
Safety Manual for MPC5777C
Devices Supported: MPC5777C

Document Number: MPC5777CSM
Rev. 2.1, 02/2017

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

2 NXP Semiconductors

Contents

Section number Title Page

Chapter 1
Preface

1.1 Overview.. 9

1.2 Safety manual assumptions.. 9

1.3 Safety manual guidelines..10

1.4 Functional safety standards.. 10

1.5 Related documentation... 11

1.6 Other considerations...11

Chapter 2
MCU safety context

2.1 Safety integrity level...13

2.2 Safety function..13

2.2.1 MCU safety functions..13

2.2.2 Correct operation... 14

2.3 Safe states... 14

2.3.1 MCU Safe state..15

2.3.2 Transitions to Safe statesystem..15

2.3.3 Continuous reset transitions...16

2.4 Faults and failures...16

2.4.1 Faults..16

2.4.2 Dependent failures... 18

2.5 Single-point fault tolerant time interval and process safety time... 20

2.5.1 MCU fault indication time ..21

2.6 Latent-fault tolerant time interval for latent faults... 22

2.6.1 MCU fault indication time...23

2.7 MCU failure indication...24

2.7.1 Failure handling... 24

2.7.2 Failure indication signaling... 25

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 3

Section number Title Page

Chapter 3
Functional safety concept

3.1 General functional safety concept.. 27

Chapter 4
Hardware requirements

4.1 Hardware requirements on system level...31

4.1.1 Assumed functions by separate circuitry...32

4.1.1.1 High impedance outputs.. 32

4.1.1.2 External Watchdog (EXWD)...32

4.1.1.3 Power Supply Monitor (PSM)... 33

4.1.1.4 Error Out Monitor (ERRM)...34

4.1.2 Optional hardware measures on system level..37

4.1.2.1 External communication..37

4.1.2.2 PWM output monitor...37

4.2 PowerSBC.. 38

Chapter 5
Software requirements

5.1 Software requirements on system level..41

5.1.1 Disabled modes of operation... 41

5.1.1.1 Debug mode...41

5.1.1.2 Test mode...43

5.2 MPC5777C modules.. 44

5.2.1 Mulitplexed serial communicaton protocol controllers...44

5.2.2 Fault Collection and Control Unit (FCCU)... 44

5.2.2.1 Initial checks and configurations... 45

5.2.2.2 Runtime checks..46

5.2.3 Self Test Control Unit (STCU2)..47

5.2.3.1 Initial checks and configurations... 47

5.2.4 Temperature Sensors (TSENS)..48

5.2.4.1 Initial checks and configurations... 49

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

4 NXP Semiconductors

Section number Title Page

5.2.5 Software Watchdog Timer (SWT)...49

5.2.5.1 Run-time checks.. 51

5.2.6 Redundancy Control Checking Unit (RCCU)... 51

5.2.6.1 Initial checks and configurations... 51

5.2.7 Cyclic Redundancy Checker Unit... 51

5.2.7.1 Runtime checks..52

5.2.8 Internal RC oscillator (IRCOSC)...55

5.2.8.1 Initial checks and configurations... 55

5.2.8.2 Runtime checks..55

5.2.9 External Oscillator (XOSC)...56

5.2.9.1 Initial checks and configurations... 56

5.2.9.2 Runtime checks..56

5.2.10 Dual PLL Digital Interface (PLLDIG).. 56

5.2.10.1 Initial checks and configurations... 57

5.2.11 Clock Monitor Unit (CMU)...58

5.2.11.1 Initial checks and configurations... 59

5.2.12 Power Management Controller (PMC)..59

5.2.12.1 1.25 V supply supervision... 61

5.2.12.2 3.3 V supply supervision... 61

5.2.13 Memory Protection Units (MPU).. 62

5.2.13.1 Initial checks and configurations... 62

5.2.14 PBRIDGE protection... 63

5.2.14.1 Initial checks and configurations... 63

5.2.15 Built-In Hardware Self-Tests (BIST).. 63

5.2.15.1 Memory Built-In Self-Test (MBIST).. 65

5.2.15.2 Logic Built-In Self-Test (LBIST)..66

5.2.15.3 Flash memory array integrity self check... 66

5.2.15.4 Flash memory margin read.. 66

5.2.15.5 Flash memory ECC logic check.. 66

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 5

Section number Title Page

5.2.15.6 Flash memory ECC fault report check.. 66

5.2.16 End-to-end ECC (e2eECC)..66

5.2.17 Interrupt Controller (INTC)...67

5.2.17.1 Periodic low latency IRQs... 68

5.2.17.2 Non-Periodic low latency IRQs...68

5.2.17.3 Runtime checks..68

5.2.18 Enhanced Direct Memory Access (eDMA)...69

5.2.18.1 Runtime checks..69

5.2.19 System timer module (STM)... 70

5.2.19.1 Runtime checks..70

5.2.20 Periodic Interrupt Timer (PIT)...70

5.2.20.1 Runtime checks..70

5.2.21 Flash memory.. 70

5.2.21.1 EEPROM... 71

5.2.21.2 Initial checks and configurations... 71

5.2.21.3 Runtime checks..72

5.2.22 Error reporting path tests... 72

5.2.23 Glitch filter...73

5.2.24 Crossbar Switch (XBAR).. 73

5.2.24.1 Runtime checks..74

5.2.25 Sigma-Delta Analog to Digital Converter (SD-ADC) ..74

5.2.25.1 Initial checks and configurations .. 74

5.2.26 Enhanced Queued Analog to Digital Converter (eQADC)... 74

5.2.26.1 Initial checks and configurations... 75

5.3 I/O functions...75

5.3.1 Digital inputs... 76

5.3.1.1 Hardware..76

5.3.1.2 Software...77

5.3.2 Digital outputs... 80

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

6 NXP Semiconductors

Section number Title Page

5.3.2.1 Hardware..81

5.3.2.2 Software...84

5.4 Communications...91

5.4.1 Redundant communication.. 91

5.4.2 Fault-tolerant communication protocol... 92

5.5 Additional configuration information...93

5.5.1 Stack.. 93

5.5.1.1 Initial checks and configurations... 93

5.5.2 MPC5777C configuration..95

Chapter 6
Failure rates and FMEDA

6.1 Failure rates.. 97

6.2 FMEDA.. 97

6.2.1 Module classification...98

Chapter 7
Dependent failures

7.1 Provisions against dependent failures.. 99

7.1.1 Causes of dependent failures... 99

7.1.2 Measures against dependent failures... 100

7.1.2.1 Physical isolation... 100

7.1.2.2 Environmental conditions..100

7.1.2.3 Failures of common signals... 101

7.1.3 Dependent failure avoidance on system level... 101

7.1.3.1 I/O pin/ball configuration.. 102

7.1.3.2 Modules sharing PBRIDGE.. 102

7.1.3.3 External timeout function.. 103

7.1.4 βIC considerations...104

Chapter 8
Additional information

8.1 Testing All-X in RAM..105

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 7

Section number Title Page

8.1.1 Candidate address for testing All-X issue... 105

8.1.2 ECC checkbit/syndrome coding scheme... 110

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

8 NXP Semiconductors

Chapter 1
Preface

1.1 Overview
This document discusses requirements for the integration and use of the MPC5777C
Microcontroller Unit (MCU) in safety-related systems. It is intended to support safety
system developers in building their safety-related systems using the safety mechanisms of
the MPC5777C, and describes the system level hardware or software safety measures that
should be implemented to achieve the desired system level functional safety integrity
level. The MPC5777C is developed according to ISO 26262 and has an integrated safety
concept.

1.2 Safety manual assumptions
During the development of the MPC5777C, assumptions were made on the system level
safety requirements with regards to the MCU. During the system level development, the
safety system developer is required to establish the validity of the MCU assumptions in
the context of the specific safety-related system. To enable this, all relevant MCU
assumptions are published in the Safety Manual and can be identified as follows:

• Assumption: An assumption that is relevant for functional safety in the specific
safety system. It is assumed that the safety system developer fulfills an assumption in
the design.

• Assumption under certain conditions: An assumption that is relevant under certain
conditions. If the associated condition is met, it is assumed that the safety system
developer fulfills the assumption in the design.

Example: Assumption: It is assumed that the system is designed to go into a safe state
(Safe statesystem) when the safe state of the MCU (Safe stateMCU) is entered.

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 9

Example: Assumption under certain conditions: If a high impedance state on an output
is not safe, pull-up or pull-down resistors shall be added to safety-critical outputs. The
need for this will be application dependent for the unpowered or reset condition (tristated
I/O) of the MPC5777C.

The safety system developer will need to use discretion in deciding whether these
assumptions are valid for their particular safety-related system. In the case where an
MCU assumption does not hold true, the safety system developer should initiate a change
management activity beginning with impact analysis. For example, if a specific
assumption is not fulfilled, an alternate implementation should be shown to be similarly
effective at meeting the functional safety requirement in question (for example, the same
level of diagnostic coverage is achieved, the likelihood of dependent failures are similarly
low, and so on). If the alternative implementation is shown to be not as effective, the
estimation of an increased failure rate and reduced metrics (SFF: Safe Failure Fraction,
SPFM: Single-Point Fault Metrics, LFM: Latent Fault Metric) due to the deviation must
be specified. The FMEDA can be used to help make this analysis.

1.3 Safety manual guidelines
This document also contains guidelines on how to configure and operate the MPC5777C
in safety-related systems. These guidelines are preceded by one of the following text
statements:

• Recommendation: A recommendation is either a proposal for the implementation of
an assumption, or a reasonable measure which is recommended to be applied, if there
is no assumption in place. The safety system developer has the choice whether or not
to adhere to the recommendation.

• Rationale: The motivation for a specific assumption and/or recommendation.
• Implementation hint: An implementation hint gives specific details on the

implementation of an assumption and/or recommendation on the MPC5777C. The
safety system developer has an option to follow the implementation hint.

The safety system developer will need to use discretion in deciding whether these
guidelines are appropriate for their particular safety-related system.

1.4 Functional safety standards
It is assumed that the user of this document is familiar with the functional safety
standards ISO 26262 Road vehicles - Functional safety and IEC 61508 Functional safety
of electrical/electronic/programmable electronic safety-related systems. The MPC5777C

Safety manual guidelines

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

10 NXP Semiconductors

is a component as seen in the context of ISO 26262 and in this case its development is
completely decoupled from the development of an item or system. Therefore the
development of the MPC5777C is considered a Safety Element out of Context (SEooC)
development, as described in ISO 26262-10.9 Safety element out of context and more
specifically detailed in ISO 26262-10.9.2.3 Development of a hardware component as a
safety element out of context and ISO 26262-10 Annex A ISO 26262 and
microcontrollers.

1.5 Related documentation
The MPC5777C is developed according to ISO 26262 and has an integrated safety
concept targeting safety-related systems requiring high safety integrity levels. In order to
support the integration of the MPC5777C into safety-related systems, the following
documentation will be available:

• Reference Manual (MPC5777CRM) - Describes the MPC5777C functionality
• Data Sheet (MPC5777CDS) - Describes the MPC5777C operating conditions
• Safety Manual (MPC5777CSM) - Describes the MPC5777C safety concept and

possible safety mechanisms (integrated in MPC5777C, system level hardware or
system level software), as well as measures to reduce dependent failures

• FMEDA - Inductive analysis enabling customization of system level safety
mechanisms, including the resulting safety metrics for ISO 26262 (SPFM, LFM and
PMHF) and IEC 61508 (SFF and β-factor βIC)

• FMEDA Report - Describes the FMEDA methodology and safety mechanisms
supported in the FMEDA, including source of failure rates, failure modes and
assumptions made during the analysis.

The FMEDA and FMEDA report are available upon request. The MPC5777C is a
SafeAssure solution; for further information regarding functional safety at NXP, visit
www.nxp.com/safeassure.

1.6 Other considerations
When developing a safety-related system using the MPC5777C, the following
information should be considered:

• The MPC5777C is handled in accordance with JEDEC standards J-STD-020 and J-
STD-033.

• The operating conditions given in the MPC5777C Data Sheet.
• If applicable, any published MPC5777C errata.

Chapter 1 Preface

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 11

http://www.nxp.com/safeassure

• The recommended production conditions given in the MPC5777C quality agreement.
• The safety system developer is required to report all field failures of the MPC5777C

to NXP.

As with any technical documentation, it is the reader’s responsibility to ensure he or she
is using the most recent version of the documentation.

Other considerations

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

12 NXP Semiconductors

Chapter 2
MCU safety context

2.1 Safety integrity level
The MPC5777C is designed to be used in automotive, or industrial, applications which
need to fulfill functional safety requirements as defined by functional safety integrity
levels (for example, ASIL D of ISO 26262 or SIL 3 of IEC 61508). The MPC5777C is a
component as seen in the context of ISO 26262 and in this case its development is
completely decoupled from the development of an item or system. Therefore the
development of the MPC5777C is considered a Safety Element out of Context (SEooC)
development.

The MPC5777C is seen as a Type B subsystem in the context of IEC 61508 (“complex,”
see IEC 61508-2, section 7.4.4.1.3) with a HFT = 0 (Hardware Fault Tolerance) and may
be used in any mode of operation (see IEC 61508-4, section 3.5.16).

Safety function

2.2.1 MCU safety functions

Given the application independent nature of the MPC5777C, no specific safety function
can be specified. Therefore, during the SEooC development of the MPC5777C, MCU
safety functions were assumed. During the development of the safety-related system, the
MCU safety functions are mapped to the specific system safety functions (application
dependent). The assumed MCU safety functions are:

• Software Execution Function (Application Independent): Read instructions out of
the MPC5777C flash memory, buffer these within instruction cache, execute
instructions, read data from the MPC5777C System SRAM or flash memory, buffer
these in data cache, process data and write result data into MPC5777C System

2.2

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 13

SRAM. Functional safety of the Software Execution Function is primarily
achieved by safety mechanisms integrated on the MPC5777C.

Moreover, the following approach is assumed for Input / Output related functions and
debug functions:

• Input / Output Functions (Application dependent): Input / Output functions of the
MPC5777C have a high application dependency. Functional safety will be
primarily achieved by system level safety measures.

• Not Safety Related Functions: It is assumed that some functions are Not Safety
Related (e.g. debug).

Please see the Module classification section for further details.

2.2.2 Correct operation

Correct operation of the MPC5777C is defined as:

• MCU Safety Function and Safety Mechanism modules are operating according to
specification.

• Peripheral modules are usable by qualifying data with system level safety measures
or by using modules redundantly. Qualification should have a low risk of dependent
failures. In general, Peripheral module safety measures are implemented in system
level software.

• Not Safety Related modules are not interfering with the operation of other modules.

2.3 Safe states
A safe state of the system is named Safe statesystem, whereas a safe state of the
MPC5777C is named Safe stateMCU. A Safe statesystem is an operating mode without an
unreasonable probability of occurrence of physical injury or damage to the health of any
persons. A Safe statesystem may be the intended operating mode or a mode where the
system has been disabled.

Assumption: [SM_200] It is assumed that the system is designed to go into a safe state
(Safe statesystem) when the safe state of the MCU (Safe stateMCU) is entered. [end]

Safe states

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

14 NXP Semiconductors

2.3.1 MCU Safe state

The safe states (Safe stateMCU) of the MPC5777C are:

• Operating correctly (see Figure 2-1 and section "Correct operation")
• Explicitly indicating an internal error (indication on ERRORn, Figure 2-1)
• In reset (see Figure 2-1)
• Completely unpowered (see Figure 2-1)

wrong
communication

input

element

correct output

correct
communication

input wrong output

element

MCU error out

a) Correct operation b) Explicitly indicating an internal error

d) Completely unpoweredc) Reset

wrong
communication

input

element

wrong output

RESET

input

element
wrong
output

wrong
communication

Figure 2-1. Safe stateMCU of MPC5777C

2.3.2 Transitions to Safe statesystem

Assumption: [SM_015] The system transitions itself to a Safe statesystem when the MCU
explicitly indicates an internal error (as shown on ERROR0 or ERROR1). [end]

Implementation hint: If the MPC5777C signals an internal failure via its error out
signals (ERRORn), the surrounding subsystem shall no longer use the MPC5777C
outputs for safety functions since these signals can no longer be considered reliable. If an
error is indicated, the system shall be able to remain in a Safe statesystem without any
additional action by the MPC5777C. Depending on the configuration, the system may
disable, or reset, the MPC5777C as a reaction to the error signal.

Assumption: [SM_016] The system transitions itself to a Safe statesystem when the MCU
is in a reset state. [end]

Chapter 2 MCU safety context

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 15

Assumption: [SM_017] The system transitions itself to a Safe statesystem when the MCU
is unpowered. [end]

Assumption: [SM_018] The system transitions itself to a Safe statesystem when the MCU
has no active output (for example, tristate). [end]

2.3.3 Continuous reset transitions

If a system continuously switches between a standard operating state and the reset state,
without any device shutdown, it is not considered to be in a Safe state.

Assumption: [SM_019] It is assumed that the application identifies, and signals,
continuous switching between reset and standard operating mode as a failure
condition. [end]

2.4 Faults and failures
Failures are the main detrimental impact to functional safety:

• A systematic failure is manifested in a deterministic way to a certain cause
(systematic fault), that can only be eliminated by a change of the design process,
manufacturing process, operational procedures, documentation, or other relevant
factors. Thus, measures against systematic faults can reduce systematic failures (for
example, implementing and following adequate processes).

• A random hardware failure can occur unpredictably during the lifetime of a hardware
element and follows a probability distribution. A reduction in the inherent failure rate
of the hardware will reduce the likelihood of random hardware faults to occur.
Detection and control will mitigate the effects of random hardware faults when they
do occur. A random hardware failure is caused by a permanent fault (for example,
physical damage), an intermittent fault, or a transient fault. Permanent faults are
unrecoverable. Intermittent faults are, for example, faults linked to specific
operational conditions, or noise. Transient faults are, for example, particles (alpha,
neutron) or EMI-radiation. An affected configuration register can be recovered by
setting the desired value or by power cycling. Due to a transient fault, an element
may be switched into a self destructive state (for example, single event latch up), and
therefore may cause permanent destruction.

Faults and failures

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

16 NXP Semiconductors

2.4.1 Faults

The following random faults may generate failures, which may lead to the violation of a
functional safety goal. Citations are according to ISO 26262-1. Random hardware faults
occur at a random time, which results from one or more of the possible degradation
mechanisms in the hardware.

• Single-Point Fault (SPF): A fault in an element that is not covered by a safety
mechanism, and results in a single-point failure. This leads directly to the violation of
a safety goal. 'a' in the Figure 2-2 shows a SPF inside an element, which generates a
wrong output. The equivalent in IEC 61508 to Single-Point Fault is a Random fault.
Whenever a SPF is mentioned in this document, it is to be read as a random fault for
IEC 61508 applications.

• Latent Fault (LF): A fault whose presence is not detected by a safety mechanism
nor perceived by the automobile driver. A LF is a fault that does not violate the
functional safety goal(s) itself, but leads to a dual-point or multiple-point failure
when combined with at least one additional independent fault, which then leads
directly to the violation of a functional safety goal. 'b' in the Figure 2-2 shows a LF
inside an element, which still generates a correct output. No equivalent in IEC 61508
to LF is named.

• Dual-Point Fault (DPF): An individual fault that, in combination with another
independent fault, leads to a dual-point failure. This leads directly to the violation of
a functional safety goal. 'd' in the Figure 2-2 shows two LFs inside an element, which
generate a wrong output.

• Multiple-Point Fault (MPF): An individual fault that, in combination with other
independent faults, leads to a multiple-point failure. This leads directly to the
violation of a functional safety goal. Unless otherwise stated, multiple-point faults
are considered safe faults and are not covered in the functional safety concept of
MPC5777C.

• Residual Fault (RF): A portion of a fault that independently leads to the violation of
a functional safety goal, where that portion of the fault is not covered by a functional
safety mechanism. 'c' in the Figure 2-2 shows a RF inside an element, which –
although a functional safety mechanism is set in place – generates a wrong output, as
this particular fault is not covered by the functional safety mechanism.

• Safe Fault (SF): A fault whose occurrence will not significantly increase the
probability of violation of a functional safety goal. Safe faults are not covered in this
document. SPFs, RFs or DPFs are not safe faults.

Chapter 2 MCU safety context

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 17

input

element

LF

a) Single-Point Fault (SPF)

c) Residual Fault (RF)

LF
LF

SPF wrong
output

item

input

element

correct
output

item

b) Latent Fault (LF)

input

element

RF
wrong
output

item

safety
measure

failure
undetected

d) Dual-Point Fault (DPF)

input

element

wrong
output

item

Figure 2-2. Faults

SPFs should be detected within the Fault Tolerant Time Interval (FTTI). LFs (DPFs)
should be detected within the Latent-Fault Tolerant Time Interval (L-FTTI). In
automotive applications, L-FTTI is generally accepted to occur once per typical
automotive Ttrip and potential faults are typically detected by safety mechanisms which
are executed during system testing at startup. Detecting DPFs once per Ttrip reduces the
accumulation time of latent faults in Tlife of the product, to a maximum time period of
Ttrip.

2.4.2 Dependent failures
• Common cause failure (CCF): Subset of dependent failures in which two or more

component fault states exist at the same time, or within a short time interval, as a
result of a shared cause (see Figure 2-3).

A CCF is the coincidence of random failure states of two or more elements on
separate channels of a redundancy element which lead to the failure of the defined
element to perform its intended safety function, resulting from a single event or root
cause (chance cause, non-assignable cause, noise, natural pattern, and so on). A CCF
causes the probability of multiple channels (N) to have a failure rate larger than
λsingle channel

N (λredundant element > λsingle channel
N).

Faults and failures

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

18 NXP Semiconductors

input

input failure b

failure a

channel 1

fault1

element

element

fault2

channel 2

CCF

Figure 2-3. Common Cause Failures

• Common mode failure (CMF):A single root cause leads to similar coincidental
erroneous behavior (with respect to the safety function) of two or more (not
necessarily identical) elements in redundant channels, resulting in the inability to
detect the failures. Figure 2-4 shows three elements within two redundant channels.
One single root cause (CMFA or CMFB) leads to undetected failures in the primary
channel and in one of the elements of the redundant channel.

input

input
failure

failure

fault1

element

CMF A

fault2

element

fault2'

element

comparison

CMF B

fault1'
output

output

secondary
channel

primary
channel

Figure 2-4. Common Mode failures

• Cascading failure (CF): CFs occur when local faults of an element in a system
ripple through interconnected elements causing another element or elements of the
same system and within the same channel to fail. Cascading failures are dependent
failures that are not common cause failures. Figure 2-5 shows two elements within a
single channel, in which a single root cause leads to a fault (fault 1) in one element
resulting in a failure (failure a). This failure then cascades to the second element,
causing a second fault (fault 2) that leads to a failure (failure b).

Chapter 2 MCU safety context

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 19

input
failure a

channel 1

element

fault1
failure b

channel 1

element

fault2

Figure 2-5. Cascading failures

2.5 Single-point fault tolerant time interval and process
safety time

The single-point Fault Tolerant Time Interval (FTTI)/Process Safety Time (PST) is the
time span between a failure that has the potential to give rise to a hazardous event and the
time by which counteraction has to be completed to prevent the hazardous event from
occurring.

Figure 2-6 shows the FTTI for a system:
• Normal MCU operation (a).
• With an appropriate functional safety mechanism to manage the fault (b).
• Without any suitable functional safety mechanism, a hazard may appear after the

FTTI has elapsed (c).

The equivalent in IEC 61508 to FTTI is Process Safety Time (PST). Whenever single-
point fault tolerant time interval or FTTI is mentioned in this document, it shall be read as
PST for IEC 61508 applications.

Single-point fault tolerant time interval and process safety time

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

20 NXP Semiconductors

MCU normal
operation MCU failure operation Safe stateMCU

Single point fault*

not all failure
measures are visible
on item level
(controlled faults)
e.g. ECC-correction
of single-bit

time

a)

*)

b)

c)

fault detection

(MCU)
fault detection time fault reaction time

(MCU)

(MCU)
fault indication time

(item)
fault reaction

time

item normal
operation

item failure operation
Emergency Operationitem

or Safe statesystem

item normal
operation

longest possible failure operation
possible
hazard

Fault Tolerant Time Interval (FTTI) of the safety
goal regarding single point faults

Figure 2-6. Fault tolerant time interval for single point faults

Fault indication time is the time from the occurrence of a fault to when the MPC5777C is
switched into a Safe stateMCU (for example, indication of that failure by driving the error
out pins, forcing outputs of the MPC5777C to a high impedance state, or by assertion of
reset).

2.5.1 MCU fault indication time

Fault indication time is the sum of Fault detection time and Fault reaction time.

