AN13179

Error Correction Codes Implemented on MPC5744P

Rev. 0 — 3 May 2021

1 Introduction

The Error Correction Code (ECC) is commonly utilized with memories in
applications where data corruption via soft errors (SEU) is not easily tolerated.
Soft errors can be caused by radiation, electro-magnetic interference, or
electrical noise.

The intention of this application note is to describe how the ECC protection is
implemented with the MPC5744P device and to understand the MCU’s ECC
event response.

Because MPC5744P implements the Error Detection Code (EDC) in certain
places, this document marginally mentions this topic as well.

This document also slightly compares the approaches used across the
MPC57xx family.

NOTE
All diagrams are simplified and they may not contain all
implementation details. They may omit the technical details not
important for the purpose of this document.

NOTE

Application Note

Contents
1 Introduction..........ccceeeeeiieceeesiieennnns 1
2 ECC protected memory initialization
.. 1
3 Used error detection/correction
Tolo o [=X 2
4 MPC5744P ECC/EDC system
implementation..............cccocceiriiianes 4
5 €200z2/z4/z7 core response on ECC
OVENL.....oii e e 6
6 Behavior in case EDC event occurs
.. 6
7 Correctable ECC error servicing..... 7
8 Non-correctable ECC error servicing
.. 7
9 ECC error injection methods......... 13
10 Example code..........ceeerveerieeeeene 18
11 Revision history..........ccccvvieneenee 19

The provided information is related to MPC5744P if not stated otherwise.

2 ECC protected memory initialization

2.1 SRAM initialization after power-on-reset

The reset state of the internal SRAM is random so the data and checkbits may contain any data. Most probably, the first read
attempt to any address generates a non-correctable ECC error. The SRAM must be initialized after a powerup. It means that the
whole SRAM is deleted or written by any value. A 64-bit write is needed to completely define the ECC code for the data unit.
Smaller write accesses (32-bit/16-bit/8-bit) cause the read-modify-write operation with ECC error-affected data.

Store number of 128Byte (32GPRs) segments in Counter

e lis r5, _SRAM SIZE@Gh # Initialize r5 to size of SRAM (Bytes)
e or2i r5, SRAM SIZE@L
e srwi r5, r5, 0x7 # Divide SRAM size by 128

mtctr r5
Base Address of the internal SRAM
r5, _SRAM BASE ADDR@h

r5, SRAM BASE ADDRE1

Fill SRAM with writes of 32GPRs
sram loop:
r0,0(xr5)

e lis

e or2i

e stmw # Write all 32 registers to SRAM

Move to counter for use with "bdnz"

h
P

NXP Semiconductors

Used error detection/correction codes

e addi r5,r5,128 # Increment the RAM pointer to next 128bytes
e bdnz sram loop # Loop for all of SRAM

2.2 SRAM initialization after functional reset

You can omit the SRAM initialization for the functional reset sources. When a functional reset event occurs, a partial reset
sequence is applied to the chip starting from PHASE1[FUNC], keeping the system memory content preserved.

2.3 Initialization of other embedded SRAM memories

2.3.1 eDMA RAM arrays
Automatically:
The initialization of the eDMA Transfer Control Descriptor (TCD) memory is performed by the eDMA controller itself after a reset.

The initialization runs for 256 eDMA clock cycles. All fields in the TCD memory are initialized to 0. All application read or write
accesses to the TCD are delayed until the initialization is finished.

2.3.2 FlexCAN RAM arrays
Manually:

The whole FlexCAN memory must be initialized before starting its operation to have the checksum bits in the memory properly
updated. The WRMFRZ bit in the Control 2 Register (CTRLZ2) grants write access to all memory positions from 0x080 to OxXADF.

2.3.3 FlexRay RAM arrays
Automatically:

The initialization of the CHI LRAM is performed by the CC when it leaves the Disabled Mode. The unitization runs for 45 CHI clock
cycles. All fields in the FR_MBCCSRn, FR_MBCCFRn, FR_MBFIDRn, FR_MBDORN, and LEETRn registers are initialized to 0.
All application read or write accesses to these registers are delayed until the initialization is finished.

3 Used error detection/correction codes

3.1 Terminology used within this document

» Error Correction Code (ECC) - adding checksum bits to protected data. All employed ECC algorithms provide the
SECDED capability.

 Single Error Correction/Double Error Detection (SECDED).
» 1-bit/single-bit/correctable ECC error - 1 faulty bit within the data unit or checksum that can be corrected by SECDED.

 2-bit/multi-bit/non-correctable/uncorrectable ECC error — 2 (or more) faulty bits within the data unit or checksum that can
only be detected by SECDED.

» End-to-End ECC (e2eECC) - provides an additional layer of safety by including the ECC on all bus transactions. The ECC
for the transfer is generated on the transmitting end of the transaction and checked at the receiving end.

« Error Detection Code (EDC) - adding checksum bits to the protected data. The employed EDC algorithms provide Double
Error Detection capability. The term EDC is used in our documents in multiple meanings. In most cases, it is additional
EDC protection (supervision), checksum being added and subsequently removed from/to data, address, attribute, or other
signals, according the specific needs of the protected transfer or memory module. It is further protection capable to find an
ECC malfunction.

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021
Application Note 2/20

NXP Semiconductors

Used error detection/correction codes

» ECC transformation (Checkbit Transformation) - internal busses may use different granularities (either 64-bit or 32-bit). On
the interface of two different busses, the checkbit transformation (i.e. logical operations changing data checksum from one
format to another) or the reverse transformation is necessary.

