNPSNEP_FRI_CONNECTION_SUCCESS: The SNEP Server has just accepted a connection

request form a client -sent CC frame on the LLCP layer.

PHNPSNEP_FRI_CONNECTION_FAILED: A connection request from a SNEP Client has failed.

SNEP Server PUT Request Callback function

This callback function is called when a PUT request from a SNEP Client is received.

Set by function: phnpSnep_Server_Accept()

Function prototype:

typedef void(*pphnpSnep_Fri_Put_ntf_t) (

 void *pContext, [In]

 phStatus_t Status, [Out]

 phNfc_sData_t *pDataInbox, [Out]

 ph_NfcHandle ConnHandle); [Out]

*pContext: Pointer to the input data to be processed by the callback function. The

content is shared with the content of the GET request callback.

Status: Status of the response callback. Only PH_ERR_SUCCESS should be returned.

*pDataInbox: Pointer to an incoming data buffer (NDEF Message).

ConnHandle: Connection handler between a SNEP Server and a particular client. It is

assigned as unique to distinguish from other server client connections on the SNEP

layer.

SNEP Server GET Request Callback function

This callback function is called when a GET request from a SNEP Client is received.

Set by function: phnpSnep_Server_Accept()

Function prototype:

typedef void(*pphnpSnep_Fri_Get_ntf_t) (

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 173 of 205

 void* pContext, [In]

 phStatus_t Status, [Out]

 phNfc_sData_t *pGetMsgId, [Out]

 ph_NfcHandle ConnHandle); [Out]

*pContext: Pointer to the input data to be processed by the callback function.

Status: Status of the response callback. Only PH_ERR_SUCCESS should be returned.

*pGetMsgId: Pointer to a buffer storing a NDEF message from the SNEP packet. The

buffer is cleared by the NFC Reader Library after the callback function finishes.

ConnHandle: Connection handler between a SNEP Server and a particular client. It is

assigned as unique to distinguish from other server client connections on the SNEP

layer.

SNEP Server Send Response Callback _

This callback function is called when a SNEP Server response to a SNEP Client has

been sent.

Set by function: phnpSnep_ServerSendResponse()

Function prototype:

typedef void(*pphnpSnep_Fri_Protocol_SendRspCb_t) (

 void *pContext, [In]

 phStatus_t Status, [Out]

 ph_NfcHandle ConnHandle); [Out]

*pContext: Pointer to the input data to be processed by the callback function.

Status: Status of the response callback.

PHNPSNEP_FRI_STATUS_REQUEST_REJECT: Request rejected. The client is unable to receive the

remaining fragments of a SNEP response message. The client is not expecting or willing

to handle further fragments of this message, and the reception of more fragments might

force the client to close the data link connection.

PHNPSNEP_FRI_STATUS_RESPONSE_UNSUPPORTED_VERSION: The SNEP protocol version

implemented in the server is different from the SNEP protocol version implemented in the
client side.

PHNPSNEP_FRI_STATUS_INVALID_PROTOCOL_DATA: The server is unable to understand the

request from the client. The server sends BAD REQUEST response.

PHNPSNEP_FRI_STATUS_RESPONSE_EXCESS_DATA: The server has found a resource matching the

request, but returning the result would exceed the maximum acceptable length that the
client has specified within the request message.

PH_ERR_SUCCESS: Operation successful.

Other: Return the value of the underlying phlnLlcp_Transport_Recv() or

phlnLlcp_Transport_Send().

ConnHandle: Connection handler between a SNEP Server and a particular client. It is

assigned as unique to distinguish from other server client connections on the SNEP

layer.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 174 of 205

8. NFC Reader Library API: Common Layer

In this section, the Key Store, the Log module and the OSAL components are explained

in depth.

8.1 Key Store

A proper key management is critical to ensure security in cryptosystems. The secure

storage of cryptographic keys is a must in order to develop reliable solutions and protect

data from hackers. The Key Store component is a key handling software module for both

communication encryption and authentication operations. The Key Store supports the

following symmetric cryptography key types:

 PH_KEYSTORE_KEY_TYPE_AES128 – Key size:128bits

 PH_KEYSTORE_KEY_TYPE_AES192 – Key size: 192bits

 PH_KEYSTORE_KEY_TYPE_AES256 – Key size: 256bits

 PH_KEYSTORE_KEY_TYPE_DES – Key size: 56bits

 PH_KEYSTORE_KEY_TYPE_2K3DES – Key size: 128bits

 PH_KEYSTORE_KEY_TYPE_MIFARE – Key size: 96bits

 PH_KEYSTORE_KEY_TYPE_3K3DES – Key size: 192bits

The NFC Reader Library provides two Key Store implementations: the CLRC663

Hardware Key Store and the Software Key Store.

 CLRC663 Hardware Key Store: It provides a hardware dependent API to store

MIFARE Crypto1 secret keys in the reader IC EEPROM. This functionality is

available in the CLRC663 reader ICs, where a special EEPROM memory area is

dedicated for MIFARE Crypto1 key storage purposes.

 Software Key Store: It provides an API to store the supported types of secret keys

into the MCU flash memory.

The API for both the hardware and software Key Store is described in the following

sections.

Note: MIFARE key type is a 12-byte array that includes both Key A and Key B.

Note: These Key Store implementations do not guarantee high security key storage

since they have not been constructed as tamper-resistant solutions. For high security key

storage capabilities, please refer to the NXP Export Controlled Reader Library where the

SAM Key Store is implemented.

8.1.1 CLRC663 Hardware Key Store

The CLRC663 Hardware Key Store provides a hardware dependent API to store

MIFARE Crypto1 secret keys in the reader IC EEPROM.

The CLRC663 Hardware Key Store solution is available in the CLRC663 contactless

reader IC. This IC contains an 8kB EEPROM memory divided in pages of 64 bytes and

organized in sections, being section 3 the one specifically reserved for the storage of

MIFARE Classic Keys (Crypto1 keys). The maximum number of MIFARE Classic keys

that can be stored in the CLRC663 IC is 128. The following figure shows the mentioned

EEPROM structure:

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 175 of 205

Fig 41. CLRC663 EEPROM memory structure

In order to handle the CLRC663 Hardware Key Store, the NFC Reader Library defines

the phKeyStore_Rc663_DataParams_t structure:

typedef struct{

void *pHalDataParams;

} phKeyStore_Rc663_DataParams_t;

phHalDataParams: Pointer to the parameter structure of the underlying hardware

component.

8.1.1.1 CLRC663 Hardware Key Store Initialization

The CLRC663 Hardware Key Store can be initialized using this function:

phStatus_t phKeyStore_Rc663_Init(

 phKeyStore_Rc663_DataParams_t * pDataParams, [In]

 uint16_t wSizeOfDataParams, [In]

 void * pHalDataParams); [In]

*pDataParams: Pointer to the phKeyStore_Rc663_DataParams_t parameter component.

wSizeOfDataParams: Size of the phKeyStore_Rc663_DataParams_t data parameter

structure.

*pHalDataParams: Pointer to the underlying HAL data parameter component.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: wSizeOfDataParams does not match with the defined size of

the phKeyStore_Rc663_DataParams_t structure.

8.1.1.2 Format Key Entry

This function formats a key entry to a MIFARE key type. The function sets a pair of

MIFARE keys A and B to zero.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 176 of 205

phStatus_t phKeyStore_FormatKeyEntry(

 void * pDataParams, [In]

 uint16_t wKeyNo, [In]

 uint16_t wNewKeyType); [In]

*pDataParams: Pointer to the Key Store parameter component.

wKeyNo: Position of the key to be formatted.

wNewKeyType: Key type to be formatted into the Key Store entry. For the CLRC663

Hardware Key Store, only PH_KEYSTORE_KEY_TYPE_MIFARE is supported.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: Argument wKeyNo out of valid range.

Other: Value returned by the underlying component.

8.1.1.3 Set Key Value

This function stores a new key value in a given key entry (array position) of the CLRC663

Hardware Key Store.

phStatus_t phKeyStore_SetKey(

 void * pDataParams, [In]

 uint16_t wKeyNo, [In]

 uint16_t wKeyVersion, [In]

 uint16_t wKeyType, [In]

 uint8_t * pNewKey, [In]

 uint16_t wNewKeyVersion); [In]

*pDataParams: Pointer to the Key Store parameter component.

wKeyNo: Position of the key to be updated.

wKeyVersion: This parameter has no effect on the CLRC663 Hardware Key Store.

wKeyType: Type of the key to be stored. For the CLRC663 Harware Key Store, only

PH_KEYSTORE_KEY_TYPE_MIFARE is supported.

*pNewKey: Pointer to the key value to be stored.

wNewKeyVersion: This parameter has no effect on the CLRC663 Hardware Key Store.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER:

 wKeyType of the new key does not match with the key type of the destination key.

 wKeyNo out of valid range.

Other: Value returned by the underlying component.

8.1.1.4 Set Key Value at position

This function stores a new key value in a given key entry (array position) of the CLRC663

Hardware Key Store. It performs the same action as the phKeyStore_SetKey() function

described above (this is only true within the CLRC663 Hardware Key Store).

phStatus_t phKeyStore_SetKeyAtPos(

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 177 of 205

 void * pDataParams, [In]

 uint16_t wKeyNo, [In]

 uint16_t wPos, [In]

 uint16_t wKeyType, [In]

 uint8_t * pNewKey, [In]

 uint16_t wNewKeyVersion); [In]

*pDataParams: Pointer to the key store parameter component.

wKeyNo: Position of the key to be updated.

wPos: This parameter has no effect on the CLRC663 Hardware Key Store.

wKeyType:. Only PH_KEYSTORE_KEY_TYPE_MIFARE is supported for the CLRC663 Hardware

Key Store.

*pNewKey: Pointer to the new key value.

wNewKeyVersion: This parameter has no effect on the CLRC663 Hardware Key Store.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER:

 wKeyType of the new key does not match with the key type of the destination key.

 wKeyNo out of valid range.

Other: Value returned by the underlying component.

8.1.2 Software Key Store

The Software Key Store provides the means to store any kind of cryptographic keys into

the MCU flash memory. From now on, each of the keys kept in memory will be referred

to as a key entry. Each of these key entries may have different versions, taking the key a

different value for each version (or we could say that each key entry has different key-

version pairs).

Each of the key entries may also have a Key Usage Counter (KUC) assigned. A Key

Usage Counter allows to keep count of and limit the number of times a key entry is used

with authentication purposes.

A Software Key Store component contains basically three arrays: the pKeyEntries array,

the pKeyVersionPairs array and the pKUCentries array. Each key entry is represented by an

element at the pKeyEntries array. Each of these elements contains information about the

type of the key and a pointer to a KUC. The key-version pairs are all stored in the

pKeyVersionPairs array. Every key entry in the component has the same number of key-

version pairs assigned. This number is stored in the wNoOfVersions attribute from the

component. As these key-version pairs are ordered in the array in a known way, there is

no need for pointers (these can be better understood by having a look at the example

below). Finally, the pKUCEntries array stores the KUC entries. These entries contain the

current value of the counter and its maximum value.

