
Freescale Semiconductor
Application Note

Document Number: AN4794
Rev. 1, 09/2013

Contents

Control of a DC/DC Converter. 2
1.1 Basic control . 2
1.1 Overcurrent control . 4
Implementation on MPC564xL . 4

2.1 Generation of the phase-shifted PWM 5
2.2 Current acquisition with the CTU. 6
2.3 Overcurrent control with force-out logic. 8
2.4 Force-out logic reconfiguration by eDMA 11
2.5 Connection of the Ilimit signal to the

EXT_FORCE input . 14
3 Performance . 16

3.1 Reaction time . 17
3.2 Configuration time . 18

ppendix A Setup with the MPC5643L Evaluation Board . . . 19

Controlling a DC/DC Converter
with FlexPWM’s Force-Out Logic
Implemented with MPC564xL
by: Yves Briant
The MPC560xP and MPC564xL are two derivatives of
the Qorivva family of automotive microcontrollers that
have been tailored to easily control electrical machines
like permanent magnet synchronous motors (PMSMs),
brushless DC electric motors (BLDCs), DC/DC
converters, and so on.

The FlexPWM module is one of the motor control
peripherals embedded on these devices. Along with
usual features like PWM generation, input capture, and
so on, this module embeds some powerful mechanisms
like force-out logic.

This application note describes how this force-out logic
can be used to safely control a DC/DC converter with
limited CPU usage. This control relies on other
peripherals such as the eDMA, the ADC, and the eTimer.
This document describes the configuration of each of
these modules.

1

2

A

© Freescale Semiconductor, Inc., 2013. All rights reserved.

Control of a DC/DC Converter
1 Control of a DC/DC Converter
In the scope of a Hybrid Electrical Vehicle (HEV), a DC/DC converter is used for supplying the
low-voltage network (12V nominal) from the high-voltage traction battery (300V, for example). The
control method described in this document assumes the topology in the following figure.

Figure 1. Typical topology of a DC/DC converter for HEV

The H-bridge works as a two-phase inverter. Controlled by the FlexPWM module, it has the capability to
vary the amount of energy brought to the transformer. The transformer reduces the input voltage to a few
tens of volts. The current supplied to the transformer is compared to a threshold. In case of an
over-current, an Ilimit pulse is sent to the eTimer module linked to the force-out logic. Finally, the
rectifier outputs a continuous DC voltage monitored by an ATD channel. The conversion result is used by
software to pilot the FlexPWM module.

1.1 Basic control

The Zero-Voltage-Switch (ZVS) H-bridge is controlled with two pairs of phase-shifted PWM signals to
keep the output voltage at the same level, in spite of variations in the input voltage and output current.
Figure 2 shows the simplified schematic of the converter and where the control is done.

The PWM0_H and PWM0_L signals on one side and PWM1_L and PWM1_H on the other side form two
pairs of complementary phase-shifted PWMs. The period and duty-cycle of these signals are fixed (for
example, frequency = 100 kHz, duty-cycle = 50%). The amount of energy delivered to the transformer is
achieved by varying the phase shift between the two pairs of PWM signals (see Figure 3).
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor2

Control of a DC/DC Converter
Figure 2. Simplified schematic of a DC/DC converter

Thus, the control of such a DC/DC converter requires:

1. The generation of two complementary pairs of PWM, with deadtime insertion

2. An accurate control of the phase shift between the two complementary pairs

The FlexPWM module offers these two features. The “Phase-shifted PWM”section of MPC5643LRM,
Qorivva MPC5643L Microcontroller Reference Manual is dedicated to the generation of phase-shifted
PWM.

Figure 3. Phase-shifted PWM and voltage at the primary of the transformer
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor 3

Implementation on MPC564xL
1.1 Overcurrent control
The control of the DC/DC converter has to ensure that the current flowing from the high-voltage battery
does not exceed a limit that could destroy the converter. An electrical problem within the transformer, the
rectifier, or the load could be the cause for this overcurrent.

The reaction to this overcurrent should be as fast as possible (less than 1 µs) in order to prevent any
electrical damage to the converter or to the high-voltage source. Thus, having a hardware reaction to this
overcurrent (as opposed to a software reaction) would allow both a fast and a reliable control.