» ECC manipulation - further generalization of any ECC checkbits re-coding, either because of a less than 64-bit access
or due to removing the address portion from the ECC (changing from the e2eECC on internal busses to the ECC in the
target memory).

3.2 Used ECC algorithms and error responses

The employed ECC protection variants used with the MPC57xx internal memories use the Hsiao Code in 64-bit or 32-
bit granularities.

3.3 e2eECC protection of transfers over system buses
MPC5744P (e200z4251n3):

Data checkbit generation - external interfaces, 64-bit data ECC granularity

Internal data checkbit generation - 32-bit data ECC granularity

Address portion of checkbit generation, 64- or 32-bit data ECC granularity

ICACHE and IMEM data checkbit generation - 64-bit ECC granularity

DCACHE and DMEM internal data checkbit generation - 32-bit data ECC granularity

3.4 Internal flash
MPC5744P: 64-bit data + 8-bit ECC

3.4.1 Code flash

Single-bit ECC events on code flash accesses are automatically corrected and reported to the MEMU (if enabled in the flash
controller by the procedure described in Intentional generation of FLASH 1b ECC error). On a multi-bit ECC event, the core
responds with a bus error, as summarized in €200z2/z4/z7 core response on ECC event, and an error is reported to the
MEMU module.

3.4.2 Data flash
The reporting of ECC events on data flash accesses is device-specific. It can be configurable or suppressed, as shown in Table 1.

When the ECC event reporting is suppressed, single-bit and multi-bit ECC errors are not reported (either to the core or to the
MEMU module). On a multi-bit ECC event, the corrupted read data is replaced with a fixed, ECC-clean illegal opcode value.

When the ECC event reporting is configurable and enabled, single-bit ECC events on data flash accesses are automatically
corrected and reported to the MEMU (if enabled in the flash controller by the procedure described in Intentional generation of
FLASH 1b ECC error). On a multi-bit ECC event, the core responds with a bus error, as summarized in €200z2/z4/z7 core
response on ECC event, and an error is reported to the MEMU module.

When the ECC event reporting is configurable and disabled, it behaves the same way as if it was permanently suppressed.

Table 1. ECC on data flash accesses

ECC event reporting on data flash access is suppressed Returned ECC-clean illegal
permanently/optionally opcode value
MPC5744P permanently OxFFFF_FFFF
MPC5746C permanently (only HSM data flash) 0x1555_1555

Table continues on the next page...

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021
Application Note 3/20

NXP Semiconductors

MPC5744P ECC/EDC system implementation

Table 1. ECC on data flash accesses (continued)

ECC event reporting on data flash access is suppressed Returned ECC-clean illegal
permanently/optionally opcode value
MPC5748G permanently (only HSM data flash) 0x1555_1555
MPC5746R optionally, PFCR3[DERR_SUP] 0x1555_1555
MPC5775K permanently 0x1555_1555
MPC5777C optionally, PFCR3[DERR_SUP] 0x1555_1555
MPC5777M permanently 0x1555_1555

3.5 Internal SRAM
MPC5744P: 64-bit data + 8-bit ECC

Single-bit ECC events on the internal SRAM accesses are automatically corrected and reported to the MEMU. On a multi-bit ECC
event, the core responds with a bus error, as summarized in €200z2/z4/z7 core response on ECC event, and an error is reported
to the MEMU module.

3.6 ECC on other embedded internal SRAM memories
For a complete picture, the following MPC5744P’s embedded RAMs are ECC-protected as well:
+ D-MEM
+ |-CACHE and D-CACHE
* FlexRay RAM arrays
* FlexCAN RAM arrays
* eDMA RAM arrays

3.7 Used EDC protection (supervision)

3.7.1 Flash/SRAM

Additional EDC transfer protection may be located in the flash array or flash controller due to ECC manipulation (either because of
less than 64-bit access ECC transformation or because of the transfer protection between the flash array and the flash controller
when the ECC is re-coded due to a removal of the address portion from the transferred packet address, data, or e2eECC).

3.7.2 Crossbar Integrity Checker (XBIC)

The XBIC is sub-module verifying the integrity of the attribute information for XBAR transfers using an 8-bit Error Detection Code
(EDC). The XBIC integrity checking is independent from the end-to-end ECC that covers the transfer address and data.

The EDC(72,64) code, which protects against single- and double-bit error of 64-bit attribute information (transfer direction, type,
size, protection control, burst type, and so on) is used.

4 MPC5744P ECC/EDC system implementation

The system ECC/EDC principles of transfer protection by error detecting/correcting code are shown in Figure 1 and Figure 2. Two
use cases are shown: core access to/from the internal flash and SRAM. The diagrams show the used checksum on the transfer

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021
Application Note 4/20

NXP Semiconductors

MPC5744P ECC/EDC system implementation

paths (from the XBAR master over the system busses to the XBAR slave). They also show the error-reporting paths and relations
between the error collecting and managing units (MEMU, XBIC) and the reaction modules (FCCU, RGM, and INTC).

