
© 2015 Freescale Semiconductor, Inc. All rights reserved.

Freescale Confidential Proprietary, NDA Required

Freescale Internal Use Only. Preliminary Information, Subject to Change without Notice

Using the FCCU on the MPC5744P

Peter Vlna

1. Introduction

This document describes the configuration, restrictions,

principles and correct usage of FCCU module

implemented on MPC5744P device.

Freescale Semiconductor, Inc. Document Number: AN0

Application Note Rev. 0 , 01/2016

Contents

1. Introduction .. 1
2. Important FCCU notes for MPC5744P device 2
3. FCCU faults reading .. 3
4. FCCU faults clearing ... 4
5. FCCU fault injection .. 5
6. CONFIG state .. 6
7. ALARM state ... 8
8. Revision History .. 10

FCCU faults reading

Using the FCCU on the MPC5744P, Application Note, Rev. 0, 01/2016

2 Preliminary Information, Subject to Change without Notice Freescale Semiconductor, Inc.

 Freescale Confidential Proprietary, Nondisclosure Agreement Required

2. Important FCCU notes for MPC5744P device

Always have in mind as soon as you change FCCU state, the FCCU internal watchdog will start. After

expiration of this watchdog the FCCU Operation run bit field in FCCU_CTRL register will change to

ABORT. Therefore it is not possible to do “STEP” operations in debugger.

FCCU faults reading

Using the FCCU on the MPC5744P, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. Preliminary Information, Subject to Change without Notice 3

 Freescale Confidential Proprietary, Nondisclosure Agreement Required

3. FCCU faults reading

The FCCU_NCF_Sx register contains the latched fault indication collected from the non-critical fault

sources.

To read FCCU faults stored in NCF_Sx registers on MPC5744P device it is necessary to write to the

FCCU control register (FCCU_CTRL).

1. Write proper OPR into the FCCU_CTRL[OPR] = 10.

2. Wait for the successful operation run (OPR) mode change

3. Read the faults from NCF_S[x] registers

Example code:

void FCCU_read_faults(void)

{

 /* To read faults OP10 must be set in FCCU_CFG[OPR] field */

 FCCU.CTRL.R = 0xA; enter config state - OP10

 /* wait for the operation run (OPR) mode change */

 while (FCCU.CTRL.B.OPS != 0x3); //operation status

 /* Read all NCFS registers to variables */

 FCCU_status[0] = FCCU.NCF_S[0].R; //read FCCU.NCF_S0 register

 FCCU_status[1] = FCCU.NCF_S[1].R; //read FCCU.NCF_S1 register

 FCCU_status[2] = FCCU.NCF_S[2].R; //read FCCU.NCF_S2 register

}//FCCU_read_faults

FCCU faults clearing

Using the FCCU on the MPC5744P, Application Note, Rev. 0, 01/2016

4 Preliminary Information, Subject to Change without Notice Freescale Semiconductor, Inc.

 Freescale Confidential Proprietary, Nondisclosure Agreement Required

4. FCCU faults clearing

To clear FCCU latched faults it is necessary to execute following procedure:

1. Write the proper key into the FCCU_NCFK register.

2. Clear the status (flag) bit NCF_Sx => the opcode OP12 is automatically set into the

FCCU_CTRL.OPR field.

3. Wait for the completion of the operation (FCCU_CTRL.OPS field).

4. Read the FCCU_NCF_Sx register in order to verify the effective deletion and in case of failure

to repeat the sequence.

Example code:

void FCCU_clear_faults(void)

{

 /* 1. Write the proper key into the FCCU_NCFK register */

 //Non-critical fault key = AB34_98FEh

 FCCU.NCFK.R = 0xAB3498FE;

 /* 2. Clear the status (flag) bit NCFSx => the opcode OP12 is automatically

 /* Read all NCFS registers to clear all faults.*/

 /* For details which faults can be cleared see Table 7-36. FCCU Non-Critical Faults Mapping

in RM */

 FCCU.NCF_S[0].R = 0xFFFFFFFF; // read FCCU.NCF_S0 register

 /* Verify if state change was successful */

 while (FCCU.CTRL.B.OPS != 0x3); //Operation status successful

 /* NCFS_1 register clear */

 FCCU.NCFK.R = 0xAB3498FE; //Non-critical fault key = AB34_98FEh

 FCCU.NCF_S[1].R = 0xFFFFFFFF; // clear FCCU.NCF_S1 register

 /* Verify if state change was successful */

 while (FCCU.CTRL.B.OPS != 0x3); //Operation status successful

 /* NCFS_2 register clear */

 FCCU.NCFK.R = 0xAB3498FE; //Non-critical fault key = AB34_98FEh

 FCCU.NCF_S[2].R = 0xFFFFFFFF; // clear FCCU.NCF_S2 register

 /* Verify if state change was sucessful */

 while (FCCU.CTRL.B.OPS != 0x3); //Operation status succesfull

}//FCCU_clear_faults

CONFIG state

Using the FCCU on the MPC5744P, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. Preliminary Information, Subject to Change without Notice 5