If an overcurrent is detected, the pair of PWM1 signals should be immediately set to the same level as the
PWM0 signals, so that no energy is brought to the system. Thus, the phase shift between the two pairs of
PWM signal is temporary reduced. This causes the Isupply current to decrease and the overcurrent
condition to disappear.

Figure 4 shows the waveforms of the two pairs of complementary PWM signals, the Isupply current, and
the overcurrent pulse. For sake of clarity the deadtimes are not shown on these waveforms. The dotted lines
on the PWM1_H and PWM1_L show what would have been these signals without any reaction to the
overcurrent.

Figure 4. Overcurrent protection complements the state of the PWM0 pair

Section 2.3, “Overcurrent control with force-out logic,” explains how this overcurrent protection can be
implemented using the FlexPWM module’s force-out logic, without any CPU load.

2 Implementation on MPC564xL
This section describes the implementation of this control and details the configuration of each peripheral
used for this function.
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor4

Implementation on MPC564xL
2.1 Generation of the phase-shifted PWM
This use-case is already described in the MPC564xL reference manual.The first pair of PWM is generated
by submodule 0 of one FlexPWM module, the second pair by submodule 1.The counters of these two
submodules are configured with the same clock, initial, and overflow values and are started at the same
time1 so that they are always synchronized.

As already explained, both PWM pairs have a fixed frequency of 100 kHz and a fixed duty-cycle of 50%.
Since only the second pair of PWM is modified to adjust the phase shift, the initial configuration of
submodule 0 remains unchanged.

The frequency of the FlexPWM module is configured to be 120 MHz. The counters of both submodules
are configured to count from the initial value –600 (0xFDA8) to the overflow value 600 (0x258), thus
achieving a frequency of 100 kHz and a resolution of better than 0.1% for the phase shift.

Submodule 0 and submodule 1 are configured in complementary mode with automatic deadtime insertion:
the DTCNT0 and DTCNT1 registers of submodules 0 and 1 have been set to the value of 6, yielding a
deadtime of 50 ns.2 Figure 5 shows how the two complementary pairs of PWM signals are generated. The
grey area visible on each PWM are the deadtimes.

1. Two counters of the same FlexPWM module can be started simultaneously by a unique write to the RUN field of the MCTRL
register.

2. The duration of the deadtime mainly depends on the performance (switching time) of the transistors used to implement the
bridge. 50 ns (or 0.5% of PWM period) is a typical value.
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor 5

Implementation on MPC564xL
Figure 5. Generation of the phase-shifted PWMs with two submodules of the FlexPWM

Submodules 0 and 1 are configured for half reload, meaning that any new values written to the VALx
registers (among others) are taken into account when the timer reaches the value held by the VAL0 register.
This is called a reload event.

These reload events are also the triggers for the DMA transfers that are used to configure the force-out
logic. This topic is further explained in Section 2.3, “Overcurrent control with force-out logic.”

2.2 Current acquisition with the CTU
The output voltage is regularly converted via an analog to digital channel,1 synchronously with the
generation of the PWM0 signal. The CTU is configured for launching a single conversion exactly 7.5 µs
after the rising edge on PWM0_H. The result is then stored in the FIFO0 embedded in the CTU. When the

1. The 12V output can obviously not be converted directly. A resistor network divides the output voltage to a value within [0;5]v
that the ATD converter can handle. Note also that the maximum output voltage should be taken in account when selecting the
ratio of the resistor network.
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor6

Implementation on MPC564xL
FIFO0 contains four ATD results, a DMA transfer is triggered that fills an internal RAM array. At the end
of this DMA transfer, an interrupt is triggered. In this interrupt routine, the last four voltage readings are
summed up and a new value for the shift is computed.

The diagram below illustrates how this chain happens:

The shift value is computed in a simple way that could be greatly enhanced in a real application; the new
shift value is inversely proportional to the measured voltage. A voltage of 0 generates a maximum shift of
600, and a voltage of 0x3FFF resets the shift value to 0.

It yields the following formula for computing the SHIFT value:

SHIFT = (0x3FFF – sum_4_voltages) × 600 / 0x3FFF

Which can be rounded to (to get rid of one division)1:

SHIFT = (0x3FFF – sum_4_voltages) × 37 /1024

The new SHIFT value is applied to PWM1_H and PWM1_L by adding it to the initial value of VAL2 and
VAL3 in submodule 1 of FlexPWM0.

