
MPC5xxx_EED_UM i

EEPROM Emulation Software Driver for

C55/C90FL/C90LC Flash Modules

User’s Manual

© Copyright Freescale Semiconductor, Inc 2015, All Rights Reserved.

MPC5xxx_EED_UM ii

REVISION LIST

Version

No.

Date Author Description

0.1 01-21-2014 FPT Team Initial Version

1.0 02-28-2014 FPT Team Add performance data and supported device list

1.12 12-23-2014 FPT Team Add FSL_RecoverEepromSystem API and note for D-

Cache and flash controller buffer

1.2.0 06-16-2015 FPT Team - Remove some global variables

- Add some functions in the middle level

- Move driver level definitions from the

‘ee_emulation.h’ file to a new header file

‘ee_internal.h’

1.2.1 10-28-2015 FPT Team Improve the initialization time

1.3.0 12-28-2015 FPT Team - Update solution for handling unrecoverable brownout

cases, FSL_InitEeprom return

EE_ERROR_CANNOT_IDENTIFY_VALID_BLOCK,

in 2 blocks configuration in earlier versions

- Remove the FSL_RecoverEmulationSystem function

because it’s used to handling the error

EE_ERROR_CANNOT_IDENTIFY_VALID_BLOCK

MPC5xxx_EED_UM iii

TABLE OF CONTENT

TABLE OF CONTENT ... iii

LIST OF TABLES ... iv

LIST OF FIGURES .. v

1 Overview ... 1

1.1 Document Overview ... 1
1.2 System Overview.. 1
1.3 Main features .. 1

2 Acronyms and References ... 2

2.1 Acronyms ... 2
2.2 Terms .. 2
2.3 References .. 2

3 Configuration Parameters and Memory Layout... 4

3.1 Configuration Parameters ... 4
3.1.1 EEPROM configuration Structure definition .. 4
3.1.2 Block configuration structure definition ... 4
3.1.3 Cache table configuration structure definition .. 5

3.2 Callback notification .. 5
3.3 Return Codes .. 5
3.4 User defined Macros... 7
3.5 EEPROM Emulation Memory Layout ... 8

3.5.1 EEPROM Data Organization .. 8
3.5.2 EEPROM Emulation Operation .. 11

3.6 EEPROM Emulation Software Cache .. 16

4 API specification ... 17

4.1.1 FSL_InitEeprom .. 17
4.1.2 FSL_ReadEeprom ... 18
4.1.3 FSL_WriteEeprom .. 19
4.1.4 FSL_DeleteRecord .. 20
4.1.5 FSL_RemoveEeprom .. 21
4.1.6 FSL_ReportEepromStatus ... 21
4.1.7 FSL_MainFunction ... 22

5 APPENDIX ... 23

5.1 Code sizes of all the APIs and Timing ... 23
5.1.1 Initialization/Read/Write Timings ... 26

5.2 Record Scheme vs. Device Mapping .. 32
5.3 Notes and Limitations... 32

MPC5xxx_EED_UM iv

LIST OF TABLES

Table 2-1 Acronym ... 2
Table 2-2 Terms .. 2
Table 2-3 References .. 2
Table 3-1 EEPROM Configuration Structure Field Definition .. 4
Table 3-2 Block Configuration Structure Field Definition ... 4
Table 3-3 Cache Table Configuration Structure Field Definition .. 5
Table 3-4 Return Value ... 5
Table 3-5 User defined Macros ... 7
Table 4-1: FSL_InitEeprom .. 18
Table 4-2: FSL_ReadEeprom ... 18
Table 4-3: FSL_WriteEeprom .. 19
Table 4-4: FSL_DeleteRecord .. 20
Table 4-5: FSL_RemoveEeprom .. 21
Table 4-6: FSL_ReportEepromStatus ... 21
Table 4-7: FSL_ MainFunction .. 22
Table 5-1: Code size for C55 devices – VLE mode.. 23
Table 5-2: Code size for C55fp devices – VLE mode – Diab compiler ... 24
Table 5-3: Code size for C90 devices ... 25
Table 5-4: Initialization Timing .. 27
Table 5-5: Read Timing .. 28
Table 5-6: Write Timing ... 30
Table 5-7: Device – Record scheme mapping .. 32

MPC5xxx_EED_UM v

LIST OF FIGURES

Figure 3-1: Record schemes for 4 bytes ECC read invalidation boundary ... 9
Figure 3-2: Record schemes for 8 bytes ECC read invalidation boundary ... 9
Figure 3-3: Record schemes for 16 bytes ECC read invalidation boundary ... 9
Figure 3-4: Record schemes for 32 bytes ECC read invalidation boundary ... 10
Figure 3-5: Block Transition 1 .. 12
Figure 3-6: Block Transition 2 .. 13
Figure 3-7: EEPROM Emulation Software Cache Layout ... 16
Figure 4-1: EED Architecture ... 17

MPC5xxx_EED_UM 1

1 OVERVIEW

1.1 Document Overview

This document is to describe the user manual for the EEPROM Emulation driver embedded on single

bank of C55/C90FL/C90LC flash modules on Freescale MPC5xxx devices with both fix length and

variable length record schemes. The roadmap of document is as follows:

Section 1 gives a brief overview of the system for general background knowledge of the driver.

Section 2 lists the documents referred and abbreviations used in this document.

Section 3 includes information about driver configuration parameters as physical memory layout in

EEPROM emulation system.

Section 4 provides the detailed design of all APIs.

Section 5 provides the performance indexes and some important notes, limitations of the EED.

1.2 System Overview

EEPROM (electrically erasable programmable read only memory), which can be byte or word

programmed and erased, is often used in automotive electronic control units (ECUs). This flexibility for

program and erase operations makes it suitable for data storage of application variables that must be

maintained when power is removed and need to be updated individually during run-time. For the devices

without EEPROM memory, the block-erasable flash memory can be used to emulate the EEPROM

through EEPROM emulation software.

The EEPROM emulation driver implements both fix length and variable-length data record schemes. Two

or more blocks of flash can be used to implement the emulation scheme. The EEPROM functionalities to

be emulated include organizing data records; initializing; de-initializing; reporting EEPROM status;

reading; writing; and deleting data records.

1.3 Main features

The driver is implemented in the way that supports the following main features:

1. Support C55/C90FL/C90LC flash modules with different hardware ECC detections and handlings

2. Support fixed length and variable length record schemes corresponding with 4/8/16/32 bytes ECC

read invalidation boundary.

3. Support re-erase the flash block if the previous erase operation was failed

4. Support re-write the data record to the next location if failed

5. Support dead block elimination

6. Concurrency support via callback function

7. Support code relocation ability: user can run code both from internal ram or from different

internal flash partition

8. Support immediate read/write data records while erasing a block in swapping process

9. Increase swapping performance by adding a cache region dedicated for swap purpose.

10. Ready-to-use demos illustrating the usage of the driver with CodeWarrior, GreenHills compilers

MPC5xxx_EED_UM 2

2 ACRONYMS AND REFERENCES

2.1 Acronyms

Table 2-1 Acronym

Abbreviation Complete name

API Application Programming Interface

ECU Electronic Control Unit

EED EEPROM Emulation Driver

EE EEPROM Emulation

ECC Error Correction Code

MSB Most Significant Bit

Word A word is 4 bytes of data.

Dword A Dword (double word) is 8 bytes of data

Page A page is 16 bytes of data

2.2 Terms

Table 2-2 Terms

Term Definition

Flash Block
It is the smallest portion of flash that can be erased. The minimum block size

16KB

EE Block

It is a cluster used for emulation. It can be a flash block or a combination of

several consecutive flash blocks with constrain that they must belong in the same

block space (low, middle, high). If user chooses an EE block as a flash block only,

then all information of EE block will be totally matched to that of flash block. In

this document, the block concept is used to refer to EE block. If we want to

mention to flash block concept, the term “flash block” will be used to emphasize

it.

