MCUXpresso IDE User Guide

Rev. 11.9.0 — 5 January, 2024 User guide

NXP Semiconductors

MCUXpresso IDE User Guide

UG10055

5 January, 2024

Copyright © 2024 NXP Semiconductors

All rights reserved.

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

NXP Semiconductors MCUXpresso IDE User Guide

1. Introduction to MCUXPress0 IDE ...t 1
1.1. MCUXpresso IDE overview Of featuresccoooeuiiiiiiiiiiiiee e 1
1.1.1. SumMmary of FEAUIESc.uuiii e e 2
1.1.2. Supported debug ProbesS ... 3
1.1.3. Development DOArdSc..ooieuiii e 4
2. New features in MCUXpresso IDE version 11.9.0ooiiiiiiiiiiiiee e 8
2.1. Feature highlights from previous releases of MCUXpresso IDEcccoeeeeunnees 8
3. IDE OVEIVIEW ...ttt ettt ettt ettt ettt e et et 14
N VL o] & o = Vo= PP UPT P 14
3.2, WEICOIME VIBW ...ttt ettt e e e e e e e anens 14
3.3. Documentation and Nelp ... 15
3.4. PerspectiveS @nd VIBWSc.uuiiiuiieiiie ittt e e e e e e ean e eees 16
3.5. Major components of the Develop Perspectiveccooeveiiiiiiiiiiniiiiiecieeeen 18
3.5.1. DArk themE ...oeeiiii e 20
3.6. The QUICKSIArt PAn€lcouuiiiiii e 21
3.7. Project Explorer and NEW PrOJECEScuuuiiiiiieiiieiii e 23
3.8. Updating MCUXPIeSSO0 IDEccouiiiiiiiiiiie e 24
3.8.1. Locating IDE COMPONENES ... ccuuuiiiiieiiii e e e e e 26
4. Part support overview (preinstalled and via SDKS)cccoiiiiiiiiiiiiiiieee e 27
4.1. Preinstalled part SUPPOITt e e eees 27
4.1.1. Differences in preinstalled and SDK part handlingc...ccoooeiiiiiinnenn. 27
4.1.2. Viewing preinstalled part SUPPOItcoouiiiuiiiiiieeiieee e 28
4.2. SDK PAIT SUPPOIT «..ctnieteiieie ettt ettt et e et e et e et e ea e e e e eans 29
4.2.1. Obtaining and installing a Plugin SDKccoiiiiiiiiieee 29
4.2.2. SDK part support via SDK BUIlerc.cooiuiiiiiiiiiiiice e 31
4.2.3. Obtaining and installing an SDK via SDK Builderc.cccoiviiiiiiiinennnn. 31
4.2.4. Installing SDKs by importing a remote SDK Git repositorycc.cc..c.... 33
4.2.5. Installing SDKs by importing a local clone of an SDK Git repository 36
4.2.6. Installed SDKS OPEratioNSc..ociuuiiiiiiiiieii e 37
4.2.7. Installed SDKS fEAIUINEScceeuiiiiiieiiieeeei e 40
4.2.8. Advanced use: SDK importing and configurationccoooiiiiiiineennnn. 41
4.2.9. Advanced use: SDK MISC OPLIONScceuuiiiiniiiiiieiii e 43
4.2.10. Important Notes for SDK USEISccuuiiiiiiiiiieii e 44
4.3. Enhanced project sharing featuresooooiiiiiiiiii e 46
4.3.1. Project drag and drOpoeeuneiiiiiiie e 46
4.3.2. Project-local SDK part SUPPOITciuuuiiiiieiiiee e a7
4.3.3. Project-local support filesooouiiiiiii 49
4.3.4. Export project to local SDK Git repOSItOrYcccuuieiinieiiiiiiiieiiieeieeeis 51
5. Creating new projects using installed SDK part SUPPOITcoeeuiiiiiiiiiiiieiiiieeieeen 54
5.1. NeW ProjeCt WIZArdoouuiiiii ittt e eeaaeas 54
5.1.1. SDK New Project Wizard: Basic project creation and settings 56
5.1.2. SDK New Project Wizard: Advanced project settingsccooceuveeenneennnn. 59
5.2, Project DUII ... e 61
5.2.1. Build confIQUrationsc..ooiiuiiiiiii e 62
6. Importing example projects (from installed SDKS)oooeuiiiiiiiiiiiiii e 63
6.1. SDK example import WIZardcoouoiiuiiii e 64
6.1.1. SDK example import wizard: basic selectionccc.oooiviiiiiiiiiieneenn. 66
6.1.2. SDK example import wizard: advanced oOptionscooceuieieiiiiiiineennnns 68
6.1.3. SDK example import wizard: import from an XML fragment 69
6.1.4. Importing examples to non-default 10cationscccooeviiiiiiiiiiiiiiins 71
7. Importing projects from Application Code Hub ... 72
7.1. MCUXPresso IDE Offeringcc.oiiiiiiiei e 72
7.1.1. The IMPOIt WIZAIdccuniiiieii e 74

7.1.2. The MCUXpresso IDE Quickstart panel link to Application Code Hub
[pg]oTe] g a2 o [P PPR 75
7.1.3. The Additional Resources link to Application Code Hub import wizard 76
7.1.4. The dedicated view that renders the Application Code Hub website 77
7.2. Import of Application SW PacKScoouiiiiiiiiii e 78
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 iii

NXP Semiconductors MCUXpresso IDE User Guide

7.2.1. Cloning and initialization of Application SW Packc.c.cccovviiiiiinnnn. 78

7.2.2. Importing the Application SW Pack in Installed SDKSccoiviiiiiennn. 80

7.3. Import MCUXpresso IDE-SPECIfiC PrOJECESccuuiiiuiiiiiiieiieeeee e 81

8. SDK project component ManagemMENTooeuuiiuuiiii et e e e e e e eanaaeees 85
8.1. SDK project component management eXamplecoooeiiiiiiiiiiniii e 85

8.2. SDK Project refresSh 88

9. Open-CMSIS component MaNAGEMENTiuuiiiiiie ittt e e e e e eennas 89
9.1, INSAll @ PACK ...eeeieeeee e e 89

9.2. Add an Open-CMSIS-Pack component t0 & projectccoevuuiiieuiieiiniiiineeiieeenn, 89

9.3. Manage components inside the Projectcoeeiiiiiiiiiiii e, 90

10. Creating new projects using preinstalled part SUPPOITccuuviiiiiiiiiiiiii e 91
10.1. NeW ProjeCt WIZAIooeuuiiieii et aa e 91
10.2. CreatiNg @ PrOJECTuu ettt e et e et e e e e ees 92
10.2.1. Selecting the WIizard tyPecc. oo 93

10.2.2. Configuring the ProjeCtcieuiiii e 94

10.2.3. WiIZard OPLIONSuieiieiii et e e e e e e e 94

10.2.4. ProjeCt CrEAtEAc.uiiuuiiiiieii e et e e 97

11. Importing example projects (from the file system) ... 98
11.1. Code cundles for LPC800 family deviCescooiiiiiiiiiiiiiiiiiiiee e, 98
11.2. LPCOpen software drivers and examples ..o 99
11.3. Importing an eXample ProJECLiiuu it 99
11.3.1. Importing examples for the LPCXpresso4337 development board 101

I S oL [g To Il o] (0] [=Tod £ PP UPTUPTN 102
11.5. BUIIAING PIrOJECES ...eeniiiieiiee et et e et e et e e e eanns 103
11.5.1. Build configurationsccoiiiiiiiiiie e 103

12. Importing existing executables ... 104
13. DebUQ SOIULIONS OVEIVIEWiieiiiiiii ettt e e e e et e ean e ean s 109
13.1. Starting @ debug SESSIONt 109
13.2. An introduction to launch configuration files ... 110
13.3. LinkServer debug CONNECHIONSoiiuuiiiiiii e 113
13.4. LinkServer debug Operationc.ooiuiiiiiiiiii e 113
13.4.1. LinkServer debug SCrPLSccuuiiiiiiiiiieii e 115

13.5. LinkServer path configurationccooioiiiiiiiii e 116
13.6. LinkServer troubleShootingccouuiiiiiiiii e 117
13.6.1. DEIBUQG 10Q .vnieiiiiieeee e 117

13.6.2. Flash programmingoceuu oo een s 119

13.6.3. LinkServer eXeCutablesccoouiiiiiiiiiiiii e 120

13.7. PEMIcro debug CONNECLIONScoeuuiiiiiieii et 120
13.8. PEMICro debug OPErationoceuuiiiuiiiiii e 120
13.8.1. PEmicro differences from LinkServer debugccoooiiiiiinnn 121

13.8.2. PEmicro software Updatescccuiiiiuiiiiiiiiieeee e 121

13.9. SEGGER debug CONNECLIONSccuuiiiiiiiiiee et 122
13.9.1. SEGGER software installationcoooveiiiiiiiiiini e 122

13.10. SEGGER debug OPerationocieuiiiiiiiiiaii et eis 124
13.10.1. SEGGER differences from LinkServer debugcccoocoiiiiiiinnnin. 124

13.11. SEGGER troublesShootingcccuiiiiiiiiii e 124

14. DebUQQING @ PrOJECL ...uiiui ittt ettt e e et et e e et e e e e e aa e e ea e ean s 128
14.1. DEDUGQING OVEIVIEWieuniiiieiet ettt et e e e e e e et e e e e eennas 128
14.1.1. DebUg [AUNCH ...t e 128

14.1.2. Debug probe selection dialog (probes discovered)cccocooiieiiniiennn. 130

14.1.3. Controlling EXECULIONiieiiiii et ea e 132

14.2. Launch confiQUratiONSc..iiiuiiiiie e 134
14.2.1. Editing a launch configuration (LINKSErver)cc.cccoiviiiniiiiiiiineeennnn. 136

14.3. Common debug operations and launch configurationsccooooeiiiiiininnnnn. 139
14.3.1. Debug Quickstart SNOIMCULScouuiiiiiiiiiiiie e 139

14.3.2. Connecting to a running target (attach)cooooiiiiiiniii i, 140

14.3.3. Controlling the initial breakpoint (0N Main)ccooveiiiiiiiiiiee, 142

14.3.4. Debugging pre-loaded binaries (add symbols)cccoooiiiiiiiinnnnn. 145

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 iv

NXP Semiconductors MCUXpresso IDE User Guide

14.3.5. DiscONNECt DENAVIONcouuiiiiii e 145
14.3.6. Project Flash programmingc.ooceuioiiiiiiiiie e 146
14.4. BreaKpOINtS ...t e e s 147
14.4.1. Breakpoint tYPESuiien it 147
14.4.2. BreakpointS FESOUICEScc.uueietniietneaetaaeti e et e eeia e et e e ea e ean e eeaeaeanas 148
14.4.3. SKip all breakpoints ... 148
14.5. WALCRPOINES ...ttt e e e e e eaa e ees 149
14.5.1. Using Watchpoints to monitor stack depthc.ocoiviiiiiinnn, 150
LA4.6. REGISIEIS ..ottt e e et et e a e e 151
14.6.1. Basic register set (COre regiSters)o 151
o - 1H | £ SPPPTRPPR 153
14.8. PErPNEralS .. .o 155
14.8.1. CUSLtOM SVD fil€ .oevvviiiiiiiiei e 158
14.9. Offline Peripherals e 159
14.9.1. Loading custom SVD file in Offline Peripherals viewc.....c........ 160
14.10. Global and live global variables ... 160
14.11. Live global variable plottingcc..ioiiiiiii e 163
14.11.1. Live Global Variable graphing detailsccoooiiiiiiii 164
14.12. Heap and SEACK VIEWiiiiiiiiiei e 166
14.13. Additional debug fEAtUIES i 167
14.13.1. Local variabIesccouuiiiii e 167
14.13.2. DisassemMBbBIly VIBWcouuiiiiiiiii e 168
14.13.3. MEMOIY VIEW ..eniieiieiii et e ettt e e et e et e e e e e et e e eaaaeens 169

15. CoNfIQUIING @ PrOJECTniii ettt et e et e e et e et e e e e eanns 170
15.1. Changes available via Quickstart Quick Settingsccoeveviiiiiiiniiiiieeeennn. 170
15.2. PrOjECt SEHINGS .. ieeniiiiiei ittt aas 171
15.3. Changing the MCU (and associated SDK)cc.oiiiiiiiiiiiiiiiieieeieee e 171
15.3.1. Confirm device informationcoiiiiiiiiiin e 173
15.3.2. Removal of SDK components associated with the old MCU 176
15.3.3. Addition of SDK components associated with the new MCU 177
15.4. Changing the MCU (SDK) package typec.cociuuiiiiiiiiiiiiiiee e 178
16. MCUXPresso Config TOOISoiuuiiiiiiiie et eees 180
16.1. Using the Config TOOISoouiiiiieii e 180
16.1.1. TOOI PEISPECHIVESunietiieiiiee ettt e e e e e 181
16.1.2. Pins 1001) ... 181
16.1.3. CIOCKS 1001 M) ... 181
16.1.4. Peripherals tool @ .. 181
16.1.5. Device Configuration tool & 181
16.1.6. TEE 1001 ()oooooooeoeeeceoeeeeeeeeeeeeee e 182
16.1.7. GENEIAE COUE ...oeevuiieeiiii et e et a e e e eaees 182
16.1.8. SDK COMPONENTS ..vuitiiiiieii et e e e e e e e e e e e e e e eenns 182

17. The GUI FIASH 0Ouiiiiiiiei it e s 183
17.1. The advanced GUI FIash TOOIccccuiiiiiiiiiiiiiii e 184
17.1.1. Advanced GUI Flash Tool command previewcccccceveviiieiieennnnnns 186
17.1.2. Advanced GUI Flash Tool logged outputccooveviiiiiiiiiiiiiee e 187
17.1.3. Advanced GUI Flash Tool programming an arbitrary binary 188

18. LinkServer FIash SUPPOITcouuiii e e e e e e e anae e 189
18.1. Default vs per-region Flash driversccoveiiiiiiiiiiii e 189
18.2. Advanced FIash AriVErSiiiiiiiiii e 190
18.2.1. LPC18xx / LPC43xx internal Flash driversccccoevviviiiiiiiiiiiinneeens 190
18.2.2. LPC SPIFI QSPI Flash driversccccoiiiiiiiiiiii i, 191
18.2.3. i.MX RT QSPI and Hyper Flash friverscccooiiiiiiiiii i, 192
18.2.4. Flash drivers using SFDP (LPC and iIMX RT)covvviiiiiiiieiiiecii e, 193
18.3. Kinetis FIash driVErSuiiiiiiiiie e 196
18.4. Configuring projects to span multiple Flash devicescccoveviiviiiiiiiineennnnn. 197
18.5. The LinkServer GUI Flash Programmerc.ccooieiiiiiiiiiiiiii v eeeee e 197
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 Vv

NXP Semiconductors MCUXpresso IDE User Guide

18.6. The LinkServer command-line Flash Programmercccooiiiiiiiiiiiinneen, 197
18.6.1. Command-line programmingcccuveiueiiiiiniii e eeis 197

19. C/CH+ lIDrary SUPPOIT «...eeteei et e e et e et e e e eenaeeees 204
19.1. Overview of Redlib, Newlib, and NewlibNanocccoeiiiiiiiiiiiiineeeen, 204
19.1.1. Redlib extensions t0 C0ccouuiiiiiiiiiieeie e 204
19.1.2. Newlib vS NeWIIDNANOccoviiiiiiiii e 204
19.2. LIDrary VAIIANTSoiuiiiiiii ettt e e e aaas 205
19.3. Switching the selected C lIDrary ..., 206
19.3.1. Manually SWItChINGccuuiiiiiiiiii e 206
19.4. What iS SEMINOSING? .. .eeuniiiieii e e e en s 207
19.4.1. Background to SemihOStINGvieuiiiiiiiiiii e 207
19.4.2. Semihosting iMplementationccooviiiiiiiiiii e 207
19.4.3. Semihosting PerformMancecoooiuiiiiiiiiii e 207
19.4.4. Important notes about using SemMihostingoccooviiiiiiiiiiiiiiie, 207
19.4.5. Semihosted printf and debuggingcccooviiiiiiiiii 208
19.4.6. Semihosting SPECIfICALIONiieuiiiiiiei e 209
19.5. USE Of PN oo et 209
19.5.1. Redlib printf VArANTSoiouii e 209
19.5.2. NewlibNano printf variants ... 210
19.5.3. Newlib printf variants ... 210
19.5.4. Printf when using LPCOPENccuuiiiiiiiii e 210
19.5.5. Printf when usSing SDKcoouiiiiiii e 210
19.5.6. Retargeting printf/SCantcoiiiiiiiiii 210
19.5.7. HOW t0 USe ITM Printf ... 211
19.6. itoa() AN UIOA() . evnneerneiii ettt et et e e e 212
19.6.1. REAID .oviiie e e 212
19.6.2. NeWliD/NeWIIDNENOccovviiiiii e 213
19.7. Libraries and lINKEr SCHPLSoiitiiiiiie e 213
20. Memory configuration and lINKEr SCHPLSiiuuiiiiiii e 215
20.1. INFOTUCTION ...eeetieeeit ettt ettt et e e e e e e eneens 215
20.2. Managed liNKer SCrPt OVEIVIEWuiiuiiiiiii e 215
20.3. How are managed linker scripts generated?ccooeeeiiiiiiiiiiineiiiieeieeeis 216
20.4. Default IMmage layOULiiiii e 217
20.5. Examining the layout of the generated imageccoooviiiiiiiiii i, 218
20.5.1. Linker --print-MemOry-USAQEccuuiaiuuaeiiaieiaeeie et e e e e eeieeeanaes 218
20.5.2. @rm-NONE-€aDI-SIZEuuiiiiiii e 219
20.5.3. Linker map fileSc.uiiiiiiie e 219
20.6. Image information (INfO)ooiiuiii e 219
20.6.1. MEIMOIY USBQE ...eunienienetueet et e e et e et et et et e et et e e e e e e e e ea e enaeanaeaneen 221
20.6.2. MEMOIY CONTENTS ...uieiiiieie ettt ettt e e e e e e eeanas 221
20.6.3. Call Graph ... 222
20.6.4. USE Of fillErS .oeuiiiiiiii e 224
20.7. Enhanced syntax highlighting ..o 225
20.8. Other options affecting the generated imageccooveeiiiiiiiiiiiniiees 231
20.8.1. LPC MCUs — Code Read ProteCtioncccoeevervniereninneiiiiineeeenine 231
20.8.2. Kinetis MCUs — Flash Config BIOCKScocoiiiiiiiiiiii e, 232
20.8.3. Placement Of USB datacoevuuiiiimiiiieiiiieeeei e 233
20.8.4. Plain 1080 IMAQE ... ccuuieiiie i 233
20.8.5. Link application t0 RAM ... 234
20.9. Modifying the generated linker script / memory layoutcccooviiiiiiiieinns 235
20.10. Using the Memory Configuration EditOrcocooiiiiiiiiiiiiieceeee 235
20.10.1. Editing a memory configurationcccoooeuiiiiiiiiiiieii e 236
20.10.2. Device-specific vs default Flash driversccooooiiiiiiiiiin, 239
20.10.3. Restoring a memory configurationcccoeeiiiiiiiiiiiiiii e 239
20.10.4. Copying Memory Configurationscc.ooeeeuiiiiiiiiiineei e 239
20.11. Global data placementcouuiiiiiiie e 239
20.12. Modifying heap/stack placementcc.ooiiuiiiiiiiii e 240
20.12.1. MCUXpresso style heap and Stackcooveeiiiiiiiiiiiiiiieeees 240
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 Vi

NXP Semiconductors MCUXpresso IDE User Guide

20.12.2. LPCXpresso style heap and stackcocooiiiiiiiiiiiiinieeen, 241
20.12.3. Reserving RAM for IAP Flash programmingcccoceeiiiiiiiiinnnennnnn. 242
20.12.4. Stack ChECKING ... iieiiieie e 242
20.12.5. Heap CheCKINGcoeuuiiieii et 243
20.12.6. Checking the heap from your applicationcccoiiiiiiiiiiiiinneennnn. 243
20.13. Placement of specific code/data itemsocouiiiiiiiiiiiiii e, 244
20.13.1. Placing code and data into different memory regionsc........ 244
20.13.2. Placing data into different RAM blocks using macroscc...... 246
20.13.3. NOINit MEMOIY SECLONSiiiiiiii e e e 246
20.13.4. Placing code/rodata into different FLASH blockscccooiiviiine. 247
20.13.5. Placing specific functions into RAM bIOCKSccoooiiiiiiiiiiiiii, 248
20.13.6. Reducing code size when support for LPC CRP or Kinetis Flash
Config BIOCK iS €nabledcoouiiiii e 249
20.14. FreeMarker linker script templatesoooouiiiiiiiiiiii e 249
20.14.0. BASICS ...cetiiiiiiii e e ettt ettt a et e e e aaeeae 250
20.14.2. REFEIENCE .. covviiiiiiii et 250
20.15. FreeMarker linker script template examplesccooiiiiiiiiiiin e, 255
20.15.1. Relocating code from FLASH t0 RAM ..o 255
20.15.2. Configuring projects to span multiple Flash devicesc....ccooceeen. 258
20.16. Disabling managed lINKer SCHPLSco.uuiiiiiiiiieii e 259
21, MUILICOIE PIOJECLS . ..etiiieti ettt ettt e et ettt et e e et e e et e e an e e et e e eanaaees 260
210, INFOTUCTION ...ttt ettt et e e e e e e enaans 260
21.2. Creating a primary/secondary project pair (using an SDK)c...cccoovveuieennnn. 261
21.2.1. Creating the MO Secondary Projectc.ceceuuieiiiiiiiiiaiiiieiieeeieeennn 261
21.2.2. Creating the M4 Primary Projectccoveeeieeuiiieiiieiieeei e e eeeenn 263
21.3. Creating a primary/secondary project pair (using preinstalled part support) 267
21.3.1. Creating the MO Secondary Projectc.ceeeuuieiiiiieiiiieiiiieiieeeieeennn 267
21.3.2. Creating the M4 Primary Projectccoieeuureeuiaiiiieeieeei e e 269
21.4. Debugging MUItICOre PrOJECESccuu it 270
21.4.1. Controlling debug VIEWScoouiiiiii e 271
21.4.2. Secondary project debugco.uiiiiiiiiiiiii e 272
21.4.3. Auto-debug secondary project(s) for multicore projectsc...cc.oeee.. 273
21.5. Multicore projects additional informationccc.ocoiiiiiiiiii 274
21.5.1. DEFINES .. 274
21.5.2. Secondary bOOt COUEiiiuniiii i 275
21.5.3. Reset handler COUEcooiiiiiiiiii e 275
22. Appendix — Additional hints and tiPscouiiiiii e 276
22.1. Part support handling from SDKSoooiiiiii e 276
22.1.1. SDK VEISION CONIOI ...eevviiiiiiiieieii ettt 276
22.1.2. SDK manifest VErsiONINGc..ooiuuiiiiiiiiiaei e 276
22.1.3. DEVICE VEISIONSeiiiiiieeiitiie ettt ettt e e 277
22.2. How do | switch between Debug and Release builds?ccoooiiiiiiiin 278
22.2.1. Changing the build configuration of a single projectcccooceeuee. 278
22.2.2. Changing the build configuration of multiple projectscc..ccoeeeeeniie. 278
22.3. Editing hintS @nd LIPSeeeiiiiieii e 279
22.3.1. Link Project Explorer view to the active editorccooeveiviiiiniinnnes 279
22.3.2. Multiple views onto the same filecooiiiiiii 280
22.3.3. Viewing two edited files at ONCecoeviiiiiiiiii e 280
22.3.4. S0oUrCe fOIAING ..ccunieiiii e 280
22.3.5. Editor templates and Code completionccoveveniiiiiiiiiiieiieeeeeen, 281
22.3.6. Brace matChingc.cooiuuiiiiiiiiiiie e 281
22.3.7. SYNTAX COIOMNG .. eetieiiiieeit et e e e e eens 281
22.3.8. Comment/uncomment BlOCKc.oooiiiiiiiiii 281
22.3.9. FOIMAL COUE ... coiiiiiiiiii et 282
22.3.10. Correct iNAeNTAtiONieiiiiiieiiiiie e 282
22.3.11. Insert spaces for tabs in editorc.ooiviiiii 282
22.3.12. Replacing tabs wWith SPACESccuoviiiiiiiiii e 282
22.4. Hardware floating-point SUPPOITieniiiieeee e e 282
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 Vii

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

22.4.1. Floating-point VAriantscc.iiiiiiiieeie e 283
22.4.2. Floating point use — preinstalled MCUSccccoiviiiiiiiiiiiiiieeee 283
22.4.3. Floating point use — SDK-installed MCUScccoiiiiiiiiiiiiiiiieeiee, 283
22.4.4. Modifying floating-point configuration for an existing project 284
22.4.5. Do all Cortex-M4 MCUs provide floating point in hardware? 284
22.4.6. Why do | get a hard fault when my code executes a floating-point
(o] 01T =11 (0] 1 1SRN 284
22.5. LINKSEIVEI SCIIPLS . ittt ettt et e e e e e e e e ea e 284
22.5.1. SUPPHIEA SCHPLS «.evneeiieiit et 285
22.5.2. USEI SCIPLS ..vuiiiei ittt e e et et e et eeea e eea e 285
22.5.3. Debugging code from RAM 285
22.5.4. LinkServer scripting featuresooeui i 286
22.6. RAM projects With LINKSEIVErcouuiiiiii e 289
22.6.1. Advantages of developing with RAM projectsc.cccoevveiiiiiieeinnen. 290
22.7. ThE CONSOI VIBW ...ouiiiiiiii ittt et et 290
22.7.1. CONSOIE LYPES ..uniiieei e 291
22.7.2. Copying the contents of @ CONSOIeccuviiiiiiiiiiii e 292
22.7.3. Relocating and duplicating the Console VIEWcoooeiiiiiiiiiineiinne, 292
22.8. Using Terminal view for UART communication with a targetccc...oee. 294
22.9. Using and troubleshooting LPC-LINK2cccouiiiiiiiiiiie e 297
22.9.1. LPC-LINK2 hardwarecccuuuiiiimiiiiiiii e 297
22.9.2. Softloaded vs pre-programmed probe firmwarecccooeviiieennnennnn. 297
22.9.3. LPC-LINk2 firmware VAriantsccooveeerriieeiiiiieeeiiieeeeeinneeeeiineeeens 297
22.9.4. Manually booting LPC-LINK2coiiiiiii e, 298
22.9.5. LPC-LINKk2 WINAOWS QIVEISouuuiiiiiiiieiiiiie ettt 300
22.9.6. LPC-Link2 failing t0 enUMEratecouiiiiiiiiiiiiiiiieei e 300
22.9.7. Troubleshooting LPC-LINK2 ... 302
22.10. Using and troubleshooting MCU-LINK ..o 303
22.10.1. MCU-LINK NAIAWAIEcoevviieiiiiieie et 303
22.10.2. MCU-LIiNk CMSIS-DAP fIrmMWAarecccovumiuiiiiieeeiiiiiiiiaee e 303
22.10.3. MCU-LINK hOSt drVEIScccuuiiiiiiiiieeiii e 305
22.10.4. MCU-Link JLink-compatible firmwarecccocooiiiiiiiiiiiiiiiieceeeenn, 305
22.10.5. Troubleshooting MCU-LINK ..o 305
22.11. Creating bin, hex, or S-Record files ..o 306
22.11.1. Simple conversion within the IDEooiiiiiiiiiii e 306
22.11.2. From the command liNEcoiiiiiiiiiiii e 307
22.11.3. Automatically converting the file during a buildcccooiiinni. 308
22.11.4. Binary files and checkSUMScooiiiiiiiii e 308
22.12. Post-build (and pre-build) STEPSuoieeiiiee e 308
22.12.1. Temporarily removing post-build Stepsccooeieiiiiiiiiiiiiiieeen, 309
22.13. Save info fOr SUPPOITuiiieee e e 309
23. REVISION NISTOIY ... e et e e e e e ees 311
24, Legal iNfOrMEALioNoouei et 312
24. 1. DEFINITIONS ..oevteeiiiiti ettt 312
24.2. DISCIAIMEIS ...uuieiiiii ettt ettt 312
24.3. TrAOEIMAIKS ..oeetiieieii ettt e e e e e 313
All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 viii

NXP Semiconductors MCUXpresso IDE User Guide

1. Introduction to MCUXpresso IDE

1.1

UG10055

MCUXpresso IDE version 11.9.0 is an easy-to-use Eclipse-based development environment for
NXP MCUs based on Arm Cortex-M cores. It provides an end-to-end solution enabling engineers
to develop embedded applications from initial evaluation to final production. The MCUXpresso
IDE offers advanced editing, compiling, and debugging features with the addition of MCU-specific
debugging views, code trace and profiling, multicore debugging, and integrated configuration
tools.

The MCUXpresso platform ecosystem includes:

. - a software development environment for creating applications for
NXP’s ARM Cortex-M based MCUs including “LPC”, “Kinetis” and iMX RT" ranges

. , comprising of Pins, Clocks, and Peripherals Tools that are
designed to work with SDK projects and are fully integrated and installed by default

. , each offering a package of device support and example software
extending the capability and part knowledge of MCUXpresso IDE

e The range of LPCXpresso development boards, each of which includes a built-in “LPC-
Link”, “LPC-Link2", or CMSIS-DAP compatible debug probe. These boards are developed in
collaboration with Embedded Artists.

¢ The range of Tower and Freedom development boards, most of which include an OpenSDA
debug circuit supporting a range of firmware options

e The range of the iIMX RT Series EVK development board which includes an OpenSDA debug
circuit supporting a range of firmware options, or a high-performance FreeLink (LPC-Link2
compatible) debug probe

e The range of EVK development boards which include an MCU-Link debug circuit
¢ The standalone “LPC-Link2” debug probe
¢ The standalone “MCU-Link” and “MCU-Link Pro” debug probes.

This guide is intended as an introduction to using MCUXpresso IDE. It assumes that you have
some knowledge of MCUs and software development for embedded systems.

Note: MCUXpresso IDE incorporates technology and design from LPCXpresso IDE. This means
that users familiar with LPCXpresso IDE will find MCUXpresso IDE looks relatively familiar.

MCUXpresso IDE overview of features

MCUXpresso IDE is a fully featured software development environment for NXP's ARM-
based MCUs and includes all the tools necessary to develop high-quality embedded software
applications in a timely and cost-effective fashion.

MCUXpresso IDE is based on the Eclipse IDE and includes the industry standard ARM GNU
toolchain. It brings developers an easy-to-use and unlimited code-size development environment
for NXP MCUs based on Cortex-M cores (LPC, Kinetis and iMX RT). The IDE combines the best
of the widely popular LPCXpresso and Kinetis Design Studio IDEs, providing a common platform
for all NXP Cortex-M microcontrollers.

MCUXpresso IDE is a free toolchain providing developers with no restrictions on code or
debug sizes. It provides an intuitive and powerful interface with profiling, power measurement
on supported boards, GNU tool integration and library, multicore capable debugger, trace
functionality, and more. MCUXpresso IDE debug connections support Freedom, Tower,
EVK, LPCXpresso, and custom development boards with industry-leading open-source and

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 1

NXP Semiconductors MCUXpresso IDE User Guide

111

UG10055

commercial debug probes including MCU-Link, MCU-Link Pro, LPC-Link2, PEmicro, and
SEGGER.

The fully featured debugger supports both SWD and JTAG debugging and features direct
download to on-chip and external flash memory.

For the latest details on new features and functionality, please visit:

https://www.nxp.com/mcuxpresso/ide

Summary of features

Complete C/C++ integrated development environment

» Eclipse-based IDE with many ease-of-use enhancements
e The IDE installs with various Eclipse plugins including:
 Git, support for PEmicro debug probes, ARM CMSIS-Pack
 ltis possible to enhance the IDE with many other Eclipse plugins
« Command line tools are included for integration into build, test, and manufacturing systems

Industry standard GNU toolchain including:

¢ C and C++ compilers, assembler, and linker
e Converters for SREC, HEX, and binary

Advanced project wizards

« Simple creation of pre-configured applications for
» Extendable with
» Device-specific support for NXP’s ARM-based MCUs (including LPC, Kinetis, and iMX RT)

. of linker scripts for correct placement of code and data into Flash
and RAM

» Extended support for flexible placement of
« Automatic generation of MCU-specific startup and device initialization code
Note: No assembler is required with Cortex-M MCUs

Advanced multicore support

* Provision for for each core in multicore MCUs

¢ Debugging of within a single IDE instance, with the ability to link
various debug views to specific cores

Fully featured native debugger supporting SWD and JTAG connection via LinkServer

¢ Built-in optimized for internal and external QSPI and Hyper Flash
« High-level and instruction-level

. and

* Views of CPU and on-chip

¢ Support for multiple devices on the JTAG scan-chain

Full install and integration of 3rd party debug solutions from:

Library support

¢ Redlib: a small-footprint embedded C library

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 2

https://www.nxp.com/mcuxpresso/ide

NXP Semiconductors MCUXpresso IDE User Guide

1.1.2

UG10055

* RedLib-nf: a smaller footprint library offering reduced fprintf support
« RedLib-mb: a library variant offering enhanced semihosting performance
¢ Newlib: a complete C and C++ library
« NewlibNano: a new small-footprint C and C++ library, based on Newlib
¢ LPCOpen MCU software libraries
e Cortex Microcontroller Software Interface Standard (CMSIS) libraries and source code
« Extendible support per device via MCUXpresso SDKs

Trace functionality

« Instruction trace via Embedded Trace Buffer (ETB) on certain Cortex-M3/M4/M7/M33-based
MCUs or via Micro Trace Buffer (MTB) on Cortex-M0O+-based MCUs

» Providing a snapshot of application execution with linkage back to source, disassembly, and
profile

¢ SWO Trace on Cortex-M0+/M3/M4/M7/M33-based MCUs when debugging via MCU-Link,
MCU-Link Pro and LPC-Link2, providing functionality including:

 Profile tracing

« Interrupt tracing
» Datawatch tracing
* Printf over ITM

* Note: Now extended to work with PEmicro and SEGGER J-Link, in addition to native
LinkServer

LinkServer Energy Measurement

¢ On LPCXpresso boards, sample power usage at adjustable rates of up to 100 ksps; average
power and energy usage display option

¢ MCU-Link Pro or built-in implementations provide additional features, like simultaneous target
supply and current measurement, dynamic range switching for increased accuracy, analog
signal input, and trigger-based measurements.