• Fault detection time (Diagnostic test interval + Recognition time) is the maximum
time for detection of a fault and consists of:

• Diagnostic test interval is the interval between online tests (for example,
software based self-test) to detect faults in a functional safety-related system.
This time depends closely on the system implementation (for example,
software).

• Software cycle time of software based functional safety mechanisms. This
time depends closely on the software implementation.

• Recognition time is the maximum of the recognition time of all involved
functional safety mechanisms. The mechanisms with the longest time are:

• ADC recognition time is a very demanding hardware test in terms of timing.
The self-test requires the ADC conversion to complete a full test. A single
full test takes at least 70 µs.

Chapter 2 MCU safety context

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 21

• Recognition time related to the FMPLL loss of clock: it depends on how the
FMPLL is configured. It is approximately 20 µs.

• Software execution time of software based functional safety mechanisms.
This time depends closely on the software implementation.

• Fault reaction time (Internal processing time + External processing time) is the
maximum of the reaction time of all involved functional safety mechanisms
consisting of internal processing time and external indication time:

• Internal processing time to communicate the fault to the Fault Collection and
Control Unit (FCCU), and can take up to a maximum of 10 Internal RC
Oscillator (IRCOSC) clock cycles (nominal frequency of 16 MHz).

• External indication time to notify an observer about a failure external to the
MPC5777C. This time depends on the indication protocol configured in the Fault
Collection and Control Unit (FCCU):

• Dual Rail protocol and time switching protocol:
• FCCU configured as "fast switching mode": indication delay is a

maximum of 64 μs. As soon as the FCCU receives a fault signal, it
reports the failure to the system.

• FCCU configured as "slow switching mode": an indication delay
could occur. The maximum delay is equal to the duration of the
semiperiod of the error out (ERRORn) frequency. With an IRCOSC
frequency of 16 MHz, the error out frequency is 61Hz. Therefore, the
maximum indication delay is 8 ms.

• Bi-stable protocol: indication delay is a maximum of 64 μs. As soon as the
FCCU receives a fault signal, it reports the failure to the system.

If the configured reaction to a fault is an interrupt, an additional delay (interrupt latency)
may occur until the interrupt handler is able to start executing (for example, higher
priority IRQs, XBAR contention, register saving, and so on).

The sum of the MPC5777C fault indication time and system fault reaction time should be
less than the FTTI of the functional safety goal.

2.6 Latent-fault tolerant time interval for latent faults
The Latent-fault tolerant time interval (L-FTTI) is the time span between a latent fault,
that has the potential to coincide along with other latent faults and give rise to a
hazardous multiple-point event, and the time at which counteraction has to be completed
to prevent the hazardous event from occurring. L-FTTI defines the sum of the respective
worst case fault indication time and the time for execution of the corresponding
countermeasure. Figure 2-7 shows the L-FTTI for multiple-point faults in a system.

Latent-fault tolerant time interval for latent faults

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

22 NXP Semiconductors

There is no equivalent to L-FTTI in IEC 61508.

MCU normal operation MCU failure
operation

Safe stateMCU

fault not infringing
the safety for itself,
only together with
an additional fault
(multiple fault)

time

a)

*)

b)

c)

fault detection

(MCU)
fault detection time fault reaction time

(MCU)

fault reaction
time

failure operation
Emergency Operationitem

or Safe statesystem

longest possible failure operation hazard

Fault Tolerant Time Interval (L-FTTI) of the
safety goal regarding Latent Faults

latent fault*

(MCU)
fault indication time

multiple point fault**

**)probability of multiple point fault
infringing safety function is significant
e.g. 1/1000 of the total failure rate

multiple-point fault
detection interval of

the safety goal

Fault Tolerant Time Interval (FTTI)
of the safety goal regarding

multiple point faults

normal operation

normal operation

Figure 2-7. Fault Tolerant Time Interval for latent faults

Latent fault indication time is the time it takes from the occurrence of a multiple-point
failure to when the indication of that failure is driven on ERRORn, forcing the outputs of
the MPC5777C to a high impedance state or by assertion of reset.

Assumption:[SM_212] It is assumed that the MCU will go through a complete power-
up/power-down cycle within the L-FTTI. [end]

Rationale: To remove the effect of any transient faults.

2.6.1 MCU fault indication time

Fault indication time is the sum of Fault detection time and Fault reaction time. In
general, the Fault detection time and Fault reaction time are negligible for multiple-point
failures since the L-FTTI is significantly larger (hours, rather than seconds) than typical
safety mechanism detection and reaction times. Typically the safety mechanisms to detect
latent faults are executed during start-up, shut-down or periodically as required by the
diagnostic test interval of the safety system.

The sum of latent fault indication time and latent and multiple point fault reaction time
should be less than the L-FTTI of the functional safety goal.

Chapter 2 MCU safety context

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 23

Note

Detection and handling of a latent fault by a latent fault
detection mechanism must be completed within the Multi-Point
Fault (MPF) detection interval. Afterwards, it is assumed that
the fault caused a multi-point failure, and latent fault detection
is no longer guaranteed to work properly.

MCU failure indication

2.7.1 Failure handling

Failure handling can be split into two categories:

• Handling of failures before enabling the system level safety function (for example,
during/following the MPC5777C initialization). These failures are required to be
handled before the system enables the safety function, or in a time shorter than the
respective FTTI or L-FTTI after enabling the safety function.

• Handling of failures during runtime with repetitive supervision while the safety
function is enabled. These errors are to be handled in a time shorter than the
respective FTTI or L-FTTI.

Assumption:[SM_022] It is assumed that single-point and latent fault diagnostic
measures complete operations (including fault reaction time) in a time shorter than the
respective FTTI or L-FTTI when the safety function is enabled. [end]

Recommendation: It is recommended to identify startup failures before enabling system
level safety functions.

A typical failure reaction, with regards to power-up/start-up diagnostic measures, is to not
initialize and start the safety function, but instead provide failure indication to the user.

Software can read the failure source that caused a FCCU fault, and can do so either
before or after a functional reset. Software can also reset the failure, but the external
failure indication will stay in failure mode for a configurable amount of time. If
necessary, software can also reset the MPC5777C.

2.7

MCU failure indication

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

24 NXP Semiconductors

2.7.2 Failure indication signaling

The FCCU offers a hardware channel to collect errors and bring the device to a
Safe stateMCU when a failure is present in the MPC5777C. The FCCU provides two error
output signals (ERROR0 and ERROR1) used for external failure indication.

Different protocols for the error output pins are supported:

• Dual rail protocol

• Time switching protocol

• Bi-stable protocol

• Test mode

After power-on reset, the ERRORn outputs are either high-impedance or they are in a
state that indicates an error. An error status flag can be read to indicate if the FCCU is in
an error state. The flag can be written by software to 1, to indicate a fault, or 0, to indicate
operational state. The ERRORn outputs will transition to the operational state only by
software request.

At least one of the ERRORn outputs will be high to indicate that the device is in the
operational state. If a two-pin bi-stable protocol with differential outputs is implemented
(for example, ERROR0 = 0 and ERROR1 = 1 and vice-versa), the application software
can configure that ERRORn signal that will be high to indicate the operational state (see
Error Out Monitor (ERRM) for details on requirements for connecting ERRORn to
external devices).

Chapter 2 MCU safety context

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 25

MCU failure indication

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

26 NXP Semiconductors

Chapter 3
Functional safety concept

3.1 General functional safety concept
Figure 3-1 shows a block diagram of the MPC5777C.

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 27

COMPUTATIONAL SHELL

e200z7
(dual issue)

SWT

STM

INTC
FPU

VLE

16K I-Cache

16K D-Cache

MMU

e200z7 checker
core complex DEBUG

JTAG MMU

Nexus 3+ DTS

64ch eDMA

64ch eDMA

Ethernet

Crossbar Switch with ECC

MPU

Safety
Monitor

SRAM

SRAM
Control

Tamper
Detection

CSE

Bridge B

Bridge A

Flash Control

Flash w/ EEPROM

EBI Security

FLEXCAN_A-B

MCAN_0-1

DSPI_A-C

eSCI_A-C

ETPU_C
w/RAM

eMIOS_0

eQADC_A
& Temp Sensors

DECFILTER_A-L

SDADC_1/3

SRX_0

PSI5_0

REACM2

Zipwire/
SIPI/LFAST

Dual PLL/
OSC/IRC

CRC

PCM/ERM

S
IU

/S
IU

_B

C
M

U
_0-8

E
B

I registers

F
C

C
U

S
T

C
U

P
M

U
/P

M
C

P
IT-R

T
I

F
lexC

A
N

_C
-D

D
S

P
I_D

-E

eS
C

I_D
-F

E
T

P
U

_A
/B

(w
/R

A
M

)

eM
IO

S
_1

eQ
A

D
C

_B

S
D

A
D

C
_2/4

S
R

X
_1

P
S

I5_1

e200z7
(dual issue)

FPU

VLE

16K I-Cache

16K D-Cache

MMU

SWT

STM

INTC

Figure 3-1. MPC5777C block diagram

Functional Safety integrity measures are:
• Replication of IP: A dual core architecture reduces the need for component

duplication at the system level, and lowers overall system complexity.

• Replication of processing elements are as follows:

• For the dual lockstep z7 cores (Core 1 and Checker) and cache controllers, functional
safety is ensured by a lockstep approach. Any deviation in the output of the two
lockstep z7 cores is detected by hardware and signaled as a possible failure.

• Error correction or detection to reduce the effect of faults in the following integrated
volatile and non-volatile memories:

• Flash memory

General functional safety concept

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

28 NXP Semiconductors

• SRAM

• FlexCAN

• MCAN

• ENET

• Cache and cache tags

• eDMA Transfer Control Descriptor (TCD) RAM

• eTPU

• The generation and distribution of clock and power are supervised by dedicated
monitors.

• Built-in self tests (for example, MBIST and LBIST) are implemented in hardware to
detect in general latent failures and therefore reducing the risk of coincident failures
(multiple-point faults).

• The FCCU is responsible for collecting and reacting to failure notifications.

• CMF are dealt with by a set of measures for both control and reduction, spanning
system level approaches (such as temperature and non-functional signal monitoring),
physical separation, and diversity.

• The functional safety of the periphery is ensured by application level (system level)
measures (such as connecting one sensor to different I/O modules, sensor validation
by sensor fusion, and so on). For this, the chip ensures that redundant use of
peripherals is protected against CMF.

• Usage of internal (and external) watchdogs or timeout measures.

• Dedicated mechanisms are suggested to check the functionality of error reaction
paths (such as by application controlled fault injection).

The MPC5777C safety core operates in delayed lockstep mode (LSM) to allow the
highest safety level to be reached. The checker core will receive all inputs delayed by two
clock cycles. Outputs of the checker core will be compared with outputs of the master
core. Any differences will be flagged as an error and processed by the FCCU.

LSM is enabled or disabled by a configuration bit in the miscellaneous DCF client in
UTest flash memory. The checker core shall always be configured to be enabled. If the
LSM is disabled, the checker core and the RCCUs are disabled. The checker core will not
work independently from the master core. No dynamic switching is possible between
LSM on and LSM off, and a reset is required to reestablish LSM. Disabling of LSM
triggers a fault indication to the FCCU.

Chapter 3 Functional safety concept

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 29

General functional safety concept

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

30 NXP Semiconductors

Chapter 4
Hardware requirements

4.1 Hardware requirements on system level
This section describes the system level hardware safety measures needed to complement
the integrated safety mechanisms of the MPC5777C.

The MPC5777C integrated safety concept enables SPFs and latent failures to be detected
with high diagnostic coverage. However, not all CMFs may be detected. In order to
detect failures which may not be detected by the MPC5777C, it is assumed that there will
be some separate means to bring the system into Safe statesystem.

Figure 4-1 depicts a simplified application schematic for a functional safety-relevant
application in conjunction with an external IC (only functional safety related elements
shown). The supplies generated from the external IC should be protected against voltage
over the absolute maximum rating of the device (as documented in the MPC5777C Data
Sheet in section "Absolute maximum ratings").

The external circuit will also monitor the ERRORn signals. Through a digital interface
(for example, SPI), the MPC5777C repetitively triggers the watchdog of the external IC.
If there is a recognized failure (for example, watchdog not being serviced, assertion of
ERRORn), the reset output of the external IC will be asserted to reset the MPC5777C. A
fail-safe output is also available to control or deactivate any fail-safe circuitry (for
example, power switch).

There is no requirement that these external measures are provided in one IC or even in
the specific way as described (for example, the external watchdog functionality can be
provided by another component of the system that can recognize that the chip stopped
sending periodic packets on a communication network).

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 31

Fail safe output

overvoltage
supervision

error
monitor

watchdog

External IC

SPI (or alternative)

Supply

RESET

error out signal(s)

MCU

Figure 4-1. Functional safety related connection to external circuitry

4.1.1 Assumed functions by separate circuitry

This section describes external components used in a system in conjunction with the
MPC5777C for safety-related systems.

It should be noted that failure modes of external services are only partially considered in
the FMEDA of the MPC5777C (for example, clock(s), power supply), and must be fully
analyzed in the system FMEDA by the safety system developer.

4.1.1.1 High impedance outputs

If the MPC5777C is considered to be in a Safe stateMCU (for example, unpowered and
outputs tristated), the system containing the MPC5777C may not be compliant with the
Safe statesystem. A possible system level safety measure to achieve Safe statesystem may be
to place pull-up or pull-down resistors on I/O when the high-impedance state is not
considered safe.

Assumption: [SM_038] If a high-impedance state on an output pin is not safe, pull-up or
pull-down resistors shall be added to safety-related outputs. The need for this will be
application dependent for the unpowered or reset (tristated I/O) MPC5777C.[end]

Rationale: In order to bring the safety-related outputs to such a level, that a
Safe statesystem is achieved.

Hardware requirements on system level

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

32 NXP Semiconductors

4.1.1.2 External Watchdog (EXWD)

An external device, acting as an independent timeout functionality (for example, External
Watchdog (EXWD)), should be used to cover Common Mode Failures (CMF) of the
MPC5777C for safety-related systems.

The trigger may be a discrete signal(s) or message object(s). If within a defined timeout
period the EXWD is not triggered, a failure will be considered to have occurred which
would then switch the system to a Safe statesystem within the FTTI (for example, the
EXWD disconnects the MPC5777C from the power supply, or communication messages
are invalidated by disabling the physical layer driver).

Assumption under certain conditions: [SM_041] Timeout functionality (for example,
EXWD) external to the MCU may improve Common Mode Failure (CMF) robustness. If
a failure is detected, the external timeout function must switch the system to a
Safe statesystem within the FTTI.[end]

The implementation of the communication between the MPC5777C and the EXWD can
be chosen by the user as warranted by the application. Examples of different mechanisms
that can be used to trigger the EXWD can include any of the following:

• Serial link (SPI)
• Toggling I/O (GPIO)
• Periodic message frames (CAN)

4.1.1.3 Power Supply Monitor (PSM)

Supply voltages outside of the specified operational ranges may cause permanent damage
to the MPC5777C, even if it is held in reset.

Assumption: [SM_042] It is assumed that safety measures on system level maintain the
Safe statesystem during and after any supply voltage above the specified operational range.
[end]

The MPC5777C Microcontroller Data Sheet provides specific operating voltage ranges
that must be maintained.

Assumption: [SM_087] It is assumed that the external power is supervised for high and
low deviations where no supervision is provided on the MCU. [end]

Assumption: [SM_088] It is assumed that the MCU is kept in reset if the external
voltage is outside specification and is protected against voltage over the absolute
maximum rating of the device (as documented in Data Sheet in section "Absolute
maximum ratings"). [end]

Chapter 4 Hardware requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 33

If the power supply is out of range, MPC5777C shall be kept in reset or unpowered, or
other measures must possibly be used to keep the system in a safe state. Overvoltage
outside the specified range of the technology may cause permanent damage to the
MPC5777C even if kept in reset.

Implementation hint: An external and independent device may provide an over voltage
monitor for the external MPC5777C supplies. If the supplied voltage supply is above the
recommended operating voltage range of the MPC5777C, the MPC5777C should be
maintained with no power. The external power supply monitor will switch the system to a
Safe statesystem within the FTTI, and maintain it in Safe statesystem (for example, over-
voltage protection with functional safety shut-off, or a switch-over to a second power
supply unit).

If the MPC5777C power supply can be designed to avoid any potential of over-voltage,
the external voltage monitoring can be excluded from the system design.

Over-voltage on some supplies will be detected by the MPC5777C itself, but system level
measures might be required to maintain the Safe statesystem in case an over-voltage
situation may cause damage to the MPC5777C.

4.1.1.4 Error Out Monitor (ERRM)

If the MPC5777C signals an internal failure on its error out signals (ERROR0, and
optionally ERROR1), the system may no longer rely on the integrity of the other
MPC5777C outputs for safety functions. If an error is indicated, the system has to switch
to, and remain in, Safe statesystem without relying on the MPC5777C. Depending on its
functionality, the system might disable or reset the device as a reaction to the error
indication (see Assumptions in Safe states).

The safety system developer can choose between two different methods of interfacing to
the FCCU:

• Both FCCU signals connected to an external device

• Only a single FCCU signal connected to an external device

Assumption: [SM_043] The overall system needs to include measures to monitor
ERRORn of the MCU and move the system to a Safe statesystem when an error is
indicated. [end]

Hardware requirements on system level

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

34 NXP Semiconductors

4.1.1.4.1 Both FCCU signals connected to separate device

In this configuration the separate device continuously monitors the outputs of the FCCU.
Thus, it can determine if the FCCU is not working properly.

This configuration does not require any dedicated software support.

Assumption: [SM_201] If both error out signals are connected to an external device, the
external device shall check both signals, taking into account the behavior of the two pins.
[end]

NOTE
See “EOUT interface” section in the “Fault Collection and
Control Unit (FCCU)” chapter of the MPC5777C Reference
Manual for details.

Rationale: To check the integrity of the FCCU, and FCCU signal routing on the system
level

Implementation hint: Monitoring the error output signals with combinatorial logic (for
example, XOR gate) can generate glitches. Oversampling these signals reduces the
possibility that glitches will occur.

4.1.1.4.2 Single FCCU signal connected to separate device

A single signal, ERROR0 (or ERROR1), is connected to a separate device.

If a fault occurs, the FCCU communicates the fault to the separate device through the
ERROR0 (or ERROR1).

The functionality of ERROR0 (or ERROR1) can be checked in the following manner:

• ERROR0 (or ERROR1) read back internally.

• ERROR0 (or ERROR1) connected externally to a GPIO.

• ERROR0 (or ERROR1) uses time domain coding (for example, is active for a
deterministic time interval).

• Test the ability of ERROR0 (or ERROR1) to disable system functionality (for
example, measure voltage available at a motor if ERROR0 (or ERROR1) is expected
to disable its power supply).

The system integrator chooses which solution best fits the system level functional safety
requirements.

Chapter 4 Hardware requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 35

The advantage of a single ERRORn signal being used instead of using both ERRORn
signals as in the previous section, is the lack of need for the separate device to compare
the ERRORn signals.

4.1.1.4.2.1 Single FCCU signal connected to separate device using voltage
domain coding

Recommendation: If ERROR0, or ERROR1, is connected to a device not using time
domain coding, verification is needed that the ERRORn signal(s) are operating correctly
before execution of any safety function can start.

Rationale: To check the integrity of ERROR0, or ERROR1

To verify the functionality of a ERRORn signal, a fault may be injected into one of the
ERRORn signals. The behavior of the signal can then be verified by the other ERRORn
signal, or GPIO. Additionally, the fault output mode can be configured to one of the test
modes to control one ERRORn as an output while the other ERRORn pin is an input or
output. For example, TEST0 mode configures ERROR0 as an input and ERROR1 as an
output. This test mode can be used to check the state of the ERROR0 input by reading
FCCU_EINOUT[EIN0]. Likewise, the user can control the ERROR1 output by
modifying FCCU_EINOUT[EOUT1].

Since the FCCU will be monitoring the system, it is sufficient to check ERROR0 (or
ERROR1) within the L-FTTI (for example, at power-up) to help reduce the risk of latent
faults. It is recommended that ERRORn be checked once before the system begins
performing any safety-relevant function.

Assumption: [SM_170] If the system is using the MCU in a single error output
configuration, the application software will need to configure the signals, and pads,
adjacent to ERROR0 (or ERROR1) to have a lower drive strength, and the error output
signal is configured with highest drive strength. [end]

Using a lower drive strength on the GPIO near ERROR0 (or ERROR1) will result in the
higher drive strength of ERRORn to effect the logic level of the neighboring GPIO in the
event of a short circuit. Software may configure the slew rate for the relevant GPIO in the
Pad Configuration Register (SIU_PCRn).

4.1.1.4.2.2 Single FCCU signal connected to separate device using time domain
coding

Rationale: Decode the time domain coding

Implementation hint: If a single FCCU signal (ERROR0, or ERROR1), is connected to
a separate device applying time domain coding (for example, a decoder), a window
timeout or windowed watchdog function, is good practice.

Hardware requirements on system level

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

36 NXP Semiconductors

Since the FCCU is a safety mechanism, it is sufficient to implement a time domain
interval in the range of the L-FTTI.

4.1.2 Optional hardware measures on system level

As input/output operations are highly application dependant, functional safety of input/
output modules and peripherals should be assessed on a system level. The following
sections provide examples of possible functional safety mechanisms regarding input/
output operations.

4.1.2.1 External communication

Assumption under certain conditions: [SM_044] When data communication is used in
the implementation of a safety function, then system level functional safety mechanisms
are required to achieve the necessary functional safety integrity of communication
processes. [end]

Recommendation: System level measures to detect or avoid transmission errors,
transmission repetitions, message deletion, message insertion, message resequencing,
message corruption, communication delay and message masquerade improves the
robustness of communication channels.

4.1.2.2 PWM output monitor

The MPC5777C timer modules may require system-level safety measures in order to
achieve high functional safety integrity levels.

Assumption under certain conditions: [SM_045] When PWM outputs are used in the
implementation of a safety function, suitable system level functional safety integrity
measures are assumed to monitor these signals. [end]

Rationale: System level measures to detect or avoid erroneous PWM output signals
improves the safety integrity of PWM channels.

Monitoring can be implemented explicitly by monitoring the PWM signal directly with
an external device. The PWM signal may be monitored implicitly, by implementing an
indirect PWM feedback loop (for example, measuring average current flow of a full
bridge driver). This approach may use diverse implementations of input modules (for
example, the analog to digital converter).

The specific PWM features that are to be managed by system level safety measures are:

Chapter 4 Hardware requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 37

• Dead-time may need to always be positive, and greater than the maximum value of
TON or TOFF of the inverter switches.

• Open GPIO, and shorts to supply or ground, may need to be detected. This can be
accomplished, for example, by an external feedback mechanism to a timer module of
the MPC5777C capable of performing input capture functionality.

The system must be switched to Safe statesystem if the MPC5777C detects an error.

To reduce the likelihood of erroneous control (for example, a motor control application
with dead-time requirements to reduce the likelihood of short circuits destroying the
motor) in functional safety applications using I/O to control an actuator with a short
FTTI, functional safety requires system level supervision if the maximum fault indication
time and fault reaction time of MPC5777C exceeds the FTTI of the actuators.

If the PWM signals drive switches of a power stage (for example, bridge driver), the
timer may not be fast enough to detect a dead-time fault because its fault indication time
is often greater than the time required to avoid destruction of the power stage.

4.2 PowerSBC
The system basis chips MC33907 and MC33908 (PowerSBC) from NXP are ideally
suited to be used in combination with MPC5777C to serve as a separate device as
mentioned in Assumed functions by separate circuitry.

The MC33907/08 is a multi-output power supply integrated circuit including enhanced
functional safety features.

Figure 4-2 depicts a simplified application schematic for a safety-related system in
conjunction with the MPC5777C.

Out of a single battery supply with a wide voltage range (VSUP, 3.5 V…28 V), the
MC33907/08 generates 5 V (Vaux), 3.3V (Vcca), and 1.25V (Vcore) to supply the
MPC5777C. All voltages generated in the MC33907/08 are independently monitored for
under and over voltage.

The MC33907/08 also monitors the state of the error out pins ERROR0 and ERROR1,
using the bistable protocol. Via SPI, the MPC5777C repetitively triggers the windowed
watchdog of the MC33907/08 with a valid answer. A dedicated fail safe state machine is
implemented to bring and maintain the application in Safe statesystem. In case of a failure
(for example, the watchdog is not serviced correctly), RSTb is asserted low to reset the
MPC5777C. A fail-safe output (FS0b) is available to control or deactivate any fail-safe

PowerSBC

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

38 NXP Semiconductors

circuitry (a power switch, for example). Another fail-safe output is available with PWM
encoding for error indication (a warning lamp, for example). MC33907/08 also includes
hardware Built-In Self-Tests (BIST).