Record

This is part of block and it contains the user raw data field and a data id field.

Besides these, it has a status field that is used for the emulation purpose and an

optional size field to support variable data record schemes.

2.3 References

Table 2-3 References

MPC5xxx_EED_UM 3

No Document Name Version Document Identifier (If any)

1. c55_BlockGuide Rev.2

2. MPC5746M_McKinley_RM Rev.1

3. MPC5744M_Panther _RM Rev.0

4. K2_RM Rev.2

5. MPC5775K RM Rev.1.1

MPC5xxx_EED_UM 4

3 CONFIGURATION PARAMETERS AND MEMORY LAYOUT

3.1 Configuration Parameters

The configuration parameters, which are handled as structures are given in this section.

3.1.1 EEPROM configuration Structure definition

The structure EEPROM_CONFIG defines the number of blocks that are used for EEPROM emulation,

pointer to cache table and an indicator for preventing multiple write at the same time.

Table 3-1 EEPROM Configuration Structure Field Definition

Field Type Description

numberOfBlock UINT32 Total number of blocks used for EEPROM

emulation

numberOfDeadBlock UINT32 Total number of blocks which are make to DEAD

in emulation

activeBlockIndex UINT32 Active block index indicating which block is

current active

blockWriteFlag UINT32 Block write lock for erasing and programming

without disturbance

cacheEnable BOOL Use cache table flag to speed up reading time or

not.

- TRUE: use cache.

- FALSE: don’t use cache.

cTable CACHE_TABLE* Cache table pointer

flashBlocks BLOCK_CONFIG** Block configuration array pointer

3.1.2 Block configuration structure definition

The structure BLOCK_CONFIG defines block start address, block size, blank space, block space and the

bit map of specific block selected as well as its partition information.

Table 3-2 Block Configuration Structure Field Definition

Field Type Description

enabledBlock UINT32 The bit map flash block in physical space (block 0 is corresponding

to bit 0; block 1 is corresponding to bit 1 and so on)

blockStartAddr UINT32 Block start address

blockSize UINT32 Block size

MPC5xxx_EED_UM 5

Field Type Description

blankSpace UINT32 The address pointer to the blank space

blockSpace UINT8 The space (low, middle, high) for the block in physical address

partSelect UINT32 The bit map of partition information for this block (partition 0 is

corresponding to bit 0; partition 1 is corresponding to bit 1 and so

on)

3.1.3 Cache table configuration structure definition

The structure CACHE_TABLE defines start address of cache table and the table size.

Table 3-3 Cache Table Configuration Structure Field Definition

Field Type Description

startAddress UINT32 Start address of Cache table

size UINT32 Size of cache table

3.2 Callback notification

The EEPROM Emulation Driver facilitates the user to supply a pointer to CallBack() function so that

time-critical events can be serviced during EEPROM operations. The service watchdog timer is one such

time critical event. If it is not necessary to provide the CallBack() service, the user will be able to disable

it by a NULL function macro.

#define NULL_CALLBACK ((void *) 0xFFFFFFFF)

The job processing callback notifications shall have no parameters and no return value. If a job processing

callback notification is configured as null pointer, the corresponding callback routine shall not be

executed.

3.3 Return Codes

The return values will be returned to the caller function. The following table lists all of possible return

values:

Table 3-4 Return Value

Name Value Description Trouble Shootings

EE_OK 0x0000 Function executes

successfully.

None

EE_INFO_HVOP_INPROGRESS 0x0001 The high voltage

operation is in progress.

Waiting for the

completion of the

program/erase

operation

MPC5xxx_EED_UM 6

EE_INFO_PROGRAM_SUSPEND 0x0002 Program operation has

been suspended.

None

EE_INFO_ERASE_SUSPEND 0x0004 Erase operation has

been suspended.

None

EE_ERROR_WRITE_IN_PROGRESS 0x0008 EPRPOM operation is

in progress and cannot

launch any other

operation.

Waiting for the

completion of the

operation

EE_ERROR_PE_OPT 0x0010 Cannot perform high

voltage operation

successfully.

Check the

EPROM/BLOCK

configurations and

hardware status.

EE_ERROR_MISMATCH 0x0020 It indicates that there is

at least one double

word is not same with

source data.

None

EE_ERROR_BLOCK_STATUS 0x0040 The block status is

invalid.

Call FSL_InitEeprom

to synchronize

EEPROM system.

EE_ERROR_BLOCK_CONFIG 0x0080 The block

configurations are

incorrect.

Check block address

spaces in the

configuration

structures

EE_ERROR_DATA_NOT_FOUND 0x0100 The required data is not

found in the EEPROM

emulation.

None

EE_ERROR_NOT_IN_CACHE 0x0200 Required data is not in

the cache table.

None

EE_ERROR_NO_ENOUGH_SPACE 0x0400 The data is too big to fit

in any of the block.

Use large size of EE

block.

EE_ERROR_PROGRAM_BLOCK_I

NDICATOR

0x0800 Failed to make block

indicator word to

nonblank for several

times

Call FSL_InitEeprom

to synchronize

EEPROM system. If

still failed, replace the

block.

MPC5xxx_EED_UM 7

EE_ERROR_PROGRAM_ERASE_

CYCLE

0x1000 Failed to program erase

cycle word

Call FSL_InitEeprom

to synchronize

EEPROM system. If

still failed, replace the

block.

EE_ERROR_NOT_ENOUGH_BLO

CK_FOR_ROUND_ROBIN

0x2000 The left “good” block

numbers is not enough

for round robin

Replace the dead

blocks and re-initialize

EEPROM system.

EE_ERROR_PROGRAM_BLOCK_I

NDICATOR_FOR_DEAD

0x4000 Failed to program dead

block indicator

Eliminate the failed

block.

EE_MAKE_DEAD_OK 0x8000 Make the block to dead

successfully and can

continue round robin

None

3.4 User defined Macros

These following macros need to be defined in “user_cfg.h”

Table 3-5 User defined Macros

Name Value Description

NUMBER_OF_ACTIVE_

BLOCKS

Any integer value

Default: 1

The number of the active blocks

configured by user

VLE_IS_ON

1

0

To specify which instruction set is used:

- 0: BOOKE

- 1: VLE

SCHEME_SELECT 0: ECC4_FIXLENGTH

1: ECC4_VARLENGTH

2: ECC8_FIXLENGTH

3: ECC8_VARLENGTH

4: ECC16_FIXLENGTH

5: ECC16_VARLENGTH

6: ECC32_FIXLENGTH

7: ECC32_VARLENGTH

User must set the macro to select record

scheme for emulation. ECC4_xxx,

ECC8_xxx, ECC16_xxx, ECC32_xxx

are corresponding with 4, 8, 16, 32 ECC

read invalidation boundary respectively.

MAX_REERASE Any integer value

Default: 1

Maximum number of times to allow re-

erasing a block if it is failed to erase.

MAX_REPGM_BLK_IND Any integer value

Default: 1

Maximum number of times to allow re-

programming block indicator words if it

is failed to make to nonblank

DATA_SIZE Integer value range from 1

to 0xFFFE

To specify the data size of record which

is mandatory for fixed length record

schemes

SWAP_CACHE_SIZE Any integer value greater To specify the size of cache in byte

MPC5xxx_EED_UM 8

than 4 and aligned by 4

(word size)

which uses during swapping to speed up

swapping time.