Core IVOR4
A IVOR1
€2eECC ©2eECC
encoding decoding/correction
addr addr
data data
e2eECC e2eECC
Cross-Bar Switch XBIC
. NCF[38]
attribute | XBAR
EDC check)
transaction
monitor
addr addr mismatch
data data
e2eECC e2eECC
. MEMU NCF[21-23]
Flash controller ECC check oah
ECC manipulation EDC check ECC errors
_I NCF[35]
addr addr address ECC
data data manipulation
ECC ECC logic error (EDC)
EDC EDC NCF[34]
Error in the ECC
Flash array correction logic
EDC check through an EDC

Figure 1. Simplified diagram of MPC5744P’s ECC/EDC protection of core -> program flash access

D Failure detection modules

FAULT
NMI
reaction
ALARM Interrupt
3 interrupt INTC to core
O reaction
('S
Short Functional reset
Reset
reaction RGM
Long Functional reset

Error collecting and
managing unit

D D D Reaction modules

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021

Application Note

5/20

NXP Semiconductors

€200z2/z4/z7 core response on ECC event

Core IVOR4
A IVOR1
e2eECC e2eECC
encoding decoding/correction
addr addr
data data
e2eECC e2eECC
Cross-Bar Switch XBIC
J NCF[38]
attribute _| XBAR
EDC check -
transaction
monitor
addr addr mismatch FAULT
data data NI
e2eECC e2eECC .
reaction
SRAM controller ECC chect MEMU 1 ncrisn ALARM Interrupt
controller check System RAMs o AL, INTC o Corz
ECC transformation EDC check- ECC error 8 reaction
—I NCF[39] L.
addr addr System RAM
data data controller alarm
ECC ECC Short Functional reset
EDC EDC Reset
reaction RGM
SRAM array Long Functional reset

D Failure detection modules Errorcolleplmg gnd |:| |:| |:| Reaction modules
managing unit

Figure 2. Simplified diagram of MPC5744P’s ECC/EDC protection of core -> SRAM access

5 e200z2/z4/z7 core response on ECC event

The correctable (single-bit) errors are automatically corrected and they can be tracked by the MEMU.

The non-correctable (multi-bit) ECC error causes the Machine Check Exception (IVOR1) and a potential interrupt generated via
the MEMU-related FCCU non-critical fault input and its ALARM state (IVOR4 for the software vector mode or vector 488 for the
hardware vector mode).

Table 2. Core reaction to detection of multiple-bit ECC error for e200z2/z4/z7

MSRI[EE] MSR[ME] | Access type Result

X 0 Instruction or data Machine Check Exception (IVOR 1)
Error flags in the MCSR register are ignored

X 1 Instruction or data Machine Check Exception (IVOR 1)

Error flags in the MCSR register must be cleared in the exception
service routine to avoid IVOR 1 recall

The MEMU/FCCU configuration is further described in Interrupt handling of non-correctable ECC error.

6 Behavior in case EDC event occurs

The MPC57xx architecture offers advanced EDC transfer protection, such as the XBIC attribute EDC, RAM controller EDC, and
flash controller EDC (see the device reference manual for a specific implementation).

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021
Application Note 6/20

NXP Semiconductors

Correctable ECC error servicing

The detection of such errors triggers the EDC-related FCCU non-critical fault input. The FCCU configuration is further described
in FCCU.

7 Correctable ECC error servicing

The correctable ECC error servicing is not needed, because 1-bit ECC errors are automatically corrected during data/instruction
read. The detection of 1-bit errors could sense gradual degradation of the flash memory content caused by aging. A 1-bit error
may be corrected by reading the data and writing them back.

8 Non-correctable ECC error servicing

The fixing of multi-bit ECC errors is application-dependent and it must be part of the ECC error interrupt handling.

It can be based on the IVOR1 exception handler or IVOR4 interrupt handler, as described in IVOR1 exception handling of
non-correctable ECC error and Interrupt handling of non-correctable ECC error.

8.1 IVOR1 exception handling of non-correctable ECC error

This document describes the IVOR1 (machine check) handling, because it is the most common one and it is compatible with all
€200 cores. The precondition is to have MSR[ME]=1, because it guarantees that the exception is not only directly associated with
the current instruction execution stream (synchronous exceptions), but also with those reported by the subsystem as a bus error
termination (asynchronous exceptions, for example cache line filling). However, this approach still catches only errors related to
the core.

If ECC non-correctable errors caused by other master than the core are supposed to be serviced, use the handling based on the
MEMU interrupt (Interrupt handling of non-correctable ECC error) or a combination of both approaches.

8.1.1 Machine Check Syndrome Register (MCSR)

The register provides a possibility to differentiate between the sources of machine check exceptions. The exception service routine
should analyze the root cause of the exception:

» The error is caused by reading ECC-corrupted data sets MCSR[MAV, LD, BUS_DRERR].

» The error is caused by writing to the area affected by the ECC multibit error sets MCSR[MAV, LD, BUS_DRERR,
BUS_WRERR]. This can be achieved by 32-bit, 16-bit, and 8-bit writes, because it behaves as a read-modify-write
operation above 64bits.

» The error is caused by an attempt to execute an instruction affected by the ECC multibit error sets MCSR[MAV, IF,
BUS_IRERR].

» The error is caused by the cache-line-filling set MCSR[MAV, BUS_DRERR] or MCSR[MAV, BUS_IRERR] when there are
data affected by the ECC multibit error within this line, but not in the currently loaded data.

MCSR[MAV] - indicates that the address in the MCAR was updated by hardware. Note that the next update is only performed when
this bit is explicitly cleared by the W1C operation (Write 1 to Clear).

8.1.2 Machine Check Address Register (MCAR)

This register contains the effective (when MCSR[MEA]=1) or physical (when MCSR[MEA]=0) addresses, for which the
asynchronous type of the machine check exception was raised (not all machine sources update this register).