» Power Profile view providing correlated energy and trace measurements.
» Explore detailed plots of collected data in the IDE
« Export and import data for offline analysis

RTOS Debug Awareness

« GDB thread awareness for various RTOS providers: FreeRTOS, Azure ThreadX, Zephyr, and
MQX

« Views for different RTOS elements: Thread list, Message queues, Semaphores, Mutexes,
Event flags, Timers, Memory block pools, Memory byte pools, and so on

MCUXpresso Configuration Tools

. , designed to work with SDK projects are fully integrated
and installed by default

Supported debug probes

MCUXpresso IDE installs with built-in support for 3 debug solutions. This support includes the
installation of all necessary drivers and supporting software.

Note: Certain mbed boards require a serial port driver to be recognized and this one exception
must be installed separately for each board. The driver is linked from Help -> Additional
Resources -> MBED Serial Port Driver Website

In normal use, MCUXpresso IDE presents a similar interface and array of features for each of
the solutions listed below:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 3

NXP Semiconductors MCUXpresso IDE User Guide

Native LinkServer (including CMSIS-DAP) as also used in LPCXpresso IDE

¢ It comes as a separate package that is silently installed by the MCUXpresso IDE installer

¢ This supports a variety of debug probes including OpenSDA programmed with CMSIS-DAP
firmware, LPC-Link2, MCU-Link, and so on.

« https://community.nxp.com/message/630896

PEmicro

e This supports a variety of debug probes including OpenSDA programmed with PEmicro
compatible firmware and MultiLink and Cyclone probes

« https://lwww.pemicro.com/

SEGGER J-Link

e This supports a variety of debug probes including OpenSDA programmed with J-Link
compatible firmware and J-Link debug probes

 https://lwww.segger.com/

Please see for more details.

Note: Kinetis Freedom and Tower boards typically provide an on-board OpenSDA debug circuit.
You can program this with a range of debug firmware including:
« mBed CMSIS-DAP — supported by LinkServer connections

¢ DAP-Link —supported by LinkServer connections (DAP-Link is the preferred choice over mBed
CMSIS-DAP, when available)

e J-Link — supported by SEGGER J-Link connections
¢ PEmicro — supported by PEmicro connections

It is possible to change the default firmware if required. For details of the procedure and range
of supported firmware options, please visit: https://www.nxp.com/opensda

Tip

@ Under Windows 10, OpenSDA Bootloaders might experience problems and the
OpenSDA LED will blink an error code. The following article discusses the problem
and how to fix it: https://mcuoneclipse.com/2018/04/10/recovering-opensda-boards-
with-windows-10

1.1.3 Development boards
NXP has a large range of development boards that work seamlessly with MCUXpresso IDE
including:
LPCXpresso boards for LPC
These boards provide practical and easy-to-use development hardware to use as a starting point
for your LPC Cortex-M MCU-based projects.
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 4

https://community.nxp.com/message/630896
https://www.pemicro.com/
https://www.segger.com/
https://www.nxp.com/opensda
https://mcuoneclipse.com/2018/04/10/recovering-opensda-boards-with-windows-10
https://mcuoneclipse.com/2018/04/10/recovering-opensda-boards-with-windows-10

NXP Semiconductors MCUXpresso IDE User Guide

v A9 0000VWO _
2080ssa14X0d7

EERRETRENY R

Tran

Figure 1.2. LPCXpresso development board (LPCXpresso54608)

For more information, visit: https://www.nxp.com/Ipcxpresso-boards
Freedom and Tower boards for Kinetis

Similarly, for Kinetis MCUs there are many development boards available including the popular
Freedom and Tower ranges of boards.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 5

https://www.nxp.com/lpcxpresso-boards

NXP Semiconductors MCUXpresso IDE User Guide

Figure 1.3. Tower (TWR-KV58F220M)

For more information, visit: https://www.nxp.com/pages/:TOWER_HOME

Figure 1.4, Freedom (FRDM-K64F)

For more information, visit: https://www.nxp.com/pages/:FREDEVPLA
iMX RT Crossover processor boards

iMX RT-based boards bring the convergence of low-power applications processors with high-
performance microcontrollers.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 6

https://www.nxp.com/pages/:TOWER_HOME
https://www.nxp.com/pages/:FREDEVPLA

NXP Semiconductors MCUXpresso IDE User Guide

Figure 1.5. i.MX RTxxxx series (MIMXRT1050-EVK)

For more information, visit: https://www.nxp.com/pages/:IMX-RT-SERIES

Figure 1.6. i.MX RTxxx series (MIMXRT600-EVK)

For more information, visit: https://www.nxp.com/pages/:IMX-RT-SERIES

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 7

https://www.nxp.com/pages/:IMX-RT-SERIES
https://www.nxp.com/pages/:IMX-RT-SERIES

NXP Semiconductors MCUXpresso IDE User Guide

2. New features in MCUXpresso IDE version 11.9.0

The new MCUXpresso IDE product comes with a set of improvements and bug fixes including:

Product

« Upgraded: Eclipse version to 2023.06 (Eclipse Platform 4.28.0 / CDT 11.2.0)

¢ Upgraded: MCUXpresso IDE integrated with OpenJDK Runtime Environment
Temurin-17.0.7+7

¢ Upgraded: GNU ARM Embedded Toolchain to version 12.3.Rell
« Note: Debugging info is enforced to DWARF version 4 (“-gdwarf-4")

« Upgraded: Version v15 of MCUXpresso Config Tools

¢ Upgraded: ARM CMSIS-Pack Eclipse Plug-ins 2.9.0

e Upgraded: Integrated with LinkServer software (v1.4.85)

e Upgraded: Newer SEGGER J-Link software (v7.94b)

¢ Upgraded: Newer PEmicro plugin (v5.7.6)

¢ Synchronization with SDK v2.15.abc

¢ Application Code Hub integration inside the IDE

« Speed-up automatic generation of Makefiles

e Pass arguments to archiver and linker using response files on Windows when the 32K
command line limit is exceeded

SDK

* Add support for the selection and import of “template” files associated with SDK components.
¢ Add “change.sdk.roots” command in CLI mode that allows updating the built-in SDK search
locations

Debug

¢ The LinkServer debug solution is now installed as a separate package, incorporating all the
LinkServer-specific support files that used to be part of the MCUXpresso IDE installation
directory.

Please also see the supplied Readme document for further information and details of bug fixes
and improvements. This document is located within the MCUXpresso IDE installation folder.

2.1 Feature highlights from previous releases of MCUXpresso IDE

Product

* New IDE build for macOS with native Apple silicon support. See the download section for the
new product.

¢ GNU Make 4.4 is now integrated into the IDE on all OSes.

e The IDE does not internally use the WMI command-line utility anymore (deprecated as of
Windows 10, version 21H1). It uses PowerShell instead.

¢ New , designed to provide a dramatically improved out-of-box
experience for new users

e Improved capability simplifying the update procedure for all supported
hosts

¢ Scripts to create a command line environment now supplied in DOS and Bash versions
» Description of the use of these scripts is available in the Installation Guide

« SDK installation options improved, see

* Windows version now uses Busybox (from the GNU MCU Eclipse Windows Build Tools project)
to provide a Unix-like layer for GCC tools

« All previous Pro Edition features are now part of the standard Free edition, leading to the
discontinuation of the Pro edition

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 8

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

IDE

e Import ELF binary/executable. This is available from File -> Import -> C/C++ -> MCUXpresso
Executable Importer.

« Added Power Profile feature aiming to correlate energy/power measurement with SWO trace.
The view displays the SWO-based trace information (similar to the SWO Profile view), plus
each function shows various energy consumption information. The feature is available from
Eclipse Menu -> Analysis -> Power Profile.

« Added analog data traffic statistics information for energy/power-based views.

¢ Added FreeRTOS Task Notifications view to display task natification list for each task, including
status and value properties. This included synchronization with FreeRTOS v10.4.3. For more
information please refer to MCUXpresso_IDE_FreeRTOS_Debug_Guide.pdf documentation.

¢ Azure RTOS ThreadX debug awareness:
* Ability to export trace that can be further used within TraceX Microsoft tool
» GDB thread awareness

« Views, similar to the FreeRTOS, for: Thread list, Message queues, Semaphores, Mutexes,
Event flags, Timers, Memory block pools, and Memory byte pools

« Added offline peripheral view (“Offline Peripherals”). With this view, it is possible to inspect the
peripheral registers outside of a debug session. Inspecting the reset value is possible as well,
together with the rest of the register elements.

« Peripherals+ view design was changed to support register group expansion directly into the
Peripherals+ view, with no extra Memory View usage. Consequently, all elements shown
before in Memory View are now available directly in the Peripherals+ view: values, bitfields,
and details.

* Added Energy Measurement view for energy consumption measurement.

« Various measurement channels: voltage, current, power, and so on, at various sampling
speeds, up to 100ksps
« Import/Export measurement
e Zooming, panning, and annotation capabilities on graph
* Unlimited sampling time, depending on the available space on disk
- Data gathering enabled/disabled by trigger signal MCU-Link Pro and on-board probes with
energy measurement circuitry can use a GPIO signal as a trigger/enable (input) for the
energy measurement data gathering such that data capture commences and stops based
on trigger signal transitions. The Energy Measurement view includes a trigger configuration
section to make use of this probe capability. The supported modes of operation include level-
based and pulse-based transitions of the trigger signal, with additional configuration of start
and stop conditions. Note. This feature requires firmware version MCU-LINK CMSIS-DAP
v2.249 (or greater).
e Community forum accessible now from the main toolbar too (together with the older link from
Help -> MCUXpresso IDE support forum).
e Expressions added in Global Variables are now persistent between debug sessions.
¢ Added new control to manage the maximum number of child expressions that are evaluated
in advance by the Live Variables service. This improves the Global Variables window
responsiveness for instance when displaying large structures. New control available on Eclipse
Preferences -> MCUXpresso IDE -> Debug Options -> “Number of subexpressions proactively
evaluated by Live Variables service”. The default is 2 set as depth.
¢ Added option to help report an issue by gathering MCU IDE
environment information.
* New mechanism that provides a simpler flow for the selection and
installation of MCUXpresso IDE SDKs
¢ New provides a low-light interface that displays mostly dark surfaces that
may be more relaxing on the eye
e Improved
* Improved
e Improved

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 9

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

» The code size of debug builds of SDK projects has been reduced by decreasing the overhead
of the assert() function, which is commonly called by SDK functions.

Added support for handling more complex specifications of dependencies between SDK
components.
for all debug solutions
» shows usage against allocated RAM allocation for bare metal
projects
 Live Heap updates and stack when paused
extends and replaces the Symbol Browser

* incorporating detailed memory usage plus hyperlinked Memory Content and Static Call
Graph display

Revamped
Editor for linker scripts, linker templates and debug map files
 Providing linked navigation of file contents
Redesigned
¢ Quick Start panel -> now displays the current settings for Library
 Links for for all supported Debug Solutions

automatically displayed (for LinkServer) should a CPU fault occur
Improved with enhanced display and grouping options

are now only automatically generated for the selected build

configuration
Project can now be edited in place for settings and wizards

Project Explorer view enhanced to display current project build configuration for the selected
project (also displayed in Quickstart view)
Support for new MCUs based on the ARM Cortex M33

Projects

A specific SVD file can be assigned to a project that can be used afterward within
or views.
Imported or new now expand to show the source file containing the main
function and also open this file within the editor
Improved display of Components in
Quick Start panel -> now displays the current settings
Project association with an SDK (MCU) can now be flexibly managed, maintaining existing
memory configuration if desired see
Many enhancements for improved including:
» Drag and Drop of projects for import and export
« Options for project local inclusion of: SDK part support, flash drivers, and LinkServer connect
and reset scripts

introduced to enable easy visibility and editing of project

configurations
for all debug solutions delivered via project launch

configurations

Debug

LinkServer LPC-Link2 firmware version being softloaded is v5.460, which offers support for
powering RT1xxx EVK boards (that incorporate on-board debug probes based on LPC-Link2
hardware) through the USB debug connection.

Added Zephyr RTOS Awareness:

» Added GDB thread awareness for LinkServer debug connection.

* Added Threads view.

The target configuration for SWO trace is now optional. The default setting is to have the
IDE perform the necessary configuration for the SWO trace. However, the user can choose
to disable this functionality and rely on the target configuration performed by the application.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 10

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

The “SWO configured by IDE” (depending on the debug probe) checkbox in the “SWO Trace
Config” view -> “Change” button -> “Clock speed configuration” dialog controls the behavior.
For more information please refer to MCUXpresso_IDE_SWO_Trace.pdf documentation.

A new console named displays all configuration and register

settings performed while configuring SWO.

[J-Link] Added the possibility to connect to a remote gdb server. In launch configuration -> J-

Link Debugger tab -> GDB Server Settings, use the Server execution option to set a remote

server.

UART console is the default debug console when importing a project.

The IDE displays inside the Probes Discovered dialog the nickname assigned to a PEmicro or

J-Link debug probe. Each solution offers a specific procedure for assigning a nickname, thus

it is necessary to follow the appropriate documentation.

Auto-debug secondary project(s) for multicore projects option becomes the default option

for multicore debug purpose for LinkServer debug connection. That means, in the case of

multicore projects in which the primary project refers to one or several secondary projects,
initiating debugging with the primary project results in the automatic start of debug sessions
for secondary projects.

e Option is set by default on: Window -> Preferences -> MCUXpresso IDE -> Debug
Options -> LinkServer Options -> Miscellaneous -> Enable auto-debug secondary
project(s) for multicore projects

« If you don't want to have this feature enabled (so if you want to start debug sessions for
each core independently), uncheck this option.

Similar, auto-debug secondary project(s) for multicore projects option becomes the default

option for multicore debug purpose for PEmicro too. The option is enabled by default on:

Window -> Preferences -> MCUXpresso IDE -> Debug Options -> PEMicro Options ->

Enable auto-debug secondary project(s) for multicore projects and also for J-Link debug

session, set by default on: Window -> Preferences -> MCUXpresso IDE -> Debug Options

-> J-Link Options -> Enable Auto-debug secondary project(s) for multicore projects.

Most LinkServer now implements a Verify Same operation for any
flash sector that is unchanged from previous debug operations
LinkServer MultiCore debug operations can now be started via a single click
Reworked graphing offering improvements to variable selection
and display
Reworked SWO Interrupt trace
LinkServer LPC-Link2 firmware now softloaded as v5.361 which offers improved debug control
through target reset
Redesigned LinkServer dialog offering improved functionality and
ease of use
« This is reflected in a new LinkServer Launch configuration icon
New launch configuration tab for all debug solutions to allow the loading of
from additional images

Improved performance for Single Stepping LinkServer debug connections
Implemented support for SWO Trace on Cortex-M33-based MCUs

are now available for SEGGER JLINK and PEmicro debug probes
in addition to LinkServer LPC-Link2
LinkServer internal flash drivers prioritized over supplied SDK drivers

now Multicore aware ensuring secondary project attach

settings are observed
Improved now displays Fault Address when available
SWO trace features are now available for SEGGER JLINK and PEmicro debug probes in
addition to LinkServer LPC-Link2 and MCU-Link
LinkServer debug probes now support selection via their serial number (for command line use)
Increased integration of our supported debug solutions including:

. is re-architected to provide support for LinkServer, PEmicro, and
SEGGER debug solutions

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 11

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

« Offering binary flash programming and erase capability for all supported debug solutions

» With a feature set integrated into the Quickstart panel, project Launch Configurations, and
from the IDE as before

* Instruction trace is seamlessly supported by LinkServer, PEmicro, and SEGGER debug
solutions

including printf are further optimized to deliver
approximately double the performance of the previous release

via new library variant Redlib MB and
LinkServer which can deliver both a further increase in performance and no disruption to code
executing with time critical interrupts

LinkServer
« Live global variable values can now be traced both in graphical and tabular forms
to simplify complex peripheral views

LinkServer Flash Programming

External flash drivers for RT116x, RT117x, RT500 and RT600 available as examples in
<install_dir>/ide/Examples/Flashdrivers/NXP/iIMXRT.

extended to support iMX RT MCUs
Programming of data flash regions on certain Kinetis parts is now supported
Improved flash programming performance and reliability

LinkServer via self-configuring flash
drivers

» using JEDEC SFDP (Serial Flash Discovery Protocol) available for LPC18/43, LPC546xx,
LPC540xx, iMX RTxxx, iMX RTxxxx

SDK

Extended integration with ARM CMSIS-Pack Eclipse Plug-ins. Now the ARM CMSIS-Pack
Eclipse Plug-in manages the addition of a new Open-CMSIS-Pack component. This brings
support for:

e Components dependency

< Multiple component selection

» Automatically check dependencies in the new multiple-component selection view
« Copy configuration and template files to the project

Added support for selecting library type in SDK CLI. Now redlib, newlib, and
newlib nano can be selected as options when generating a project. Check
MCUXpresso_IDE_Command_Line_User_Guide.pdf for details.

Provide CLI utility to merge sub-manifest files: added the manifest.merge command:

* Running the headless mode with -help manifest.merge generates a template property file,
which contains the following:

» manifest.xml (location of the manifest containing references to sub-manifests)
* repo.location (repository where the manifest specified in the manifest.xml property is
located).
» merged.manifest.xml (location of the result manifest file).
« Specifying all properties from the template file is required for the command to run.
» The manifest specified in the manifest.xml file must be inside the specified repository.
Complex dependencies: support for < not > operator in the dependency conditions.

Added the possibility to explore Open-CMSIS packs and import (middleware) components into
an Eclipse project. Note that in the current version of the feature, users shall manually add
component dependencies. A future version will automatically resolve dependencies and add
them to the project:

* CMSIS-Pack Management for Eclipse created by ARM plugin included in the product for
packs management: Perspective -> Open Perspective -> Other -> CMSIS-Pack Manager.
From the Packs view (toolbar) you can: Reload, Check for updates on Web, Import Packs
from disk, and so on.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 12

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

* Once desired packs are available, you can add them to the Eclipse project by right-clicking
on the project entry in Project Explorer -> SDK Management -> Add components from Open-
CMSIS-Pack and select the desired one from the “Add Open-CMSIS component to project”
wizard. The component is then available in the Project Explorer view (the sources being
linked to the original pack location), and also in the Project Settings with details about its
hierarchical path.

* You can delete components from the project by selecting the component from Project
Explorer -> <select project> -> Project Settings -> Open-CMSIS components, right-click on
it, and choose “Delete Open-CMSIS component”.

Support to allow sub-manifest under the same SDK.

» Adapted SDK Creator for creating split manifests.

e Updated “Contribute project to SDK Git repository” feature to work with the new sub-
manifests.

A GitHub SDK repository can be imported and managed within IDE, integrating existing the

SDK management functionality and git capability of MCUXpresso IDE.

* Support to an already cloned repository;
* Support to a remote repository (using west init and west update);
« Ability to a project back to SDK GitHub repository;

Improved SDK installation and refresh time

Redesigned New and Import SDK example wizard

* incorporating Error Decorators

SDK part support is now generated within the current workspace eliminating issues that could

arise if launching multiple IDEs

« Part support is intelligently regenerated when required, avoiding unnecessary delays
can now be set via a workspace preference

Installed SDK view improved to display version information and enhanced tooltips

SDK Manifest Analyser to provide visibility of SDK XML description

Easy access to

Extension of SDK Component Management to allow

« Improved SDK Component Management

General Improvements in SDK Handling including:

< SDK version string now present and reported in SDK view

« User selection of versioned internal XML descriptions (enabled via preference)

« Better automatic support for SDKs with overlapping capabilities

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 13

NXP Semiconductors MCUXpresso IDE User Guide

3. IDE overview

The following chapter provides a high-level overview of the features offered by MCUXpresso IDE
(often referred to as the IDE).

3.1 Workspaces

MCUXpresso IDE prompts you to select a workspace when it is launchd for the first time, as
indicated in Figure 3.1.

® MCUXpresso IDE Launcher
Select a directory as workspace

MCUXpresso IDE uses the workspace directory to store its preferences and development artifacts.

Workspace: | sters,’nxprocuments,fMCUXpressoIDEJ‘I.1,0_alpha.iworkspace|ﬁ Browse...

» Recent Workspaces

~ Copy Settings
Workbench Layout
Working Sets

Preferences

(?) Cancel

Figure 3.1. Workspace selection

A Workspace is simply a filing system directory used to store projects and data, and for new
installations, it is typically recommended to accept the default location. If you tick the Use this
as the default and do not ask again option, then MCUXpresso IDE always starts up with the
chosen Workspace opened; otherwise, a prompt to choose a Workspace will always appear.

MCUXpresso IDE can only access a single Workspace at a time but many Workspaces may
be used. You may change the Workspace that MCUXpresso IDE uses, via the File -> Switch
Workspace option.

Tip
@ It is possible to run multiple instances of the IDE in parallel with each instance
accessing a different Workspace.

Note: when changing workspaces, you may choose to copy settings (preferences) from an
existing workspace to the new workspace using the various Copy Settings tick box options.

3.2 Welcome view

MCUXpresso IDE version 11.1.0 launches with a new Welcome View. This View is intended to
help reduce the learning curve for new users by offering links and help for common tasks and
IDE operations.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 14

NXP Semiconductors MCUXpresso IDE User Guide

iy Welcome =

Welcome to MCUXpresso IDE e
: Download and Install SDKs
SDK)

MCUXpresso IDE provides an easy-to-
use Eclipse-based development

environment for NXP MCUs based on .
ARM Cortex-M cores, including MCX, C‘ l C k tO Sta rt the | D E
LPC and Kinetis microconirollers and Create a New C/C++ Project
i.MX RT crossover processors. It offers IDE :

advanced editing, compiling, and

debugging features with the addition of

ebugging views, code

I
trace and profiling, multicore debugging Import SDK Examples
and integrated configuration tools. IDE

MCU-specil

h Y 4

MCUXpresso

% m Import from Application Code Hub
(LACH

Always show Welcome at start up

Figure 3.2. Welcome view

3.3

UG10055

1. Click to select, download and install a

2. Click to be guided through

3. Click to be guided through

4. Click to open the Application Code Hub wizard

Since the installation of an SDK adds support for most NXP MCUs to the IDE, the first option
is to guide the user to a new installation view. From this view, they can
select, download, and install an SDK for a required MCU or (development board) with just a few
clicks. This screen also contains guided workflows for creating New Projects and Installing SDK
Examples.

Across the top of this View are links to Features and Resources including a jump to IDE link
(highlighted above) which takes the user directly to the main development view (Perspective)
of the IDE.

Note: This Welcome View is provided by and so incorporates standard icons to maximize,
minimize, restore, and so on, like all Eclipse views. Since this view is intended to be used full
screen, minimizing or restoring may lead to a poor screen layout. The recommended way to
switch back to the main IDE Develop view is via the IDE link or by closing this Welcome Screen.
You can restore the Welcome View at any time by clicking the Home Icon within the main Eclipse
Icon view.

It is also possible to disable the Welcome view from appearing at startup by unchecking the box
at the lower right of the view.

Documentation and help

In addition to the help features offered from the Welcome View are a comprehensive suite of
Guides.

MCUXpresso IDE is based on the Eclipse IDE framework, and many of the core features are
described well in the generic Eclipse documentation and in the help files to be found on the Help

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 15

NXP Semiconductors MCUXpresso IDE User Guide

-> Help Contents menu of MCUXpresso IDE. It also provides access to the MCUXpresso IDE
User Guide (this document), as well as the documentation for the compiler, linker, and other
underlying tools.

MCUXpresso IDE documentation comprises a suite of documents including:

¢ MCUXpresso IDE Installation Guide

« MCUXpresso IDE User Guide (this document)

¢ MCUXpresso IDE SWO Trace Guide

* MCUXpresso IDE Instruction Trace Guide

* MCUXpresso IDE LinkServer Energy Measurement Guide
*« MCUXpresso IDE FreeRTOS Debug Guide

e MCUXpresso IDE Azure RTOS ThreadX Debug Guide

e MCUXpresso IDE Zephyr RTOS Debug Guide

¢ MCUXpresso IDE MQX RTOS Debug Guide

*« MCUXpresso (IDE) Config Tools User’'s Guide
The installation folder of MCUXpresso IDE includes these guides in PDF format as well.
To obtain assistance on using MCUXpresso IDE, visit: https://www.nxp.com/mcuxpresso/ide

You can also find related web links at Help -> Additional resources, as shown below:

Figure 3.3. Additional resources

Help
il Welcome
@ Help Contents
 MCUXpresso IDE User Guide
' Search
Show Context Help
Show Active Keybindings... Ctrl+Shift+L
Tips and Tricks...
Cheat Sheets...

@ Eclipse User Storage >
» Check for Updates
K- Install New Software...
@ Eclipse Marketplace... |
Additional resources »| B MCUXpresso IDE product web page
® MCUXpresso IDE installation details MCUXpresso SDK product web page
® MCUXpresso IDE Save Info for Support MCUXpresso Config Tools product web page
® MCUXpresso IDE support forum = MCUXpresso Secure Provisioning Tool product web page
& About MCUXpresso IDE ® MCUXpresso SDK Builder
Application Code Hub

LPCOpen Resources

= Code Bundles for LPC800 Family devices
OpenSDA probe firmware

LPCScrypt - LPC-Link2 probe firmware

= LPC11U35 CMSIS-DAP probe firmware
= MCU-Link probe website (incl. firmware)

B SEGGER J-Link website

@ PEMicro website

B3 MBED Serial Port Driver website
@

'MCU on Eclipse’ blogs

3.4 Perspectives and views

UG10055

The overall layout of the main MCUXpresso IDE window is known as a Perspective. Within
each Perspective are many sub-windows, called Views. A View displays a set of data in the IDE
environment. For example, this data might be source code, hex dumps, disassembly, or memory
contents. It is possible to open, move (drag), dock, and close the Views, and also to save and
restore the layout of the currently displayed Views.

Typically, MCUXpresso IDE operates using the single Develop Perspective, under which both
code development and debug sessions operate as shown in Figure 3.6. This single perspective

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 16

https://www.nxp.com/mcuxpresso/ide

NXP Semiconductors MCUXpresso IDE User Guide

simplifies the Eclipse environment but at the cost of slightly reducing the amount of information
displayed on screen.

Alternatively, MCUXpresso IDE can operate in a “dual Perspective” mode such that the C/
C++ Perspective is used for developing and navigating around your code and the Debug
Perspective is used when debugging your application.

Note: when within the debug perspective, the concept of a selected project remains. The Blue
Debug button tooltip displays this selected project. Also, if you start a debug operation within the
Debug perspective and then you make a switch to the Develop perspective, the IDE automatically
opens a debug stack view to display the active debug connection.

You can manually switch between Perspectives using the Perspective icons in the top right of
the MCUXpresso IDE window, as shown in Figure 3.4.

Figure 3.4. Perspective selection

sSIP L T

The user can select new perspectives by clicking the view+ icon. After selecting a view, its icon
appears within the horizontal section as highlighted above.

You can also rearrange all Views in a Perspective to match your specific requirements by
dragging and dropping. If you accidentally close a View, you can restore it by selecting it from the
Window -> Show View dialog. It is also possible to restore the default layout for a perspective
at any time via Window -> Perspective -> Reset Perspective.

Commonly used Views for Analysis (Trace) and RTOS debugging have been made more readily
available via top-level dropdown menus as shown below:

Figure 3.5. Additional views

Analysis Window Help RTOS Analysis Window Help

:J SWO Trace Config Azure RTOS ThreadX
& SWO Profile i Threads
¢4 SWO Data % Message Queues
= SWO Interrupts % Semaphores
A SWO Counters % Mutexes
E SWO ITM Console % EventFlags
€ Instruction Trace % Timers
B Instruction Trace Config % Memory Block Pools
& Memory Byte Pools
‘& Power Profile
- FreeRTOS
[i* Energy Measurement B Task List
il Task Notifications
' Queue List
i1 Timer List
i Heap Usage
Zephyr RTOS

Threads

UG10055

Once selected, these additional views appear alongside the Console view but can be relocated
as desired.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 17

NXP Semiconductors MCUXpresso IDE User Guide

Note: The rest of this guide assumes that the user uses the default Develop Perspective.

3.5 Major components of the Develop perspective

* | workspace_docs - frdmk64f_bubble/source/bubble.c - MCUXpresso IDE %
2B .R » RESMORLLE KifH-0-%i® - ~ Bl Sy | B |

fad
(s Debug 52 # v = Y (5 Outiine 09 Global Variables & = 0)
=) e v [frdmk64f_bubble LinkServer Debug [C/C++ (NXP Semiconductors) MCU Applicatior R 47 Q500 S ==l
¥ L% frdmk647_bubble <Debug> v {2 frdmk64f_bubble.axf [MK64FN1MOxx12 (cortex-m4)] Variable Type Value Adaress
v @ Project Settings ¥ o Thread #1 1 (Suspended : Signal : SIGINT:Interrupt) teangle uint32t 35 0x20000118
» =i Associated SDK = delay() at bubble.c:74 Ox4c22 ¢0-sin_angle int32_t 206 0x2000011¢
» = Libraries (and semihosting) = main() at bubble.c:341 0x7cO t-cosangle int32t 148 0x20000120
v @ MCU ___+l arm-none-eabi-gdb (8.3.0.20190703)) & Add new ex..
orchipiad ' & bubble.c &3 =
o core = ¢

®
iii

© package 65 const char sdev[]l = { "Andy", "Luca", "Pete”, "Gray", "Sarah®, "Steve", “Anca", Plot), Trace Statistics
o processor = ‘cma* 66 “Maria", "Melania", "Lorena", “Adi", "Radu’, "Dragos”, "MArivs",

» 3 Memory "Ovidiu", "Ann Marie", "Alex" }; e 4p= @ L

:F\Ovtrans 8 /etetetepciok Hoblct S FR— RPF—— 359 p
» 4 Binaries 70 = Code 3001 /
¥ i) Includes n
"EQCMSJS 73 void delay(uint32_t time) { 20
» Baccel o 74 while (time-=){
» (2 board 75 __asm volatile (“nop"); 100
» (5 component & i ‘
» (9 device 7} o 1
» (2 drivers 79% static void i2c_release_bus_delay (void) 1001
v (8 source 80 {

» [£ bubble.c 1 ulntaz t i = 8; 2 g -200

b senilioss HardiBut o 22 for (1= 0; i < I2C_RELEASE_BUS_COUNT; i++)
» (3 startup 4 —NoP(): -
» (2 utilities 5 =358 Hrrrr e e e e
» (= Debug 51 1 0 6s 11s 16s 21s 26s 31s 365 41s 465 515 565

[frdmi641 bubble LinkServer Debug.launch__J 4= void BOARD_I2C_ReleaseBus(void)
9 {

£ Guickstort & o Voria Sreaoon = B\ intet L= 8 |—cos_angle —angle ——sin_angle

gpio_pin_config_t pin_config; o
- MCUXpresso IDE - Quickstart Panel 2 port_pin_config_t i2c_pin_config = {0}; 0=
C2) project: frdmk64f_bubble [Debug]

16! P b Rin: iy

~ Create or import a project (Tinstalled S 5% [Properties m| Problems & Console . Terminal G Image nfo & Debugger C Memory SWO Profle
B New project.. Hoa N c erage %
B import SDK example(s)... @ Installed SDKs FTMO_IRQHandler 15651

® Import project(s) FTM_UpdatePwmD... 8027
To install an SDK, simply drag and drop an SDK (zip fileffolder) into the 'Instaied SDKs' view. [Common folder) FTM. gs 8638

(instalied SDKs), Available Boards | Available Devices FTM ClearStatusFl... 6887

~ Build your project

g o e
o Clean (- SDK_2.X_EVK-MIMXRT1010 2.60 350 @ <plugins> /com.nxp.mcuxpresso.sdk.s. Mash:
(SDK_2.X_EVK-MIMXRT1020 2.6.0 350 2\ <plugins>/com.nxp.mcuxpresso. sdk.s UART WriteBlocking 3472
~ Debug your project B-E58 4 SDK_2.x_EVK-MIMXRT1060 2.6.0 3.50 plugins>/com.nxp.mcuxpresso.sak.s | | SP1O-Portset 2420
44SDK_2x EVK-MIMXRT1064 2.60 350 . <plugins>Jcom.nxp.meuxpresso.sdk.s, | | FTM-SetSoftwareT... 2138
] 4 Debug (+SDK_2.x_EVKB-IMXRT1050 2.6.0 350 G, <plugins>/com.nxp.mcuxpresso.sdk.s| | | '2C-MasterTransfer... 1930

\ G #5 Terminate, Build and Debug) \@_ sok 2 FRom-K32128 260 350 C. /SDK_2.6.0_FRDM-K32121) | GPIO-PortClear 1457

- len MKBAFNTMOxx12 (frdmkB41 bunme)l

Figure 3.6. Develop perspective (whilst debugging)

1. Project Explorer / Peripherals / Registers / Faults
* The Project Explorer view (shown) gives you a view of all the projects within your current

« Many editing and configuration features are available from this view including new
options and
* When debugging, the Peripherals view allows you to display a list of the MCU
and project memory regions. Note: depending on your MCUs

configuration, some peripherals may not be powered/clocked, and hence the view does not
display their content.