EER_OPTION 0x00: EER_MCR

0x01: IVOR_EXCEPTION

To specify the method used for handling

ECC error:

- 0: via EER bit in MCR register and

ADD register

- 1: via IVOR2/IVOR1 exception

FLASH_REG_BASE Depending on hardware To specify the flash register base address

For C55 devices (except MPC5777C) which handle ECC via EER bit in MCR register and ADD

register (in ee_blocks.h)

BASE_ADDR_aL_a16K Start address of 16K block in low space

BASE_ADDR_aL_a32K Start address of 32K block in low space

BASE_ADDR_aL_a64K Start address of 64K block in low space

BASE_ADDR_aM_a16K Start address of 16K block in middle

space

BASE_ADDR_aM_a32K Start address of 32K block in middle

space

BASE_ADDR_aM_a64K Start address of 64K block in middle

space

BASE_ADDR_aH_a16K Start address of 16K block in high space

BASE_ADDR_aH_a32K Start address of 32K block in high space

BASE_ADDR_aH_a64K Start address of 64K block in high space

Users need to provide the start address of the data flash blocks. For example, on MPC5775K:

BASE_ADDR_aL_a16K = 0x00800000

BASE_ADDR_aL_a32K = 0x00808000

BASE_ADDR_aL_a64K = 0xFFFFFFFF

It is not necessary to determine the value for the flash block which is not in use. In this case, user can

leave default value of 0xFFFFFFFF for them.

3.5 EEPROM Emulation Memory Layout

3.5.1 EEPROM Data Organization

The block and record schemes are constructed based on length-type record scheme and ECC read

invalidation boundary. Hence, there are different contributions as follows:

MPC5xxx_EED_UM 9

Active Block Indicator (4 bytes)

Erase Cycle (4 bytes)

Dead Block Indicator (4 bytes)

Record Status (4 bytes)

ID

Data (N x 4 bytes)

SIZE

Active Block Indicator (4 bytes)

Erase Cycle (4 bytes)

Dead Block Indicator (4 bytes)

Record Status (4 bytes)

ID

Data (N x 4 bytes)

Small Data (2 bytes)

Variable Length Fixed Length

Copy Done Indicator (4 bytes) Copy Done Indicator (4 bytes)

Figure 3-1: Record schemes for 4 bytes ECC read invalidation boundary

Active Block Indicator (4 bytes)

Erase Cycle (4 bytes)

Dead Block Indicator (4 bytes)

Record Status (4 bytes)

ID

Data (N x 8 bytes)

SIZE

Variable Length
Fixed Length

Unused (4 bytes)

Unused (4 bytes)

Unused (4 bytes)

Unused (4 bytes)

Data Word (4 bytes)

Active Block Indicator (4 bytes)

Erase Cycle (4 bytes)

Dead Block Indicator (4 bytes)

Record Status (4 bytes)

Data (N x 8 bytes)

Unused (4 bytes)

Unused (4 bytes)

Unused (4 bytes)

Copy Done Indicator (4 bytes) Unused (4 bytes) Copy Done Indicator (4 bytes) Unused (4 bytes)

Unused (4 bytes)

ID Data Word (6 bytes)

Figure 3-2: Record schemes for 8 bytes ECC read invalidation boundary

Active Block Indicator (4 bytes)

Erase Cycle (4 bytes)

Dead Block Indicator (4 bytes)

Record Status (4 bytes)

ID

Data (N x 16 bytes)

SIZE

Variable Length

Unused (4 bytes)

Unused (4 bytes)

Unused (4 bytes)

Unused (4 bytes)

Data Word (4 bytes)

Unused (8 bytes)

Unused (8 bytes)

Unused (8 bytes)

Data Double Word (8 bytes)

Data Double Word (8 bytes)

Active Block Indicator (4 bytes)

Erase Cycle (4 bytes)

Dead Block Indicator (4 bytes)

Data (N x 16 bytes)

Fixed Length

Unused (4 bytes)

Unused (4 bytes)

Unused (4 bytes)

Unused (8 bytes)

Unused (8 bytes)

Unused (8 bytes)

Copy Done Indicator (4 bytes) Unused (4 bytes)

Unused (8 bytes)

Copy Done Indicator (4 bytes) Unused (4 bytes)

Unused (8 bytes)

Record Status (4 bytes) Unused (4 bytes)

ID Data Word (6 bytes)

Figure 3-3: Record schemes for 16 bytes ECC read invalidation boundary

MPC5xxx_EED_UM 10

Active Block Indicator (4 bytes)

Erase Cycle (4 bytes)

Dead Block Indicator (4 bytes)

Record Status (4 bytes)

ID

Data (N x 32 bytes)

SIZE

Variable Length

Unused (4 bytes)

Unused (4 bytes)

Unused (4 bytes)

Unused (4 bytes)

Data Word (4 bytes)

Unused (24 bytes)

Unused (24 bytes)

Unused (24 bytes)

Data (24 bytes)

Data (24 bytes)

Active Block Indicator (4 bytes)

Erase Cycle (4 bytes)

Dead Block Indicator (4 bytes)

Data (N x 32 bytes)

Fixed Length

Unused (4 bytes)

Unused (4 bytes)

Unused (4 bytes)

Unused (bytes)

Unused (24 bytes)

Unused (24 bytes)

Data (16 bytes)

Copy Done Indicator (4 bytes) Unused (4 bytes)

Unused (24 bytes)

Copy Done Indicator (4 bytes) Unused (4 bytes)

Unused (24 bytes)

Record Status (4 bytes) Unused (4 bytes)

ID Data Word (6 bytes)

Figure 3-4: Record schemes for 32 bytes ECC read invalidation boundary

Each emulation block contains:

1. Block header

This section stores erase cycle and block indicators. To successfully recover from brownout, each field in

this section must be located in the addresses that are aligned by the ECC read boundary.

2. Data record space

Data records are organized as several sections:

 Record status (4 bytes in size): indicate status of the record

If it is 0xFFFF0000, the record is completed state

If it is 0x00000000, the record is in deleted state

Other values, the record is in invalid state.

Only completed records are considered as the valid one for read/write operations.

 Record identifier (2 bytes in size): Its most significant bit (MSB) will be used to identify whether

this record ID is immediate data or not. MSB bit is 1 denotes that this data ID is immediate data.

Otherwise, this data is normal data.

 Size (2 bytes in size): It is used only on variable length record schemes and to define actual size

of data record.

 Small data: this is the data section that is padded for the record status and identifier/size to make

they aligned by ECC read boundary size.

MPC5xxx_EED_UM 11

 Remaining data: the remaining data and must be an ECC size boundary alignment component

The block status is specified as the combination of several fields as following table:

Table 8 Block State Definition

State Dead Block

Indicator

Erase Cycle Active Block

Indicator

Copy Done

Indicator

Record

Space

Dead Nonblank Don’t care Don’t care Don’t care Don’t care

Erased Blank Blank Blank Blank Blank

Alternate Blank Valid Blank Blank Blank

Active Blank Valid Nonblank Don’t care Don’t care

Update Blank Valid Blank Blank Nonblank

Copy done Blank Valid Blank Nonblank Nonblank

Invalid Not in Dead, Erased, Alternate, Active, Update, Copy done states

3.5.2 EEPROM Emulation Operation

3.5.2.1 Initialize EEPROM

Before using EEPROM, it needs to be initialized. The initialization will deal with two kinds of situations:

 The first time of using EEPROM: In this case, the EED will format all blocks then assign one as

the active block and the others as alternative blocks. At last, clears the contents of the cache table

if enabled.

 Continue using EEPROM: In this case, the EED should determine which block is the current

active one, do recovery and update blank space for all emulated blocks. Then, it fills the cache

table with expected data if enabled.

