
700M0125RA1

Developing Embedded Applications and Products
Utilizing Freescale™ MPC5200 Integrated Processors

dBUG

Reference Manual
MPC5200

2 700M0125RA1

dBUG, Reference Manual

700M0125RA1 3

Copyright
Copyright © 2004 Embedded Planet, LLC. All Rights Reserved.

Copyright © 1999-2003 Motorola Inc. All Rights Reserved.

This manual is copyrighted by Embedded Planet, LLC. No part of this document
may be copied or reproduced in any form or by any means without the express
written permission of Embedded Planet, LLC.

Notice
Embedded Planet, LLC., reserves the right to modify the information contained
herein as necessary and the customer should ensure that it has the most recent
revision of the document. Embedded Planet assumes no responsibility for any
errors which may appear in this document.

This manual in whole or in part, is to be considered the intellectual property of
Embedded Planet. The manual and all information explained and derived there
from are protected by the license to which you agreed upon opening this package.
This document is intended for the sole purpose of the owner of an Embedded
Planet computing engine, to develop applications using PlanetCore. Neither the
document, nor reproductions of it, nor information derived from it is to be given
to others, nor used for any other purpose other than for development of
Embedded Planet computing engine applications, by original, authorized owners
of Embedded Planet products.

Trademarks
Embedded Planet, Linux Planet, Blue Planet, RPX LITE, and RPX LICC are
trademarks or registered trademarks of Embedded Planet, LLC.

Freescale and PowerQUICC are trademarks of Freescale Semiconductor Inc.

IBM and PowerPC are registered trademarks of International Business Machines.

Wind River Systems, VxWorks, and Tornado are registered trademarks of Wind
River Systems, Inc.

All other names and trademarks are the property of their respective owners and
are hereby acknowledged.

4 700M0125RA1

dBUG, Reference Manual

700M0125RA1 5

dBUG, Reference Manual

Contents

Chapter 1 Introduction .. 7
Command Line Usage ...7
Document Conventions ...8

Chapter 2 Commands ... 9
dBUG Command Summary ...9
Symbols ..10
Data Width Modifiers ..10
ASM - Assembler ..10
BF - Block Fill ..11
BM - Block Move ..11
BS - Block Search ..12
DC - Data Conversion ..12
DIS - Disassemble ...13
DL - Download Console ..13
DN - Download Network ...14
FS - FLASH Status ..14
FE - FLASH Erase ...15
FP - FLASH Program ...16
GO - Execute ...16
GT - Execute To ..17
HELP - Help ..17
LR - Loop Read ...17
LW - Loop Write ...17
MD - Memory Display ..18
MM - Memory Modify ..18
PING - Network Ping Client / Server ...19
RD - Register Display ..19
RM - Register Modify ..20
RESET - Reset the Board and dBUG ..20
SET - Set Configurations ...20
SHOW - Show Configurations ...21
STEP - Step Over ..21
STORE - Store Configuration ...22
SYM - Symbol Name Management ...22
TRACE - Trace Into ..23
VER - Display dBUG Version ...23
Supported Registers ...23

Chapter 3 Configuring for Network Downloads .. 25
Required Network Parameters ...25
Configuring dBUG Network Parameters ...25
Troubleshooting Network Problems ...26

List of Tables

No. Title Page

dBUG, Reference Manual

6 700M0125RA1

2-1. dBUG Command Summary ..9

700M0125RA1 7

Chapter 1Introduction

dBUG is a traditional ROM monitor/debugger that offers a comfortable and intu-
itive command line interface that can be used to download and execute code. It
contains all the primary features needed in a debugger to create a useful debug-
ging environment.

Command Line Usage
The user interface to dBUG is the command line. A number of features have been
implemented to achieve an easy and intuitive command line interface.

dBUG assumes that an 80x24 ASCII character dumb terminal is used to connect to
the debugger. For serial communications, dBUG requires eight data bits, no par-
ity, and one stop bit (8N1). The baud rate is 9600 bps by default (if not set differ-
ently by the user) — a speed commonly available from workstations, personal
computers, and dedicated terminals.

The command line prompt is:

dBUG>

Any dBUG command may be entered from this prompt. dBUG does not allow
command lines to exceed 80 characters. Wherever possible, dBUG displays data
in 80 columns or less. dBUG echoes each character as it is typed, eliminating the
need for any local echo on the terminal side.

The BACKSPACE and DELETE keys are recognized as rub-out keys for correcting typo-
graphical mistakes.

Command lines may be recalled using the CTRL-U, CTRL-D, and CTRL-R key
sequences. CTRL-U and CTRL-D cycle up and down through previous command
lines. CTRL-R recalls and executes the last command line.

In general, dBUG is not case-sensitive. Commands may be entered either in
uppercase or lowercase, depending upon the user’s equipment and preference.
Only symbol names require that the exact case be used.

Most commands can be recognized by using an abbreviated name. For instance,
entering h is the same as entering help. It is not necessary to type the entire com-
mand name.