The address is valid only when MCSR[MAV] was cleared before the exception.

8.1.3 Machine Check Save/Restore Register 0 (MCSRRO)

This register contains the address of the instruction that caused the exception. At the end of the exception service routine, the
“rfmci” instruction loads the content of this register as the return address (program counter).

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021
Application Note 7/20

NXP Semiconductors

Non-correctable ECC error servicing

To return to the program flow before the exception occurred (i.e. after the instruction that caused the exception), increase the
exception returning address by the length of instruction causing an exception (in case of BookE by 4, in case of VLE by 2 or 4,
according to the instruction opcode).

For details, see the VLE 16-bit and 32-bit Instruction Length Decode Algorithm (document AN4648).

Table 3. Read content of address given by MCSRRO register during machine check exception

Bit3 Bit0 Instruction was Increment MCSRRO by
0 0 16-bit 2
0 1 16-bit 2
1 0 32-bit 4
1 1 16-bit 2

8.2 Interrupt handling of non-correctable ECC error
According to the implementation, the MPC57xx devices have either the MEMU or ERM modules.

Table 4. Reporting module used

Memory Error Management Unit (MEMU) Error Reporting Module
(ERM)
MPC5744P Yes No
MPC5746C Yes No
MPC5748G Yes No
MPC5746R Yes No
MPC5775K Yes No
MPC5777C No Yes
MPC5777M Yes No

The following two sections briefly describe the MPC5744P’s MEMU and FCCU modules, because it is necessary to understand
their functionality to create an application-specific ECC/EDC handler.
8.2.1 MEMU

The Memory Error Management Unit (MEMU) is a module dedicated for collection and reporting of error events associated with
the ECC. It provides a set of registers offering extended information about detected ECC events. In comparison to the approach
described in IVOR1 exception handling of non-correctable ECC error, MEMU has the following benefits:

« It aggregates information from several sources and it is capable to distinguish between three instances:
— System RAM ECC event.
— Peripheral RAM ECC event.
— Internal FLASH ECC event.

« It allows the detection of ECC events from XBAR masters other than the core (eDMA).

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021
Application Note 8/20

https://www.nxp.com/doc/AN4648

NXP Semiconductors

Non-correctable ECC error servicing

« It can detect single-bit correctable ECC events.

* It has a reporting table to catch multiple ECC error events:
— 10 entries for the System RAM single-bit ECC event.
— 2 entries for the Peripheral RAM single-bit ECC event.
— 20 entries for the Internal FLASH single-bit ECC event.
— 1 entry for the System RAM multi-bit ECC event.
— 1 entry for the Peripheral RAM multi-bit ECC event.
— 1 entry for the Internal FLASH multi-bit ECC event.

» Single-bit correctable and multi-bit uncorrectable ECC events are reported to the FCCU with a dedicated fault for every
instance.

« If the reporting table entries are full and a new unique error is reported by the system, the "ECC error overflow" signal
can be indicated to the FCCU. If it cannot process all simultaneously-arriving reports (because it aggregates address
information from several sources), the "buffer overflow" signal is signaled to the FCCU with a dedicated fault for every
instance. Figure 3, Figure 4, and Figure 5 show the ECC error-reporting paths.

System RAM NCF[15] Short Functional reset
correctable ECC error Reset
reaction RGM
System RAM NCF[16] Long Functional reset
correctable D uncorrectable ECC error)
ECC error s
RAM O b, System RAM correctable 8 FAULT
S O ECC error overflow hrd NMI Core exception
LW | uncorrectable_ = reaction
ECC error System RAM error OR NCF
buffer overflow [17]
System RAM uncorrectable QIIQ':JMt INTC Core interrupt
ECC error overflow up
reaction
Memory arrays Error collecting and D " . .
and controllers managing unit Failure detection modules |:| |:| |:| Reaction modules
Figure 3. MPC5744P’s SRAM ECC error reporting path
hort Fi ional
FLASH NCF[21] . Short Functional reset
correctable ECC error eset
reaction RGM
FLASH NCF[22] Long Functional reset
correctable o uncorrectable ECC error)
ECC error s
FLASH 8 - FLASH correctable 8 FAULT
ECC error overflow fre NMI Core exception
w uncorrectablg = reaction
ECC error FLASH error
buffer overflow
FLASH uncorrectable QI;QEJMt INTC Core interrupt
ECC error overflow up
reaction
Memory arrays Brror colle_ctlng E.md |:| Failure detection modules D D D Reaction modules
and controllers managing unit

Figure 4. MPC5744P’s FLASH ECC error reporting path

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021
Application Note 9/20

NXP Semiconductors

Non-correctable ECC error servicing

correctable

=

ECC
Peripheral 8 errer E
R w uncorrectable =

ECC error

Peripheral RAM NCF[18]

correctable ECC error

Peripheral RAM NCF[19]

uncorrectable ECC error

Peripheral RAM correctable

>

FCCU

ECC error overflow

Peripheral RAM error - NCF,

buffer overflow [20]
Peripheral RAM uncorrectable

Memory arrays
and controllers

ECC error overflow

Error collecting and

R N |:| Failure detection modules
managing unit

Figure 5. MPC5744P’s Peripheral RAM ECC error reporting path

Short Functional reset
Reset
reaction RGM

Long Functional reset
FAULT
NMI Core exception
reaction
ALARM Core interrupt
interrupt INTC
reaction

D D D Reaction modules

Table 5. MEMU module registers

Register description

Register

MEMU_CTRL

Control register

MEMU_ERR_FLAG

Error flag register

MEMU_DEBUG

Debug register
(forcing FCCU faults)

