
eIQ: Transfer Learning Using
IMX RT1060 / IMX RT1050 EVK

– Without Camera

Contents:

• Lab Overview

• IMX RT1060-EVK

• IMX RT1050-EVK

• Software and Hardware Installation

• Lab Scripts Installation

• Retrain Existing Model

• Convert Model and Data

• Run Demo

• Conclusion

Lab Overview:

• This lab will cover how to take an existing TensorFlow image classification
model, and re-train it to categorize images of flowers. This is known as transfer
learning. This updated model will then be converted into a TensorFlow Lite file.
By using that file with the TensorFlow Lite inference engine that is part of NXPs
eIQ package, the model can be run on an i.MX RT embedded device.

• This lab is used without a camera + LCD, but the flower image will need to be
converted to a C array and loaded at compile time.

• This lab is written for the RT1060-EVK. It can also be used with the RT1050-
EVKB and RT1064-EVK with minor modifications. Also note that the RT1060-
EVK and RT1064-EVK come with a camera sensor. The RT1050-EVKB does not
come with a camera sensor. In all cases the LCD must be purchased separately.

IMX RT1060-EVK

Overview of the MIMXRT1060 EVK board (Front side):

Overview of the MIMXRT1060 EVK board (Back side):

Block diagram:

Board Features:

Configure Boot Mode:

Attach USB Cable:

IMX RT1050-EVK

Overview of the MIMXRT1050 EVK board (Front side):

Overview of the MIMXRT1050 EVK board (Back side):

Block diagram:

Board Features:

Configure Boot Mode:

• The device has four boot modes (one is reserved for NXP use). The boot mode is
selected based on the binary value stored in the internal BOOT_MODE register.
Switch (SW7-3 & SW7-4) is used to select the boot mode on the MIMXRT1050
EVK Board.

• Enable Hyper Flash Boot mode to see the output in TeraTerm.

Software and Hardware Installation

MCUXpresso

Install the MCUXpresso IDE:

• Install the latest version of MCUXpresso IDE

• Use the link:

https://www.nxp.com/design/software/development-software/mcuxpresso-software-
and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-
IDE?tab=Design_Tools_Tab

• It will ask you to log in to NXP. If you don’t have an account in NXP, create one
and proceed.

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE?tab=Design_Tools_Tab

Tera Term

Install Tera Term:

• Tera Term is the terminal emulator for Microsoft Windows, that supports serial
port, telnet and SSH connections.

• Among many other features it also has built-in Macro scripting language.

• Tera Term is often used to automate tasks related to remote connections initiated
from PC.

• Install the latest version of Tera Term

• Use the link:

https://ttssh2.osdn.jp/index.html.en

https://ttssh2.osdn.jp/index.html.en

MCUXpresso SDK

Install the MCUXpresso SDK:

• The MCUXpresso SDK is complimentary and includes full source code under a
permissive open-source license for all hardware abstraction and peripheral driver
software.

• Download MCUXpresso SDK 2.6.2 version for i.MXRT1060 (or) SDK 2.6.0
version for i.MXRT1050 . It includes the eIQ software platform and demos:

• Use the link: https://mcuxpresso.nxp.com/en/welcome

• Click on select development board

https://mcuxpresso.nxp.com/en/welcome

• Select boards>i.MX> and your board name(EVK-MIMXRT1060 or

EVK-MIMXRT1050)

• It leads to select board details in right most corner of the page. There click on

version tab

• For IMXRT1060: Select 2.6.2 version

• For IMXRT1050: Select 2.6.0 version

• After that, click on build MCUXpresso SDK.

• Then select you Host OS and click on select all icon which will select all the software

components related to that board.

• After that go to bottom of the page and click on download SDK

• This will build the required SDK and after building we will be able to download it.

• Then select download SDK archive. Agree the terms and condition. Now SDK archive

will be downloaded.

TensorFlow

Install TensorFlow:

• TensorFlow makes it easy to create machine learning models for desktop, mobile,
web, and cloud

• TensorFlow provides a collection of workflows to develop and train models using
Python or JavaScript, and to easily deploy in the cloud, on-prem, in the browser,
or on-device no matter what language you use.

• Download and install Python latest version. The 64-bit edition is required.