The commands DI, GO, MD, STEP, and TRACE are used repeatedly when debug-
ging. dBUG recognizes this and allows for repeated execution of these commands
with minimal typing. After a command is entered, press RETURN or ENTER to invoke
the command again. The command is executed as if no command line parameters
were provided.

8 700M0125RA1

Chapter 1 - Introduction dBUG, Reference Manual

Document Conventions
This document uses standard text conventions to represent keys, display items,
and user data inputs:

Display Item Italic - Identifies an item that displays on the screen such as a menu option or mes-
sage (e.g., File > Open).

User Data Input Bold - Identifies any part of a command or user entry that is not optional or vari-
able and must be entered exactly as shown.

Italic - Identifies any part of a command or user entry that is a variable parameter.

[] - Identifies any part of a command or user entry that is an optional parameter;
text within the brackets follows the previously described conventions.

KEY - Identifies a specific key that is not alphabetic, numeric, or punctuation:

Press ENTER

Press ESC V M (press and release each key in sequence)
Press CTRL-ALT-DEL (press all keys in sequence simultaneously).

File Names Name - Indicates a file or directory name. Example:

file.h
/bin

700M0125RA1 9

Chapter 2Commands

This section lists the commands that are available with dBUG.

dBUG Command Summary
Table 2-1 summarizes the avialable dBUG commmands and their usage.

Table 2-1. dBUG Command Summary

Command Description Usage

ASM Assemble ASM [[addr] stmt]

BF Block Fill BF [width] begin end data [inc]

BM Block Move BM begin end dest

BS Block Search BS [width] begin end data

DC Data Convert DC value

DIS Disassemble DI [addr]

DL Download Serial DL [offset]

DN Download Network DN [-c] [-e] [-i] [-s [-o offset]] [filename]

FS FLASH Status FS

FE FLASH Erase FE begin [end]

FP FLASH Program FP begin end source

GO Execute GO [addr]

GT Execute To GT addr

HELP Help HELP [command]

LR Loop Read LR addr

LW Loop Write LW addr data

MD Memory Display MD [width] [begin] [end]

MM Memory Modify MM [width] addr [data]

PING Network Ping PING

RD Register Display RD [reg]

RM Register Modify RM reg data

RESET Reset RESET

SET Set Configurations SET [option value]

SHOW Show Configurations SHOW [option]

STEP Step (Over) STEP

STORE Store Configuration STORE

SYM Symbol Management SYM [symb] [-a symb value] [-r symb] [-c|l|s]

TRACE Trace (Into) TRACE [num]

VER Show Version VER

10 700M0125RA1

Chapter 2 - Commands dBUG, Reference Manual

Symbols
Symbol tables can be downloaded and symbols can be set with the SYM com-
mand. For downloaded files, only COFF and ELF formats have symbol tables.
Binary and S-record format files do not have symbol tables. COFF is an MC68000
family-specific format. For Power PC, the ELF format is the only format that con-
tains symbols.

Symbols can be set manually with the SYM debug command.

Data Width Modifiers
For commands that accept an optional width to modify the memory access size,
the valid values are:

When no width option is provided, the default width is .w for 32 bits.

ASM - Assembler
Usage ASM [addr [stmt]]

The ASM command is a primitive assembler. The stmt is assembled and the
resulting code placed at addr. This command has an interactive and non-interac-
tive mode of operation.

The value for address addr may be an absolute address specified as a hexadecimal
value, or a symbol name. The value for stmt must be a valid assembler mnemonic
for the CPU.

For the interactive mode, the user enters the command and the optional addr. If
the address is not specified, then the last address is used. The memory contents at
the address are disassembled, and the user prompted for the new assembly. If
valid, the new assembly is placed into memory, and the address incremented
accordingly. If the assembly is not valid, then memory is not modified, and an
error message produced. In either case, memory is disassembled and the process
repeats.

The user may press ENTER or RETURN to accept the current memory contents and
skip to the next instruction, or a enter period to quit the interactive mode.

In the non-interactive mode, the user specifies the address and the assembly state-
ment on the command line. The statement is the assembled, and if valid, placed
into memory, otherwise an error message is produced.

Examples To place a NOP instruction at address 0x00010000, the command is:

asm 10000 nop

To interactively assembly memory at address 0x00400000, the command is:

asm 400000

.b 8-bit (byte) access

.h 16-bit (half-word) access

.w 32-bit (word) access

dBUG, Reference Manual Chapter 2 - Commands

700M0125RA1 11

BF - Block Fill
Usage BF [width] begin end data [inc]

The BF command fills a contiguous block of memory starting at address begin,
stopping at address end, with the value data. width modifies the size of the data
that is written.

The value for addresses begin and end may be an absolute address specified as a
hexadecimal value or a symbol name. The value for data may be a symbol name
or a number converted according to the user-defined radix, normally hexadeci-
mal.

The optional value inc can be used to increment (or decrement) the data value
during the fill.