The Software Key Store data structure is the following:

typedef struct{

phKeyStore_Sw_KeyEntry_t *pKeyEntries;

phKeyStore_Sw_KeyVersionPair_t *pKeyVersionPairs;

uint16_t wNoOfKeyEntries;

uint16_t wNoOfVersions;

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 178 of 205

phKeyStore_Sw_KUCEntry_t *pKUCEntries;

uint16_t wNoOfKUCEntries;
} phKeyStore_Sw_DataParams_t;

As explained before, the phKeyStore_Sw_DataParams_t structure is composed of three

arrays (*pKeyEntries, *pKeyVersionPairs and *pKUCEntries) and three variables with the

information about their sizes (wNoOfKeyEntries, wNoOfVersion and wNoOfKUCEntries). The

Fig 42 depicts the phKeyStore_Sw_DataParams_t structure.

Fig 42. phKeyStore_Sw_DataParams_t structure

The elements of these arrays are structure variables, which are described in the following

lines.

Key entry structure - phKeyStore_Sw_KeyEntry_t

The Key entry structure indicates the type of key stored and a Key Usage Counter for

this specific key entry.

typedef struct{

 uint16_t wKeyType;

uint16_t wRefNoKUC;

} phKeyStore_Sw_KeyEntry_t;

wKeyType: Type of the key stored in pKey.

wRefNoKUC: Position of the KUC entry in the pKUCEntries array assigned to this key

entry.

Key-version pair structure - phKeyStore_Sw_KeyVersionPair_t

The key-version pair structure associates a certain key value with a key version number.

In authentication and encryption calculations only the key values are used.

typedef struct{

 uint8_t pKey [PH_KEYSTORE_SW_MAX_KEY_SIZE];

uint16_t wVersion;

} phKeyStore_Sw_KeyVersionPair_t;

pKey: Variable storing the secret key value. The maximum key size is 32 bytes.

wVersion: Version of this key value.

KUC entry - phKeyStore_Sw_KUCEntry_t

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 179 of 205

The Key Usage Counter (KUC) is used to count and limit the number of authentications a

key entry can be used. It is automatically incremented each time the corresponding key

entry is used for authentication.

typedef struct{

 uint32_t dwLimit;

uint32_t dwCurVal;

} phKeyStore_Sw_KCUEntry_t;

dwLimit: Limit of the Key Usage Counter.

dCurVal: Current value of the Key Usage Counter.

One KUC entry instance may be referenced (linked) by more key entries, but this is a bit

hazardous and difficult for management. Thus, it is recommended to keep each key entry

with its own KUC entry assigned.

Software Key Store: Structure example

The phKeyStore_Sw_DataParams_t data structure with the specific values of

wNoOfKeyEntries=3, wNoOfVersion=2 and wNoOfKUCEntries=4 is represented in Fig 43.

For this particular case, the pKeyEntries array has a size of 3 units, the pKeyVersionPairs

array has a size of 6 units (two key versions per key entry), and finally, the pKUCEntries

array has a size of 4 units. Each element of pKeyEntries is linked to its corresponding

(two, in this case) elements of pKeyVersionPairs, where its key values are stored. For

instance, the positions 4 and 5 of the pKeyVersionPairs array are assigned to the third

element of the pKeyEntries array. Additionally, each element of pKeyEntries may be linked

to one specific element of pKUCEntries, but it is not mandatory for a key entry to have a

KUC assigned.

Fig 43. Software Key Store structure example

8.1.2.1 Software Key Store Initialization

The software Key Store can be initialized using this function:

phStatus_t phKeyStore_Sw_Init(

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 180 of 205

 phKeyStore_Sw_DataParams_t * pDataParams, [In]

 uint16_t wSizeOfDataParams, [In]

 phKeyStore_Sw_KeyEntry_t * pKeyEntries, [In]

 uint16_t wNoOfKeyEntries, [In]

 phKeyStore_Sw_KeyVersionPair_t * pKeyVersionPairs, [In]

 uint16_t wNoOfVersionPairs, [In]

 phKeyStore_Sw_KUCEntry_t * pKUCEntries, [In]

 uint16_t wNoOfKUCEntries); [In]

*pDataParams: Pointer to the phKeyStore_Sw_DataParams_t parameter component.

wSizeOfDataParams: Size of the phKeyStore_Sw_DataParams_t data parameter structure.

*pKeyEntries: Pointer to the array containing the key entries.

wNoOfKeyEntries: Number of key entries in the pKeyEntries array.

*pKeyVersionPairs: Pointer to the array containing the key-version pairs.

wNoOfVersionPairs: Number of key-version pairs per key value.

*pKUCEntries: Pointer to the Key Usage Counter array.

wNoOfKUCEntries: Number of Key Usage Counter entries.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_DATA_PARAMS: wSizeOfDataParams does not match with the defined size of

the phKeyStore_Sw_DataParams_t structure.

8.1.2.2 Format Key Component

This function formats a key entry to a given key type (MIFARE, AES128, AES192, 3DES,

etc.). All its key values and their version numbers are set to null.

phStatus_t phKeyStore_FormatKeyEntry(

 void * pDataParams, [In]

 uint16_t wKeyNo, [In]

 uint16_t wNewKeyType); [In]

*pDataParams: Pointer to the Key Store parameter component.

wKeyNo: Position of the key to be formatted.

wNewKeyType: Key type to be formatted into this Key Store entry.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: wKeyNo argument out of valid range.

Other: Value returned by the underlying component.

8.1.2.3 Set Key Value

This function stores a new key value and its corresponding key version number from a

certain key entry. After formatting a key entry into a particular key type with the

phKeyStore_FormatKeyEntry() function, all the key version numbers are set to

PH_KEYSTORE_DEFAULT_ID (zero). This function has no impact on the KUCs (the KUCs are

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 181 of 205

neither incremented or decremented nor erased, and they remain linked to the same key

entry).

phStatus_t phKeyStore_SetKey(

 void * pDataParams, [In]

 uint16_t wKeyNo, [In]

 uint16_t wKeyVersion, [In]

 uint16_t wKeyType, [In]

 uint8_t * pNewKey, [In]

 uint16_t wNewKeyVersion); [In]

*pDataParams: Pointer to the Key Store parameter component.

wKeyNo: Position of the key to be updated.

wKeyVersion: Version of the key to be updated.

wKeyType: Type of the key to be stored.

*pNewKey: Pointer to the key value to be stored.

wNewKeyVersion: New key version number. It replaces the key version number stored

previously in wVersion.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER:

 wKeyType of the new key does not agree with the key type of the destination key.

 wKeyNo out of valid range.

 wKeyVersion for the given wKeyNumber not found.

Other: Value returned by the underlying component.

8.1.2.4 Set Key Value at Position

This function changes the key value at a given position. Unlike the phKeyStore_SetKey()

function, in this case the key is not selected by the version (although it has a version

number).

phStatus_t phKeyStore_SetKeyAtPos(

 void * pDataParams, [In]

 uint16_t wKeyNo, [In]

 uint16_t wPos, [In]

 uint16_t wKeyType, [In]

 uint8_t * pNewKey, [In]

 uint16_t wNewKeyVersion); [In]

*pDataParams: Pointer to the Key Store parameter component.

wKeyNo: Position of the key entry to be updated.

wPos: Position of the key-version pair to be updated (within the sub-array of key-version

pairs assigned to the selected key entry).

wKeyType: Type of the new key to be stored. It must match with the key type of the key

entry. This parameter determines the length of the key (how many bytes to copy from the

pNewKey array).

*pNewKey: Pointer to the new key value.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 182 of 205

wNewKeyVersion: Version number of the new key to be updated.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER:

 wKeyType of the new key does not match with the key type of the destination key.

 wKeyNo out of valid range.

 wPos is greater than the number of versions (DataParams->wNoOfVersions).

Other: Value returned by the underlying component.

8.1.2.5 Set Full Key Entry

This function updates the key values and the version numbers of a certain key entry. The

replacement of the key value-version pairs begins at the first element of pKeyVersionPairs

assigned to the given key entry and continues until the given number of keys are written.

A KUC can be assigned too. The rest of key values and version numbers in the Key

Store component remain untouched.

phStatus_t phKeyStore_SetFullKeyEntry(

 void * pDataParams, [In]

 uint16_t wNoOfKeys, [In]

 uint16_t wKeyNo, [In]

 uint16_t wNewRefNoKUC, [In]

 uint16_t wNewKeyType, [In]

 uint8_t * pNewKeys, [In]

 uint16_t * pNewKeyVersionList); [In]

*pDataParams: Pointer to the Key Store parameter component.

wNoOfKeys: Number of key values in pNewKeys.

wKeyNo: Position of the key entry to which the values to be updated belong.

wNewRefNoKUC: Position of the Key Usage Counter to be linked to the key entry.

wNewKeyType: Type of the key to be stored.

*pNewKeys: Pointer to the array of new key values to be stored.

*pNewKeyVersionList: Pointer to the array of new version numbers.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER:

 Invalid key type identifier wNewKeyType.

 wKeyNo out of valid range.

 wNoOfKeys greater than the number of key versions pDtaParams->wNoOfVersions.

 NewwRefNoKUC greater than pDataParams->wNoOfKUCEntries-1.

Other: Value returned by the underlying component.

8.1.2.6 Set KUC

This function assigns a KUC entry to a given key entry.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 183 of 205

phStatus_t phKeyStore_SetKUC(

 void * pDataParams, [In]

 uint16_t wKeyNo, [In]

 uint16_t wRefNoKUC); [In]

*pDataParams: Pointer to the Key Store parameter component.

wKeyNo: Position of the key to which a KUC reference will be assigned.

wRefNoKUC: Position of the KUC to assign to the given key entry.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: wKeyNo or wReffNoKUC out of valid range.

Other: Value returned by the underlying component.

8.1.2.7 Get Key Entry

This function reads the attributes of a key stored in the Key Store. The function does not

return the key value, thus the KUC is not incremented.

phStatus_t phKeyStore_GetKeyEntry(

 void * pDataParams, [In]

 uint16_t wKeyNo, [In]

 uint16_t wKeyVersionBufSize, [In]

 uint16_t * wKeyVersion, [Out]

 uint16_t * wKeyVersionLength, [Out]

 uint16_t * pKeyType); [Out]

*pDataParams: Pointer to the Key Store parameter component.

wKeyNo: Position of the key entry.

wKeyVersionBufSize: Size of the wKeyVersion buffer where the version information will

be written. It needs to be at least sizeof(uint16_t)*pDataParams->wNoOfVersions. If the

buffer is not large enough, this function quits without doing anything.

*wKeyVersion: Array for the version numbers. All the version numbers of the key entry

are subsequently written here.

*wKeyVersionLength: Number of key values of the key entry. The limit is determined

by the wNoOfVersions Key Store parameter and it is common for all the key entries.

*pKeyType: Type of the keys stored in the Key Store entry.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_BUFFER_OVERFLOW: The buffer prepared for loading the version numbers is too small.

PH_ERR_INVALID_PARAMETER: wKeyNo argument is greater than the number of key entries

pDataParams->wNoOfKeyEntries.