¢ When debugging, the improved Registers view allows you to view the
and their content within the CPU of your MCU.
« The view also displays pseudo-registers such as ‘cycle delta’ which shows the calculated

number of cycles since the last pause

¢ Also displayed here is the Faults view, which appears automatically if a CPU
(such as hard fault) occurs. This view decodes CPU registers to provide detailed information
indicating the reason for the fault occurring.

2. Quickstart / Variables / Breakpoints

¢ On the lower left of the window, the Quickstart Panel View (shown) has fast links to
commonly used features. From here you can launch various wizards including New Project,
Import projects from SDK, and also from the File System plus options such as Build, Debug,
Export, and so on. The large icon in each section performs the first option in the group,
that is, New project, Build, Debug. Also, the Debug group contains debug solution-specific

« Note: This Panel is essential to the operation of MCUXpresso IDE and so it is not possible
to remove it from the perspective.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 18

NXP Semiconductors MCUXpresso IDE User Guide

« Sitting in parallel to the Quickstart Panel, the Variables View allows you to see and edit
the values of local variables.
e Sitting in parallel to the Quickstart Panel, the Breakpoints View allows you to see and

modify currently set and
3. Debug
¢ The Debug View appears when you are your projects. This view shows

you the debug stack, in the “stopped/paused” state you can click within the stack and inspect
items in scope such as local variables.
4. Editor

« Centrally located is the Editor, which allows the creation and editing of source code and
other text files. When debugging, this is where you can see the code you are executing and
can step from line to line. By pressing the 'i-> icon at the top of the Debug view, you can
switch to stepping from source to assembly instructions. Clicking in the left margin sets and
deletes
. provides structure, keyword, and linkage for debug Map files,

Linker Script, and Linker Template files.
5. Console / Installed SDKs / Problems / Trace Views / Power Measurement

¢ On the mid-lower of the window are Console, Installed SDK, Problems Views, and so on.
The Console View displays status information on compilation and debug operations, as well
as displaying semihosted program output.

e The view (shown) enables the management of installed SDKs. You
can also add new SDKs as Plugins, via Drag and Drop, or Copy and Paste. This view also
provides other SDK management features including unzip, explore, and delete. Use the
Outline view to view details of any selected SDK.

» The user can browse and extract SDK Documentation

¢ The Problems View shows all compiler errors and warnings and allows easy navigation to
the error location in the Editor View.

e The Image Information View
e This view provides detailed information on an image (or object)

static memory footprint (usage and content).
6. Quick Access/Perspective Selection

¢ Enables quick access to features such as views, perspectives, and so on. For example,
enter ‘Error’ to view and open the Error Log of the IDE, or ‘Trace’ to view and open the
various LinkServer Trace views.

* Perspective Selection allows you to switch between the various defined perspectives.

7. Outline / Global Variables

« The Outline View allows you to quickly locate symbols, declarations, and functions within
the editor view. This view can also display details of any SDK selected in the Installed SDK
view.

 Sitting in parallel is the Global Variables View (shown) which allows you to see and edit
the values of Global variables.

* Use the and features to monitor variables
while the target is running.
8. Memory / Heap and Stack / Trace
« The Memory View provides a range of options for viewing target memory
e The Heap and Stack View enables easy monitoring of values for
bare metal projects.
< Warnings are given when preset limits are approached or exceeded
e Trace Views
» Trace Views including SWO Trace (Profiling shown), Instruction Trace, and Power are not
shown on this screenshot. However, you can select these views when required from the
Analysis Menu. For more information on Trace functionality, please see the MCUXpresso
IDE SWO Trace Guide and/or the MCUXpresso IDE Instruction Trace Guide and/or the
MCUXpresso IDE LinkServer Power Measurement Guide.

e The SWO Trace Views allow you to gather and display runtime information using the
SWO/SWYV technology that is part of Cortex-M0+/M3/M4/M7/M33-based parts.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 19

NXP Semiconductors MCUXpresso IDE User Guide

« The Instruction Trace view on certain MCUs, you can capture and view instruction trace
data downloaded from the Embedded Trace Buffer (ETB) or Micro Trace Buffer (MTB)
of the MCU.

e The Power Measurement View, this view is capable of displaying real-time target power
usage. For more information please see the MCUXpresso IDE Power Measurement
Guide.

9. Status Bar Shortcuts

« Various useful shortcuts, for example, to open the workspace of a project or to open a
terminal at the location of the project with the environment of the IDE. Hover here to see
tooltips that explain the various options.

3.5.1 Dark theme

MCUXpresso IDE contains support for a Dark Theme. Dark Theme is a Workspace preference
that the user can select from Window -> Preferences -> Appearance -> Theme followed by a
selection from the dropdown menu.

B8 Preferences a %
|ypefiitertext | Appearance vy g
A _
Colore and £ Enable theming
Label Decor Theme: |Light ~

cz:lz::%:etz [J Use round tabs T |
Editors Use mixed fonts and|System
Globalization

Keys Visible tabs on overflow:

Link Handlers Show most recently used tabs
Network Conne

Perspectives

Project Natures

Quick Search

Search

Security

Startup and Shu

Ul Freeze Moni

User Storage Se

Web Browser

Workspace
C/C++
CMSIS-Packs
< il > Restore Defaults Apply
@ a4 Apply and Close Cancel

Figure 3.7. Appearance preference

When selected, a Dark theme is used to render the perspective and appears similar to the image
below:

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 20

NXP Semiconductors MCUXpresso IDE User Guide

-
-
-
-
-
s

Figure 3.8. Develop perspective dark

Note: An IDE restart File -> Restart is required for the perspective to display correctly.

3.6 The Quickstart Panel

A key feature of MCUXpresso IDE is the Quickstart Panel — which is frequently referenced
in this document. The Quickstart panel is designed to bring together many of the common IDE
features and operations including links to Project Creation, Project Building, Project Debug, and
Miscellaneous common Project operations.

It is strongly recommended that this panel be used to perform the supported MCUXpresso
IDE operations described below since many underlying Eclipse features are enhanced when
accessed in this way to improve and simplify the user experience.

Features of the Panel are highlighted and described below:

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 21

NXP Semiconductors MCUXpresso IDE User Guide

(U Quickstart Panel X = Variables ®s Breakpoints = B

- MCUXpresso IDE Quickstart
“12&)| project: Ipcxpresso55s69_hello_world [Debug]D

~ Create or import a project

& Create a new C/C++ project...
& import SDK example(s)..

] Import from Application Code Hub... :)
? Import project(s) from file system...

© Import executable from file system...

~ Build your project

A Build o
¢ Clean
~ Debug your project ~@H~~HE~

1
. Debug O

~ Miscellaneous

(® Edit project settings
S Quick Settings>>

£ Export project(s) to archive (zip) O
£ Export project(s) and references to archive (zip)

| & Build all projects

Figure 3.9. The Quickstart panel

UG10055

Tip
@ The Large Icon performs the action of the first button in the group

Where:

1. Shows the Project currently selected within the Project Explorer view. Build, Debug and
Miscellaneous operations will be performed on this Project

2. Links to , ,
, and
3. (or Clean) the currently selected Project
¢ See progress and results within the view
4. Debug the currently selected Project
¢ Clicking will by default Build the project (if necessary), perform a Debug Probe
Discovery, create a default (if necessary) and if successful,

begin the debug session.

e Terminate, Build and Debug terminates the existing Debug session for the selected project,
and then performs another debug operation. It is intended to be used for iterative source
code fixes and debug retry operations

5. offer a range of debug operations for specific vendor Debug Solutions
6. The Miscellaneous section offers a range of options and shortcuts

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 22

NXP Semiconductors MCUXpresso IDE User Guide

« Edit project settings is a shortcut equivalent to a right click on a project and then selecting
Properties

. Tools offers shortcuts to launch one of the Config tools for the
selected project

. offers a range of options for the currently selected project

« Export the selected Project (and References) to the file system. See also additional
information on

« This feature requires that selecting the project at the top level within Project Explorer
« Build the Active Build Configuration of all projects within the current Workspace.

Tip
@ If the Quickstart panel has become hidden, then in the menu bar at the top of the IDE,
select Window -> Show View -> MCUXpresso IDE and double-click on Quickstart

The Quickstart panel is directly linked to active selection from Project Explorer, which controls
the enablement state of various actions within the view. However, when the Quickstart panel is
visible it also controls automatic selection of the debugged project when encountering various
debug launch events. You can adapt the behavior by accessing the appropriate preference page:
Window -> Preferences -> MCUXpresso IDE -> Quickstart Panel. The project associated with
the active debug session can be auto-selected in Project Explorer when adding, terminating, or
removing a launch from the Debug view. If a child resource of the project is already selected
when a launch event occurs, selection does not change.

3 preferences O X
type filter text Quick t Panel RIS |
Maven - . [[] Ask to browse web when importing examples
MCUXpresso Conig Tools Enable Wizard template support
v MCUXpresso IDE
Debug Options Project Explorer activation and auto-selection of a project
Default Tool settings [Activate Project Explorer when a launch is added, removed or terminated in Debug view
Editor Awareness [Auto-select project when a launch is added in Debug view
Energy Measurement []Auto-select project when a launch is removed from Debug view
General [Auto-select project when a launch is terminated in Debug view
MCU settings
Paths and Directories
Quickstart Panel
RTOS TAD
SDK Handling
SWO Trace
User Interface Enablement
Utilities
Run/Debug
SWTChart Extensions
Terminal w Restore Defaults Apply
‘/Z\' 2 5 Cancel
Figure 3.10. Quickstart panel preferences

3.7 Project Explorer and new projects

The version of Eclipse underlying MCUXpresso IDE incorporates some new Project Explorer
functionality that is seen only when there are no projects within the chosen
- as shown below:

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 23

NXP Semiconductors

MCUXpresso IDE User Guide

5 Project Explo... X i Registers % Faults 2 Peripherals+ = O

o000

557 | |~

There are no projects in your workspace.
To add a project:

B Create a new C/C++ project...

B Import SDK example(s)...

% Create a project...

£y Import projects...

Figure 3.11. Project explorer empty

The first two options here are directly equivalent to the first two operations offered via the
Quickstart panel. It is recommended to use the Quickstart in preference to the remaining

options since this ensures that MCUXpresso IDE wizards and functionality are used.

Note: Due to this Eclipse feature, the Drag and Drop functionality to the Project Explorer view is
unavailable until after creating or importing the first project.

New or Imported Projects appear in the Project Explorer view. A newly created project
automatically expands to show the source file containing the main function. This source file is
also opened into the editor for convenience as shown below.

5 Project 22 Periph Regist

¥ 5 frdmk64f_bubble <Debug>
» € Project Settings
» il Includes
» (2 CMSIS
» (Baccel
» 2 board
» 2 component
» (£ device
» (O drivers
v (9 source
» <] bubble.c
» Lc| semihost_hardfault.c
> Bsrc
» (2 startup
» (B utilities
» (= doc

S Faults = B | [2 bubblec 2

B & v o | 214
_ € ® [int main(void) I
2 {

Figure 3.12. New or imported project

fxos_data_t sensorData =
fxos_config_t config =
uint8_t sensorRange =
uint8_t dataScale = 0;
intl6_t xData =
intl6_t yData =
uint8_t i =
uint8_t array_addr_size =
status_t result

0;
= kStatus_Fail;

/* Board pin, clock, debug console init */
BOARD_InitPins();

BOARD_BootClockRUN() ;
BOARD_I2C_ReleaseBus();
BOARD_I2C_ConfigurePins();
BOARD_InitDebugConsole();

/% 12C initialize =/
BOARD_Accel_I2¢_Init();

/% Configure the I2C function =/
config.I2C_SendFunc = BOARD_Accel_I2C_Send;
config.I2C_ReceiveFunc = BOARD_Accel_I2C_Receive;

array_addr_size = sizeof(g_accel_address) / sizeof(g_accel_address[@]);

for (i = @; i < array_addr_size; i++)

config.slaveAddress = g_accel_address([il];
/% Initialize accelerometer sensor */
result = FX0S_Init{&fxosHandle, &config);
if (result == kStatus_Success)

{

break;
}
¥

3.8 Updating MCUXpresso IDE

MCUXpresso IDE incorporates the facility to update an installation to add new features, updates,
and/or to roll out bug fixes, and so on. To facilitate this mechanism, MCUXpresso IDE version
internals locate key components with Eclipse-style plugins.

UG10055

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

24

NXP Semiconductors MCUXpresso IDE User Guide

Tip

Locating low-level components can be difficult due to both the complex directory
structure but also because component locations may change after performing
an update. Therefore, to simplify the experience, a number of soft links are
available within the install_dir/ide as discussed in the section below “Locating IDE
Components”

By default, when NXP releases an update, a notification of the availability appears at the bottom
of the screen.

Updates Available X

Updates are available for your software.
Click to review and install updates.

You will be reminded in 4 Hours.
Set reminder preferences

Figure 3.13. Update notification

Alternatively, you can check for updates via Help -> Check for Updates. If updates are available,
a dialog similar to the one shown below appears:

@ [] Available Updates
Available Updates

Check the updates that you wish to install. I~
Name Wersion Id
[§. GNU ARM PEMicro Interface Debugging Support 3.7.8.201810122006 com.pemicro.debug.gdbjtag.pne feature fe...
@ g MCUXpresso IDE base functionality 10.3.0.201810111066 com.crt.Ipcxpresso.feature.feature.group
g MCUXpresso IDE Configuration Tools Integration 1.1.0.201810111248 com.nxp.swtools.mcuxpressoide.feature.fe...
@ §-MCUXpresso IDE LinkServer and Pre-installed part support 10.3.0.201810151121 com.nxp.mcuxpresso.tools.core feature.fea...
gk MCUXpresso IDE SDK handling 10.3.0.201810111544 com.nxp.mcuxpresso.core.datamodels.feat...
[§:-MCUXpresso IDE Trace and Power 10.3.0.201810111148 com.nxp.mcuxpresso.trace.feature.feature....

Select All Deselect All
Details
@ <eack | (TN | Cance
Figure 3.14. Updating MCUXpresso IDE components

Simply, ensure the required updates are checked and click Next. At this point, the components
are downloaded and installed into MCUXpresso IDE. After installation, a restart is required before
the new features are available.

Note: In addition to updates for MCUXpresso IDE, updates to the MCUXpresso Config tools and
PEMicro debug solution are also delivered using this mechanism.

Major product releases are only delivered as full product installations since these are
typically based on newer versions of Eclipse

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 25

NXP Semiconductors MCUXpresso IDE User Guide

3.8.1 Locating IDE components

UG10055

MCUXpresso IDE consists of many components, some of which may be used independently
from the IDE. Also included are documents, examples, scripts, drivers, and so on, that may need
to be referenced from within the IDE.

Due to the structural changes introduced in MCUXpresso IDE version 10.3.0, the paths for certain
items may be different from previous releases and may change after a product update (and also
be quite long). For example, the IDE binaries folder is now at a location of the form:

<install _dir>/ide//plugins/comnxp.ncuxpresso.tools.bin. nmacosx_11.1.0.201911211415/ bi nari es

MCUXpresso IDE version 11.9.0 introduced another important change: LinkServer software
debug probe support is now added in MCUXpresso IDE by installing NXP LinkServer product.
As a result, LinkServer-specific support files are no longer in folders like IDE binaries. Note that
LinkServer is installed at the same folder level as the MCUXpresso IDE.

Therefore, to simplify the location of certain folders, shortcuts (or symbolic links) are installed into
the ide directory within the installation directory of the product. You can use these links directly
to locate components or items, or within script paths.

Shortcuts are available for the following directories:

¢ binaries -> install_dir/ide/binaries

* Examples -> install_dir/ide/Examples

¢ Wizards -> install_dir/ide/Wizards

« tools -> install_dir/ide/tools

¢ LinkServer -> install_dir/ide/LinkServer

In practice, these links allow paths to be used unchanged from earlier versions of MCUXpresso
IDE, yet always reference the latest plugin components.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 26

https://www.nxp.com/linkserver

NXP Semiconductors MCUXpresso IDE User Guide

4. Part support overview (preinstalled and via SDKSs)

4.1

41.1

UG10055

To support a particular MCU (or family of MCUs) and any associated development boards,
several elements are required. These break down into:

e Startup code

» This code handles specific features required by the MCU
e Memory Map knowledge

e The addresses, sizes, and types of all memory regions
< Peripheral knowledge

 Detailed information allowing the MCUs peripherals registers to be viewed and edited
¢ Flash Drivers

* Routines to program the on and off-chip Flash devices of the MCU as efficiently as possible
* Debug capabilities

< Knowledge of the MCU debug interfaces and features (for example, SWO, ETB)
« Example Code (this is not strictly required or a part support element)

« Code to demonstrate the features of the particular MCU and supporting drivers

Collectively, this data is known as Part Support, MCUXpresso IDE uses these data elements for
populating its wizards and for built-in intelligence features, such as the automatic generation of
linker scripts, and so on.

MCUXpresso IDE installs with a base set of part support primarily for older LPC Devices
(Preinstalled). Knowledge of later devices such as the LPC5xxxx, Kinetis, IMXRTxxx, and so on,
must be provided to the IDE via the

Preinstalled part support

The IDE installs with an enhanced version of the part support as provided with the older NXP
IDE LPCXpresso IDE v8.2.2. This provides support for the majority of LPC Cortex-M-based parts
‘out of the box'. This is known as preinstalled part support. In general, SDKs are not available for
these older parts. However, you can use the LPC5410x and LPC5411x part families with either
Preinstalled Part Support or SDK Part support.

Example code for these preinstalled parts is provided by sophisticated LPCOpen packages (and
Code Bundles). Each of these contains code libraries to support the MCU features, LPCXpresso
boards (and some other popular ones), plus a large number of code examples and drivers. A
version of these is installed by default at:

<install dir>/ide/ Exanpl es/ LPCOpen
<install dir>/ide/ Exanpl es/ CodeBundl es

Find further information at:
https://lwww.nxp.com/Ipcopen

https://www.nxp.com/LPC800-Code-Bundles

Differences in preinstalled and SDK part handling

Since SDKs combine part (MCU) and board support into a single package, MCUXpresso IDE
can provide linkage between SDK-installed MCUs and their related boards when creating or
importing projects.

For preinstalled parts, the board support libraries are provided within LPCOpen packages and

Code Bundles. It is the responsibility of the user to match an MCU with its related LPCOpen
board and chip library when creating or importing projects.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 27

https://www.nxp.com/lpcopen
https://www.nxp.com/LPC800-Code-Bundles

NXP Semiconductors MCUXpresso IDE User Guide

4.1.2

Creating and importing projects using Preinstalled and SDK part support is described in the
following chapters.

Note: When exporting or sharing projects created with Preinstalled part support, no special

actions are required, since other installations of MCUXpresso IDE also contain the required part
support. For sharing projects created from SDKs, please see

Viewing preinstalled part support

When MCUXpresso IDE is installed, it contains preinstalled part support for most LPC-based
MCUs.

To explore the range of preinstalled MCUs simply click ‘Create a new C/C++ project’ in the
Quickstart panel. This opens a page similar to the image below:

SDK Wizard
@ Creating project for device: LPC 1549 with no board. ‘:;/‘.,'i f 2
. Board and/or Device selection page
~ SDKMCUs Available boards %1% &
MCUs frgm installed SDKs. Please select an available board for your project.
Please visit mcuxpresso.nxp.com to
obtain additional SDKs.
Target
LPCXpresso1549 LPCXpresso1347 LPCXpresso1343 LPCXpresso1227

NXP LPC1549
LPC1517
LPC1518
LPC1519
LPC1547
LPC1548
LPC1549

»LPC1700

#LPC177x_8x

»LPC18xx

»1PCANTY Ay

Target Core:
Description:

Figure 4.1. New

(’Fre‘tnstatled MCUs \ ! A
MCUs from preinstalled LPC and 1

generic Cortex-M part support

Selected Device: LPC1549 with no board. SDKs for selactd MCU

LPCXpresso1115

LPCXpresso11U14

cm0

Cortex-M3 based microcontroller, with USB and up to 256KB Flash
and 36K RAM

Name SDK Version Manifest Versio Location

Project Wizard

UG10055

The list of preinstalled parts is presented at the bottom left of this window.

You can also see a range of related development boards indicating whether a matching LPCOpen
Library or Code Bundle is available.

For creating projects with preinstalled part support please see:

If you intend to work on an MCU that is not available from the range of preinstalled parts, for
example, a Kinetis MCU, then you must first extend the part support of MCUXpresso IDE by
installing the appropriate MCU SDK.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 28

NXP Semiconductors MCUXpresso IDE User Guide

4.2

4.2.1

SDK part support

Extend the Part Support of the IDE by using freely available MCUXpresso SDK v2.x packages.
SDK 2.x packages are used to add support for all Kinetis, iMX RT and newer LPC MCUs, and
so on.

Starting with MCUXpresso IDE version 11.1.0 there is a streamlined approach to the supply
and installation of SDKs — these SDKs are known as Plugin SDKs. Plugin SDKs are pre-built
SDKs hosted on NXP’s servers that you can browse, download, and install directly from within
the IDE when required. See

Each SDK installs as an Eclipse plugin and so benefit from the standard Eclipse management
and update mechanisms. MCUXpresso IDE Plugin SDKs are available for a wide range of
NXP’s MCUs. Like all Eclipse plugins, once Plugin SDKs are installed, they become part of
the product itself. Management of a Plugin SDK can be performed using the

The previous Classic method of SDK installation and handling is still available. See

After installing an SDK, the included part support becomes available through the New Project
Wizard and also the SDK example import Wizard, and for use by

Obtaining and installing a Plugin SDK

SDKs are installed and managed via the Installed SDKs view, which is located by default as the
first tab within the Consoles view. See item 3 for more information. You
can also start a Plugin SDK installation via the New Welcome system and via the Download and
Install SDKs icon on the main IDE icon bar.

Once launched, a dialog similar to the one shown below appears:

B0 workspace - MCUXpresso D ~ s o«
File Edit Navigate Search Project ConfigTools Run RTOS Analysis Window Help
e oens

8 - (=2 EAR AROR ®omlA TR OIS > §l - T B
= @ Install MCUXpresso SDKs X ° = e
A A . -
Select MCUXpresso SDKs to install from https://mcuxpresso.nxp.com/eclipse/sdk
SOKs add device support to MCUXpressa IDE allawing projects ta be created and debugged. a
Select and install one or more MCUXpresso SDKs to provide device knowledge, drivers, middieware, and reference example applicaticns for your development board o MCU. Refresh

MCUXpresso
Software and Tools

SUITE OF

LEARN MORE >

NXe

Figure 4.2. Plugin SDK installation

oards . Pracessors) f \

Board SOK Version Package Flash RAM Status Filter: [typ

[Hide instalied (2] Show latest [] Hide board images
L X X Min Flash (KBJ: [p

%)
=i =i 2 Max Flash (KB): [4006
' _—)) Min RAM (K8): o
“ Max RAM (KB): [5120
% evkbmimxrt1 170 SDK_2x MIMXRT.. 213.1 MIMXRT1176D-. 0 2048] Extemal Flash
5

Cares.
Multicore
evimimurt1010 SOK 2x EVK-ML. 2130 MIMXRTI011D.. 0 128
@ Al Cores (O Conex-M0+ O Conex-M33
O Conex-M4 (O Cortex-M7

evkmimrt1015 SDK_2% EVK-ML. 2130 MIMXRT1015D 0 128 Keywords

[J alexa loT Senvice (AIS] [Alibaba Cloud (Aliyun) =
|) Amazon Web Service (AWS) () analog comparato
o evimimert1015_om13790host SOK 2x EVK-MI.. 2130 MIMXRT10150_ 0 128 "] 1
? [analog-to-digital comparator [Janalog-to-digital erter
[mEw] [Asynchronous Sample Rate Converters

[Audio [Azure RTOS

[Bluetooth LE [Bootioader (MCUBoot)

) Brown Out Detection [1Bus Encryption Engine (BEE)
Dlean CIcanFo

[canopen [CANopen (FD!

[Jcmsis NN [Crank Storyboard

[Cryptography [Cryptogrophy v
evimimert1024 SOK_2x MIMXRT.. 2.13.0 ‘\.ﬂMxlaH(‘ZaD 4096 256 J \ j

evimimurt1020 SDK 2% EVK-ML. 2130 MIMXRT1021D_ 0 256

evkmimurt1020_om13790host SDK_2 EVK-ML. 2130 MIMXRT1021D_.

256

NPT

UG10055

1. From this section, you can select the SDK for the desired Board (or Processor) for installation.
Column sorting is supported to help location and options for filtering the list are discussed
below.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 29

NXP Semiconductors MCUXpresso IDE User Guide

« By default, SDKs that are already installed are hidden from this view

« If the Hide Installed is unchecked, installed SDKs are also shown along with a Status
indication for the SDKs already installed (shown as a red circle)

2. The user may select a range of filtering options to reduce the list of displayed SDKs. These
filters allow them to explore the capabilities of the MCUs and Boards.

3. After selecting an SDK, it can be installed (with options)

 Install and Create Project Downloads, Installs, and launches the New Project Wizard with
the chosen board selected

« Install and Import Example Downloads, Installs, and launches the Import SDK Example
Wizard with the chosen board selected

* Install Downloads and Install s
¢ Uninstall removes the Plugin SDK from the IDE

Note: On rare occasions, it may be necessary to manually force a refresh of the cached contents
of the remote repository. You can perform this via the button highlighted above.

Once an SDK (or SDKSs) is selected and an install operation begins, you will be presented with
an option to accept the SDK license condition as below:

Figure 4.3. Plugin SDK installation license

[] [] Install
Review Licenses
Licenses must be reviewed and accepted before the software can be installed. .
&

License text (for SDK_2.x_FROM-KB2F 2.6.0.201911251446):

LA_OPT_NXP.Software_License v9 August 2019

IMPORTANT. Read the following NXP Software License Agreement (“Agreement") completely. By selecting the "I Accept” button at the end
of this page, or by downloading, installing, or using the Licensed Software, you indicate that you accept the terms of the Agreement and you
acknowledge that you have the authority, for yourself or on behalf of your company, to bind your company to these terms. You may then
download or install the file. In the event of a conflict between the terms of this Agreement and any license terms and conditions for NXP's
proprietary software embedded anywhere in the Licensed Software file, the terms of this Agreement shall control. If a separate license
agreement for the Licensed Software has been signed by you and NXP, then that agreement shall govern your use of the Licensed Software
and shall supersede this Agreement.

NXP SOFTWARE LICENSE AGREEMENT

This is a legal agreement between your employer, of which you are an authorized representative, or, if you have no employer, you as an
individual ("you" or “Licensee"), and NXP B. ("NXP"). It concerns your rights to use the software provided to you in binary or source code
form and any accompanying written materials (the “Licensed Software"). The Licensed Software may include any updates or error
corrections or documentation relating to the Licensed Software provided to you by NXP under this Agreement. In consideration for NXP
allowing you to access the Licensed Software, you are agreeing to be bound by the terms of this Agreement. If you do not agree to all of the
terms of this Agreement, do not download or install the Licensed Seftware. If you change your mind later, stop using the Licensed Software

© | accept the terms of the license agreement
I do not accept the terms of the license agreement

@ concel) EEIENN

Monitor the download and install progress via the Installation dialog:

Figure 4.4. Plugin SDK installation progress

@ Installing Software

| Operation in progress..

Fetching com.nxp.mcuxpresso.sdk.sdk_2.x_fr...0/plugins/ (2.69MB of 62.76MB at 1.32MB/s)

Always run in background

Cancel Details >>

UG10055

If you click Run in Background, control is returned to the IDE. Of course, the SDK does not
become available until the download and installation complete — at this time, it is possible to
launch a Wizard when choosing a Create or Import option. While it is possible to restart the Plugin
SDK Installer, any existing SDK installations must complete before starting another Install.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 30

NXP Semiconductors MCUXpresso IDE User Guide

4.2.2

4.2.3

UG10055

Note: When starting the IDE for the first time, data for this display is automatically loaded in the
background. If starting the Plugin SDK Installer promptly after the IDE starts, there may be a
short pause while the data populates.

SDK part support via SDK Builder

NXP also provides SDKs for toolchains (including MCUXpresso IDE) via their SDK Builder site.
Through this site (login required), NXP MCU users may request builds for NXP MCUs that can
they can configure to include a range of software features. Once built, the user can download
and install the SDK into MCUXpresso IDE — this is the Classic method for installing SDKs as
used in all previous versions of MCUXpresso IDE. SDKs installed in this way are now referred to
as FileSystem SDKs since they become a shared resource for any IDE installation rather than
part of a particular IDE installation.

You can install these SDKs via a simple ‘drag and drop’ mechanism or from the dedicated
dropdown menu in the Installed SDKs view, which then automatically enhances the IDE with new
part and board knowledge (and usually a large range of examples).

Generate and download SDKs for MCUXpresso IDE as required using the SDK Builder on the
MCUXpresso Tools website at:

https://mcuxpresso.nxp.com/
Important Note: Only SDKs built specifically for MCUXpresso IDE are compatible with

MCUXpresso IDE. SDKs created for any other toolchain do not work! Therefore, when
generating an SDK, be sure to specify MCUXpresso IDE as the Toolchain.

Obtaining and installing an SDK via SDK Builder

Users of earlier versions of the IDE may be more familiar with this model of SDK build and
installation.

SDKs are installed and managed via the Installed SDKs view, which is located by default as the
first tab within the Console view. See item 3 for more information.

SDKs are free to download (login is required); MCUXpresso IDE offers a link to the SDK portal
(shown below) from the Installed SDK Console view, which opens in an external browser. From
this portal, required SDKs can be downloaded onto the host machine. Alternatively, you can open
the portal by going to Help -> Additional Resources -> MCUXpresso SDK Builder.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 31

https://mcuxpresso.nxp.com/

NXP Semiconductors

MCUXpresso IDE User Guide

8 workspace - - MCUXpressa IDE
File Edit Navigate Search Project ConfigTools Bun RIOS Analysis Window Help

= = i = - c@etm LA e
& Project Explo... > Ui Registers #Faults 7, Peripherals+ = 8

There are no projects in your workspace.

F-O- U™

Q E|lL
= B & Ouline X - Global Variables Yewmi=o
SDK Details

NoSDK selected

- -)

To add a project

® ceear

© Quickstart Panel X

- Build your project

B MCUXpresso IDE Quickstart

% No project selected

+ Create or import a project

= O | 0 Installed SDKs 3 | Problems © Console 4 Terminal & Image Info @ Debugger Console < @E T = 0 0 Memory x (=Heap and Stack Usage <o
™| s - §

) Installed SDKs Monitors

% Breakpoints

To install an SDK, simply drag and drop an SDK {zip file/folder) or an SDK Git repository inte the Tnstalled SDKS view. [Commaon ‘m
Installed SDKs . Available Boards| Available Devices

Name SDK Version Manifest Version Location

Figure 4.5. SDK import

Once downloaded, you can install an SDK package(s) by simply dragging from the downloaded
location into the Installed SDKs view or by using the dedicated dropdown menu in the view. In
case of using the dragging method, once dropped, a dialog prompts you to confirm the import
— click OK. The SDK package(s) are then automatically installed into the MCUXpresso IDE part
support repository.

Once complete the “Installed SDKs” view updates to show you the package(s) that you have
just installed.