This command first aligns the starting address for the data access size, and then
increments the address accordingly during the operation. Thus, for the duration
of the operation, this command performs properly-aligned memory accesses.

Examples To fill a memory block starting at 0x00010000 and ending at 0x00040000 with the
value 0x1234, the command is:

bf 10000 40000 1234

To fill a block of memory starting at 0x00010000 and ending at 0x0004000 with a
byte value of 0xAB, the command is:

bf.b 10000 40000 AB

To zero out the BSS section of the target code (defined by the symbols bss_start
and bss_end), the command is:

bf bss_start bss_end 0

BM - Block Move
Usage BM begin end dest

The BM command moves a contiguous block of memory starting at address begin
and stopping at address end to the new address dest. The BM command copies
memory as a series of bytes and does not alter the original block.

The values for addresses begin, end, and dest may be absolute addresses speci-
fied as hexadecimal values or symbol names. If the destination address overlaps
the block defined by begin and end, an error message is produced, and the com-
mand exits.

Examples To copy a block of memory starting at 0x00040000 and ending at 0x00080000 to the
location 0x00200000, the command is:

bm 40000 80000 200000

To copy the target code’s data section (defined by the symbols data_start and
data_end) to 0x00200000, the command is:

bm data_start data_end 200000

12 700M0125RA1

Chapter 2 - Commands dBUG, Reference Manual

BS - Block Search
Usage BS [width] begin end data

The BS command searches a contiguous block of memory starting at address
begin, stopping at address end, for the value data. width modifies the size of the
data that is compared during the search.

The values for addresses begin and end may be absolute addresses specified as
hexadecimal values, or symbol names. The value for data may be a symbol name
or a number converted according to the user-defined radix, normally hexadeci-
mal.

This command first aligns the starting address for the data access size, and then
increments the address accordingly during the operation. Thus, for the duration
of the operation, this command performs properly-aligned memory accesses.

Examples To search for the 16-bit value 0x1234 in the memory block starting at 0x00040000
and ending at 0x00080000:

MC68000 and ColdFire:

bs 40000 80000 1234

PowerPC:

bs.h 40000 80000 1234

This reads the 16-bit word located at 0x00040000 and compares it against the
16-bit value 0x1234. If no match is found, then the address is incremented to
0x00040002 and the next 16-bit value is read and compared.

To search for the 32-bit value 0xABCD in the memory block starting at 0x00040000
and ending at 0x00080000:

MC68000 and ColdFire:

bs.l 40000 80000 ABCD

PowerPC:

bs 40000 80000 ABCD

This reads the 32-bit word located at 0x00040000 and compares it against the
32-bit value 0x0000ABCD. If no match is found, then the address is incremented
to 0x00040004 and the next 32-bit value is read and compared.

DC - Data Conversion
Usage DC data

The DC command displays data in hexadecimal, binary, and decimal notation.

The value for data may be a symbol name or an absolute value. If an absolute
value passed into the DC command is prefixed by ‘0x’, then data is interpreted as
a hexadecimal value. Otherwise data is interpreted as a decimal value.

All values are treated as 32-bit quantities.

dBUG, Reference Manual Chapter 2 - Commands

700M0125RA1 13

Examples To display the decimal equivalent of 0x1234, the command is:

dc 0x1234

To display the hexadecimal equivalent of 1234, the command is:

dc 1234

DIS - Disassemble
Usage DIS [addr]

The DIS command disassembles target code pointed to by addr. The value for
addr may be an absolute address specified as a hexadecimal value or a symbol
name.

Wherever possible, the disassembler will use information from the symbol table
to produce a more meaningful disassembly. This is especially useful for branch
target addresses and subroutine calls.

The DIS command attempts to track the address of the last disassembled opcode.
If no address is provided to the DIS command, the DIS command uses the address
of the last opcode that was disassembled.

Examples To disassemble code that starts at 0x00040000, the command is:

dis 40000

To disassemble code of the C function main(), the command is:

dis main

DL - Download Console
Usage DL [offset]

The DL command performs an S-record download of data obtained from the con-
sole, typically a serial port. The value for offset is converted according to the
user-defined radix, normally hexadecimal.

If offset is provided, the destination address of each S-record is adjusted by offset.

The DL command checks the destination download address for validity. If the
destination is an address outside the defined user space, an error message is dis-
played and downloading aborted.

If the S-record file contains the entry point address, the program counter is set to
reflect this address.

Examples To download an S-record file through the serial port, the command is:

dl

To download an S-record file through the serial port and adjust the destination
address by 0x40, the command is:

dl 0x40

14 700M0125RA1

Chapter 2 - Commands dBUG, Reference Manual

DN - Download Network
Usage DN [-c] [-e] [-i] [-s] [-o offset] [filename]

The DN command downloads code from the network. The DN command handle
files which are either S-record, COFF, ELF, or Image formats. The DN command
uses Tiny File Transfer Protocol (TFTP) to transfer files from a network host.