Initializing EEPROM also does the brownout handling to recover from accident. Normally, the block

status transition follows the below figures:

MPC5xxx_EED_UM 12

Erased

Erased

Erased

Erased

Alternate

Erased

Erased

Erased

Active

Erased

Erased

Erased

Active

Alternate

Erased

Erased

Active

Alternate

Alternate

Erased

Active

Alternate

Alternate

Alternate

Active

Active

Alternate

Alternate

Active

Active

Updated

Alternate

Erased

Active

Copy Done

Alternate

Make
 Block 0 as alternate

 (program erase cycle)

Make
block 3 to alternate

(program erase cycle)

Make
block 2 to alternate

(program erase cycle)

Erase oldest active block

Data is backup from
block 0 to block 2

Make updated block to active
(program active indicator)

Make Block 0 as
 active (program
active indicator)

Make block 1
to alternate

Block 0 was fulfilled,
make block 1 to active

(program active indicator)

Alternate

Active

Copy Done

Alternate

Make the erased block
 to alternate

(program erase cycle)

Stable states

Active

Active

Copy Done

Alternate

Make Updated block
 to Copy Done (program

copy done indicator)

Figure 3-5: Block Transition 1

MPC5xxx_EED_UM 13

Make
 Block 0 as alternate

 (program erase cycle)

Make
block 1 to alternate

(program erase cycle)

Erase oldest active block

Data is backup from
block 0 to block 1

Make updated block to active
(program active indicator)

Make Block 0 as
 active (program
active indicator)

Make the erased block
 to alternate

(program erase cycle)

Make Updated block
 to Copy Done (program

copy done indicator)
Active

Alternate

Erased

Erased

Alternate

Erased

Active

Erased

Active

Updated

Active

Copy Done

Erased

Copy Done

Stable
state

Alternate

Copy Done

Figure 3-6: Block Transition 2

EEPROM emulation driver is responsible for keeping EEPROM in the stable states.

If there is a brownout occurs during block status transition, to recovery block status as well as data

integrity, the driver will handle:

 If EEPROM system is in unstable state as defined in above figures, follow the steps in these

figures to make it in stable state

 If failed to program block indicators (includes active block indicator, and copy done indicator) to

nonblank value after number of trying times, the driver will return

EE_ERROR_PROGRAM_BLOCK_INDICATOR,

EE_ERROR_PROGRAM_BLOCK_INDICATOR_FOR_DEAD if that failure is in dead block

indicator. In the situation of dead block indicator, it is user’s responsibility to eliminate the error

block from emulation. Otherwise, FSL_InitEeprom API should be invoke.

 If failed to program erase cycle, the driver will return error

EE_ERROR_PROGRAM_ERASE_CYCLE to inform user. In addition, the user must re-

initialize emulate system by calling FSL_InitEeprom API.

 During emulation, if number of dead blocks is too large (in other words, number of good blocks

is not enough for round robin), it will return error

EE_ERROR_NOT_ENOUGH_BLOCK_FOR_ROUND_ROBIN and the user must specify

additional blocks to continue using emulation system

MPC5xxx_EED_UM 14

3.5.2.2 Write EEPROM Data

Because the flash memory cell cannot be erased individually, EED must write a new data record with

same data ID for the updated value to the EEPROM blank area. The followings describe several extreme

situations, which may take place as well as corresponding handling during writing operation:

 Program operation fails: If program operation fails during programming block information

including block indicator and erase cycle, the proper error code will be returned and stop writing.

If program operation fails during programming data record, this data will be re-programmed by

skipping a suitable address until successfully. If this operation consecutively takes place with too

many times such that there is no enough space to write on available blocks, the error of

EE_ERROR_NO_ENOUGH_SPACE may be returned and finish writing.

 Immediate data request: MSB will be used to distinguish immediate data or normal data. If an

immediate data requested (MSB = 1) while an erase operation is going on, this high voltage

operation need to be suspended to serve that request. Otherwise, (MSB=0) new normal data

requested while an erase operation is going on, it will be returned

EE_INFO_HVOP_INPROGRESS error.

 Swapping: After several record writings, the active block may not have enough free space for a

new data record. It is needed to copy all the latest data records to alternative block to clean up the

EEPROM. This procedure is called “swapping” and after swapping, the alternative block will

become the new active block and the old active block will be formatted as new alternative block.

3.5.2.3 Read EEPROM Data

Read routine will first search in cache table if enabled. If founded, it should retrieve address of that record

from cache table. Otherwise, it will identify the latest copy of data record by scanning the entire the

current active block from the first data record to the blank region in case of adopting variable length

record schemes. If that record ID is not found in current active block, it will search in entire all other

active blocks in the ageing order. For fixed length record scheme, to increase searching performance, an

optimized search algorithm is implemented to enable search from blankSpace address back to beginning

of blocks. Finally, it will return EE_ERROR_DATA_NOT_FOUND if there is no data ID in cache table

as well as all active blocks.

3.5.2.4 Delete EEPROM Data

If does not need a data record, user can delete it from the emulated EEPROM system. EED does NOT

physically remove this record at the time users want to delete it. Instead, EED will only change the

record’s state to “DELETE” so that it is regarded as un-used data and will be removed from emulated

EEPROM in block swapping.

However, the deleted data record can be re-written into the EEPROM. The read routine will determine the

latest data record.

MPC5xxx_EED_UM 15

3.5.2.5 Report EEPROM Status

The block erasing cycles will be retrieved from the current active block and it reflects the erasure times

since the EEPROM has been setup. It is only an approximate number and will be set to one when first

time using EEPROM.

3.5.2.6 Remove EEPROM

If the emulated EEPROM is not required, the flash memory for EEPROM emulation should be released.

The removing routine will erase all the blocks used for emulation.

MPC5xxx_EED_UM 16

3.6 EEPROM Emulation Software Cache

Figure 3-7: EEPROM Emulation Software Cache Layout

In order to speed up the data record searching, the EED provides the software cache for buffering the data

records locations. Both the start address and size of the cache table are user configurable.

The cache table is one dimension array. Each item of this array is 32-bit length and saves the latest

location of the data record which has ID equals to this item index. The cache items are filled with

0xFFFF_FFFF to indicate the corresponding data records do NOT exist. The total array item number

depends on the size of the cache table:

Item Number = Cache Table Size in bytes / 4

If the ID of a data record is larger than the item number, it can only be searched by going through the

entire active blocks.

This cache algorithm can save not only the EED code size, but also the reading time. However, it is

required to define the most frequently accessed data IDs within the table item number (from 0 to

item_number-1).

If the cache table is enabled, the initialization routine will fill the cache table by scanning the active

blocks. The cache table will be updated after deleting or writing a new copy of data record. Deleted IDs

are filled in the cache table by value of 0xFFFFFFFE.

The cache table can be disabled when the user’s resource is limited.

It is not permitted to enable the cache table after the EEPROM initialization. When it is needed,

EEPROM initialization routine should be re-called.

Record 1

location The cache item

index should be

equal to the data

record ID. If the

data do not exist,

the corresponding

item is empty.

Record 3

does not exist

Data Record 6

Data Record 5

Empty

Empty

Data Record 2

Data Record 0

Data Record 1

MPC5xxx_EED_UM 17

4 API SPECIFICATION

EED User APIs

1. Set block configuration
2. Set Cache table
3. Call EED functions

USER APPLICATION

FSL_InitEeprom

FSL_ReadEeprom

FSL_WriteEeprom

FSL_DeleteRecord

FSL_MainFunction

FSL_RemoveEeprom

Middle Level Functions

Low Level Functions

EED Internal APIs

Figure 4-1: EED Architecture

The EEPROM Emulation Driver will have three levels of functions: high level, middle level and low

level.

 High level (User level) APIs provide the user’s interface and program flow controlling.

 Middle level functions provide the relatively independent task unit.