• Use the link:

https://www.python.org/downloads/

https://www.python.org/downloads/

• Verify that the python command corresponds to Python 3.x.Type the Command in

command prompt :

py –V

• Update the python installer tools. Type the command in command prompt:

py -m pip install -U pip

py -m pip install -U setuptools

• Install the latest version Tensorflow libraries and support for python. Type the

command in command prompt:

py -m pip install tensorflow

• Install other useful python packages. Type the command in command prompt:

py -m pip install tensorflow-datasets

py -m pip install numpy scipy matplotlib ipython jupyter pandas sympy nose

py -m pip install opencv-python

py -m pip install PILLOW

py -m pip install netron

• If on Windows, install latest Vim using the link: https://www.vim.org/download.php#pc.

There is a binary convertor programmed named xxd.exe located inside that package that will

be needed.

https://www.vim.org/download.php#pc

• If on Windows, add the following directories to your executable PATH if they are not

already. Steps to add path is:

Go to system properties>Environment Variables

Under System Variables, select path and edit.

Add path as:

<python_install_directory>/scripts

<vim_install_directory>

Lab Scripts Installation

• The python scripts that will be used to retrain an already existing model will be downloaded

via Git.

• Experiment: We'll be retraining the model to recognize photos of flowers and categorize

them into different types(5 category)- daisy, dandelion, roses, sunflowers and tulips

• The new flower data that the model will be retrained on also will be download.

• Steps are:

1. Install Git: https://git-scm.com/downloads

https://git-scm.com/downloads

2. Open a command prompt, and in a directory of your choosing, download the tutorial

repository with git:

git clone https://github.com/googlecodelabs/tensorflow-for-poets-2

3. Download a set of Creative Commons licensed flowers images that have already been

categorized into 5 different classes:

http://download.tensorflow.org/example_images/flower_photos.tgz

4. Unzip that file which will create a “flower_photos” directory:

a. If on Windows, you may need to install 7-zip or Winzip to unzip the .tgz file.

b. If on Linux, use: tar -xvzf flower_photos.tgz

https://github.com/googlecodelabs/tensorflow-for-poets-2
http://download.tensorflow.org/example_images/flower_photos.tgz

5. Place the “flower_photos” directory inside the “tf_files” directory that is in the tensorflow-

for-poets-2 repo downloaded in the first step. It should look like the following when done:

Retrain Existing Model

• For this lab we will retrain an already existing model with new data. This is called
transfer learning. The structure of the model has already been setup for image
classification, so the goal is to retrain one layer to classify new images with new
custom labels. This greatly shortens the amount of time it will take to train the
model. Once retrained, the model can be converted to TensorFlow Lite format and
ran on the i.MXRT device. The following steps are based on this Google
CodeLabs tutorial: TensorFlow for Poets

https://codelabs.developers.google.com/codelabs/tensorflow-forpoets/index.html/

• 1. Open a command prompt and go to the directory that was created by
cloning the git repository in the last section. It should be something like this:

cd C:\eiq\tensorflow-for-poets-2

2. The model being used is called MobileNet.

Open retrain.py file changed 109 line i.e, earlier it was import tensorflow as tf we
changed it to import tensorflow.compat.v1 as tf. The image after changing is shown
below.

We will retrain this model for 128x128 pixel images using a python script found inside

the tutorial folder. Navigate to the main root directory and run the following command.

This should be one long continuous line like in the image below:

python -m scripts.retrain

--bottleneck_dir=tf_files/bottlenecks

--how_many_training_steps=500

--model_dir=tf_files/models/

--summaries_dir=tf_files/training_summaries/mobilenet_0.25_128

--output_graph=tf_files/retrained_graph.pb

--output_labels=tf_files/retrained_labels.txt

--architecture=mobilenet_0.25_128

--image_dir=tf_files/flower_photos

3. This will take several minutes to run. While waiting, here’s an explanation for the
arguments in the command you just ran:

--bottleneck_dir=tf_files/bottlenecks

Directory to store cached data information

--how_many_training_steps=500

of iterations. The more iterations the longer the training takes, but the more
accurate the model will likely be

--model_dir=tf_files/models/

Directory location to download the pre-existing model

--summaries_dir=tf_files/training_summaries/mobilenet_0.25_128

Output directory for data files used by an optional analysis program called
TensorBoard

--output_graph=tf_files/retrained_graph.pb

Name of the retrained model in Protocol Buffer (pb) format.

--output_labels=tf_files/retrained_labels.txt

Text file with the labels for the model (determined by the names of the sub-
directories of the training data)

--architecture=mobilenet_0.25_128

The particular type of Mobilenet model to use as a starting point

--image_dir=tf_files/flower_photos

Location of the data to train the model on. Each sub-directory is a label
classifying those images

4. Once finished, look inside the tf_files directory. You should have a model file
named retrained_graph.pb. This is the newly trained model.