D Installed SDKs © [Properties [Problems 2 Console & Terminal & Image Info & Debugger Console

@ Installed SDKs
To install an SDK, simply drag and drop an SDK (zip file/folder) or an SDK Git repository into the 'Installed SDKs' view[[Common ‘mcuxpresso’ folder]]
Installed SDKs

Ccv@o&|O=08o

Available Boards|Available Devices

Figure 4.6. SDK import view

Name SDK Version Manifest Version Location
SDK_2.x_EVKB-IMXRT1050 2.10.0 380 B \SDK_2_10_0_EVKB-IMXRT1050.zip
SDK_2.x_ FRDM-K321L28 [2.10.0 (494 2021-07-1 5}] 380 £ <Common>\SDK_2_10_0_FRDM-K3212B.zip
SDK_2.x_FRDM-K64F 2.10.0 3.80 @ \SDK_2_10_0_FRDM-K64F
SDK_2.x_LPCXpresso55569 2.9.0 3.8.0 i \SDK_2_9_0_LPCXpresso55569.zip

UG10055

By default, SDKs are installed into a Common folder and are therefore available to any
MCUXpresso IDE instance. Alternatively, it is also possible to install SDKs into the current
Workspace making their installation local to that Workspace. The selected install location
is shown in the SDK Window text as highlighted above. Also highlighted is the new
version information string (displayed in gray), this feature allows different SDK builds to be
distinguishable. Please also see for further information on SDK
installation options.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 32

NXP Semiconductors MCUXpresso IDE User Guide

SDK Notes:

¢ Released in parallel with MCUXpresso IDE version 11.9.0 are updated SDKs (MCUXpresso

SDK v2.15). These are indicated by their version 2.15.abc and a manifest version 3.14.0 in the
Installed SDKs view. While older SDKs are still compatible with the newest MCUXpresso IDE
version, it is recommended that users check and update to the latest available SDK package.

« Installed SDK view tooltips display comprehensive version information.

MCUXpresso IDE can import an SDK as a zipped package or unzipped folder (or zipped
Plugin). Typically importing as a zipped package is expected.

< The main consequence of leaving SDKs zipped is that you are not able to create (or import
projects) into a workspace with linked references back to the SDK source files.

Importing an SDK via drag and drop copies the required files and the original file/folder remains
unaffected. The copied files are installed into a default location allowing imported SDKs to be
shared among different IDE instances/installations and workspaces. Data from imported SDKs
populate wizards with available MCU and board information. In addition, they are parsed to
generate part support and make example projects and drivers available, and so on.

« By default, SDKs (like workspaces) are located in the user’s local storage, this means they
are only available to the user who performed the installation. Please also see
for details on how to use a shared location if needed.

Once installed, the part support provided by the SDKs is regenerated. This regeneration is
required because an MCUs part support may be specified (with different versions) within more
than one SDK. On rare occasions, it may be necessary to force a regeneration of SDK part
support. You can do this by clicking the Recreate and Reload button within the top right block
inside the Installed SDK view, or by right-clicking within the view and selecting Recreate.

4.2.4 Installing SDKs by importing a remote SDK Git repository

NXP also provides SDKs via its MCU SDK Git repository. You can install these SDKs
automatically by using the wizard from Installed SDKs view.

o %2 [Properties [%]] Problems [l Console @ Terminal ==
c-@on|@d
[Installed SDKs Import archive...

To install an 50K, simply drag and drop an 5DK (zip file/folder) or an SDK Git repos

Mame

Import folder...
Import local SDE Git repository...

Available Boards | Available Devices z :
Import remote SDK Git repository...

SDK Version MManifest Version Location

Figure 4.7. Import remote SDK Git repository

UG10055

After selecting Import Remote SDK Git Repository... from the menu, the following window opens:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 33

NXP Semiconductors MCUXpresso IDE User Guide

38 sDK Impart Wizard O X
Import remote SDK Git repository

Please review and, if required, update details about the SDK Git repository.

Location
Local folder where the files will be saved. Folder must be empty.

CA\Temp\mcux-sdk Browse...

Remote repository
Remote repository information

Repasitory | https://github.com/NXP-mcuxpresso/mcux-sdk ~ ‘

Revision | main

[Iclone all examples (this will take a while)

@' < Back Finish Cancel

Figure 4.8. Import remote SDK Git repository wizard

You'll have to select an empty folder where the SDK Git repository will be cloned. Revision can
be “main” if you want the latest state, another branch from the Revision dropdown list, or any
commit SHA.

Note: To speed up the remote import process, the default operation does not clone the example
sources for every available board. Instead, they are downloaded on-demand whenever a specific
example is selected for import. However, if you prefer a complete download from the start, you
can select the Clone all examples checkbox. This option allows you to have all examples readily
available, but keep in mind that this leads to an increased download duration.

After clicking Next, the wizard continues to clone and configure the repository using the ‘west’
utility.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 34

NXP Semiconductors

MCUXpresso IDE User Guide

38 sDK Impart Wizard O X
Import remote SDK Git repository

Please review and, if required, update details about the SDK Git repository.

Location

Local folder where the files will be saved. Folder must be empty.

CANXP\mcux-sdk Browse..

Remote repository

Remaote repository information

Repository | https://github.com/NXP-mcuxpresso/mcux-sdk

Revision main

Clone all examples (this will take a while)

Performing 'west' update: Cloning examples submanifests
]

® < Back Next > Finish Cancel

Figure 4.9. Import progress

Please note that, depending on the speed of your Internet connection, the operation may take
a few minutes to complete. After cloning has finished, the wizard advances to the next page,
providing you with the option to import the repository. If you do not wish to change the manifest
location, pressing Finish imports the repository with the default settings. The “Import SDK
example(s)” wizard can also open automatically, once the wizard is closed, if the associated

checkbox is ticked.

B soK Import Wizard O *
Import SDK Git

Please review and, if required, update details about the local SDK Git repository.

Location

Select location of the repository and the folder where the manifests are located

Repository location: | CANXP\mcux-sdk ‘ Browse...

Manifest(s) folder: |C:\N)(P\mcux—sdk\core\manifests ‘ Browse...
[[] show “Import SDK example(s)” wizard after completing SDK installation

® Next = Finish Cancel

Figure 4.10. Importing cloned SDK Git repository

Afterward, the SDKs are imported and shown in the Installed SDKs view.

UG10055 All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

35

NXP Semiconductors MCUXpresso IDE User Guide

{0 Installed SDKe [[T] Properties [£) Problems [Conscle 8 Terminal |5 Image nfo [Debugger Console 7, Offline Peripherals c-Peo&|0=n
{0 Installed SDKs

Ter incstall an SDK, sienpdy deag and drop an SDK (zip filefalder) or an SDK Git repository into the Installed SDKS' view. [Comman ‘moupresse’ folder]
Installed SDKs . Available Boards | Avsilsble Devices

Mame SDK Version Manifest Version Lecation o
w [H8 SDE Gat Repositony 280 - 2.10.0 380 (™ C\Repositony
[8 SDK_2x_EVK-MCIMXTULP 2100 180 [< SOK G Repositony \exarmples| manifests\ EVK-MCIMXTULP_manifest
= 8 SDK_2ax_EVK-MIMXEMM 2100 180 = - Repositon v\ exarnples manifests| EVK-MIMXEMM_manifess v
g SOK_2x_EVK-MIMXEMN 2100 180 = citory >\ examples\manifests EVE- MIMICEMN_manifest_vi
] i SOE_2:¢ EVE-MIMAEMNDDRIL 2100 380 o= - tony = ex arnplesh ranidestsh EVE-MIBCEMMDDRIL rnand
B 8 SOE_2:x_EVE-MIMAEMP 2100 380 o tory > \exarnphes rnsndests) EVE-MIMICEMP _rmsndest_v3
B 88 S0E_Zx_EVK-MIMXEAG 2100 380 o - tony s e armple mendests) EVE-MIMXGEMO maniest_v
= 8 S0K_2x_EVK-MIMXETI000 2100 180 = . bory >\ ex armples) maniests) EVE- MIMIGRT1010_manifest_
] 8 SDK_2ux_EVK-MIMXETIONS 2100 180 = bory >\ ex amples\ manifests\EVE- MIMXRT1015_manifest_
] & S0E_2ux_EVEK-MINMNETI020 2100 380 = - tony > \exarmphes rmandestsh EVEK-MIWICRT1 020_manifest_
B B SOE_2:_EVE-MIMARTI060 2100 380 o < itony e arnples randests\ EVE- MIBMUORT D60_smanifest_
B 88 S0E_Zx_EVK-MIBXRTI06NMN 2100 380 o - oy \ex arnphes rnsnd etsh EVE- MIBUICRT1 084 _rmanifest_
EA 8 SOE_2x_EVK-MIMXRTSSS 2100 380 O = 1 Repositon =\ examplesimenidests) EVE- MIMXATS0S_mandest v
= 8 S0K_2x_EVK-MIMXRTESS 2100 180 (= - lepositony >\ examples\ manifests)\ EVK- MIMORTSSS_manifest v
] # SDE_2x_EVKE-IMXETI050 2.100 380 = - tony = \examphes misnifests\ EVKB-IMXRTI0S0_manifest s
B4 & SOK_2x_FRDM-K22F 2100 380 = - tony =\ ex armphes mandfests) FROM-K22F_manifest_v3_Sx
] #8 SOE_2x_FROM-K28FA 250 380 = - tory > \exarmnples manidests\ FRDM-K28FA_rnanifest_v3 8
F &8 SOE_1x_FROM-K3ZL2A4S 2100 380 (- tory > \examplesimenidfests) FROM-KIZL2A4S_manifest v
B #8 SOK_2x_FROM-K32L2E 2100 380 o tory >\ examnplesi menidests) FROM-K32L2E_mandfest v3_
= 8 S0K_2x_FROM-K32L3A6 2100 380 - - tory \exarmples\mandests\ FROM-K32L146_manifest 3
] # SDK_2x_FROM-K6SF 2.100 380 & - v+ \exarmples\mianifests) FRDM-KB4F_manifest v3_Sx w

Figure 4.11. Installed SDK Git repository

Important Note: You need to have both Git and West installed to use this wizard. If West is not
installed or not found in the PATH environment variable, the IDE displays the following warning:

. ‘west' tool not found pod

Please install ‘'west' before importing a remote SDK Git repository. Details can be
lé found here, Also, please include the path to ‘west' in the PATH envircnment variable
and restart MCLUXpresso IDE.

Figure 4.12. Import remote warning

On MacOS one way to add West to the Path environment variable is to use “launchctl” command.
Usage:

sudo | aunchct!| config user path $PATH: { Wst absol ute path}

4.2.5 Installing SDKs by importing a local clone of an SDK Git repository

If you used command line to obtain a local copy of the remote SDK Git repository, you can import
it using Import Local SDK Git Repository... menu form Installed SDKs view.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 36

NXP Semiconductors

MCUXpresso IDE User Guide

[Installed SDKs 2% [C] Properties [*] Problems [Console & Terminal .o'i.,l. @B =0

Import archive...

7 Installed SDKs

Import folder...

To install an SDK, simply drag and drop an SDK (zip file/folder) or an SDK Git repository I

Import local SDK Git repository...

Installed SDKs AvailahIeElaards- Available Devices

Import remote SDK Git repository...

Name SDK Version Manifest Version Location

Figure 4.13. Import local SDK Git repository

4.2.6 Installed SDKs operations

The installed SDKs view now incorporates 3 tabs. In addition to the Installed SDKs tab, new
Available Boards and Available Devices tabs are provided. These tabs expose the supported

boards and devices provided by the installed SDKs and all
and Example Import Wizards:

ow the direct invocation of New Project

(@ Installed SDKs

cole Faatra

=

& p

older) into the 'Installed SDKs' view. [Col

et
lInstalled SDKs [Available Boards * Available Devices|

>

type to filter MCU selection

Board

() Installed SDKs 32 | [C] Properties 2| Problems [Console (® Terminal |, ImageInfo (54 Debugger Console

mmon 'mcuxpresso’ folder]

Device

[Create a New Project...

MIMXRT1062DVL6A

[Import Examples...

EVK-MIMXRT1060-AGMO1

MIMXRT1062DVL6A

1

Figure 4.14. SDK tabbed views

Various other operations are available from the Installed S
options:

Import archive...

Import folder...

Import local SDK Git repository...
Import remote SDK Git repository...
Download and Install SDKs

SDK Documentation
SDK Info

Copy SDK

Paste SDK

Open Default Location

W ~|E| @ T T ¢ O

(‘=

&

Open Location
Unzip archive
Uninstall SDK

. Recreate

UG10055 All information provided in this document is subject to legal disclaimers

DKs view some from a right-click menu

© 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

37

NXP Semiconductors

MCUXpresso IDE User Guide

Important Note: It is not possible to unzip Plugin SDKs from this view. However, you can convert

them to

. Do not attempt to manually modify a Plugin SDK in any way,

doing so could lead to a loss of SDK part support from the IDE. You can delete Plugin SDKs
either by using the Uninstall SDK button from the Installed SDKs view, or using the Uninstall

button from the Install MCUXpresso SDKs view.

From here you can perform many actions such as view associated embedded SDK
documentation that would otherwise require the unzipping and exploration of the SDK structure.

The Installed SDKs view shows whether the SDKs are stored as zipped archives or regular
folders. MCUXpresso IDE offers the option to unzip a filesystem SDK archives in place via a

right-click option onto the selected SDK (as below).

& Import archive...

Import folder...

= Import local SDK Git repository...

= Import remote SDK Git repository...
® Download and Install SDKs
a1l
1

SDK Documentation >
i SDK Info >
Copy SDK
™ Paste SDK

& Open Default Location

= Open Location

I.-é Unzip archive I
% Uninstall SDK

% Recreate

Note: Unzipping an SDK may take some time and is generally not needed unless you wish to
make use of referenced files or perform many example imports (where some speed improvement

will be seen).

After unzipping an SDK, its icon updates to reflect that it is now stored internally as a folder.

@ Installed SDKs % [l Properties [£! Problems & Console & Terminal & Image Info & Debugger Console

» Installed SDKs

Installed SDKs ™. Available Boards Available Devices

Name SDK Version Manifest Version Location
SDK_2.x_EVKB-IMXRT1050 2.10.0 3.8.0 X
SDK_2.x FRDM-K32L2B 2.100 380 O
SDK_2.x_FRDM-K64F 2.10.0 (494 2021-07-15) 3.8.0
SDK_2.x_LPCXpresso55569 2.9.0 3.8.0 £

Figure 4.15. SDK unzipped

To install an SDK, simply drag and drop an SDK (zip file/folder) or an SDK Git repository into the ‘Installed SDKs' view. [Commen ‘mcuxpresso’ folder]

0mm0n>\SDK 2_10_0_FRDM-K64F

c~@&|@=n0

\SDK_2_10_0_EVKB-IMXRT1050.zip
\SDK_2_10_0_FRDM-K32L2B zip

\SDK_2_9_0_LPCXpresso55569.zip

Many other options are available such as examining SDK XML description files, Copying and

Pasting SDKs, and managing the library of installed SDKs.

©

Tip

To edit (and save) SDK XML files, you must first unzip the SDK and change the
following preference: Preferences -> MCUXpresso IDE -> SDK Handling -> Misc,

uncheck the read-only mode option. Once saved, changes become permanent for

that SDK installation.

UG10055 All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

38

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

Tip
@ In addition to the other SDK options, you can paste an SDK into the Installed SDK
view from the file system or another IDE instance.

Finally, SDK part support automatically regenerates when a new SDK is installed. If a project is
imported and the expected part support is not available, then select Recreate from the right-click
menu option to force a recreation of the SDK part support.

Converting a Plugin SDK into a FileSystem SDK

On occasion, it may be useful to migrate a Plugin SDK to become a FileSystem SDK — for
example, if you require the SDK to be unzipped or to be shared with other IDE installations. To
do this simply select the Plugin SDK within the Installed SDK view then from the right-click menu
select Copy followed by Paste. This launches an Import operation and copy the SDK contents
from the Plugin into the default SDK FileSystem location. This SDK is the preferred choice over
the Plugin version.

Note: A Plugin SDK is part of an IDE installation and can only be deleted using the dedicated
“Uninstall” buttons from Installed SDKs and Install MCUXpresso SDKs views.

Uninstalling (deleting) an installed SDK
Plugin SDKs become part of the IDE and so you cannot simply them from the filesystem. Always

use the Uninstall button from the Install MCUXpresso SDKs view or the Uninstall SDK button
from the Installed SDKs view.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 39

NXP Semiconductors MCUXpresso IDE User Guide

resso S0Ks =
ICUXpresso SDKs to install from https://mcuxpresso.nxp.com/eclipse/sdk

support to MCOUXpresso IDE allowing projects to be created and debugged.
one or more MOUXpresso SDKs to provide device knowledge, drivers, middleware, and reference exampile applications for your development board or MCLL

Boards . Processors

SDK Version Package Flash FaM Status * | Fitter: | type to filter MCU selection

- [[] Hide Installed [Show latest [_] Hide board images

. Min Flash
—_
. Mao: Flash
<
Min RaM
—
Max RAM
evkbmimxt1170 SDK_2x MIMXRT_ 2134 MIMXRT11760_ 0 2048 [extemal Flash
Cores
] Multicore
eviemimart 1010 SDK_2x EVK-MI.. 2130 MIMXETI01ID- © 128 i -
® Al Cores () Conex-M0+ () Corex-M33
O Conex-Md () Cortex-MT
evimimart 1015 SDE_2x EVE-MIL. 2130 MIMXET10150. O 128 Keywords
] alexa baT Service (A15) [] Alibaba Cloud (lyun)
[Amazon Web Service (AAWS) [analog comparator
evimimart1015_om13 T90host SDK_2a EWE-MIL. 2130 MIMXETID150_ O 128 [anslog-to-digital comparator [snalog-to-digital converter
[J Aol [Asynetronous Sample Rate Conve
[] Audio] Azure RTOS
eviemimart 1020 SDE_2x EVE-ML. 2130 MIMXETI02ID. O 256 [Bluetooth LE [Bootioader (MCUBoOt)
] Brown Out Detection [] Bus Encryption Engine (EEE)
= Ceav O
‘ evkmimart1020_om 1 3 Ta0host SDK_2x EVK-MI.. 27130 MIMXET1021D- O 256 []cANogen [cAMopen (FD)
P i
[JCMsIS NN [Crank Storybaard
[

[
=]

[Cryptography | Cryptography
evimimurt 1024 SDK_2x MIMNAT.. 213/ MIMXRT1024D.. 4096 256 v

Figure 4.16. Plugin SDK delete

Note: A FileSystem SDK is always the preferred choice over a Plugin SDK, allowing the effective
replacement of a Plugin SDK by the installation of a FileSystem SDK offering equivalent features.

If an SDK has been installed by the ‘Drag and Drop’ method, then a copy of the SDK will have
been installed into the Default Location. You can uninstall and delete SDKs installed in this
location via a right-click option. After uninstalling an SDK, part support is automatically recreated
for the remaining SDKs. Please see for more information.

Alongside each installed SDK, there is a check box. If unchecked, the SDK is hidden from
MCUXpresso IDE until re-checked. If multiple SDKs are installed that contain shared part
support, then this feature may be useful to force the selection of part support from a particular
SDK. Please see for more information.

You must manually delete or hide SDKs installed into non-default file system locations if they are
no longer required. Note: you may have to quit MCUXpresso IDE to delete these SDKs. Please
see for more information.

SDKs installed from a Git repository can only be uninstalled by deleting the entire repository from
the Installed SDKs view.

4.2.7 Installed SDKs features

You can explore each of the SDKs within the Installed SDKs View to examine content such as
Components, Memory Settings, included Examples, and so on.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 40

NXP Semiconductors MCUXpresso IDE User Guide

—)

’ _ % Qutline &8 &9 Global Variables Weam~=08

[P Install 32 [Propert (%! Proble & Progres ﬁn |
SDK Details

) Selected SDK content: SDK_2.x_EVK-MIMXRT 1060
@ Installed SDKs

C. Boards =
To install an SDK, simply drag and dmp an SDK (zip fil eﬁlﬂ vEVK-MIMXRT 1080 1.0.0
mﬁwallabm Boards | Available Dewcﬂ » %5 Debug Configurations
Name SDK Version » =5 Examples
v itMemory Settings
—_}_— sox 2 X FRDM K32L2B 9. 5 0 1 BOARD_FLASH 0x60000000 0x80C
1 SDK_2.x_LPC55569 2.6.2 | BOARD_SDRAM 0x80000000 0x20(
i SDK_2.x_EVK-MIMXRT1020 2.6.0 X | b EVK-MIMXRT 1080-AGMO1 1.0.0
5 SDK_2.x_EVKB-IMXRT1050 2.6.0 11 € Devices
i SDK_2 x_FROM-KB4F 2.6.0 1] > ©MMXRT1062 1.00
£ SDK_2.x_board_FRDM-K32L2A: 2.6.0 ¥ i Compilers
gee
‘1 ¥ i3 Toolchains
»MCUXpresso_IDE 11.0.0
v 2 Toolchain Settings
P MCUXPresso 11.0.0
v 4} Components
109 0)

Figure 4.17. SDK explore

4.2.8 Advanced use: SDK importing and configuration

SDK importing via drag and drop incorporates two features. Firstly, the location where the SDK is
copied, and secondly, the automatic scanning of this location to create the required Part Support.
You can explore and change the behavior via a preference Preferences -> MCUXpresso IDE -
> SDK Handling -> Installation leading to the window below:

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 41

NXP Semiconductors

MCUXpresso IDE User Guide

»General
»C/Ce++
> Help
¥ Install/Update
» Java
> Library Hover
MCUXpresso Config Tools
¥MCUXpresso IDE
» Debug Options
Default Tool settings
» Editor Awareness
FreeRTOS TAD
General
MCU settings
Paths and Directories
Quickstart Panel
¥SDK Handling
Components
Installation
Misc
SWO Trace
User Interface Enablement
Utilities
»Run/Debug
»Team
¥ Terminal
Validation
> XML

Figure 4.18. SDK installation preferences

Installation O v v

Manage SDK usage within MCUXpresso IDE
SDK locations
SDK Drag&Drop install location
User defined folder

Workspace e Common ‘mcuxpresso’ folder

User defined folder
SDK search roots:

lstersInxp/mcuxpressofﬂZSDKPackages l
sers/mxp/mcuxpresso 'ackages

/Users/nxp/mcuxpresso/SDKPackages

New...

SDK refresh policy on startup
Refresh and recreate part info

Other options
Always unzip SDK zipped files when installing

+| Do not ask for unzipping SDK on import
Do not ask for confirmation on SDK Drag and Drop install
Make missing SDK reference persistent
Do not ask user action for missing SDK reference in project
Enable SDK/manifest versions switch (needs an IDE restart)

Automatically delete wrong/incompatible SDKs

Restore Defaults Apply

Cancel Apply and Close

You can see in the above graphic that two search locations are present. The 02 path is the
default search path for MCUXpresso IDE version 11.0, earlier versions of MCUXpresso IDE
used the 01 path. This older path only appears if the location actually contains installed SDKs
(typically installed via an earlier version of MCUXpresso IDE). The reason for these separate
paths is to allow users to have both the latest and older versions of MCUXpresso IDE installed
without presenting incompatible versions of SDK to older versions of the tools. Please see

« Workspace
e Common (the default)
e User Defined

You can change the default Common install location to either the currently selected Workspace
or a User-Defined location. Once doing this, a new SDK Search Root path is automatically added

to the search roots list.

Note: while you have the choice to remove other search roots if so desired, it is not possible to

for more information.

remove the currently selected drag-and-drop location.

In addition, from this dialog, you can add new search paths to folders where you have stored or
plan to store SDK folders/zips. Those SDKs appear in the Installed SDKs View along with those

from the default location when the Installed SDK view refreshes.

The main differences between having SDKs in the default location(s) or leaving them in other

folders are:

UG10055

All information provided in this document is subject to legal disclaimers

User Guide

Rev. 11.9.0 — 5 January, 2024

© 2024 NXP Semiconductors. All rights reserved.

NXP Semiconductors MCUXpresso IDE User Guide

4.2.9

UG10055

The “Delete SDK” function is disabled when using non-default locations
* Since these SDKs are not imported, they may be original files
The knowledge of the SDKs and their part support is per-workspace

The order of the SDKs in the SDK location list may be important on occasion: if you have multiple
SDKs for the same part in various locations, you can choose which one to load by reordering. If
multiple SDKs are found, a warning appears in the Installed SDK view.

Note: Only the default SDK location(s) is persistent between workspaces. You must create any
other locations for each Workspace as required.

Also displayed in the dialog (above) several ‘checkbox’ options that are discussed below:

Always Unzip SDK ... if checked, unzip a zipped SDK on import.

Do not ask for unzipping ... if checked (default), the IDE does not prompt the user to consider
unzipping the SDK.

Do not ask for confirmation ... if checked, the IDE imports an SDK via drag and drop without
requesting user confirmation.

Make missing SDK reference persistent ... this setting controls the persistence setting when
the option below is checked.

Do not ask for User action ... see - if checked, make this SDK
association setting without prompting the user.

Enable SDK/manifest version... if multiple SDKs for the same part are installed, this option, if
checked, also allows the selection of an older SDK from within the Installed SDK view via a
dropdown menu on the SDK Version

« Also, some SDKs include older versions of the manifest (XML description) ... if checked, this
option allows an older manifest version to be selected from within the Installed SDK view
via a dropdown menu on the Manifest Version.

Automatically uninstall ... if checked, delete an SDK found in drag and drop install location that
is incompatible with MCUXpresso IDE.

Advanced use: SDK misc options

Additional miscellaneous SDK preferences are also available. These checkbox options are
shown below:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 43

NXP Semiconductors

MCUXpresso IDE User Guide

[ereferences m]
type filter text Misc i
¥ MCUXpresso IDE SDK management misc options
v De:’i‘? fg"""s Prioritize IDE supplied flash driver
- L-‘"';mz:‘g:mm [[] Default SDK debug console to semihast on project creation/import
Advanced Include semihost hardfault handler by default on project creation/import
DFU Options [#] Enable SDK options check
Miscellaneous Selected files from SDK View open in read-only mode
PEMicro Options [Jopen project main files after importing multiple SDK examples
Probe Discovery [Enable "SDKs for selected MCU" selection in SDK Import Wizard
Default Tool settings
Editor Awareness
Energy Measurement
General
MCU settings
Paths and Directories
Quickstart Panel
RTOS TAD
~ SDK Handling
Components
Installation
Misc
SWO Trace
User Interface Enablement
Utilities
Run/Debug
SWTChart
Verminal © Restore Defaults Apply
Validation

Figure 4.19. SDK preferences misc

Where:

« Prioritize IDE-supplied flash drivers ... typically, LinkServer flash drivers are supplied as part
of the SDK part support for a particular MCU. However, these LinkServer flash drivers are
usually duplicated within the IDE installation where newer versions might be found. This option,
checked by default, causes the IDE-supplied drivers to be used in preference to SDK-supplied
flash drivers. Searching the flash driver directory of the IDE in preference to SDK dynamically
part support files also simplifies flash driver development

« Default SDK debug console to semihost ... this option, checked by default, sets project defines
to select semihosting as the output format

¢ Include semihost hardfault handler ... this option, checked by default, causes a minimal
hardfault handler to be included within new and imported projects. The purpose of this handler
is to send semihost operations to null when no debug tools are connected. Without such a
handler, any semihosted operation halts the MCU when no debug tools are connected. This
is probably the most useful option for early project development, however, this may clash with
any real hardfault handler.

¢ Enable SDK options check ... this option, checked by default, allows the IDE to check the
options of an SDK example on import and attempt to resolve any incompatible options found.

» Selected files from SDK view ... this option, checked by default, forces any file opened from
the Installed SDKs view to be opened in Read Only mode. This is to protect SDK files from
accidental corruption. Note: this option only applies to SDKs that are imported unzipped.

* Open Project main files ... an imported example project is opened within the project explorer
view and the source file containing the main function is opened. This option, unchecked by
default, allows this to occur if importing multiple files at the same time.

4.2.10 Important notes for SDK users
Installing an SDK into MCUXpresso IDE adds to its default capabilities, but SDKs come in many
different configurations and versions. The section below discusses some of the issues that users
may experience when working with SDKs.
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 44

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

Only SDKs created for MCUXpresso IDE can be used

If you see an error of the form MCUXpresso IDE was unable to load one or more SDKs, the most
likely reason is that the SDK was not built for MCUXpresso IDE. Within the SDK Builder, verify
that the Toolchain is set to MCUXpresso IDE. If necessary, reset the toolchain to MCUXpresso
IDE and rebuild the SDK.

SDK compatibility with earlier versions of MCUXpresso IDE

A new SDK version 2.15 has been released in parallel with MCUXpresso IDE version 11.9.0.
However, this SDK format includes features that are not compatible with earlier versions of
MCUXpresso IDE. As a result, these new SDKs may fail to install or offer reduced features when
used in older versions of MCUXpresso IDE.

To support users who might have both this version and older versions of MCUXpresso IDE
installed on their system, we have adopted a new default SDK installation location but also
maintained support for the default used by older versions (now effectively Read Only from version
10.1.0 onwards).

The result of this is that MCUXpresso IDE version 10.1.0 and later automatically inherit any SDKs
installed into the (old) default location by previous versions of the IDE. While older versions of
the IDE do not ‘see’ any SDKs installed with MCUXpresso IDE version 10.1.0 or later.

Note: If there is no need to maintain compatibility with older versions of the IDE, it is
recommended that users migrate to using the latest SDKs where available.

Shared part support handling

Each SDK package contains part support for one or more MCUSs, therefore it is possible to
have two (or more) SDK packages containing the same part support. For example, a user
might request a Tower K64 SDK and later a Freedom K64 SDK that both target the same
MK64FN1MOxxx12 MCU. If both SDKs are installed into the IDE, both sets of examples and
board drivers are available, but the IDE selects the most up-to-date version of part support
specified within these SDKs. This means the various wizards and dialogs only ever present a
single instance of an MCU, but may offer a variety of compatible boards and examples. Note:
If a board is selected (from one SDK) and part support is provided by another SDK, a message
appears within the project wizard to show this has occurred but no user action is required.

If two SDKs with matching part support are installed, and the SDK providing part support is later
deleted, then the IDE automatically uses part support from the remaining SDK.

Finally, if a project is created with one SDK part support — for example Freedom K64, and then:

¢ That SDK is changed to another SDK with compatible part support — for example TWR K64

¢ The project is shared with another user who has a different SDK that includes compatible part
support (perhaps an SDK that has only device support).

A dialog similar to the one below appears for each project where this occurs:

[] Project SDK management
! The project '"MKE4FN1MOxxx12_My Shared_Project’ SDK 'SDK_2.x_FRDM-KB4F' cannot be
found.

Please select a compatible SDK for chip '"MKG64FN1TMOxxx12' to use:

SDK_2.x_TWR-KB4F120M [2.4.0] | T] Make SDK persistent

Cancel | |CLIN

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 45

NXP Semiconductors MCUXpresso IDE User Guide

4.3

43.1

UG10055

Where the option to Make persistent permanently changes the project to be associated with the
selected SDK. If unticked, the IDE accepts the change as temporary and writes no data back
to the project.

Note: When making this new association, the project contains files from one SDK but is
associated with another. Refreshing project or using the component management feature, may
copy incompatible code into the project.

Building a Fat SDK

You can generate an SDK for a selected part (processor type/MCU) or for a board. If you only
select a part, then the generated SDK contains both part support and board support data for the
closest matching development board.

Therefore, to obtain an SDK with both Freedom and Tower board support for say the Kinetis
MK®64... part, simply select the part to add the board support automatically.

If you choose a part that has no directly matching board, say the Kinetis MK63... then the
generated SDK contains:

¢ Part support for the requested part, that is, MK63...

¢ Part support for the recommended closest matching part that has an associated development
board, that is, MK64...

< Board support packages for the above part, that is, Freedom and/or Tower MK64...
Uninstallation considerations

MCUXpresso IDE allows you to install and uninstall SDKs as required (although for most users
there is little benefit in uninstalling an SDK). However, since the SDK provides part support to the
IDE, uninstalling an SDK results in the removal of part support as well. Any existing project built
using part support from an uninstalled SDK will no longer build or debug. Such a situation can
be remedied by re-installing the missing SDK. Note: if there is another SDK installed capable of
providing the ‘missing’ part support, then the IDE automatically uses it.

Sharing projects
Note: Also see below:

If you build a project using part support from an SDK and then export it — for example, to share
the project with a colleague who also uses MCUXpresso IDE, then the colleague must also install
an SDK providing part support for the MCU of the project.

Enhanced project sharing features

MCUXpresso IDE has a range of features designed to improve the ease of project sharing. These
features combine to streamline the sharing and collaboration process.

Project drag and drop

In addition to the existing project import and export capabilities available from the Quickstart
panel, a new set of features has been introduced to ease the transfer of projects.

Previously, the import of a project required browsing to a project location followed by an import.
Now ...

* You can import projects into a Workspace by simply dragging and dropping a folder (or zip)
containing one or more projects into the Project Explorer view

* You can copy projects from one IDE instance to another by simply dragging and dropping from
one Project Explorer view to another

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 46

NXP Semiconductors MCUXpresso IDE User Guide

Eclipse also offers the following functionality:

* You can also export projects by dragging from the Project Explorer view onto a host filer

* Warning: You must take care here since the default Eclipse behavior when dragging is to
move files from the workspace rather than performing a copy. You can modify this behavior
to copy on Mac via holding the Option Key, and on Windows via holding Ctrl. Note that if the
underlying files of a project are moved, the project remains visible within the project explorer
view but is longer usable. You should perform a project explorer refresh (F5) in this case.