An interrupt output (INTb) is connected to an IRQ input of the MPC5777C.

By a connection of the signal MUX_OUT to an ADC input of MPC5777C, further
diagnostic measures are possible (for example, reading temperature or measuring
VBATT). Digital inputs (IO_4, IO_5) may be used for monitoring error signal handling of
other devices. Additionally, MC33907/08 may act as a physical interface to connect the
MPC5777C directly with a CAN or LIN bus.

MC 33908 (PowerSBC) MCU

5V I/O, PMC, analog

3.3V I/O

ERROR0

SPI

RSTb

IO_2

IO_3

SPI

VCORE

VCCA

FS0b
Fail Safe output

 (e.g. power switch)

1.25V core voltagevoltage
supervision

error
monitor

watchdog

INTb

MUX_OUT to ADC

5 V

1.25 V

3.3 V

RESET

VAUX

VSUP
VBATT

(3.5 ... 28 V)

RXD (CAN)

TXD (CAN)

RXD (LINFlex)

TXD (LINFlex)

RXD

TXD

RXD_L

TXD_L

CANH

CANL

LIN

4

IRQ

IO_0Exit Deep Fail Safe
(e.g. ignition switch)

ERROR1 } FCCU

Figure 4-2. Functional safety application with PowerSBC

NOTE
Please see the Data Sheet for the full list of supply names.

Chapter 4 Hardware requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 39

PowerSBC

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

40 NXP Semiconductors

Chapter 5
Software requirements

5.1 Software requirements on system level
This section lists required, or recommended, measures when using the individual
components of the MPC5777C.

Given the application independent nature of the MPC5777C, no general safety function
can be specified. To define a specific safety function, the MPC5777C would have to be
integrated into a complete (application dependent) system. Nevertheless, it is possible to
define abstract safety function elements and safety integrity functions:

• A safety function element is used to implement (or control) functional safety with
available hardware.

• A safety integrity function (often called diagnostic measures) is to improve the
probability of successful execution of functional safety.

Modules not explicitly covered by this document do not require safety-specific software
measures. It is also possible to ignore the required measures for explicitly mentioned
modules if equivalent measures to manage the same failures are alternatively included.

The modules that are replicated reach a very high diagnostic coverage (DC) without
additional dedicated measures at application or system level.

5.1.1 Disabled modes of operation

The system level and application software shall ensure that the functions described in this
section are not activated while running functional safety-relevant operations.

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 41

5.1.1.1 Debug mode

The debugging facilities of the MPC5777C pose a possible source of failures if they are
activated during the operation of functional safety-relevant applications. They can halt
the cores, cause breakpoints to hit, write to core registers and the address space, activate
boundary scan, and so on. To reduce the likelihood of interference with the normal
operation of the application software, the MPC5777C may not enter Debug or HALT
mode. The state of the JCOMP signal determines whether the system is being debugged
or whether the system is operating in normal operating mode. When JCOMP is logic low,
the JTAGC TAP controller is kept in reset for normal operating mode. When JCOMP is
logic high, the JTAGC TAP controller is enabled to enter debug mode. During boot,
measures shall be taken to ensure that JCOMP is not asserted by external sources, to
avoid entering debug mode. The activation of debug mode, if JCOMP is low (for
example, due to hardware failures), is supervised by the FCCU, and will signal a fault
condition when debug mode is entered. If the FCCU recognizes erroneous activation of
debug mode, JTAG signals will no longer recognize any input as being legal debug
commands.

Assumption: [SM_147] Debugging shall be disabled in the field while the device is
being used for safety-relevant functions. [end]

Assumption under certain conditions: [SM_148] In general for any module which can
be frozen in debug mode and is functional safety-relevant, it is required that application
software configure these modules to continue execution during debug mode, and not
freeze the module operation if debug mode is entered. [end]

Rationale: To improve resilience against erroneous activation of debug mode

Implementation hint: In debug mode, the FRZ bit in the SWT_CR register controls
operation of the SWT. If the SWT_CR[FRZ] = 0, the SWT counter continues to run in
debug mode.

In debug mode, SDADC_CR[FRZ] controls operation of the SDADC. If the
SDADC_CR[FRZ] = 0, the SDADC does not stop conversions in debug mode.

In debug mode, EQADC_MCR[DBG] controls operation of the EQADC. If the
EQADC_MCR[DBG] = 0b00, the EQADC does not stop conversions in debug mode.

In debug mode, DECFILTER_MCR[FREN] controls operation of the DECFILTER
module. If the DECFILTER_MCR[FREN] = 0, the DECFILTER module does not enter
freeze mode when the device enters debug mode.

In debug mode, STM_CR[FRZ] controls operation of the STM counter. If the
STM_CR[FRZ] = 0, the counter continues to run in debug mode.

Software requirements on system level

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

42 NXP Semiconductors

In debug mode, SWT_CR[FRZ] controls operation of the SWT counter. If the
SWT_CR[FRZ] = 0, the counter continues to run in debug mode.

In debug mode, PIT_MCR[FRZ] controls operation of the PIT counter. If the
PIT_MCR[FRZ] = 0, the counter continues to run in debug mode.

When EMIOS_MCR[FRZ] = 0, the eMIOS continues normal operation while the device
is in debug mode. NOTE: There is a freeze mask bit within EMIOS_C register -
EMIOS_C[FREN].

In debug mode, REACM2_MCR[FREN] controls operation of the Reaction Module. If
the REAC2_MCR[FREN] = 0, the Reaction Module does not enter freeze mode when the
device enters debug mode.

In debug mode, IGF_MCRn[FRZ] controls operation of the Input Glitch Filter Modules.
If the IGF_MCRn[FRZ] = 0, the Input Glitch Filter does not enter freeze mode when the
device enters debug mode.

CAN_ MCR[FRZ] controls FlexCAN Module behavior in the debug mode. If the CAN_
MCR[FRZ] = 0, the FlexCAN Module continues communication (not affected by debug
mode) when the device in the debug mode.

The DSPI_MCR[FRZ] controls DSPI behavior in the debug mode. If
DSPI_MCR[FRZ] = 0, the DSPI continues all active serial transfers when the device in
the debug mode.

SIPI_MCR[FRZ] controls the SIPI behavior during debug mode. If the
SIPI_MCR[FRZ] = 0 (cleared), the SIPI continues serial transfers during debug mode.

The Interrupt Controller (INTC) operation in debug mode is identical to its operation in
normal mode. No specific action is required by application software.

In debug mode, PSI5_CHn_PCCR[DEBUG_EN] controls operation of the PSI5 channel.
If the PSI5_CHn_PCCR[DEBUG_EN] = 0, the module will continue to operate normally
in debug mode.

If DMA_CR[EDBG] = 0, the eDMA continues to operate in debug mode.

In debug mode, FCCU_CTRL[DEBUG] controls operation of the FCCU. If the
FCCU_CTRL[DEBUG] = 0, the module continues to operate normally in debug mode.

5.1.1.2 Test mode

Several mechanisms of the MPC5777C can be circumvented during test mode which
endangers the functional safety integrity.

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 43

Assumption: [SM_149] Test mode is used for comprehensive factory testing and is not
valid for normal operation. Test mode shall be not be enabled in the field while the
device is being used for safety-relevant applications. [end]

Implementation hint: The TEST pin is for test purposes only, and may be tied to GND
during normal operating mode. From a system level point of view, measures may ensure
that the TEST pin is not connected to VDD during boot to avoid entering Test mode. The
activation of Test mode by any source is supervised by the FCCU and may signal a fault
condition when Test mode is entered.

5.2 MPC5777C modules

5.2.1 Mulitplexed serial communicaton protocol controllers

An appropriate safety software protocol should be utilized (for example, Fault-Tolerant
Communication Layer, FTCOM) for any communication peripheral employed to meet
high safety integrity level application requirements.

Recommendation: [SM_151] It is assumed that communication over the following
interfaces is protected by a fault-tolerant communication protocol (implemented by the
operating system or the application) in general in the OSI transport layer (Layer 4):

• FlexCAN
• MCAN
• Ethernet [end]

FlexCAN and MCAN do not have safety mechanisms other than what is included in their
protocol specifications. It is assumed that communication over high-bandwidth interfaces
is protected by a fault-tolerant communication protocol (implemented by the operating
system or the application).

FlexCAN modules are redundantly available peripheral modules. FlexCAN_A and
FlexCAN_B are connected to PBRIDGE_B, and FlexCAN_C and FlexCAN_D are
connected to PBRIDGE_A.

5.2.2 Fault Collection and Control Unit (FCCU)

The FCCU uses a hardware safety channel which collects faults and brings the device to
a Safe stateMCU when a failure is recognized.

MPC5777C modules

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

44 NXP Semiconductors

All faults detected by hardware measures are reported to the FCCU. The FCCU monitors
critical control signals and collects all errors. Depending on the type of fault, the FCCU
places the device into an appropriately configured Safe stateMCU. To achieve this,
application software shall configure the FCCU appropriately. No CPU intervention is
required for collection and control operation, unless the FCCU is specifically configured
to cause software intervention (by triggering IRQs or NMIs).

The FCCU offers a systematic approach to fault collection and control. It is possible to
configure the reaction for each fault source separately. The distinctive features of the
FCCU are:

• Collection of redundant hardware checker results (for example, the RCCU, see
Redundancy Control Checking Unit (RCCU))

• Collection of error information from modules whose behavior is essential to the
functional safety function

• Configurable and graded fault control:
• Internal reactions

• No fault indication (safe fault)
• Maskable and non-maskable interrupts
• Resets

• External reaction (external failure reporting using ERRORn)

The FCCU is checked by the FCCU Output Supervision Unit (FOSU) which provides a
secondary path for failure indication. The FOSU only causes a reset when the FCCU does
not react to the incoming failure indication. The FOSU cannot be configured in any way,
but it defines a maximum time (8000 IRCOSC cycles) that the FCCU can be held in the
configuration state.

The "FCCU fault inputs" table shown in section "Fault Collection and Control Unit
(FCCU)" of the MPC5777C Reference Manual lists sources of critical faults that are
signaled to the FCCU and the type of reset asserted.

The FCCU has two external signals, ERROR0 and ERROR1, through which critical
failures are reported. When the device is in reset or unpowered, these outputs are
tristated.

ERRORn are intended to be connected to an independent device which continuously
monitors the signal(s). If a failure is detected, the separate device switches to and
maintains the system in a Safe statesystem condition within the FTTI (for example, the
separate device disconnects the MPC5777C or an actuator from the power supply).

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 45

5.2.2.1 Initial checks and configurations

Other than the possible initial configuration, no intervention from the MPC5777C is
necessary for fault collection and reaction.

Assumption: [SM_153] Before starting safety-relevant operations, software shall ensure
that the fault reaction to each safety-relevant fault is configured. [end]

Rationale: To maintain the device in the Safe statesystem in case of failure.

Implementation hint: The FCCU fault path is enabled by configuring FCCU registers
(for example, FCCU_NCF_CFG0, FCCU_NCFS_CFG0, FCCU_NCF_TOE0, and so
on). These registers are writable only if the FCCU is in the CONFIG state.

If a CMU monitors a FMPLL generated clock, and that clock is not used or is not used
for functional safety critical modules, error masking and limited internal reaction of the
module using that clock may be acceptable.

Assumption: [SM_166] If the MPC5777C signals an internal failure via its error out
signals (ERRORn), the system can no longer safely use the MPC5777C safety function
outputs. If an error is indicated, the system has to be able to remain in Safe statesystem
without any additional action from the MPC5777C. Depending on its functionality, the
system might disable or reset the MPC5777C as a reaction to the indicated error. [end]

5.2.2.2 Runtime checks

Assumption under certain conditions: [SM_155] If the MPC5777C is continuously
switching between different Safe stateMCU, without a device shutdown, system level
measures shall be implemented to ensure that the system meets the Safe statesystem
criteria. [end]

Implementation hint: Software may be implemented to reduce the likelihood of cycling
between functional and fault states. For example, in the case of periodic non-critical
faults, the software may clean the respective status and periodically move the device from
a fault state to normal state. This procedure may help avoid possible looping between
functional and fault states.

To prevent permanent cycling between a functional state and a fault state, software may
need to keep track of cleaned faults, stop cleaning the faults and stay in a Safe stateMCU.
An exception to this may be an unacceptably high occurence of necessary fault cleaning.
The limit for the number and frequency of cleaned faults is application dependent. This
may only be relevant if continuous switching between a normal operating state and a
reset state (as the failure reaction) is not a Safe statesystem.

MPC5777C modules

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

46 NXP Semiconductors

The application software shall store previous FCCU error indications. If several
consecutive resets are caused by the same FCCU error, the application software should
signal a failure.

Assumption: [SM_248] Before resetting the reset counters, the application software shall
ensure that it can detect longer reset cycles caused by faults in normal operation. [end]

5.2.3 Self Test Control Unit (STCU2)

The STCU2 executes BISTs (LBIST, MBIST) and reacts to detected faults by signaling
faults to the FCCU (see "Self-Test Control Unit (STCU2)" in the MPC5777C Reference
Manual for details).

5.2.3.1 Initial checks and configurations

Application software is not required to configure the STCU2. It is assumed that LBISTs
and MBISTs are executed once per Ttrip.

Recommendation: [SM_162] When Built-In Self-Test (for example, LBIST, MBIST)
circuits of the MPC5777C are used as functional safety integrity measures (for example,
to detect random faults, latent faults, and single-point faults) in a functional safety
system, functional safety integrity measures on a system level may be implemented
ensuring STCU2 integrity during/after STCU2 initialization but before executing a safety
function. [end]

Rationale: The STCU2's correct behavior shall be verified by checking the expected
results by software.

Implementation hint: System (application) level software shall check the STCU2 to
ensure integrity.

Implementation hint: The integrity software may confirm that all MBISTs and LBISTs
finished successfully with no additional errors flagged.

This software confirmation prevents a fault within the STCU2 from incorrectly indicating
that the built in self-test passed.

This is an additional functional safety layer since the STCU2 propagates the LBIST/
MBIST and internal faults to the FCCU. So, reading STCU2_LBS, STCU2_LBE,
STCU2_MBSL, STCU2_MBSM, STCU2_MBSH, STCU2_MBEL, STCU2_MBEM,
STCU2_MBEH and STCU2_ERR registers increases the STCU2 fault coverage.

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 47

Implementation hint: The STCU2 may be configured (in test flash memory) to execute
the LBIST and MBIST before activating the application safety function (see section
"STCU2 Configuration Register (STCU2_CFG)" in the "Self-Test Control Unit (STCU)"
chapter of the MPC5777C Reference Manual).

5.2.4 Temperature Sensors (TSENS)

The MPC5777C has two temperature sensors that are read from the EQADC_A module
(ADC0 and ADC1 converters on EQADC_A channels 128 and 129). Each temperature
sensor generates one analog voltage which is proportional to the absolute current junction
temperature of the device and three digital outputs that signal whether the junction
temperature has reached either a preset low temperature threshold or one of two preset
high temperature thresholds.

Temperatures that are outside of the allowable range are handled as follows:

• FCCU failure generation according to the defined low and high temperature points

Recommendation: To reduce the likelihood of CMFs related to the effects of
temperature threshold violations (for example, due to random hardware faults), the faults
may be controlled at the application software level.

Recommendation: The potential for over-temperature operating conditions need to be
reduced by appropriate system level measures. Possible measures may include:

• Using a thermal fuse.
• Several levels of over-temperature sensing and alarm triggering.
• Connection of forced air cooling and status indication.

Implementation hint: When the temperature threshold detection feature is enabled, the
temperature sensor monitors the internal junction temperature of the chip at two different
spatial locations and asserts a signal if any of the specified temperature thresholds are
crossed (as shown in section "Temperature threshold detection (digital output
generation)" of the MPC5777C Reference Manual).

Note

The threshold temperatures may be adjusted by configuring the
"Temperature detector configuration register (PMC_CTL_TD)"
located in the PMC module.

MPC5777C modules

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

48 NXP Semiconductors

The temperature sensors monitor the substrate temperature to detect overtemperature
conditions before they cause CMFs (for example, faults due to overtemperature which
causes identical erroneous results from both cores). The maximum operating junction
temperature is specified in the MPC5777C Data Sheet. The sensor output is forwarded to
the appropriate EQADC channels for measurement conversion.

5.2.4.1 Initial checks and configurations

Recommendation: If using the temperature sensors as a common mode fault measure
during or after initialization, but before executing any safety function, the temperature
sensors should be read by software to determine if temperatures are reasonable and
within correct operating temperature range.

However, nothing prohibits reading the temperature sensor during execution of the safety
function (application run time).

Rationale: A means of assessing functionality of the temperature sensor

Assumption: [SM_164] Application software shall configure the FCCU and the PMC
registers related to temperature sensor configuration to react to over-temperature faults of
the temperature sensors (see the "FCCU fault inputs" table shown in section "Fault
Collection and Control Unit (FCCU)" of the MPC5777C Reference Manual). [end]

Recommendation: If using the internal temperature sensors and an external temperature
sensor as common mode fault measure, improving CMF robustness, the temperature
reading from the external sensor should not use the same analog to digital converter
(ADC) as the internal temperature sensors.

Assumption under certain condition: [SM_166] If latent fault diagnostic coverage of
temperature sensing is safety relevant for an application, during power up the two
temperature sensors are to be read by software. The software shall verify that the
conversion values are similar, as this is a means of assessing that the sensors are working
properly. [end]

5.2.5 Software Watchdog Timer (SWT)

The objective of the Software Watchdog Timer (SWT) is to detect a defective program
sequence when individual elements of a program are processed in the wrong sequence, or
in an excessive period of time. Once the SWT is enabled, it requires periodic and timely
execution of the watchdog servicing procedure. The service procedure shall be performed
within the configured time window, before the service timeout expires. When a timeout

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 49

occurs, a trigger to the FCCU can be generated immediately, or the SWT can first
generate an interrupt and load the down-counter with the timeout period. If the service
sequence is not written before the second consecutive timeout, the SWT drives its FCCU
channel to trigger a fault (see the "FCCU fault inputs" table shown in section "Fault
Collection and Control Unit (FCCU)" of the MPC5777C Reference Manual).

Assumption:[SM_067] Before the safety function is executed, the SWT must be enabled
and configuration registers hard-locked against modification. [end]

Assumption:[SM_102] The SWT time window settings must be set to a value less than
the FTTI. Detection latency shall be smaller than the FTTI. [end]

Implementation hint: To enable the SWT and to hard-lock the configuration register,
the SWT control register flags SWT_CR[WEN] and SWT_CR[HLK] need to be asserted.

Note

The timeout register (SWT_TO) shall contain a 32-bit value
that represents a timeout less than the FTTI/PST.

In general, it is expected that application software uses the SWT to detect lost clocks or
clocks that are too slow. Using the SWT to detect clock issues is a secondary measure
since there are primary means for checking clock integrity (for example, by CMUs).

The MPC5777C provides the hardware support (SWT) to implement both control flow
and temporal monitoring methods. If Windowed mode and Keyed Service mode (two
pseudo-random key values used to service the watchdog) are enabled, it is possible to
reach a high effective temporal flow monitoring.

Assumption: [SM_169] It is the responsibility of the application software to insert
control flow checkpoints with the required granularity as required by the application.
[end]

Two service procedures are available:

• The first one is based on the fix service sequence represented by a write of
SWT_KEY1 value followed by a write of SWT_KEY2 value to the SWT service
register. Writing the service sequence re-loads the internal down counter with the
time-out period.

• The second is based on a pseudo-random key computed by the SWT every time it is
serviced and which is written by the software on the successive write to the service
register. The watchdog can be refreshed only if the key calculated in hardware by the
watchdog is equal to the key provided by software which may calculate the key in
one or more procedure/tasks (so called signature watchdog). The 16-bit key is
computed as SK(n + 1) = (17 × (SKn + 3)) mod 216.

MPC5777C modules

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

50 NXP Semiconductors

5.2.5.1 Run-time checks

Implementation hint: Control flow monitoring can be implemented using the SWT.
However, other control flow monitoring approaches that do not use the SWT may also be
used. When using the SWT, the SWT shall be enabled and its configuration registers
shall be hard-locked to prohibit modification by application software.

5.2.6 Redundancy Control Checking Unit (RCCU)

The task of the Redundancy Control Checking Unit (RCCU) unit is to perform a cycle-
by-cycle comparison of the outputs between core 1 and the checker core. The error
information is forwarded to the FCCU. The RCCUs are automatically enabled when the
MPC5777C Lockstep feature is enabled.

NOTE

On this chip disabling lockstep mode does not free the checker
core for independent execution (called DPM on other chips).

5.2.6.1 Initial checks and configurations

The use of the RCCU is indispensable, and is automatically managed by the MPC5777C.
The RCCU cannot be disabled by application software. Consequently, the respective
FCCU input should not be disabled.

Assumption:[SM_033] Before starting safety-relevant operations, the application
software must check that the checker core is enabled and configure the FCCU to react to
LSM being disabled. [end]

5.2.7 Cyclic Redundancy Checker Unit

The Cyclic Redundancy Checker Unit (CRC) offloads the CPU in computing a CRC
checksum. The CRC has the capability to process two interleaved CRC calculations. The
CRC module may be used to detect erroneous corruption of data during transmission or
storage. The CRC takes as its input a data stream of any length and calculates a 32-bit
output value (signature). There are three sets of CRC registers to allow concurrent CRC
computations in the MPC5777C.

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 51

The contents of the configuration registers of the functional safety related modules shall
be checked within the FTTI.

5.2.7.1 Runtime checks

Parts of the MPC5777C configuration registers do not provide the functional safety
integrity IEC 61508 series and ISO 26262 require for high functional safety integrity
targets. This relates to systematic faults (for example, application software incorrectly
overwriting registers), as well as random hardware faults (bit flipping in registers).

Assumption: [SM_170] The CRC calculation shall be executed at least once per FTTI to
verify the content of the safety-relevant configuration registers. [end]

Implementation hint: The CRC of the configuration registers of the modules involved
with the safety function should be calculated offline. Online CRC calculation (for
example, if some registers are dynamically modified) is possible if an independent source
for the expected register content is available.

At run time, the value calculated by the CRC module needs to be identical to the offline
value. To avoid overloading the core, the eDMA module can be used to support the data
transfer from the registers under check to the CRC module.

Assumption:[SM_171] Safety software running on the safety core must check correct
initialization of the MPC5777C before activating the safety-relevant functionality.[end]

Note

For some configuration registers (specifically clock and MCU
mode configurations) CRCing is insufficient since the registers
are unavailable until an event is triggered. In those instances,
additional measures to check correct initial configuration are
necessary (for example, clocks checked by the CMUs).

Implementation hint: To verify the content of the MPC5777C configuration registers of
the modules involved with the safety function, the CRC module may be used to calculate
a signature of the content of the registers and compare this signature with a value
calculated during development.

Alternatively, the CPU could be used instead of the CRC module to check that the value
of the configuration registers has not been modified. However, using the CRC module is
more effective.

MPC5777C modules

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

52 NXP Semiconductors

Implementation hint: The CRC module could be used to detect data corruption during
transmission or storage. The CRC takes as its input a data stream of any length and
calculates a 32-bit signature value.

Implementation hint: The expected CRC of the configuration registers of the modules
involved with the safety function should be calculated offline. When the safety function
is active (application run time), the same CRC value shall be calculated by the CRC
module within the FTTI. To unload the CPU, the eDMA module can be used to support
the data transfer from the registers being checked by the CRC module. The result of the
runtime computation is then compared to the predetermined value.

The application shall include detection, or protection measures, against possible faults of
the CRC module only if the CRC module is used as safety integrity measure or within the
safety function.

Implementation hint: An alternative approach would be to use the eDMA to reinitialize
the content of the configuration registers of the modules involved with the safety function
within the respective FTTI when the safety function is active (application runtime). This
approach may require additional measures to detect permanent failures (not fixed by
reinitialization). It also needs measures against transfer errors and ignores the fact that
some configuration registers cannot be changed except by a mode change.

5.2.7.1.1 Implementation details

The eDMA and CRC modules should be used to implement these safety integrity
measures to unload the CPU.

Note

Caution: The signature of the configuration registers is
computed in a correct way only if these registers do not contain
any volatile status bit.

5.2.7.1.1.1 <module>_SWTEST_REGCRC

The following safety integrity functions for register configuration checks are used in this
document:

• EMIOS0_SWTEST_REGCRC

The eMIOS_0 configuration registers are read and a CRC checksum is computed.
The checksum is compared with the expected value.

• EMIOS1_SWTEST_REGCRC

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 53

The eMIOS_1 configuration registers are read and a CRC checksum is computed.
The checksum is compared with the expected value.

• SIU_SWTEST_REGCRC

The configuration registers of the SIU are read and a CRC checksum is computed.
The checksum is compared with the expected value.