5. You can test this model file against flower images using the label_image python
script. Open label_image python script and change import tensorflow as tf to import
tensorflow.compat.v1 as tf, tf.compat.v1.disable_eager_execution () at line 25 and
26. See below figures for reference.

• From the main directory, call a script to use the new graph and have it analyze a daisy
image with the following command as one long continuous line:

python -m scripts.label_image

--graph=tf_files/retrained_graph.pb

--input_height=128

--input_width=128

--image=tf_files/flower_photos/daisy/21652746_cc379e0eea_m.jpg

6. It should respond back that that photo is of a daisy. The confidence level may vary
slightly as the model training will be slightly different each time. If you see a low
confidence level (<.80) for identifying that image as a daisy, try running the retraining
script again.

Convert Model and Data

Now that the retrained model is running on your laptop, the next step is to use a
TensorFlow utility named tflite_convert to convert that model into a file that can be
loaded onto an embedded device like the i.MXRT1060/1050.

Convert TensorFlow model:

Convert the .pb model file into a format that can be imported into the RT1060
project with tflite_convert.

1. The first and last layer names need to be read from the TensorFlow .pb model file,
which will be used later in the conversion process. This can be done with a neural
network visualization tool called Netron.

a. Use Netron by using the following command on a .pb file:

netron tf_files\retrained_graph.pb

b. While the command is running, open up a web browser and navigate to
http://localhost:8080 and click on the first and last nodes to get the layer names and
the input shape.

c. After reading the labels, go back to the terminal window and hit Ctrl+c to
stop the server and return to the command prompt

2. Use tflite_convert to transform the model file into a .tflite file. There are options
available to quantize and optimize the model during this step, but they seem to
significantly decrease the accuracy of the converted model. The following options
keep the accuracy about the same as the full model. Type in the command as one
long continuous line like below:

tflite_convert

--graph_def_file=tf_files/retrained_graph.pb

--output_file=tf_files/retrained_graph.tflite

--input_shape=1,128,128,3

--input_array=input

--output_array=final_result

--inference_type=FLOAT

--input_data_type=FLOAT

--enable_v1_converter

Here is what each of those arguments determine:

--graph_def_file=tf_files/retrained_graph.pb

Name of the TensorFlow model to convert

--output_file=tf_files/retrained_graph.tflite

Name of the converted tflite file

--input_shape=1,128,128,3

This model takes in a 128 x 128 image that has 3 color channels

--input_array=input

Name of the first layer of the model

--output_array=final_result

Name of the last layer of the model

--inference_type=FLOAT

Model uses floating (instead of 8-bit quantized) inference

--input_data_type=FLOAT

Model uses floating (instead of 8-bit quantized) input

3. You may get a warning about AXV2 instructions not being supported. You can
ignore this warning.

4. Inside the tf_files directory you should see a new file named
retrained_graph.tflite

5. Use the xxd utility to convert the .tflite binary file into a C array that can be
imported into an embedded project. Do not run this command in Powershell as it
will cause compilation issues later. Run it in a standard command prompt:

xxd -i tf_files/retrained_graph.tflite > tf_files/retrained_graph.h

6. The generated header file may need to be modified slightly to define it as a
const. Open up the file and, if necessary, change “unsigned char” to “const char”.
Also make note of the array name as it will be used in the next section.

7. The following files should now be in the tf_files directory:

Image Data Conversion – No Camera Only:

Now that the model has been converted, an image also needs to be converted into a
C array. The Label Image example in eIQ takes in 24-bit BMP image files, so will
convert one of the images in the dataset to a BMP file and then convert that into a C
array.

8. Convert one of the JPEG flower image files into a 24-bit BMP file. Preferably
pick an image that was labeled already using the label_image python script so that
result can be compared to the result on the RT1060. In this case we’ll pick the file

tf_files/flower_photos/daisy/21652746_cc379e0eea_m.jpg.

Save the new .bmp file as daisy.bmp

• In Linux use:

convert tf_files/flower_photos/daisy/21652746_cc379e0eea_m.jpg -type
truecolor tf_files/daisy.bmp

• In Windows use a paint program like MS Paint.