MEMU_SYS_RAM_CERR_STSn
MEMU_SYS_RAM_CERR_ADDRnN
MEMU_SYS_RAM_UNCERR_STS

MEMU_SYS_RAM_UNCERR_ADDR
MEMU_SYS_RAM_OFLWn

System RAM

reporting registers

MEMU_PERIPH_RAM_CERR_STSn
MEMU_PERIPH_RAM_CERR_ADDRn
MEMU_PERIPH_RAM_UNCERR_STS

MEMU_PERIPH_RAM_UNCERR_ADDR
MEMU_PERIPH_RAM_OFLWn

Peripheral RAM

reporting registers

MEMU_FLASH_CERR_STSn
MEMU_FLASH_CERR_ADDRnN
MEMU_FLASH_UNCERR_STS

MEMU_FLASH_UNCERR_ADDR
MEMU_FLASH_OFLWn

Internal FLASH

reporting registers

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021

Application Note

10/20

NXP Semiconductors

Table 6. Used abbreviations in MEMU_ERR_FLAG register

Non-correctable ECC error servicing

Instance

ECC error type

Overflow type

PR => Peripheral RAM
F => Flash

SR => System RAM and MBIST

CE => ECC Correctable Error (single-bit)

UCE => ECC Uncorrectable Error (multi-
bit)

CEO => ECC Correctable error
Overflow (single-bit)

UCO => ECC Uncorrectable error
Overflow (multi-bit)

EBO => ECC Error Buffer
(concurrent) Overflow

The MEMU handler is application-specific (and you may see such ones in example codes 1-3). Here are certain points to mention:

* The MEMU module is always active.

» The multi-bit ECC error caught during core access also causes the bus error to the core (IVOR1).

* The MEMU can only trigger the NCF faults which go to the FCCU that must be configured for the interrupt reaction on the

NCF faults.

« If an error was injected by the Error Injection Module (EIM), disable the EIM injection at the very start of the ISR.

» The MEMU handler consists of the following parts:

1. Examine the MEMU_ERR_FLAG to find out the instance, ECC error, or overflow type.

2.
3.
4.
5. Invalidate the entry.
6.
8.2.2 FCCU

Examine the rest of reporting registers related to a particular valid entry.

Perform the application-specific countermeasures.

For a given instance and type, perform a scan of all entries, looking for entries with VLD (valid) bit set.

If there is no other error, clear MEMU_ERR_FLAG by W1C. Otherwise, return to point “a”.

Table 7 shows a list of ECC/EDC-related FCCU fault sources. Every NCF can be set for the following reactions:

* IRQ (when the FCCU transits from the NORMAL to the ALARM state)

» Short functional reset

» Long functional reset

* NMI (when the FCCU transits trom the ALARM to the FAULT state)

Table 7. FCCU non-critical faults mapping (extract)

Table continues on the next page...

Non-critical fault Source Signal description
NCF[15] MEMU System RAMs correctable ECC error
NCF[16] MEMU System RAMs uncorrectable ECC error
NCF[17] MEMU System RAMs error overflow (ORing of all overflows)
NCF[18] MEMU Peripheral RAMs correctable ECC error
NCF[19] MEMU Peripheral RAMs uncorrectable ECC error

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021

Application Note

11/20

NXP Semiconductors

Non-correctable ECC error servicing

Table 7. FCCU non-critical faults mapping (extract) (continued)

Non-critical fault Source Signal description
NCF[20] MEMU Peripheral RAMs error overflow (ORing of all overflows)
NCF[21] MEMU Flash correctable ECC error
NCF[22] MEMU Flash uncorrectable ECC error
NCF[23] MEMU Flash error overflow (ORing of all overflows)
NCF[34] PFLASH Error in the ECC correction logic through an EDC
NCF[35] PFLASH Alarm indicating that the flash memory controller detected an error
NCF[38] XBAR XBAR transaction monitor mismatch
NCF[39] PRAMC System RAM controller alarm

For a proper FCCU setting, see Using FCCU on MPC5744P (document AN5284).

For example, the following FCCU initialization is used for the Example Codes, enabling the ALARM IRQ for all MEMU-related

fault sources:

void FCCU Init (void)

{
/* clear possible faults*/
ClearNCF () ;

/* Unlock configuration */

FCCU.TRANS LOCK.R = 0xBC;

/* provide Config state key */

FCCU.CTRLK.R = 0x913756AF; //key for OP1

/* enter config state - OP1l */

FCCU.CTRL.R = 0x1; //set OP1 - set up FCCU into the CONFIG mode
/* wait for successful state transition */

while (FCCU.CTRL.B.OPS != 0x3); //operation status succesful

/* Non-critical fault enable for all MEMU sources */
FCCU.NCF_TOE[O].R = OxFFFFFFFF; //ALARM Timeout Enable
FCCU.NCF E[0] .R = 0x00FF8000; // NCF[15]-NCF[23]
FCCU.IRQ ALARM EN[0].R = Ox0O0FF8000;

/* set up the NORMAL mode of FCCU */

FCCU.CTRLK.R = 0x825A132B; //key for OP2

FCCU.CTRL.R = 0x2; //set the OP2 - set up FCCU into the NORMAL mode
while (FCCU.CTRL.B.OPS != 0x3); //operational status succesful

void ClearNCF (void)
{
uint32 t i,b[4];
for (i=0;1i<4;i++)
{
FCCU.NCFK.R = FCCU_NCFK KEY;
FCCU.NCF_S[i].R = OxFFFFFFFF;
while (FCCU.CTRL.B.OPS != 0x3)