 Freescale Confidential Proprietary, Nondisclosure Agreement Required

5. FCCU fault injection

Before attempting to inject a fault it is necessary to understand that not all faults can be injected. Some

faults can be injected through peripherals like ADC or PMC, some cannot be injected at all. To

distinguish between them user must refer to reference manual Table 7-37. FCCU Non-Critical Faults

Mapping. The following example code represents fault injection but without any reaction set on injected

fault.

Example code:

void FCCU_Fake_faults_inject(void)

{

 /* Inject a NCF[7] -> STCU2 fault */

 FCCU.NCFF.R = 0x7;

 /* Fault is now injected and user can read FCCU NCFSx register to see it is

 latched in NCFSx registers. But by default no reaction is set on this fault

 so it is only informative */

}//FCCU_Fake_faults_inject

CONFIG state

Using the FCCU on the MPC5744P, Application Note, Rev. 0, 01/2016

6 Preliminary Information, Subject to Change without Notice Freescale Semiconductor, Inc.

 Freescale Confidential Proprietary, Nondisclosure Agreement Required

6. CONFIG state

The default configuration can be modified only in the CONFIG state. A subset of the FCCU registers,

dedicated to define the FCCU configuration (global configuration, reactions to fault, timeout, noncritical

fault masking) can be accessed in write mode only in Configuration state.

Before entering configuration state of FCCU several steps need to be taken.

1. SWT must be disabled

2. FCCU pending faults latched in NCF_Sx registers must be cleared.

Entering the configuration state:

1. Unlock the configuration via providing Transition Unlocking Key value (0xBC)

2. Provide Control register key for CONFIG state (0x913756AF)

3. Enter CONFIG state

4. Verify if state transition was successful

Now FCCU is prepared for configuration defined by user.

Exiting configuration state:

1. Provide Control key for NORMAL state (0x825A132B)

2. Put FCCU into normal state (OP2)

3. Verify if state transition was successful

NOTE

FCCU implements an internal watchdog. If FCCU enters CONFIG state watchdog is started. If user

is not able to configure the FCCU and return to NORMAL state in watchdog time window the

CONFIG state is aborted and no changes are taken into account. As a result the OPS bit in CTRL

register is set to abort value. Therefore it is not possible to debug FCCU while it is in CONFIG state.

Example code:

void FCCU_CONFIG (void)

{

 /* Unlock configuration */

 FCCU.TRANS_LOCK.R = 0xBC;

 /* provide Config state key */

 FCCU.CTRLK.R = 0x913756AF; //key for OP1

 /* enter config state - OP1 */

 FCCU.CTRL.R = 0x1; //set OP1 - set up FCCU into the CONFIG mode

 /* wait for successful state transition */

 while (FCCU.CTRL.B.OPS != 0x3); //operation status succesful

ALARM state

Using the FCCU on the MPC5744P, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. Preliminary Information, Subject to Change without Notice 7

 Freescale Confidential Proprietary, Nondisclosure Agreement Required

 /**************************************/

 /* Insert here the FCCU configuration */

 /**************************************/

 /* set up the NOMAL mode of FCCU */

 FCCU.CTRLK.R = 0x825A132B; //key for OP2

 FCCU.CTRL.R = 0x2; //set the OP2 - set up FCCU into the NORMAL mode

 while (FCCU.CTRL.B.OPS != 0x3); //operational status succesful

}//FCCU_CONFIG

ALARM state

Using the FCCU on the MPC5744P, Application Note, Rev. 0, 01/2016

8 Preliminary Information, Subject to Change without Notice Freescale Semiconductor, Inc.

 Freescale Confidential Proprietary, Nondisclosure Agreement Required

7. ALARM state

FCCU state machine offers a possibility of entering into the ALARM state when fault is detected. User

has a possibility to trigger an ALARM interrupt on FCCU fault event and solve the issue (fault source)

in configured timeout window.

Before entering configuration state of FCCU several steps need to be taken.

3. SWT must be disabled

4. FCCU pending faults latched in NCF_Sx registers must be cleared.

Entering the configuration state:

5. Unlock the configuration via providing Transition Unlocking Key value (0xBC)

6. Provide Control register key for CONFIG state (0x913756AF)

7. Enter CONFIG state

8. Verify if state transition was successful

Now FCCU is prepared for configuration defined by user.