Min Max

One voltage reading 0 0xFFF (12bit conversion)

Sum of 4 voltage readings 0 0x3FFF

SHIFT value 600 0

1. Note that this rounding may not be acceptable in a real application where the shift value needs to be computed and applied
with a 0.1% accuracy.
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor 7

Implementation on MPC564xL
CAUTION
Modifying the double-buffered registers of a FlexPWM submodule is
allowed only if MCTRL[LDOK] is reset. To clear this bit,
MCTRL[CLDOK] should be used.

2.3 Overcurrent control with force-out logic
The configuration described in the previous section allows software control of the shift between the two
PWM pairs, and thus of the output voltage of the DC/DC converter. The force-out logic of the FlexPWM
should now be configured to automatically and immediately complement the second PWM pair in case of
an overcurrent condition.

A full description of the force-out logic can be found in the FlexPWM chapter of the device’s reference
manual. One should consider this mechanism as a way to disrupt, permanently or temporary, the
continuous PWM generation.

Two things need to be configured when using the force-out logic:

1. The event causing this disruption, referred as the force-event. It can be an internal event (reload
event, overflow of the counter, or software command, for example) or an external event
(EXT_FORCE signal). This setting is configured by the CTRL2[FORCE_SEL] field of each
submodule.

2. The signal to be applied on the PWM outputs when the force-event occurs. The possible
configurations are:

a) PWM signals are left unchanged—called Normal mode in this application note

b) PWM signals are complemented—called Complementary mode in this application note

c) PWM signals are set to a specific logic level, 0 or 1

d) PWM signals are set to the level of an external signal

This configuration is achieved for each submodule by the DTSRCSEL and SWCOUT registers.

Figure 6. Connection of the FlexPWM module to the H-bridge and to the overcurrent signal

The principles of the overcurrent control with the force-out logic are the following:
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor8

Implementation on MPC564xL
• The force-out logic is switched into one of these three modes:

1. Normal mode: the PWM1 signals are left unchanged in the case of a force-event

2. One mode: PWM1_H is set to 1; PWM1_L is set to 0 in the case of a force-event

3. Zero mode: PWM1_H is set to 0; PWM1_L is set to 1 in the case of a force-event

• At each falling edge of PWM0_H, the force-out logic is configured to apply Zero mode in the case
of a force event.

• At each rising edge of PWM0_H, the force-out logic is configured to apply One mode in the case
of a force event.

• The force event is configured to be the external EXT_FORCE signal, connected to the overcurrent
signal.

• At each edge of the PWM0_H signal, the force-out logic is switched to Normal mode using a
software FORCE. This action clears an optional overcurrent protection that would have occurred
in the previous cycle.

• The configuration of the force-out logic at each PWM0 edge is done by the eDMA.

Figure 7 illustrates these principles. Note that only the “high” PWM signal has been represented. The blue
dotted lines on PWM0_H show the internal PWM0_H signal before the force-out logic.

Remarks:

• The configuration of the force-out logic performed by the eDMA at each edge of PWM0_H is only
applied in case of a EXT_FORCE event (that is, in the case of an overcurrent condition). As long
as no overcurrent condition occurs, the force-out logic never leaves Normal mode.

• At each edge of PWM0_H, the force-out logic is switched back to Normal mode before being
configured for the new setting (either One mode or Zero mode). This Normal mode is applied by
a so-called software force signal (that is, by setting the MCTRL2[FORCE] bit).

• One may wonder why the Complementary mode of the force-out logic has not been used. Indeed,
one may think this mode may remove the need for reconfiguration at each edge of PWM0_H.
However, consider the first overcurrent condition in Figure 7: if the force-out logic was configured
in Complementary mode, the reaction to the overcurrent condition would have been the same, but
then the PWM1_H would have switched back to zero as soon as the timer reached the VAL3 values
(edge represented by the dotted line). In any case, the force-out logic needs to be reset to its Normal
mode at each edge.