Tip

@ If you move a project accidentally (as described above), you can re-import it by
dragging it back from the filer location into the project explorer view (the original
project must be removed first otherwise a clash of names prevents import).

4.3.2 Project-local SDK part support

UG10055

One weakness of the SDK model of extending the capabilities of the IDE comes when sharing
projects with colleagues — since they must also have the same SDK installed to use this shared
project.

To avoid this problem, SDK projects (and examples) can be modified to contain a local copy of
the required SDK part support.

SDK project may be enhanced to contain local SDK part support

« SDK-based projects can now import a cache of part knowledge from an installed SDK
« Simply right-click on a project and select add SDK Part Support

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 47

NXP Semiconductors

MCUXpresso IDE User Guide

Close Project

Build Configurations
Build Targets
Index

Validate
Run As
Debug As
Profile As

Launch Configurations
Smart update

Close Unrelated Projects

Restore from Local History...

v & MK64FN 1MOxxx12_My Shared_Project
» & Project Settings 4 |
> ﬁ' Binaries New »
» il Includes Go Into
» B CMSIS 3 ‘Open In New Window
» 2 board ‘Show in Local Terminal
» (B drivers S
» (2 source - E‘%
& st?!‘t'up X Delete =
> (2 utilities S >
» (= Debug Move...
» (=doc Rename... F2
P i Import...
=5 Export...
Build Project
Clean Project
“ | Refresh F5

yrvy

¥ =5 MKB4FN TMOx00c1 2_My Shared_Project
¥ =i Project Part Support
¥ o SDK version 2.4.0 package for FRDM-K84F board
» il Boards
¥ lus Compilers
» 441 Components
» £ Devices
» (5 Toolchain Settings
» & Toolchains
» € Project Settings
» ¥ Binaries
» il Includes
» (2 CMSIS
» (B board
» ([Bdrivers
» (& source
» (2 startup
» (Z utilities
» (= Debug
» (= doc

SDK Management
Tools

B Mcuxp

SRy I

resso Config Tools

YYRAY YY

Team
Compare With
Configure
Source

Properties

Figure 4.20. Add SDK local part support

YYvYYE

f# Manage SDK Components
“, Refresh SDK Components
™. Add SDK Part Support

¢ Another user can then use such projects (if using MCUXpresso IDEs version 10.2.0 or later)
without first downloading and installing the appropriate SDK

« In such cases, the local part support of the project is visible as an installed SDK

(9 Installed SDKs 2 [T Properties & Console [£] Problems [J Memory &3 Debugger Console € Instruction Trace B3 Power Measurement Tool [SWO Tra

@ Installed SDKs

To install an SDK, simply drag and drop an SDK (zip file/folder) into the ‘Installed SDKs' view. [Common ‘mcuxpresso’ folder]

Name SDK Version Manifest Version Location
5 SDK_2.x_EVK-MIMXRT1020 2.4.0 3.3.0 1) /SDK_2.4_EVK-MIMXRT1020.zip
g 2 x EVKER-IMYXRTI1080 240 240 i) i = 2 i
(= SDK_2.x_FRDM-K64F 242 1) 33.0 (® < Workspace> [MKB4FN1MOxxx12_Project_My_Shared_Project I
ﬁ X TROM-RET15Z 4.1 350 T SOR 2.2 FTROM-RET15Z.21p
2 SDK_2.x_LPCXpressc54618 2.4.1 3.3.0 [} /SDK_2.4.1_LPCXpresso54618.zip

Figure 4.21. View SDK local part support

Note: this feature is not designed to replace the need for ultimately installing an SDK, since
there are implications in project size, and so on. rather it is intended as a short-term solution to
decouple projects from the requirement for an SDK.

UG10055

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

48

NXP Semiconductors MCUXpresso IDE User Guide

Finally, you can remove local part support in the same way as you have added it. Simply right-
click on a project and select SDK Management -> Remove SDK Part Support. After doing this,
you must install an appropriate SDK in order to use the project.

4.3.3 Project-local support files
Supporting files required for debugging such as flash drivers, LinkServer Connect and Reset
scripts are usually found (automatically) either within an SDK or installed by default within the
LinkServer installation folder.
However, on occasion, bespoke flashdrivers and/or scripts may be required. While you could
store and reference these files from various locations within the file system, to enhance project
sharing, you can now include such files directly within a project and locally reference them.
To use script and flash driver files in this way, first, simply drag them into the local Project
structure:
¥ =5 MKE4FN 1MOxxx12_My Shared_Project <Debug>
» € Project Settings
> ! Includes
> 2 CMSIS
» 2 board
» 2 drivers
» 2 source
b (2 startup
> 2 utilities
> =doc
(B MKBAFN1MOxxx 12_My Shared_Project LinkServer Debug.launch
=| my_connect.scp
=| my_flash.cfx
=| my_reset.scp
You can now use LinkServer launch configurations to directly browse to local scripts (connect
or reset) as shown below:
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 49

NXP Semiconductors

MCUXpresso IDE User Guide

[N=R)
Modify configuration and continue.

Name: | frdmk641_bubble LinkServer Debug

Edit Configuration
<

»

[51 Main | %% GDB Debugger ([LinkServer,Debugger’, € GUI Flash Tool | Other Symbols| b= Startup | & Source | (] Common

LinkServer Debugger
Debug Options

Debug Connection |SWp [

LinkServer Options

~ Debug Connection
Settings for the debug connection

Attach only | Reset on Connect | Disable use of precannect script
Reset seript B Workspace... File System...
Connect script | B workspace... ||| s UL -
[[SN Connect script

BOGtROM stall

Flash driver reset handling

Disconnect behavior cont

* Advanced Settings
Advanced options

Memory checking
Debug level 2
Override core index

Wirespeed (Hz}

Additional options

Pre launch command

Figure 4.22. Local script file

Debug memory cache Enable range stepping Enable flash hashing

B reset handing | Select the elements from the tree:

» (= .settings

> (=CMSIS

» (= Debug

» (=-board
(=-doc

B seminosting support | On

-l

- ¥ (=drivers
- | my_connect.scp
3 ;_reset.scp
4 »(=part-support
| *E&source
> [=startup
> (= utilities
Revert
Cancel
4 3
@ Cancel

Similarly, you can reference a project-local flash driver by editing the memory configuration of
the project and again browsing for the required flash driver within the project as below:

UG10055

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

50

NXP Semiconductors

MCUXpresso IDE User

Guide

Memory details (MK64FN1MOxxx12)*

Default LinkServer Flash Driver:

Default LinkServer Flash Driver Browse...

Type Name Alias Location Size Qrive —
Flash PROGRAM_FLASH Flash Ox0 0):10000 i
RAM SRAM_UPPER RAM 0x20000000 0x30000 =
RAM SRAM_LOWER RAM2 Ox1fff0000 0x10000 =
RAM FLEX_RAM RAM3 | OyaeoBacEaianns T
LinkServer flash driver

Add Flash Add RAM

Import... Merge...
P g Flash Driver

Flash driver | S{workspace loc:}/S(ProiName)/MyFlash.cix || = Browse projsct... Browse workspace...

@ @ LinkServer flash driver

Select the elements from the tree:

| A
B MFIash.cfx
~>» DOard
(=doc

> (=drivers

¥ (> part-support

» (= source

> (= startup

¥ = utilities

Selected flash driver: MyFlash.cfx

2

@ | cence | KD

Figure 4.23. Local flash driver

See additionally

The features described above are rarely required, but on the occasions where shared projects
have bespoke debug files, the above scheme should simplify the sharing and use of MCUXpresso

IDE projects.

4.3.4 Export project to local SDK Git repository

It is now possible to export a project into a local SDK Git Repository. The board and device
for which the project was created have to be supported by the local SDK otherwise it can’t be

exported.

To export a certain project, right-click on it inside the Project Explorer and select SDK

Management -> Export to SDK Git repository....

UG10055 All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

51

NXP Semiconductors MCUXpresso IDE User Guide

- Export project to SDK Git repository. ><

MName: | custom_example

Local SDK Git repository
Select the local SDK Git repository where the projects will be added.

CA\NXP\sdk-git-repo “

Choose a manifest where the new example will be referred:

core\LPCXpresso55569_manifest_v3_10xml w

Category
Select a category for the example.

' demo_apps v

Example Location:
Select a location where the example will be saved.

' CANXP\sdk-git-repo\core\examples Browse...

Description
Short text describing the functionality demonstrated by this example

' My custom example]

Figure 4.24. Export to local SDK Git repository

The name of the new example is the name of the project, but it can be modified. For SDKs with
split manifests, the user can also select the manifest where the project will be referred. A combo
box presents all the categories available in the SDK for the current board. For the new example,
you can select one of the available categories or select a new one. You can also choose the
project location, which has to be in the same folder or in a subfolder of the manifest where you
have chosen to export the project. After clicking OK, the SDK Git repository will contain the
desired example.

The new example will be available in the SDK Import Wizard.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 52

NXP Semiconductors MCUXpresso IDE User Guide

B soK import Wizard o X
@ You have selected 1 project to import: Ipcxpresse35s69_custom_example’, x U

. Import projects

Project name prefix: | Ipcxpresso55s69 % | Project name suffixc:

Use default location

CANXPAMCUXpressolDE_11.8.0_1123_alpha\workspace\lpopresso55s69 Browse.
Project Type Project Options
@CProject C++ Project) C Static Library) C++ Static Library SDK Debug Console O Semihost @ UART | Example default
Copy sources
Import other files
Examples A%l BE
type to filter
Name Description Version &
> [& cmsis_driver_examples
> [& component_examples
~ [m] £ demo_apps
| custom_example My custom example.
L= hello_world The HelloWorld demo prints the "Hello World™ string to the terminal .
[= hello_werld_swo The Hello World SWO demo prints the "SWO: Hello World” string to t..
[hello_world_virtual_com Hello World Virtual Com demonstrates the use of virtual com to print ...
[= led_blinky The LED Blinky demo application provides a sanity check for the new ..
[] ™ multi_peripherals_test The multi-peripherals-test demo application does the basic periphera...
[] = power_manager_lpc The power_manager_lpc application shows the usage of normal powe.
D puf_hashcrypt_crypto This demo application demonstrates how to use PUF controller which ...
[= shell The Shell Dema application demonstrates to control Leds by comman..
[0 &= utick_wakeup The purpose of this demo is to show wakeup from deep sleep mode u..
[& driver_examples
[£ mbedtis examples hd

@ < Back Next > Cancel

Figure 4.25. New example exported to local SDK Git repository

Limitations - Projects using linked references to the SDK source code are not supported. - Once
exported to the local SDK Git repository, you can import the new example only with the “Copy
Sources” option set (to copy source code files inside the project).

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 53

NXP Semiconductors MCUXpresso IDE User Guide

5. Creating new projects using installed SDK part support

For creating a project using Preinstalled part support please see:

Locate the at the bottom left of the MCUXpresso IDE perspective and see
the first entry Create a new C/C++ project.

(U Quickstart Panel X (- Variables ® Breakpoints = 0

! MCUXpresso IDE Quickstart

No project selected

~ Create or import a project

[B Create a new C/C++ project...]
Import SDK example(s)...
) .
Import from Application Code Hub...
& Import project(s) from file system...

=4 Import executable from file system...

~ Build your project
~ Debug your project B-EB~-H-~
~ Miscellaneous

2 Quick Sett ngs>>

=0 Build all projects

Figure 5.1. SDK projects

The New Project Wizard guides the user in creating new projects from the installed SDKs (and
also from preinstalled part support — which are discussed in a later chapter).

Click Create a new C/C++ project to launch the New Project Wizard as detailed below:

5.1 New Project Wizard

The New Project Wizard begins by opening the “Board and/or device selection” page, which
contains a range of features described below:

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 54

NXP Semiconductors

MCUXpresso IDE User Guide

[@ Creating project for device: MK64FN1MOxxx12 with no board.]4_ i g i

|
. Board and/or Device selection page

s from installed SDKs

Available boards

Please select an available board for your project.

NXP MKBAFN1MOxxx12
TKEx
MKBAFN1MOxx12

> LPC540xx
*LPCB4Bxx

Target
»LPC1102
»LPC112x
¥ LPC11AxXX

| »LPC11E6X

| »LPC11Exx
»LPC11UBx
»LPC11Uxx
»LPC11xx

| »LPC11xxLV

Target Core:
| Description:

»MIMXRT1050

aeinstalfed MCUs
s from preinstalled LPC and generic

Cortex-M part support

Selected Device: MK64FN1MOxxx 12 with no board.

FROMSTEC AGHE: FROM KEF
\

frdmk64f agm04

5 r A
sDK) SDK *

r ™
. {_ sk)
evkbimxrt10650 om13588

evkbimxrt1060

F o =
|_SDK)

evkbimxrt 1050 agmQ1 Xpresso812

SDKs for selected MCU

Name SDK Version Manifest Versj
1 SDK_2.x_FRDM-K6B4F 2.4.0 3.3.0

Location
(% <Default Location>/SDK_2.x_FRD

cortex-m4

K&4_120: Kinetis® K64-120 MHz, 256KB SK gdntrollers
(MCUs) based on ARM® Cortex®-M4 Core

Next > Cancel

Figure 5.2. New Project Wizard first page

UG10055

1. Adisplay of all parts (MCUSs) installed via SDKs. Click to select the MCU and filter the available

matching boards. You can hide SDK part support by clicking on the triangle (highlighted in
the blue oval)

2. A display of all preinstalled parts (these are all LPC or Generic M parts). Click to select the

MCU and filter the available matching boards (if any). You can hide preinstalled part support
by clicking on the triangle (highlighted in blue)

3. A display of all boards from both SDKs or matching LPCOpen packages. Click to select the

board and its associated MCU.
« Boards from SDK packages have SDK superimposed onto their image.

4. Some description relating to the user’s selection
5. A display to show the matching SDK for a chosen MCU or Board. If more than one matching

SDK is installed, the user can select the SDK to use from this list

6. Any Warning, Error, or Information related to the current selection
7. An input field to filter the available boards, for example, enter ‘64’ to see matching MK64...

Freedom or Tower boards available

8. 3 options: to Sort boards from A-Z, Z-A or clear any filter made through the input field or a

select click.

Tip
@ : Upon project creation, the wizard remembers the selected board and/or MCU and
selects them the next time it is opened. To remove this selection, click the clear filter

button (or any background white space)

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 55

NXP Semiconductors MCUXpresso IDE User Guide

This page provides several ways of quickly selecting the target for the project that you want to
create.

In this description, we are going to create a project for a Freedom MK64xxx board (we have
already imported the required SDK).

First, to reduce the number of boards displayed, we can simply type ‘64’ into the filter (7). Now
the wizad only displays boards with MCUs matching ‘64’.

[NN) SDK Wizard

‘ (@ Creating project for device: MKB4FN1MOxxx12 using board: FROM-K64F } 7 k f ?

|
. Board and/or Device selection page

| @ [Next> IR

Figure 5.3. New Project Wizard selection

~ SDK MCUs Available boards 18, 14,

MCUs from installed SDKs Please select an available board for your project.

NXP MKB4FN1MOxxx12
YREX
[mxBarN1MOXxx12 |
FIPCEA0GK
> LPC546xx
> MIMXRT1050

b, .
= ey

L\ FROMSTECAGHRE FROMAES)

« L SoK) S0k

/ L
frdmk64f frdmk64f mult2b frdmk64f om13588 framk64f agm04

~ Preinstalled MCUs
MCUs from preinstalled LPC and generic
Cortex-M part support

Target

»LPC1102
FLPC112x
»LPC11Axx
»LPC11E6x
PLPCT11EXX
FLPC11UBX frdmk64f agm01
FLPC11Uxx
FLPC11xx
PLPCT1xxLV
Selected Device: MK684FN1MOxxx 12 using board: FRDM-K64F SDKs for selected MCU
Target Core: cortax=md Name SDK Version Manifest Versior Location
Description: + SDK_2.x_FRDM-KE4F 2.4.0 3.3.0 (% <Default Location>/SDK_2.x_FRD
K64_120: Kinetis® K64-120 MHz, 256KB SRAM Microcontrollers
(MCUs) based on ARM® Cortex®-M4 Core

UG10055

When the (SDK) board is selected, you can see highlighted in the above figure that the matching
MCU (part) and SDK are also selected automatically.

With a chosen board selected, now click ‘Next'...

5.1.1 SDK New Project Wizard: Basic project creation and settings

The SDK New Project Wizard consists of two pages offering basic and advanced configuration
options. Each of these pages is pre-configured with default options (the default options offered
on the advanced page may be set based on chosen selections from the basic page).

Therefore, to create a simple ‘Hello World’ C project for the Freedom MK64... board we selected,
all that is required is simply to click ‘Finish’.

Note: The project has a default name based on the MCU name. If this name matches a project
within the workspace, for example, the wizard has previously been used to generate a project
with the default name, then the error field shows a name clash and the ‘next’ and ‘finish’ buttons

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User

Guide Rev. 11.9.0 — 5 January, 2024 56

NXP Semiconductors MCUXpresso IDE User Guide

are ‘grayed out’. To change the name of the new project; the blank ‘Project Name Suffix’ field
can be used to quickly create a unique name but retain the original prefix.

This creates a project in the chosen workspace taking all the default Wizard options for our board.

However, the wizard offers the flexibility to select/change many build, library, and source code
options. We describe these options and the components of this first Wizard page below.

B s0x wizard m

AV 4
a2

X
= =
A

[% The source from the SDK will be copied into the workspace. If you want to use linked files, please unzip the "SDK_2.x_FRDM-K64F' SDIK.

. Configure the project

[Project name; [N KE4F12_Project x [Project name suffic '

[Use default location

Synfa5516 j‘r-:_.--.-"s@-: 550l DE-JUnit_11.9.0_2139_alpha\woriSEa EIVEKG4F12_Project O

Device Packages Eoard Project Type Project Options
O MKB4FNIMOVDC12 ~ || ® Default board files (® C Project (O C++ Project SDK Debug Console () Semihost @ UART
® mKearNIMOVLL2 Al L (O € Static Library (O C++ Static Library i

(O MKG4FNIMOVLO12 v Import other files

Components x B E
Add or remove SDK software components

type to filter

f ;ame \ Description Version Info
» [E Abstraction Layer

[J & Board Components
[] & CMSIS Drivers
b E CMSIS Include
[W] £ Drivers
» [E Middleware
v £ Operating Systems
& baremetal Middleware baremetal 1.0.0
[m] £ Others
[m] & Project Tempilate
[m] £ Software Component

[w] & Utilities J

(2 < Back Mext > Cancel

Figure 5.4. New Project Wizard basic SDK settings

1. Project Name: the wizard automatically selects the default project name prefix based on the
part selected on the previous screen
* Note: due to restrictions in the length of filenames accepted by the Windows version of the

underlying GCC toolchain, it is recommended to keep the length of project names to 56
characters or less. Otherwise, you may see project build error messages regarding files not
being found, particularly during the link step.

2. Project Suffix: the user can enter an optional suffix to append to a project name here.

3. Errors and Warnings: the wizard displays any error or warning here. The ‘Next’ option is
not available until after handling every error. Errors may include such things as dependency
problems or, for example, the selecting of a project name that matches an existing project
name in your workspace. The suffix field (2) allows a convenient way to create a unique project
name.

4. MCU Package: the user can select the device package from the range contained with the
SDK. The package relates to the actual device packaging and typically has no meaning for
project creation.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 57

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

5. Board files: this field allows the automatic selection of a default set of board support files,
otherwise, empty files are created. These options do not appear if the user selected a part
rather than a board on the previous screen.

« If you intend to use board-specific features such as output over UART, you should ensure
that you have selected Default board files.

6. Project Type: you can select C or C++ projects or libraries. Selecting ‘C’ automatically
selects RedLib libraries, while selecting C++ selects NewlibNano libraries. See

7. Project Options:

¢ Semihost: causes the Semihosted variant of the chosen library to be selected. For C projects
this defaults to Redlib Semihost-nf. Semihosting allows IO operations such as printf and
scanf to be emulated by the debug environment.

* UART: causes the nohost variant of the chosen library to be selected. For C projects this
defaults to Redlib Nohost. IO operations such as printf and scanf occur via UART (or
emulated UART provided by the debug probe over USB).

¢ Copy Sources: for zipped SDKs, this option is ticked and grayed out. For unzipped SDKs,
the wizard allows the creation of projects using linked references to the SDK sources.

8. Components:

« OS: this provides the option to pull in and link against Operating System resources such
as FreeRTOS.

« Driver: enables the selection of supporting driver software components to support the MCU
peripheral set.

e CMSIS Drivers: code and headers for standard ARM hardware

¢ CMSIS Include: causes a CMSIS folder containing a variety of support code such as Clock
Setup, header files to be created. It is recommended to leave the associated options ticked.

« Utilities: a range of optional supporting utilities
» For example, select the debug_console to use SDK Debug Console handling of IO.

» Selecting this option causes the wizard to substitute the (SDK) PRINTF() macro for C
Library printf() within the generated code.
« The debug console option relies on the debug probe communicating to the host via
VCOM over USB (LPC-Link2 and OpenSDA debug probes support this feature).

« Middleware: enables the selection of various middleware components

¢ Project Template: adds support files for the selected device/board

« Depending on the SDK selected, additional options may also appear.

9. Utility buttons: you can use these to clear all selections, expand component sets, or collapse
them. These buttons affect only the currently filtered results.

Finally, if there is no error condition displayed, ‘Finish’ can be selected to finish the wizard,
alternatively, select ‘Next’ to proceed to the Advanced options page (described next).

Important Note: Any components (OS, driver, utilities, middleware, and so on) selected by
default within this wizard are available for use within the project. However, the linker may remove
the components supporting functions from the generated image if they are not referenced from
within the user’'s project code. Additionally, selecting a component automatically selects any
dependencies. Finally, please also note that this is an additive process, removing components
may leave unresolved dependencies resulting in a project that does not build.

Note: Some middleware components are not currently compatible with the New project wizard

functionality and so are hidden. The recommended approach if such components are required

is to import an example including the component and then modify this as required. Please see
for details of how this might be done.

Note: By default, the IDE stores new project files within the current MCUXpresso IDE workspace,
this is recommended since the workspace then contains both the sources and project
descriptions. However, the New Project Wizard allows a non-default location to be specified if
required. To ensure that the sources and the local configuration of each project are self-contained
when using non-standard locations, the IDE automatically creates a subdirectory inside the

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 58

NXP Semiconductors MCUXpresso IDE User Guide

specified location using the Project name prefix setting. It will then store the newly created project
files within this location.

5.1.2 SDK New Project Wizard: Advanced project settings

The advanced configuration page takes certain default options based on settings from the first

wizard project page, for example, a C project pre-selects Redlib libraries, whereas a C++ project
pre-selects NewlibNano.

e e SDK Wizard

-

. Advanced project settings

pud
0

~ CiC++ Library Settings

Set library type (and hosting variant) Rediib (semihost-nf)

Redlib: Use floating point version of printf
_| Redlib: Use character rather than string based printf

J
Redirect SDK "PRINTF" to C library "printf” | Redirect printf/scanf to ITM
Include semihost HardFault handler Redirect printf/scanf to UART
[~ Hardware settings
Set Floating Point type Fpya (HardABI) ﬁ
\
(~ MCU C Compiler
Language standard = Compiler default E
\,
[~ MCU Linker
Link application to RAM
—
~Memory Configuration Q
Memory details
Default LinkServer Flash Driver Browse...
Type Name Alias Location Size Driver =
Flash PROGRAM_FLASH Flash Ox0 0x100000 FTFE_4K.cfx ki
RAM SRAM_UPPER RAM 0x20000000 0x30000 0
RAM SRAM_LOWER RAM2 Ox1fff0000 0x10000 #
RAM FLEX_RAM RAM3 0x14000000 0x1000
Add Flash Add RAM Split Delete
\mport... Merge... Export...

Generate...)

(’L\ < Back Cancel

Figure 5.5. New Project Wizard advanced SDK settings

1. This panel allows the selection of library variants. See . Note: if
you selected a C++ project on the previous page, then the Redlib options are grayed out.

Redlib (none)
Redlib (nohost)
Redlib (semihost)
Redlib (nohost-nf)

+ Redlib (semihost-nf) 1
Redlib (semihost-mb)
Redlib (semihost-mb-nf)
NewlibNano (none)
NewlibNano (nohost)
NewlibNano (semihost)
Newlib (none)

Newlib (nohost)
Newlib (semihost)

UG10055

User Guide

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

Rev. 11.9.0 — 5 January, 2024 59

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

¢ Also, based on the selection, you can choose several options to modify the capability (and
size) of printf support

¢ Redlib Floating Point printf: If this option is ticked, floating point support for printf is
automatically linked in. This allows printf to support the printing out of floating point variables
at the expense of larger library support code. Similarly for Newlib.

¢ Redlib use Character printf: selecting this option avoids heap usage and reduce code size
but make printf operations slower.

2. This panel allows you to set options related to Input/Output. See

¢ Redirect SDK “PRINTF": many SDK examples use a PRINTF macro, selecting this option
causes redirection to C library 10 rather than options provided by the SDK debug console.

¢ Include Semihost Hardfault Handler: selected by default, this option when checked adds

a hardfault handler to the project sources. This handler is specifically written to deal with

the situation that occurs if a semihosted function such as printf is executed when there

are no debug tools attached to support the operation. If this occurs, this handler catches

the operation and safely return to the executing application. Uncheck this option if you do

not wish to use semihosted libraries or you intend to use your own hardfault handler. See
for more information.

« Redirect printf/scanfto ITM: causes a C file 'retarget_itm.c to be pulled into your project. This
then enables printf/scanf I/O to be sent over the SWO channel. The benefit of this is that I/
O operations can be performed with little performance penalty. Furthermore, these routines
do not require debugger support and for example, could be used to generate logging that
would effectively go to Null unless debug tools were attached. Note: This feature is not
available on Cortex MO and MO+ parts.

« Find more information in the MCUXpresso IDE SWO Trace Guide.

¢ Redirect printf/scanf to UART: Sets the define SDK_DEBUGCONSOLE_UART causing the
C libraries printf functions to re-direct to the SDKs debug console UART code.

3. Hardware Settings: from this dropdown, you can set options such as the type of floating point

support available/required. This defaults to an appropriate value for your MCU.

None
FPv4 (SoftABI)
Set Floating Point type v Fpy4 (HardABI)

~ Hardware settings

. MCU C Compiler: from this dropdown you can set various compiler options that can be set

for the GNU C/C++ compiler.

~ Hardware sotti GNU C89 (-std=gnu99)
GNU C11 (-std=gnu11)
Set Floating Point{ SO C90 / ANS| C89 (-std=c90)
ISO C99 (-std=c99)
~ MCUC Compili SO C11 (-std=c11)
GNU C90 (-std=gnu80)
Language standar¢ » Compiler default

. Link Application to RAM checkbox reflects or sets the option to force the linker to ignore any

defined flash regions and link the application to the first RAM region defined. This option is
a copy of the flag at Properties -> C/C++ Build -> Settings -> Managed Linker Script -> Link
application to RAM Note: This setting is only sensible for projects under development, since
debug control or a bootloader is required to load the code/data into RAM and simulate a
processor reset.

. Memory Configuration: This panel shows the Flash and RAM memory layout for the MCU

project being created. The pre-selected LinkServer Flash driver is also shown. Note: this Flash
driver only applies to LinkServer (CMSIS-DAP) debug connections.

« From this dialog, you may edit the default memory setting of the project in place if required
and hence also the automatically generated linker scripts. See

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 60

NXP Semiconductors MCUXpresso IDE User Guide

5.2 Project build

To build a project (created by the New Project Wizard), simply select the project in the ‘Project
Explorer’ view, then go to the ' Quickstart' Panel and click on the build button to build the
project. This builds the active configuration of the selected project, where newly created projects
default to the Debug configuration.

Note: MCUXpresso IDE creates projects with two build configurations, Debug and Release (but
you can also add more if required). These differ in the default level of compiler optimization.
Debug projects default to None (-O0), and Release projects default to (-Os). For more information
on switching between build configurations, see

The console view displays the build log, as shown below.

(7l Installed SDKs [Properties & Console 52 |[2! Problems [] Memory €& Instruction Trace [SWO Trace Config B2 Power Measurement Tool 4L ¢ 55| LA RE % MBE-§-= 0
CDT Build Console [MK64FN1MOxxx12_Project]

Building file: ../(MSIS/system_MKG4F12.c

Invoking: MCU € Compiler

arm-none-eabi-gecc -DCR_INTEGER_PRINTF -DSDK_DEBUGCONSOLE=® -D__MCUXPRESSO -D__USE_CMSIS -DDEBUG -DSDK_OS_BAREMETAL -DFSL_RTOS_BM -DCPU_MKE4FNIM@VDC12 -DCPU_MK&4FNIMAVDC1Z_cmd -1
Finished building: ../startup/startup_mk64f12.c

Finished building: ../source/MK64FN1M@xxx12_Project.c

Finished building: ../CMSIS/system_MK64F12.c

Building target: MKGAFNIMBxxx12 Project.axf
Invoking: MCU Linker
Lrm-none-eabi-gee -nostdlib -Xlinker -Map="MKG64FN1MBxxx12 fProject.map” -Xlinker --gc-sections -Xlinker -print-memory-usage -mcpu=cortex-md -mfpu=Fpvd-sp-d16 -mfloat-abi=hard -m-

Memory region Used Size Region Size Hage Used
PROGRAM_FLASH: 3216 8 1 MB 8.78%
SRAM_UPPER: 8302 8 182 KB 4.27%
SRAM_LOWER: 0GB 64 KB 0.90%
FLEX_RAM: 0GB 4 KB 0.90%

Finished building target: MKGE4FN1M@xxx12_Project.axf

make --no-print-directory post-build

Performing post-build steps

arm-none-eabi-size "MKG4FNIMOxxx12_Project.axf"; # arm-none-eabi-objcopy -v -0 binary "MKG4FN1MOxxx12_Project.axf" "MKE4FNIMOxxx12_Project.bin” ; # checksum -p MKB4FNIMBxxx12 -1
text data bss dec hex filename
8212 4 8388 16604 4@dc MKGAFNIMAxxx12_Project.axf

15:15:38 Build Finished (took 668ms)

Figure 5.6. New Project Wizard build

We also show below the memory usage of the project as highlighted in the above screenshot:

Menory region Used Size Region Size %ge Used

PROGRAM_FLASH: 8216 B 1 MB 0.78%
SRAM_UPPER: 8392 B 192 KB 4.27%
SRAM _LOVER: 0GB 64 KB 0. 00%
FLEX_RAM 0GB 4 KB 0. 00%

Fi ni shed buil ding target: MG64FNLM)xxx12_Proj ect . axf

By default, the application builds and links against the first Flash memory found within the memory
configuration of the device. For most MCUs there is only one Flash device available. In this case
our project requires 8216 bytes of Flash memory storage, 0.78% of the available Flash storage.

RAM is used for global variables, the heap, and the stack. MCUXpresso IDE provides a flexible
scheme to reserve memory for Stack and Heap. The above example build has reserved 4KB
each for the stack and the heap. Please See for
detailed information.

Please also see for details on how to explore the composition of an
image in detail.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 61

NXP Semiconductors MCUXpresso IDE User Guide

5.2.1 Build configurations

By default, MCUXpresso IDE creates each project with two different “build configurations”:
Debug and Release. Each build configuration contains a distinct set of build options. Thus a
Debug build typically compiles its code with optimizations disabled (-) and Release compiles
its code optimizing for minimum code size (-os). You can see the currently selected build
configuration for a project after its name in the Build/Clean/Debug options of the Quickstart
Panel.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 62

NXP Semiconductors MCUXpresso IDE User Guide

6. Importing example projects (from installed SDKs)

In addition to drivers and part support, SDKs also deliver many example projects for the target
MCU.

To import examples from an installed SDK, go to the Quickstart panel and select Import SDK
example(s).

Figure 6.1. SDK example

() Quickstart Panel X (= Variables s Breakpoints = o
! MCUXpresso IDE Quickstart
-°£) No project selected
~ Create or import a project
B8 Create a new /C++ project...
Import SDK example(s)...]

Import from Application Code Hub...
& Import project(s) from file system...

=4 Import executable from file system...

~ Build your project

8.

~ Debug your project B-EB~-H-~
¥

‘

~ Miscellaneous

& Quick Settings> >

=0 Build all projects

UG10055

This option invokes the Import SDK Example Wizard that guides the user to import SDK
example projects from installed SDKs.