1. Enable ALARM timeout in NCF_TOEn register

2. Enable reaction on fault in NCF_En register

3. Enable alarm interrupt in IRQ_ALARM_ENn register

Exiting configuration state:

4. Provide Control key for NORMAL state (0x825A132B)

5. Put FCCU into normal state (OP2)

6. Verify if state transition was successful

NOTE

Make sure your INTC controller is configured properly and your ALARM

interrupt has priority set.

Example code:

void FCCU_CONFIG (void)

{

 /* Unlock configuration */

 FCCU.TRANS_LOCK.R = 0xBC;

 /* provide Config state key */

 FCCU.CTRLK.R = 0x913756AF; //key for OP1

 /* enter config state - OP1 */

Revision History

Using the FCCU on the MPC5744P, Application Note, Rev. 0, 01/2016

Freescale Semiconductor, Inc. Preliminary Information, Subject to Change without Notice 9

 Freescale Confidential Proprietary, Nondisclosure Agreement Required

 FCCU.CTRL.R = 0x1; //set OP1 - set up FCCU into the CONFIG

 /* wait for successful state transition */

 while (FCCU.CTRL.B.OPS != 0x3); //operation status succesful

 /* FCCU moves into the ALARM state if the respective fault is enabled */

 FCCU.NCF_TOE[0].R = 0xFFFFFFFF; //ALARM Timeout Enable

 FCCU.NCF_E[0].B.NCFE7 = 0x1; //Enable reaction on fault NCF[7]

 FCCU.IRQ_ALARM_EN[0].R = 0x80; //Enable ALARM interrupt on fault NCF[7]

 /* set up the NOMAL mode of FCCU */

 FCCU.CTRLK.R = 0x825A132B; //key for OP2

 FCCU.CTRL.R = 0x2; //set the OP2 - set up FCCU into the NORMAL mode

 while (FCCU.CTRL.B.OPS != 0x3); //operational status succesful

}//FCCU_CONFIG

Revision History

Using the FCCU on the MPC5744P, Application Note, Rev. 0, 01/2016

10 Preliminary Information, Subject to Change without Notice Freescale Semiconductor, Inc.

 Freescale Confidential Proprietary, Nondisclosure Agreement Required

8. Revision History

The revision history is the last Heading 1 section of the document. A revision history section is used for

all revisions. Rev. A documents (first NDA revision) and rev. 0 documents (first public revision) have

placeholder revision history tables that say “Initial release.” When a document crosses from NDA

alphanumeric numbering to publicly-released numeric numbering, a special document needs to be

created to share the NDA rev-to-rev 0 changes with alpha customers. Contact your local documentation

team for assistance.

Table 1 is an example of a revision history table.

Table 1. Sample revision history

Revision Number Date Substantive changes

0.1.0 1/2016 Initial Release

0.2.0 1/2016 Correction after review

Contact your technical documentation representative for more detailed instructions regarding the

necessary components of the revision history table.

Document Number: AN0
Rev. 0

01/2016

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to

use Freescale products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does Freescale assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims any and all liability,

including without limitation consequential or incidental damages. “Typical” parameters that may

be provided in Freescale data sheets and/or specifications can and do vary in different

applications, and actual performance may vary over time. All operating parameters, including

“typicals,” must be validated for each customer application by customer's technical experts.

Freescale does not convey any license under its patent rights nor the rights of others. Freescale

sells products pursuant to standard terms and conditions of sale, which can be found at the

following address: freescale.com/SalesTermsandConditions.

Registered trademarks: Freescale, the Freescale logo, CodeTest, CodeWarrior, ColdFire,

ColdFire+, Energy Efficient Solutions logo, Kinetis, mobileGT, Processor Expert, Qorivva, and

Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.

Trademarks: Airfast, BeeKit, BeeStack, CoreNet, Flexis, MagniV, MXC, Platform in a Package,

Ready Play, SafeAssure, SafeAssure logo, SMARTMOS, Tower, TurboLink, Vybrid, and

Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are

the property of their respective owners. ARM and Cortex are registered trademarks of ARM

Limited (or its subsidiaries) in the EU and/or elsewhere. mbed is a trademark of ARM Limited

(or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

IEEE nnn, nnn, and nnn are registered trademarks of the Institute of Electrical and Electronics

Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. (Add contract

language here, as necessary.)

© 2015 Freescale Semiconductor, Inc.

 .

Freescale Confidential Proprietary
Freescale Internal Use Only
Preliminary—Subject to Change Without
Notice

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