Other: Value returned by the underlying component.

8.1.2.8 Get Key Value

This function returns a key value stored in the software Key Store.

Note: The corresponding KUC is incremented by one.

phStatus_t phKeyStore_GetKey(

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 184 of 205

 void * pDataParams, [In]

 uint16_t wKeyNo, [In]

 uint16_t wKeyVersion, [In]

 uint8_t bKeyBufSize, [In]

 uint8_t * pKey, [Out]

 uint16_t * pKeyType); [Out]

*pDataParams: Pointer to the Key Store parameter component.

wKeyNo: Position of the key to be retrieved.

wKeyVersion: Version of the key to be retrieved.

bKeyBufSize: Size of the buffer where the read key will be written. Use the

phKeyStore_GetKeySize() function to check the required buffer size.

*pKey: Pointer to the array where the target key is returned.

*pKeyType: Type of the requested key.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_KEY: The limit of read accesses for the requested key has been reached.

PH_ERR_INVALID_PARAMETER

 wKeyVersion for the given wKeyNo not found.

 wKeyNo greater than pDataParams->wNoOfKeyEntries - 1.

PH_ERR_BUFFER_OVERFLOW: Too small bKeyBufSize for the type of the requested key.

Other: Value returned by the underlying component.

8.1.2.9 Change KUC

This function changes the value of a KUC entry.

phStatus_t phKeyStore_ChangeKUC(

 void * pDataParams, [In]

 uint16_t wRefNoKUC, [In]

 uint32_t dwLimit); [In]

*pDataParams: Pointer to the Key Store parameter component.

wRefNoKUC: The KUC entry number (position) to be changed.

dwLimit: The Key Usage Counter limit to be assigned.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER:

 wRefNoKUC greater than pDataParams->wNoOfKUCEntries-1.

Other: Value returned by the underlying component.

8.1.2.10 Get KUC

This function returns the value of a KUC entry.

phStatus_t phKeyStore_GetKUC(

 void * pDataParams, [In]

 uint16_t wRefNoKUC, [In]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 185 of 205

 uint32_t * pdwLimit, [Out]

 uint32_t * pdwCurVal); [Out]

*pDataParams: Pointer to the Key Store parameter component.

wRefNoKUC: KUC number (position) to be retrieved.

*pdwLimit: KUC limit attribute in the KUC entry instance.

*pdwCurVal: Current value of the KUC counter in the KUC entry instance.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER:

 wRefNoKUC greater than pDataParams->wNoOfKUCEntries-1.

Other: Value returned by the underlying component.

8.2 Log Module

The NFC Reader Library Log module provides a tracking mechanism that records

information about library modules during the execution of a project, which is especially

useful during the code debugging phase.

This module belongs to the Common layer of the NFC Reader Library and it is

independent of both the hardware and the platform selected for the project deployment.

Logging functionality requires I/O operations in order to print values on the console or

create log files. Thus, the semihosting feature must be enabled in the project.

The module is activated by enabling the following macro in the

NxpRdbLib_PublicRelease/types/ph_NxpBuild.h file:

#define NXPBUILD__PH_LOG

8.2.1 Log Parameter Structure

The NFC Reader Library defines a structure to handle logging operations.

typedef struct{

 pphLog_Callback_t pLogCallback,

phLog_RegisterEntry_t * pRegisterEntries,

 uint16_t wNumRegisterEntries,

uint16_t wMaxRegisterEntries

} phLog_DataParams_t;

pLogCallback: Function to be called when the logging is executed. This function shall

be programmed by the developer.

pRegisterEntries: Array of phLog_RegisterEntry_t component entries.

wNumRegisterEntries: Number of valid entries in the pRegisterEntries array.

wMaxRegisterEntries: Maximum number of entries the pRegisterEntries array can hold.

8.2.1.1 Register Entries Structure

The Log module associates entries to each component registered for logging purposes.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 186 of 205

typedef struct{

 void * pDataParams,

phLog_LogEntry_t * pLogEntries,

 uint16_t wNumLogEEntries,

uint16_t wMaxLogEntries

} phLog_RegisterEntry_t;

pDataParams: Pointer to the component registered for the logging functionality.

pLogEntries: Array of phLog_LogEntry_t entries associated to a particular component.

wNumLogEEntries: Number of valid entries in the pLogEntries array.

wMaxLogEntries: Maximum number of entries the pLogEntries array can hold.

8.2.1.2 Log Entries Structure

Each component registered for logging has its own array of log entries structure

associated. Each entry in this array contains information associated to a particular value,

for instance a variable.

typedef struct {

 uint8_t bLogType,

 uint8_t const * pString,

void const * pData,

 uint16_t wDataLen,

uint8_t bDataType

} phLog_LogEntry_t;

bLogType: Type of entry of the stored data:

 PH_LOG_LOGTYPE_INFO (0x00): Log Type Info

 PH_LOG_LOGTYPE_ERROR (0x01): Log Type Error

 PH_LOG_LOGTYPE_WARN (0x02): Log Type Warning

 PH_LOG_LOGTYPE_DEBUG (0x03): Log Type Debug

pString: String that describes the stored value.

pData: Pointer to the stored data. Type defined by the bDataType value.

wDataLen: Length of the stored data.

bDataType: Type of data stored at the entry:

 PH_LOG_DATATYPE_BUFFER (0x00): Data Type Buffer

 PH_LOG_DATATYPE_VALUE (0x01): Data Type Value

8.2.1.3 Logging Component Structures Example

The three structures that have been exposed should be properly associated and

configured in order to setup the logging component correctly.

The figure below shows a logging example that is focused on the upper layers of a

MIFARE Classic example. Three components have been registered for logging

purposes: MIFARE Classic, ISO14443-3A and MIFARE components. Each component

registered is limited to record two log entries where variables or buffers can be stored.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 187 of 205

Fig 44. Logging structures example

8.2.1 Module Initialization and Registration

The Log Module must be initialized before using it for the data storage. During its

initialization the callback function must be stated. This callback function will be executed

when the logging is triggered. The single instance that is created stores the array that

points to the entries associated to each component. Therefore, it shall only be called

once.

phStatus_t phLog_Init(

 pphLog_Callback_t pLogCallback, [In]

 phLog_RegisterEntry_t * pRegisterEntries, [In]

 uint16_t wMaxRegisterEntries); [In]

pLogCallback: Callback function that will be executed when the logging of some data is

required.

* pRegisterEntries: An array of log register entries.

wMaxRegisterEntries: Maximum number of entries that the pRegisterEntries array can

hold.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_INVALID_PARAMETER: Invalid combination of input parameters.

The Log Module creates an entry associated to each particular component of the NFC

Reader Library (i.e. BAL Component, MIFARE Classic Component, etc.) by using the

function below. Each component shall be registered in order to store data in its

associated pLogEntries array. Thus, there shall be as many calls to this function as

components to be registered.

phStatus_t phLog_Register(

 void * pDataParams, [In]

 phLog_LogEntry_t * pLogEntries, [In]

 uint16_t wMaxLogEntries); [In]

mk:@MSITStore:C:/Users/Gorka%20Hernando/Documentacion/PN%20ICs/PN512/NXPLib%20Libraries/NXP%20Export%20Reader%20Library.chm::/group__ph__Error.html#ga1633909d9301520a863fc8e9d185f9bc

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 188 of 205

pDataParams: Component of the NFC Reader Library to which the log entry is

associated.

*pLogEntries: An array of single log entries.

wMaxLogEntries: Maximum number of entries that the pLogEntries array can hold.

The returned values from the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_ERR_USE_CONDITION: Logging initialization was not properly completed.

PH_ERR_INVALID_PARAMETER: Invalid combination of input parameters.

PH_ERR_BUFFER_OVERFLOW: The maximum size of the array of Log Register entries has been

reached.

8.2.2 Information Storage

The log entries can be stored after the correct initialization of the logging module and the

registration of the logging components. The logging information is recorded as long as

the execution of the project continues.

The NFC Reader Library provides a set of functions to record variables depending on

their type. The definition of these functions is similar as only the input data type changes.

For this reason, only the function used to store uint8_t values is shown.

void phLog_AddParam_Uint8(

 void * pDataParams, [In]

 uint8_t bLogType, [In]

 char const * pName, [In]

 uint8_t * pParam); [In]

pDataParams: Component of the NXP Reader Library to which the log entry is

associated.

bLogType: Type of entry. Valid values defined in phLog.h:

 PH_LOG_LOGTYPE_INFO (0x00): Log Type : Inf

 PH_LOG_LOGTYPE_ERROR (0x01): Log Type : Error

 PH_LOG_LOGTYPE_WARN (0x02): Log Type : Warn

 PH_LOG_LOGTYPE_DEBUG (0x03): Log Type : Debug

pName: Name of the entry to be recorded.

pParam: Value of the entry to be recorded.

In addition to these set of functions defined in the library API, the NFC Reader Library

defines a set of helper functions to facilitate the recording of values. These helper

functions can be found in the NxpRdLib_PublicRelease/types/ph_Status.h file.

8.2.3 Information Handling

The callback function that processes the recorded data shall be launched by the

developer. This task is performed calling the phLog_Execute() function.

void phLog_Execute(

 void * pDataParams, [In]

 uint8_t bOption) [In]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 189 of 205

pDataParams: Component of the NXP Reader Library to which the log entry is

associated.

bOption: Option byte indicating the moment at which the callback function is called.

Valid values are defined in phLog.h:

 PH_LOG_OPTION_CATEGORY_ENTER (0x01): Logging takes place at the beginning of the

function.

 PH_LOG_OPTION_CATEGORY_GEN (0x02): Logging takes place in the middle of the

function.

 PH_LOG_OPTION_CATEGORY_LEAVE (0x03): Logging takes place before leaving the

function.

The Log Module does not create any file or print any information by itself. It is

developer’s responsibility to implement the operations to be performed at the callback

function when the logging module is executed. These operations could be, for instance,

to print data on the console or to append data to a log file. A function that shows some

recorded data on the console could look this way:

1 #ifdef NXPBUILD__PH_LOG

2 void my_Log_Function(void * pDataParams, uint8_t bOption, phLog_LogEntry_t *

pEntries, uint16_t wEntryCount) {

3 printf("--- Function %s called at %x ---\n", pEntries[0].pString, bOption);

4 if(wEntryCount <= 0)

5 return;

6 uint16_t i;

7 for (i = 1; i < wEntryCount; i++) {

8 uint16_t wIndex;

9 uint8_t * pBuffer = (uint8_t *)(pEntries[i].pData);

10

11 printf("%s: ", pEntries[i].pString);

12 for (wIndex = 0; wIndex < pEntries[i].wDataLen; ++wIndex) {

13 printf("%02X\n ", pBuffer[wIndex]);

14 }

15 }

16 printf("\n\n");

17 }

18 #endif /* NXPBUILD__PH_LOG */

8.3 OSAL

The Operating System Abstraction Layer provides an API that isolates the embedded

software from the underlying MCU. This way, developers can test their projects in

different environments in a fast and convenient way.

