

© 2016 NXP Semiconductors. All rights reserved.

Preliminary Information, Subject to Change without Notice

MPC5xxx I2C communication driver
by Petr Stancik

1. Introduction

This document summarizes simple I2C driver implementation for MPC5xxx devices. The driver was

written in the way the blocking or non-blocking communication on the I2C bus can be done.

The first one uses a SW poll to wait till a byte is transmitted, so the code stalls within transmit or receive

function until the full I2C frame is finished.

In non-blocking communication the I2C interrupt is used so the CPU does not wait in the loops.

The code follows Reference Manual's Flow-Chart of Typical I2C Interrupt Routine.

Only I2C master is implemented in this driver version.

NXP Semiconductors

Example Code Rev. 0 , 05/2016

I2C driver description

MPC5xxx I2C communication driver, Example Code, Rev. 0, 05/2016

2 Preliminary Information, Subject to Change without Notice NXP Semiconductors

2. Functions description

Below tables show a meaning of input arguments and return values that is common for all below write

and read functions

Arguments

dev_addr address selecting particular I2C device

reg_addr address selecting register address or memory item's address

reg_addr_nBytes address mode 1=8bit, 2=16bit, rest is invalid

*pData pointer to the first item of input/output data buffer

nBytes number of bytes to be written or read

Return

uint8_t 0 … OK
1 … FRAME NO ENDED
2 … NO ACK
3 … BUS BUSY
4 … ARBITRATION LOST

OK is returned if the full I2C frame is completed without error. Thus transmitted data was accepted by

the slave device and receive data from the slave is valid.

FRAME NO ENDED value indicates the I2C frame is not finished still. This is only returned in interrupt

driven mode.

NO ACK value is returned if slave does not acknowledges the byte transmitted. A STOP bit is generated,

thus user should repeat frame transmission/reception.

BUS BUSY is set when attempting to send new message over the I2C bus, but the bus is in the busy

state.

ARBITRATION LOST is returned if IBAL flag is detected. This is set by hardware when the arbitration

procedure is lost. I2C module immediately switch over to slave receive mode and stop driving the SDA

output.

Similarly to NO ACK , if BUS BUSY and ARBITRATION LOST is returned user should repeat frame

transmission/reception.

I2C driver description

MPC5xxx I2C communication driver, Example Code, Rev. 0, 05/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 3

uint8_t I2C_0_WriteBlock(uint8_t dev_addr, uint16_t reg_addr, uint8_t reg_addr_nBytes,
 uint8_t *pData, uint8_t nBytes);

The function is used to write nBytes of input data buffer into defined reg_addr of the selected slave

device.

For the polled mode it waits till all bytes are sent or an error appears.

For the interrupt mode the function just initiates the transmission of the first byte of the I2C write

message, so should be called repeatedly until 0 is returned, meaning whole frame is transferred without

errors.

The I2C frame then looks in the following way. A 16-bit register address is considered in this case.

uint8_t I2C_0_ReadBlock_defined_addr(uint8_t dev_addr, uint16_t reg_addr,
 uint8_t reg_addr_nBytes, uint8_t *pData, uint8_t nBytes);

The function is used to read nBytes from defined reg_addr of the selected slave device.

For the polled mode it waits till all bytes are sent or an error appears.

For the interrupt mode the function just initiates the transmission of the first byte of the I2C read

message, so should be called repeatedly until 0 is returned, meaning whole frame is transferred without

errors.

The I2C frame then looks in the following way. An 8-bit register address is considered in this case.

I2C driver description

MPC5xxx I2C communication driver, Example Code, Rev. 0, 05/2016

4 Preliminary Information, Subject to Change without Notice NXP Semiconductors

uint8_t I2C_0_ReadBlock_preset_addr(uint8_t dev_addr, uint8_t *pData, uint8_t nBytes);

The function is used to read nBytes from preset slave’s register/memory address.

For the polled mode it waits till all bytes are sent or an error appears.

For the interrupt mode the function just initiates the transmission of the first byte of the I2C read

message, so should be called repeatedly until 0 is returned, meaning whole frame is transferred without

errors.

The I2C frame then looks in the following way.

void I2C_0_Init(uint8_t divider);

Performs initialization of the I2C module. Set transmission frequency based on given prescale divider.

Consult device Reference Manual for the proper divider value.

If the I2C interrupt is enabled, assign I2C_0_Callback function to proper interrupt vector.

void I2C_0_Callback(void);

Follows RM's Flow-Chart of Typical I2C Interrupt Routine. Called from above three functions if SW

poll mode is used or it should be assigned as interrupt routine if interrupt mode is used.

I2C driver description

MPC5xxx I2C communication driver, Example Code, Rev. 0, 05/2016

NXP Semiconductors Preliminary Information, Subject to Change without Notice 5

3. Other implementation hints

- Include a proper device header file within an I2C_0.h file

- If another I2C module should be used, the easiest way is to find all “I2C_0” occurrences in both *.c

and *.h files and replace all with desired module name; e.g. “I2C_2”.

- I2C SDA and SCL pins have to be properly initialized. As both are bidirectional type, pins must be

configured to select I2C functionality, enable output and input buffers and select open drain mode.

Enable weak pull ups if there are no external pull ups connected.

- If switching between SW poll and interrupt mode, this must be always done when communication is

already finished.

Rev. 0

05/2016

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document.

NXP makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does NXP assume
any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in
different applications, and actual performance may vary over time. All
operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. NXP does not convey
any license under its patent rights nor the rights of others. NXP sells
products pursuant to standard terms and conditions of sale, which can be
found at the following address:
nxp.com/SalesTermsandConditions.

NXP and the NXP logo are trademarks of NXP B.V. All other product or
service names are the property of their respective owners. All rights
reserved.

© 2016 NXP B.V

 .

http://www.nxp.com/
http://www.nxp.com/support