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021

Application Note

12/20

https://www.nxp.com/doc/AN5284

NXP Semiconductors

{}; /* wait for the completion of the operation */
b[1]=FCCU.NCF_S[i].R;

9 ECC error injection methods

9.1 Intentional generation of SRAM 1b/2b ECC error

Table 8. Options for 2b embedded RAM ECC error injection across MPC57xx product line

ECC error injection methods

Error Injection Module (EIM) SRAM ECC error injection with Indirect Memory Access (IMA)
E2EECSR (DCR 511)
MPC5744P for DMA TCD RAM array Yes No
MPC5746C No Yes No
MPC5748G No Yes No
MPC5746R for DMA TCD RAM array Yes No
MPC5775K for DMA TCD RAM array Yes No
MPC5777M No Yes Yes
MPC5777C for DMA TCD RAM array, No No
FEC RAM array,
internal SRAM array

9.1.1 System RAM

For the system RAM, the method with the core register E2EECSR (DCR 511) may be used to invert the selected bits of the
originally-calculated e2eECC checkbits during the core write.

If you enable the E2EECSRO[INVC]=1 error injection and set up a proper mask to the E2EECSRO[CHKINVT] bits, a subsequent
write to the SRAM creates an error and the following read of this area causes a bus error.

Preconditions use a 64-bit aligned write for the store operation to avoid checkbits transformations to store corrupted data to the

target RAM memory.

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021

Application Note

13/20

NXP Semiconductors

ECC error injection methods

Core IVOR4
CAISEE A ori
encoding E

error injected b e2eECC
E2EECSR decoding/correction

addr addr
data data
e2eEC§ e2eEC$

Cross-Bar Switch

addr addr
Int t
data data Irr;taeg{itgzt INTC ?oe(:cr;:g
e2¢ECE e26ECE 5
MEMU %
) NCF[15-17] (&)
SRAM controller ECC check System RAMs L
ECC error
addr addr
data data
ECC% ECCZ
EDC EDC
SRAM array

D Error injecting modules D Failure detection modules Error colleptmg e_md D D D Reaction modules
managing unit

Figure 6. RAM ECC error injection with core register E2EECSR (DCR 511)

9.1.2 eDMA RAM arrays

The ECC error in the DMA RAM memory can be simulated using the Error Injection Module (EIM) on the MPC5744P device. EIM
can simulate the single-bit and multi-bit errors by inverting the selected lines on the data/checkbit bus of the DMA RAM memory
during a read operation.

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021
Application Note 14/20

NXP Semiconductors

ECC error injection methods

Core IVOR4
A IVOR1
e2eECC e2eECC
encoding decoding/correction
addr addr
data data
e2eECC e2eECE
Cross-Bar Switch
addr addr
data data
e2eECC e2¢ECE
Interrupt Interrupt
PBRIDGE reaction INTC to core
o]
o
addr addr &I.,
data data
e2eECC e2eECE
DMA controller MEMU NCF[18-19]
ECC check Periph RAMs
ECC error
addr addr
data data
626ECC 62eECE <
i | Error
DMA TCD array | Injection
Module

|:| Error injecting modules |:| Failure detection modules Errorcolleptlng gnd D D D Reaction modules
managing unit

Figure 7. PERRAM ECC error injection using Error Injection Module (EIM)

9.1.3 Other embedded SRAM memories

The injection methods for the rest of internal embedded SRAM memories are as follows:

D-MEM - Uses DMEMCTLO (DCR496). If DMEMCTLO[DPEIE] is set, the subsequent write to D-MEM creates a 2b ECC
error.

I-CACHE - If L1ICSRA1[ICEI] is set, any instruction cache line filled to the instruction cache data has associated the two
most significant parity check bits inverted in the instruction cache data array for each doubleword loaded (simulates a 2b
ECC error).

D-CACHE - If L1CSRO[DCEI] is set, any cache line filled to the data cache data array has associated the two most
significant parity check bits inverted in the data array for each word loaded (simulates a 2b ECC error). Additionally,
inverted parity bits are generated for any data stored into the data cache data array on a store hit (injects a 2b ECC error).

FlexRay RAM arrays - The error injection mode is configured by the EIM configuration bit in the ECC Error Report and
Injection Control Register (FR_EERICR). When the error injection is enabled (FR_EERICRIEIE] = 1), each write access
to the configured memory location is distorted (XORed with R_EEIDR[DATA]) or directly written by the data specified by
R_EEIDR[DATA], according to the Error Injection Mode (FR_EERICR[EIM]).

FlexCAN RAM arrays — The Error Injection Address Register (CAN_ERRIAR), Error Injection Data Pattern Register
(CAN_ERRIDPR), and Error Injection Parity Pattern Register (CAN_ERRIPPR) are used to inject errors in memory reads
to force errors. The injection is done by flipping the data and parity bits correspondent to the bits 1 in ERRIDPR and
ERRIPPR. The injection can be selected specifically for memory accesses requested by the host or by FlexCAN internal
processes (CAN_MECR[HAERRIE,FAERRIE]). In case of 64-bit accesses, the CAN_MECR[EXTERRIE] bit extends the
error injection on 32-bit memory accesses to the complementary 32-bit word using the same 32-bit error injection data and
parity words.