9. After converting the .jpg file to a .BMP file, use the xxd program to convert it to a
C array. Do not run this command in Powershell as it will cause compilation issues
later. Run it in a standard command prompt:

xxd -i daisy.bmp > daisy.h

10. Open the generated header file and, if necessary, change the array type from
“unsigned char” to “const char” and make note of the array name, as that name will
be used in the next section:

Run Demo

• The final step is to take the Label Image example and modify it to use the
retrained model with the new image.

Copy and Create Files:

1. Open MCUXpresso IDE and select a workspace location in an empty directory.

2. Because of the large size of the model file, the indexer settings need to be
changed by going to Window->Preferences from the menu bar. In the dialog
box that comes up, go to the C/C++->Indexer category and uncheck Enable
Indexer. Then click on Apply and Close.

See image in next page for reference.

3. Drag-and-drop the unzipped SDK folder into the Installed SDKs window. It
should have updated files as described in the first section. You will get the following
pop-up, so hit OK.

4. Once imported, the Installed SDK window will look something like this

5. Next import the desired project. In the Quickstart Panel, select Import SDK
examples(s)…

6. Select the evkmimxrt1060 board and click on Next

7. Then expand the eiq_examples folder and select tensorflow_lite_label_image.
Also select UART for the SDK Debug Console. Then click on Finish to select that
project.

8. It will look like the following when imported into the Project Explorer window:

9. Now we need to import the retrained model file that was generated in the last
section into this project.

10. Find the directory location that this example was copied to by right clicking on
the project name and select Properties. In the dialog box that comes up, click on the
icon to open up that directory inside Windows explorer:

11. Go to the “source” directory inside the
evkmimxrt1060_tensorflow_lite_label_image folder that you just opened. It
should be something like:
C:\Users\nxp_training\Documents\MCUXpressoIDE_11.0.0_2516\workspace\e
vkmimxrt10 60_tensorflow_lite_label_image\source

12. Inside that source directory, copy the retrained_graph.h file generated in the
previous section.

13. If not using the camera, also copy the daisy.h file generated from previous
section.

14. In that same directory, create a new header file named flower_labels.h and put in
the following text, which will define the labels used to classify the flower images.
This new file will be used to provide the classification labels instead of the labels.h
file that was used by the default example. The file should look exactly like the
following:

std::string labels_txt = R"(daisy
dandelion
roses
sunflowers
tulips
)";

15. Directory should look like the beside

image when finished:

Modify Source Code:

Now edit the source files to include these new files

16. Double click on the label_image.cpp file under the “source” folder in the Project
View to open it.

17. Starting on line 34, comment out original #includes for the image, model, and
label files. Then add new #includes to bring in the new image, model, and label files
that were copied in. It should look like the following when finished:

18. At around line 70, comment out the API call to load the default model, and
replace it with the new model name and model length from the header file. It may be
a slightly different name than the one listed below:

19. At around line 103, change the image height and width to 128 if they are not
already, and then update the image buffer name and image length with the new
image. The names may be a slightly different name than the one listed below and
should match the array name and array length names in the daisy.h file:

Run Example:
20. If using the i.MXRT1064 board, make the changes outlined in the following
document: https://community.nxp.com/docs/DOC-344225. If using the
i.MXRT1050 or i.MXRT1060 boards, this step is not needed.

21. On the i.MXRT1060 board, change SW7 to configure the board to boot from the
flash. SW7 should be OFF-OFF-ON-OFF(as shown below). For i.MXRT1050 board
SW7 should be OFF-ON-ON-OFF.

22. Plug the micro-B USB cable into the board at J41.

23. Open TeraTerm or other terminal program, and connect to the COM port that the
board enumerated as. Use 115200 baud, 1 stop bit, no parity.

24. Build the project by clicking on “Build” in the Quickstart Panel.

25. Debug the project by clicking on “Debug” in the Quickstart Panel.

26. It will ask what interface to use. Select CMSIS-DAP.

27.The debugger will download the firmware and open up the debug view. Click on
the Resume button to start running.

28. You should see the output on the console:

Conclusion:

• This lab demonstrated how to use the tflite_convert utility convert a TensorFlow
model into a format that can be imported and ran on an embedded system using
the eIQ software platform.

• The particular model was used to classify flower images. However, the model can
also be trained on new types of images by retraining it. Just add a new directory
name and example images of that classification to the flower_photos directory,
and new images can be recognized by this model.

• Other types of TensorFlow models can be converted with this same process as
well. By enabling machine learning in embedded systems, there’s a wide world of
opportunity for new applications.