 Low level functions interface with hardware to provide the fundamental Flash operations.

4.1.1 FSL_InitEeprom

This API initializes the EEPROM Emulation driver (software) and all EEPROM memory relevant

registers (hardware) with parameters provided in the given configuration set.

MPC5xxx_EED_UM 18

This API also does the brownout recovering to avoid losing data due to brownout and determines the

active block index as well. Refer to section 3.5.2.1 for more information.

Table 4-1: FSL_InitEeprom

Prototype UINT32 FSL_InitEeprom (EEPROM_CONFIG* eepromConfig, void(*CallBack)(void))

Parameter

EEPROM_

CONFIG*

eepromConfig: the EEPROM emulation configurations structure pointer.

void * CallBack: function pointer of callback

Return

value

UINT32

EE_OK: successful completion

EE_ERROR_PROGRAM_BLOCK_INDICATOR_FOR_DEAD: cannot

make the dead block indicator to nonblank

EE_ERROR_WRITE_IN_PROGRESS: an EEPOM operation is in

progress

EE_ERROR_NO_ENOUGH_SPACE: not enough space to copy the latest

copy of data record from oldest active block to update block

EE_INFO_HVOP_INPROGRESS: a program/erase operation is in

progress

EE_ERROR_PROGRAM_BLOCK_INDICATOR: cannot make the block

indicator to nonblank

EE_ERROR_PROGRAM_ERASE_CYCLE: program erase cycle

unsuccessfully

EE_ERROR_BLOCK_CONFIG: block configurations are incorrect.

EE_ERROR_NOT_ENOUGH_BLOCK_FOR_ROUND_ROBIN: number

of “good” blocks left after dead block elimination is not enough for round

robin.

Note: The FSL_InitEeprom will be synchronous in behavior and it will not support re-entrance

4.1.2 FSL_ReadEeprom

This API is to read the specific data record. The data record size to be read is determined by the dataSize

variable.

This API can be called when an erase is ongoing on such as a swapping is being done. If the erased block

is in different partition with the targeted read block, it will read the expected data record without

suspending that high voltage operation. Otherwise, if the erased block is in the same partition, it will read

the expected data record after suspending this high voltage. However, FSL_MainFunction still need to be

called after that to update block status for all blocks.

Refer to section 3.5.2.3 for more information.

Table 4-2: FSL_ReadEeprom

Prototype UINT32 FSL_ReadEeprom(EEPROM_CONFIG *eepromConfig, UINT16 dataID,

 UINT16 dataSize, UINT32 source, void (*CallBack)(void))

MPC5xxx_EED_UM 19

Parameter

EEPROM_

CONFIG*

eepromConfig: the EEPROM emulation configurations structure pointer.

UINT16 dataID: the required data ID. It can be any value from 0x0 ~ 0xFFFF. The

MSB is used to identify whether this is immediate data or not.

- MSB = 1: immediate data

- MSB = 0: normal data.

UINT16 dataSize: Size of data to be read in byte. This value can be different from

actual data record size.

UINT32 source: address of buffer to store read data

void * CallBack: function pointer of callback

Return

value

UINT32

EE_OK: successful completion

EE_ERROR_DATA_NOT_FOUND : the requested data record is not present

in EEPROM

EE_ERROR_WRITE_IN_PROGRESS: an EEPOM operation is in

progress

EE_INFO_HVOP_INPROGRESS: : a program/erase operation is in

progress

Note: The FSL_ReadEeprom will be synchronous in behavior and it will not support re-entrance.

FSL_InitEeprom has been successful execution before calling it.

4.1.3 FSL_WriteEeprom

This API is to write data records to the EEPROM. It will re-write data record if this program operation

fails. If an immediate data request while an erase operation is going on, the operation will be suspended to

serve this request in advance.

Note that if this API is called to write a normal data while an erase is going on such as a swapping is

being done, it will return EE_INFO_HVOP_INPROGRESS.

Refer to section 3.5.2.2 for more information.

Table 4-3: FSL_WriteEeprom

Prototype UINT32 FSL_WriteEeprom(EEPROM_CONFIG* eepromConfig, UINT16 dataID,

 UINT16 dataSize, UINT32 source, void (*CallBack)(void))

Parameter

EEPROM_

CONFIG*

eepromConfig: the EEPROM emulation configurations structure pointer.

UINT16 dataID: the required data ID. It can be any value from 0x0 ~ 0xFFFF. The

MSB is used to identify whether this is immediate data or not.

- MSB = 1: immediate data

- MSB = 0: normal data.

UINT16 dataSize: the actual data size in bytes.

UINT32 source: address of data buffer

void * CallBack: function pointer of callback

MPC5xxx_EED_UM 20

Return

value

UINT32

EE_OK: successful completion

EE_ERROR_NO_ENOUGH_SPACE: not enough blank space for the

requested record

EE_ERROR_WRITE_IN_PROGRESS: an EEPOM operation is in

progress

EE_INFO_HVOP_INPROGRESS: a program/erase operation is in

progress

EE_ERROR_PROGRAM_BLOCK_INDICATOR: cannot make the block

indicator to nonblank

Note: The FSL_WriteEeprom will be synchronous in behavior and it will not support re-entrance.

FSL_InitEeprom has been successful execution before calling it.

4.1.4 FSL_DeleteRecord

This API is to delete a data record in the EEPROM emulated Flash.

This API can be called when an erase is going on such as a swapping is being done. But it will suspend

this high voltage before deleting the data record. However, FSL_MainFunction still need to be called after

that to update block status for all blocks.

Table 4-4: FSL_DeleteRecord

Prototype UINT32 FSL_DeleteRecord(EEPROM_CONFIG* eepromConfig, UINT16 dataID,

 void (*CallBack)(void))

Parameters

EEPROM_

CONFIG*

eepromConfig: the EEPROM emulation configurations structure pointer.

UINT16 dataID: the required data ID. It can be any value from 0x0 ~ 0xFFFF. The

MSB is used to identify whether this is immediate data or not.

- MSB = 1: immediate data

- MSB = 0: normal data.

void * CallBack: function pointer of callback

Return

values

UINT32

EE_OK: successful completion

EE_ERROR_DATA_NOT_FOUND : the requested data record is not present

in EEPROM

EE_ERROR_WRITE_IN_PROGRESS: an EERPOM operation is in

progress

EE_ERROR_PE_OPT: failed to perform high voltage operation

EE_INFO_HVOP_INPROGRESS: a program/erase operation is in

progress

Note: The FSL_DeleteRecord will be synchronous in behavior and it will not support re-entrance.

FSL_InitEeprom has been successful execution before calling it.

MPC5xxx_EED_UM 21

4.1.5 FSL_RemoveEeprom

This function is to clear all blocks used for EEPROM emulation. Moreover, all the blocks will be fully

erased.

Table 4-5: FSL_RemoveEeprom

Prototype UINT32 FSL_RemoveEeprom(EEPROM_CONFIG * eepromConfig,

 void (*CallBack)(void))

Parameters

EEPROM_

CONFIG*

eepromConfig: the EEPROM emulation configurations structure pointer.

void * CallBack: function pointer of callback

Return

values

UINT32

EE_OK: successful completion

EE_ERROR_WRITE_IN_PROGRESS: an EEPROM operation is in

progress

EE_ERROR_PE_OPT: failed to perform high voltage operation

EE_INFO_HVOP_INPROGRESS: a program/erase operation is in

progress

EE_ERROR_BLOCK_CONFIG: block configuration is not correct

Note: The FSL_RemoveEepom will be synchronous in behavior and it will not support re-entrance.

4.1.6 FSL_ReportEepromStatus

This API is to report block erasing cycles and check the current Active block status.

Note that if this API is called when an erase is going on such as a swapping is being done, it will return

EE_INFO_HVOP_INPROGRESS.