• ETPUA_SWTEST_REGCRC

The ETPU_A configuration registers are read and a CRC checksum is computed.
The checksum is compared to the expected value.

• ETPUB_SWTEST_REGCRC

The ETPU_B configuration registers are read and a CRC checksum is computed. The
checksum is compared to the expected value.

• ETPUC_SWTEST_REGCRC

The ETPU_C configuration registers are read and a CRC checksum is computed. The
checksum is compared to the expected value.

• EQADC_A_SWTEST_REGCRC

The EQADC_A configuration registers are read and a CRC checksum is computed.
The checksum is compared to the expected value.

• EQADC_B_SWTEST_REGCRC

The EQADC_B configuration registers are read and a CRC checksum is computed.
The checksum is compared to the expected value.

• SDADC0_SWTEST_REGCRC

The SDADC0 configuration registers are read and a CRC checksum is computed.
The checksum is compared to the expected value.

• SDADC1_SWTEST_REGCRC

The SDADC1 configuration registers are read and a CRC checksum is computed.
The checksum is compared to the expected value.

• SDADC2_SWTEST_REGCRC

The SDADC2 configuration registers are read and a CRC checksum is computed.
The checksum is compared to the expected value.

• SDADC3_SWTEST_REGCRC

MPC5777C modules

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

54 NXP Semiconductors

The SDADC3 configuration registers are read and a CRC checksum is computed.
The checksum is compared to the expected value.

5.2.8 Internal RC oscillator (IRCOSC)

The Internal RC oscillator (IRCOSC) has a nominal frequency of 16 MHz, but the
frequency accuracy over the full voltage and temperature range has to be taken into
account. Functional safety-related modules which use the clock generated by the
IRCOSC are: FCCU, CMU, and SWT. In the rare case of an IRCOSC clock failure, these
modules will stop functioning.

5.2.8.1 Initial checks and configurations

The frequency meter of CMU_0 shall be used to check the availability and frequency of
the internal IRCOSC. This feature allows measurement of the IRCOSC frequency using
the XOSC as the reference (IRC_SW_CHECK).

Assumption: [SM_173] The IRCOSC frequency is measured and compared to the
expected frequency of 16 MHz. This test is performed after power-on, but before
executing any safety function. Software writes CMU_CSR[SFM] = 1 to start the
frequency measurement, and the status of the measurement is checked by reading this
same field. When CMU_CSR[SFM] = 0 the frequency measurement has completed (see
"Frequency meter" section in the "Clock Monitor Unit (CMU)" chapter of the
MPC5777C Reference Manual for details.). [end]

Rationale: To check the integrity of the IRCOSC

Note

If the IRCOSC is not operating due to a fault, the measurement
of the IRCOSC frequency will never complete and the
CMU_CSR[SFM] flag will remain set. The application may
need to manage detecting this condition. For example,
implementing a software watchdog which monitors the
CMU_CSR[SFM] flag status.

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 55

5.2.8.2 Runtime checks

The frequency meter of CMU_0 shall be used to verify the availability and frequency of
the IRCOSC. This feature allows measurement of the IRCOSC frequency using the
XOSC as the clock source.

Assumption: [SM_174] To detect failure of the IRCOSC, the application software shall
utilize frequency metering of CMU_0 to read the IRCOSC frequency and compare it
against the expected value of 16 MHz.1 [end]

If the measured IRCOSC frequency does not match the expected value, there exists the
possibility of a complete failure of all safety measures. Software should then bring the
system to a Safe statesystem without relying on the modules driven by the IRCOSC (for
example, FCCU, CMU and SWT).

Recommendation: To increase the fault detection, this functional safety integrity
measure should be executed once per FTTI.

5.2.9 External Oscillator (XOSC)

FlexCAN, MCAN, and PIT each feature modes in which they are directly clocked from
the XOSC. For safety relevant applications, these clocking modes should not be used.

5.2.9.1 Initial checks and configurations

Assumption: [SM_175] The application software shall not utilize, for safety-relevant
applications, FlexCan, MCAN, and PIT modules in modes in which the modules are
clocked directly from the XOSC. [end]

5.2.9.2 Runtime checks

Assumption: [SM_076] Software shall check that the system clock is available, and
sourced by the XOSC, before running any safety element function or enabling the FCCU
to the operational state.[end]

1. Nominal frequency of the IRCOSC is 16 MHz, but the post trim accuracy over voltage and temperature shall be taken into
account.

MPC5777C modules

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

56 NXP Semiconductors

5.2.10 Dual PLL Digital Interface (PLLDIG)

The MPC5777C consists of two PLLs used to generate high speed clocks, an FMPLL
(PLL1) (which provides a frequency modulated clock) and non-FMPLL (PLL0). The
FMPLL and non-FMPLL provide a loss of lock error indication that is routed to the
FCCU. If there is no PLL lock, the system clock can be driven by the IRCOSC. Glitches
which may appear on the crystal clock are filtered (low-pass filter) by the FMPLL. The
FMPLL dedicated to the system clock is a frequency modulated PLL to reduce EMI, and
is distributed to most of the MCU modules. The auxiliary clock from the non-FMPLL is
distributed to those peripherals that require precise timing.

Implementation hint: PLLDIG_PLL0SR[LOLF] and PLLDIG_PLL1SR[LOLF]
indicate that a loss of lock event occurred. The PLLDIG_PLL0CR[LOLIE] and
PLLDIG_PLL1CR[LOLIE] can be set to enable an interrupt request upon loss of lock.

5.2.10.1 Initial checks and configurations

After system reset, the PLLs are deactivated. The MPC5777C initially uses the internal
RC oscillator clock (IRCOSC) as clock source (see the "Clocking" chapter in the
MPC5777C Reference Manual and Internal RC oscillator (IRCOSC) for details on
IRCOSC configuration).

Assumption: [SM_178] Before executing any safety function, a high quality clock (low
noise, low likelihood for glitches) based on an external clock source shall be configured
as the system clock of the MPC5777C. [end]

Rationale: Since the IRCOSC is used by the CMUs as reference to monitor the output of
the two PLLs, it cannot be used as input of these PLLs.

Implementation hint: The two PLLs can be configured to use the external oscillator
(XOSC) as a clock reference, or an externally provided clock reference.

Assumption under certain conditions: [SM_179] When clock glitches endanger the
system level functional safety integrity measure or functional safety-relevant modules, or
both, they shall be clocked with an FMPLL generated clock signal, as the PLL serves as a
filter to reduce the likelihood of clock glitches due to external disturbances. Alternatively
a high quality external clock having low noise and low likelihood of clock glitches shall
be used. [end]

Rationale: To reduce the impact of glitches from the external crystal and its hardware
connection to the MPC5777C.

Implementation hint: This requirement is fulfilled by appropriately programming the
System Integration Unit (SIU).

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 57

During/after initialization but before executing any safety function, application software
has to check that the MPC5777C uses the FMPLL clock as "system clock".

Implementation hint: Application software can check the current system clock by
checking the SIU_SYSDIV[SYSCLKSEL] bit field. SIU_SYSDIV[SYSCLKSEL] = 2
indicates that the FMPLL (PLL1) clock is being used as the system clock.

5.2.11 Clock Monitor Unit (CMU)

At startup, the CMUs are not initialized and the IRCOSC is the default system clock.
Stuck-at faults on the external oscillator (XOSC) are not detected by the CMUs at power-
on since the monitoring units are not initialized and the MPC5777C is still running on the
IRCOSC.

Clocks are supervised by Clock Monitoring Units (CMUs). The CMUs are driven by the
16MHz internal reference clock oscillator (IRCOSC) to ensure independence from the
monitored clocks. CMUs detect errors associated with conditions due to clock out of
programmable bounds or loss of clock. If a supervised clock leaves the specified range
for the device, an error signal is sent to the FCCU. MPC5777C includes the CMUs
shown in Table 5-1.

Table 5-1. Clock Monitoring Units

CMU Monitored Clock

CMU_0 PLL0,XOSC,IRCOSC

CMU_1 Core 0, Core 1, Checker Core, RCCU

CMU_2 Platform modules: Crossbar, Peripheral Bridges, Memories, DMA, Flash Memory
Controller, Debug

CMU_3 Memory-mapped registers of peripherals

CMU_5 Protocol and communication engines of peripherals

CMU_6 SDADC

CMU_7 PSI5 Rx clock input

CMU_8 PSI5 1 MHz clock input

The CMUs are programmable to allow them to:

• detect clock out of a programmable frequency range (frequency too high or too low)

• adjust the time over which the supervised clock is monitored for a frequency
violation

MPC5777C modules

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

58 NXP Semiconductors

The CMUs supervise the frequency range of various clock sources. In case of abnormal
behavior, the information is forwarded to the FCCU as faults (see "FCCU fault inputs"
table shown in section "Fault Collection and Control Unit (FCCU)" of the MPC5777C
Reference Manual).

Assumption: [SM_180] For safety-relevant applications, CMU use is mandatory. If the
modules monitored by the CMU are used by the application safety function, the user shall
verify that the CMUs are not disabled and their faults are managed by the FCCU. The
FCCU's default condition does not manage CMU faults, so it shall be configured
accordingly. [end]

5.2.11.1 Initial checks and configurations

Assumption: [SM_181] The following supervisor functions are required:

• Loss of external clock
• FMPLL frequency higher than the (programmable) upper frequency reference
• FMPLL frequency lower than the (programmable) lower frequency reference[end]

Rationale: To monitor the integrity of the clock signals

Recommendation: The CMUs should be used for each clock that is being monitored and
used by a functional safety-relevant module. Application software shall check that the
CMUs are enabled and their faults managed by the FCCU.

Implementation hint: In general, the following two application-dependent
configurations shall be executed before CMU monitoring can be enabled.

• The first configuration is related to the crystal oscillator clock (XOSC) monitor of
CMU_0. Software configures CMU_0_CSR[RCDIV] to select an IRCOSC divider.
The divided IRCOSC frequency is compared with the XOSC.

• The second configuration is related to other clock signals being monitored. The high
frequency reference (CMU_n_HFREFR_A[HFREF_A]) and low frequency
reference (CMU_n_LFREFR_A[LFREF_A]) is configured depending on CMU_0.

Once the CMUs are configured, clock monitoring will be enabled when software writes
CMU_n_CSR[CME_A] = 1.

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 59

5.2.12 Power Management Controller (PMC)

The PMC manages the supply voltages for all modules on the device. This unit includes
the internal regulator for the logic power supply (1.25 V) and a set of voltage monitors.
The module has low voltage detectors (LVD) and high voltage detectors (HVD). If one of
the monitored voltages goes below (LVD) or above (HVD) a given threshold, a reset is
initiated to control erroneous voltages before these cause a CMF (see the MPC5777C
Data Sheet for correct operating voltage ranges).

To ensure functional safety, the Power Management Controller (PMC) monitors various
supply voltages of the MPC5777C device (as seen in Table 5-2):

• The low and high voltage detectors (LVD/HVD) supervise the 1.25 V core supply
(VDD_LV) voltage to verify that it maintains a level between the lower and upper
limits.

• VDD LVD
• VDD HVD

Assumption: [SM_244] The application software shall initiate the LVD/HVD self-test
mechanism to detect LVD/HVD failures after startup.[end]

Assumption: [SM_184] The application software shall check the status registers of the
FCCU for the results of the hardware-assisted self-test.[end]

Assumption:[SM_204] It is assumed that the ADC's are used to monitor the bandgap
reference voltage of the PMC. [end]

Apart from the self-test and ADC monitoring of the bandgap reference voltage, the use of
the PMC for safety-relevant applications is transparent to the user because the operation
of the PMC is automatic.

The PMC BISTs are automatically run during startup, but the LVDs and HVDs are
disabled until after testing has completed.

Undervoltage and overvoltage conditions can directly cause a transition into a safe state
via a reset. This solution was chosen because safety-relevant voltages have the potential
to disable the failure indication mechanisms of the MPC5777C (the FCCU). The LVDs
and HVDs also report errors to the FCCU, but since the LVD and HVD errors can result
in reset, the FCCU error reporting is not utilized.

Note

For development purposes only, different fault reactions can be
programmed in the PMC for LVD and HVD error reporting to
the FCCU and reset/interrupt generation can be disabled.

MPC5777C modules

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

60 NXP Semiconductors

Assumption: [SM_185] Software shall not disable the direct transition by reset into a
safe state due to an overvoltage or undervoltage indication.[end]

Table 5-2. PMC monitored supplies

Detector Type Detector Name Voltage Monitored

LVD PMC voltage supply 3.3 - 5.0 V PMC supply

POR/LVD/HVD VDD core voltage supply 1.25 V core supply

LVD/HVD Flash memory voltage supply 3.3 V flash supply

LVD VDDIO I/O voltage supply 5 V I/O supply

NOTE
See the MPC5777C Data Sheet for voltage limits of these
supplies

Overvoltage of any 3.3 V supply shall be monitored externally as described in Power
Supply Monitor (PSM).

5.2.12.1 1.25 V supply supervision

Voltage detectors LVD_core and HVD_core monitor the digital (1.25 V) core supply
voltage for over and under voltage in relation to a reference voltage. In case the core
main voltage detector detects over or under voltage during normal operation of the
MPC5777C, a reset is triggered.

By this means, a failing external ballast transistor (stuck-open, stuck-closed) is also
detected.

Assumption under certain conditions:[SM_189] When the system requires robustness
regarding 1.25 V over voltage failures, the external VREG mode is preferably selected.
The internal VREG mode uses a single pass transistor and, therefore, overvoltage can not
be shut off redundantly. [end]

Rationale: To enable system level measures to detect or shut down the supply voltage in
case of a destructive (multiple point faults) 1.25 V over voltage incident.

Implementation hint: The digital (1.25 V) core supply voltage may be monitored
externally and the power supply shut down in case of an overvoltage. An external 1.25 V
HVD may detect overvoltage and shut down the 3.3 V supply voltage.

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 61

5.2.12.2 3.3 V supply supervision

Voltage detectors LVD_FLASH and HVD_FLASH monitor the 3.3 V flash supply for
under voltage and over voltage in relation to a reference voltage. In case a single
LVD/HVD detects under/over voltage during normal operation of the MPC5777C, a reset
is triggered. Note that if the internal flash regulator is used, it guarantees the correct
operating range for the flash. LVD/HVD may be triggered if external 3.3V is supplied to
both VDDPMC and VDDFLA, bypassing the internal flash regulator and if that external
supply does not maintain the correct operating range for the flash at all times.

5.2.13 Memory Protection Units (MPU)

As a multimaster, concurrent bus system, the MPC5777C provides safety mechanisms to
prevent non-safety masters from interfering with the operation of the safety core. The
MPC5777C also contains mechanisms to handle the concurrent operation of software
tasks with different or lower ASIL classifications.

Recommendation: For safety-relevant applications, the MPU should be used to ensure
that software tasks can only configure modules and access resources according to the
tasks access rights.

Assumption: [SM_192] The MPU shall only be programmed by the safety core. This
software shall prevent write accesses to the MPU's registers from all other masters. The
MPU programming model shall only be accessible to the safety core. [end]

5.2.13.1 Initial checks and configurations

Assumption under certain conditions:[SM_195] If nonreplicated bus masters (for
example, CSE, SIPI, and FEC) are used, system level functional safety integrity
measures shall cover bus operations to reduce the likelihood of replicated resources being
erroneously modified. [end]

Rationale: Access restriction is protection against unwanted read/write accesses to some
predefined memory mapped address locations.

Implementation hint: The MPU shall be used to ensure that only authorized software
routines can configure modules and all other bus masters (CSE, SIPI, FEC, eDMA) can
access only their allocated resources according to their access rights.

Rationale: Access restriction at the MPU level is protection against unwanted software
(process) read/write accesses to some predefined memory mapped address locations.

MPC5777C modules

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

62 NXP Semiconductors

Recommended: The MPU may be used to ensure that only authorized software routines
(processes) can configure modules and access private resources. All other software
routines can access only their allocated resources according to their access rights.

5.2.14 PBRIDGE protection

The PBRIDGE access protection can be used to restrict read and write access to
individual peripheral modules and restrict access based on the master's access attributes.

• Master privilege level – The access privilege level associated with each master is
configurable. Each master can be configured to be trusted for read and write
accesses.

• Peripheral access level – The access level of each peripheral is configurable. The
peripheral can be configured to require the master accessing the peripheral to have
supervisor access attribute. Furthermore, if peripheral write protection is enabled,
write accesses to the peripheral are terminated. The peripheral can also be configured
to block accesses from an untrusted master.

Recommendation: Using application software, periodically check the contents of
configuration registers (more than 10 registers) of modules attached to the PBRIDGEs to
help detect faults in the PBRIDGE.

5.2.14.1 Initial checks and configurations

The application software should configure the PBRIDGEs to define the access
permissions for each slave module that requires access protection.

5.2.15 Built-In Hardware Self-Tests (BIST)

Built-in hardware self-tests (BISTs) or built-in tests (BITs) are mechanisms that permit
circuitry to test itself. Hardware supported BIST is used to speed up self-tests and reduce
CPU load. As hardware assisted BIST is often destructive, it shall be executed ahead or
after a reset.

Absence of latent faults shall be checked at startup or during shutdown by MBIST or
LBIST. The boot time BIST includes the scan-based LBIST to test the digital logic and
the MBIST to test all RAMs and ROMs.2

2. This does not include flash memory.

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 63

The overall control of the LBISTs and MBISTs is provided by the Self-Test Control Unit
(STCU2). The STCU2 will execute automatically after a power-on-reset, external reset,
or destructive reset, and it will also execute when initiated by software (online).

If there is an LBIST failure, or MBIST detects uncorrectable failures, the HW will
prevent further execution. On the other hand, if MBIST detects correctable failures SW
shall decide whether to continue or halt execution. This is true even if several of the
correctable failures combine to create an uncorrectable failure.

Assumption:[SM_109] Software shall check after MBIST execution whether two
reported single-bit errors belong to the same address and thus constitute a multi-bit error.
MBIST does not guarantee detection of all multi-bit errors on its own. [end]

Assumption: [SM_197] After startup and before the safety application starts, application
software shall confirm all LBISTs and MBISTs finished successfully and no further
errors are flagged. [end]

Note

Implementation hint: Software can read the following
registers to check the BIST results:

• STCU2_LBS to determine which offline LBISTs failed

• STCU2_LBE to determine which offline LBISTs did not
finish

• STCU2_MBSL, STCU2_MBSM and STCU2_MBSH to
determine which offline MBISTs failed

• STCU2_MBEL, STCU2_MBEM and STCU2_MBEH to
determine which offline MBISTs did not finish

• STCU2_LBSSW to determine which online LBISTs failed

• STCU2_LBESW to determine which online LBISTs did
not finish

• STCU2_MBSLSW, STCU2_MBSMSW and
STCU2_MBSHSW to determine which online MBISTs
failed

• STCU2_MBELSW, STCU2_MBEMSW and
STCU2_MBEHSW – To determine which online MBISTs
did not finish

• STCU2_ERR_STAT – To check for internal STCU failure

MPC5777C modules

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

64 NXP Semiconductors

Not every fault expresses itself immediately. For example, a fault may remain unnoticed
if a component is not used or the context is not causing an error or the error is masked.

If faults are not detected over a long period of time (latent faults), they can accumulate
once they propagate. ISO 26262 requires 90% latent-fault metric for ASIL D, 80% for
ASIL C, and 60% for ASIL B. Typically, hardware assisted BIST is therefore used as a
safety integrity measure to detect latent faults.

The MPC5777C is equipped with a Built-in hardware self-test:

• System SRAM (MBIST, executed at boot-time, latent failure measure)

• Logic (LBIST, executed at boot-time, latent failure measure)

• Flash memory integrity self check (executed at least once per FTTI, single-point
failure measure)

• Flash memory margin read (executed after every programming operation or executed
at least once per FTTI, latent failure measure and single-point failure measure)

• PMC (self-test of LVD/HVD)

Boot-time tests (MBIST, LBIST) are performed after the occurrence of a power-on,
FOSU, or external reset, unless they are disabled. All boot-time tests are executed before
application software starts executing. If a boot-time test fails, the MPC5777C will remain
in Safe stateMCU.

All tests may be performed without dedicated external test hardware.

The following safety integrity measure validates the ECC fault signalling and is executed
by software to detect single-point faults, although no built-in hardware support is used:

• Flash memory: ECC Fault Report Check: Software can read from the Flash a set of
test patterns (provided by NXP) to test the integrity of faults reported by the ECC
logic and captured in the FCCU (shall be performed at startup).

5.2.15.1 Memory Built-In Self-Test (MBIST)

The SRAM BIST (MBIST) runs during initialization (during boot) and can be run during
shutdown, if configured appropriately and triggered by software (see Self Test Control
Unit (STCU2)).

NOTE
In principle MBIST can be run at any time, but the MCU will
execute a reset after MBIST completes.

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 65

5.2.15.2 Logic Built-In Self-Test (LBIST)

The Logic BIST (LBIST) runs during initialization (during boot) and can be run during
shutdown, if configured appropriately and triggered by software (see Self Test Control
Unit (STCU2)).

NOTE
In principle LBIST can be run at any time, but the MCU will
execute a reset after LBIST completes.

5.2.15.3 Flash memory array integrity self check

The flash memory array integrity self check runs in flash memory user test mode and is
initiated by software. When the check has completed, software verifies the result (see
Flash memory).

5.2.15.4 Flash memory margin read

The flash memory margin reads may be activated to increase the sensitivity of the array
integrity self check. It may be enabled in flash memory user test mode and is initiated by
software.

5.2.15.5 Flash memory ECC logic check

The flash memory ECC logic check runs in flash memory user test mode. It is executed
in software and supported by hardware.

5.2.15.6 Flash memory ECC fault report check

The flash memory ECC fault report check is executed in software (refer to Flash
memory).

MPC5777C modules

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

66 NXP Semiconductors

5.2.16 End-to-end ECC (e2eECC)

The MPC5777C includes end-to-end ECC (e2eECC) support for improved functional and
transient fault detection capabilities. Memory-protected by the traditional ECC/EDC
generates and checks additional error parity information local to the memory unit to
detect and/or correct errors which have occurred on stored data in the memory.

In contrast, in the MPC5777C e2eECC protected memory, the bus master initiates the
data write and generates ECC checkbits based on address and data. The data including
the checkbits are transferred from the bus master to the appropriate bus slave. Both data
and checkbits are stored into the memory. When the bus master initiates a read of the
previously written memory location, the read data and checkbits are passed onto the
system bus interconnection. The bus master captures the read data and associated
checkbits, performs the ECC checkbit decode and syndrome generation and performs any
needed single-bit correction.

The e2eECC provides:

• ECC for master-slave accesses via the crossbar
• ECC is stored in the memories on write operations and validated by the crossbar

master on every read operation
• Every memory with ECC

• ECC bits are stored alongside data in Flash memory and RAM. This includes
flash memory array, RAM array, CAN RAM, DMA RAM, and eTPU RAM.

• ECC on address and data

All-X errors in memory have special handling as it is thought that there may be a higher
probability of All-X errors than random wrong bits.

The ECC used for flash memory marks All-0 as being in error, but allows All-1 situations
to take into consideration reading erased, uninitialized flash memory.

The ECC for RAM, without inclusion of address, marks All-X as errors.

The ECC for RAM, with inclusion of address, cannot guarantee that All-X is an error for
any address because All-0 and All-1 will be correct codewords for approximately every
256th address. In these RAMs, at more than every 2nd address, All-1 and All-0 will be
uncorrectable errors. It is possible to read such an address where All-X is uncorrectable
periodically to determine situations in which an error causes a whole RAM block to
become All-X. Testing All-X in RAM defines an algorithm to determine such addresses.

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 67

5.2.17 Interrupt Controller (INTC)

The Interrupt Controller (INTC) provides the ability to prioritize, block, and direct
Interrupt Requests (IRQs). It can fail by dropping or delaying IRQs, directing them to the
wrong core or handler, or by creating spurious IRQs. No specific hardware protection is
provided to reduce the likelihood of spurious or missing interrupt requests caused by
faults before the IRQ, such as by Electromagnetic Interference (EMI) on the interrupt
lines, bit flips in the interrupt registers of the peripherals, or a fault in the peripherals.

Assumption: [SM_198] Application software will detect the critical failure modes of the
INTC for all interrupts. [end]

Note

Implementation hint: One way to detect spurious or multiple
unexpected interrupts is for the application software to read the
interrupt status register of the corresponding peripheral before
executing the Interrupt Service Routine (ISR). This checks that
the respective peripheral has really requested an interrupt.

5.2.17.1 Periodic low latency IRQs

The SWT can be configured to start when the interrupt request is generated and the
application software can read the timer value to determine when the ISR is entered. This
method can be used to determine whether the measured interrupt latency exceeds the
requirements.