• As we have seen in the previous section, the DMA transfers are triggered by the “half-reload”
events in submodules 0 and 1 (that is, when the timer reaches the value held by the VAL0 registers
of each submodule). Thus, the VAL0 values can be adjusted so that the DMA transfers are achieved
exactly at the moment of the edges of PWM0. Typically VAL0 are set with the value 0 and 600 on
submodule 0 and 1, so that the DMA triggers correspond to each edge of PWM0.
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor 9

Implementation on MPC564xL
Figure 7. Principle of the overcurrent control with the force-out logic

The register configuration should be the following at each falling edge:

1. Reset the force-out logic to its Normal mode:

DTSRCSEL[SEL23_1] = b00 (Generated PWM signal is used by the deadtime logic)

CTRL2[FORCE_SEL] = b000 (The local force signal is used to force the config)

CTRL2[FORCE] = b1 (Generate the local force signal by software)

2. Configure the force-out logic to its One mode:

DTSRCSEL[SEL23_1] = b10 (OUT23_1 bit is used by the deadtime logic)

SWCOUT[OUT23_1] = b1 (PWM0_H set to 1 in case of a force event)

CTRL2[FORCE_SEL] = b110 (The EXT_FORCE signal is used to force the config)

The register configuration is the same for the rising edges, with only one difference: SWCOUT[OUT23_1]
is set to b0 instead of b1.
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor10

Implementation on MPC564xL
NOTE
Since PWM0_H and PWM0_L are configured as a complementary pair of
PWM signals, PWM0_L will be automatically complemented when the
force-out logic inverts PWM0_H.

2.4 Force-out logic reconfiguration by eDMA
As described earlier, the register configuration detailed in the previous section should be performed by the
eDMA at each edge (falling and rising) of the PWM0_H signal.

2.4.1 Generation of eDMA requests by the FlexPWM module

When configured for PWM generation, the FlexPWM module can generate a DMA request at each reload
event.1 It means each time the timer reaches VAL0 if half reload is enabled, and each time the timer reaches
VAL1 if full reload is enabled.

This trigger is called VALx write request in the reference manual. All the triggers from the four submodules
are merged in a single trigger source to the DMA_MUX, which is called comp_val.

Within one PWM period, two comp_val triggers will be generated:

• One from submodule 0, when its internal counter reaches the value of VAL0 (half reload),
initialized to 0.

• One from submodule 1, when its internal counter reaches the value of VAL0 (half reload),
initialized to 600.2

2.4.2 Description of the eDMA transfers

According to Section 2.3, “Overcurrent control with force-out logic,” three registers (SWCOUT,
DTSRCSEL, and CTRL2) need to be configured by DMA at each edge of the signal PWM0. Although the
addresses of these registers are not contiguous, it is possible to implement the necessary configuration
using only one DMA channel in one single transfer.

The parameters of this DMA channel are as follows:

1. A reload event is an event causing the double-buffered registers of the FlexPWM module to be loaded. A reload event is either
the FlexPWM timer reaching the VAL0 value (half reload), or reaching the VAL1 value (full reload).

2. Actually, the DMA transfers are triggered a little before the rising and falling edges to account for the delay of these transfers.
By doing so, the force-out configuration is effective exactly at the moment of the edge.

Table 1. eDMA channel parameters

Parameter Value

Number of bytes transferred (NBYTES) 64 bits

Source Size (SSIZE) 32 bits

Destination Size (DSIZE) 32 bits

Destination Offset (DOFF) 0xFEC0 (–0x0140)
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor 11

Implementation on MPC564xL
The figure below shows how a transfer occurs within a minor loop:

Figure 8. DMA transfer during a minor loop for Force-Out reconfiguration

DMA channel 0 is used to implement this transfer. As mentioned in Section 2.3, “Overcurrent control with
force-out logic,” two configurations need to be applied at each edge of the PWM0 signal: the configuration
for Normal mode and the configuration for One or Zero mode. This is achieved by channel linking:
channel 0 links to itself at the end of each minor loop, and the iteration loop is set to 2.

In order to debug the DMA transfers and to assess their duration, an additional channel (channel 1) is
configured to toggle a pin at the beginning and at the end of each transfer. Figure 9 shows how the channels
0 and 1are linked to each others.

Minor loop offset (MLOFF) 0x0280

Destination address last adjustment (DLAST) 0x0280

Number of iteration in a major loop (BITER) 2

Table 1. eDMA channel parameters (continued)

Parameter Value
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor12

Implementation on MPC564xL
Figure 9. Configuration and linking of the eDMA channels for the force-out reconfiguration

Several points need to be noted regarding the transfer generated by DMA channel 0:

1. 64 bits are transferred at each DMA trigger, but the destination size (DSIZE) is set to 32 bits. This
allows the 64-bit transfer to be broken down into two 32-bit transfers with different destination
addresses. An offset of –0x00F0 (DOFF) is applied to the destination address after each 32-bit
transfer.