Table 4-6: FSL_ReportEepromStatus

Prototype UINT32 FSL_ReportEepromStatus(EEPROM_CONFIG* eepromConfig, UINT32*

erasingCycles)

Parameter

s

EEPROM_

CONFIG*

eepromConfig: the EEPROM emulation configurations structure pointer.

UINT32* erasingCycles: store the erase cycle which is retrieved from current active

block

Return

value

UINT32

EE_OK: successful completion

EE_ERROR_BLOCK_STATUS: there is a block which is not in erased,

copy done, alternate, active states

EE_ERROR_WRITE_IN_PROGRESS: an EEPROM operation is in

progress

EE_INFO_HVOP_INPROGRESS: a program/erase operation is in

progress

Note: The FSL_ReportEepromStatus will be synchronous in behavior and it will not support re-entrance.

MPC5xxx_EED_UM 22

4.1.7 FSL_MainFunction

This API will help in synchronizing the EEPROM system. It will try to re-erase the old ACTIVE block

for defined number of times if previous erase operation was failed. It also updates erase cycles and block

status.

Table 4-7: FSL_ MainFunction

Prototype void FSL_MainFunction(EEPROM_CONFIG *eepromConfig, void (*CallBack) (void))

Parameter

EEPROM_

CONFIG*

eepromConfig: the EEPROM emulation configurations structure pointer.

void * CallBack: function pointer of callback

Return

value

UINT32

EE_OK: successful completion

EE_ERROR_PROGRAM_ERASE_CYCLE: program erase cycle

unsuccessfully

EE_ERROR_NOT_ENOUGH_BLOCK_FOR_ROUND_ROBIN: number

of “good” blocks left after dead block elimination is not enough for round

robin.

EE_ERROR_PE_OPT: failed to perform high voltage operation

EE_INFO_HVOP_INPROGRESS: a program/erase operation is in

progress

EE_ERROR_PROGRAM_BLOCK_INDICATOR_FOR_DEAD: failed in

make the dead block indicator to nonblank

EE_MAKE_DEAD_OK: make the block to dead successfully and can

continue emulation

EE_ERROR_PROGRAM_BLOCK_INDICATOR: failed in make the

active block indicator to nonblank

Note: The FSL_MainFunction will be synchronous in behavior and it will not support re-entrance.

It is the user’s responsibility to poll swap status global enumeration variable eraseStatus_Flag to quit the

calling API loop. User should consider the following possible values:

 ERASE_NOTSTARTED (0x00): the variable keeps that value after successful completing the

swapping process.

 ERASE_INPROGRESS (0x03): the FSL_WriteEeprom has just triggered an erase operation in

swapping process or the FSL_MainFunction has started a re-erase operation.

 ERASE_SWAPERROR (0x04): the function failed to re-erase the block or failed in programming

block indicator/erase cycle. At this situation, it is necessary to call FSL_InitEeprom to

synchronize EEPROM system.

MPC5xxx_EED_UM 23

5 APPENDIX

5.1 Code sizes of all the APIs and Timing

The below mentioned data are the code size of all the APIs on VLE and BOOKE modes when compiled