Like the New Project wizard, this initially launches a page allowing MCU/board selection.
However, now, this displays only SDK-supported parts and boards.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 63

NXP Semiconductors MCUXpresso IDE User Guide

@ @ SDK Import Wizard
= 2

(T) Importing project(s) for device: MKG4FN1MOu01 2 using board: FRDOM-KG4F | i 7
. Board and/or Device selection page

~ SDKMCUs ® Available boards B 1%
MCUs from installed SDKs. Please Please select an available board for your project

click above or visit

MEYXRIESs0.Xp.COM to obtain

additional SDKs

NXP MKEAFNTMOxex 12

FK2x
vKEx
MKBAFN MO0 2
[mousse SDK) Froistc acus o SDK | Moemn e sox)
frdmkE41_agm01 framk64f_agmod frdmk64f_mult2b

Selected Device: MKEAFN1MO0xxx 12 using board: FRDM-K64F SDKs for selected MCU

Target Core: cmd MName SDK Version Manifest Versic Locaticn

Description: Kinetis K64-120 MHz, 256KB SRAM Microcontroliers (MCUs) based on ARM Gy : § Y ins 3.8, i Al

Cortex-Md Cors] SDK_2.x_FRDM-KE4F 2.9.0 (Eplugins 3.8.0 B . 5
@ Cance
Figure 6.2. SDK example board
Selection and filtering work in the same way as for the but please be

UG10055

aware that examples are created for particular development boards, therefore you must select
a board to move to the ‘Next’ page of the wizard.

In the case of " SDK Example Import Wizard", the " SDKs for selected MCU" control is disabled
and the IDE automatically performs the selection of the proper SDK source for a specific chosen
board/device. This prevents the unwanted selection of an SDK which can lead to getting files
from a wrong source. This situation can occur when the same device appears in multiple SDKs.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 64

NXP Semiconductors

MCUXpresso IDE User Guide

® o SDK import Wizard

| .,
(@) Importing project(s) for device: MK22FNS 1 2x00e1 2 using board: FRDM-K22F 1 x i 7

. Board and/or Device selection page

= SDK MCUs ® Available boards
MCUs from installed SDKs. Please Please select an avallable board for your project
click above or visit
MCUXe550.NXp.COMm to obtain
additional SDKs.
NXP MK22FN512xxx12

* KOx

YK2x

MK22FNG 12300012
* KEx

%1% 4

. ‘ y
[e— B Sy e T re——
sDK *(sox) SDK
fedmi2 21 frdmk22{_agm01 fradmk22f_agmp03

(Pending)

ST Bisiand e T8 Bl e T
| e \ i I L
frdmic2 21 frdmk221_agm01 frdmk22f_agmp03 frdmk22f_sa8500

Selected Davice: MK22FNE12xxx12 using board: FRDM-K22F SDKs for selected MCU
Target Core: em4 Name SDK Version Manifest Versic Location
Description: Kinetis K22-120 MMz, Cost Effective, Full-Speed USB Microcontroliers (MCUs) & ¥ -K22F i 0 sdl
based on ARM Cortex-M4 Core ASDICS % FROM i {Ephugins 2.8.0 L <plugins>/com.nxp.mcuxpresso.
B SOK.2.x MKOZFN1 28010 2.9.0 3.8.0 B <plugins>/com.nxp.meuxpresso.sd

Figure 6.3. SDK importer multiple SDKs

UG10055

Note: Even if not recommended, if it is absolutely necessary, the user can still force the
option. You can remove this hard-coded selection by selecting the option from Preference ->
MCUXpresso IDE -> SDK Handling -> Misc -> Enable “SDKs for selected MCU” selection in SDK
Import Wizard. Then, you can select a different SDK.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 65

NXP Semiconductors MCUXpresso IDE User Guide

® o Preferences

Misc =1

» General
»C/Cos SDK management misc options
» Help Pricritize IDE supplied flash driver
¥ Install/Update
» Library Hover

MCUXpresso Config Tools Include semihost hardfault handler by default on project creationf/import
¥MCUXpresso IDE

Default SDK debug console to semihost on project creationjfimport

» Debug Options Enable SDK options check
Default Tool settings Selected files from SDK View open in read-only mode

¥ Editor Awareness
General Open project main files after importing multiple SDK examples
MCU settings Enable "SDKs for selected MCU" selection in SDK Import Wizard

Paths and Directories

Quickstart Panel
B RTOS TAD
¥ SDK Handling
Components
Installation

SWO Trace
User Interface Enablemer
Utilities
» Run/Debug
SWTChart Extensions
» Terminal
Validation
» Version Control (Team)
» XML Restore Defaults Apply

@ Cancel " Apply and Close

Figure 6.4. SDK importer force manual SDK selection

6.1.1 SDK example import wizard: basic selection

UG10055

The SDK Example Import Wizard consists of two pages offering basic and advanced
configuration and selection options. The second configuration page is only available when you
have selected a single example for import. This is because examples may set specific options,
and therefore changing settings globally is not sensible.

The first page offers all the available examples in various categories. You can expand these to
view the underlying hierarchical structure. We explain the various settings and options below:
Note: The project has a default name based on the MCU name, Board name, and Example name.
If this name matches a project within the workspace, for example, if the wizard has previously
been used to generate an example with the default name, then the error field shows a name clash
and the ‘next’ and ‘finish’ buttons are grayed out. To change the new example name, the blank
‘Project Name Suffix’ field can be used to quickly create a unique name but retain the original
prefix, for example, by adding ‘1.

MCUXpresso IDE creates a project with common default settings for your chosen MCU and

board. However, the wizard offers the flexibility to select/change many build, library, and source
code options. We describe these options and the components of this first wizard page below.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 66

NXP Semiconductors MCUXpresso IDE User Guide

B 50K import Wizard

B Please select one or more examples to impaort

- Import projects

L8]
[]
b x

Project name prefix: | frdmk64f x [Projecl name suffic

[+ Use default location

IXP\MCUX presso

[Ploject Type
C Project | C#+ Praject

Project Options
C Static Library ©_ C++ Static Library SDK Debug Console . Semihost (® UART | Example default

1| Import other files

type 1o filter

Narga.

aws_eeamphes
£ apure_examples

demo_apps
driver_sxamples
emwin_examples
litthevgl_examples
Iwip_examples
E mbedtls_examples
mmcau_examples

rtos_examples
sdmme_examples

secure-subsystem

ush_examples

(UUUUJ;;;LUUUUJ;;;;BE

Description Wersion
FroeMASTER_sxamplis

bootloader_examples
cmsis_driver_examples
component_sxamples

multiprecessor_examples
ntag_i2c_plus_examples

se_hostlib_examples

examples

Figure 6.5. SDK example selection

< Back Next = Finiis Cancel

. Project Name: An automatically created project name follows the form:

boardname_examplename

. Project Suffix: You can enter an optional suffix to append to a project name here. This is

particularly useful if you are repeating an import of one or more projects since an entry here
can make all auto-generated names unique for the current workspace...

. Project Type: The pre-set type of the example being imported controls this option. If you wish

to import more than one example, then these options appear grayed out.

. Project Options:

« ‘SDK Debug Console’: After selecting an example(s), you can use this option to control 10
between the semihost console, UART, or the examples' default setting.

e ‘Copy sources’: For unzipped SDKs, you can untick this option to create a project containing
source links to the original SDK files. This option should only be unticked with care, since
editing the linked example source overwrites the original files!

« ‘Import other files’: By default, non-source files such as graphics are filtered out during
import, check this box to import all files.

. Examples Filter: Enter text into this field to find possible matches, for example, enter ‘LED’ or

‘bubble’ to find examples present in many SDKs. This filter is case-insensitive.

. Examples: The example list broken into categories. Note: for some parts, there are many

potential examples to import

7. Various options (from left to right):
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 67

NXP Semiconductors

MCUXpresso IDE User Guide

¢ Opens a filer window to allow the use to import an example from an XML description. This
is intended as a developer feature and is described in more detail below.

¢ Clear any existing filter

¢ Select (tick) all Examples

¢ Clear all ticked examples

¢ Open the example structure
¢ Close the example structure

Finally, if there is no error condition displayed, it is possible to select ‘Finish’ to finish the wizard.
Alternatively, if the user has selected only one example, the option to select ‘Next’ to proceed to
the Advanced options page is available (described in the next section).

Note: SDKs may contain many examples, 263 is indicated for the FRDM MK64 SDK example
shown below. Importing many examples takes time... Consider that each example may consist
of many files and associated description XML. A single example import may only take a few
seconds, but this time adds up for each additional example. Furthermore, the operation of the IDE
may be impacted by a large number of projects in a single workspace, therefore it is suggested
that example imports be limited to sensible numbers.

Note: Due to restrictions in the length of flenames accepted by the Windows version of the
underlying GCC toolchain, it is recommended to keep the length of project names to 56
characters or less. Otherwise, you may see project build error messages regarding files not being
found, particularly during the link step.

A €&
4 sl
% You have selected 263 projects to import.
The source from the SDK will be copied into the workspace. If you want to use linked files, please unzip the ‘SDK_2.x FRDM-KG64F' SDK.
. Import projects
Project name prefix: | frdmkédf % | Project name suffix:
[Use default location
CANXP\MCUXpressolDE_11.8.0_1123_alpha\workspace\frdmk64f
Project Type Project Options
Project + Project € Static | (B MCUXpresso IDE X fample default
You have selected 263" projects to import.
Examples Import may take a considerable amount of time. %
type to filter
Name [| [Version ~

~ [& FreeMASTER examples
= fmstr_example_any

3 frmstr_example_can

i frstr_example_net

5 fmstr_example_pdbdm

NRNRIRE

i frste_example_uart

i fmstr_example_usb_cde

v [& aws_examples
aws_device_configuration_enet

 aws_greengrass_discovery_enet

 aws_remote_control_enet

NRIE

FreeMASTER example fully configured by MCUXpresso CanfigTaols. Serial comm.
FreeMASTER example using the CAN bus to communicate with target microcontr.
FreeMASTER example using TCP/UDP socket communication with the target micr...
FreeMASTER example using a special packet-driven protacol on top of JTAG or 8
FreeMASTER example using Serial-UART communication with the target microcon...
FreeMASTER example using virtual serial communication at USB port and CDC VC...

This example demonstrates how the aws iot device can be configured by mabile ...
This example demonstrates how the board can discover Greengrass core and co...
This example demonstrates how the bard can be controlled by Android mabile ...

< Back

Figure 6.6. SDK example selection many

6.1.2 SDK example import wizard: advanced options

UG10055

The advanced configuration page (shown below) takes certain default options based on the
examples selected; for example, a C project pre-selects Redlib libraries, whereas a C++ project
pre-selects NewlibNano.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 68

NXP Semiconductors

MCUXpresso IDE User Guide

SDK Wizard

@,

. Advanced project settings

~ CiC++ Library Settings O

Set library type (and hosting variant) = Rediib (semihost-nf) B

Redlib: Use floating point version of printf
Redlib: Use character rather than string based printf

Redirect SDK "PRINTF" to C library "printf*
Include semihost HardFault handler

Redirect printf/scanf to ITM

Redirect printf/scanf to UART

[~ Hardware settings

Set Floating Point type | £py4 (HardABI) H
\
(~ MCU C Compiler

Language standard = Compiler default B
\

Type
Flash
RAM
RAM
RAM

Add Flash

\m port...

[~ MCU Linker
Link application to RAM
p’ emory Con |gurat|nn Q
’ Memory details

Default LinkServer Flash Driver

Browse...
Name Alias Location Size Driver -
PROGRAM_FLASH Flash Ox0 0x100000 FTFE_4K.cfx hal
SRAM_UPPER RAM 0x20000000 0x30000 =
SRAM_LOWER RAM2 Ox1fff0000 0x10000 o=
FLEX_RAM RAM3 0x14000000 0x1000
Add RAM Split Delete

Merge... Export... Generate... /

< Back cancel I

Figure 6.7. New Project Wizard advanced SDK settings

6.1.3

UG10055

These settings closely match those in the SDK New Project Wizard description. Therefore see

for a description of these options. Note:
Changing these advanced options may prevent an example from building or executing.

SDK example import wizard: import from an XML fragment

This option works in conjunction with the ‘Project Explorer’ -> Tools -> Generate Example XML
(and is also used to import projects created by the MCUXpresso Config Tools Project Generator).

The functionality here is to merge existing sources within a selectable board package framework.

To create an XML “fragment” for an existing project in your workspace, right-click on the project

in the ‘Project Explorer’ (or just in the ‘Project Explorer’ view with no project selected) and choose
Tools->Generate examples.xml file

The selected project or all the projects in the workspace (if there are no selected projects) are
converted into a fragment within a new folder created in the workspace itself:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 69

NXP Semiconductors MCUXpresso IDE User Guide

1010

[i'_‘l Project Explorer 83 2. Peripherals+ i Regi

(=]=]

¥ [=r boards
v (= frdmke4f
¥ (= dummy
¥ [Category
» (= MKB4FN1MOxxx12_Project
[£] examples.xml
b =5 frdmk64f_demo_apps_bubble

To create a project from a fragment, click on “Import SDK examples...” in the Quickstart Panel
view:

Then select a board and then click on the button “Import from XML...” (highlighted below and
described in the previous section). You will see the examples definitions from the external
fragment in the list of examples as shown and selected below.

. ® @ SDK Import Wizard

| @ You have selected "1' projects to import. } L

I
. Import projects

Project name prefix: g mkgaf i Project name suffix: ML fragment

Use default location

Location:

Project Type Project Options
© C Project Copy sources

Examples @ =k WWol=

| MName Version
* = cmsis_driver_axamples

b = demo_apps

= driver_axamples

o emwin_axamples

F = mmcau_examples

= multiprocessor_axamples

» = rtos_examples

= dummy

= Category
MKEAFNTMDom12_Project

@ cBack | | New> | | cacs | (ENE

Select the external examples you want to re-create and click on “Finish”. The project(s) will be
added to the workspace.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 70

NXP Semiconductors MCUXpresso IDE User Guide

6.1.4 Importing examples to non-default locations

UG10055

By default, imported example sources are stored within the current MCUXpresso IDE workspace,
this is recommended since the workspace then contains both the sources and project
descriptions. However, the Import SDK Example Wizard allows a non-default location to be
specified if required. To ensure that the sources and the local configuration of each project are
self-contained when using non-standard locations, the IDE automatically creates a subdirectory
inside the specified location using the Project name prefix setting. Single or multiple imported
projects are then stored within this location.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 71

NXP Semiconductors MCUXpresso IDE User Guide

7. Importing projects from Application Code Hub

The Application Code Hub (ACH) repository enables engineers to easily find microcontroller
software examples, code shippets, application software packs, and demos developed by
NXP’s experts. This space provides a quick, easy, and consistent way to find microcontroller
applications. The official website provides filtering and searching options to quickly find specific
applications.

MCUXpresso IDE integrates the Application Code Hub with all its designed features and allows
cloning and importing repositories, SDKs, and projects through dedicated views and wizards.

7.1 MCUXpresso IDE offering

MCUXpresso IDE allows interaction with Application Code Hub through dedicated views and
wizards. There are several links to Application Code Hub inside the IDE but the high-level user
experience and interaction with the feature are very similar.
There are two ways to interact with Application Code Hub. On the one hand, there is the guided
wizard, with the important sections highlighted in the screenshot below.

x

| Import Projects from Application Code HLE _G_IT

[('D Cloning praject from ‘https://github.com/nxp-appcodehub/dm-Ipc35536-low-end-audio-demo.git. Click Next to continue. p —

Device Families

Application Format

Toolchains

Figure 7.1. Sections of Application Code Hub wizard

O Visit on GitHub ? Copy GitHub link b4

Smart lighting LED bulb using Power Optimize pr Applil:ation code Hub

LPCEE0 EVK-MIMXRTS9S

wr
ama

LPC55536 Low End Audio Demo

This example demo uses DAC cutput to g

lighting control gear board Boards: LPCXpresso55536

[1w] [voice Categories: Audio, Voice

Peripherals: DAC. UART, USE

/ @ Toolchains: MCUXpresso IDE
LPC55536 Low End Audio Leveraging deef

Table of Contents

Demo count the numb

LPCXpress055536 aroomusingal 1. seftware

8x8 infrared arm 3. Hardware
LPCXpressossses, |)
3. Setup

This example demo uses DAC output

1o generate

an external speaker This

4. Results

w

FAQs

. Suppert

- o

Release Notes

\&)
1 Snftwara -

ok [Nets || o Cancel

UG10055

The following sections are most relevant:

1. Filter for types of Application Code Hub projects.

2. Filter for toolchains associated with Application Code Hub projects. The IDE makes sure to
filter only MCUXpresso IDE-specific projects while browsing the list of projects.

3. Project selection

4. “Copy GitHub Link” button that is used to instruct the wizard on what project needs to be
handled

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 72

NXP Semiconductors

MCUXpresso IDE User Guide

5. Guidance and confirmation about the currently selected project

6. “Next” button that activates only the user has selected a project and has copied its GitHub

link to Clipboard

On the other hand, it is also possible to render Application Code Hub inside an Eclipse-specific

view.

B workspace - MCUXpresso IDE
file Edit Navigate Search Project Configlools Run RTOS Analysis Window Help

Biw . - >
& [Memory B Application Code Hub X

Device Families

Available examples

Boh sl e-n GrO~Q~ ™~ v 5l o

Item Type

Sort By:

ALY MCUXpresso IDE >

Smart lighting LED bulb using
LPC860

NAME

| Contributed SW

Application Format

Toolchains

hY 4
A

LPC55536 Low End Audio Demo

s example demo uses DAC ouDut

Power Optimized Voi

EVK-MIMXRT595

Boards: LPCXpresso55536
Categories: Audio, Voice
Peripherals: DAC, UART, USB

Toolchains: MCUXpressa IDE

Table of Contents

LPC55536 Low End Audio Demo

LPCXpresso55536

This e

demo uses DAC output
g end audio through an

Categories external speaker.

Peripherals

[Audio X voice J

CLEAR ALL PROPERTIES

[voice] 1. Software
2. Hardware
3. Setup
Leveraging deep lear
4. Results
the number of peopl
using a low-resolutio % FAQs
. array sensor 6. Support
LPCXpresso55569, LPCKp 7. Release Notes
1. Software

con t install MCUXpresso IDE vI1 71+
s 2. Hardware

> generate low end aud

QvisironG\(Hub ¥ Copy GitHub link

NXP Application Code Hub

th

wternal speaker

® (O voice commands

Figure 7.2. Sections of Application Co

de Hub view

The highlighted sections inside the view represent:

1. Filter for types of Application Code Hub projects.

2. Filter for toolchains associated with Application Code Hub projects. The IDE makes sure to
filter only MCUXpresso IDE-specific projects while browsing the list of projects.

3. Project selection.

4. “Copy GitHub Link” button that is used to instruct the wizard on what project needs to be

handled.

The view does not expose any Eclipse-specific Ul controls but the “Copy GitHub Link” offered
by the Application Code Hub website provides the linkage between the IDE and the website.
In other words, once the user selects a project and clicks “Copy GitHub Link”, the IDE checks
compatibility with MCUXpresso IDE and identifies the project type to be able to further process
the request. In the case of dealing with a non-compatible project, a warning message appears,

UG10055

as illustrated in the picture below.

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

73

NXP Semiconductors MCUXpresso IDE User Guide

. Application Code Hub *

o Currently selected project is not supported by MCUXpresso IDE.

Figure 7.3. Unsupported project selected in Application Code Hub view

The links that allow access to Application Code Hub features are highlighted in the sections
described below.

7.1.1 The import wizard

Access the wizard by going to File -> Import -> Application Code Hub -> MCUXpresso Projects
from Application Code Hub.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 74

NXP Semiconductors MCUXpresso IDE User Guide

B import ([>

Select

Clone a collection of software examples, code snippets, application software packs and H
demos developed by NXP's in-house experts

Select an import wizard:

| type filter text |

» = General ~
~ = Application Code Hub
Ed MCUXpresso Projects from Application Code Hub
s = CfC++
» = Device Configuration Tool
» = Git
» [= Install
» = MCUXpresso Config Tools
» [= Run/Debug)
® < Back Mext = Finish Cancel

Figure 7.4, Import wizard from Application Code Hub

7.1.2 The MCUXpresso IDE Quickstart panel link to Application Code Hub
import wizard

Open the MCUXpresso IDE Quickstart panel and click the “Import from Application Code Hub...”
link.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 75

NXP Semiconductors

MCUXpresso IDE User Guide

() Quickstart Panel x (=Variahles ®s Breakpoints

5 MCUXpresso IDE Quickstart

Mo project selected
+ Create or import a project

& Create a new C/C++ project...
Import SDK example(s)...

b [. .-
f Import from Application Code Hub...

2 Import project(s) from file system...
= Import executable from file system...

+ Build your project

Q
@4’

Figure 7.5. Quickstart panel link to Application Code Hub import wizard

7.1.3 The Additional Resources link to Application Code Hub import wizard

UG10055

User Guide

All information provided in this document is subject to legal disclaimers

Open the wizard by going to Help -> Additional resources -> Application Code Hub.

© 2024 NXP Semiconductors. All rights reserved.

Rev. 11.9.0 — 5 January, 2024

76

NXP Semiconductors

MCUXpresso IDE User Guide

t

@
2
3

Tl o

BERR® -

Help

Welcome

Help Contents

MCUXpresso IDE User Guide
Search

Show Context Help

Show Active Keybindings...
Tips and Tricks...
Cheat Sheets...

Eclipse User Storage
Check for Updates
Install New Software...
Eclipse Marketplace...

Additional resources

MCUXpresso IDE installation details
MCUXpresso IDE Save Info for Support
MCUXpresso IDE support forum

About MCUXpresso IDE

>| ® MCUXpresso IDE product web page

® MCUXpresso SDK product web page
® MCUXpresso Config Tools product web page
B MCUXpresso Secure Provisioning Tool product web page

| MCUXpresso SDK Builder

I. Application Code Hub]
LPCOpen Resources
Code Bundles for LPC800 Family devices

QOpenSDA probe firmware

LPCScrypt - LPC-Link2 probe firmware

LPC11U35 CMSIS-DAP probe firmware
MCU-Link probe website (incl. firmware)

Ed SEGGER J-Link website
G PEMicro website
E] MBED Serial Port Driver website

@ 'MCU on Eclipse’ blogs

Figure 7.6. Additional resources link to Application Code Hub import wizard

UG10055

7.1.4 The dedicated view that renders the Application Code Hub website

Go to Window -> Show View -> Other -> MCUXpresso IDE -> Application Code Hub to open

the view.

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

77

NXP Semiconductors MCUXpresso IDE User Guide

. Show View a X

| type filter text |

~ = MCUXpresso IDE ~
[B Application Code Hub]
3 Faults
= Global Variables
= Heap and Stack Usage

lm Image Info
J Installed SDKs
3 Install MCUXpresso SDKs
= Offline Peripherals
= Peripherals+
(U Quickstart Pane
= MCUXpresso IDE Azure RTOS ThreadX
= MCUXpresso IDE FreeRTOS
= MCUXpresso IDE Trace and Energy Measurement
= MCUXpresso IDE Zephyr RTOS v

Open Cancel

Figure 7.7. Open Application Code Hub view

7.2 Import of Application SW Packs

The import of Application SW Packs follows a similar flow as

. As a result, the installation of the “west” tool is a dependency for this use case.
The IDE checks for availability and shows a relevant error message in case it has not been able
to find it.

To import an Application SW Pack from Application Code Hub, you must select a project in one
of the previously described wizards, or view. Depending on the project type, the IDE chooses the
appropriate pages that are required to complete the cloning and importing steps. In the following
sections, we explain the Application SW Packs-specific wizard pages.

7.2.1 Cloning and initialization of Application SW Pack

The first page of the Application SW Pack-specific wizard collects information about the local
folder that will be used for cloning and the branch to clone. The URL of the repository is pre-filled
based on project selection inside the Application Code Hub website.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 78

NXP Semiconductors MCUXpresso IDE User Guide

. Application Code Hub O x
Import projects from Application Code Hub GIT
Please review and, if required, update details about the Application Code Hub project. —
Location

Local folder where the files will be saved. Folder must be empty. O

ﬂ C:\NXP\git\ap-optimized-voice-ui | EBrowse..‘§|

Remote repository
Remote repository information

Repository | https.//github.com/nxp-appcodehub/ap-optimized-voice-ui.git

lRevision main D o

Clone all examples (this will take a while)

@ < Back Finish Cancel

Figure 7.8. Application SW Pack cloning page

In the above picture, we identify the following relevant sections:

1. Local folder used for cloning the repository. The IDE pre-fills it with a default path but you can
change it by browsing to a user-preferred path.

2. URL of the remote repository. The IDE pre-fills it based on the project selection in the previous
wizard page.

3. The branch (or the revision) to clone. The IDE retrieves the remote branches and populates
the drop-down box with available branches.

4. Button that advances to cloning, initialization, and configuration of the repository

If all the inputs are successfully validated, the “Next” button allows the cloning, initialization, and
configuration of the repository. Once pressed, the wizard advances to the next page, depending
on the repository size and on the network connection.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 79

NXP Semiconductors MCUXpresso IDE User Guide

. Application Code Hub

Import projects from Application Code Hub

Please review and, if required, update details about the Application Code Hub project.

CANXP\git\ap-optimized-voice-ui

https://github.com/nxp-appcodehub/ap-optimized-voice-ui.git
main

Clone all examples (this will take a while)

Performing 'west’ update: updating mcux-sdk (core)

@ < Back Next = Finish

Browse...

Cance

Figure 7.9. Application SW Pack cloning page with progress

7.2.2 Importing the Application SW Pack in Installed SDKs

Once cloning, initialization, and configuration steps are finished, the wizard will allow the import
of the actual Application SW Pack. This final step makes the IDE aware of the pack and allow

importing any example projects available inside the pack.

In the picture below, we show the last page of the wizard. The following items are relevant for

the import action:

1. Local folder of the cloned repository. This is pre-filled with the path specified on the previous

page of the wizard.

2. Location of the manifest files, describing the content of the pack. The IDE usually pre-fills it

with a path pointing inside the “examples” sub-folder.

3. Checkbox that instructs the IDE to automatically start the “Import SDK Example(s)” wizard,

once the pack is successfully imported.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

80

NXP Semiconductors MCUXpresso IDE User Guide

. Application Code Hub [} X
Import projects from Application Code Hub \GIT|
= =4

Please review and, if required, update details about the Application Code Hub project.

Location
Select location of the repository and the folder where the manifests are located

[Repository Iocation:| CANXP\git\ap-optimized-voice-ui | Browse...

[Manifest(s) folder: |C:\NXP\git\ap—optimized—voice—ui\examples\manifests | Browse...

©01©

[Show “Import SDK example(s)" wizard after completing SDK installation

Figure 7.10. Application SW Pack importing page

The pack will also be visible in the Installed SDKs view, once the wizard is closed. The view will
update, as shown in the screenshot below.

[Installed SDKs * [2! Problems B Console & Terminal [m@ Image Info & Debugger Console C~@oa| D= o

A Installed SDKs

To install an SDK, simply drag and drop an SDK (zip file/folder) or an SDK Git repository into the ‘Installed SDKs' view. [Commaon 'mcux
Installed SDKs . Available Boards | Available Devices

MName SDK Version Manifest Version Location
t# ap-optimized-voice-ui (Git) 213.0- 2140 3.10.0-3.13.0 2 CA\NXP\git\ap-optimized-voice-ui

Figure 7.11. Application SW Pack imported in Installed SDKs view

7.3 Import MCUXpresso IDE-specific projects

This use case relies on the EGit plugins that are pre-installed inside MCUXpresso IDE. You can
open the import wizard using one of the methods described above and, similar to the Import
of Application SW Packs, the first page renders the Application Code Hub website, allowing
selection of the project.

Once the IDE identifies the type of project that needs to be cloned, several wizard pages will
guide users to allow the import of MCUXpresso IDE-specific projects.

The first page of the wizard, shown in the picture below, displays the following information about
the repository that is about to be cloned:

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 81

NXP Semiconductors MCUXpresso IDE User Guide

1. URL of the repository
2. Available remote branches
3. “Next” button, advancing the wizard to the next page

- Application Code Hub
GIT

Branch Selection
=4

Select branches to clone from remote repository. Remote tracking branches will be created to track updates for these branches in the remote repository.

Branches of[https:f,“github.com,"n)(p—appcodehub,“gs-vglite_examples_rﬂ 170.git: D
| type filter text

ld—'é- main k

Select All| | Deselect All

Tag fetching strategy

® When fetching a commit, also fetch its tags
() Fetch all tags and their commits

() Don't fetch any tags

@ < Back I Next > I Finish Cancel

Figure 7.12. Branch selection of Application Code Hub project

Once pressing “Next”, the following page is shown, with the following controls:

1. Local folder where the repository will be cloned.
2. Initial branch to be set in the local clone.
3. “Next” button.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 82

NXP Semiconductors

MCUXpresso IDE User Guide

. Application Code Hub

O X
Local Destination GIT
Configure the local storage location for gs-vglite_examples_rt1170. —
Destination
[Directory: | CANXP\git\gs-vglite_examples rt1170 D | EBersel

[Initial branch: ‘main D

] Clone submaodules

Configuration

~

Remote name: | origin

< Back Einish Cancel

<

Figure 7.13. Local clone configuration of Application Code Hub project

UG10055

The actual cloning and configuration happen after clicking the “Next” button. Make sure that you
selected “Import Existing Eclipse projects” in the wizard page illustrated below, and then click

“Next”.

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

83

NXP Semiconductors MCUXpresso IDE User Guide

. Cloning from https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170.qgit

O X
Select a wizard to use for importing projects GIT
Depending on the wizard, you may select a directory to determine the wizard's scope —

Wizard for project import

@ Import existing Eclipse projects

O Import using the Mew Project wizard
O Import as general project

(= Working Tree - CANXP\git\gs-vglite_examples rt1170

@ < Back Einish Cancel

Figure 7.14. Import Eclipse Projects wizard from Application Code Hub project

The IDE searches for valid Eclipse-specific projects, listing all of them as shown in the wizard
page depicted in the screenshot below. Select desired projects and click “Finish”.

. Cloning from https://github.com/nxp-appcodehub/gs-vglite_examples_rt1170.git

O X
Import Projects GIT
Import projects from a Git repository |
Projects:
| type filter text to filter unselected projects Select All

= evkmimxrt1170_01_SimplePath (CANXP\git\gs-vglite_examples_rt1170\evkmimxrt1170_01_SimplePath) ~ Deselect All
= evkmimxrt1170_02_QuadraticCurves (CANXP\git\gs-vglite_examples_rt1170\evkmimxrt1170_02_QuadraticCurves)

= evkmimxrt1170_03_Stroked_CubicCurves (C\NXP\git\gs-vglite_examples_rt1170\evkmimurt1170_03_Stroked_CubicCurves)
= evkmimxrt1170_04_LinearGradient (CANXP\git\gs-vglite_examples_rt1170\evkmimxrt1170_04_LinearGradient)

= evkmimxrt1170_05_RadialGradient (C\NXP\git\gs-vglite_examples_rt1170\evkmimxrt1170_05_RadialGradient)

= evkmimxrt1170_06_LinearExtGradient (CANXP\git\gs-vglite_examples_rt1170\evkmimxrt1170_06_LinearExtGradient)

= evkmimxrt1170_07_FillRules (C\ANXP\git\gs-vglite_examples_rt1170\evkmimurt1170_07_FillRules)

Search for nested projects
Working sets

[] Add project to working sets

Working sets: Select...

® Next > Finish Cancel

Figure 7.15. Import Eclipse Projects from Application Code Hub project

All the projects should now be listed inside the Project Explorer view.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 84

NXP Semiconductors MCUXpresso IDE User Guide

8. SDK project component management

Projects and examples created from SDKs contain several software components such as
peripheral drivers and/or middleware. In previous versions of MCUXpresso IDE, the option to add
components was only available when creating a new project and was not possible for imported
examples. MCUXpresso IDE version has the ability to easily add (or remove) SDK components
to a previously created or imported example project via a new Manage SDK components wizard.
To launch the Manage SDK Components wizard, simply select the chosen project in the Project
Explorer view and then click the package icon as indicated below:

{5 Project Explo.. X i Registers % Faults % Peripherals+ = O
=1k ..v ®-
~ 1= MK64F12_Project <Debug>
€ Project Settings
w! Includes
£ CMsIS B Manage SOK components for project MKE4F12_Project m] x
& board ;
2 component) JEBJ]
5 Addingfremoving components could potentially break your project. Please use this feature carefully.
(£ device
s) i =
(& drivers Available SDK components
v [source R
8 MK64F12_Project.c A import other files
e semihost_hardfault.c Components x
&2 startup Add or remave SDK software components
E2 utilities
Name Description Version Info ~
[] & Abstraction Layer
[J & Board Components
] & cMSIS Drivers
[B CMSIS include
~ [®] 2 Drivers
ADC16 Driver 220
; Clock Driver 251
Click to add 202
203
231
203
DAC Driver 202
DMAMUX Driver 205
S0 Pirissae 234 =
Figure 8.1. Manage SDK Components

Note: This powerful feature can add (or remove) SDK components and their dependencies
at a source file level, relying on metadata contained within the SDK. However, also note the
following points:

e The IDE can only maintain dependencies between SDK components. SDK component
functions referenced from user-created files or from sources such the main() function of an
SDK example are not taken into account when determining the safe removal of components.
Therefore, the IDE cannot always prevent users from removing components that may actually
be required for a successful project build.