2. The CTRL1 register is written to as a side effect, but its configuration is not required.

3. At the end of the 64-bit transfer (minor loop), the destination address needs to be adjusted in order
to point to CTRL2 again. This is achieved by enabling the Minor Loop Mapping capability on the
destination address.

4. Each comp_val event from the FlexPWM starts two minor loops of channel 0. Each minor loop of
channel 0 configures the force-out logic for a specific mode (Normal mode, Zero mode, One mode)
in the following sequence:

Normal mode > One mode > Normal mode > Zero mode

The source memory for these transfers contains four groups of 64 bits, each group corresponding
to one mode: Normal, Zero, or One. This correspondence is depicted in the following figure.
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor 13

Implementation on MPC564xL
2.5 Connection of the Ilimit signal to the EXT_FORCE input
The EXT_FORCE input of the FlexPWM module is not an external pin of MPC564xL. The EXT_FORCE
signal is connected to the internal output of eTimer0’s channel 1.
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor14

Implementation on MPC564xL
Figure 10. Connections of the motor control peripherals on MPC5643L

Channel 1 of eTimer0 is configured to work in EDGE-COUNT mode. In this mode, the channel 1 counter
counts both edges of the primary source. The primary source is the channel 0 input pin, which is connected
to the Ilimit. The output mode (selected with the CTRL2 register) is configured to enable gated clock
output while counter is active. This mode is selected so that the channel 1 output flag (OFLAG1) mirrors
exactly the overcurrent condition.

Figure 11. External and internal connections of the Ilimit signal
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor 15

Performance
3 Performance
The figure below shows the result of the implementation of this control.

The PWM0 signal’s behavior conforms to what was expected: it is complemented as soon as the Ilimit
pulse arrives.

The signal in pink shows the state of the pin used to debug the DMA transfer responsible for reconfiguring
the force-out logic at each edge of PWM1. It should be noted that the actual transfer time is shorter than
the length of the pulse, which accounts for three transfer durations (two transfers to toggle the pin and one
transfer for the force-out logic).

1Yellow: PWM0_H signal (generated by FlexPWM0 submodule 0)
2Blue: PWM1_H signal (generated by FlexPWM0 submodule 1)
3Pink: DMA debug pin for force-out reconfiguration
4Green: Ilimit signal connected to eTimer0 channel 1

Figure 12. Observation of the PWM0_H and PWM1_H signals in case of an overcurrent

There are two critical timings to measure the performance:

1. The delay between the Ilimit edge and the action to complement the PWM1 signals: if this time is
too long, an overcurrent condition may cause some damage before the bridge is put in a safe state.
This delay is called reaction time.
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor16

Performance
2. The minimum time between an edge of PWM0 and a subsequent Ilimit pulse. If an Ilimit pulse
arrives too early after a PWM0 edge, the DMA transfer reconfiguring the force-out may not have
the time to complete, and the PWM1 signal will not be complemented instantaneously. To
minimize the delay, the DMA transfers can be started slightly before the edges of the PWM0 to
account for the time required for the DMA to load the TCD and to achieve the second portion of
the 64-bit transfer that really loads the force-out configuration. To do this, the VAL0 value of
submodules 0 and 1 can simply be adjusted. This time is called configuration time.

3.1 Reaction time
The following diagram shows the delay observed between the Ilimit pulse and the complement of PWM_1.

1Yellow: PWM0_H
2Blue: PWM1_H
4Green: Ilimit signal connected to eTimer0 channel 1

Figure 13. Delay of the force-out logic activation

This delay has been measured to be less than 100 ns. This time is basically the reaction time of the
force-out logic and the delay introduced by the eTimer channel gating the Ilimit signal.
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor 17

Performance
3.2 Configuration time
At each edge of the PWM0 signal, the force-out is reconfigured via a DMA transfer. This transfer takes
some time. During the transfer, if an overcurrent pulse arrives, the force-out will not react. Three points
contribute to keep that configuration time as short as possible:

1. The DMA transfer for the force-out configuration should have the highest priority over other DMA
transfers.

2. The DMA should have the highest priority on the crossbar in regards to other bus masters like the
cores or FlexRay. This highest priority has to be set for the two slave ports of the crossbar used by
the DMA transfer: the SRAM and the PBRIDGES. The core can keep the highest priority on the
flash memory. In addition, the parking option (the default master port connected to a slave port
when the slave is not used) has an impact on this transfer time. The SRAM and PBRIDGE slave
port should have the DMA as the default parking option.