In general, the type of file to be downloaded and the name of the file must be
specified to the DN command. The -c option indicates a COFF download; the -e
option indicates an ELF download; the -i option indicates an Image download,
and the -s indicates an S-record download. The -o option works only in conjunc-
tion with the -s option to indicate an optional offset for S-record download. The
filename is passed directly to the TFTP server and, therefore, must be a valid file
name on the server.

If neither of the -c, -e, -i, -s or filename options are specified, a default file name
and file type will be used. Default file name and file type parameters are manipu-
lated using the SET and SHOW commands.

The DN command checks the destination download address for validity. If the
destination is an address outside the defined user space, an error message is dis-
played and downloading is aborted.

For ELF and COFF files, which contain symbolic debug information, the symbol
tables are extracted from the file during download and used by dBUG. Only glo-
bal symbols are kept in dBUG. The dBUG symbol table is not cleared prior to
downloading, so it is the user’s responsibility to clear the symbol table as neces-
sary, prior to downloading.

If an entry point address is specified in the S-record, COFF, or ELF file, the pro-
gram counter is set accordingly.

Examples To download an S-record file with the name “srec.out”, the command is:

dn -s srec.out

To download a COFF file with the name “coff.out”, the command is:

dn -c coff.out

To download a file using the default file type with the name “bench.out”, the
command is:

dn bench.out

To download a file using the default file name and file type, the command is:

dn

FS - FLASH Status
Usage FS

The FS command gives the status of the on-board FLASH memory. Both the sock-
eted FLASH and the FLASH SIMMs are included. The status information that is
displayed includes the type of FLASH, socketed or SIMM, the FLASH size, the
manufacturer and device ID numbers, and the FLASH usage. The usage can indi-

dBUG, Reference Manual Chapter 2 - Commands

700M0125RA1 15

cate “dBUG” which means that the associated FLASH contains the dBUG firm-
ware. When programming or erasing FLASH, any dBUG firmware FLASH will
require extra confirmation from the user before it can be re-programmed or erased
so that the dBUG firmware is not unintentionally overwritten. Other usage types
are “used” which indicate that the FLASH is programmed. The usage of “----”
indicates that the FLASH is erased.

Example To display the FLASH status, the command is:

fs

For a board which has a single socketed FLASH device, the status display will
look similar to the following display:

8M X 8 X 1 Bank = 8 MBytes : Manufacturer ID = 01, Device ID = 93
FF800000:---- FF810000:---- FF820000:---- FF830000:used
FF840000:---- FF850000:used FF860000:used FF870000:used
...
FFF00000:dBUG FF850000:---- FF860000:---- FF870000:----

FE - FLASH Erase
Usage FE begin [end]

The FE command erases FLASH memory starting at address begin and stopping
at address end. If end is not specified, the memory is erased to the end of the
bank.

The value for addresses begin and end may be an absolute address specified as a
hexadecimal value or a symbol name.

As a precaution, the user must confirm that the area of FLASH needs be erased
before the FE command erases the memory. If the FLASH to be erased contains
dBUG firmware, an additional confirmation is required.

Examples To erase a FLASH block starting at 0xFF650000 and ending at the end of the block
(address 0xFF65FFFF), the command is:

fe FF650000

The resulting display and confirmation prompt for a used, non-dBUG bank of
FLASH is:

Warning : This will erase existing code.
To continue enter YES : YES
Erasing 0xFF650000 - 0xFF65FFFF
.
FLASH processing complete - no errors

To erase a FLASH block starting at 0xFF650000 and ending at the end of the block
(address 0xFF65FFFF) when the symbol flsh has been assigned a value of
0xFF650000, the command is:

fe flsh

The resulting display when the bank of FLASH is already blank is:

Erasing 0xFF650000 - 0xFF65FFFF
.
FLASH processing complete - no errors

16 700M0125RA1

Chapter 2 - Commands dBUG, Reference Manual

FP - FLASH Program
Usage FP begin end source

The FP command programs FLASH memory starting at address begin and stop-
ping at address end. The information to be programmed into the FLASH is
retrieved from memory beginning at address source.

The value for addresses begin, end, and source may be an absolute address spec-
ified as a hexadecimal value or a symbol name.

As a precaution, if the area of FLASH to be programmed is not erased, the user
must confirm that FLASH needs to be programmed before the FP command pro-
grams the memory. If the FLASH to be re-programmed contains dBUG firmware,
an additional confirmation is required.

Example: To program an area of FLASH memory beginning at symbol flsh (0xFF650000)
and ending at 0xFF650100 from memory beginning at symbol main, the command
is:

fp flsh ff650100 main

The resulting display for an area of FLASH memory which is already erased is:

Programing 0xFF650000 - 0xFF650100
.
FLASH processing complete - no errors

GO - Execute
Usage GO [addr]

The GO command executes target code starting at address addr. The value for
addr may be an absolute address specified as a hexadecimal value or a symbol
name.

If no argument is provided, the GO command begins executing instructions at the
current program counter.