In the NFC Reader Library, the OSAL module provides basic OS services like dynamic

memory allocation and the management of hardware timers.

8.3.1 OSAL Structure

The OSAL component of the NFC Reader Library stores the information needed for the

management of OSAL functionalities. Since the main objective of the OSAL component

is to provide abstraction from the target MCU, a set of structures addressing specific

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 190 of 205

MCUs are defined by the NFC Reader Library. Depending on the hardware being used

for the project deployment, the developer should declare the appropriate type of variable.

Table 24. OSAL component structures for valid target MCUs

OSAL Parameter structure Target MCU

phOsal_Lpc12xx_DataParams_t NXP LPC12xx MCU family

phOsal_Lpc17xx_DataParams_t NXP LPC17xx MCU family

In order to provide abstraction, fields defined in each structure are the same, but the size

of the arrays or the content of the variables may change.

typedef struct {

 Timer_Struct_t gTimers[LPC17XX_MAX_TIMERS];

} phOsal_Lpc17xx_DataParams_t;

*gTimers[]: Structure containing information to be used for timers management. For

further information see the Timer Management section (see section 8.3.3)

8.3.2 Memory management API

The memory management API provides a simple interface that allows developers to

allocate and release memory in the MCU heap (the dynamically allocated memory area

section). The allocated memory is reserved until it is released or the program terminates.

8.3.2.1 Allocate Memory

This function allocates free memory from the heap segment. If the requested amount of

free memory was successfully allocated, a pointer to the granted memory is returned.

In fact, the built-in C function malloc() is called.

phStatus_t phOsal_GetMemory(

 void * pDataParams, [In]

 uint32_t dwLength, [In]

 void ** pMem); [Out]

*pDataParams: Pointer to the MCU defined phOsal parameter component.

dwLength: Required memory size.

**pMem: Pointer to the allocated memory.

The values returned by the function can be:

PH_ERR_SUCCESS - Operation successful.

PH_ERR_RESOURCE_ERROR - Requested memory space allocation failed.

8.3.2.2 Free Memory

This function releases memory previously allocated using phOsal_GetMemory() function.

In fact, the built-in C function free() is called.

phStatus_t phOsal_FreeMemory(

 void * pDataParams, [In]

 void * ptr); [In]

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 191 of 205

*pDataParams: Pointer to the MCU defined phOsal parameter component.

*ptr: Pointer to the previously allocated memory to be released.

The value returned by the function is:

PH_ERR_SUCCESS: Operation successful.

8.3.3 Timer management API

The NFC Reader Library defines a set of functions that allow developers to make use of

timers in their projects. These functions provide abstraction from the MCU on which the

program is running, making the development and migration of the software much more

convenient.

The OSAL component provides abstraction to developers, but it is obviously restricted by

the underlying hardware. The number of timers available to the programmer is limited by

the MCU on which the program is running. For instance, there are two 32 bit hardware

timers in the LPC1227 MCU whereas the LPC1769 offers four 32 bit hardware timers.

The OSAL module provides utilization of hardware timers in two ways: software time

delay and general timer usage.

Timers are an essential part of the NFC Reader Library, as they allow the correct

functioning of many of the components. For instance, the Discovery Loop performs time

delay after setting the reader chip for a particular NFC protocol or for guard interval

between detection of Type B tags and Type F tags; the LLCP component relies on

hardware timers for the correct management of the LLCP SYMM timer that ensures the

Asynchronous Balanced Communication; and so on.

Note: Some of the components, especially on the PAL and HAL layers, rely on internal

hardware timers of the attached reader IC for measuring timeouts defined by a specific

NFC protocol.

Timer Management structure

The OSAL structure defines the gTimers array of structures to be used for the

management of the hardware timers. The size of this array will vary depending on the

target MCU on which the project is running.

typedef struct {

 uint32_t dwTimerId;

 uint8_t bTimerFree;

 ppCallback_t pApplicationCallback;

 void *pContext;

} Timer_Struct_t;

dwTimerId: Unique identifier of the hardware timer .

bTimerFree: Indicates whether the timer is currently free or it is being used.

pApplicationCallback: Callback function to be called for this timer at completion.

*pContext: Pointer to the input data to be processed by the callback function.

Operation flow

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 192 of 205

The following figure depicts the flow of functions to be called in order to ensure the

correct functioning and management of hardware timers.

Fig 45. OSAL Component operation flow

8.3.3.1 Timer Init

The first step to be completed in order to work with timers in the NFC Reader Library is to

call the phOsal_Timer_Init() that initializes the phOsal_LpcXXxx_DataParams_t structure and

internal software structures aimed for the storage of timers related relevant information.

Once this function has been executed, timer interrupts are enabled and all the timers can

be run.

phStatus_t phOsal_Timer_Init(

 phOsal_LpcXXxx_DataParams_t * pDataParams); [In]

*pDataParams: Pointer to the MCU defined phOsal parameter component.

The value returned by the function is:

PH_ERR_SUCCESS: Operation successful.

8.3.3.2 Timer Create

This function assigns an unused hardware timer of the target MCU to a particular task.

The number of hardware timers that can be assigned this way is limited by the MCU

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 193 of 205

being used. Once the timer has been successfully created and its timer ID has been

assigned, it can be used calling phOsal_Timer_Start() and phOsal_Timer_Stop() functions.

In order to release an allocated timer, function phOsal_Timer_Delete() should be called,

which sets the timer as free.

If all the available timers are currently in use, then no timer is assigned.

Note: Timer 0 is used by the NFC Reader Library as the LLCP LTO timer, and its

creation is internally performed.

phStatus_t phOsal_Timer_Create(

 void * pDataParams, [In]

 uint32_t *timerId); [Out]

*pDataParams: Pointer to the MCU defined phOsal parameter component.

*timerId: ID of the assigned timer. If no free timer has been found, then this parameter is

returned with value PH_OSALNFC_INVALID_TIMER_ID equal to 0xFFFF.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_OSAL_ERR_NO_FREE_TIMER: Both the timers are currently in use.

8.3.3.3 Timer Start

This function makes a particular timer start. When the timer expires after a user defined

amount of time, the given application callback function is executed.

In order to stop the counting of a particular timer, function phOsal_Timer_Stop() should be

called.

The timer should have previously been created by phOsal_Timer_Create().

phStatus_t phOsal_Timer_Start(

 void * pDataParams, [In]

 uint32_t dwTimerId, [In]

 uint32_t dwRegTimeCnt, [In]

 ppCallBck_t pApplication_callback, [In]

 void * pContext); , [In]

*pDataParams: Pointer to the MCU defined phOsal parameter component.

*timerId: Valid timer ID as returned by phOsal_Timer_Create().

dwRegTimeCnt: Amount of time in MS after which the timer expires.

pApplication_callback: Pointer to the callback function that will be called once the timer

expires. The user defined function must satisfy the following function prototype:

 void (*ppCallBck_t)(uint32_t TimerId, void *pContext);

*pContext: Pointer to the input data to be processed by the callback function.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_OSAL_ERR_INVALID_TIMER: Passed timer ID does not exist or it has not been created

before.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 194 of 205

8.3.3.4 Timer Stop

This function makes a particular timer stop. It does not release the timer, it only disables

the timer by stopping the counting.

The timer should have previously been created by phOsal_Timer_Create().

phStatus_t phOsal_Timer_Stop(

 void * pDataParams, [In]

 uint32_t dwTimerId); [In]

*pDataParams: Pointer to the MCU defined phOsal parameter component.

*timerId: ID of the timer to be stopped.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_OSAL_ERR_INVALID_TIMER: Passed timer ID does not exist or it has not been created

before.

8.3.3.5 Timer Delete

This function stops a particular timer and releases it. The current content of the timer is

erased.

phStatus_t phOsal_Timer_Delete(

 void * pDataParams, [In]

 uint32_t dwTimerId); [In]

*pDataParams: Pointer to the MCU defined phOsal parameter component.

*timerId: ID of the timer to be released.

The values returned by the function can be:

PH_ERR_SUCCESS: Operation successful.

PH_OSAL_ERR_INVALID_TIMER: Passed timer ID does not exist or it has not been created

before.

8.3.3.6 Timer Wait

This function freezes a thread for a given amount of time determined by both the value

and the time unit. While the thread is frozen nothing else is executed within the thread.

After the completion of the user defined time, the thread continues its execution.

Note: The NFC Reader Library always uses hardware timer 1 for thread wait delay

performed by this function, even if it was currently being used for any other purpose.

phStatus_t phOsal_Timer_Wait(

 void * pDataParams, [In]

 uint8_t bTimerDelayUnit, [In]

 uint16_t wDelay); [In]

*pDataParams: Pointer to the MCU defined phOsal parameter component.

bTimerDelayUnit: It defines the time unit.

 PH_OSAL_TIMER_UNIT_MS for milliseconds.

 PH_OSAL_TIMER_UNIT_US for microseconds.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 195 of 205

wDelay: Amount of time in user defined time unit after which the timer expires.

The value returned by the function is:

PH_ERR_SUCCESS: Operation successful.

8.3.3.7 Timer Reset

This function resets the timer to its previously defined expiration value, which was

defined using the phOsal_Timer_Start() function. Once the expiration value has been

reset, the counting continues.

This is especially useful for those timers that are continuously reset. For instance, the

LLCP defined LTO timer is reset every time a new packet is received.

The timer should have previously been created by phOsal_Timer_Create().

phStatus_t phOsal_Timer_Reset (

 void * pDataParams, [In]

 uint32_t dwTimerId); [In]

*pDataParams: Pointer to the MCU defined phOsal parameter component.

*timerId: ID of the timer to be reset.

PH_ERR_SUCCESS: Operation successful.

8.3.3.8 Timer Execution Callback

When the developer generates a timer interruption, its corresponding timer ISR (Interrupt

Service Routine) is assigned. After the completion of the timer, the systems calls its IRQ

(Interruption Request) function, which is defined by the system – TIMER0_IRQHandler is

assigned to hardware timer 0, and so on –. phOsal_Timer_ExecCallback() function shall be

called within the IRQHandler function in order to execute the callback function that was

defined during the phOsal_Timer_Start() function call.

Note: The need to call this function manually depends on the underlying hardware and its

capacity to register the interrupt callback function on a specific interruption directly from

the API, which would be done in the phOsal_Timer_Start() function.

phStatus_t phOsal_Timer_ExecCallback (

 void * pDataParams, [In]

 uint32_t dwTimerId); [In]

*pDataParams: Pointer to the MCU defined phOsal parameter component.

*timerId: ID of the timer of which the callback function is going to be executed.

The value returned by the function is:

PH_ERR_SUCCESS: Operation successful.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 196 of 205

9. References

[1] NXP Generic Reader Library, http://www.nxp.com/documents/software/200312.zip

[2] NXP Export Controlled Library. (Available in DocStore [30]).