Assumption: [SM_199] Periodic low latency IRQs will use a running timer/counter to
ensure their call period is expected.[end]

5.2.17.2 Non-Periodic low latency IRQs

Non-periodic, low latency IRQs can be handled in the method described below.

Recommendation: A supervisor module configured to react to any one of the IRQ
signals checks that the INTC reacts with an immediate activation of the core's IRQ and
the correct IRQ vector. This will only be able to supervise the highest priority IRQ.

MPC5777C modules

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

68 NXP Semiconductors

5.2.17.3 Runtime checks

Assumption under certain conditions: [SM_200] Applications that are not resilient
against spurious or missing interrupt requests may need to include detection or protection
measures on the system level. [end]

Rationale: To manage spurious or missing interrupt requests.

5.2.18 Enhanced Direct Memory Access (eDMA)

The eDMA provides the capability to perform data transfers with minimal intervention
from the core. It supports programmable source and destination addresses and transfer
size.

The eDMA is not replicated, therefore it is assumed that it will not be used for
transferring safety-critical data. Failures outside the eDMA can lead to the eDMA
behaving incorrectly. Such failures must be detected by software.

5.2.18.1 Runtime checks

Assumption: [SM_201] The eDMA will be supervised by software which detects
spurious, too frequent, or constant activation.[end]

Rationale: To prevent the eDMA from stealing transfer bandwidth on the XBAR, as well
as preventing it from copying data at the wrong time.

Implementation hint: Possible software implementations to protect against spurious or
missing interrupts are as follows:

• Software counts the number of eDMA transfers triggered inside a control period and
compares this value to the expected value.

Assumption under certain conditions:[SM_202] Applications that are not resilient to
spurious, or missing functional safety-relevant, eDMA requests can not use the PIT
module to trigger functional safety-relevant eDMA transfer requests. [end]

Rationale: To reduce the likelihood of a faulty PIT (which is not redundant) from
triggering an unexpected eDMA transfer

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 69

System timer module (STM)

5.2.19.1 Runtime checks

In case a failure in the System Timer Module (STM) causes a violation of the safety goal,
then application software measures shall be employed to detect a stopped STM or one
running with the wrong frequency.

Implementation hint: In the first option, the SWT can be configured to measure the time
between STM interrupts and compare with the STM measured time. In the second option,
application software inserts control-flow checkpoints in the STM IRQ handler and writes
two pseudorandom keys to service the watchdog.

Assumption: [SM_205] At every STM interrupt, the IRQ handler shall compare the
elapsed time since the previous interrupt to a free running counter to check whether the
interrupt time is consistent with the STM setting. [end]

Assumption: [SM_206] The STM IRQ handler shall be under SWT protection.[end]

Periodic Interrupt Timer (PIT)

5.2.20.1 Runtime checks

Assumption: [SM_107]The PIT module should be used in such a way that a possible
functional safety-relevant failure is detected by the Software Watchdog Timer (SWT).
[end]

Rationale: To catch possible PIT failures

Recommendation under certain conditions: [SM_208] If the PIT is used in a safety-
relevant application, a checksum of its configuration registers using the CRC shall be
calculated and compared with the expected PIT configuration to verify correct settings.
[end] The application software shall invoke this test once per FTTI/PST.

Rationale: To check that the PIT remains at its expected configuration

5.2.19

5.2.20

System timer module (STM)

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

70 NXP Semiconductors

5.2.21 Flash memory

The MPC5777C provides programmable non-volatile (NVM) flash memory with ECC,
which can be used for instruction and/or data storage.

The flash memory array integrity self-check detects possible latent faults affecting the
flash memory array, including potential data retention issues or the logic involved in read
operations. The array integrity self-check calculates a MISR signature over the array
content to validate the content of the array as well as the decoder logic. The calculated
MISR value depends on the array content and shall be validated by application software.

Implementation hint: The array integrity self check and the ECC logic check may be
executed on each program flash memory block used.

Implementation hint: The correct operation of ECC logic is guaranteed by EDC after
ECC and latent faults are detected by the execution of the LBIST.

5.2.21.1 EEPROM

MPC5777C provides blocks of the flash memory for EEPROM emulation. ECC events
detected on accesses to the EEPROM flash memory blocks are not reported to the ERM.
Single bit errors are corrected but not reported. Multi-bit errors are replaced by a fixed
word (representing an illegal instruction) and are also not reported to the ERM.

Assumption:[SM_114] The software using the EEPROM emulation for storage of
information will use checks to detect incorrect data returned from the EEPROM
emulation. [end]

Typically, a CRC will be stored to validate the data.

5.2.21.2 Initial checks and configurations

Assumption:[SM_112] Before executing any safety function, a flash memory array
integrity self check should be executed. The calculated MISR value is dependent on the
array content and therefore has to be validated by system level application software. [end]

Rationale: To check the integrity of the flash memory array content

Implementation hint: This test may be started by application software: the test result
may be validated by reading the corresponding registers in the flash memory controller
after the test is complete (see the "Array integrity self check" section in the "Flash
memory" chapter of the MPC5777C Reference Manual).

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 71

5.2.21.3 Runtime checks

The application software checks the status and contents of the programmed sector at the
end of a programming operation. The safety mechanism can be based on a read-back
scheme, where the written word is read back and compared with the intended value.
Alternatively, a CRC check can also be implemented to validate the data.

Assumption: [SM_216] A software test should be implemented to check for potential
multi-bit errors introduced by permanent failures in the flash memory control logic.[end]

Assumption: [SM_217] A software safety mechanism shall be implemented to ensure
the correctness of any write operation to the flash memory.[end]

Rationale: To check that the written data is coherent with the expected data

This test should be performed after every write operation or after a series of write
operations to the flash memory.

Implementation hint: The programming of flash memory may be validated by checking
the value of C55FMC_MCR[PEG]. Furthermore, the data written may be read back, then
checked by software to confirm that the programmed data matches the data written.. The
data read back may be executed in Margin Read Enable mode
(C55FMC_UT0[MRE] = 1). This enables validation of the programmed data using read
margins that are more sensitive to weak program or erase status.

Assumption: [SM_219] Flash memory ECC failure reporting path should be checked to
validate if detected ECC faults are correctly reported. [end]

Rationale: The intention of this test is to assure that failure detection is correctly
reported.

Implementation hint: It consists of reading a set of data words from flash memory
having erroneous ECC bits programmed. Respective ERM register content may be
validated by software.

5.2.22 Error reporting path tests

It is possible to check the correct operation of several reporting paths from supervisors to
the ERM. The FCCU input table specifically lists these in the "FCCU Non-Critical Faults
Mapping" table shown in the "Chip-specific FCCU Information" section of the
MPC5777C Reference Manual.

Periodic Interrupt Timer (PIT)

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

72 NXP Semiconductors

Other measures in that column (except LBIST) can also be used for a full error reporting
path check. LBIST covers the logic of the error reporting path as long as it does not cross
an LBIST partition boundary. If that happens, a small amount of logic remains uncovered
by the LBISTs.

These path checks can also be used during development to test whether software
programmed to handled such faults works correctly.

Additionally, ECC errors can be injected into FlexCAN SRAM and System SRAM to
check the reporting of such errors through the ERM to the FCCU.

A multiple cell failure caused, for example, by a neutron or alpha particle or a short
circuit between cells may cause three or more bits to be corrupted in an ECC protected
word. As a result, either the availability may be reduced or the ECC logic may perform
an additional data corruption labeled as single-bit correction. This is prevented within the
design of the MPC5777C by the scrambling (column multiplexing), which means that
physically neighboring columns of the RAM array do not contain bits of the same logical
word but the same bit of neighboring logical words. Thus, the information is logically
spread over several words causing only single-bit faults in each word, which can be
corrected by the ECC. The MPC5777C has a multiplexor factor of eight for its system
RAM multiplexing adjacent analog bit lines to an analog sense amplifier. It is always
enabled and needs no configuration.

5.2.23 Glitch filter

A glitch detector is implemented on the reset signal of the MPC5777C. A selectable
(SIU_IDFR[DFL]) glitch filter is implemented on the IRQ-inputs. These filters are used
to reduce noise and transient spikes in order to reduce the likelihood of unintended
activation of the reset or the interrupt inputs.

5.2.24 Crossbar Switch (XBAR)

The multi-port XBAR switch allows for concurrent transactions from any master to any
slave. The XBAR module includes a set of configuration registers for arbitration
parameters, including priority, parking and arbitration algorithm. Faults in the
configuration registers affect slave arbitration, and thereby potentially affect software
execution times, so software countermeasures shall detect these faults.

Assumption: [SM_227] Masters of the XBar which are not safety-related modules shall
have a lower arbitration priority on the XBar than safety-relevant masters. [end]

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 73

5.2.24.1 Runtime checks

The application software shall check the XBAR configuration once after programming,
but it shall also detect failures of the XBAR when safety-relevant functions are running.

The detection of failures of the XBAR configuration can be achieved by a combination of
periodic readback of the configuration registers and control flow monitoring using the
SWT. The SWT is needed to cover those failure conditions leading to a complete lock-
out of XBAR masters. The need for periodic configuration readback depends on how
stringently the control flow monitoring is implemented.

The application software shall detect XBAR configuration failures once per FTTI/PST.

Assumption: [SM_228] Within the FTTI, application software shall detect failures of the
XBAR configuration affecting system performance.[end]

5.2.25 Sigma-Delta Analog to Digital Converter (SD-ADC)

Portions of the Sigma-Delta Analog-to-Digital Converter (SD-ADC) of the MPC5777C
do not provide the functional safety integrity that IEC 61508 series and ISO 26262
require for high functional safety integrity targets. Therefore, system level measures are
required.

5.2.25.1 Initial checks and configurations

Assumption under certain conditions: [SM_249] When the SD-ADC of the
MPC5777C is used in a safety function, suitable system level functional safety integrity
measures shall be implemented after reset (external reset or power-on reset) before
starting the respective safety function to ensure SD-ADC integrity. [end]

Rationale: To check the integrity of the SD-ADC function against latent failures

Implementation hint: After reset (external reset or power-on reset), but before executing
any safety function, perform the gain and offset calibration of the SD-ADC using
application software to detect latent faults.

Periodic Interrupt Timer (PIT)

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

74 NXP Semiconductors

5.2.26 Enhanced Queued Analog to Digital Converter (eQADC)

Portions of the Enhanced Queued Analog-to-Digital Converter (eQADC) of the
MPC5777C do not provide the functional safety integrity that IEC 61508 series and ISO
26262 require for high functional safety integrity targets. Therefore, system level
measures are required.

5.2.26.1 Initial checks and configurations

Assumption under certain conditions: When the eQADC of the MPC5777C is used in
a safety function, suitable system level functional safety integrity measures shall be
implemented after reset (external reset or power-on reset) before starting the respective
safety function to ensure eQADC integrity.

Rationale: To check the integrity of the eQADC function against latent failures.

Implementation hint: After reset (external reset or power-on reset), but before executing
any safety function, perform the gain and offset calibration of the eQADC using
application software to detect latent faults.

5.3 I/O functions
The integrity of the peripheral subsystem will be mainly ensured by application-level
measures (for example, connecting one sensor to different I/O modules, sensor validation
by sensor fusion, and so on).

Functional safety-relevant peripherals are assumed to be used redundantly in some way.
Different approaches can be used, for example, by implementing replicated input (for
example, connect one sensor to two DSPIs or even connect two sensors measuring the
same quantity to two ADCs) or by crosschecking some I/O operations with different
operations (for example, using sensor values of different quantities to check for validity).
Also, intelligent self-checking sensors are possible if the data transmitted from the
sensors contains redundant information in the form of a checksum, for example.
Preferably, the replicated modules generate or receive the replicated data using different
coding styles (for example, inverted in the voltage domain or using voltage and time
domain coding for redundant channels). System integrators may choose the approach that
best fits their needs.

Assumption: [SM_233] Comparison of redundant operation of I/O modules is the
responsibility of the application software. [end]

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 75

Assumption under certain conditions: [SM_234] No specific hardware measures have
been implemented to specifically reduce CMFs with respect to replicated I/O peripherals.
If the system level requires specific robustness regarding common mode faults within the
I/O peripheral system, respective measures are required at the system level.[end]

Rationale: To improve the common mode fault robustness of the I/O modules.

Implementation hint: Possible measures could use different coding schemes within each
redundant I/O channel (for example, inverted signals, different time periods).

Implementation hint: Possible measures could use different replicated peripherals (for
example, eMIOS_0 and eMIOS_1) to implement multiple independent and different
channels.

5.3.1 Digital inputs

Assumption under certain conditions: [SM_237] When safety functions use digital
inputs, system level functional safety mechanisms have to be implemented to achieve the
required functional safety integrity level. [end]

5.3.1.1 Hardware

Implementation hint: Functional safety digital inputs may be acquired redundantly. To
reduce the risk of CMFs, the redundant channels may not use GPIO adjacent to each
other (see Causes of dependent failures).

• The double read operation of a digital input is implemented by two general purpose
inputs (GPI) of the SIU unit. A comparison (by software) between the double reads
(for example, reads from both GPIOs) detects an error (please refer to Figure 5-1).

• A double read PWM input is implemented by using two modules as two channels.
The functional safety integrity is achieved by double reads and a software
comparison. One channel is provided by eMIOS_1 and the other by eMIOS_0. Read
PWM input means any input read related to signal transitions (rise or fall). This may
also include the time that the signal was high, low or both (see Figure 5-1).

For each signal of a double read, the SIU can provide additional channels to support
interrupt-based reading for each signal (see Figure 5-2).

I/O functions

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

76 NXP Semiconductors

l

PBRIDGE_n

SIU

l l

eMIOS_0 eMIOS_1

l

l

GPI[x] GPI[y]

= Input

ETC[x] ETC[y]

Double Digital Input Double PWM Input

PBRIDGE_n PBRIDGE_m

Figure 5-1. Double Digital input and Double PWM input

l

PBRIDGE_n

SIU

l l

EIRQ[x] EIRQ[y]

= Input

l

PBRIDGE_n

eMIOS_0 eMIOS_1

l

ETC[x] ETC[y]

Figure 5-2. Double Read Encoder Input (IRQ triggered)

Implementation hint: If sufficient diagnostic coverage can be obtained by a plausibility
check on a single acquisition for a specific application, that check can replace a
redundant acquisition.

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 77

5.3.1.2 Software

Digital inputs used for functional safety purposes are assumed to be input redundantly as
described in this section. The table below lists two element safety functions for input in
the 'Function' column, and corresponding safety integrity functions in the 'Test' column
and their execution frequency. Alternative solutions with sufficient diagnostic coverage
are possible in the 'Frequency' column.

Table 5-3. Digital inputs software tests

Function Test Frequency

Double Read Digital Inputs
SIU_SWTEST_REGCRC Once after programming

GPI_SWTEST_CMP Once for every acquisition

Double Read PWM Inputs

EMIOS0_SWTEST_REGCRC Once after programming

EMIOS1_SWTEST_REGCRC Once after programming

SIU_SWTEST_REGCRC Once after programming

EMIOS_SWTEST_CMP Once for every acquisition

5.3.1.2.1 Double read digital inputs

Rationale: To check that the configuration of the two I/Os used corresponds with the
expected configuration, to reduce the likelihood of CMF caused by incorrectly configured
I/Os, and to check that the two input values read are similar.

Implementation hint: Functional safety integrity is achieved by replicated reading and
software comparison by the processing function. The application can implement the tests
SIU_SWTEST_REGCRC and GPI_SWTEST_CMP.

5.3.1.2.1.1 Implementation details

The only hardware element that can be used for the safety function is the general purpose
input/output (GPIO).

Implementation hint: Every I/O that is not dedicated to a single function can be
configured as GPIO. I/Os that are dedicated to the ADC are an exception to this rule, as
they can only be configured as inputs.

Note

Caution: Redundant GPIO should be selected in a way that
their signals are not adjacent, which helps minimize the
likelihood of CMFs.

I/O functions

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

78 NXP Semiconductors

5.3.1.2.1.2 SIU_SWTEST_REGCRC

For implementation details of <module>_SWTEST_REGCRC functions, refer to Cyclic
Redundancy Checker Unit.

5.3.1.2.1.3 GPI_SWTEST_CMP

This software test is used to execute the comparison between the double reads performed
by the independent channels. It reads the outputs sequentially. This allows any GPIO to
be used, but could result in a wrong result if the state of the input changes between
reading the first and second inputs.

An alternative implementation would be to use the parallel data input registers (PGPDI)
in the same way that the GPODW_SWAPP_WRITE uses the output equivalent of these
registers. This would allow the inputs to be read at the same point in time but would
restrict the GPIO that could be used.

5.3.1.2.2 Double read PWM inputs

This approach reads two PWM inputs in parallel using two eMIOS, then compares the
results.

Rationale: To check that the configuration of the modules used by this safety function
match the expected configuration and to validate that the two sets of read data correlate.

Implementation hint: The software tests that the application may implement are:

• EMIOS0_SWTEST_REGCRC

• EMIOS1_SWTEST_REGCRC

• SIU_SWTEST_REGCRC

In addition, the double reads may be compared by the application with the
implementation of the following test:

• EMIOSI_SWTEST_CMP.

The SIU module may be configured (via the appropriate SIU_PCRn) to provide
configuration and input direction of the input GPIO.

5.3.1.2.2.1 Implementation details

Rationale: To reduce the risk of cascading faults due to shared resources.

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 79

Implementation hint: The following hardware elements shall be used for the safety
function:

• eMIOS_0 channels

• eMIOS_1 channels

The system integrator may select one channel from eMIOS_0 and another from
eMIOS_1.

5.3.1.2.2.2 EMIOSx_SWTEST_REGCRC and SIU_SWTEST_REGCRC

These functions check the correct configuration of all involved modules. See Cyclic
Redundancy Checker Unit for implementation of the <module>_SWTEST_REGCRC
functions.

5.3.1.2.2.3 EMIOSI_SWTEST_CMP

This test is used to execute the comparison between the double reads of PWM inputs
performed by two channels of different eMIOS (for example, eMIOS_0 and eMIOS_1).
The comparison may take into account possible approximation because of different
capturing of the asynchronous input signals.

5.3.2 Digital outputs

Functional safety digital outputs are always assumed to be written either redundantly or
with read back. In the case of a single output with read back, the feedback loop should be
as large as possible to cover faults on the system level. The figure below depicts the
connection of two (functional safety critical) actuators connected to the MPC5777C.
Actuator 1 is connected to an output peripheral, for example, a motor is connected to a
PWM output (output peripheral 3). The signal generated by the output peripheral 3 can be
input to an input peripheral, for example, an eMIOS. This measure is to confirm that the
generated output signal is correct. This read back may be internally of the MPC5777C
(internal read back) or externally (external read back). The external read back covers
more types of failures (for example, corrupt wire bonds or solder joints) than the internal
read back, but still does not guarantee, that the actuator really behaves as desired. This is
achieved by including the actuator and sensor into the read back loop. An alternative
solution is to redundantly output a signal. For example, actuator 2 consists of two relays
in series to switch off a functional safety-relevant supply voltage. The selection of the
desired output connection is part of the I/O functional safety concept on system level.

I/O functions

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

80 NXP Semiconductors

actuator 2

peripheral 1

output
peripheral 2

output
peripheral 3

MCU

peripheral
input

O

O

O

I

output

actuator 1

internal
read back

external
read back

external read back
with actuator/sensor

in the loop

sensor

torque, position,
angle, pressure,
temperature,
voltage, etc.

torque, position,
angle, pressure,
temperature,
voltage, etc.

Figure 5-3. Digital Outputs with redundancy and read back

Implementation hint: If a sufficient diagnostic coverage can be reached by a plausibility
check on a single output channel for a specific application, that check can replace a
redundant write or read-back. This hint is a special case of Assumption deviation as
described in Safety manual assumptions.

Hardware

5.3.2.1.1 Single Write Digital Output

• Single Write Digital Output with external read-back (Figure 5-4, left):

A comparison between the desired output values and the value read back is executed
via external read-back configuration. After writing the output value, the status of the
digital input is evaluated.

• Single Write Digital Output with internal read-back (Figure 5-4, right):

A comparison between the desired output values and the value read back is executed
via internal read-back configuration. After writing the output value, the internal read-
back status is evaluated.

• Single Write PWM Output with external read-back (Figure 5-5, left):

5.3.2.1

3. Internal read back does not cover package faults (for example, wire bond, etc.).

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 81

This procedure compares the output of the PWM read-back provided by a single
channel of the eMIOS with the expected values that have been written to the external
pad of the eTPU output channel.

• Single Write PWM Output with internal read-back3 (Figure 5-5, right):

This procedure output compares the PWM read-back by a single channel of the
eMIOS with the expected values that have been written to the eTPU output channel.

l

SIU

l

= Input

Digital Out Internal Readback
Configuration

O

SIU

O

= OutputO

GPI
GPO GPO

Digital Out Internal Readback
Configuration

PBRIDGE_n PBRIDGE_n

Figure 5-4. Single Write Digital Output With Read-Back

Hardware

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

82 NXP Semiconductors

l = Input

PWM Out Single Write External
Read-back Configuration

PRBIDGE_n

eMIOS

l

PWM Out Single Write Internal
Read-back Configuration

PBRIDGE_n

eTPU eTPU

O l O

= OutputO

ETC[x]
n[z]* n[z]*

*Note: n[z] represents any eTPU output, but each
output may be driven by different eTPU modules.

eMIOS

Figure 5-5. Single Write PWM Output With Read-Back

5.3.2.1.2 Double Write Digital Output

• Double Write Digital Output

The SIU hardware element is used to perform a double-write digital output.

• Double Write PWM Output
• The hardware elements used to perform a double write PWM output are:

• eMIOS_0 and eMIOS_1
• eTPU_A and eTPU_B

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 83

eMIOS_0 eMIOS_1 eTPU_A eTPU_B

PBRIDGE_n PBRIDGE_n

CH[x]* CH[y]* n[z]* n[z]*

 Output

Figure 5-6. Double Write PWM Output

GPO[x] GPO[y]

SIU

Digital Out Double
Configuration

Figure 5-7. Double Write Digital Output

Hardware

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

84 NXP Semiconductors

5.3.2.2 Software

Digital outputs used for functional safety purposes are assumed to be written either
redundantly or with read back as described in this section. Table 5-4 lists four element
safety functions for output, the corresponding safety integrity functions and their
execution frequency. Alternative solutions with sufficient diagnostic coverage are
possible.

Table 5-4. Digital outputs software tests

Function Test Frequency

Single Write Digital Outputs With
Read Back

SIU_SWTEST_REGCRC Once after programming

GPOERB_SWTEST_CMP Once per FTTI

GPOIRB_SWTEST_CMP Once per FTTI

Double Write Digital Outputs
SIU_SWTEST_REGCRC Once after programming

GPODW_SWAPP_WRITE Once per FTTI

Single Write PWM Outputs With
Read Back

SIU_SWTEST_REGCRC Once after programming

EMIOS0_SWTEST_REGCRC1 Once after programming

EMIOS1_SWTEST_REGCRC1 Once after programming

eTPU_A_SWTEST_REGCRC2 Once after programming

eTPU_B_SWTEST_REGCRC2 Once after programming

PWMRB_SWTEST_CMP Once per FTTI

Double Write PWM Outputs

SIU_SWTEST_REGCRC Once after programming3

EMIOS0_SWTEST_REGCRC1 Once after programming

EMIOS1_SWTEST_REGCRC1 Once after programming

eTPU_A_SWTEST_REGCRC2 Once after programming

eTPU_A_SWTEST_REGCRC2 Once after programming

PWMDW_SWAPP_WRITE Once per FTTI

1. This test is required only if the eMIOS channels are used for the safety function.
2. This test is required only if the eTPU channels are used for the safety function.
3. If a change in a single SIU configuration register is capable of affecting both the output and the read-back paths, then

SIU_SWTEST_REGCRC may be executed every FTTI. In all other cases configuration errors are covered by the software
comparison.

5.3.2.2.1 Single Write Digital Outputs With Read-Back

The SIU hardware element is used to perform a Single Write Digital Output With Read-
Back (see Figure 5-4).

Rationale: To determine whether written data is matches the expected data.

Implementation hint: The read back may be implemented either with external or with
internal readback.

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 85

The SIU element is correctly configured to provide the output write and the pad
directions as follows:

• External read back – SIU is configured to read back the signal via an additional pad,
and the loopback is performed outside the device. In this configuration, only half of
the available digital outputs are available as functional safety outputs.

• Internal read back – SIU is configured to read back the pad value via an internal read
path. All pads dedicated to digital input/output are capable of reading the pad digital
status using the input logic.

Rationale: To reduce the likelihood of a CMF caused by incorrect configuration of pads

Implementation hint: The application software integrates software test
SIU_SWTEST_REGCRC in the application to check the correct configuration of the
pads, and to compare a read back with the digital output write.
GPOERB_SWTEST_CMP may be used for external read back or
GPOIRB_SWTEST_CMP for internal read back.