When the GO command is executed, all user-defined breakpoints are inserted into
the target code, and the context is switched to the target program. Control is only
regained when the target code encounters a breakpoint, illegal instruction, or
other exception which causes control to be handed back to dBUG.

Examples To execute code at the current program counter, the command is:

go

To execute code at the C function main(), the command is:

go main

To execute code at the address 0x00040000, the command is:

go 40000

dBUG, Reference Manual Chapter 2 - Commands

700M0125RA1 17

GT - Execute To
Usage GT addr

The GT command inserts a temporary breakpoint at addr and then executes target
code starting at the current program counter. The value for addr may be an abso-
lute address specified as a hexadecimal value, or a symbol name.

When the GT command is executed, all breakpoints are inserted into the target
code, and the context is switched to the target program. Control is only regained
when the target code encounters a breakpoint, illegal instruction, or other excep-
tion which causes control to be handed back to dBUG.

Example To execute code up to the C function bench(), the command is:

gt bench

HELP - Help
Usage HELP [command]

The HELP command displays a brief syntax of the commands available within
dBUG. In addition, the address of the user code may start is given. If command is
provided, a brief listing of the syntax of the specified command is displayed.

Examples To obtain a listing of all the commands available within dBUG, the command is:

help

To obtain help on the breakpoint command, the command is:

help br

LR - Loop Read
Usage LR addr

The LR command will repetitively read the memory location at address addr. This
address can be a RAM, ROM, or peripheral memory-mapped address. The value
for address addr may be an absolute address specified as a hexadecimal value, or
a symbol name. Eight and 16 bit reads are enabled with the .b and .h extensions to
the LR command. The loop read is stopped by hitting any key on dBUG serial
port.

This command is intended for use in hardware debug.

Example: To read the 16-bit value at address 0x10000, the command is:

lr.h 10000

LW - Loop Write
Usage LW addr data

18 700M0125RA1

Chapter 2 - Commands dBUG, Reference Manual

The LW command will repetitively write the data value to the memory location at
address addr. Be careful specifying this address as there are no checks to ensure
that the address is not in a read-only area of memory. The value for address addr
may be an absolute address specified as a hexadecimal value, or a symbol name.
Eight and 16 bit writes are enabled with the .b and .h extensions to the LW com-
mand. The loop write is stopped by hitting any key on dBUG serial port.

This command is intended for use in hardware debug.

Example: To write the 8-bit value 0xF4 at address 0x10000, the command is:

lw.b 10000 F4

MD - Memory Display
Usage MD [width] [begin] [end]

The MD command displays a contiguous block of memory starting at address
begin and stopping at address end. The values for addresses begin and end may
be absolute addresses specified as hexadecimal values or symbol names. Width
modifies the size of the data that is displayed.

Memory display starts at the address begin. If no beginning address is provided,
the MD command uses the last address that was displayed. If no ending address
is provided, MD will display memory up to an address that is 128 beyond the
starting address.

This command first aligns the starting address for the data access size, and then
increments the address accordingly during the operation. Thus, for the duration
of the operation, this command performs properly-aligned memory accesses.

Examples To display memory at address 0x00400000, the command is:

md 400000

To display memory in the data section (defined by the symbols data_start and
data_end), the command is:

md data_start

To display a range of bytes from 0x00040000 to 0x00050000, the command is:

md.b 40000 50000

To display a range of 32-bit values starting at 0x00040000 and ending at
0x00050000, the command is:

md.w 40000 50000

MM - Memory Modify
Usage MM [width] addr [data]

The MM command modifies memory at the address addr. The value for address
addr may be an absolute address specified as a hexadecimal value or a symbol
name. width specifies the size of the data that is modified. The value for data may

dBUG, Reference Manual Chapter 2 - Commands

700M0125RA1 19

be a symbol name or a number converted according to the user-defined radix,
normally hexadecimal.

If a value for data is provided, the MM command immediately sets the contents of
addr to data. If no value for data is provided, the MM command enters into a
loop. The loop obtains a value for data, sets the contents of the current address to
data, increments the address according to the data size, and repeats. The loop ter-
minates when an invalid entry for the data value is entered, i.e., a period.

This command first aligns the starting address for the data access size, and then
increments the address accordingly during the operation. Thus, for the duration
of the operation, this command performs properly-aligned memory accesses.

Examples To set the byte at location 0x00010000 to be 0xFF, the command is:

mm.b 10000 FF

To interactively modify memory beginning at 0x00010000, the command is:

mm 10000

PING - Network Ping Client / Server
Usage PING

The PING command starts a Ping server and client for the network. This is done
by utilizing the ICMP protol’s echo_request and echo_response datagrams.

The Ping client sends out five echo_request datagrams to the server set by the
SHOW command. It also processes the echo_response datagrams from the server
and prints the result.

The Ping server is started at the same time the Ping client is started. It responds
with an echo_response datagram for every echo_request datagram it receives. It
will also print out a message for every echo_response datagram it receives. When
the message:

Press ENTER to end

is printed by dBUG, the Ping server can be stopped by hitting ENTER.