[3] NXP NFC Reader Library (To be published)

[4] Data Sheet MF1S503X MIFARE Classic 1K - Mainstream contactless smart card

IC for fast and easy solution development, available on

http://www.nxp.com/documents/data_sheet/MF1S503x.pdf

[5] Data Sheet - MIFARE Ultralight ; MF0ICU1, MIFARE Ultralight contactless single-

ticket IC, BU-ID Doc. No. 0286**
1
, available on

http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf

[6] Data Sheet – MIFARE Ultralight EV1- contactless ticket IC, available on

http://www.nxp.com/documents/data_sheet/MF0ULX1.pdf

[7] Data Sheet – MIFARE MF0ICU2 – MIFARE Ultralight C , available on

http://www.nxp.com/documents/short_data_sheet/MF0ICU2_SDS.pdf

[8] Data Sheet - MIFARE DESFire; MF3ICDx21_41_81, MIFARE DESFire EV1

contactless multi-application IC, BU-ID Doc. No. 1340**, available on

http://www.nxp.com/documents/short_data_sheet/MF3ICDX21_41_81_SDS.pdf

[9] Data Sheet - JIS Standard JIS X 6319 Specification of implementation for

integrated circuit(s) cards - Part 4: High Speed proximity cards

[10] Data Sheet – Innovision Topaz,

http://downloads.acs.com.hk/drivers/en/TDS_TOPAZ.pdf

[11] Data sheet - MFRC523; Contactless reader IC, BU-ID Doc. No. 1152**, available

on http://www.nxp.com/documents/data_sheet/MFRC523.pdf

[12] Data sheet - CLRC663; Contactless reader IC, BU-ID Doc. No. 1711**, available

on http://www.nxp.com/documents/data_sheet/CLRC663.pdf

[13] Data sheet - MFRC522; Contactless reader IC, BU-ID Doc. No. 1121**, available

on http://www.nxp.com/documents/data_sheet/MFRC522.pdf

[14] Data sheet – PN512; Transmission module, BU-ID Doc. No. 1113**, available on

http://www.nxp.com/documents/data_sheet/PN512.pdf

[15] Data sheet – MFRC631; Contactless reader IC, BU-ID Doc. No. 2274**, available

on http://www.nxp.com/documents/data_sheet/MFRC631.pdf

[16] Data sheet – MFRC630; Contactless reader IC, BU-ID Doc. No. 2275**, available

on http://www.nxp.com/documents/data_sheet/MFRC630.pdf

[17] Data sheet – SLRC610; Contactless reader IC, BU-ID Doc. No. 2276**, available

on http://www.nxp.com/documents/data_sheet/SLRC610.pdf

[18] ISO/IEC Standard - ISO/IEC 14443 Identification cards - Contactless integrated

circuit cards - Proximity cards

[19] ISO/IEC Standard - ISO/IEC 18092 Information technology - Telecommunications

and information exchange between systems - Near Field Communication- Interface

and Protocol (NFCIP-1)

1.
1
 ** … BU ID document version number

http://www.nxp.com/documents/software/200312.zip
http://www.nxp.com/documents/data_sheet/MF1S503x.pdf
http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf
http://www.nxp.com/documents/data_sheet/MF0ULX1.pdf
http://www.nxp.com/documents/short_data_sheet/MF0ICU2_SDS.pdf
http://www.nxp.com/documents/short_data_sheet/MF3ICDX21_41_81_SDS.pdf
http://downloads.acs.com.hk/drivers/en/TDS_TOPAZ.pdf
http://www.nxp.com/documents/data_sheet/MFRC523.pdf
http://www.nxp.com/documents/data_sheet/CLRC663.pdf
http://www.nxp.com/documents/data_sheet/MFRC522.pdf
http://www.nxp.com/documents/data_sheet/PN512.pdf
http://www.nxp.com/documents/data_sheet/MFRC631.pdf
http://www.nxp.com/documents/data_sheet/MFRC630.pdf
http://www.nxp.com/documents/data_sheet/SLRC610.pdf

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 197 of 205

[20] Technical Specification Logical Link Control Protocol, NFCForum-TS-LLCP_1.1,

available on www.nxp.com/redirect/nfc-forum.org/specs/spec_license

[21] Technical Specification – Simple NDEF Exchange Protocol, NFCForum-TS-

SNEP_1.0, available on www.nxp.com/redirect/nfc-forum.org/specs/spec_license

[22] Technical Specification – Type 1 Tag Operation, NFCForum-TS-Type-1-Tag_1.1,

available on www.nxp.com/redirect/nfc-forum.org/specs/spec_license

[23] Technical Specification – Type 2 Tag Operation, NFCForum-TS-Type-2-Tag_1.1,

available on www.nxp.com/redirect/nfc-forum.org/specs/spec_license

[24] Technical Specification – Type 3 Tag Operation, NFCForum-TS-Type-3-Tag_1.1,

available on www.nxp.com/redirect/nfc-forum.org/specs/spec_license

[25] Technical Specification – Type 4 Tag Operation, NFCForum-TS-Type-4-Tag_2.0,

available on www.nxp.com/redirect/nfc-forum.org/specs/spec_license

[26] Technical Specification – NFC Data Exchange Format, NFCForum-TS-

NDEF_1.0, available on www.nxp.com/redirect/nfc-forum.org/specs/spec_license

[27] Application note - AN11211 Quick Start Up Guide RC663 Blueboard, available on

http://www.nxp.com/documents/application_note/AN11211.pdf

[28] Application note – AN11308 Quick Start Up Guide PNEV512B, available on

http://www.nxp.com/documents/application_note/AN11308.pdf

[29] LPCZone, http://www.nxp.com/techzones/microcontrollers-techzone/news.html

[30] NXP DocStore, https://www.docstore.nxp.com/flex/DocStoreApp.html#/l

[31] LPCXPresso IDE, http://www.lpcware.com/lpcxpresso/code-red

[32] LPCXpresso target boards, http://www.nxp.com/techzones/microcontrollers-

techzone/tools-ecosystem/lpcxpresso.html

[33] AN11211 CLEV663B Blueboard Quick Start Guide,

http://www.nxp.com/documents/application_note/AN11211.pdf

[34] AN11308 PNEV512B Blueboard Quick Start Guide,

http://www.nxp.com/documents/application_note/AN11308.pdf

[35] NXP Contactless reader IC Demoboards ordering,

http://www.nxp.com/products/identification_and_security/#demoboards

[36] AN11342 How to Scale Down the NXP Reader Library,

http://www.nxp.com/documents/application_note/AN11342.pdf

[37] UM10721 NXP NFC Reader Library User Manual

http://www.nxp.com/documents/user_manual/UM10721.pdf

http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license
http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license
http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license
http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license
http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license
http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license
http://www.nxp.com/redirect/nfc-forum.org/specs/spec_license
http://www.nxp.com/documents/application_note/AN11211.pdf
http://www.nxp.com/documents/application_note/AN11308.pdf
http://www.nxp.com/techzones/microcontrollers-techzone/news.html
https://www.docstore.nxp.com/flex/DocStoreApp.html#/l
http://www.lpcware.com/lpcxpresso/code-red
http://www.nxp.com/techzones/microcontrollers-techzone/tools-ecosystem/lpcxpresso.html
http://www.nxp.com/techzones/microcontrollers-techzone/tools-ecosystem/lpcxpresso.html
http://www.nxp.com/documents/application_note/AN11211.pdf
http://www.nxp.com/documents/application_note/AN11308.pdf
http://www.nxp.com/products/identification_and_security/#demoboards
http://www.nxp.com/documents/application_note/AN11342.pdf
http://www.nxp.com/documents/user_manual/UM10721.pdf

E
rro

r!

U
n
k
n

o
w

n

d
o

c
u

m
e

n
t

p
ro

p
e

rty

n
a

m
e

.

E
rro

r! U
n
k
n
o

w
n
 d

o
c
u
m

e
n
t p

ro
p
e
rty

 n
a
m

e
.

E
rro

r! U
n

k
n

o
w

n
 d

o
c
u

m
e

n
t p

ro
p

e
rty

n
a

m
e

.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 198 of 205

10. Legal information

10.1 Definitions
Draft — The document is a draft version only. The content is still under

internal review and subject to formal approval, which may result in

modifications or additions. NXP Semiconductors does not give any

representations or warranties as to the accuracy or completeness of

information included herein and shall have no liability for the consequences

of use of such information.

10.2 Disclaimers
Limited warranty and liability — Information in this document is believed to

be accurate and reliable. However, NXP Semiconductors does not give any

representations or warranties, expressed or implied, as to the accuracy or

completeness of such information and shall have no liability for the

consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,

punitive, special or consequential damages (including - without limitation -

lost profits, lost savings, business interruption, costs related to the removal

or replacement of any products or rework charges) whether or not such

damages are based on tort (including negligence), warranty, breach of

contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason

whatsoever, NXP Semiconductors’ aggregate and cumulative liability

towards customer for the products described herein shall be limited in

accordance with the Terms and conditions of commercial sale of NXP

Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make

changes to information published in this document, including without

limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior

to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,

authorized or warranted to be suitable for use in life support, life-critical or

safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected

to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of

NXP Semiconductors products in such equipment or applications and

therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these

products are for illustrative purposes only. NXP Semiconductors makes no

representation or warranty that such applications will be suitable for the

specified use without further testing or modification.

Customers are responsible for the design and operation of their applications

and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or

customer product design. It is customer’s sole responsibility to determine

whether the NXP Semiconductors product is suitable and fit for the

customer’s applications and products planned, as well as for the planned

application and use of customer’s third party customer(s). Customers should

provide appropriate design and operating safeguards to minimize the risks

associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,

damage, costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by customer’s

third party customer(s). Customer is responsible for doing all necessary

testing for the customer’s applications and products using NXP

Semiconductors products in order to avoid a default of the applications and

the products or of the application or use by customer’s third party

customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein

may be subject to export control regulations. Export might require a prior

authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all

faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates

and their suppliers expressly disclaim all warranties, whether express,

implied or statutory, including but not limited to the implied warranties of non-

infringement, merchantability and fitness for a particular purpose. The entire

risk as to the quality, or arising out of the use or performance, of this product

remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be

liable to customer for any special, indirect, consequential, punitive or

incidental damages (including without limitation damages for loss of

business, business interruption, loss of use, loss of data or information, and

the like) arising out the use of or inability to use the product, whether or not

based on tort (including negligence), strict liability, breach of contract, breach

of warranty or any other theory, even if advised of the possibility of such

damages.

Notwithstanding any damages that customer might incur for any reason

whatsoever (including without limitation, all damages referenced above and

all direct or general damages), the entire liability of NXP Semiconductors, its

affiliates and their suppliers and customer’s exclusive remedy for all of the

foregoing shall be limited to actual damages incurred by customer based on

reasonable reliance up to the greater of the amount actually paid by

customer for the product or five dollars (US$5.00). The foregoing limitations,

exclusions and disclaimers shall apply to the maximum extent permitted by

applicable law, even if any remedy fails of its essential purpose.

10.3 Licenses

Purchase of NXP <xxx> components

<License statement text>

10.4 Patents
Notice is herewith given that the subject device uses one or more of the

following patents and that each of these patents may have corresponding

patents in other jurisdictions.