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021

Application Note 15/20

NXP Semiconductors

ECC error injection methods

9.2 Intentional generation of FLASH 2b ECC error

9.2.1 Option 1 - flash over programming
ECC errors can be generated in the flash by overprogramming memory locations.

A multiple bit error is detected but not corrected. Therefore, it is easier to see when itis injected. A procedure for creating a multiple
bit error is as follows:

1. Write the original data A = 0x0045000000000000 to a flash memory location.
2. Overprogram data A to data B = 0x0058000000000000 in the same flash memory location.
This creates a multiple-bit ECC error and it is flagged in the ECC module.

Make sure to choose data patterns that have different ECC checkbits, because over-programming does not necessarily generate
an ECC error. For instance, the patterns shown in Table 9 have the same ECC checkbits and they can be overwritten without
generating an ECC error (this feature is utilized by EEPROM emulation drivers).

Table 9. Examples of data patterns with same ECC checkbits

Doubleword Checkbits
OXFFFF_FFFF_FFFF_FFFF OXFF
OxFFFF_FFFF_FFFF_0000 OXFF
OxFFFF_FFFF_0000_FFFF OXFF
OxFFFF_0000_FFFF_FFFF OXFF
0x0000_FFFF_FFFF_FFFF OXFF
OxFFFF_FFFF_0000_0000 OxFF
OxFFFF_0000_FFFF_0000 OXFF
0x0000_FFFF_FFFF_0000 OXFF
OxFFFF_0000_0000_FFFF OXFF
0x0000_FFFF_0000_FFFF OxFF
0x0000_0000_FFFF_FFFF OxFF
O0xFFFF_0000_0000_0000 OXFF
0x0000_FFFF_0000_0000 OXFF
0x0000_0000_0000_0000 OXFF

9.2.2 Option 2 - reading of UTEST area

The MPC57xx device family offers a set of test patterns, pre-programmed in the factory (see Table 10). For a multi-bit error, read
address 0x00400060.

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021
Application Note 16/20

NXP Semiconductors

ECC error injection methods

Table 10. UTEST flash memory (extract)

Start address End address Size Description Notes
(bytes)
0x00400040 0x0040005F 32 Customer single-bit *

correction area

0x00400060 0x0040007F 32 Customer double-bit *
detection area

0x00400080 0x0040009F 32 Customer EDC after ECC area *

* Programmed by NXP to include ECC/EDC errors to allow testing of ECC/EDC hardware

Core IVOR4
A IVOR1
€2eECC e2eECC
encoding decoding/correction
addr addr
data data
e2eECC e2eECE

Cross-Bar Switch

addr addr
Interrupt Interrupt
data data N INTC
e2eECC eZeECé reaction to core
Flash controller Ecc chec MEME | nerera
ash controlier check Fiash S
ECC errors (&)
(&)
L.
addr addr
data data
ECC ECCZ
EDC EDC NCF[34]
Errorin the ECC
Flash array correction logic
EDC check through an EDC l:| Failure detection modules
Error collecting and
0x00400040 data ECC f EDC managing unit
0x00400060 data ECC f EDC i
0x00400080 data ECC EDCf D D D Reaction modules

Figure 8. FLASH ECC/EDC error injection by reading of UTEST area

9.3 Intentional generation of FLASH 1b ECC error

The 1b ECC error is corrected without reporting it into the MEMU/ERM module by default (C55FMC_MCR[SBC] is not set on the
1b ECC event). Enable it by configuring the PFLASH controller using the following sequence:

/* Enable single bit ECC error reporting in flash controller */
// Enable UTest mode

C55FMC.UT0.R = 0xF9F99999;

// Enable single bit error correction

C55FMC.UT0.B.SBCE = 1;

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021
Application Note 17/20

NXP Semiconductors

Example code

// Finish the UTest mode by writing UTO[UTE] with 0.
C55FMC.UT0.B.UTE = 0;

9.3.1 Option 1 - flash over programming

The approach described in Option 1 - flash over programming can be used. The chosen pattern for a single-bit injection may be
as follows:

1. Write the original data A = OxFFFFFFFF00000000 (syndrome X) to a flash memory location.
2. Over program data A to data B = OxFFFFFFFF00000001 (syndrome Y) to the same flash memory location.

9.3.2 Option 2 - reading of UTEST area

The MPC57xx device family offers a set of test patterns pre-programmed in the factory (see Table 10). For a single-bit error, read
address 0x00400040.

9.4 Intentional generation of Flash EDC after ECC error

The Flash EDC after ECC error reporting into the MEMU/ERM module is disabled by default (C55FMC_MCR[EEE] is not set on
the EDC after ECC error event). It is needed to enable it by configuring the PFLASH controller as follows:

/* Enable single bit EDC after ECC error reporting in flash controller */
// Enable UTest mode

C55FMC.UT0.R = 0xF9F99999;

// Enable EDC after ECC Error Detection

C55FMC.UT0.B.CPE = 1;

// Finish the UTest mode by writing UTO[UTE] with O.

C55FMC.UT0.B.UTE = 0;

The EDC after ECC error can only be injected by reading the test patterns pre-programmed in the factory (see Table 10). For the
EDC after ECC error injection, read address 0x00400080.

10 Example code

10.1 MPC5744P 1b+2b RAM ECC error injection

The purpose of the example is to show how to generate multi-bit or single-bit ECC errors in the internal RAM (choose it in the option
at the end of the main function).