5.3.2.2.1.1 Implementation details

The SIU hardware element may be used for the safety function.

Note

Pads that are not dedicated to a single function can be
configured as GPIO. Pads dedicated to ADC are an exception to
this rule, as they can only be configured as inputs.

5.3.2.2.1.2 SIU_SWTEST_REGCRC

For implementation of a <module>_SWTEST_REGCRC function please refer to Cyclic
Redundancy Checker Unit.

5.3.2.2.1.3 GPOERB_SWTEST_CMP

This software test is used to execute the comparison between the desired output values
and the value read back via external read back configuration. After writing the output
value, the test reads the status of the digital input.

Rationale: To verify that the read data equals the written data.

Implementation hint: The output is externally connected to an input I/O (on system
level). After writing the value to the output signal, the input is read to check that the
correct output is present.

Hardware

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

86 NXP Semiconductors

5.3.2.2.1.4 GPOIRB_SWTEST_CMP

Rationale: To verify that the read data equals the written data.

This software test is used to execute the comparison between the desired output values
and the value read back via internal read back configuration. After writing the output
value, the test reads the status.

5.3.2.2.2 Double Write Digital Outputs

The SIU hardware element is used to perform a Double Write Digital Output.

Rationale: To configure pads used by this safety function and reduce the likelihood of a
CMF caused by incorrect configuration of pads

Implementation hint: The SIU is configured by application software to correctly define
the configuration of the outputs used. The software performs a double write.

Implementation hint: To achieve the integrity of the two output channels, the
application validates the SIU configuration implementing the SIU_SWTEST_REGCRC.

Rationale: To write a digital output by exploiting redundancy

Implementation hint: The application software implements the double output write as
defined by the GPODW_SWAPP_WRITE.

5.3.2.2.2.1 Implementation details

The only hardware element that can be used for the safety function is the GPIO.

Every pad not dedicated to a single function may be configured as GPIO. Pads dedicated
to ADC are an exception to this rule, as they can be configured as inputs only.

5.3.2.2.2.2 GPODW_SWAPP_WRITE

Rationale: To prevent SPFs in the SIU from influencing the actuator control in a
dangerous way.

Implementation hint: The output write of a redundant channel may be implemented by
writing the two outputs with a single instruction to the appropriate register and this
register may be checked by read back.

To write two or more GPIOs with a single instruction, the Masked Parallel GPIO Pad
Data Out register (SIU_MPGPDOn) can be used. The two GPIOs used may be in the
same SIU_MPGPDOn register.

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 87

To protect the value of the other GPIOs that belong to the same SIU_MPGPDOn, the
MASK field of the SIU_MPGPDOn register needs to be properly configured.

When using a single write (atomic) instruction to SIU_MPGPDOn register, it is good
practice to read back (read after write) the register content due to the fact that a transient
fault in the SIU IPS interface can affect both output channels. The readback is needed to
cover this common mode of failure. An alternative implementation would be to write the
two outputs separately not using the parallel register, resulting in a small delay in output
change between the channels.

5.3.2.2.3 Single Write PWM Outputs With Read-Back

The following combination of elements may be used to perform a Write PWM Output
With Read-Back:

• eMIOS_0 – eTPU_A

• eMIOS_0 – eTPU_B

• eMIOS_1 – eTPU_A

• eMIOS_1 – eTPU_C

These units shall be configured to implement one PWM output channel and (via internal
read-back) the eMIOS input PWM channel. The SIU shall be configured to define the
configuration of the output pads used. The software performs a write operation followed
by a read operation. To achieve the integrity of the two output channels, the application
shall test the SIU configuration by implementing the SIU_SWTEST_REGCRC (to
reduce the likelihood of a CMF caused by incorrect configuration of the pads).

Rationale: To check that the configuration of the modules used by this safety function
adheres to the expected configuration.

Implementation hint: A single channel of the eMIOS is used to read-back the output
buffer of the same pad used by the eTPU output. Consult the I/O Signal Table for valid
pairs of EMIOS and eTPU channels present on the same pad.

The following tests validate the correct configuration for the eMIOS(s):

• ETPU_A_SWTEST_REGCRC

• ETPU_B_SWTEST_REGCRC

• ETPU_C_SWTEST_REGCRC

Hardware

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

88 NXP Semiconductors

• EMIOS0_SWTEST_REGCRC

• EMIOS1_SWTEST_REGCRC

Rationale: To check that the written data is what is expected.

Implementation hint: The application software writes to the output port and then
compares the written value via the read-back (PWMRB_SWTEST_CMP).

5.3.2.2.3.1 Implementation details

The following hardware elements may be used for the safety function:

• eMIOS_0 channels

• eMIOS_1 channels

• eTPU_A channels

• eTPU_B channels

• eTPU_C channels

5.3.2.2.3.2 ETPUx_SWTEST_REGCRC and EMIOSx_SWTEST_REGCRC

For implementation of a <module>_SWTEST_REGCRC function please refer to Cyclic
Redundancy Checker Unit.

5.3.2.2.3.3 PWMRB_SWTEST_CMP

This test compares the PWM read back provided by a single channel of the eMIOS_0
(eMIOS_1) with the expected values that have been written to the eTPU_A (eTPU_B,
eTPU_C) output channel.

For this example, eTPU_A is used to generate a PWM output and eMIOS_0 is used to
read back and verify the output. Another combination could be used if required in an
application.

5.3.2.2.4 Double Write PWM Outputs

Rationale: The hardware elements eMIOS_0, eMIOS_1, eTPU_A, eTPU_B, and
eTPU_C are used to perform a double Write PWM Output.

Implementation hint: These units are configured to implement two independent PWM
channels. The SIU is configured to define the configuration of the output pads used. The
software performs a double write (see PWMDW_SWAPP_WRITE).

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 89

Rationale: To reduce the risk of CCF due to spatial proximity

Implementation hint: Using adjacent pads as redundant I/O increases the likelihood of
CMFs. Therefore, it is preferable to use I/O that do not share the same configuration and
data registers in the SIU.

Rationale: To reduce the likelihood of a CMF caused by incorrect configuration of the
pads

Implementation hint: To improve the integrity of the two output channels, the
application should test the SIU configuration by implementing the
SIU_SWTEST_REGCRC.

Rationale: To check that the configuration of the modules used by this safety function
adhere to the expected configuration

Implementation hint: The application software shall implement a test for the register
configuration:

• EMIOS0_SWTEST_REGCRC (for eMIOS)

• EMIOS1_SWTEST_REGCRC (for eMIOS)

• ETPU_A_SWTEST_REGCRC (for eTPU)

• ETPU_B_SWTEST_REGCRC (for eTPU)

• ETPU_C_SWTEST_REGCRC (for eTPU)

Rationale: To reduce the possibility of cascading a failure to shared circuitries, different
modules should be used.

Implementation hint: The output write of a redundant PWM channel is implemented by
writing the new output values to both PWM channels. The system integrator can decide
whether to use two of the eMIOS (eMIOS_0, eMIOS_1) or one of the three eTPUs
(eTPU_A, eTPU_B,eTPU_C).

5.3.2.2.4.1 Implementation details

The following hardware elements are used for the safety function:

• eMIOS_0 channels

• eMIOS_1 channels

• eTPU_A channels

Hardware

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

90 NXP Semiconductors

• eTPU_B channels

• eTPU_C channels

5.3.2.2.4.2 SIU_SWTEST_REGCRC

For implementation of a <module>_SWTEST_REGCRC function please refer to Cyclic
Redundancy Checker Unit.

5.3.2.2.4.3 PWMDW_SWAPP_WRITE

If the content of the PWM outputs are changed, care may be required since the outputs
can not be updated synchronously. Therefore for a short period of time both outputs
could be different.

5.4 Communications

5.4.1 Redundant communication

Portions of the integrated DSPI and eSCI communication controllers do not
independently provide the functional safety integrity IEC 61508 series and ISO 26262
require for high functional safety integrity targets. As these communication protocols
often deal with low complex slave communication nodes, higher level functional safety
protocols as described in Fault-tolerant communication protocol may not be feasible.
Therefore, appropriate communication channel redundancy may be required. Multiple
instances of communication controllers may be used to build up a single fault robust
communication link.

Implementation hint: If communications over the following interfaces is part of the
safety function, redundant instances of the hardware communication controller should be
used, preferably using different data coding (for example, inversion):

• Synchronous Serial Communication Controller (DSPI)

• eSCI Communication Controller

DSPI and eSCI do not have special functional safety mechanisms other than what is
included in their protocol specifications. The system level communication architecture
needs to provide the functional safety mechanisms on the interface of the modules to
meet the assumptions.

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 91

5.4.2 Fault-tolerant communication protocol

Parts of the integrated eSCI, MCAN and FlexCAN communication channels do not
independently provide the functional safety integrity IEC 61508 series and ISO 26262
require for high functional safety integrity targets.

Implementation hint: If communication over the following interfaces is part of the
functional safety function, a software interface with the hardware communication
channel, in accordance with the IEC 61784-3 or IEC 62280 series, is required for the
following:

• FlexCAN Communication Controller

• MCAN Communication Controller

• Enhanced Serial Communication Interface (eSCI)

FlexCAN, MCAN, and eSCI do not have specific functional safety mechanisms other
than ECC protection of SRAM arrays and what is included in their protocol
specifications. The application software, middleware software, or operating system needs
to provide the functional safety mechanisms on the interface of the IP modules to meet
functional assumptions.

Typical mechanisms are:

• end-to-end CRC to detect data corruption

• sequence numbering to detect message repetitions, deletions, insertions, and
resequencing

• an acknowledgement mechanism or time domain multiplexing to detect message
delay

• sender identification to detect masquerade

As the 'black channel' typically includes the physical layer (for example, communication
line driver, wire, connector), the functional safety software protocol layer is an end-to-
end functional safety mechanism from message origin to message destination.

An appropriate functional safety software protocol layer (for example, Fault Tolerant
Communication Layer, FTCOM, CANopen Safety Protocol) may be necessary to ensure
the failure performance of the communication process. Software protocol layer
implements a software interface with the hardware communication channel in accordance
with the IEC 61784-3 or IEC 62280 series (so-called 'black channel').

Communications

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

92 NXP Semiconductors

An alternative approach to improve the functional safety integrity of CAN modules may
be to use multiple instances of the CAN channels and use an appropriate protocol to
redundantly communicate data (for example, using the CANopen Safety protocol). This
approach communicates redundant data (for example, one message payload inverted, the
other message payload not inverted) using a different communication controller.

Due to the limited bandwidth and the point to point communication architecture for eSCI,
only a simplified functional safety protocol layer may be required.

5.5 Additional configuration information

5.5.1 Stack

Stack overflow and stack underflow is a common mode fault due to systematic faults
within application software. A stack overflow occurs when using too much memory
(pushing too much data) on the stack. A stack underflow occurs when reading (pop) too
much data from memory. The stack contains a limited amount of memory, often
determined during development of the application software. When a program attempts to
use more space than is reserved (available) on the stack (when accessing memory beyond
the stack's upper and lower bounds), the stack is said to overflow or underflow, typically
resulting in a program crash.

It may be beneficial to implement a measure supervising the stack and respectively
generating a fault signal in case of stack overflow and stack underflow.

5.5.1.1 Initial checks and configurations

Assumption under certain conditions: [SM_103] When stack underflow and stack
overflow due to systematic faults within the application software endanger the item
(system) level, functional safety mechanisms may be implemented to detect stack
underflow and stack overflow faults. [end]

Rationale: To have a notification in case of stack overflow or stack underflow error

Implementation hint: The Data Address Compare 1 and 2 (DAC1, DAC2) resources
maybe used for incremental stack overflow or stack underflow detection when not used
as a hardware or software debug resource. Stack limit checking is available regardless of
EDM or IDM mode, and when resources used for stack limit checking are owned by
software, will utilize a DSI or machine check exception.

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 93

A DAC exception is signaled when there is a data access address match as defined by the
debug control registers and data address compare events are enabled. This could either be
a direct data address match or a selected set of data addresses, or a combination of data
address and data value matching. The debug interrupt is taken when no higher priority
exception is pending.

Software-owned stack limit checking does not require IDM to be set. Hardware owned
stack limit checking requires EDM to be set. When stack limit checking is enabled, and
DAC resources used for stack limit checking are owned by software, DAC events are not
generated for resources configured to perform stack limit checking, and no DBSR DAC
status flag will be set due to a detected stack limit violation.

Instead, depending on the processor mode, a data storage interrupt or a machine check
exception is signaled. When stack limit checking is enabled, and DAC resources used for
stack limit checking are owned by hardware, DAC events will be generated for resources
configured to perform stack limit checking, and the EDBSR0 DAC status flag will be set
due to a detected stack limit violation, causing entry into debug halted mode in the same
way a DAC exception normally does. The only difference is that qualification of the
access address is performed as discussed in the next paragraph.

Incremental stack limit checking may be implemented using two data address
watchpoints defined by DAC1 and DAC2. As hardware does not qualify a load or store
access address with the use of GPR R1 as the base or index register used to compute an
effective address when a load or store instruction is executed, special care has to be taken
the watchpoints are not used elsewhere in the application software (guard band address
range). This measure only enables incremental stack overflow, as it only detects data
addressing of the limit (upper and lower) address. Addressing going beyond the limits
will be undetected. When DAC resources configured to perform incremental stack limit
checking are not owned by hardware, if a stack limit violation occurs when performing
the load or store, the access is aborted, and an error report machine check is generated,
with MCSRR0 pointing to the address of the load or store access which generated the
stack overflow/underflow. If DAC resources configured to perform stack limit checking
are owned by hardware, then a normal DAC event is generated (but qualified with use of
GPR R1), and debug mode entry will occur in the same manner as for a non-stack limit
DAC event.

When stack limit checking is enabled for a stack access, and DACn resources are owned
by hardware, the EDBSR0 DAC status flag will be set due to a detected stack limit
violation, to cause entry into debug halted mode or to generate a watchpoint, or both, i.e.
after the access has completed.

Independent limit checks for supervisor and user accesses may be implemented by
allocating independent DACn resources to each, or a single limit may be applied using a
single DACn resource. If more than one DACn resource is utilized, a DAC hit on any

Additional configuration information

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

94 NXP Semiconductors

resource utilized for stack limit checking will cause the corresponding stack limit
exception action to occur. If both a hardware-owned and a software-owned resource
generate a stack limit exception for a given load or store, the software resource will have
priority, since it is detected prior to completion of the access, and the access is aborted,
thus the hardware event will not occur.

Note

For DAC1 and DAC2, access type (read, write) control is part
of DBCR0.

5.5.2 MPC5777C configuration

Assumption: [SM_240] It is required that application software verifies that the
initialization of the MPC5777C is correct before activating the safety-relevant
functionality. [end]

After startup, the application software shall ensure the conditions described in this section
are satisfied before safety-relevant functions are enabled. Below is a list of the minimum
number of checks by safety integrity functions which need to pass before executing any
safety function:

• Lock-step mode check
• STCU check
• Flash Array Integrity Self check
• SUPPLY SELF-TEST
• Temperature sensor check
• SWT enabled
• CMU check
• IRC_SW_CHECK
• PMC check
• ERRORn signal check4

Prerequisites are not listed. If any of these checks fails, functional safety cannot be
ensured.

Assumption: [SM_241] It is required that application software checks the configuration
of the SSCM once after boot.[end]

Assumption: [SM_280] Decorated storage transactions on the SRAM are limited to
read-modify-write at least for the safety core. Notice that test and set (for example,
individual bit manipulations) are still allowed as single bit read-modify-write (but no
AND/OR operation is possible). [end]

4. Required for single FCCU signal usage only.

Chapter 5 Software requirements

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 95

Recommendation: It is recommended that SSCM is configured to trigger an exception in
case of any access to a peripheral slot not used on the device.

Rationale: To detect erroneous addressing and fault in address and bus logic.

Recommendation: It is recommended that after the boot, application software perform
an intended access to an unimplemented memory space and check for the expected abort
to occur.

Rationale: To detect erroneous addressing and fault in address and bus logic.

Recommendation: It is recommended that unused interrupt vectors point, or jump, to an
address that is illegal to execute, contains an illegal instruction, or in some other way
causes detection of their execution.

Recommendation: It is recommended that only hardware related software (OS, drivers)
run in supervisor mode.

Rationale: To reduce the risk accidental writes to configuration registers affecting the
execution of the MPC5777C's safety function or disable the safety mechanism due to
their change.

Recommendation: All configuration registers, and registers that are not modified during
application execution, should be protected using Peripheral Access Control.

Rationale: To reduce the risk of accidental writes to configuration registers affecting the
execution of the MCU's safety function or disable the safety mechanism due to their
change.

Additional configuration information

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

96 NXP Semiconductors

Chapter 6
Failure rates and FMEDA

6.1 Failure rates
In order to analyze and quantify the effectiveness of the MPC5777C integrated safety
architecture to handle random hardware failures, the inductive analysis method of
FMEDA (Failure Modes Effects and Diagnostic Analysis) was performed during the
development of the MPC5777C. The following methods for deriving the base failure
rates of the MPC5777C were used as input to the FMEDA:

• Permanent faults (Die & Package): IEC TR 62380 - Reliability data handbook –
Universal model for reliability prediction of electronics components, PCBs and
equipment

• Transient faults (Die): JEDEC Standard JESD89 - Measurement and Reporting of
Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor
Devices

6.2 FMEDA
In order to support the integration of the MPC5777C into safety-related systems and to
enable the safety system developer to perform the system level safety analysis, the
following documentation is available:

• FMEDA - Inductive analysis of the MPC5777C enabling customization of system
level safety mechanisms, including the resulting safety metrics for ISO 26262
(SPFM, LFM and PMHF) and IEC 61508 (SFF and β-factor βIC)

• FMEDA Report - Describes the FMEDA methodology and safety mechanisms
supported in the FMEDA, including source of failure rates, failure modes and
assumptions made during the analysis.

The FMEDA and FMEDA report are available upon request.

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 97

6.2.1 Module classification

For calculating the safety metrics for ISO 26262 (Single-Point Failure Metric (SPFM),
Latent Failure Metric (LFM) and Probabilistic Metric for random Hardware Failures
(PMHF)) and for IEC 61508 (Safe Failure Fraction (SFF) and βIC factor) the modules of
the MPC5777C are classified as follows:

• MCU Safety Functions: All modules which can directly influence the correct
operation of the MCU Safety Functions.

• Safety Mechanism: All modules which detect faults or control failures to achieve or
maintain a safe state. These modules cannot independently directly influence the
correct operation of one of the safety functions in the case of a single fault.

• Peripheral: All modules which are involved in I/O operation. Peripheral modules are
usable by qualifying data with system level safety measures or by using modules
redundantly. Qualification should have a low risk of dependent failure. In general,
Peripheral module safety measures are implemented in system level software.

• Debug Functions: All modules which are not safety related, i.e. none of their
failures can influence the correct operation of one of the safety functions.

The complete module classification for the MPC5777C can be found in the attached
"MPC5777C Module Classification" spreadsheet.

FMEDA

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

98 NXP Semiconductors

Chapter 7
Dependent failures

7.1 Provisions against dependent failures

7.1.1 Causes of dependent failures

ISO 26262-9 lists the following dependent failures, which are applicable to the
MPC5777C on chip level:

• Random hardware failures, for example:
• dependent failures that are able to influence an on-chip function and its

respective safety mechanisms
• Environmental conditions, for example:

• temperature
• EMI

• Failures of common signals (external resources), for example:
• clock
• power-supply
• non-application control signals (for example, testing, debugging)
• signals from modules that are not replicated

Additionally, the following topics are mentioned, which are out of scope of this
document and not treated here:

• Development faults:
• development faults are systematic faults which are addressed by design-process

• Manufacturing faults:
• manufacturing faults are usually systematic faults addressed by design-process

and production test
• Installation and repair faults:

• installation and repair faults need to be considered at system level
• Stress due to specific situations:

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 99

• Specific situations may be considered at system level. Additionally, the result of
stress (for example, wear and aging due to electro-migration) usually lead to
single-point faults and are not considered dependent failures.

7.1.2 Measures against dependent failures

7.1.2.1 Physical isolation

To maximize the independence of redundant components, these are grouped into spatially
separated groups (called 'lakes') and synthesized separately. The groups ensure
independence against locally limited faults whereas the synthesis achieves a partial
diversity of the logic circuitry.

The master and checker core together with related logic are separated in this way as well
as the redundantly available peripheral modules.

The redundant modules share a common silicon substrate. A failure of the substrate is
typically catastrophic and has to be detected by external system level measures. It is
assumed that an external timeout function (watchdog) is continuously monitoring the
MPC5777C and is capable of detecting this CCF, and will switch the system to a
Safe statesystem within the FTTI.

The MPC5777C device satisfies the standard AECQ100 for latch-up immunity.

Environmental conditions

7.1.2.2.1 Temperature

The MPC5777C was designed to work within a maximum operational temperature
profile (see the MPC5777C Data Sheet). To cover temperature-related dependent
failures, two temperature sensors for supervision are implemented as described in section
"Temperature Sensors (TSENS)".

7.1.2.2.2 EMI and I/O

To cope with noise on digital inputs, the I/O circuitry provides input hysteresis on all
digital inputs. Moreover, the RESET and NMI inputs contain glitch filtering capabilities,
which are described in sections Hardware requirements on system level and "Glitch
filter".

7.1.2.2

Environmental conditions

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

100 NXP Semiconductors

To reduce interference due to digital outputs, the I/O circuitry provides signal slope
control. An internal weak pull up or pull down structure is also provided to define the
input state.

Failures of common signals

7.1.2.3.1 Clock

To cover dependent failures caused by clock issues, modules for supervision are
implemented which are described in Clock Monitor Unit (14 x CMU). Major failures in
the clock system are also detected by the SWT (Software Watchdog Timer).

7.1.2.3.2 Power supply

To cover dependent failures caused by issues with the power supplies, supervision
modules are implemented (see Power Management Controller (PMC)). Some dependent
failures (for example, loss of power supply) are detected since software will no longer be
able to trigger the external watchdog (External Watchdog (EXWD)).

7.1.2.3.3 Nonapplication control signals

Modules and signals (for example, for scan, test and debug), which are not safety-related
should never be able to lead to a safety-related failure. This can be ensured by either not
interfering with the safety-related parts of the MPC5777C or by detecting such
interference. For example, there must be assurance that the system is not debugged (or
unintentionally placed in debug mode), or placed in any other special mode different
from normal application execution mode (for example, test mode). In addition, an FCCU
failure indication is generated if:

• A self-test sequence of the STCU is unintentionally executed during normal
operation of the device.

• Any of the configurations for production test are unintentionally executed during
normal operation of the device.

• Any JTAGC instruction is executed that causes a system reset or Test Mode Select
(TMS) signal is used to sequence the TAP controller state machine.

7.1.2.3

Chapter 7 Dependent failures

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 101

7.1.3 Dependent failure avoidance on system level

It is recommended to not use adjacent input and output signals of peripherals, which are
used redundantly, in order to reduce dependent failures. As internal pad position and
external pin/ball position do not necessarily correspond to each other, the safety system
developer may take the following recommendations into consideration:

• Usage of non-contiguous balls of the package
• Usage of non-contiguous pads of the silicon
• Usage of peripheral modules not sharing the same PBRIDGE
• Non-contiguous routing of these signals on the PCB

Assumption under certain conditions: [SM_142] If the system requires robustness
regarding dependent failures, configurations that place redundant signals on neighboring
pads or pins should be avoided. [end]

Implementation hint: Pad position as well as pin/ball position should be taken into
consideration.

The pin/ball assignment for individual peripherals can be extracted from the MPC5777C
Microcontroller Data Sheet. The following section explains how this can be achieved.

7.1.3.1 I/O pin/ball configuration

Whether two functions on two signals are adjacent to each other can be determined by
looking at the mechanical drawings of the packages (see the MPC5777C Data Sheet)
together with the ball number information of the packages as seen in the MPC5777C
Reference Manuals "System Integration Unit Lite2 (SIUL2)" section and the "Pin
muxing" table.

The layout of the device balls and the order of die pad signals need to both be taken into
consideration. Adjacency of the package balls is straight forward since it can be seen in
the package layout. It is more difficult to determine adjacency on the die. The Signal
Description chapter in the MPC5777C Reference Manual can be used in assisting to
determine adjacency of signals on the die. To help avoid potential issues, redundant
signals cannot be on adjacent balls or on adjacent die pads. Avoiding adjacency limits
crosstalk, signal drive strength, and other assocaiated issues.

Failures of common signals

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

102 NXP Semiconductors

7.1.3.2 Modules sharing PBRIDGE

The safety system developer needs to consider how modules are distributed across the
different PBRIDGEs. Whenever possible the redundant modules should be connected to a
different PBRIDGE.