<Patent ID> — owned by <Company name>

10.5 Trademarks
Notice: All referenced brands, product names, service names and

trademarks are property of their respective owners.

<Name> — is a trademark of NXP B.V.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 199 of 205

11. Index

No index entries found.

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 200 of 205

12. List of figures

Fig 1. Layered Structure of the NFC Reader Library... 4
Fig 2. Hardware and Platform independent layers of

the NFC Reader Library 5
Fig 3. NFC Reader Library initialization procedure 9
Fig 4. NFC Reader Library - Read and Write relevant

modules .. 10
Fig 5. NFC Reader Library - P2P relevant modules .. 11
Fig 6. NXP Export Controlled Reader Library 12
Fig 7. Type A proximity contactless smartcard state

diagram ... 13
Fig 8. ISO/IEC 14443-3A Operation Flow 14
Fig 9. FeliCa IDm and PMm 50
Fig 10. FeliCa anticollision example............................ 51
Fig 11. Active communication scheme 56
Fig 12. Passive communication scheme 56
Fig 13. Figure title here ... 57
Fig 14. ISO/IEC 18092 Operation Flow 58
Fig 15. MIFARE Classic 1KB memory map 72
Fig 16. MIFARE Classic 7 Bytes UID Manufacturer

Block ... 72
Fig 17. MIFARE Classic Sector Trailer 72
Fig 18. MIFARE Classic Value Block 75
Fig 19. MIFARE Classic Increment operation 77
Fig 20. MIFARE Classic Decrement operation 78
Fig 21. MIFARE Classic Restore operation 78
Fig 22. MIFARE Classic Transfer operation 79
Fig 23. MIFARE Ultralight memory map 81
Fig 24. Figure title here ... 88
Fig 25. FeliCa memory map .. 96
Fig 26. FeliCa commands ... 98
Fig 27. Topaz IC static memory map 101
Fig 28. NFC Forum Tag Type Operations component

API .. 108
Fig 29. NFC Forum Tag Type Operations API: Write

NDEF function for a Type 2 Tag 108
Fig 30. NFC supported contactless standards 115
Fig 31. Discovery Loop routine 116
Fig 32. LLCP integration on top of the RF field 125
Fig 33. LLCP Components .. 126
Fig 34. LLCP Link Component operation flow 133
Fig 35. LLCP Transport Component opeation flow ... 139
Fig 36. SNEP Communication 155
Fig 37. SNEP Client application workflow 158
Fig 38. Callback function triggered by a function of the

NFC Reader Library 162
Fig 39. SNEP Server application workflow 167

Fig 40. Callback function triggered by a function of the

NFC Reader Library 171
Fig 41. CLRC663 EEPROM memory structure 175
Fig 42. phKeyStore_Sw_DataParams_t structure 178
Fig 43. Software Key Store structure example 179
Fig 44. Logging structures example 187
Fig 45. OSAL Component operation flow 192

NXP Semiconductors UM10802
 NXP NFC Reader Library API

294210 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

User manual Rev. 1.0 — 07 April 2014 201 of 205

13. List of tables

Table 1. bFsdi (bFsci) to FSD (FSC) conversion 21
Table 2. DRI and DSI identifiers 25
Table 3. bFsdi (bFsci) to FSD (FSC) conversion 29
Table 4. Values after reset .. 40
Table 5. Identifiers of attributes of

phpalI14443p4_Sw_DataParams_t 42
Table 6. Number of time slots to be used during the

anticollision procedure 52
Table 7. ISO18092 PAL communication mode

configuration ... 58
Table 8. Parameters from ISO18092 Initiator Pal

component .. 59
Table 9. Table of Length Reduction values 61
Table 10. Table of Divisor Send/Receive 62
Table 11. Table of valid Length Reduction values 62
Table 12. Exchange options ... 64
Table 13. Parameters from ISO18092 Target Pal

component .. 65
Table 14. NFC Forum Type Tag Platforms 107
Table 15. NFC Forum Type Tag Platforms 110
Table 16. NFC Forum Type Tag Platforms 114
Table 17. States of the LLC state machine 128
Table 18. Link state values for MAC layer 131
Table 19. Device type for MAC layer 132
Table 20. Parameters ... 134
Table 21. DSAP/SSAP values 140
Table 22. Socket state valid values 143
Table 23. Transport connection valid values 143
Table 24. OSAL component structures for valid target

MCUs .. 190

NXP Semiconductors UM10802
 NXP NFC Reader Library API

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2014. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 07 April 2014

Document identifier: 294210

14. Contents

1. Audience .. 3
2. Abstract .. 3
3. Introduction ... 3
3.1 Overview of the NFC Reader Library 3
3.2 NFC Reader Library Software Stack 4
3.2.1 Bus Abstraction Layer .. 5
3.2.2 Hardware Abstraction Layer 5
3.2.3 Protocol Abstraction Layer 6
3.2.4 Application Layer .. 6
3.2.5 NFC Activity ... 7
3.2.6 NFC P2P Package ... 7
3.2.7 Common Layer ... 8
3.2.8 Building a Project from bottom to top 8
3.3 NFC Reader Library and NFC Operating Modes 9
3.3.1 Read/Write Mode ... 9
3.3.2 Peer-to-Peer Mode ... 10
3.3.3 Card Emulation .. 11
3.4 NXP Export Controlled Reader Library 11
4. NFC Reader Library API: Protocol Abstraction

Layer (PAL) .. 12
4.1 ISO/IEC 14443 ... 12
4.1.1 ISO/IEC 14443-3A ... 13
4.1.1.1 ISO/IEC 14443-3A Data Parameter Structure .. 15
4.1.1.2 Initialization ISO/IEC 14443-3a 15
4.1.1.3 Activate Card .. 15
4.1.1.4 Request A .. 16
4.1.1.5 Wake Up A ... 17
4.1.1.6 Anticollision .. 17
4.1.1.7 Selection .. 18
4.1.1.8 Halt A ... 19
4.1.1.9 Exchange ... 19
4.1.2 ISO/IEC 14443-4A ... 20
4.1.2.1 ISO/IEC 14443-4A Data Parameter Structure .. 20
4.1.2.2 Initialization ISO/IEC 14443-4A Parameter

Component... 22
4.1.2.3 Activate Card .. 22
4.1.2.4 RATS ... 23
4.1.2.5 Protocol and Parameter Selection 24
4.1.2.6 Get ISO/IEC 14443-4A Parameters 25
4.1.3 ISO/IEC 14443-3B ... 26
4.1.3.1 ISO/IEC 14443-3B Data Parameter Structure .. 28
4.1.3.2 Initialization ISO/IEC 14443-3B Parameter

Component... 30
4.1.3.3 Get ISO/IEC 14443-3B Parameters 30
4.1.3.4 Set Config ISO/IEC 14443-3B 31
4.1.3.5 Get Config ISO/IEC 14443-3B 31

4.1.3.6 Set Higher Layer Inf ISO/IEC 14443-3B 32
4.1.3.7 Get Higher Layer Resp ISO/IEC 14443-3B 32
4.1.3.8 Activate Card .. 33
4.1.3.9 Request B ... 34
4.1.3.10 Wake Up B ... 35
4.1.3.11 Slot Marker ... 35
4.1.3.12 Attrib ... 36
4.1.3.13 Halt B.. 37
4.1.3.14 Exchange ... 37
4.1.4 ISO/IEC 14443-4 .. 38
4.1.4.1 ISO/IEC 14443-4 Data Parameter Structure 38
4.1.4.2 Init ISO/IEC 14443-4 Parameter Component ... 39
4.1.4.3 Reset Protocol ISO/IEC 14443-4 40
4.1.4.4 Set Protocol ISO/IEC 14443-4 40
4.1.4.5 Set Config ISO/IEC 14443-4 42
4.1.4.6 Get Config ISO/IEC 14443-4 42
4.1.4.7 Exchange ... 43
4.1.4.8 Presence Check ... 44
4.1.4.9 Deselect ... 44
4.2 MIFARE .. 45
4.2.1 Technical Introduction 45
4.2.2 Parameter Structure ... 45
4.2.3 Component Initialization 45
4.2.4 MIFARE API ... 46
4.2.4.1 ISO/IEC 14443-3 Data Exchange 46
4.2.4.2 ISO/IEC 14443-4 Data Exchange 47
4.2.4.3 MIFARE Proximity Check 47
4.2.4.4 Set Minimum FDT for Proximity Check............. 48
4.2.4.5 MIFARE Exchange Raw 48
4.2.4.6 MIFARE Classic Authentication with key number

 ... 49
4.2.4.7 MIFARE Classic Authentication with input key . 49
4.3 FeliCa PAL ... 50
4.3.1 Technical Introduction 50
4.3.2 Parameter Structure ... 51
4.3.3 Component Initialization 51
4.3.4 FeliCa PAL API .. 52
4.3.4.1 RequestC ... 52
4.3.4.2 Card Activation ... 53
4.3.4.3 Exchange ... 54
4.3.4.4 Get Serial Number .. 54
4.4 ISO/IEC 18092 ... 55
4.4.1 Technical Introduction 55
4.4.1.1 ISO/IEC 18092 Standard 55
4.4.1.2 NFCIP-1 Devices .. 55
4.4.1.3 ISO/IEC 18092 API Communication Flow 57
4.4.2 ISO/IEC 18092 Initiator..................................... 58

NXP Semiconductors UM10802
 NXP NFC Reader Library API

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2014. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 07 April 2014

Document identifier: 294210

4.4.2.1 Protocol Initialization .. 59
4.4.2.2 Reset Protocol .. 60
4.4.2.3 Attribute Request ... 60
4.4.2.4 Parameter Selection ... 61
4.4.2.5 Activate Card .. 62
4.4.2.6 Deselect ... 63
4.4.2.7 Exchange Data ... 64
4.4.2.8 Presence Check ... 64
4.4.3 ISO/IEC 18092 Target 65
4.4.3.1 Protocol Initialization .. 66
4.4.3.2 Reset Protocol .. 67
4.4.3.3 RF Field Listening .. 67
4.4.3.4 Attribute Response ... 68
4.4.3.5 Set Attribute Response 68
4.4.3.6 Parameter Selection Response 69
4.4.3.7 Deselect Response .. 70
4.4.3.8 Release Response ... 70
4.4.3.9 Exchange Data Response................................ 71
5. NFC Reader Library API: Application Layer (AL)

 .. 71
5.1 MIFARE Classic ... 71
5.1.1 Technical Introduction 71
5.1.2 MIFARE Classic Parameter Structure 72
5.1.3 MIFARE Classic Component Initialization 73
5.1.4 MIFARE Classic Authentication 73
5.1.5 PersonalizeUID .. 74
5.1.6 MIFARE Classic Command Set 74
5.1.6.1 Read .. 75
5.1.6.2 Read Value .. 75
5.1.6.3 Write ... 76
5.1.6.4 Write Value... 76
5.1.6.5 Increment ... 77
5.1.6.6 Decrement.. 77
5.1.6.7 Restore .. 78
5.1.6.8 Transfer .. 79
5.1.6.9 Increment Transfer ... 79
5.1.6.10 Decrement Transfer ... 80
5.1.6.11 Restore Transfer .. 80
5.2 MIFARE Ultralight Family 81
5.2.1 Technical Introduction 81
5.2.1.1 MIFARE Ultralight .. 81
5.2.1.2 MIFARE Ultralight EV1 81
5.2.1.3 MIFARE Ultralight C ... 82
5.2.2 MIFARE Ultralight Parameter Structure 82
5.2.3 MIFARE Ultralight Component Initialization 82
5.2.4 MIFARE Ultralight Command Set 83
5.2.4.1 Read .. 83
5.2.4.2 Write ... 83
5.2.4.3 Compatibility Write ... 84
5.2.5 MIFARE Ultralight EV1 Command Set 84