3. The launch of the DMA transfers can be advanced by changing the VAL0 value of submodules 0
and 1. The following result has been obtained by launching the DMA transfer 300 ns before the
edges of PWM1.

1Yellow: PWM0_H signal
2Blue: PWM1_H signal
3Pink: DMA debug pin for force-out reconfiguration
4Green: Ilimit pulse

Figure 14. Behavior of the PWM signals if the Ilimit signal appears before the force-out logic reconfiguration

It is important to note that the force-out logic is level-sensitive. So if the Ilimit pulse occurs before the
DMA transfers complete, the new force-out configuration will apply as soon as the DMA transfer finishes.

This scope shows that the Ilimit pulse can be simultaneous with the PWM0 edge. The consequence would
be an increased reaction time (132 ns instead of 100 ns).
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor18

Setup with the MPC5643L Evaluation Board
Appendix A Setup with the MPC5643L Evaluation Board
The attached CodeWarrior project can be used as example for MPC5643L, and loaded on a standard
evaluation board. The standard evaluation board, consisting of a generic MPC56xx mother board plus a
specific MPC564xL daughter board, is used.

The MPC5643L has to be configured in Lock-Step mode (LSM) for running this project (using Decoupled
Parallel mode is possible but requires some software adjustment, such as RAM mapping).

The signals generated by MPC5643L can be observed on the following pins of the evaluation board:

To test the software without any power stage, two signals are simulated:

• The output voltage through the load is simulated by the potentiometer W1, connected to analog
input channel 5 on ADC1 via jumper J40.

• The Ilimit pulse is generated by FlexPWM0 submodule 4; a pulse is generated every 10 to 15
periods of the PWM signals. It should be connected to the eTimer0 input via a jumper connecting
the pins PJ9[3] and PJ8[11].

Signal description MCU pin Port name
PCR or PSMI

number
EVB pin (motherboard)

PWM0_H FlexPWM0_A[0] A[11] 11 PJ9[12]

PWM0_L FlexPWM0_B[0] A[10] 10 PJ9[11]

PWM1_H FlexPWM0_A[1] C[7] 39 PJ3[8]

PWM1_L FlexPWM0_B[1] C[6] 38 PJ1[8]

Ilimit (fake) FlexPWM0_A[3] A[2] 2 PJ9[3]

Analog input for current
measurement

ADC1_AN[5] E[0] 64 PJ5[1] – connected via the
jumper J40 to the on-board

potentiometer

CTU external trigger CTU_0[EXT_TRG] C[14] 46 PJ3[15]

DMA debug pin for force-out
configuration

GPIO A[0] A[0] 0 PJ9[1]

DMA debug pin for current
acquisition

GPIO A[3] A[3] 3 PJ9[4]

eTimer input for Ilimit eTimer_0 ETC[0] D[10] 58,
PSMI[35],

PADSEL=1

PJ8[11]

eTimer output for Ilimit eTimer_0 ETC[1] A[1] 1 PJ9[2]

Clock out GPIO B[6] B[6] 22 PJ7[7]
Controlling a DC/DC Converter with FlexPWM’s Force-Out Logic, Rev. 1

Freescale Semiconductor 19

Document Number: AN4794
Rev. 1
09/2013

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: freescale.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, CodeWarrior, and Qorivva are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. SafeAssure is a trademark of Freescale

Semiconductor, Inc. All other product or service names are the property of their

respective owners. The Power Architecture and Power.org word marks and the Power

and Power.org logos and related marks are trademarks and service marks licensed by

Power.org.

© 2013 Freescale Semiconductor, Inc.

	1 Control of a DC/DC Converter
	1.1 Basic control
	1.1 Overcurrent control

	2 Implementation on MPC564xL
	2.1 Generation of the phase-shifted PWM
	2.2 Current acquisition with the CTU
	2.3 Overcurrent control with force-out logic
	2.4 Force-out logic reconfiguration by eDMA
	2.4.1 Generation of eDMA requests by the FlexPWM module
	2.4.2 Description of the eDMA transfers

	2.5 Connection of the Ilimit signal to the EXT_FORCE input

	3 Performance
	3.1 Reaction time
	3.2 Configuration time