7.1.3.3 External timeout function

A dependent failure may lead to a state where the MPC5777C is not able to signal an
internal failure via its ERRORn signals (error out). With the use of a system level timeout
function (for example, watchdog timer), the likelihood that dependent failures affect the
functional safety of the system can be reduced significantly.

In general, the external watchdog covers dependent failures which are related to:

• General destruction of internal components (for example, due to non-mitigated
overvoltage or a latch-up at redundant input pads). Since these errors do not result in
subtle output variations of the MPC5777C but typically in a complete failure, a
simple watchdog is sufficient.

Additionally, the external watchdog is able to detect failures related to:

• Missing/wrong power
• Missing/wrong clocks
• Errors in mode change (for example, unintentionally entering test or debug mode)

NOTE
All of these are expected to be detected by internal safety
mechanisms (CMUs, LVDs/HVDs, signals to the FCCU), so
the external watchdog serves as a fallback for unexpected
failure effects and dependent failures with wider than expected
effects (for example, disabling an on-chip function and its
respective safety mechanisms at the same time).

The external watchdog function is in permanent communication with the CPU of
MPC5777C. As soon as there are no correct communications, the external watchdog
function switches the system to Safe statesystem. Thus, either the MPC5777C or external
watchdog function can transition the system to Safe statesystem. The external watchdog
function is required to be sufficiently independent of the MPC5777C (for example,
regarding clock generation, power supply, and so on).

Chapter 7 Dependent failures

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 103

The external watchdog function does not necessarily need to be a dedicated IC, the
requirements may also be fulfilled by another MCU (already used in the system) which is
capable of detecting a lack of communication (such as via CAN) and moving the system
to Safe statesystem.

7.1.4 βIC considerations

During the development of the MPC5777C, the susceptability of the MCU to dependent
failures is evaluated by ensuring sufficient independence between on-chip functions and
their respective safety mechanisms.

One method to do this for an MCU is to determ the β-factor βIC as defined in annex E of
IEC 61508-2. The βIC is calculated based on a checklist of questions with associated
scoring. The smaller the βIC, the less susceptible the on-chip function and their respective
safety mechanisms are to dependent failures. The final βIC estimate should not exceed
25%. The βIC is calculated multiple times, for each pairing of on-chip function and their
respective safety mechamisms.

The FMEDA includes the βIC calculations and is available upon request.

Failures of common signals

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

104 NXP Semiconductors

Chapter 8
Additional information

8.1 Testing All-X in RAM
As mentioned in section End-to-end ECC (e2eECC), All-0 or All-1 content will be an
uncorrectable error only at some addresses in RAMs where address is included in the
ECC calculation. This section contains a program which provides these adresses and can
thus be used to either determine an address to periorically read or check whether
addresses which are periodically read by an application show this desired behaviour.

8.1.1 Candidate address for testing All-X issue

This section describes a Perl script which can be used for finding a candidate address for
testing All-X in the RAMs. Some examples of usage of the script are provided.

#--- start Perl script ---:
eval 'exec perl -w -S $0 ${1+"$@"}'
 if 0;
use strict;
my $base = hex($ARGV[0]);
my $num_to_find = ($#ARGV > 0) ? $ARGV[1] : 1;
my $all0_found = 0;
my $all1_found = 0;
my $guesses = 0;
my $addr = $base;
my $ecc;
my $bit_count;
printf "RAM base address = 0x%08x\n", $base;
printf " All 0s - Addresses with two bits set in the address ECC contribution:\n";'
while(($guesses < 131072) && ($all0_found < $num_to_find)) {
 $ecc = get_ecc($addr, 0, 0);
 $bit_count = count_ones($ecc);
 if($bit_count == 2) {
 $all0_found++;
 printf " (%d) addr = 0x%08x, addr_ecc = 0x%02x\n", $all0_found, $addr, $ecc;
}
$addr += 8;
$guesses++;
}
printf "\n All 1s - Addresses with two bits cleared in the address ECC contribution:\n";
$addr = $base;
while(($guesses < 131072) && ($all1_found < $num_to_find)) {
 $ecc = get_ecc($addr, 0xffffffff, 0xffffffff);

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 105

 $bit_count = count_zeroes($ecc);
 if($bit_count == 2) {
 $all1_found++;
 printf " (%d) addr = 0x%08x, addr_ecc = 0x%02x\n", $all1_found, $addr, $ecc;
 }
 $addr += 8;
 $guesses++;
}
sub count_ones {
 my $string = sprintf("%08b", shift);
 my $count = 0;
 my $i;
 for($i=0; $i<8; $i++) {
 if(substr($string, $i, 1) eq "1") {
 $count++;
 }
 }
 return($count);
}
sub count_zeroes {
 my $string = sprintf("%08b", shift);
 my $count = 0;
 my $i;
 for($i=0; $i<8; $i++) {
 if(substr($string, $i, 1) eq "0") {
 $count++;
 }
 }
 return($count);
}
sub get_ecc {
my $addr = shift;
my $data_be0 = shift;
my $data_be1 = shift;

my @addrx8;
my @data_bex8;
my @data_lex8;
my $i;
my $j;
my $bit;

for($i=3; $i<32; $i++) {
 $bit = ($addr >> $i) & 1
 $addrx8[$i] = $bit
 $addrx8[$i] |= $bit << 1
 $addrx8[$i] |= $bit << 2
 $addrx8[$i] |= $bit << 3
 $addrx8[$i] |= $bit << 4
 $addrx8[$i] |= $bit << 5
 $addrx8[$i] |= $bit << 6
 $addrx8[$i] |= $bit << 7
}

for($i=0; $i<64; $i++) {
 if($i < 32) {
 $bit = ($data_be1 >> $i) & 1;
} else {
 $bit = ($data_be0 >> ($i-32)) & 1;
}

 $data_bex8[$i] = $bit
 $data_bex8[$i] |= $bit << 1
 $data_bex8[$i] |= $bit << 2
 $data_bex8[$i] |= $bit << 3
 $data_bex8[$i] |= $bit << 4
 $data_bex8[$i] |= $bit << 5
 $data_bex8[$i] |= $bit << 6
 $data_bex8[$i] |= $bit << 7
}

Testing All-X in RAM

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

106 NXP Semiconductors

for($i=0; $i<8; $i++) {
 for($j=0; $j<8; $j++) {
 $data_lex8[$i*8+$j] = $data_bex8[(7-$i)*8+$j];
 }
}

my $addr_ecc
 = (0x1f & $addrx8[31])
 ^ (0xf4 & $addrx8[30])
 ^ (0x3b & $addrx8[29])
 ^ (0xe3 & $addrx8[28])
 ^ (0x5d & $addrx8[27])
 ^ (0xda & $addrx8[26])
 ^ (0x6e & $addrx8[25])
 ^ (0xb5 & $addrx8[24])
 ^ (0x8f & $addrx8[23])
 ^ (0xd6 & $addrx8[22])
 ^ (0x79 & $addrx8[21])
 ^ (0xba & $addrx8[20])
 ^ (0x9b & $addrx8[19])
 ^ (0xe5 & $addrx8[18])
 ^ (0x57 & $addrx8[17])
 ^ (0xec & $addrx8[16])
 ^ (0xc7 & $addrx8[15])
 ^ (0xae & $addrx8[14])
 ^ (0x67 & $addrx8[13])
 ^ (0x9d & $addrx8[12])
 ^ (0x5b & $addrx8[11])
 ^ (0xe6 & $addrx8[10])
 ^ (0x3e & $addrx8[9])
 ^ (0xf1 & $addrx8[8])
 ^ (0xdc & $addrx8[7])
 ^ (0xe9 & $addrx8[6])
 ^ (0x3d & $addrx8[5])
 ^ (0xf2 & $addrx8[4])
 ^ (0x2f & $addrx8[3])

my $addr_ecc_tcm
 = (0x1f & $addrx8[31])
 ^ (0xf4 & $addrx8[30])
 ^ (0x3b & $addrx8[29])
 ^ (0xe3 & $addrx8[28])
 ^ (0x5d & $addrx8[27])
 ^ (0xda & $addrx8[26])
 ^ (0x6e & $addrx8[25])
 ^ (0xb5 & $addrx8[24])
 ^ (0x8f & $addrx8[23])
 ^ (0xd6 & $addrx8[22])
 ^ (0x79 & $addrx8[21])
 ^ (0xba & $addrx8[20])
 ^ (0x9b & $addrx8[19])
 ^ (0xe5 & $addrx8[18])
 ^ (0x57 & $addrx8[17])
 ^ (0xec & $addrx8[16])

my $ecc_tcm_fix
 = (0xc7 & $addrx8[15])
 ^ (0xae & $addrx8[14])
 ^ (0x67 & $addrx8[13])
 ^ (0x9d & $addrx8[12])
 ^ (0x5b & $addrx8[11])
 ^ (0xe6 & $addrx8[10])
 ^ (0x3e & $addrx8[9])
 ^ (0xf1 & $addrx8[8])
 ^ (0xdc & $addrx8[7])
 ^ (0xe9 & $addrx8[6])
 ^ (0x3d & $addrx8[5])

Chapter 8 Additional information

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 107

 ^ (0xf2 & $addrx8[4])
 ^ (0x2f & $addrx8[3])
my $data_ecc
 = (0xb0 & $data_lex8[63])
 ^ (0x23 & $data_lex8[62])
 ^ (0x70 & $data_lex8[61])
 ^ (0x62 & $data_lex8[60])
 ^ (0x85 & $data_lex8[59])
 ^ (0x13 & $data_lex8[58])
 ^ (0x45 & $data_lex8[57])
 ^ (0x52 & $data_lex8[56])

 ^ (0x2a & $data_lex8[55])
 ^ (0x8a & $data_lex8[54])
 ^ (0x0b & $data_lex8[53])
 ^ (0x0e & $data_lex8[52])
 ^ (0xf8 & $data_lex8[51])
 ^ (0x25 & $data_lex8[50])
 ^ (0xd9 & $data_lex8[49])
 ^ (0xa1 & $data_lex8[48])

 ^ (0x54 & $data_lex8[47])
 ^ (0xa7 & $data_lex8[46])
 ^ (0xa8 & $data_lex8[45])
 ^ (0x92 & $data_lex8[44])
 ^ (0xc8 & $data_lex8[43])
 ^ (0x07 & $data_lex8[42])
 ^ (0x34 & $data_lex8[41])
 ^ (0x32 & $data_lex8[40])

 ^ (0x68 & $data_lex8[39])
 ^ (0x89 & $data_lex8[38])
 ^ (0x98 & $data_lex8[37])
 ^ (0x49 & $data_lex8[36])
 ^ (0x61 & $data_lex8[35])
 ^ (0x86 & $data_lex8[34])
 ^ (0x91 & $data_lex8[33])
 ^ (0x46 & $data_lex8[32])

 ^ (0x58 & $data_lex8[31])
 ^ (0x4f & $data_lex8[30])
 ^ (0x38 & $data_lex8[29])
 ^ (0x75 & $data_lex8[28])
 ^ (0xc4 & $data_lex8[27])
 ^ (0x0d & $data_lex8[26])
 ^ (0xa4 & $data_lex8[25])
 ^ (0x37 & $data_lex8[24])

 ^ (0x64 & $data_lex8[23])
 ^ (0x16 & $data_lex8[22])
 ^ (0x94 & $data_lex8[21])
 ^ (0x29 & $data_lex8[20])
 ^ (0xea & $data_lex8[19])
 ^ (0x26 & $data_lex8[18])
 ^ (0x1a & $data_lex8[17])
 ^ (0x19 & $data_lex8[16])

 ^ (0xd0 & $data_lex8[15])
 ^ (0xc2 & $data_lex8[14])
 ^ (0x2c & $data_lex8[13])
 ^ (0x51 & $data_lex8[12])
 ^ (0xe0 & $data_lex8[11])
 ^ (0xa2 & $data_lex8[10])
 ^ (0x1c & $data_lex8[9])
 ^ (0x31 & $data_lex8[8])

 ^ (0x8c & $data_lex8[7])
 ^ (0x4a & $data_lex8[6])
 ^ (0x4c & $data_lex8[5])

Testing All-X in RAM

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

108 NXP Semiconductors

 ^ (0x15 & $data_lex8[4])
 ^ (0x83 & $data_lex8[3])
 ^ (0x9e & $data_lex8[2])
 ^ (0x43 & $data_lex8[1])
 ^ (0xc1 & $data_lex8[0])

 my $ecc = $data_ecc ^ $addr_ecc;
 my $ecc_tcm = $data_ecc ^ $addr_ecc ^ $addr_ecc_tcm ^ 0x55;
 my $ecc_flash = $data_ecc ^ 0xff;
 return($ecc);
}
##printf "addr = 0x%08x\n", $addr;
##printf "data_be = 0x%08x_%08x\n", $data_be0, $data_be1;
##printf "addr_ecc = 0x%02x\n", $addr_ecc;
##printf "data_ecc = 0x%02x\n", $data_ecc;
##printf "ecc = 0x%02x\n", $ecc;
##printf "ecc_tcm = 0x%02x\n", $ecc_tcm;
##printf "ecc_tcm_fix = 0x%02x\n", $ecc_tcm_fix;
##printf "ecc_flash = 0x%02x\n", $ecc_flash;
#----- end perl script -----

This script finds the first N addresses with 2 or 6 bits set and 2 or 6 bits cleared in the
address ECC contribution. Usage is as follows:

• find_allx_addr address [number]
• address – starting address to start searching from
• number – number of addresses to find, default is 1

Example:

1. Find the first address of each type for system RAM:
• ./find_allx_addr 40000000

RAM base address = 40000000h

All 0s - Addresses with two bits set in the address ECC contribution:

• addr = 40000010h, addr_ecc = 06h

All 1s - Addresses with two bits cleared in the address ECC contribution:

1. addr = 40000008h, addr_ecc = DBh

2. Find the first 5 addresses of each type for system RAM:
• ./find_allx_addr 40000000 5

RAM base address = 40000000h

All 0s - Addresses with two bits set in the address ECC contribution:

1. addr = 40000010h, addr_ecc = 06h

2. addr = 40000038h, addr_ecc = 14h

3. addr = 40000058h, addr_ecc = C0h

4. addr = 40000080h, addr_ecc = 28h

5. addr = 400000f8h, addr_ecc = 21h

Chapter 8 Additional information

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 109

All 1s - Addresses with two bits cleared in the address ECC contribution:

1. addr = 40000008h, addr_ecc = DBh

2. addr = 40000098h, addr_ecc = F5h

3. addr = 400000b0h, addr_ecc = E7h

4. addr = 400000c8h, addr_ecc = EEh

5. addr = 400000e0h, addr_ecc = FCh

8.1.2 ECC checkbit/syndrome coding scheme

The e2eECC scheme implements a single-error correction, double-error detection
(SECDED) code using the so-called Hsiao odd-weight column criteria. These codes are
named for M.Y. Hsiao, an IBM researcher who published extensively in the early 1970s
on SECDED codes better suited for implementation in protecting (mainframe) computer
memories than traditional Hamming codes.

The Hsiao codes are Hamming distance 4 implementations which provide the SECDED
capabilities. The minimum odd-weight constraints defined by Hsiao are relatively simple
in the resulting implementation of the parity check H matrix which defines the
association between the data (and address) bits and the checkbits. They are:

1. There are no all zeroes columns.

2. Every column is distinct.

3. Every column contains an odd number of ones, and hence is "odd weight".

In defining the H-matrix for this family of devices, these requirements from Hsiao were
applied. Additionally, there are a variety of ECC code-word requirements associated with
specific functional requirements associated with the flash memory that further dictated
the specific column definitions. In any case, the resulting ECC is organized based on 64
data bits plus 29 address bits (the upper bits of the 32-bit address field minus the 3 bits
which select the byte within 64-bit (8-byte) data field.

The basic H-matrix for this (101, 93) code (93 is the total number of "data" bits, 101 is
the total number of data bits (93) plus 8 checkbits) is shown in the table below. A '*' in
the table below indicates the corresponding data or address bit is XOR'd to form the final
checkbit value on the left. For 64-bit data writes, the table sections corresponding to
D[63:32], D[31:0], and A[31:3] are logically summed (output of each table section is
XOR'ed) together to the final value driven on the hwchkbit[7:0] outputs. Note that this
table uses the AHB bit numbering convention where bit[0] is the least significant bit.

Testing All-X in RAM

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

110 NXP Semiconductors

Table 8-1. e2eECC basic H-matrix definition

Checkbits [7:0]

Data Bit

Byte 7 Byte 6 Byte 5 Byte 4

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

7 * * * * * * * * * * * * * *

6 * * * * * * * * * * * *

5 * * * * * * * * * * * * * *

4 * * * * * * * * * * * *

3 * * * * * * * * * * * *

2 * * * * * * * * * *

1 * * * * * * * * * * * * * *

0 * * * * * * * * * * * * * *

Byte 3 Byte 2 Byte 1 Byte 0

Checkbits [7:0] 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

7 * * * * * * * * * * * *

6 * * * * * * * * * * * * * *

5 * * * * * * * * * * * *

4 * * * * * * * * * * * * * *

3 * * * * * * * * * * * * * *

2 * * * * * * * * * * * * * * * *

1 * * * * * * * * * * * *

0 * * * * * * * * * * * *

Checkbits [7:0]
Address Bit1

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3

7 * * * * * * * * * * * * * * * * * *

6 * * * * * * * * * * * * * * * * * *

5 * * * * * * * * * * * * * * * * * *

4 * * * * * * * * * * * * * * * * * *

3 * * * * * * * * * * * * * * * * * *

2 * * * * * * * * * * * * * * * * * * *

1 * * * * * * * * * * * * * * * * * *

0 * * * * * * * * * * * * * * * * * *

1. Bit numbering is AHB convention, bit 0 is LSB. D[7:0] corresponds to byte at address 0. D[63:56] corresponds to byte at
address 7.

Figure 8-1 shows an alternative representation of the ECC encode process, written as a C
language function.

Figure 8-1. C Language encode ECC function description

encodeEcc (addr, data_a2_is_zero, data_a2_is_one)
 unsigned int addr; /* 32-bit byte address */

Chapter 8 Additional information

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 111

 unsigned int data_a2_is_zero; /* 32-bit data lower, a[2]=0 */
 unsigned int data_a2_is_one; /* 32-bit data upper, a[2]=1 */

{
 unsigned int addr_ecc; /* 8 bits of ecc for address */
 unsigned int ecc; /* 8 bits of ecc codeword */

/* the following equation calculates the 8-bit wide ecc codeword by examining each addr or
data bits and xor'ing the appropriate H-matrix value if the bit = 1 */

 addr_ecc
 = (((addr >> 31) & 1) ? 0x1f : 0x0) /* addr[31] */
 ^ (((addr >> 30) & 1) ? 0xf4 : 0x0) /* addr[30] */
 ^ (((addr >> 29) & 1) ? 0x3b : 0x0) /* addr[29] */
 ^ (((addr >> 28) & 1) ? 0xe3 : 0x0) /* addr[28] */
 ^ (((addr >> 27) & 1) ? 0x5d : 0x0) /* addr[27] */
 ^ (((addr >> 26) & 1) ? 0xda : 0x0) /* addr[26] */
 ^ (((addr >> 25) & 1) ? 0x6e : 0x0) /* addr[25] */
 ^ (((addr >> 24) & 1) ? 0xb5 : 0x0) /* addr[24] */

 ^ (((addr >> 23) & 1) ? 0x8f : 0x0) /* addr[23] */
 ^ (((addr >> 22) & 1) ? 0xd6 : 0x0) /* addr[22] */
 ^ (((addr >> 21) & 1) ? 0x79 : 0x0) /* addr[21] */
 ^ (((addr >> 20) & 1) ? 0xba : 0x0) /* addr[20] */
 ^ (((addr >> 19) & 1) ? 0x9b : 0x0) /* addr[19] */
 ^ (((addr >> 18) & 1) ? 0xe5 : 0x0) /* addr[18] */
 ^ (((addr >> 17) & 1) ? 0x57 : 0x0) /* addr[17] */
 ^ (((addr >> 16) & 1) ? 0xec : 0x0) /* addr[16] */

 ^ (((addr >> 15) & 1) ? 0xc7 : 0x0) /* addr[15] */
 ^ (((addr >> 14) & 1) ? 0xae : 0x0) /* addr[14] */
 ^ (((addr >> 13) & 1) ? 0x67 : 0x0) /* addr[13] */
 ^ (((addr >> 12) & 1) ? 0x9d : 0x0) /* addr[12] */
 ^ (((addr >> 11) & 1) ? 0x5b : 0x0) /* addr[11] */
 ^ (((addr >> 10) & 1) ? 0xe6 : 0x0) /* addr[10] */
 ^ (((addr >> 9) & 1) ? 0x3e : 0x0) /* addr[9] */
 ^ (((addr >> 8) & 1) ? 0xf1 : 0x0) /* addr[8] */

 ^ (((addr >> 7) & 1) ? 0xdc : 0x0) /* addr[7] */
 ^ (((addr >> 6) & 1) ? 0xe9 : 0x0) /* addr[6] */
 ^ (((addr >> 5) & 1) ? 0x3d : 0x0) /* addr[5] */
 ^ (((addr >> 4) & 1) ? 0xf2 : 0x0) /* addr[4] */
 ^ (((addr >> 3) & 1) ? 0x2f : 0x0); /* addr[3] */

 ecc = (((data_a2_is_zero >> 31) & 1) ? 0xb0 : 0x0) /* data[63] */
 ^ (((data_a2_is_zero >> 30) & 1) ? 0x23 : 0x0) /* data[62] */
 ^ (((data_a2_is_zero >> 29) & 1) ? 0x70 : 0x0) /* data[61] */
 ^ (((data_a2_is_zero >> 28) & 1) ? 0x62 : 0x0) /* data[60] */
 ^ (((data_a2_is_zero >> 27) & 1) ? 0x85 : 0x0) /* data[59] */
 ^ (((data_a2_is_zero >> 26) & 1) ? 0x13 : 0x0) /* data[58] */
 ^ (((data_a2_is_zero >> 25) & 1) ? 0x45 : 0x0) /* data[57] */
 ^ (((data_a2_is_zero >> 24) & 1) ? 0x52 : 0x0) /* data[56] */

 ^ (((data_a2_is_zero >> 23) & 1) ? 0x2a : 0x0) /* data[55] */
 ^ (((data_a2_is_zero >> 22) & 1) ? 0x8a : 0x0) /* data[54] */
 ^ (((data_a2_is_zero >> 21) & 1) ? 0x0b : 0x0) /* data[53] */
 ^ (((data_a2_is_zero >> 20) & 1) ? 0x0e : 0x0) /* data[52] */
 ^ (((data_a2_is_zero >> 19) & 1) ? 0xf8 : 0x0) /* data[51] */
 ^ (((data_a2_is_zero >> 18) & 1) ? 0x25 : 0x0) /* data[50] */
 ^ (((data_a2_is_zero >> 17) & 1) ? 0xd9 : 0x0) /* data[49] */
 ^ (((data_a2_is_zero >> 16) & 1) ? 0xa1 : 0x0) /* data[48] */

 ^ (((data_a2_is_zero >> 15) & 1) ? 0x54 : 0x0) /* data[47] */
 ^ (((data_a2_is_zero >> 14) & 1) ? 0xa7 : 0x0) /* data[46] */
 ^ (((data_a2_is_zero >> 13) & 1) ? 0xa8 : 0x0) /* data[45] */
 ^ (((data_a2_is_zero >> 12) & 1) ? 0x92 : 0x0) /* data[44] */
 ^ (((data_a2_is_zero >> 11) & 1) ? 0xc8 : 0x0) /* data[43] */
 ^ (((data_a2_is_zero >> 10) & 1) ? 0x07 : 0x0) /* data[42] */
 ^ (((data_a2_is_zero >> 9) & 1) ? 0x34 : 0x0) /* data[41] */
 ^ (((data_a2_is_zero >> 8) & 1) ? 0x32 : 0x0) /* data[40] */

Testing All-X in RAM

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

112 NXP Semiconductors

 ^ (((data_a2_is_zero >> 7) & 1) ? 0x68 : 0x0) /* data[39] */
 ^ (((data_a2_is_zero >> 6) & 1) ? 0x89 : 0x0) /* data[38] */
 ^ (((data_a2_is_zero >> 5) & 1) ? 0x98 : 0x0) /* data[37] */
 ^ (((data_a2_is_zero >> 4) & 1) ? 0x49 : 0x0) /* data[36] */
 ^ (((data_a2_is_zero >> 3) & 1) ? 0x61 : 0x0) /* data[35] */
 ^ (((data_a2_is_zero >> 2) & 1) ? 0x86 : 0x0) /* data[34] */
 ^ (((data_a2_is_zero >> 1) & 1) ? 0x91 : 0x0) /* data[33] */
 ^ ((data_a2_is_zero & 1) ? 0x46 : 0x0) /* data[32] */