with CodeWarrior 2.10, Green Hill 6.1.5, Diab 5.9.3.0 compilers

Table 5-1: Code size for C55 devices – VLE mode

API Name
Code Warrior Green Hills

FixLength VarLength FixLength VarLength

FSL_BlockSwapping 628 632 590 590

FSL_CopyDataRecord 142 140 142 140

FSL_DeleteRecord 300 300 270 270

FSL_EraseEEBlock 212 212 234 234

FSL_FlashAbortErase 74 74 42 42

FSL_FlashCheckStatus 106 106 54 54

FSL_FlashEraseStart 88 88 90 90

FSL_FlashProgramStart 222 222 188 188

FSL_FlashRead 230 230 184 184

FSL_FlashResume 98 98 80 80

FSL_FlashSuspend 210 210 128 128

FSL_GetEraseStatus 156 156 154 154

FSL_GetFailedAddr 192 192 126 126

FSL_GetLastJobStatus 1010 1010 928 928

FSL_GetRecordLength 74 76 48 48

FSL_GetWriteRecordOption 148 148 152 152

FSL_InitEeprom 1088 1088 1116 1116

FSL_MainFunction 236 236 250 250

FSL_MakeBlock2Dead 264 264 234 234

FSL_ProcessImmediateRequest 98 98 92 92

FSL_ProgramBlockIndicator 120 120 102 102

FSL_ReadBlockStatus 466 466 358 358

FSL_ReadEeprom 246 246 232 232

FSL_ReadRecordAtAddr 128 162 150 156

FSL_ReadRecordHead 54 46 62 58

FSL_RemoveEeprom 94 94 94 94

FSL_ReportEepromStatus 138 138 136 136

FSL_SearchInAllBlocks 188 192 180 188

FSL_SearchInTable 64 64 66 66

FSL_SearchRecordFromBottom 156 N/A 142 N/A

FSL_SearchRecordFromTop 504 556 388 442

FSL_SyncProgram 204 204 180 180

MPC5xxx_EED_UM 24

FSL_UpdateCacheTable 54 54 54 54

FSL_ValidateCopyDoneBlock 148 148 138 138

FSL_ValidateDeadBlocks 186 186 172 172

FSL_WriteDataRecord 370 522 350 474

FSL_WriteEeprom 400 398 376 374

Total 9096 9176 8282 8324

Table 5-2: Code size for C55fp devices – VLE mode – Diab compiler

API Name FixLength VarLength

EER_exception_handler 48 48

FSL_BlockSwapping 556 556

FSL_CopyDataRecord 122 122

FSL_DeleteRecord 276 276

FSL_EraseEEBlock 180 180

FSL_FlashAbortErase 74 74

FSL_FlashCheckStatus 100 100

FSL_FlashEraseStart 86 86

FSL_FlashProgramStart 204 204

FSL_FlashRead 156 156

FSL_FlashResume 96 96

FSL_FlashSuspend 160 160

FSL_GetEraseStatus 154 154

FSL_GetLastJobStatus 840 840

FSL_GetRecordLength 60 60

FSL_GetWriteRecordOption 148 148

FSL_InitEeprom 970 970

FSL_MainFunction 232 232

FSL_MakeBlock2Dead 198 198

FSL_ProcessImmediateRequest 92 92

FSL_ProgramBlockIndicator 92 92

FSL_ReadBlockStatus 354 354

FSL_ReadEeprom 226 226

FSL_ReadRecordAtAddr 110 110

FSL_ReadRecordHead 40 30

FSL_RemoveEeprom 82 82

FSL_ReportEepromStatus 124 124

FSL_SearchInAllBlocks 172 174

FSL_SearchInTable 60 60

FSL_SearchRecordFromBottom 142 N/A

FSL_SearchRecordFromTop 396 436

FSL_SyncProgram 170 170

MPC5xxx_EED_UM 25

FSL_UpdateCacheTable 52 52

FSL_ValidateCopyDoneBlock 124 124

FSL_ValidateDeadBlocks 170 170

FSL_WriteDataRecord 304 400

FSL_WriteEeprom 350 350

cReadAndClearEei 24 24

cRestoreEei 16 16

Total 7760 7746

Table 5-3: Code size for C90 devices

API Name

Code Warrior Green Hills

BOOKE VLE BOOKE VLE

Fix Var Fix Var Fix Var Fix Var

EER_exception_handler 28 28 36 36 60 60 44 44

FSL_BlockSwapping 936 936 626 626 880 880 590 590

FSL_CopyDataRecord 208 204 142 140 216 212 142 140

FSL_DeleteRecord 468 468 300 300 456 456 270 270

FSL_EraseEEBlock 444 444 272 272 412 412 286 286

FSL_FlashAbortErase 112 112 90 90 80 80 46 46

FSL_FlashCheckStatus 160 160 130 130 108 108 58 58

FSL_FlashDepletionRecover_C 332 332 226 226 332 332 226 226

FSL_FlashEraseStart 136 136 102 102 148 148 94 94

FSL_FlashProgramStart 312 312 218 218 280 280 182 182

FSL_FlashRead 288 288 194 194 252 252 164 164

FSL_FlashResume 160 160 108 108 128 128 84 84

FSL_FlashSuspend 312 312 226 226 224 224 132 132

FSL_GetEraseStatus 264 264 162 162 256 256 160 160

FSL_GetLastJobStatus 1700 1700 1002 1002 1412 1412 928 928

FSL_GetRecordLength 100 100 74 74 72 72 48 48

FSL_GetWriteRecordOption 260 260 148 148 264 264 152 152

FSL_InitEeprom 1752 1752 1094 1094 1660 1660 1120 1120

FSL_MainFunction 412 412 236 236 380 380 248 248

FSL_MakeBlock2Dead 408 408 264 264 372 372 234 234

FSL_ProcessImmediateRequest 152 152 98 98 148 148 92 92

FSL_ProgramBlockIndicator 200 200 120 120 168 168 102 102

FSL_ReadBlockStatus 684 684 458 458 580 580 358 358

FSL_ReadEeprom 384 384 246 246 376 376 232 232

FSL_ReadRecordAtAddr 196 196 128 128 252 252 150 150

FSL_ReadRecordHead 96 80 54 46 112 104 60 56

FSL_RemoveEeprom 172 172 94 94 180 180 94 94

FSL_ReportEepromStatus 228 228 138 138 228 228 136 136

MPC5xxx_EED_UM 26

FSL_SearchInAllBlocks 284 292 188 192 280 288 180 188

FSL_SearchInTable 104 104 64 64 104 104 66 66

FSL_SearchRecordFromBottom 240 N/A 156 N/A 220 N/A 140 N/A

FSL_SearchRecordFromTop 692 752 504 550 564 628 388 422

FSL_SyncProgram 308 308 202 202 280 280 178 178

FSL_UpdateCacheTable 84 84 54 54 84 84 54 54

FSL_ValidateCopyDoneBlock 256 256 148 148 244 244 138 138

FSL_ValidateDeadBlocks 292 292 184 184 280 280 172 172

FSL_WriteDataRecord 560 728 366 480 508 708 346 466

FSL_WriteEeprom 640 636 400 398 608 604 372 370

cReadAndClearEei 12 12 10 10 16 16 14 14

cRestoreEei 8 8 6 6 16 16 12 12

Total (1) 14384 14356 9268 9264 13240 13276 8492 8506

Total (2) 14024 13900 9012 8942 12872 12896 8224 8230

Note:

(1) : For C90FL

(2) : For C90LC – Don’t include FSL_FlashDepletionRecover_C

5.1.1 Initialization/Read/Write Timings

The timing is measured in millisecond unit (ms) and under following common configuration:

 Number of blocks is 3

 Maximum number of active blocks is 2

 Size of each EPROM block is 0x4000 (16 Kb)

 Cache size (if enabled) is 48 bytes (12 elements)

 Swap cache size is 0x28 bytes (10 elements)

 Data record has ID from 0 to 11

For the initialization operation:

 Best case is defined as:

o Cache is disable

o The EEPROM system has been finished initialization for the first time

 Worse case is defined as:

o Cache is disable

o The EEPROM system has just been started swapping

For the read operation:

 Best case is defined as:

o Cache is enabled

o The read record is in the enabled cache

 Worse case is defined as:

o Cache is enabled

o The read record at the start of the oldest ACTIVE block

o Current active block has been fulfilled with data records

For the write operation:

MPC5xxx_EED_UM 27

 Best case is defined as:

o Cache is disabled

o Current active block still has space for the new record

 Worse case is defined as:

o Cache is disabled

o Current active block has not space for the new record, so need proceed a swapping

operation

o Swap cache size = 4 bytes

Table 5-4: Initialization Timing

Data Size
16

Bytes

32

Bytes

64

Bytes

Scheme 32 (MPC5775K)

System clock is 260

MHz

VLE

Fixed -

Length

Best Case 48.84 48.84 48.84

Worst Case 85.5 67.6 61.4

Variable

Length

Best Case 48.86 48.86 48.86

Worst Case 94.1 94.1 94.1

Scheme 16 (MPC5604P)

System clock is 80 MHz
VLE

Fixed -

Length

Best Case 40 40 40

Worst Case 288 270 256

Variable

Length

Best Case 38 38 38

Worst Case 296 297 297

Scheme 8 (MPC5643L)

System clock is 64 MHz
VLE

Fixed -

Length

Best Case 81 81 81

Worst Case 520 489 465

Variable

Length
Best Case 73 73 73

MPC5xxx_EED_UM 28

Worst Case 510 510 510

BookE

Fixed -

Length

Best Case 85 85 85

Worst Case 531 499 472

Variable

Length

Best Case 85 85 85

Worst Case 532 534 533

Scheme 4 (MPC5602D)

System clock is 80 MHz
VLE

Fixed -

Length

Best Case 52 52 52

Worst Case 183 155 137

Variable

Length

Best Case 47 47 47

Worst Case 174 174 171

Table 5-5: Read Timing

Data Size
16

Bytes

32

Bytes

64

Bytes

Scheme 32 (MPC5775K)

System clock is 260

MHz

VLE

Fixed -

Length

Best Case 0.008 0.009 0.011

Worst

Case
4.47 2.24 1.5

Variable

Length

Best Case 0.015 0.016 0.02

Worst

Case
6.03 6.03 6.02

MPC5xxx_EED_UM 29

Scheme 16 (MPC5604P)

System clock is 80 MHz
VLE

Fixed -

Length

Best Case 0.013 0.016 0.022

Worst

Case
6.5 4.4 2.6

Variable

Length

Best Case 0.016 0.019 0.025

Worst

Case
8.8 8.8 8.8

Scheme 8 Scheme 8

(MPC5643L) System

clock is 64 MHz

VLE

Fixed -

Length

Best Case 0.02 0.025 0.034

Worst

Case
11 7 4.24

Variable

Length

Best Case 0.019 0.023 0.031

Worst

Case
11.45 11.45 11.45

BookE

Fixed -

Length

Best Case 0.023 0.28 0.038

Worst

Case
11.8 7.9 4.8

Variable

Length

Best Case 0.023 0.027 0.37

Worst

Case
13.8 13.8 13.8

Scheme 4 (MPC5602D)

System clock is 80 MHz
VLE

Fixed -

Length

Best Case 0.012 0.15 0.02

Worst

Case
7.9 4.7 2.65

Variable

Length
Best Case 0.011 0.014 0.02

MPC5xxx_EED_UM 30

Worst

Case
8.6 8.6 8.6

Table 5-6: Write Timing

Data Size
16

Bytes

32

Bytes

64

Bytes

Scheme 32 (MPC5775K)

System clock is 260 MHz
VLE

Fixed -

Length

Best Case 0.06 0.08 0.11

Worst

Case
46.3 30.6 25.5

Variable

Length

Best Case 0.09 0.1 0.12

Worst

Case
53.75 53.75 53.78

Scheme 16 (MPC5604P)

System clock is 80 MHz
VLE

Fixed -

Length

Best Case 0.14 0.2 0.32

Worst

Case
57 41 28

Variable

Length

Best Case 0.15 0.2 0.33

Worst

Case
65 65 65

Scheme 8 (MPC5643L)