Example To start the Ping server and client, the command is:

ping

RD - Register Display
Usage RD [reg]

The RD command displays the register set of the target. If no argument for reg is
provided, all registers are displayed. Otherwise, the value for reg is displayed.

dBUG preserves the registers by storing a copy of the register set in a buffer. The
RD command displays register values from the register buffer.

Examples To display all the registers and their values, the command is:

rd

20 700M0125RA1

Chapter 2 - Commands dBUG, Reference Manual

To display only the program counter, the command is:

rd pc

RM - Register Modify
Usage RM reg data

The RM command modifies the contents of the register reg to data. The value for
reg is the name of the register, and the value for data may be a symbol name, or it
is converted according to the user-defined radix, normally hexadecimal.

dBUG preserves the registers by storing a copy of the register set in a buffer. The
RM command updates the copy of the register in the buffer. The actual value will
not be written to the register until the target code is executed.

Examples To change register r0 to contain the value 0x1234, the command is:

rm r0 1234

To change link register to contain the value 0x00010000, the command is:

rm lr 10000

RESET - Reset the Board and dBUG
Usage RESET

The RESET command resets the board and dBUG to their initial power-on states.

The RESET command executes the same sequence of code that occurs at
power-on. If the RESET command fails to reset the board adequately, cycle the
power or press the reset button.

Example To reset the board and clear the dBUG data structures, the command is:

reset

SET - Set Configurations
Usage SET [option value]

The SET command allows the setting of user-configurable options within dBUG.
With no arguments, SET displays the options and values available. The standard
set of options is listed below.

• base - This is the default radix for use in converting a number from its ASCII
text representation to the internal quantity used by dBUG. The default is
hexadecimal (base 16), and other choices are binary (base 2), octal (base 8),
and decimal (base 10).

• baud - This is the baud rate for the first serial port on the board. The default
baud rate is 9600 bps. All communications between dBUG and the user occur
using eight data bits, no parity, and one stop bit, 8N1. Available baud rates are
9600, 19200, 38400, 57600, and 115200 bps.

dBUG, Reference Manual Chapter 2 - Commands

700M0125RA1 21

• port - This is the serial port dBUG uses to communicate. Available options are
PSC1, PSC2, and PSC3. The default port is PSC1.

• mac - This is the Ethernet MAC address used by the board. The default MAC
has to be changed to a valid and unique address to guarantee the functional-
ity of your network. Your local network administrator will have this informa-
tion.

• server - This is the network IP address of the machine which contains files
accessible via TFTP. Your local network administrator will have this informa-
tion and can assist in properly configuring a TFTP server if one does not exist.

• client - This is the network Internet Protocol (IP) address of the board. For
network communications, the client IP is required to be set to a unique value,
usually assigned by your local network administrator.

• gateway - This is the network IP address of the gateway for your local sub-
network. If the client IP address and server IP address are not on the same
subnetwork, this option must be properly set. Your local network administra-
tor will have this information.

• netmask - This is the network address mask to determine if use of a gateway
is required. This field must be properly set. Your local network administrator
will have this information.

• filename - This is the default filename to be used for network download if no
name is provided to the DN command.

• filetype - This is the default file type to be used for network download if no
type is provided to the DN command. Valid values are srecord, image, coff,
and elf.

Examples: To set the baud rate of the board to be 19200, the command is:

set baud 19200

SHOW - Show Configurations
Usage SHOW [option]

The SHOW command displays the settings of the user-configurable options
within dBUG. When no option is provided, SHOW displays all options and val-
ues.

Examples To display all options and settings, the command is:

show

To display the current baud rate of the board, the command is:

show baud

STEP - Step Over
Usage STEP

22 700M0125RA1

Chapter 2 - Commands dBUG, Reference Manual

The STEP command can be used to “step over” a subroutine call, rather than trac-
ing every instruction in the subroutine. The ST command sets a temporary break-
point one instruction beyond the current program counter and then executes the
target code.

For MC68000 and ColdFire, the STEP command can be used for BSR and JSR
instructions.

For PowerPC, the command can be used for BL, BLA, BCL, and BCLA instruc-
tions.

The STEP command will work for other instructions as well, but note that if the
STEP command is used with an instruction that will not return, i.e., BRA on
MC68000 and ColdFire or BA on PowerPC, the temporary breakpoint may never
be encountered and dBUG may never regain control.

Examples: To pass over a subroutine call, the command is:

step

STORE - Store Configuration
Usage STORE

The STORE command stores the user-configurable options within dBUG into a
non-volatile memory of the board. This guarantees that the options modified by
the user are restored after a power-on or reset.

Example: To store the user-configurable options, the command is:

store

SYM - Symbol Name Management
Usage SYM [symb] [-a symb value] [-r symb] [-c|l|s]

The SYM command adds or removes symbol names from the symbol table. If only
a symbol name is provided to the SYM command, then the symbol table is
searched for a match on the symbol name and its information displayed.