5.2.5.1 Increment count .. 84
5.2.5.2 Read Count .. 85
5.2.5.3 Check Tearing Event .. 85
5.2.5.4 Password Authentication 85
5.2.5.5 Get Version .. 86
5.2.5.6 Fast Read ... 86
5.2.5.7 Read Signature .. 87
5.2.6 MIFARE Ultralight C Command Set 87
5.2.6.1 Authenticate ... 87
5.3 MIFARE DESFire ... 88
5.3.1 Technical Introduction 88
5.3.2 MIFARE DESFire Parameter Structure 89
5.3.3 MIFARE DESFire Component Initialization 90
5.3.4 MIFARE DESFire Command Set – Non-export

controlled commands. 91
5.3.4.1 Create Application .. 91
5.3.4.2 Select Application ... 92
5.3.4.3 Get Version .. 92
5.3.4.4 Create Standard Data File 92
5.3.4.5 Write Data .. 93
5.3.4.6 ISO Select File ... 94
5.3.4.7 ISO Read Binary .. 94
5.3.4.8 ISO Update Binary ... 95
5.4 FeliCa ... 96
5.4.1 Technical Introduction 96
5.4.2 FeliCa Parameter Structure 97
5.4.3 FeliCa Component Initialization 97
5.4.4 FeliCa Command Set 97
5.4.4.1 Request Response ... 98
5.4.4.2 Request Service ... 98
5.4.4.3 Read ... 99
5.4.4.4 Write ... 99
5.5 Jewel / Topaz ... 100
5.5.1 Technical Introduction 100
5.5.2 Jewel/Topaz Parameter Structure 101
5.5.3 Jewel/Topaz Component Initialization 101
5.5.4 Jewel/Topaz Command Set 102
5.5.4.1 Request A ... 102
5.5.4.2 Read UID .. 102
5.5.4.3 Read All .. 103
5.5.4.4 Read Byte ... 103
5.5.4.5 Write Erase Byte .. 104
5.5.4.6 Write No Erase Byte 104
5.5.4.7 Read Segment ... 105
5.5.4.8 Read Block ... 105
5.5.4.9 Write Erase Block ... 106
5.5.4.10 Write No Erase Block 106
5.6 NFC Forum Tag Type Operations 107
5.6.1 Technical Introduction 107
5.6.2 NFC Forum Tag Type Operations component107

NXP Semiconductors UM10802
 NXP NFC Reader Library API

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2014. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 07 April 2014

Document identifier: 294210

5.6.3 NFC Forum Tag Type Operations structure ... 108
5.6.4 NFC Forum Tag Type Operations API 110
5.6.4.1 Init function ... 110
5.6.4.2 Reset .. 111
5.6.4.3 Check NDEF .. 111
5.6.4.4 Format NDEF ... 112
5.6.4.5 Read NDEF .. 112
5.6.4.6 Write NDEF .. 113
5.6.4.7 Erase NDEF ... 113
5.6.4.8 Set Config .. 114
5.6.4.9 Get Config .. 114
6. NFC Reader Library API: NFC Activity 115
6.1 Discovery Loop .. 115
6.1.1 Technical Introduction 115
6.1.2 Discovery Loop Data Parameter Structure 116
6.1.3 Discovery Loop Initialization 119
6.1.4 Discovery Loop Set Configuration 120
6.1.5 Discovery Loop Get Configuration 120
6.1.6 Discovery Loop Configurable Parameters 121
6.1.7 Discovery Loop Start Routine......................... 124
6.1.8 Discovery Loop - Activate Card 124
7. NFC Reader Library API: NFC P2P Package . 125
7.1 LLCP .. 125
7.1.1 Technical Introduction 125
7.1.1.1 LLCP Functionalities 125
7.1.1.2 LLCP Components ... 126
7.1.2 LLCP Link Layer ... 126
7.1.2.1 LLCP Structure ... 127
7.1.2.2 Initialization of the LLCP component 129
7.1.3 LLC MAC Mapping Component 130
7.1.4 LLC Link Component 132
7.1.4.1 LLC Link Structure ... 133
7.1.4.2 LLC Link API .. 134
7.1.4.3 LLC Link Callback functions 137
7.1.5 LLC Transport Component 138
7.1.5.1 LLC Transport structure 140
7.1.5.2 LLC Transport API ... 143
7.1.5.3 Transport Layer Callback functions 151
7.2 SNEP ... 154
7.2.1 Technical Introduction 154
7.2.2 SNEP Client Application 155
7.2.2.1 SNEP Client Data Structures 155
7.2.2.2 SNEP Client API .. 158
7.2.2.3 SNEP Client Callback functions 161
7.2.3 SNEP Server Application 163
7.2.3.1 SNEP Server Data Structures 163
7.2.3.2 SNEP Server API ... 167
7.2.3.3 SNEP Server Callback functions 171
8. NFC Reader Library API: Common Layer...... 174
8.1 Key Store ... 174

8.1.1 CLRC663 Hardware Key Store 174
8.1.1.1 CLRC663 Hardware Key Store Initialization ... 175
8.1.1.2 Format Key Entry ... 175
8.1.1.3 Set Key Value ... 176
8.1.1.4 Set Key Value at position 176
8.1.2 Software Key Store .. 177
8.1.2.1 Software Key Store Initialization 179
8.1.2.2 Format Key Component 180
8.1.2.3 Set Key Value ... 180
8.1.2.4 Set Key Value at Position 181
8.1.2.5 Set Full Key Entry ... 182
8.1.2.6 Set KUC ... 182
8.1.2.7 Get Key Entry ... 183
8.1.2.8 Get Key Value.. 183
8.1.2.9 Change KUC .. 184
8.1.2.10 Get KUC ... 184
8.2 Log Module ... 185
8.2.1 Log Parameter Structure 185
8.2.1.1 Register Entries Structure 185
8.2.1.2 Log Entries Structure 186
8.2.1.3 Logging Component Structures Example 186
8.2.1 Module Initialization and Registration 187
8.2.2 Information Storage .. 188
8.2.3 Information Handling 188
8.3 OSAL .. 189
8.3.1 OSAL Structure .. 189
8.3.2 Memory management API 190
8.3.2.1 Allocate Memory ... 190
8.3.2.2 Free Memory .. 190
8.3.3 Timer management API.................................. 191
8.3.3.1 Timer Init .. 192
8.3.3.2 Timer Create .. 192
8.3.3.3 Timer Start .. 193
8.3.3.4 Timer Stop .. 194
8.3.3.5 Timer Delete ... 194
8.3.3.6 Timer Wait .. 194
8.3.3.7 Timer Reset .. 195
8.3.3.8 Timer Execution Callback 195
9. References ... 196
10. Legal information .. 198
10.1 Definitions ... 198
10.2 Disclaimers ... 198
10.3 Licenses ... 198
10.4 Patents ... 198
10.5 Trademarks .. 198
11. Index ... 199
12. List of figures ... 200
13. List of tables .. 201
14. Contents ... 202

NXP Semiconductors UM10802
 NXP NFC Reader Library API

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2014. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 07 April 2014

Document identifier: 294210

	1. Audience
	2. Abstract
	3. Introduction
	3.1 Overview of the NFC Reader Library
	3.2 NFC Reader Library Software Stack
	3.2.1 Bus Abstraction Layer
	3.2.2 Hardware Abstraction Layer
	3.2.3 Protocol Abstraction Layer
	3.2.4 Application Layer
	3.2.5 NFC Activity
	3.2.6 NFC P2P Package
	3.2.7 Common Layer
	3.2.8 Building a Project from bottom to top

	3.3 NFC Reader Library and NFC Operating Modes
	3.3.1 Read/Write Mode
	3.3.2 Peer-to-Peer Mode
	3.3.3 Card Emulation

	3.4 NXP Export Controlled Reader Library

	4. NFC Reader Library API: Protocol Abstraction Layer (PAL)
	4.1 ISO/IEC 14443
	4.1.1 ISO/IEC 14443-3A
	4.1.1.1 ISO/IEC 14443-3A Data Parameter Structure
	4.1.1.2 Initialization ISO/IEC 14443-3a
	4.1.1.3 Activate Card
	4.1.1.4 Request A
	4.1.1.5 Wake Up A
	4.1.1.6 Anticollision
	4.1.1.7 Selection
	4.1.1.8 Halt A
	4.1.1.9 Exchange

	4.1.2 ISO/IEC 14443-4A
	4.1.2.1 ISO/IEC 14443-4A Data Parameter Structure
	4.1.2.2 Initialization ISO/IEC 14443-4A Parameter Component
	4.1.2.3 Activate Card
	4.1.2.4 RATS
	4.1.2.5 Protocol and Parameter Selection
	4.1.2.6 Get ISO/IEC 14443-4A Parameters

	4.1.3 ISO/IEC 14443-3B
	4.1.3.1 ISO/IEC 14443-3B Data Parameter Structure
	4.1.3.2 Initialization ISO/IEC 14443-3B Parameter Component
	4.1.3.3 Get ISO/IEC 14443-3B Parameters
	4.1.3.4 Set Config ISO/IEC 14443-3B
	4.1.3.5 Get Config ISO/IEC 14443-3B
	4.1.3.6 Set Higher Layer Inf ISO/IEC 14443-3B
	4.1.3.7 Get Higher Layer Resp ISO/IEC 14443-3B
	4.1.3.8 Activate Card
	4.1.3.9 Request B
	4.1.3.10 Wake Up B
	4.1.3.11 Slot Marker
	4.1.3.12 Attrib
	4.1.3.13 Halt B
	4.1.3.14 Exchange

	4.1.4 ISO/IEC 14443-4
	4.1.4.1 ISO/IEC 14443-4 Data Parameter Structure
	4.1.4.2 Init ISO/IEC 14443-4 Parameter Component
	4.1.4.3 Reset Protocol ISO/IEC 14443-4
	4.1.4.4 Set Protocol ISO/IEC 14443-4
	4.1.4.5 Set Config ISO/IEC 14443-4
	4.1.4.6 Get Config ISO/IEC 14443-4
	4.1.4.7 Exchange
	4.1.4.8 Presence Check
	4.1.4.9 Deselect