 ^ (((data_a2_is_one >> 31) & 1) ? 0x58 : 0x0) /* data[31] */
 ^ (((data_a2_is_one >> 30) & 1) ? 0x4f : 0x0) /* data[30] */
 ^ (((data_a2_is_one >> 29) & 1) ? 0x38 : 0x0) /* data[29] */
 ^ (((data_a2_is_one >> 28) & 1) ? 0x75 : 0x0) /* data[28] */
 ^ (((data_a2_is_one >> 27) & 1) ? 0xc4 : 0x0) /* data[27] */
 ^ (((data_a2_is_one >> 26) & 1) ? 0x0d : 0x0) /* data[26] */
 ^ (((data_a2_is_one >> 25) & 1) ? 0xa4 : 0x0) /* data[25] */
 ^ (((data_a2_is_one >> 24) & 1) ? 0x37 : 0x0) /* data[24] */

 ^ (((data_a2_is_one >> 23) & 1) ? 0x64 : 0x0) /* data[23] */
 ^ (((data_a2_is_one >> 22) & 1) ? 0x16 : 0x0) /* data[22] */
 ^ (((data_a2_is_one >> 21) & 1) ? 0x94 : 0x0) /* data[21] */
 ^ (((data_a2_is_one >> 20) & 1) ? 0x29 : 0x0) /* data[20] */
 ^ (((data_a2_is_one >> 19) & 1) ? 0xea : 0x0) /* data[19] */
 ^ (((data_a2_is_one >> 18) & 1) ? 0x26 : 0x0) /* data[18] */
 ^ (((data_a2_is_one >> 17) & 1) ? 0x1a : 0x0) /* data[17] */
 ^ (((data_a2_is_one >> 16) & 1) ? 0x19 : 0x0) /* data[16] */

 ^ (((data_a2_is_one >> 15) & 1) ? 0xd0 : 0x0) /* data[15] */
 ^ (((data_a2_is_one >> 14) & 1) ? 0xc2 : 0x0) /* data[14] */
 ^ (((data_a2_is_one >> 13) & 1) ? 0x2c : 0x0) /* data[13] */
 ^ (((data_a2_is_one >> 12) & 1) ? 0x51 : 0x0) /* data[12] */
 ^ (((data_a2_is_one >> 11) & 1) ? 0xe0 : 0x0) /* data[11] */
 ^ (((data_a2_is_one >> 10) & 1) ? 0xa2 : 0x0) /* data[10] */
 ^ (((data_a2_is_one >> 9) & 1) ? 0x1c : 0x0) /* data[9] */
 ^ (((data_a2_is_one >> 8) & 1) ? 0x31 : 0x0) /* data[8] */

 ^ (((data_a2_is_one >> 7) & 1) ? 0x8c : 0x0) /* data[7] */
 ^ (((data_a2_is_one >> 6) & 1) ? 0x4a : 0x0) /* data[6] */
 ^ (((data_a2_is_one >> 5) & 1) ? 0x4c : 0x0) /* data[5] */
 ^ (((data_a2_is_one >> 4) & 1) ? 0x15 : 0x0) /* data[4] */
 ^ (((data_a2_is_one >> 3) & 1) ? 0x83 : 0x0) /* data[3] */
 ^ (((data_a2_is_one >> 2) & 1) ? 0x9e : 0x0) /* data[2] */
 ^ (((data_a2_is_one >> 1) & 1) ? 0x43 : 0x0) /* data[1] */
 ^ ((data_a2_is_one & 1) ? 0xc1 : 0x0); /* data[0] */

 ecc = ecc ^ addr_ecc; /* combine data and addr ecc values */

 return(ecc);
}

On a memory read operation, the e2eECC logic performs the same type of optional
adjustment on the read checkbits.

As the ECC syndrome is calculated on a read operation by applying the H-matrix to the
data plus the checkbits, an all zero syndrome indicates an error free operation. If the
generated syndrome value is non-zero and matches one of the H-matrix values associated
with the data or checkbits, it represents a single-bit error correction case and the specific
bit is complemented to produce the correct data value. If the syndrome value matches one
of the H-matrix values associated with the address bits, or is an even weight value, or
represents an unused odd weight value, a non-correctable ECC event has been detected
and the appropriate error termination response is initiated.

Chapter 8 Additional information

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 113

Testing All-X in RAM

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

114 NXP Semiconductors

Appendix A
Release Notes for Revision 2.1

A.1 General changes in this document

• Rev. 2.1 changes the document from Freescale to NXP branding:
• All other content in Rev. 2.1 is the same as in Rev. 2.
• All other changes in this appendix are relative to Rev. 1.

• Editorial changes and improvements throughout the document.

A.2 Preface changes

• Editorial updates throughout the chapter.

A.3 MCU safety context changes

• Removed section 'Module classification' since it is duplicated in chapter 6.
• In the Faults section:

• In the paragraph describing the occurrence of FTTI/L-FTTI, changed "by test software (for example, BIST after
power-up)" to "and potential faults are typically detected by safety mechanisms which are executed during
system testing at startup".

• In the Dependent failures section:
• Renamed the "Failures" section to "Dependent failures".

• In the Latent-fault tolerant time interval for latent faults section:
• Removed the statement "Within this time frame, the Safety Element out of Context (SEooC) shall be considered

unsafe."

• In MCU safety functions :
• Editorial update.

• In Correct operation :
• Changed "Software Execution Function" to "MCU Safety Function".

• In the Faults section:
• Editorial changes to the "Latent Fault" bullet for better clarity.

• In the Safety integrity level section:
• Editorial updates (changed "ISO26262" to "ISO 26262", and "IEC61508" to "IEC 61508").

• In Faults and failures :

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 115

• Updated the explanation of random hardware fault reduction and detection for improved clarity.

• In Latent-fault tolerant time interval for latent faults :
• Editorial change.
• Added Assumption SM_212 and Rationale.

• In the MCU safety functions section:
• Changed the "Debug Functions" bullet to "Not Safety Related functions: It is assumed that some functions are

Not Safety Related (e.g. debug)."

A.4 Functional Safety Concept changes

• In the General functional safety concept section:
• Updated the block diagram.
• Removed the assumption: "Before starting safety-relevant operations, the application software shall check that

the checker core is enabled and configure the FCCU to react to LSM being disabled."
• Removed the rationale: "As LSM is transparent to the system level (for example, to application software), specific

requirements must be fulfilled to improve functional safety integrity in case the device is intended to operate in
LSM."

A.5 Hardware requirements changes

• In PWM output monitor :
• Removed the module examples for simplicity.

• In Power Supply Monitor (PSM) :
• Removed sentence regarding disabling power or replacing the MCU for an overvoltage event.
• Removed Assumption [SM_086], "It is assumed that external power of appropriate voltage is supplied".
• In Assumption [SM_088], changed "the maximum survivable voltage of the technology" to "the absolute

maximum rating of the device".
• Removed the recommendation to disable the system when an overvoltage occurs.

• In Hardware requirements on system level :
• Updated the introductory text related to the application schematic figure.
• Updated the "Functional safety related connection to external circuitry" application schematic figure.

• In External Watchdog (EXWD) :
• Changed "FlexCAN" and "MCAN" to simply "CAN".

• In the Hardware requirements on system level section:
• Removed the Notes.

• In the External Watchdog (EXWD) section:
• Removed the bullet, "Toggling error out signals... from the FCCU".
• Removed the Implementation hint.

• In the Power Supply Monitor (PSM) section:
• Changed sentence regarding over-voltage detection "on the core supply" to "on some supplies".

• In the Power Supply Monitor (PSM) section:
• Changed the word "powerless" to "unpowered".
• In the Assumption "It is assumed that the external power is supervised for high and low deviations", added

"where no supervision is provided on the MCU."
• In the PWM output monitor section:

• In the list of features to be managed by system level measures, removed the example at the end of the "Open
GPIO" bullet.

• In the PowerSBC section:

Functional Safety Concept changes

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

116 NXP Semiconductors

• Updated the "Functional safety application with PowerSBC" figure.

• In the Hardware requirements on system level section:
• Corrected instance of FCCU_F[n] to ERRORn.

• In the PowerSBC section:
• Changed the generated voltage descriptions to "5 V (Vaux), 3.3V (Vcca), and 1.25V (Vcore) to supply the

MPC5777C"

• In the Both FCCU signals connected to separate device section:
• Moved "Rationale" to be after "Assumption".
• Removed the pin behavior table.

• In the High impedance outputs section:
• Removed the redundant introductory paragraph.
• Removed the "Implementation hint" heading.

A.6 Software Requirements changes

• In the Software requirements on system level section:
• Added the device number MPC5777C, which was missing in three places.
• Editorial changes.

• In the 1.25 V supply supervision section:
• Editorial change.
• In the Implementation hint, removed the content related to external ballast transistors.

• In the Test mode section:
• Removed the recommendation.

• In the Mulitplexed serial communicaton protocol controllers section:
• Added new paragraph, "FlexCAN modules are redundantly available..."

• In the FCCU Runtime checks section:
• Changed "resetting functional and destructive reset counters" to "resetting the reset counters".

• In the Power Management Controller (PMC) section:
• Changed "a destructive reset" to "a reset".
• Updated the "PMC monitored supplies" table.

• In the 1.25 V supply supervision section:
• Changed "a destructive reset" to "a reset".

• In the 3.3 V supply supervision section:
• Changed "a destructive reset" to "a reset".
• Removed SM_191 and the associated text.

• In the Built-In Hardware Self-Tests (BIST) section:
• Changed "after a reset (destructive reset or external reset)" to "after a reset".
• Changed "a destructive or external reset" to "a power-on, FOSU, or external reset".
• Removed the redundant paragraphs "Boot time test..." and "All tests may..."
• Editorial change.

• In the SD-ADC Initial checks and configurations section:
• Changed occurrences of "destructive reset" to "power-on reset".

• In the Self Test Control Unit (STCU2) section:
• Removed the statement that faults are signaled to the FOSU.

• In the Software Watchdog Timer (SWT) section:
• Added SM_067.
• Added SM_102.
• Changed "Assumption: It is expected that application software uses the SWT..." to "In general, it is expected that

application sofware uses the SWT..."
• Removed the following paragraph and its bullets: "Assumption: These requirements apply to the SWT for safety-

relevant applications:".
• In the RCCU Initial checks and configurations section:

• Added missing device number.
• Added SM_033.

Appendix A Release Notes for Revision 2.1

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 117

• In the CRC Cyclic Redundancy Checker Unit section:
• Added missing device number.

• In the PLLDIG Initial checks and configurations section:
• Changed "system level functional safety integrity measure respective functional safety-relevant modules shall be

clocked..." to "system level functional safety integrity measure or functional safety-relevant modules, or both,
they shall be clocked..."

• In the Power Management Controller (PMC) section:
• Made improvements to the description of the monitored voltages behavior.
• Added SM_204.
• In the paragraph "Apart from self test...", added "and ADC monitoring of the bandgap reference voltage".

• In the Built-In Hardware Self-Tests (BIST) section:
• Removed software based self-test (SBST) from the list of checking for latent faults.
• Added SM_109.

• In the STM Runtime checks section:
• Removed the word "Assumption" from the start of the first paragraph.

• In the EEPROM section:
• Added this new section.

• In the EEPROM Initial checks and configurations section:
• Changed the first Implementation hint to be SM_112.

• In the EEPROM Runtime checks section:
• Updated SM_219.

• In the Error reporting path tests section:
• Removed the Assumption (SM_224).
• Removed the Rationale.

• In the Glitch filter section:
• Added missing device number.

• In the Crossbar Switch (XBAR) section:
• In the first sentence, removed the concurrent transactions master and slave examples.
• In Assumption SM_227, changed "SFSMo or SuMos" to "safety-related modules".
• Removed the unnumbered (second) Assumption.

• In the eQADC Enhanced Queued Analog to Digital Converter (eQADC) section:
• Added this new section.

• In the Initial checks and configurations section:
• Added this new section.

• In the I/O functions section:
• Removed the statement regarding enablement of integrity measures on the hardware level and inclusion of I/O

bridges and the crossbar switch.

A.7 Failure Rates and FMEDA changes

• In the FMEDA section:
• Changed "Dynamic FMEDA" to "FMEDA".
• Editorial change.

• In the Module classification section, changed the term "Software Execution Function" to "MCU Safety Functions".

A.8 Dependent Failures changes

• Throughout the chapter:
• Changed "CMF" to "dependent failure".
• Changed "common mode failure" to "dependent failure".

• In Causes of dependent failures :

Failure Rates and FMEDA changes

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

118 NXP Semiconductors

• Changed bullet "physical defects that are able to influence an element and its redundant element" to "dependent
failures that are able to influence an on-chip function and its respective safety mechanisms".

• In Nonapplication control signals :
• Removed the bullet "The device leaves LSM."

• In External timeout function :
• Updated the NOTE.

• In βIC considerations :
• Changed "Dynamic FMEDA" to "FMEDA".

• In Modules sharing PBRIDGE :
• Removed the example, as it is unnecessary.

• In I/O pin/ball configuration :
• Changed references to the "Physcial Pin Displacement on Internal Die" attachment to "The Signal Description

chapter in the MPC5777C Reference Manual".

• Editorial updates throughout chapter.

• In Dependent failure avoidance on system level :
• Removed the Recommendation as it was redundant.

• In External timeout function :
• Removed the sentence that immediately followed the note, as it was redundant.

• In Physical isolation :
• In the second paragraph, changed the word "fatal" to "catastrophic".

• In Physical isolation :
• Added the following: "The master and checker core together with related logic are separated in this way as well

as the redundantly available peripheral modules."

A.9 Additional Information changes

• In ECC checkbit/syndrome coding scheme :
• Changed "E2E ECC" to "e2eECC" throughout the section.

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

NXP Semiconductors 119

Safety Manual for MPC5777C, Rev. 2.1, 02/2017

120 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based

on the information in this document. NXP reserves the right to make changes

without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of

its products for any particular purpose, nor does NXP assume any liability arising

out of the application or use of any product or circuit, and specifically disclaims

any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in NXP data sheets and/or

specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be

validated for each customer application by customerʼs technical experts. NXP

does not convey any license under its patent rights nor the rights of others. NXP

sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER

WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,

JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE

PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE,

MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest,

CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo,

Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,

QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo,

StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service

names are the property of their respective owners. ARM, AMBA, ARM Powered,

Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are

registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight,

DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and

Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or

elsewhere. All rights reserved. Oracle and Java are registered trademarks of

Oracle and/or its affiliates. The Power Architecture and Power.org word marks

and the Power and Power.org logos and related marks are trademarks and

service marks licensed by Power.org.

© 2014–2017 NXP B.V.

Document Number MPC5777CSM
Revision 2.1, 02/2017

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Chapter 1: Preface
	Overview
	Safety manual assumptions
	Safety manual guidelines
	Functional safety standards
	Related documentation
	Other considerations

	Chapter 2: MCU safety context
	Safety integrity level
	Safety function
	MCU safety functions
	Correct operation

	Safe states
	MCU Safe state
	Transitions to 			Safe statesystem
	Continuous reset transitions

	Faults and failures
	Faults
	Dependent failures

	Single-point fault tolerant time interval and process safety 			time
	MCU fault indication time

	Latent-fault tolerant time interval for latent faults
	MCU fault indication time

	MCU failure indication
	Failure handling
	Failure indication signaling

	Chapter 3: Functional safety concept
	General functional safety concept

	Chapter 4: Hardware requirements
	Hardware requirements on system level
	Assumed functions by separate circuitry
	High impedance outputs
	External Watchdog (EXWD)
	Power Supply Monitor (PSM)
	Error Out Monitor (ERRM)
	Both FCCU signals connected to separate device
	Single FCCU signal connected to separate device
	Single FCCU signal connected to separate device using voltage domain coding
	Single FCCU signal connected to separate device using time domain coding

	Optional hardware measures on system level
	External communication
	PWM output monitor

	PowerSBC

	Chapter 5: Software requirements
	Software requirements on system level
	Disabled modes of operation
	Debug mode
	Test mode

	MPC5777C modules
	Mulitplexed serial communicaton protocol controllers
	Fault Collection and Control Unit (FCCU)
	Initial checks and configurations
	Runtime checks

	Self Test Control Unit (STCU2)
	Initial checks and configurations

	Temperature Sensors (TSENS)
	Initial checks and configurations

	Software Watchdog Timer (SWT)
	Run-time checks

	Redundancy Control Checking Unit (RCCU)
	Initial checks and configurations

	Cyclic Redundancy Checker Unit
	Runtime checks
	Implementation details
	<module>_SWTEST_REGCRC

	Internal RC oscillator (IRCOSC)
	Initial checks and configurations
	Runtime checks

	External Oscillator (XOSC)
	Initial checks and configurations
	Runtime checks

	Dual PLL Digital Interface (PLLDIG)
	Initial checks and configurations

	Clock Monitor Unit (CMU)
	Initial checks and configurations

	Power Management Controller (PMC)
	1.25 V supply supervision
	3.3 V supply supervision

	Memory Protection Units (MPU)
	Initial checks and configurations

	PBRIDGE protection
	Initial checks and configurations

	Built-In Hardware Self-Tests (BIST)
	Memory Built-In Self-Test (MBIST)
	Logic Built-In Self-Test (LBIST)
	Flash memory array integrity self check
	Flash memory margin read
	Flash memory ECC logic check
	Flash memory ECC fault report check

	End-to-end ECC (e2eECC)
	Interrupt Controller (INTC)
	Periodic low latency IRQs
	Non-Periodic low latency IRQs
	Runtime checks

	Enhanced Direct Memory Access (eDMA)
	Runtime checks

	Flash memory
	EEPROM
	Initial checks and configurations
	Runtime checks

	Error reporting path tests
	Glitch filter
	Crossbar Switch (XBAR)
	Runtime checks

	Sigma-Delta Analog to Digital Converter (SD-ADC)
	Initial checks and configurations

	Enhanced Queued Analog to Digital Converter (eQADC)
	Initial checks and configurations

	I/O functions
	Digital inputs
	Hardware
	Software
	Double read digital inputs
	Implementation details
	SIU_SWTEST_REGCRC
	GPI_SWTEST_CMP

	Double read PWM inputs
	Implementation details
	EMIOSx_SWTEST_REGCRC and SIU_SWTEST_REGCRC
	EMIOSI_SWTEST_CMP

	Digital outputs
	Software
	Single Write Digital Outputs With Read-Back
	Implementation details
	SIU_SWTEST_REGCRC
	GPOERB_SWTEST_CMP
	GPOIRB_SWTEST_CMP

	Double Write Digital Outputs
	Implementation details
	GPODW_SWAPP_WRITE

	Single Write PWM Outputs With Read-Back
	Implementation details
	ETPUx_SWTEST_REGCRC and EMIOSx_SWTEST_REGCRC
	PWMRB_SWTEST_CMP

	Double Write PWM Outputs
	Implementation details
	SIU_SWTEST_REGCRC
	PWMDW_SWAPP_WRITE

	Communications
	Redundant communication
	Fault-tolerant communication protocol

	Additional configuration information
	Stack
	Initial checks and configurations

	MPC5777C configuration

	Chapter 6: Failure rates and FMEDA
	Failure rates
	FMEDA
	Module classification

	Chapter 7: Dependent failures
	Provisions against dependent failures
	Causes of dependent failures
	Measures against dependent failures
	Physical isolation

	Dependent failure avoidance on system level
	I/O pin/ball configuration
	Modules sharing PBRIDGE
	External timeout function

	βIC considerations

	Chapter 8: Additional information
	Testing All-X in RAM
	Candidate address for testing All-X issue
	ECC checkbit/syndrome coding scheme

	Appendix A: Release Notes for Revision 2.1
	General changes in this document
	Preface changes
	MCU safety context changes
	Functional Safety Concept changes
	Hardware requirements changes
	Software Requirements changes
	Failure Rates and FMEDA changes
	Dependent Failures changes
	Additional Information changes

Sheet1

				Elements in ISO 26262-5, Table D.1		MPC5777C FMEDA		MPC5777C Module		Part of Software Execution Function		Safety Mechanism		Comments

				Power Supply		Power		Power Management Controller (PMC)		YES

				Clock		Clock		Phase Lock Loop (2 x PLL)		YES

								Clock Monitor Unit (9 x CMU)				YES

								Progressive Clock Switch (PCS)		YES

								External Oscillator (XOSC)		YES

								Internal RC Oscillator (IRCOSC)				YES

				Non-Volatile Memory		Flash		Embedded Flash Memory (c55fmc)		YES

								Flash Memory Controller (PFLASH)		YES

								End-to-end Error Correction Code (e2eECC)				YES

				Volatile Memory		SRAM		System SRAM		YES

								RAM Controller (PRAMC)		YES

								End-to-end Error Correction Code (e2eECC)				YES

				Processing Unit		Core		Main Boot Computational Core_0 (e200z759n3)						Not Safety Related module - performance core (assumed not to be used for any safety related functions)

								Duplicated Computational Core_1 (e200z759n3)		YES

								Checker Core_1s (e200z758) (Delayed Lockstep)				YES

								Crossbar Switch (XBAR)		YES

								Crossbar Integrity Checker (XBIC)				YES

								Memory Protection Unit (MPU)		YES

								Interrupt Controller (INTC)		YES

								Direct Memory Access Controller (2 x eDMA)						Not Safety Related module - DMA (assumed not to be used for any safety related functions)

								Error Injection Module (EIM)						Not Safety Related module - Debug logic

								System Timer Module (STM)		YES

								Software Watchdog Timer (SWT)				YES

								Periodic Interrupt Timer (PIT)		YES

								Resets		YES

								Boot Assist Module (BAM)						Not Safety Related module - Boot logic

								System Status and Configuration Module (SSCM)						Not Safety Related module - Boot logic

								JTAG Controller (JTAGC)						Not Safety Related module - Debug logic

								Nexus debug modules (NDI, NPC)						Not Safety Related module - Debug logic

								Development Trigger Semaphore (DTS)						Not Safety Related module - Debug logic

								Cyclic Redundancy Check (CRC)				YES

								Fault Collection and Control Unit (FCCU)				YES

								Error Reporting Module (ERM)				YES

								Platform Configuration Module (PCM)						Not Safety Related module - configures system performance

								Platform Coherency Unit (PCU)						Non Safety Related module - assumed not to be used for any safety functions.

								Semaphores (SEMA4)		YES

								Self-Test Control Unit (STCU2) (includes MBIST & LBIST)				YES

								CSE						Not Safety Related module - security

								Password and Device Security Module (PASS)						Not Safety Related module - security

								Tamper Detection Module (TDM)						Not Safety Related module - security

				Communication (External)		Peripheral		CAN (4 x FlexCAN)						Peripheral module - High application dependency (failure rates only)

								Modular CAN (2 x MCAN)						Peripheral module - High application dependency (failure rates only)

								Serial Interprocessor Interface (SIPI)						Peripheral module - High application dependency (failure rates only)

								LVDS Fast Asynchronous Serial Transmission (LFAST)						Peripheral module - High application dependency (failure rates only)

								Deserial Serial Peripheral Interface (5 x DSPI)						Peripheral module - High application dependency (failure rates only)

								SENT Receiver (2 x SRX)						Peripheral module - High application dependency (failure rates only)

								eSCI (6 x eSCI)						Peripheral module - High application dependency (failure rates only)

								PSI5 (2 x PSI5)						Peripheral module - High application dependency (failure rates only)

								Fast Ethernet Controller (FEC)						Peripheral module - High application dependency (failure rates only)

				Analogue I/O and Digital I/O				Peripheral Bridge (2 x PBRIDGE)						Peripheral module - High application dependency (failure rates only)

								System Integration Unit (SIU, SIU_B)						Peripheral module - High application dependency (failure rates only)

								Enhanced Queued Analog to Digital Converter (2 x EQADC)						Peripheral module - High application dependency (failure rates only)

								Sigma Delta Analog to Digital Converter (4 x SDADC)						Peripheral module - High application dependency (failure rates only)

								Decimation Filter (12 x DECFILTER)						Peripheral module - High application dependency (failure rates only)

								Temperature sensor (2 x TSENS)						Peripheral module - High application dependency (failure rates only)

								Enhanced Modular IO System (2 x eMIOS)						Peripheral module - High application dependency (failure rates only)

								Enhanced Time Processing Unit (3 x eTPU)						Peripheral module - High application dependency (failure rates only)

								Reaction Module 2 (REACM)						Peripheral module - High application dependency (failure rates only)

								External Bus Interface (EBI)						Peripheral module - High application dependency (failure rates only)

								Input Glitch Filter (2 x IGF)						Peripheral module - High application dependency (failure rates only)