The -a option adds a symbol name and its value into the symbol table. The -r
option removes a symbol name from the table.

The -c option clears the entire symbol table, the -l option lists the contents of the
symbol table, and the -s option displays usage information for the symbol table.

Symbol names contained in the symbol table are truncated to 31 characters. Any
symbol table lookups, either by the SYM command or by the disassembler, will
only use the first 31 characters. Symbol names are case-sensitive.

Examples: To define the symbol “main” to have the value 0x00040000, the command is:

sym -a main 40000

To remove the symbol “junk” from the table, the command is:

sym -r junk

dBUG, Reference Manual Chapter 2 - Commands

700M0125RA1 23

To see how full the symbol table is, the command is:

sym -s

To display the symbol table, the command is:

sym -l

TRACE - Trace Into
Usage TRACE [num]

The TRACE command allows single-instruction execution. If num is provided,
then num instructions are executed before control is handed back to dBUG. The
value for num is a decimal number.

The TRACE command sets bits in the processors’ supervisor registers to achieve
singleinstruction execution, and the target code executed. Control returns to
dBUG after a singleinstruction execution of the target code.

Examples To trace one instruction at the program counter, the command is:

tr

To trace 20 instructions from the program counter, the command is:

tr 20

VER - Display dBUG Version
Usage VER

The VER command displays the version information for dBUG. The dBUG ver-
sion, build number and build date are all given.

The version number is separated by a decimal, for example, “v 2b.1c.1a”. In this
example:

The version date is the day and time at which the entire dBUG monitor was com-
piled and built.

Example To display the version of the dBUG monitor, the command is:

ver

Supported Registers
The core PowerPC register set is maintained by dBUG.

• GPR0-31 (referenced as R0-R31)
• IP (SRR0 is IP)
• MSR (SRR1 is MSR)

2b dBUG common major and minor revision
1c CPU major and minor revision
1a board major and minor revision

24 700M0125RA1

Chapter 2 - Commands dBUG, Reference Manual

• CR, CTR, XER, LR

Most registers are accessible via their symbolic names as well as the special-pur-
pose register number. For instance, the Link Register, SPR8, can be referenced as
both “spr8” and “LR.”

Additionally, the following MPC6XX family of processors registers are supported:

• FPSCR, FPR0-31 (referenced as f0-f31)
• DEC, PVR, TBL, TBU and SR0-15
• IBATxL, IBATxU, DBATxL, DBATxU, SDR1, DAR, and DSISR

Additional registers are maintained according to the MPC6XX processor in the
system.

MPC602 None.

MPC603 • HID0, DMISS, DCMP, HASH1, HASH2, IMISS, ICMP, and RPA
• IABR and EAR

MPC603e and
MPC603ev

• HID0, HID1, DMISS, DCMP, HASH1, HASH2, IMISS, ICMP, and RPA
• IABR and EAR

MPC603eh
(MGT5100)

• HID0, HID1, HID2, CSRR0 CSRR1, SPRG4-7, and EAR
• IBAT4-7U, IBAT4-7L, DBAT4-7U, DBAT4-7L, DMISS, and DCMP
• HASH1, HASH2, IMISS, ICMP, RPA, DABR2, DBCR, andIBCR
• IABR, IABR2, DABR, and PIR

MPC604 • HID0, PMC1, PMC2, MMCR0, SDA, SIA, IABR, DABR, EAR, and PIR

MPC604e and
MPC604ev

• HID0, PMC1, PMC2, PMC3, PMC4, MMCR0, and MMCR1
• SDA, SIA, IABR, DABR, EAR, and PIR

MPC740 and
MPC750

• UPMC1, UPMC2, UPMC3, UPMC4, USIA, UMMCR0, UMMCR1, HID0, and
HID1

• PMC1, PMC2, PMC3, PMC4, MMCR0, MMCR1, and SIA
• THRM1, THRM2, THRM3, ICTC, L2CR, IABR, DABR, and EAR

700M0125RA1 25

Chapter 3Configuring for Network Downloads

dBUG is capable of downloading over an Ethernet network using the Trivial File
Transfer Protocol (TFTP). Prior to using this feature, several parameters are
required for network downloads to occur. The information that is required and
the steps for configuring dBUG are described in the following paragraphs.

Required Network Parameters
For performing network downloads, dBUG needs six parameters; four are net-
work-related, and two are download-related. The parameters follow with the
dBUG designation in parenthesis.

All computers connected to an Ethernet network using the Internet Protocol (IP)
need three network-specific parameters. These parameters are:

• IP address for the dBUG-based computer (client)
• IP address of the gateway for non-local traffic (gateway)
• Network IP netmask for flagging traffic as local or non-local (netmask)

In addition, the dBUG network download command requires the following three
parameters:

• • IP address of the TFTP server (server)
• • Default name of the file to download (filename)
• • Default type of the file to download (filetype)

Your local system administrator can assign a unique IP address for the board and
also provide you the IP addresses of the gateway, netmask, and TFTP server. Fill
out the lines of information that follow.