* Removing components does not lead to the removal of defined symbols, therefore users
should ensure only required symbols are present if there are any removed components. Failing
to do this may lead to project build failures.

Various SDK Component Management options are available from Preferences -> MCUXpresso
IDE -> SDK Handling -> Components.

8.1 SDK project component management example
To demonstrate the use of this feature, we add the dac driver to a project. To do this, launch the
Manage SDK components wizard, click on the dac driver component then click ‘OK’.
Next, a dialog appears, listing all of the source files required by this component — as below.
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 85

NXP Semiconductors MCUXpresso IDE User Guide

2] [] SDK Component Management

' The following files will be added or updated if required:
Component source Project Path(s) Infio

v i
\ -

v -Eidac drivers 2.0.1
v =i devices/MKB64F12/drivers drivers SRC
£l fsl_dac.c
v =i devices/MKB4F12/drivers drivers C_INCLUDE
=| fsl_dac.h
v &

Skip addfremove components confirmation in future

No -‘m

Figure 8.2. SDK Component Management

Note: Many of these files may already be included in your project.

Click ‘Yes’ to add these source files to your project.

Important Note: Since your project may contain edited or entirely new versions of the required
source files, MCUXpresso IDE performs a comparison between the new files to be included and

any existing files already within the selected project.

Should a source file difference be found, then a dialog as below appears:

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 86

NXP Semiconductors

MCUXpresso IDE User Guide

The file 'system_MKG4F12.¢' already exists in your project but is different from the SDK
component file.

NOTE: 'system_MKG&4F12.c' could belong to the selected compenent(s) or one of its
dependent components.

Please select from the following options:

Remember my decision.

Replace Keep existing Compare

Figure 8.3. SDK Component Management file difference

From here you can choose from the following options:

* Replace click to overwrite the project’s file from the SDK version
« Keep Existing click to keep the existing project file unchanged
« Compare click to compare the two files — this launches the Eclipse file compare utility which

allows the user to compare the new SDK file with the project copy

In this example, we click ‘Compare’ ...

Below, you can note the discovery of a modification in the user project source file:

C Compare

[€ Translation Unit

C Compare Viewer «

:.Wor.kspace: Wo.ri'cspace: fMP.(.éﬂfF“.uiect}.CMSi.S.fsystem_.MKﬁﬁ.F‘l 2._c

Compare

bld| [
| £ SDK: devices/MKB4F12/system.MKBAF12.c

.;‘.

P

[J1177 A user code change has been made here
12

T

N\ e

1114 -- Core clock

115 =rmmmeemmmmmmm e e e [

116 16

1117 uint32_t SystemCoreClock = DEFAULT_SYSTEM_CLOCK; 117 uint32_t SystemCoreClock = DEFAULT_SYSTEM_CLOCK
118 118

L 110 /® —mm e e

|128 SystemInit() 128 SystemInit()

21 -

2z

[123 void SystemInit (void) {
[124 #1F ((__FPU_PRESENT == 1) && (__FPU_USED == 1))
28 QFR-~FPAMR l= FFUN v 10%2Y | FRUN e 11%23)- LI h2s CFR-~FPAMR 1= AU -~ 10%2% | F2UN e 11%20) -

1123 void SystemInit (woid) {

Left: 116 : 1, Right: 111 : 1, no diff

@

Cancel

[124 #iF ((__FPU_PRESENT == 1) && (__FPU_USED == 1))

Figure 8.4. SDK Component Management file compare

UG10055

The Compare utility allows you to examine any change and to make a decision regarding which
code lines to choose or ignore. When you have made these decisions, click ‘Commit’ to use
these changes or ‘Cancel’ to return to the dialog and decide the action to take for the file.

Finally, please note the application build sizes before the addition:

Menory region Used Size Region Size %age Used
PROGRAM_FLASH: 13348 B 1 MB 1.27%
SRAM_UPPER: 8444 B 192 KB 4.29%

SRAM _LOVER: 0GB 64 KB 0. 00%

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

87

NXP Semiconductors MCUXpresso IDE User Guide

8.2

FLEX_RAM 0GB 4 KB 0. 00%
Fi ni shed buil ding target: MG64FNLIM)xxx12_Proj ect . axf

Followed by the application sizes after the addition.

Menory regi on Used Size Region Size %age Used
PROGRAM_FLASH: 13348 B 1 MB 1.27%
SRAM_UPPER: 8444 B 192 KB 4.29%
SRAM_LOVNER: 0 & 64 KB 0. 00%
FLEX_RAM 0 & 4 KB 0. 00%

Fi ni shed building target: MG64FNLM)xxx12_Proj ect . axf

These are exactly the same!

This is because although new source files have been added to the project, there is (probably) no
code in the project that references them, and hence the IDE does not include any new functions
or data in the final image. To make use of any new component, some of its new functionality
must of course be referenced.

Note: Some middleware components such as USB, are not compatible with the Add/Remove
component functionality and so do not appear in the Add/Remove dialog. The recommended
approach if such components are required is to import an example including the component and
modify it as required. We will address this restriction in a future release.

Please also see for details on how to explore the composition of an
image in detail.

SDK project refresh

Using the above technology, you can refresh MCUXpresso IDE projects with updated SDK
components.

When new SDKs are released for a particular MCU/Board, many source files are updated,
bugs fixed, features added, and so on. If such a new SDK replaces an existing SDK within
MCUXpresso IDE, you can optionally add any updated (or changed) source files, or source file
sections to an existing project using an identical mechanism as described above.

To use this feature, simply select a project in the project explorer view and click on Refresh SDK
Components as indicated below.

Figure 8.5. SDK Component Management project refresh

» & frdmk64f_bubble

i I OO TR YU A PUPY W 1) Oy Tgag—"y

UG10055

The SDK Component Management wizard guides you through the update process.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 88

NXP Semiconductors

MCUXpresso IDE User Guide

9. Open-CMSIS component management

MCUXpresso IDE integrated ARM CMSIS Plugins to explore Open-CMSIS packs and import
(middleware) components into an Eclipse project. With this feature, you can install the desired
CMSIS-Pack via CMSIS-Pack Management (Perspective -> Open Perspective -> Other ->
CMSIS-Pack Manager) and you can add middleware components to the project using RTE

Configuration view.

9.1 Install a pack

To start adding components, first open CMSIS-Pack Manager and install the needed packs.

(88 workspace - MCUXpresso IDE - o x
File fdit Mavigate Search Project Configlools Bun Window Help
o Qb EAPRFSIBUF | Wiy -if~ - T Q B L8
B Devices > B Bosrds B E|%|® § = 8 @pPacks x % Examples BE|S* B |® § = O = PackProperes x =g
[Search Device | [Search Pack 2El® 3
Device Summary Al Pack Action Description B] bype fiter text |
v @ NP 1352 Devices 5 NXP.MIMXRTI02_DFP [install | Device Family Pack for MIMXRTI042 ~ £ NXBMIMXRT1171_DFP.16.0.0
g iMX 6 Series 18 Devices i NXPMIMKRTI051_A0_DFP < Device Family Pack for MIMXRT1051 A0 silicon v ¢ Components
A3 iMX T Series 8Devices i NXP.MIMKRTI051_DFP . Device Family Pack for MIMXRT1051 v @ Board Support
%2 iLMX RT Series 2Devices 5 NXP.MIMXRTI052_AD_DFP . Device Family Pack for MIMXRT1052 AD silicon @ SDK Project Template
% K Series 1 Device 5 NXP.MIMXRTI052_DFP ta Device Family Pack for MIMXRTI052 v # Device
#4 KOO Series 2 Devices i NXP.MIMXRT1060-EVKB_BSP Install . Board Support Pack for EVKBMIMXRTI060 @ SDK Drivers
g K10 Series 14 Devices 5 NXP.MIMXRTI0S1X_DFP K. dnstall . Device Family Pack for MIMXRTI061X @ SDK Utilties
3 K20 Series 18 Devices i NXP.MIMXRTI061_DFP K dnstall__ Device Family Pack for MIMXRTI061 @ cMmsis
%3 K30 Series 6Devices 5 NXP.MIMXRTI0S2X_DFP € Install . Device Family Pack for MIMXRTI062X @ Statup
% KI2A2A31A 2Devices 5 NXP.MIMXRTI062_DFP € Unindate.. Device Family Pack for MIMXRTI062 v B Devices
k32028814 2Devices 5 NXP.MIMXRTI064_DFP & Install._| Device Femily Pack for MIMXRT1064 ¢ MIMXRTIIT1
3 K32L2B11A 4Devices i NXP.MIMKRT1160-EVK_BSP i Install__ Board Support Pack for EVKMIMXRT1160 v & Packages
%3 KI2L2B21A 4Devices 5 NXP.MIMXRTI165_DFP € Install.___ Device Family Pack for MIMXRT1163 & ARM.CMSIS[5.8.0)
% KI2L2B31A 4Devices 5 NXP.MIMXRT1165_DFP [Uptadate.. Device Family Pack for MIMXRTI 165
% K32L3A60 1 Device 5 NXPMIMXRTI170-EVKE_BS? s Install__ Board Support Pack for EVKBMIMXRTI 170
3 K32ZW Series 1 Device 3 NXP.MIMERT1170-EVK_BSP e Install__| Board Support Pack for EVKMIMXRT1170
3 KAD Series 6Devices > g NXP.MIMXRTI171_DFP i€ Uptodate . Device Family Pack for MIMXRTI71
%3 KD Series 12 Devices 5 NXP.MIMXRTI172_DFP 5 Install | Device Family Pack for MIMXRT172
43 K60 Series 18 Devices *&, NXP.MIMXRT1173_DFP <z Install Device Family Pack for MIMXRT1173
45 K70 Series 4Devices gy NXP.MIMERTI175_DFP 2 Install . Device Family Pack for MIMXRTI 175
3 KA Series 2Devices 5 NXP.MIMXRTI176_DFP {9 Unto date . Device Family Pack for MIMXRTI 175
3 KEAxx Series 6Devices 5 NXP.MKD2F12810_DFP & Install__ Device Family Pack for MK02F12810
% KExx Series 21 Devices 'ﬁ’ NXP.MK11D5_DFP Install Device Family Pack for MK11D5
45 Ko Series 23 Devices 5 NXP.MK11DAS_DFP Kz dnstall__. Device Family Pack for MK11DAS
5 Kivox Series 14 Devices 5 NXP.MK12D5_DFP i Install_ Device Family Pack for MK12D3
3 KSex Series 4Devices 5 NXP.MK21D5_DFP nstall__. Device Family Pack for MK21D3
%% KVaxx Series 3 Devices "m INXP.MK21DAS5_DFP Install Device Family Pack for MK21DAS
A5 KWix Series 18 Devices 5 NXPMK2IF12_DFP Kz dnstall . Device Family Pack for MK21F12
LPCANO 1 Device 5 NXP.MK21FAT2_ DFP i Install___ Device Family Pack for MK2IFA12
3 LPC31UBE 2Devices 5 NXP.MK22D5_DFP [lnstall . Device Family Pack for MK22D5
%3 LPCS4S005 2Devices v 5 NXP.MK22F12_DFP & dnstall . Device Family Pack for MK22F12 v
< > |le >
U NXP MIMARTI T6xo00 (evkmi.. emd)
Figure 9.1. CMSIS-Pack Manager

From the Packs view (toolbar) you can: Reload, Check for updates on Web, Import Packs from
disk, and so on. To install a pack, select one, click on Install, and accept the license. After

9.2

UG10055

installation, its status will be Up to date and a green icon will appear.

Note: When using the CMSIS-Pack Manager for the first time, an index update occurs to populate
the list of available packs on the web.

Once the packs are installed, go back to Develop Perspective.

Add an Open-CMSIS-Pack component to a project

Create an NPW/SDK example for your device and add the support for Open-CMSIS by right-
clicking on the project entry in Project Explorer -> SDK Management -> Add Open-CMSIS
Components.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 89

NXP Semiconductors MCUXpresso IDE User Guide

1@ Project Bxplorer X Uil{ Registers 4 Faults 3, Periphersis= =37 | &
e evikmimut1170_hello_world_demn cm7 <Mehums

%/ @-1=0

HNew > |

© Project Settings
& Includes

B CMsis

& board

5 (5 component

& device
5 drivers
€ evkmimart1170
(3 source
[hello_world.c
[£] semihost_hardisuite
9 startup
utifities

= doe

Golnto
Open in New Window
Show In

Show in Local Terminal
Copy

Paste

Delete

Source

Move

Rename...

Ly Import..
5 Export..

© 40

Build Project
Clean Project

Refresh

Close Peoject

Close Unrelated Project
Build Configurations
Build Targets

Index

Prcfiling Tools

Fun As

Debug As

Prcfile As

Restore from Local History...

Leunch Configurations
Utilties

Ao Shifte W >

Ctrl-C

Delete

[% soKManagement

Tools

vslidate

WCUXpresso Config Tools
Run C/C+ Code Analysis
Team

4@

Compare With
Configure
Sousee

Properties

Manage SDK Components
Refresh SDK Components
Add SDK Part Support

Export to SOK Gt repository..
Add Open-CMSIS Compenents

]
8
B
&

AltsEnter |

Figure 9.2. Add Open-CMSIS Components

RTE Configuration view opens and displays all the available components from installed packs.

[Proj.. % U Regi.. A Faults %, Peri. = O 4 evkmimxrt]170_hello_world_demo_cm7.rteconfig X =2 =
%Y #% M- & Components [@
v 5 evkmimrt1170_hello_world_demo_cm7 <Debug>
@ Project Settings Software Components Sel. Variant Vendor Version Deseription -
3 Includes B MIMXRTI1760VMAR:cmT NXP ARM Cortex-M7 1000 MHz, 1260 KB RAM, 256 KB ROM
& emsis 4 Board Support Generic Interfaces for Evalustion and Development Boards
5 RTE v 4 CMSIS Cortex Microcontroller Software Interface C:
@ board @ CORE m] ARM 560 00, 5
@ component @ DsP O Source BRM 1100 5-DSP Library for Cortex-M, SC
& device # NNLib o ARM 310
(& drivers % FIOS (API) 100
& evkmimxrt] 170 RTDS2 (4P) 213 S-RTDS AP for Cortex-M, SC000, and SC300
8 source 4 CMSIS Driver NXP MCUXpresso SDK Peripheral CMSIS Drivers
[& hello_world.c v 4 Device Startup, System Setup
& semihost_hardfautt.c # cmsis
(@ stertup % RteTest Generated Com
3 utifties @ SOK Drivers NXP MCUXpresso SDK Peripheral Drivers
@ xip @ SOK Project Template NXP MCUXpresso SDK RTE Device Project Template
& doc) % SDK Utiities NXP MCUXpresse SDK Utilities
& evkmimxnt1 170_hello_world_deme_cm7.recanfig @ Startup NXP MCUXpresso SDK Start up
4 edgefast wifi
@ edgefast_vifi_nxp
& LVGL LVGL [1011 VGL (Light snd Vessatile Graphics Library) s & free and open-source graphi
& Network hlP NP 100 Ll
4 Protocol Stack
s 4 RteTest Seftware components for testing of RTE Library
4 RieTestBundle)
& RI0S emb0s L SEGGER 110 , embOS resl-time operating system
& Sensors o
Validation Output Description

Components | Device and Board | Packs

Figure 9.3. RTE Configuration view

9.3 Manage components inside the project
This feature:

* « Allows installation of multiple components,
dependencies.
« Automatically generates required configuration, template, and header files
« Updates project configuration (for example, build settings, compiler flags, include paths,
linked libs, and so on)

automatically checking and resolving

UG10055

User Guide

All information provided in this document is subject to legal disclaimers

Rev. 11.9.0 — 5 January, 2024

© 2024 NXP Semiconductors. All rights reserved.

90

NXP Semiconductors MCUXpresso IDE User Guide

10. Creating new projects using preinstalled part support

For Creating projects using SDKs please see

To explore the range of preinstalled parts/MCUs simply click ‘Create a new C/C++ project’ in the
Quickstart panel. This opens a page similar to the figure below:

(ﬂreinstatlad MCUs \
MCUs from preinstalled LPC and

»LPC18xx '
wﬂﬂdﬂ?: Ry /

Figure 10.1. New Project Wizard preinstalled

[BeN SDK Wizard

MD -
(D Creating project for device: LPC1548 with no board. A :‘ /
. Board and/or Device selection page
~ SDK MCUs Available boards B 1% &

MCUs from installed SDKs.

Please select an available board for your project.

Please visit mcuxpresso.nxp.com to
obtain additional SDKs.

Target

LPCXpresso1549 LPCXpresso1347 LPCXpresso1343 LPCXpresso1227

generic Cortex-M part support
NXP LPC1548
LPC1517
LPC1518
LPC1518
LPC1547 LPCXpresso11C24 LPCXpresso1115 LPCXpresso11U37H LPCXpresso11U14
LPC1548
LPC1548
»LPC1700
FLPC177x_8x

Selected Device: LPC1549 with no board. SDKs for selected MCU
Target Core: cm0 Name SDK Version Manifest Versiol Location
Description: Cortex-M3 based microcontraoller, with USB and up to 256KB Flash
and 36K RAM
‘_?) Cancel

UG10055

The list of preinstalled parts is presented at the bottom left of this window.

You can also see a range of related development boards indicating whether a matching board
support library (LPCOpen or CodeBundles) is available.

For details of this page see:

10.1 New Project Wizard

This wizard page provides several ways of quickly selecting the target for the project that you
want to create.

In this description, we are going to create a project for an LPC4337 MCU. For this MCU an

LPCOpen library is available, so we can locate this MCU using the board filter. Note: Boards are
displayed where either LPCOpen or CodeBundle projects exist.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User

Guide Rev. 11.9.0 — 5 January, 2024 91

NXP Semiconductors MCUXpresso IDE User Guide

Note: A description of LPCOpen can be found in the section

To reduce the number of boards displayed, we can simply type ‘4337’ into the filter so only boards
with MCUs containing ‘4337’ are displayed.

~ SDK MCUs

Target

NXP LPCA4337
LPC4325
LPC4325-M0
LPCA4327
LPC4327-M0
LPC4330
LPC4330-M0
LPC4333
BCA333-MO

LPCA4337-M0

Target Core:
Description:

(D Creating project for device: LPC4337 using board: LPCXpresso4337 ‘ y L i’ 7

. Board and/or Device selection page

MCUs from installed SDKs.

- Rlaasagelect an available board for your project.
Please visit mcuxpresso.nxp.com to
obtain additional SDKs. 4337

~ Preinstalled MCUs

MCUs from preinstalled LPC and
generic Cortex-M part support

Selected Device: LPC4337 using board: LPCXpresso4337 SDKs for selected MCU

Figure 10.2. New Project Wizard selection for Preinstalled MCUs

SDK Wizard

b Y &

Available boards 1B 1% &

LPCXpresso4337

cm0 Name SDK Version Manifest Versio Location
Multicore Cortex-M4/Cortex-MO based microcontroller, with up to 1MB
Flash and 136KB RAM

When you select a board as highlighted in the above figure, the wizard also selects automatically
the matching MCU (part).

Note: if no matching board is available, the required MCU can be selected from the list of
Preinstalled MCUs.

Note: Boards added to MCUXpresso IDE from SDKs will have an ‘SDK’ graphic superimposed
on the board image. Boards without the SDK graphic indicate that a matching LPCOpen package
(or Code bundle) is available for that board and associated MCU.

With a chosen board selected, now click ‘Next’ to launch the next level of wizards. These wizards
for Preinstalled MCUs are very similar to those featured in LPCXpresso IDE and are described
in the next section.

10.2 Creating a project
MCUXpresso IDE includes many project templates to allow the rapid creation of correctly
configured projects for specific MCUs.
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 92

NXP Semiconductors MCUXpresso IDE User Guide

This New Project wizard supports 2 types of projects:

¢ Those targeting LPCOpen libraries
« Standalone projects

In addition, certain MCUs like the LPC4337 support multiple cores internally. For these MCUs,
multicore options are also available (as below):

® o
New project...
LPC43xx (Cortex-M4 basic) -» C Project (Semihosted)

. Wizard selection page.

Wizard
YLPC1800 /LPC4300
¥ LPC43xx (Cortex-M4 basic)

(LPCOpen - C Project

LPCOpen - C Static Library Project
LPCOpen - C++ Project

\ LPCOpen - C++ Static Library Project
C Project

C Project (Semihosted)
C Static Library Project
C++ Project

+4 ic Libri ject

¥LPC43xx Multicore M4]

LPCOpen - C Project
LPCOpen - C++ Project

Y

C Project
C Project (Semihosted)
C++ Project

@ [Next> BRI

Figure 10.3. New project: wizard selection

You can now select the type of project that you wish to create (see below for details of Wizard
types).

In this case, we show the steps in creating a simple C ‘Hello World’ example project.

10.2.1 Selecting the wizard type

For most MCU families MCUXpresso IDE provides wizards for two forms of project: LPCOpen
and non-LPCOpen. For more details on LPCOpen, see
For both kinds, the main wizards available are:

C Project

¢ Creates a simple C project, with the min() routine consisting of an infinite wni1e(1) loop that
increments a counter.

« For LPCOpen projects, code is also included to initialize the board and enable an LED.
C++ Project
¢ Creates a simple C++ project, with the nai n() routine consisting of an infinite wni1e(1) loop that

increments a counter.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 93

NXP Semiconductors MCUXpresso IDE User Guide

10.2.2

10.2.3

UG10055

« For LPCOpen projects, code is also included to initialize the board and enable an LED.

C Static Library Project

¢ Creates a simple static library project, containing a source directory and, optionally, a directory
to contain include files. The project also contains a “liblinks.xml” file, which the smart update
wizard can use on the context-sensitive menu to create links from application projects to this
library project. For more details, please see the FAQ at:

https://community.nxp.com/message/630594

C++ Static Library Project

¢ Creates a simple (C++) static library project, like that produced by the C Static Library Project
wizard, but with the tools set up to build C++ rather than C code.

The non-LPCOpen wizard families also include a further wizard:

Semihosting C Project

« Creates a simple “Hello World” project, with the mai n() routine containing a printf() call, which
causes the text to display within the Console View of MCUXpresso IDE. This is implemented
using “semihosting” functionality. See the section on for more information.

Configuring the project

Once you have selected the appropriate project wizard, you will be able to enter the name of
your new project, this must be unique for the current workspace.

Finally, you are presented with one or more “Options” pages that provide the ability to set
a number of project-specific options. The choices presented depend upon which MCU you
are targeting and the specific wizard you selected, and may also change between versions of
MCUXpresso IDE. Note: if you have any doubts over any of the options, then we would normally
recommend leaving them set to their default values.

The following sections detail some of the options that you may see when running through a
wizard.

Wizard options

The wizard presents a set of pages (that vary based on the chosen MCU), many of these pages
typically require no user change since the common default values are already preset. The pages
may include:

LPCOpen library project selection

When creating an LPCOpen-based project, the first option page that you see is the LPCOpen
library selection page.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 94

https://community.nxp.com/message/630594

NXP Semiconductors MCUXpresso IDE User Guide

[] []
New project..

@ Select an LPCOpen Chip library project within the current workspace

. Wizard properties page.

Select the LPCOpen Chip and (optionally) Board library project(s) that you want your new project
to link against.

Selected library project(s) must be present in this workspace. If they are not,

= Import...
then click the 'Import' button to run the Import Wizard

Select LPCOpen Libraries

LPCOpen Chip Library Project Ipe_chip_43xx “ Srowse...
LPCOpen Board Library B | Browse
Project

If a Board Library Project is selected, then the corresponding Chip Library Project must also be
selected

@ < Back Cancel

Figure 10.4. LPCOpen library selection

UG10055

This page allows you to run an “Import wizard” to download the LPCOpen bundle for your target
MCU/board from https://www.nxp.com/Ipcopen and import it into your Workspace, if you have
not already done so.

You then need to select the LPCOpen Chip library for your MCU using the Workspace browser
(and for some MCUs an appropriate value is also available from the dropdown next to the Browse
button). Note: the wizard does not allow you to continue until you have selected a library project
that exists within the Workspace.

Finally, you can optionally select the LPCOpen Board library for the board that your MCU is fitted
to, using the Workspace browser (and again, in some cases an appropriate value may also be
available from the dropdown next to the Browse button). Although the selection of a board library
is optional, it is recommended that you do this in most cases.

CMSIS-CORE selection

For backward compatibility reasons, the non-LPCOpen wizards for many parts provide the ability
to link a new project with a CMSIS-CORE library project. The CMSIS-CORE portion of ARM’s
Cortex Microcontroller Software Interface Standard (or CMSIS) provides a defined way of
accessing MCU peripheral registers, as well as code for initializing an MCU and accessing
various aspects of the functionality of the Cortex CPU itself. MCUXpresso IDE typically provides
support for CMSIS through the provision of CMSIS library projects. You can find CMSIS-CORE
library projects in the Examples directory of your MCUXpresso IDE installation.

Generally, if you wish to use CMSIS-CORE Ilibrary projects, you should use
OMBI S_CORE_<part fani | y> (these projects use components from ARM’s CMSIS v3.20 specification).
MCUXpresso IDE does in some cases provide libraries based on early versions of the CMSIS
specification with names such as cvsi svip3o_<part fani I y>, but these are not recommended for use
in new projects.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 95

https://www.nxp.com/lpcopen

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

The CMSIS library option within MCUXpresso IDE allows you to select which (if any) CMSIS-
CORE library you want to link to from the project you are creating. Note: you need to import
the appropriate CMSIS-CORE library project into the workspace before the wizard allows you
to continue.

For more information on CMSIS and its support in MCUXpresso IDE, please see the FAQ at:
https://community.nxp.com/message/630589

Note: The use of LPCOpen instead of CMSIS-CORE library projects is recommended in most
cases for new projects. (In fact, LPCOpen actually builds on top of many aspects of CMSIS-
CORE.) For more details see

CMSIS DSP library selection

ARM’s Cortex Microcontroller Software Interface Standard (or CMSIS) specification also
provides a definition and implementation of a DSP library. MCUXpresso IDE provides prebuilt
library projects for the CMSIS DSP library for Cortex-M0/MO+, Cortex-M3, and Cortex-M4 parts,
although a source version of it is also provided within the MCUXpresso IDE Examples.

Note: You can use the CMSIS DSP library with both LPCOpen and non-LPCOpen projects.
Peripheral driver selection

For some parts, one or more peripheral driver library projects may be available for the target
MCU from within the Examples area of your MCUXpresso IDE installation. The non-LPCOpen
wizards allow you to create appropriate links to such library projects when creating a new project.
You need to ensure that you have imported such libraries from the Examples before selecting
them in the wizard.

Note: The use of LPCOpen rather than these peripheral driver projects is recommended in most
cases for new projects.

Enable the use of floating-point hardware

Certain MCUs may include a hardware floating-point unit (for example NXP LPC32xx,
LPC407x_8x, and LPC43xx parts). This option sets appropriate build options so that code is
built to use the hardware floating-point unit and also causes startup code to enable the unit to
be included.

Code Read Protect

NXP’s Cortex-based LPC MCUs provide a “Code Read Protect” (CRP) mechanism to prevent
certain types of access to internal Flash memory by external tools when a specific memory
location in the internal Flash contains a specific value. MCUXpresso IDE provides support
for setting this memory location. See the section on for more
information.

Enable use of ronuivi de library

Certain NXP Cortex-M0-based MCUs, such as LPC11Axx, LPC11Exx, LPC11Uxx, and
LPC12xx, include optimized code in ROM to carry out divide operations. This option enables the
use of these Romdivide library functions. For more details see the FAQ at:

https://community.nxp.com/message/630743
Disable watchdog

Unlike most MCUs, NXP’s LPC12xx MCUs enable the watchdog timer by default at reset. This
option disables that default behavior. For more details, please see the FAQ at:

https://community.nxp.com/message/630654

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 96

https://community.nxp.com/message/630589
https://community.nxp.com/message/630743
https://community.nxp.com/message/630654

NXP Semiconductors MCUXpresso IDE User Guide

10.2.4

UG10055

LPC1102 ISP pin

The provision of a pin to trigger entry to NXP’s ISP bootloader at reset is not hardwired on the
LPC1102, unlike other NXP MCUs. This option allows the generation of default code for providing
an ISP pin. For more information, please see NXP’s application note, AN11015, “Adding ISP to
LPC1102 systems”.

Memory configuration editor

For certain MCUs such as the LPC18xx and LPC43xx, the wizard presents the option to edit
the target memory configuration. This is because these parts may make use of external SPIFI
Flash memory and hence this can be described here if required. For more information please
see: and also

Note: You can of course also edit the memory configuration post-project creation.
Redlib printf options

The “Semihosting C Project” wizard for some parts provides two options for configuring the
implementation of printf family functions that will get pulled in from the Redlib C library:

* Use the non-floating-point version of printf
« If your application does not pass floating point numbers to printf() family functions, you
can select a non-floating-point variant of printf. This helps to reduce the code size of your
application.
« For MCUs where the wizard does not provide this option, you can cause the same effect by
adding the symbol cr | NTEGER PRI NTF tO the project properties.

¢ Use character- rather than string-based printf

» By default printf() and puts() make use of maioc() to provide a temporary buffer on the
heap in order to generate the string to be displayed. Enable this option to switch to using
“character-by-character” versions of these functions (which do not require heap space). This
can be useful, for example, if you are retargeting printf() to write out over a UART — since
in this case, it is pointless creating a temporary buffer to store the whole string, only to print
it out over the UART one character at a time.

« For MCUs where the wizard does not provide this option, you can cause the same effect by
adding the symbol cr_pri NTF_cHAR tO the project properties.

Note: if you only require the display of fixed strings, then using puts() rather than printf()
noticeably reduces the code size of your application.

For more information see

Project created

Having selected the appropriate options, you can then click on the Finish button, and the wizard
creates your project for you, together with the appropriate startup code and a simple mi n. ¢ file.
Build options for the project are configured appropriately for the MCU that you selected in the
project wizard.

You should then be able to build and debug your project, as described in Section 11.5 and
Chapter 14.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 97

NXP Semiconductors MCUXpresso IDE User Guide

11. Importing example projects (from the file system)

11.1

UG10055

MCUXpresso IDE supports two schemes for importing examples:

¢ From SDKs — using the Quickstart Panel -> Import SDK example(s). See

¢ From the filing system — using the Quickstart Panel -> Import project(s) from file system
* We discuss this option below:

Drag and Drop

@ You can import MCUXpresso IDE project(s) directly into a workspace by simply
dragging a folder (or zip) containing MCUXpresso IDE projects onto the Project
Explorer view. Note: this imports all projects within a folder (or zip). You can also
export projects by dragging directly from the Project Explorer view onto a filer, or
directly into another instance of the IDE. See
for more information. Due to underlying Eclipse changes in Version 11.1.0, you can
only use Drag and Drop to import projects, when one or more project already exists
within a Workspace

Note: This option can also be used to import projects exported from MCUXpresso IDE. See

MCUXpresso IDE installs with a large number of example projects for preinstalled parts, that you
can import directly into a workspace. These are located at:

<install_dir>/idel/ Exanpl es

and consist of:

« CMSIS-DSPLIB
« A suite of common signal processing functions for use on Cortex-M processor-based devices
CodeBundles for LPC800 family

* Which consist of software examples to teach users how to program the peripherals at a
basic level

FlashDrivers
« Example projects to create Flash driver used by LinkServer
* Legacy
* A range of historic examples and drivers including CMSIS / Peripheral Driver Library
e LPCOpen
« High-quality board and chip support libraries for LPC MCUs, plus example projects

Code cundles for LPC800 family devices

The LPC800 Family of MCUs is ideal for customers who want to make the transition from 8
and 16-bit MCUs to the Cortex MO/MO+. For this purpose, we've created Code Bundles which
consist of software examples to teach users how to program the peripherals at a basic level.
The examples provide register-level peripheral access and direct correspondence to the memory
map in the MCU User Manual. Examples are concise and accurate explanations are available
in both README and source file comments. Code Bundles for LPC800 family devices are made
available at the time of the series' product launch, ready for use with a range of tools including
MCUXpresso IDE.

Find more information on code bundles together with the latest downloads at:

https://www.nxp.com/LPC800-Code-Bundles

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 98

https://www.nxp.com/LPC800-Code-Bundles

NXP Semiconductors MCUXpresso IDE User Guide

11.2

11.3

UG10055

LPCOpen software drivers and examples

Note: LPCOpen is no longer under active development. SDKs now provide support for new
MCUs from NXP. Certain parts such as some members of the LPC54xxx families are available
with both LPCOpen and SDK support.

LPCOpen is an extensive collection of free software libraries (drivers and middleware) and
example programs that enable developers to create multifunctional products based on LPC
microcontrollers. Access to LPCOpen is free to all LPC developers.

Amongst the features of LPCOpen are:

¢ MCU peripheral device drivers with meaningful examples

* Common APIs across device families

« Commonly needed third-party and open-source software ports

¢ Support for Keil, IAR, and LPCXpresso/MCUXpresso IDE toolchains

LPCOpen is thoroughly tested and maintained. The latest LPCOpen software now available
provides:

« MCU family-specific download package

¢ Support for USB ROM drivers

« Improved code organization and drivers (efficiency, features)

e Improved support for MCUXpresso IDE

CMSiIS/Peripheral Driver Library/code bundle software packages are still available, from within
your install_dir/ide/Examples/Legacy folder. However, you should only use these for existing
development work. When starting a new evaluation or product development, we would
recommend the use of LPCOpen if available.