System clock is 64 MHz
VLE

Fixed -

Length

Best Case 0.17 0.23 0.35

Worst

Case
96 70 49

Variable

Length

Best Case 0.18 0.23 0.35

Worst

Case
89 89 89

MPC5xxx_EED_UM 31

BookE

Fixed -

Length

Best Case 0.18 0.25 0.37

Worst

Case
103.6 87.4 53.9

Variable

Length

Best Case 0.19 0.25 0.37

Worst

Case
106 107 107

Scheme 4 (MPC5602D)

System clock is 80 MHz
VLE

Fixed -

Length

Best Case 0.1 0.15 0.26

Worst

Case
72 48 32

Variable

Length

Best Case 0.1 0.16 0.26

Worst

Case
65 65 65

MPC5xxx_EED_UM 32

5.2 Record Scheme vs. Device Mapping

The following table lists all the supported devices as well as corresponding properly record schemes

Table 5-7: Device – Record scheme mapping

No.
Flash

module

Record

scheme

ECC handing

method
Devices Configuration macro

1
C55 Data

Flash

ECC32

Via MCR and

ARRD

registers

MPC5744P

MPC5746M

MPC5746R

MPC5775K

MPC5777M

MPC5748G

FLASH_MODULE = C55

SCHEME_SELECT = ECC32_VARLENGTH

or

SCHEME_SELECT = ECC32_FIXLENGTH

EER_OPTION = EER_MCR

ECC8
Via exception

handler
MPC5777C

FLASH_MODULE = C55

SCHEME_SELECT = ECC8_VARLENGTH

or

SCHEME_SELECT = ECC8_FIXLENGTH

EER_OPTION = IVOR_EXCEPTION

2

C90FL

Code

Flash

ECC8
Via exception

handler

MPC5668

MPC5674F

MPC5644A

MPC564xS

MPC564xL

MPC5642A

MPC5676R

FLASH_MODULE = C90FL

SCHEME_SELECT = ECC8_VARLENGTH

or

SCHEME_SELECT = ECC8_FIXLENGTH

EER_OPTION = IVOR_EXCEPTION

3

C90LC

Data

Flash

ECC16
Via exception

handler

MPC5604B

MPC5607B

MPC5606B

MPC5605P

MPC5604P

MPC560xS

MPC563xM

FLASH_MODULE = C90LC

SCHEME_SELECT = ECC16_VARLENGTH

or

SCHEME_SELECT = ECC16_FIXLENGTH

EER_OPTION = IVOR_EXCEPTION

4

C90LC

Data

Optimized

Flash

ECC4
Via exception

handler

MPC5602D

MPC564xB

MPC564xC

MPC5602P

MPC567xK

MPC560xE

FLASH_MODULE = C90LC_DFO

SCHEME_SELECT = ECC4_VARLENGTH

or

SCHEME_SELECT = ECC4_FIXLENGTH

EER_OPTION = IVOR_EXCEPTION

5.3 Notes and Limitations

Please pay attention to the following items while using the EED:

1. The flash protections are NOT changed by EED functions, even if it is required to perform an

erase or program operation. It is up to the user to unprotect the flash region to allow these

functions to work.

MPC5xxx_EED_UM 33

2. Please ensure the macro for CallBack function is defined with properly value to meet the

specific time requirement.

3. Report EEPROM status routine will return the erasing cycles of the current ACTIVE block.

This number is not an accurate value. If brownout occurs during updating erase cycle, this

erasing cycle will be re-counted from the erase cycle value of other block.

4. EEPROM Emulation driver CANNOT be called in any interrupt service routine.

5. Interrupt vectors and service routines CANNOT reside in flash partitions used for emulation

since these flash partitions are not accessible during EERPOM emulation operations.

6. It is strongly recommended that do NOT program or erase the same flash location while using

EED to operate it.

7. Cache table is optional and if internal RAM size is large enough, it is suggested to enable it

and provide with cache size = total number of EEPROM variables * 4 bytes.

8. Read buffer which use in read EEPROM operation should be large enough to store data size

need to be read.

9. EED is in source code release, so the compiling optimization options may impact the

correctness of the EED. Please make sure those options do not change the code logic.

10. EED will apply for an internal buffer from the stack, so the user’s compiler should ensure this

temporary buffer is on at least 4-byte alignment.

11. User needs to ensure that FSL_MainFunction() is called after every swap. User can check

swap status global enumeration variable eraseStatus_Flag after writing data record to decide

when needs to call the function.

12. User has to ensure that macro NUMBER_OF_ACTIVE_BLOCKS in “user_cfg.h” should

always be less than number of blocks specified in EEPROM_CONFIG structure. Numbers of

Alternative blocks are determined by subtracting total number of blocks by total number of

Active blocks.

13. When ECC errors occurred during Flash data reads, either IVOR1 (Z7 or Z4D core) or

IVOR2 (other Zen cores) exception will be invoked. It is recommended that the ME and EE

bits in the MSR register are set to avoid check stop state. By default, when exiting from the

exception handler, the instruction pointer will point to the instruction causing the exception to

retry that violating instruction. This will cause an endless invoking of the exceptions since

Flash ECC errors will be persistent until that Flash region is erased and reprogrammed.

MPC5xxx_EED_UM 34

Therefore, in the IVOR1/IVOR2 exception handlers for Flash ECC errors, we must increment

the instruction pointer to point to the next instruction following the one causing the exception

before. For applications using BookE instruction set, this is straightforward. We can always

increment the instruction pointer by 4. For applications using VLE instruction set, there are 2

options: either we have to decode the instruction causing exception to determine to increment

the instruction pointer by 2 or 4 in the exception handler (see example VLE exception

handlers included in the release package), or we have to allocate all the Flash read

instructions to a non-VLE section so that we can always increment the instruction pointer by

4 in the exception handler. For the latter option, we have call the function FSL_FlashRead to

isolate all flash read instructions.

14. It is highly recommended that the D-cache of core should be disable at the initialization code

to make sure the program/erase functions work properly

15. Flash controller buffer shall be disabled in the beginning of application for reading and

writing to flash. And trying to re-configure flash controller during runtime can cause an

unexpected behavior.

	TABLE OF CONTENT
	LIST OF TABLES
	LIST OF FIGURES
	1 Overview
	1.1 Document Overview
	1.2 System Overview
	1.3 Main features

	2 Acronyms and References
	2.1 Acronyms
	2.2 Terms
	2.3 References

	3 Configuration Parameters and Memory Layout
	3.1 Configuration Parameters
	3.1.1 EEPROM configuration Structure definition
	3.1.2 Block configuration structure definition
	3.1.3 Cache table configuration structure definition

	3.2 Callback notification
	3.3 Return Codes
	3.4 User defined Macros
	3.5 EEPROM Emulation Memory Layout
	3.5.1 EEPROM Data Organization
	3.5.2 EEPROM Emulation Operation
	3.5.2.1 Initialize EEPROM
	3.5.2.2 Write EEPROM Data
	3.5.2.3 Read EEPROM Data
	3.5.2.4 Delete EEPROM Data
	3.5.2.5 Report EEPROM Status
	3.5.2.6 Remove EEPROM

	3.6 EEPROM Emulation Software Cache

	4 API specification
	4.1.1 FSL_InitEeprom
	4.1.2 FSL_ReadEeprom
	4.1.3 FSL_WriteEeprom
	4.1.4 FSL_DeleteRecord
	4.1.5 FSL_RemoveEeprom
	4.1.6 FSL_ReportEepromStatus
	4.1.7 FSL_MainFunction

	5 APPENDIX
	5.1 Code sizes of all the APIs and Timing
	5.1.1 Initialization/Read/Write Timings

	5.2 Record Scheme vs. Device Mapping
	5.3 Notes and Limitations