	4.2 MIFARE
	4.2.1 Technical Introduction
	4.2.2 Parameter Structure
	4.2.3 Component Initialization
	4.2.4 MIFARE API
	4.2.4.1 ISO/IEC 14443-3 Data Exchange
	4.2.4.2 ISO/IEC 14443-4 Data Exchange
	4.2.4.3 MIFARE Proximity Check
	4.2.4.4 Set Minimum FDT for Proximity Check
	4.2.4.5 MIFARE Exchange Raw
	4.2.4.6 MIFARE Classic Authentication with key number
	4.2.4.7 MIFARE Classic Authentication with input key

	4.3 FeliCa PAL
	4.3.1 Technical Introduction
	4.3.2 Parameter Structure
	4.3.3 Component Initialization
	4.3.4 FeliCa PAL API
	4.3.4.1 RequestC
	4.3.4.2 Card Activation
	4.3.4.3 Exchange
	4.3.4.4 Get Serial Number

	4.4 ISO/IEC 18092
	4.4.1 Technical Introduction
	4.4.1.1 ISO/IEC 18092 Standard
	4.4.1.2 NFCIP-1 Devices
	NFCIP-1 Communication Roles
	NFCIP-1 Communication Modes
	NFCIP-1 Devices vs Reader ICs

	4.4.1.3 ISO/IEC 18092 API Communication Flow

	4.4.2 ISO/IEC 18092 Initiator
	4.4.2.1 Protocol Initialization
	4.4.2.2 Reset Protocol
	4.4.2.3 Attribute Request
	4.4.2.4 Parameter Selection
	4.4.2.5 Activate Card
	4.4.2.6 Deselect
	4.4.2.7 Exchange Data
	4.4.2.8 Presence Check

	4.4.3 ISO/IEC 18092 Target
	4.4.3.1 Protocol Initialization
	4.4.3.2 Reset Protocol
	4.4.3.3 RF Field Listening
	4.4.3.4 Attribute Response
	4.4.3.5 Set Attribute Response
	4.4.3.6 Parameter Selection Response
	4.4.3.7 Deselect Response
	4.4.3.8 Release Response
	4.4.3.9 Exchange Data Response

	5. NFC Reader Library API: Application Layer (AL)
	5.1 MIFARE Classic
	5.1.1 Technical Introduction
	5.1.2 MIFARE Classic Parameter Structure
	5.1.3 MIFARE Classic Component Initialization
	5.1.4 MIFARE Classic Authentication
	5.1.5 PersonalizeUID
	5.1.6 MIFARE Classic Command Set
	5.1.6.1 Read
	5.1.6.2 Read Value
	5.1.6.3 Write
	5.1.6.4 Write Value
	5.1.6.5 Increment
	5.1.6.6 Decrement
	5.1.6.7 Restore
	5.1.6.8 Transfer
	5.1.6.9 Increment Transfer
	5.1.6.10 Decrement Transfer
	5.1.6.11 Restore Transfer

	5.2 MIFARE Ultralight Family
	5.2.1 Technical Introduction
	5.2.1.1 MIFARE Ultralight
	5.2.1.2 MIFARE Ultralight EV1
	5.2.1.3 MIFARE Ultralight C

	5.2.2 MIFARE Ultralight Parameter Structure
	5.2.3 MIFARE Ultralight Component Initialization
	5.2.4 MIFARE Ultralight Command Set
	5.2.4.1 Read
	5.2.4.2 Write
	5.2.4.3 Compatibility Write

	5.2.5 MIFARE Ultralight EV1 Command Set
	5.2.5.1 Increment count
	5.2.5.2 Read Count
	5.2.5.3 Check Tearing Event
	5.2.5.4 Password Authentication
	5.2.5.5 Get Version
	5.2.5.6 Fast Read
	5.2.5.7 Read Signature

	5.2.6 MIFARE Ultralight C Command Set
	5.2.6.1 Authenticate

	5.3 MIFARE DESFire
	5.3.1 Technical Introduction
	5.3.2 MIFARE DESFire Parameter Structure
	5.3.3 MIFARE DESFire Component Initialization
	5.3.4 MIFARE DESFire Command Set – Non-export controlled commands.
	5.3.4.1 Create Application
	5.3.4.2 Select Application
	5.3.4.3 Get Version
	5.3.4.4 Create Standard Data File
	5.3.4.5 Write Data
	5.3.4.6 ISO Select File
	5.3.4.7 ISO Read Binary
	5.3.4.8 ISO Update Binary

	5.4 FeliCa
	5.4.1 Technical Introduction
	5.4.2 FeliCa Parameter Structure
	5.4.3 FeliCa Component Initialization
	5.4.4 FeliCa Command Set
	5.4.4.1 Request Response
	5.4.4.2 Request Service
	5.4.4.3 Read
	5.4.4.4 Write

	5.5 Jewel / Topaz
	5.5.1 Technical Introduction
	5.5.2 Jewel/Topaz Parameter Structure
	5.5.3 Jewel/Topaz Component Initialization
	5.5.4 Jewel/Topaz Command Set
	5.5.4.1 Request A
	5.5.4.2 Read UID
	5.5.4.3 Read All
	5.5.4.4 Read Byte
	5.5.4.5 Write Erase Byte
	5.5.4.6 Write No Erase Byte
	5.5.4.7 Read Segment
	5.5.4.8 Read Block
	5.5.4.9 Write Erase Block
	5.5.4.10 Write No Erase Block

	5.6 NFC Forum Tag Type Operations
	5.6.1 Technical Introduction
	5.6.2 NFC Forum Tag Type Operations component
	5.6.3 NFC Forum Tag Type Operations structure
	5.6.4 NFC Forum Tag Type Operations API
	5.6.4.1 Init function
	5.6.4.2 Reset
	5.6.4.3 Check NDEF
	5.6.4.4 Format NDEF
	5.6.4.5 Read NDEF
	5.6.4.6 Write NDEF
	5.6.4.7 Erase NDEF
	5.6.4.8 Set Config
	5.6.4.9 Get Config

	6. NFC Reader Library API: NFC Activity
	6.1 Discovery Loop
	6.1.1 Technical Introduction
	6.1.2 Discovery Loop Data Parameter Structure
	6.1.3 Discovery Loop Initialization
	6.1.4 Discovery Loop Set Configuration
	6.1.5 Discovery Loop Get Configuration
	6.1.6 Discovery Loop Configurable Parameters
	6.1.7 Discovery Loop Start Routine
	6.1.8 Discovery Loop - Activate Card

	7. NFC Reader Library API: NFC P2P Package
	7.1 LLCP
	7.1.1 Technical Introduction
	7.1.1.1 LLCP Functionalities
	7.1.1.2 LLCP Components

	7.1.2 LLCP Link Layer
	7.1.2.1 LLCP Structure
	LLCP Generic structure
	LLCP FRI structure

	7.1.2.2 Initialization of the LLCP component

	7.1.3 LLC MAC Mapping Component
	MAC Mapping Structure
	MAC Mapping API
	MAC Mapping Structure

	7.1.4 LLC Link Component
	7.1.4.1 LLC Link Structure
	7.1.4.2 LLC Link API
	Check
	Activate LLC Link
	Deactivate LLC Link
	Send PDU Packet via LLCP Link
	Receive PDU Packet on the LLC Link

	7.1.4.3 LLC Link Callback functions
	Link Check CB
	Link Status CB
	Link Send CB
	Link Receive CB

	7.1.5 LLC Transport Component
	Service Access Points - SAP
	7.1.5.1 LLC Transport structure
	LLC Transport socket structure

	7.1.5.2 LLC Transport API
	Create LLCP Socket
	Reset LLCP Socket
	Bind a Socket to a Local Source SAP
	Connect
	Connect by URI
	Listen to Connection Requests
	Accept an Incoming Connection Request
	Reject a Connection Request
	Disconnect Socket
	Send Data Packet – Connection Oriented
	Receive Data from a Socket – Connection Oriented
	Send Data Packet – Connectionless
	Close One Socket
	Close All the Sockets

	7.1.5.3 Transport Layer Callback functions
	LLCP Error CB
	LLCP Listen CB
	LLCP Connect CB
	LLCP Disconnect CB
	LLCP Accept CB
	LLCP Reject CB
	LLCP Send CB
	LLCP Receive CB
	LLCP Receive CB

	7.2 SNEP
	7.2.1 Technical Introduction
	7.2.2 SNEP Client Application
	7.2.2.1 SNEP Client Data Structures
	SNEP Configuration Structure
	SNEP Client Session Structure
	SNEP Client PUT/GET Request Context Structure

	7.2.2.2 SNEP Client API
	SNEP Module Initialization
	SNEP Client Initialization
	SNEP Client PUT Request
	SNEP Client GET Request
	SNEP Client de-Initialization

	7.2.2.3 SNEP Client Callback functions
	SNEP Client Connect Callback function
	SNEP Client Request Callback function

	7.2.3 SNEP Server Application
	7.2.3.1 SNEP Server Data Structures
	SNEP Configuration Structure
	SNEP Server Session Structure
	SNEP Server Connection Structure _
	SNEP Server Response Context Structure

	7.2.3.2 SNEP Server API
	SNEP Module Initialization
	SNEP Server Initialization
	SNEP Server Accept Connection
	SNEP Server Response
	SNEP Server de-Initialization

	7.2.3.3 SNEP Server Callback functions
	SNEP Server Connect Callback function
	SNEP Server PUT Request Callback function
	SNEP Server GET Request Callback function
	SNEP Server Send Response Callback _

	8. NFC Reader Library API: Common Layer
	8.1 Key Store
	8.1.1 CLRC663 Hardware Key Store
	8.1.1.1 CLRC663 Hardware Key Store Initialization
	8.1.1.2 Format Key Entry
	8.1.1.3 Set Key Value
	8.1.1.4 Set Key Value at position

	8.1.2 Software Key Store
	8.1.2.1 Software Key Store Initialization
	8.1.2.2 Format Key Component
	8.1.2.3 Set Key Value
	8.1.2.4 Set Key Value at Position
	8.1.2.5 Set Full Key Entry
	8.1.2.6 Set KUC
	8.1.2.7 Get Key Entry
	8.1.2.8 Get Key Value
	8.1.2.9 Change KUC
	8.1.2.10 Get KUC

	8.2 Log Module
	8.2.1 Log Parameter Structure
	8.2.1.1 Register Entries Structure
	8.2.1.2 Log Entries Structure
	8.2.1.3 Logging Component Structures Example

	8.2.1 Module Initialization and Registration
	8.2.2 Information Storage
	8.2.3 Information Handling

	8.3 OSAL
	8.3.1 OSAL Structure
	8.3.2 Memory management API
	8.3.2.1 Allocate Memory
	8.3.2.2 Free Memory

	8.3.3 Timer management API
	8.3.3.1 Timer Init
	8.3.3.2 Timer Create
	8.3.3.3 Timer Start
	8.3.3.4 Timer Stop
	8.3.3.5 Timer Delete
	8.3.3.6 Timer Wait
	8.3.3.7 Timer Reset
	8.3.3.8 Timer Execution Callback

	9. References
	10. Legal information
	10.1 Definitions
	10.2 Disclaimers
	10.3 Licenses
	10.4 Patents
	10.5 Trademarks

	11. Index
	12. List of figures
	13. List of tables
	14. Contents