Configuring dBUG Network Parameters
Once the network parameters have been obtained, dBUG must be configured. The
following commands are used to configure the network parameters.

set client client IP

set server server IP

set gateway gateway IP

set netmask netmask

Client: ___.___.___.___ (IP address of the board)
Server: ___.___.___.___ (IP address of the TFTP server)
Gateway: ___.___.___.___ (IP address of the gateway)
Netmask: ___.___.___.___ (Network netmask)

26 700M0125RA1

Chapter 3 - Configuring for Network Downloads dBUG, Reference Manual

For example, the TFTP server is named santafe and has IP address 123.45.67.1. The
board is assigned the IP address of 123.45.68.15. The gateway IP address is
123.45.68.250, and the netmask is 255.255.255.0. The commands to dBUG are:

set client 123.45.68.15

set server 123.45.67.1

set gateway 123.45.68.250

set netmask 255.255.255.0

The last step is to inform dBUG of the name and type of the file to download.
Prior to giving the name of the file, keep in mind the following: Most, if not all,
TFTP servers will only permit access to files starting at a particular sub-directory.
(This is a security feature that prevents reading of arbitrary files by unknown per-
sons.) For example, SunOS uses the directory /tftp_boot as the default TFTP
directory. When specifying a file name to a SunOS TFTP server, all file names are
relative to /tftp_boot. As a result, normally files must be copied into the direc-
tory used by the TFTP server.

A default file name for network downloads is maintained by dBUG. To change
the default file name, use the command:

set filename filename

When using the Ethernet network for downloading, either S-record, COFF, Elf, or
Image files may be downloaded. A default file type for network downloads is
maintained by dBUG as well. To change the default file type, use the command:

set filetype srecord|coff|elf|image

Continuing with the previous example, the compiler produces an executable
COFF file, a.out. This file is copied to the /tftp_boot directory on the server
with the command:

rcp a.out santafe:/tftp_boot/a.out

Change the default file name and file type with the commands:

set filename a.out

set filetype coff

Finally, perform the network download with the DN command. The network
download process uses the configured IP addresses and the default file name and
file type for initiating a TFTP download from the TFTP server.

Troubleshooting Network Problems
Most problems related to network downloads are a direct result of improper con-
figuration. Verify that all IP addresses configured into dBUG are correct. This is
accomplished via the SHOW command.

Using an IP address that is already assigned to another machine will cause the
dBUG network download to fail and will probably cause other severe network
problems. Make certain the client IP address is unique for the board.

Check for proper insertion or connection of the network cable. Are status LEDs lit
to indicate that network traffic is present?

dBUG, Reference Manual Chapter 3 - Configuring for Network Downloads

700M0125RA1 27

Check for proper configuration and operation of the TFTP server. Most Unix
workstations can execute the command TFTP which can be used to connect to the
TFTP server, as well. Is the default TFTP root directory present and readable?

If ICMP_DESTINATION_UNREACHABLE or similar ICMP messages appear, a
serious error has occurred. Reset the board and wait one minute for the TFTP
server to time out and terminate any open connections. Verify that the IP
addresses for the server and gateway are correct.

28 700M0125RA1

dBUG, Reference Manual

dBUG, Reference Manual

700M0125RA1 29

Form 700M0125RA1 Litho in U.S.A. Nov2004
Copyright © 2004 Embedded Planet, LLC. All Rights Reserved.

Phone: 216.245.4180
Fax: 216.292.0561

Embedded Planet
4760 Richmond Road, Suite 400
Warrensville Heights, OH 44128
www.embeddedplanet.com

dBUG, Reference Manual

http://www.embeddedplanet.com

	Back to Start
	Contents
	Introduction
	Command Line Usage
	Document Conventions

	Commands
	dBUG Command Summary
	Symbols
	Data Width Modifiers
	ASM - Assembler
	BF - Block Fill
	BM - Block Move
	BS - Block Search
	DC - Data Conversion
	DIS - Disassemble
	DL - Download Console
	DN - Download Network
	FS - FLASH Status
	FE - FLASH Erase
	FP - FLASH Program
	GO - Execute
	GT - Execute To
	HELP - Help
	LR - Loop Read
	LW - Loop Write
	MD - Memory Display
	MM - Memory Modify
	PING - Network Ping Client / Server
	RD - Register Display
	RM - Register Modify
	RESET - Reset the Board and dBUG
	SET - Set Configurations
	SHOW - Show Configurations
	STEP - Step Over
	STORE - Store Configuration
	SYM - Symbol Name Management
	TRACE - Trace Into
	VER - Display dBUG Version
	Supported Registers

	Configuring for Network Downloads
	Required Network Parameters
	Configuring dBUG Network Parameters
	Troubleshooting Network Problems

	Tables
	Table 2-1. dBUG Command Summary