The ECC fault is generated using core register E2EECSR. If the error injection is enabled (E2EECSRO[INVC]=1) and a certain
mask is set (E2EECSRO[CHKINVT]), the subsequent write to the SRAM creates an error in the SRAM array.

When corrupted data is read, the IVOR1 exception handler is called in case of a multi-bit ECC error (IVOR1 exception occurs) and
the FCCU_Alarm_Interrupt handler is called in case of a single-bit ECC error (an FCCU interrupt occurs). Both functions call the
MEMU handler.

The example displays notes in the terminal window (connector J19 on MPC57xx_Motherboard, 19200-8-no parity-1 stop bit-no
flow control on eSCI_A).

No other external connection is required.

10.2 MPC5744P 1b+2b PERRAM ECC error injection

The purpose of the example is to show how to simulate multi-bit or single-bit ECC errors in the internal DMA TCD RAM (choose
it in the option at the end of the main function).

The Error Injection Module (EIM) is used to simulate multi-bit or single-bit ECC errors in the DMA TCD RAM (peripheral RAM).

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021
Application Note 18/20

NXP Semiconductors

Revision history

When corrupted data is accessed, the IVOR1 exception handler is called in case of a multi-bit ECC error (IVOR1 exception occurs)
and the FCCU_Alarm_Interrupt handler is called in case of a single-bit ECC error (an FCCU interrupt occurs). Both functions call
the MEMU handler.

The example displays notes in the terminal window (connector J19 on MPC57xx_Motherboard, 19200-8-no parity-1 stop bit-no
flow control on eSCI_A).

No other external connection is required.

10.3 MPC5744P 1b+2b Flash ECC error by UTEST read

The purpose of the example is to show how to generate multi-bit or single-bit ECC errors in the internal flash (choose it in the option
at the end of the main function).

The ECC error is injected by reading pre-defined patterns in the UTEST area at addresses 0x00400040 and 0x00400060.

When corrupted data is accessed, the IVOR1 exception handler is called in case of a multi-bit ECC error (IVOR1 exception occurs)
and the FCCU_Alarm_Interrupt handler is called in case of a single-bit ECC error (an FCCU interrupt occurs). Both functions call
the MEMU handler.

The example displays notes in the terminal window (connector J19 on MPC57xx_Motherboard, 19200-8-no parity-1 stop bit-no
flow control on eSCI_A).

No other external connection is required.

10.4 MPC5744P EDC after ECC error by UTEST read

The purpose of the example is to show how to generate the EDC after ECC error in the internal flash. An error response in
achieved by reading pre-defined patterns in the UTEST area at address 0x00400080, which generates IVOR1 exception and
FCCU interrupt (FCCU_Alarm_Interrupt).

The example does not show any handling, because it is application-specific.

The example displays notes in the terminal window (connector J19 on MPC57xx_Motherboard, 19200-8-no parity-1 stop bit-no
flow control on eSCI_A).

No other external connection is required.

11 Revision history

Table 11. Revision history

Revision number Date Substantive changes

0 3 May 2021 Initial release

Error Correction Codes Implemented on MPC5744P, Rev. 0, 3 May 2021
Application Note 19/20

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, Dynam|Q, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, pVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 3 May 2021
Document identifier: AN13179

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 ECC protected memory initialization
	2.1 SRAM initialization after power-on-reset
	2.2 SRAM initialization after functional reset
	2.3 Initialization of other embedded SRAM memories
	2.3.1 eDMA RAM arrays
	2.3.2 FlexCAN RAM arrays
	2.3.3 FlexRay RAM arrays

	3 Used error detection/correction codes
	3.1 Terminology used within this document
	3.2 Used ECC algorithms and error responses
	3.3 e2eECC protection of transfers over system buses
	3.4 Internal flash
	3.4.1 Code flash
	3.4.2 Data flash

	3.5 Internal SRAM
	3.6 ECC on other embedded internal SRAM memories
	3.7 Used EDC protection (supervision)
	3.7.1 Flash/SRAM
	3.7.2 Crossbar Integrity Checker (XBIC)

	4 MPC5744P ECC/EDC system implementation
	5 e200z2/z4/z7 core response on ECC event
	6 Behavior in case EDC event occurs
	7 Correctable ECC error servicing
	8 Non-correctable ECC error servicing
	8.1 IVOR1 exception handling of non-correctable ECC error
	8.1.1 Machine Check Syndrome Register (MCSR)
	8.1.2 Machine Check Address Register (MCAR)
	8.1.3 Machine Check Save/Restore Register 0 (MCSRR0)

	8.2 Interrupt handling of non-correctable ECC error
	8.2.1 MEMU
	8.2.2 FCCU

	9 ECC error injection methods
	9.1 Intentional generation of SRAM 1b/2b ECC error
	9.1.1 System RAM
	9.1.2 eDMA RAM arrays
	9.1.3 Other embedded SRAM memories

	9.2 Intentional generation of FLASH 2b ECC error
	9.2.1 Option 1 - flash over programming
	9.2.2 Option 2 - reading of UTEST area

	9.3 Intentional generation of FLASH 1b ECC error
	9.3.1 Option 1 - flash over programming
	9.3.2 Option 2 - reading of UTEST area

	9.4 Intentional generation of Flash EDC after ECC error

	10 Example code
	10.1 MPC5744P 1b+2b RAM ECC error injection
	10.2 MPC5744P 1b+2b PERRAM ECC error injection
	10.3 MPC5744P 1b+2b Flash ECC error by UTEST read
	10.4 MPC5744P EDC after ECC error by UTEST read

	11 Revision history