More information on LPCOpen together with package downloads can be found at:

https://lwww.nxp.com/Ipcopen

Importing an example project

To import an example project from the file system, locate the Quickstart panel and select ‘Import
projects from Filesystem’

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 99

https://www.nxp.com/lpcopen

NXP Semiconductors

MCUXpresso IDE User Guide

(U Quickstart Panel X)=Variables e Breakpoints

B MCUXpresso IDE Quickstart
£/ No project selected

~ Create or import a project

B Create a new C/C++ project...
] Import SDK example(s)...
[X] Import from Application Code Hub...

& Import project(s) from file system...

i Import executable from file system...

~ Build your project

"\
B.

i
~ Miscellaneous

3 Quick Settings>>

=% Build all projects

Figure 11.1. Importing project(s)

~ Debug your project B-EH-HA-~

From here you can browse the file system.

UG10055 All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

100

NXP Semiconductors MCUXpresso IDE User Guide

® @ Import project(s) from file system...
Import project(s) from file system... i
Select the examples archive file to import. Z y

Projects are contained within archives (.zip) or are unpacked within a directory. Select your
project archive or root directory and press <Nexts. On the next page, select those projects you
wish to import, and press <Finish>.

Project archives for LPCOpen and 'legacy’ examples are provided.

Project archive (zip)

Archive || Browse...

Project directory (unpacked)

Root directory Browse...

LPCOpen

LPCOpen is the recommended code base for Cortex-M based NXP LPC Microcontrollers.

MCUXpresse IDE includes the LPCOpen packages which can be imported directly by pressing the Browse
button in the Project archive (zip) section, above, and navigating to the Examples/LPCOpen directory.

Alternatively, press the button below to Browse the nxp.com website for latest resources.

Browse LPCOpen resources on nxp.com...

@ Cancel

Figure 11.2. Importing examples

11.3.1

UG10055

* Browse to locate Examples stored in zip archive files on your local system. These could
be archives that you have previously downloaded (for example LPCOpen packages from
https://www.nxp.com/Ipcopen or the supplied, but deprecated, sample code located within the
Examples/Legacy subdirectory of your MCUXpresso IDE installation).

« Browse to locate projects stored in directory form on your local system (for example, you can
use this to import projects from a different Workspace into the current Workspace).

« Browse LPCOpen resources to visit https://www.nxp.com/lpcopen and download an
appropriate LPCOpen package for your target MCU. This option automatically opens a web
browser onto a suitable links page.

To demonstrate how to use the Import Project(s) functionality, we now import the LPCOpen
examples for the LPCXpresso4337 development board.

Importing examples for the LPCXpresso4337 development board

First of all, assuming that you have not previously downloaded the appropriate LPCOpen
package, click on Browse LPCOpen Resources, which opens a web browser window. Click
on LPC4300 Series, then locate NXP LPCXpresso04337, and then download 2.xx version for
LPCXpresso Toolchain (LPCOpen packages created for LPCXpresso IDE are compatible with
MCUXpresso IDE).

Note: LPCOpen Packages for the LPC4337 are preinstalled and located at:

<install_dir>/ide/ Exanpl es/ LPCOpen/ . ..

Once the package has finished downloading, return to the Import Project(s) dialog and click on
the Browse button next to Project archive (zip); then locate the LPCOpen LPCXpresso4337
package archive previously downloaded. Select the archive, click Open and then click Next. You
will then see a list of projects within the archive, as shown in Figure 11.3.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 101

https://www.nxp.com/lpcopen)
https://www.nxp.com/lpcopen

NXP Semiconductors MCUXpresso IDE User Guide

Figure 11.3. Selecting projects to import

@ e Import project(s)
Import project(s) il —
¢ Select a directory to search for existing Eclipse projects. / /
|
Projects:
freertos_blinky (freertos_blinky) Select All
lib_lpcspifilib {lib_lpespifilib)
I|pc_board_nxp_lpexpresso_4337 (lpe_board_nxp_lpcxpresso_4337) Deselect All
|pc_board_nxp_lpcxpresso_4337_m0 (lpc_board_nxp_lpcxpresso_4337 _n
1 lpc_chip_43xx (lpc_chip_43xx) Refresh
Ipc_chip_43xx_m0 (Ipc_chip_43xx_m0)
LPCUSBIib_AudioOutputHost (LPCUSBIib_AudicOutputHost)
LPCUSBIib_KeyboardHost (LPCUSBIib_KeyboardHost)
LPCUSBIlib_MassStorageHost (LPCUSBIlib_MassStorageHost)
LPCUSBIib_SerialHost (LPCUSBIib_SerialHost)
Iwip_freertos_tcpecho (Iwip_freertos_tcpecho)
Iwip_freertos webserver (lwip_freertos webserver)
i , |
Options
l
3
Working sets
Add project to working sets
Working sets:

Select the projects you want to import and then click Finish. The examples will be imported into
your Workspace.

Note: generally, it is a good idea to leave all projects selected when doing an import from a zip
archive file of examples. This is certainly true the first time you import an example set, when you
are not necessarily aware of any dependencies between projects. In most cases, an archive of
projects contaisn one or more library projects, which are used by the actual application projects
within the examples. If you do not import these library projects, then the application projects will
fail to build.

11.4 Exporting projects
MCUXpresso IDE provides the following export options from the Quickstart panel:
¢ Export project(s) to archive (zip)
« Export project(s) and references to archive (zip)
« choose this option to export project(s) and automatically also export referenced libraries
To export one or more projects, first select the project(s) in the Project Explorer then from the
Quickstart Panel -> Export project(s) to archive (zip). This launches a filer window. Simply select
the destination and enter a name for the archive to be exported then click ‘OK’.
Also please see for information about dragging and
dropping projects.
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 102

NXP Semiconductors MCUXpresso IDE User Guide

11.5

11.5.1

UG10055

Building projects

Building the projects in a workspace is a simple case of using the Quickstart Panel to “Build all
projects”. Alternatively, you can select a single project in the ‘Project Explorer’ View and build it.
Note: building a single project may also trigger a build of any associated or referenced project.

Build configurations

By default, MCUXpresso IDE creates each project with two different “build configurations”
Debug and Release. Each build configuration contains a distinct set of build options. Thus a
Debug build typically compiles its code with optimizations disabled (- @) and Release compiles
its code optimizing for minimum code size (-cs). You can see the currently selected build
configuration for a project after its name in the Build/Clean/Debug options of the Quickstart
Panel.

For more information on switching between build configurations, see

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 103

NXP Semiconductors MCUXpresso IDE User Guide

12. Importing existing executables

You can also import existing executables and further use them for debugging with MCUXpresso
IDE. Importing an existing executable generates a new project that you can use to attach or
download the executable to the target; when using debug, the code is first downloaded to Flash
and then debugging starts, while attach is used to debug an application that was already flashed
(see for more details). It is important to note that
you cannot use the generated project for rebuilding the executable. The newly created project
contains a symbolic link to the imported executable (the executable is not copied or moved from
its original location).

To import an existing executable, go to the Quickstart panel and select Import executable from
file system.

() Quickstart Panel X (9= Variables ®s Breakpoints =0
- MCUXpresso IDE Quickstart
“®) No project selected
« Create or import a project
B Create a new C/C++ project...
Import SDK example(s)...
£ R R
Import from Application Code Hub...
& Import project(s) from file system...

[© Import executable from file system...]

~ Build your project

~ Debug your project B-EB~-H-~

_

~ Miscellaneous

2 Quick Sett ngs>>

=0 Build all projects

Figure 12.1. Import executable

You can also access the “MCUXpresso Executable Importer” by going to “File” -> “Import” and
then expanding the “C/C++" category.

The wizard allows the selection of files having “elf’/“axf’ extension.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 104

NXP Semiconductors MCUXpresso IDE User Guide

. Import O X

Select)
Import a C/C++ executable file into an MCUXpresso IDE project for debugging purposes H

Select an import wizard:

type filter text |

= General ~
= Application Code Hub
v = CfC++
[€] C/C++ Executable
&% C/C++ Project Settings
Existing Code as Makefile Project
1Z! MCUXpresso Executable Importer
= Device Configuration Tool
= Git v

® < Back Finish Cancel

Once opened, several pieces of information are expected to be provided in order to finish the
wizard. The fields are described below.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 105

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

a b~ W N -

7.

. Import Executable O b4

MCUXpresso Executable Importer lo
| ©_No Mcu selected

Select executable: | | C\nxp\lpcxpresso55s36_led_blinky\Debughlpexpresso55s

Mew project name] | Debug_lpcxpresso55s36_led_blinky

The new project can be used for debugging purposes only

Itypetofulter MCU selection Q
~

Famil

SDK MCUs o
v = K2x
© MK22FN512xxx12

£ K32L2A41A
© K32L2A41300:A
£ K3212B31A
© K32L2B31x000(A
£ K32L3A60
© K32L3A60m00
~ £ KEOx
© MKE02Z161004
© MKE02Z32xxx4
© MKE02Z640004
= KE1x
© MKE15Z128x00(7
© MKE15Z256x07
© MKE16Z32x0004
© MKE16Z641004
© MKE17Z128007

© MKE17Z256xxx7
v = KM3x
MAKMIAT 128800

Core ~

<

<

<

<

Board 7

@ < Back Next > Finish Cancel

. Wizard validation status. Validation errors appear here.

. Path to the C/C++ executable file.

. Name to be assigned to the newly created project.

. Text filter used to filter the available MCUs.

. The IDE needs to associate an MCU with the newly created project. Please select one from

the list. Note that the IDE identifies MCUs from the list based on the installed SDKs and on
the available preinstalled parts.

. In the case of a multicore device, you must also select the core to use for debugging. You can

do this using the “Core” drop-down.
The “Board” drop-down allows the selection of the actual board.

Once the wizard is finished, a new project appears in Project Explorer, as illustrated in the
picture below. See for details about how to start using the project
for debugging.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 106

NXP Semiconductors MCUXpresso IDE User Guide

5 Project Explo.. X % Registers % Faults 2 Peripherals+ ~— O

257 | |8~ ¢
~ 2% Debug_lpcxpresso55s36_led_blinky
+ & Project Settings
=i Associated SDK
=4 Libraries (and semihosting)
~ @& MCU

o chip = 'LPC55536'
© core = 'cm33_core0_LPC5553¢6"
© package = 'LPC55536JBD100°
© processor = cm33’

st Memory

€ Open-CMSIS components

M Options

v # Binaries
%% Debug_lpcxpresso55536_led_blinky.axf - [arm/le]
v ¥ Includes
= C/nxp/MCUXpressolDE_11.7.0_9189_alpha/ide/plugins/com
(= C:/nxp/MCUXpressolDE_11.7.0_9189_alpha/ide/plugins/comr
v (= Debug
ﬁ Debug_Ipcxpresso55s36_led_blinky.axf - [arm/le]§
Debug_lpcxpresso55536_led_blinky LinkServer Debug.launch

If the sources that were used to build the executable are still available in the original build folder,
then they are accessible for source-level debugging. However, since this is not usually the case,
you need to specify the location of the sources in order to access them from your project.

At this point you can press “Locate File...” and add the source file location. Another option for
source mapping is to press “Edit Source Lookup Path...” and then press the “Add” button, finally

you should add a container to the source lookup path. You can later edit or remove this entry
as needed.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 107

NXP Semiconductors MCUXpresso IDE User Guide

B Add Source X

Add a container to the source lookup path +E

An absolute path to a file in the local file system.

Absolute File Path:
= Compilation Directory

(=File System Directory

[Z Path Mapping

[EProgram Relative File Path

= Project

=g Project - Path Relative to Source Folders
= Workspace

(=Workspace Folder

®

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 108

NXP Semiconductors MCUXpresso IDE User Guide

13. Debug solutions overview

MCUXpresso IDE installs with built-in support for 3 debug (hardware) solutions; comprising the
as used in LPCXpresso IDE. Plus support for

both and . This support includes the installation of all
necessary drivers and supporting software.

The rest of this chapter discusses these different Debug solutions. For general information on
debugging please see the chapter

Note: Within MCUXpresso IDE, the debug solution used has no impact on project setting or build
configuration. Debug operations for basic debug are also identical.

13.1 Starting a debug session

With a suitable board and debug probe connected (usually via USB), to start a debug session:

1. Select a project to debug within the MCUXpresso IDE Project View
2. Click Debug from within the MCUXpresso IDE Quickstart View

() Quickstart Panel X = Variables ® Breakpoints =8

MCUXpresso IDE Quickstart
22| Project: Ipcxpresso55s69_hello_world [Debug] |

~ Create or import a project

& Create a new C/C++ project...
Import SDK example(s)...
C) . -
Import from Application Code Hub...
® Import project(s) from file system...
& Import executable from file system
~ Build your project
& Build
¢ Clean

~ Debug your project B-E-H~

[%:r Debug]

~ Miscellaneous

® Edit project settings

B~

& Quick Settings> >

B Export project(s) to archive (zip)

£ Export project(s) and references to archive (zip
o Build all projects

« Adebug probe discovery operation is automatically performed to display the available debug
connections (that is, the detected debug probes), including LinkServer, PEmicro, and J-Link
compatible probes.

3. Select the required debug probe and click OK

« At this stage, an automatic creation of a takes place within the
project, complete with debug-specific configurations

« If the debug connection is successful, a Debug view will appear typically showing the project
has stopped on main()

45 Debug = TP)
v evkmimxrt‘l060,i\ed,blinky LinkServer Debug [C/C++ (NXP Semiconductors) MCU Application]
¥ {2 evkmimxrt1060_iled_blinky.axf [MIMXRT 1062xxxxA (cortex-m7)]
¥ Thread #1 1 (Suspended : Breakpoint)
= main() at led_blinky.c:57 0x60002572
] arm-none-eabi-gdb (8.2.50.20181213)

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 109

NXP Semiconductors MCUXpresso IDE User Guide

Tip

@ After debugging a project, the launch configuration contains details of the debug
probe used. Subsequent debug sessions automatically select this probe if it is
available.

From this point onwards, one of the debug solutions mentioned above controls the low-level
debug operations.

However, from the user’s point of view, most common debug operations within the IDE appear
the same (or broadly similar), for example:

¢ Automatic inheritance of part knowledge
¢ Automatic downloading (programming) of generated image to target Flash memory
« LinkServer/CMSIS-DAP Flash programming — see the chapter

¢ Automatic
e Setting and
. (single, step in step out, and so on)

e Viewing and editing , , '
* Viewing and editing
¢ Viewing

 All debug solutions support Instruction Trace, please see the Instruction Trace Guide for more
information

¢ All debug solutions support SWO Trace, including profiling, interrupt trace, and so on, please
see the SWO Trace Guide for more information

« Viewing details of execution faults via the (automatically displayed for faults
generated during LinkServer debug, a pause is required for other debug solutions)

Additional documentation is also available covering:

« Power/Energy Measurement — please see Energy Measurement Guide
FreeRTOS Debug — please see FreeRTOS Debug Guide

Azure RTOS ThreadX Debug — please see Azure RTOS ThreadX Debug Guide
Zephyr RTOS Debug — please see Zephyr RTOS Debug Guide

MQX RTOS Debug — please see MQX RTOS Debug Guide

Note: In addition, MCUXpresso IDE dynamically manages each debug solutions connection
requirements allowing multiple sessions to be started without conflict. For debug of Multicore
MCUs please refer to the section

It is important to note that certain operations such as the handling of features via

may be different for each debug solution. Furthermore, advanced debug
features and capabilities may vary between solutions and even similar features may appear
different within the IDE.

PEmicro and SEGGER debug solutions also provide several advanced features. Find details at
their respective web sites.

13.2 An introduction to launch configuration files
Each project in MCUXpresso IDE stores its debug properties locally in .launch files (known as
Launch Configuration files).
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 110

https://www.pemicro.com/
https://www.segger.com/

NXP Semiconductors MCUXpresso IDE User Guide

Launch configuration files are different for each debug solution (LinkServer, PEmicro, SEGGER)
and contain the properties of the debug connection (SWD/JTAG, various other configurations,
and so on) and can also include a debug probe identifier for automatic debug probe matching
and selection.

If a project has not yet been debugged, for example, a newly imported or created project, then
the project does not have a launch configuration associated with it.

When the user first tries to debug a project, MCUXpresso IDE performs a Debug Probe
Discovery operation and present the user with a list of debug probes found. Note: You can
filter the debug solutions searched from this dialog as highlighted, removing options that are not
required speeds up this process.

[AN Probes discovered
Connect to target: MK64FN1MOxxx12

1 probe found. Select the probe to use:

Available attached probes

Name Serial number/ID Type Manufacturer IDE Debug Mode

LPC-LINK2 CMSIS-DAP V5.361 _[IQCYI2IV NXP Semico...

Supported Prebes (tick/untick to enable/disable)

MCUXpresso IDE LinkServer (inc. CMSIS-DAP) probes
P&E Micro probes

SEGGER J-Link probes

Probe search options

Search again

'@' Cancel -ir-

Figure 13.1. Debug probe discovery

Once the user has selected the debug probe and has clicked ‘OK’, the IDE automatically creates
a default launch configuration file for that debug probe (LinkServer launch configuration shown
below).

5 Project 52 | 2, Periph }if Regist #sFaults = O
S #% B <
» & Project Settings
» 1)l Includes
» (2 CMSIS
» (2 accel
» (2 board
» B drivers
» (2 source
» (2 startup
» (2 utilities
eioHo~

[B frdmk&4f_bubble LinkServer Debug.launch]

Figure 13.2. Launch configuration files

Note: The IDE creates a launch configuration only for the currently selected build configuration.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 111

NXP Semiconductors MCUXpresso IDE User Guide

For many debug operations, these files won't require any attention and can essentially be
ignored. However, if changes are required, you should not edit these files manually. You should
rather explore their properties within the IDE.

The simplest way to do this is to click to expand the Project within the ‘Project Explorer’ pane,
then simply double-click a launch configuration file to automatically open the launch configuration
Edit Configuration dialog.

Note: This dialog has a humber of internal tabs, the Debugger tab (as shown below) contains
the Debug main settings. See also the

| @ edit Configuration u} x

| L
| Medify configuration and continue. @\ |
| .t

|
|
Name: | Ipoxpresso55569_threadx_demo LinkServer Debug

Main | % GDB Debuggdr [LinkServer Debugger | § GUI Flash Tool| %3 Other Symbols| & Startup | % Source| T Common

® LinkServer Debugger
Debug Options
Debug Connection WD~
LinkServer Options
= Debug Connection
[Attach only []Reset on Connect [] Disable use of preconnect script
Reset script ~ | Workspace_. File System...
Connect script Workspace—. File System..
BootROM stall | 050000040
Flash driver reset handling *~ Reset handling
Disconnect behavior cont | Semihosting support On

= Advanced Settings

[IMemory checking] Debug memory cache [Enable range stepping [Enable flash hashing
Debug level 2

Overide core index

Wirespeed (Hz

Additional options

Pre launch command

2 Cancel

Figure 13.3. Launch Configuration

Some debug solutions support advanced operations (such as the recovery of badly programmed
parts) from this view.

Note: Once a project has an associated launch configurations, it will always use it for its future
debug operations. If you wish to use the project with a different debug probe, then simply delete
the existing launch configuration and allow a new one to be automatically used on the next debug
operation.

Tip

@ To simplify this operation, you can force a probe discovery by holding the SHIFT
key while launching a debug session from the Quickstart panel. If the new debug
connection completes, the IDE creates a new project launch configuration, replacing
any existing launch configurations. Alternatively, the are
available to force the use of a particular debug solution.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 112

NXP Semiconductors MCUXpresso IDE User Guide

Tip

@ When exporting a project to share with others, you should usually delete launch
configurations before export (along with other IDE-generated folders such as build
configuration folders: Debug/Release, if present).

For further information please see the section

13.3 LinkServer debug connections
The native debug connection of MCUXpresso IDE (known as LinkServer) is supported via a
standalone tool that the MCUXpresso IDE installer installs and configures. You can find more
information about NXP’s LinkServer solution on the official LinkServer website and inside the
documentation page, available after installation — see mcuxpresso_install_dir/ide/LinkServer/
Readme.md. You can also configure the path to the LinkServer used for debug (and other)
operations by using the . LinkServer supports debug
operations through the following debug probes:
¢ MCU-Link and MCU-Link Pro with CMSIS-DAP firmware
¢ Evaluation boards incorporating MCU-Link with CMSIS-DAP firmware
¢ LPC-Link2 with CMSIS-DAP firmware
e LPCXpresso V2/V3 Boards incorporating LPC-Link2 with CMSIS-DAP firmware
* CMSIS-DAP firmware installed onto on-board debug probe hardware (as shipped by default
on LPCXpresso MAX and CD boards)
« For more information on LPCXpresso boards see: https://www.nxp.com/Ipcxpresso-boards
« Additional driver may be required:
« https://developer.mbed.org/handbook/Windows-serial-configuration
¢ CMSIS-DAP firmware installed onto on-board OpenSDA debug probe hardware (as shipped
by default on certain Kinetis FRDM and TWR boards)
« Known as DAP-Link and mBed CMSIS-DAP: https://www.nxp.com/opensda
« Additional driver may be required:
 https://developer.mbed.org/handbook/Windows-serial-configuration
e Other CMSIS-DAP probes such as Keil uLINK with CMSIS-DAP firmware: https:/
www?2.keil.com/mdk5/ulink
¢ Legacy RedProbe+ and LPC-Link
 RDB1768 development board built-in debug connector (RDB-Link)
+ RDB4078 development board built-in debug connector
Note: MCUXpresso IDE automatically tries to softload the latest CMSIS-DAP firmware onto LPC-
Link2 or LPCXpresso V2/V3 boards. For this to occur, it is necessary to set the DFU link on these
boards. Please refer to the documentation of the board for details.
13.4 LinkServer debug operation
When the user first tries to debug a project, MCUXpresso IDE performs a Debug Probe Discovery
operation and present the user with a list of debug probes found.
Note: To perform a debug operation within MCUXpresso IDE, select the project to debug within
the ‘Project Explorer’ view and then click Debug from the Quickstart View.
If more than one debug probe is presented, select the required probe. For LinkServer-compatible
debug probes, you can select from Non-Stop (the default) or All-Stop IDE debug mode.
Non-Stop uses GDB’s “non-stop mode” and allows data to be read from the target while
an application is running. Currently, this mechanism is used to support the
and features.
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 113

https://www.nxp.com/linkserver
https://www.nxp.com/lpcxpresso-boards
https://developer.mbed.org/handbook/Windows-serial-configuration
https://www.nxp.com/opensda
https://developer.mbed.org/handbook/Windows-serial-configuration
https://www2.keil.com/mdk5/ulink
https://www2.keil.com/mdk5/ulink

NXP Semiconductors

MCUXpresso IDE User Guide

Probes discovered

Connect to target: MK64FN1MOxxx12

1 probe found. Select the probe to use:

Available attached probes

Name Serial number/ID Type Manufacturer IDE Debug Mode
LPC-LINKZ CMSIS-DAP... IWFUATEW LinkServer NXP Semico..] Non-Stop

Non-Stop

Supported Probes (tick/untick to enable/disable}

@ MCUXpresso IDE LinkServer (inc. CMSIS-DAP) probes
P&E Micro probes

SEGGER J-Link probes

Probe search options

Search again

Remember my selection (for this Launch configuration)

2) Cancel OK

Figure 13.4. Debug probe discovery non-stop

UG10055

Click 'OK’ to start the debug session. At this point, the launch configuration files for the project
are created. LinkServer Launch configuration files contain the string ‘LinkServer’ and have an

Note: If you leave “Remember my selection” option ticked, then the launch configuration file
stores the probe details, and the IDE will automatically select this probe on subsequent debug
operations for this project.
For a description of some common debugging operations using supported debug probes, see

MCUXpresso IDE defaults to the selection of “Non-Stop” mode when performing a LinkServer
probe discovery operation. You can change this default from an MCUXpresso IDE Preference

Preferences -> MCUXpresso IDE -> Debug Options -> LinkServer Options -> Miscellaneous

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

114

NXP Semiconductors MCUXpresso IDE User Guide

e e Preferences
Miscellaneous o g

P General 5

»C/Ces LinkServer Debug Miscellaneous Options

P Help RedLink Server Connection Timeout (s) 10

P Install/Update

¥ Library Hover SWV Packet Timeout 0

MCUXpresso Config Tools Extended debug trace (DEBUG_TRACE)
¥MCUXpresso IDE
¥Debug Options Stream all stub messages to Console

J-Link Options
¥LinkServer Options 7
Advanced Show debug log when written to
DELI Optinn
Probe Discovery
Default Tool settings

Show stub warnings as notes

Display asynchranous error messages
Disable Auta-select device on multicore target

Enable Auto-debug slave project(s) for multicore projects

» Editor Awareness Auto-debug slave project(s) delay for multicore projects (ms) | 1000
General
MCU settings Always show JTAG selection dialog
Paths and Directories | Show progress messages in log
Quickstart Panel
» RTOS TAD. @ Show extended debug messages _
¥ SDK Handling Enable Non-Stop Mode
SWO Trace
User Interface Enablemer Enable Registers View Double-Precision registers group
Utilities SWV Server Port 9
¥ Run/Debug
SWTChart Extensions LPC-Link DFU boot wait tima 10
> Terminal
Validation
I Version Control {Team) Restore Defaults Apply
XML
@ g &b Cancel Apply and Close

Figure 13.5. LinkServer non-stop preference

For a given project, its launch configuration stores the Non-Stop mode option. For projects that
already have launch configurations, you can change this option from the GDB Debugger tab as
shown below.

[) Main | %5 GDB Debugger (I LinkServer Debugger | 5 Other Symbals | € GUI Flash Tool | B Startup | & Source | [] Common

Debugger Options

GDB debugger: arm-none-eabi-gdb Browse

GDB command file: Browse.

(Warning: Some commands in this file may interfere with the startup operation of the debugger, for example "run*.)
Non-stop mode (Note: Requires non-stop GDB) |

Enable Reverse Debugging at startup using: | Software Reverse Debugging (detailed but slower) B
Force thread list update on suspend

Automatically debug forked processes (Note: Requires Multi Process GDB)

Tracepoint mode: Normal B

Figure 13.6. LinkServer non-stop control

13.4.1 LinkServer debug scripts

LinkServer debugging supports a scripting language which is discussed in the section

A LinkServer debug connection has 3 potential callouts where scripts can be referenced typically
to perform some non-standard behavior.

Connect Script a Connect Script overrides the default debug connection behavior. Typically
such scripts are used to prepare the debug target (MCU) for a debug operation that may
otherwise fail due to some target setting that cannot be guaranteed post reset. A common
requirement could be to ensure that RAM is available for Flash Programming operations. If
required, a Connect Script is referenced within a LinkServer debug Launch Configuration.

Reset Script a Reset Script overrides the default debug reset behavior. Reset Scripts are
less commonly required than Connect Scripts but can be used to work around issues where

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 115

NXP Semiconductors MCUXpresso IDE User Guide

a standard Reset may not allow debug operations to survive. If required, a Reset Script is
referenced within a LinkServer debug Launch Configuration.

On rare occasions, it may be useful to add a Connect or Reset Script to a project, see
for more information on how this can be done.

Preconnect Script a Preconnect Script is a little different. Such a script (if present) prepares the
target MCU for an initial debug connection that may/would otherwise fail. Preconnect Scripts are
not specified within a launch configuration, rather the IDE automatically invokes them for a given
target based on built-in intelligence. However, you can disable their use by a checkbox within
the Launch Configuration of the project. On rare occasions, it may be useful to add a preconnect
script to a project — you can do this by placing a file called LS _preconnect.scp within the directory
of the project.

Note: In most circumstances, such scripts are supplied and referenced (via SDKs) automatically
S0 no user intervention or action is required.

13.5 LinkServer path configuration
MCUXpresso IDE v11.9.0 is the first IDE version that integrates the standalone NXP LinkServer
product. The MCUXpresso IDE installer automatically installs it and you can find it in the folder
located at the same level as the MCUXpresso IDE product installation. A symbolic link is also
created inside mcuxpresso_install_dir/ide that points to the actual LinkServer installation linked
to IDE, more specifically mcuxpresso_install_dir/ide/LinkServer.
Note: LinkServer-specific support files from folders like mcuxpresso_install_dir/ide/binaries are
now part of the LinkServer package and have been moved accordingly. The IDE refers all these
files from the LinkServer installation folder.
You can configure the default LinkServer used by the IDE by going to Window -> Preferences
-> MCUXpresso IDE -> Debug Options -> LinkServer Options. Find the specific section
highlighted in the picture below. The default path, pointing to the LinkServer that was installed
along with the IDE, is not editable but is listed for awareness. You can also configure a custom
path but you must take care to ensure that the IDE is compatible with the configured LinkServer.
m Preferences O X
|tyUE'f ter text | LinkServer Options (SR SR
M MC;XEFES;] LDE - Block IDE requests to kill redlink server &
v ooe ug P lohs [~] Shutdown redlink server
J-Link Options. . i .
Kill redlink server on exit
“EMicro Options
Prabe Discovery Use listusb.exe (libusb) instead of cscript (WMI)
Default Toal settings Use dfu-util during discovery
Editor Awareness] Show timestamps in Redlink console
Energy Measurement Enable range stepping
General Enable flash hashing
Mcu senings]] Disable use of preconnect script
Paths and Directories Pull ISP on reset (on LPC-Link 2/MCU-Link)
Quickstart Panel
RTOS TAD TS T = -
SDK Handling DI (LD T 'E"Lff?t"on = S— Ry — - =
SWO Trace CANXPA\MCUXpresso\MCUXpressolDE_11.9.0 2089 _prc1\.\LinkServer_1.4.48
User Interface Enablemer Custom path | CANXP\MCUXpresso\LinkServer_1.447 ‘ Browse...
Utilities W
2 5 Restore Defaults Apply v
'/'_’) By 23 Cancel
Note: If you configure a custom LinkServer, the symbolic link mcuxpresso_install_dir/ide/
LinkServer still points to the original LinkServer that was installed by the MCUXpresso IDE
installer.
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 116

https://www.nxp.com/linkserver

NXP Semiconductors MCUXpresso IDE User Guide

13.6 LinkServer troubleshooting

13.6.1 Debug log

On occasion, it can be useful to explore the operations of a debug session in more detail. The
steps are logged into a console known as the Debug log. This log is displayed when a Debug
operation begins, but by default, is replaced by another view when execution starts. The debug
log is a standard log within the Console view of the IDE. To display this log, select the Console
and then click to view the various options (as below):

E) Console 52 =% &l Bt B-ri-= 8

- 1 RedlinkServer /

2 FreeRTOS Task Aware Debugger Console version 11.0.0 (2019032981224)
£ 3 CDT Global Build Console
£l 4 CDT Build Console [frdmk&4f_bubble]

+ (NXP Semiconductors) MCU Application] gdb traces
+ [B 6 frdmk64f_bubble Debug messages
7 frdmk64f_bubble LinkServer Debug [C/C++ (NXP Semiconductors) MCU Application] frdmk64f_bubble.axf

The debug log displays a large amount of information which can be useful in tracking down
issues.

In the example debug log below, you can see that an initial Connect Script file has been run.
Connect scripts are required for debugging certain parts and are automatically added to launch
configuration files by the IDE if required. Next, the hardware features of the MCU are captured
and displayed, this includes the number of breakpoints and watchpoints available along with
details of various hardware components indicating what debug features might be available, for
example, Instruction Trace.

Further down in this log, you can see the selection of a Flash driver (FTFE_4K), the identification
of the part being debugged (in this case a K64), the programming progress, and the speed of
the Flash programming operation (in this case over 95 KB/sec).

Tip

@ a line similar to flash variant ‘K 64 FTFE Generic 4K’ detected (1 MB = 256*4K at 0x0)
is displayed for LinkServer Flash programming operations. The size of the detected
flash (in this example it is 1 MB) and sector size (4 KB) is displayed here. The sector
size may be important since multiples of this size represent valid base addresses for
flash programming operations. For example, if the programming of more than one
image is required, the second image must begin on a 4 KB boundary beyond the
end of any previously programmed image.

MCUXpr esso | DE RedlinkMilti Driver v11.1 (Nov 21 2019 14:13:54 - crt_enmu_cmredlink build 204)
Found part description in XM. file MK64F12_i nternal . xm
Reconnected to existing LinkServer process.
============= SCRI PT: ki neti sconnect.scp =============
Ki neti s Connect Scri pt

Connecting to Probe Index =1

This probe =1

This TAP = 0

This core = 0

Dpl D = 2BA01477

Assert NRESET

Reset pin state: 00

Power up Debug

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 117

NXP Semiconductors

MCUXpresso IDE User Guide

UG10055

MDM- AP API D: 0x001C0000

MDM AP Syst em Reset/ Hol d Reset/ Debug Request
MDM AP Control : 0x0000001C

MDM AP St atus (Fl ash Ready) : 0x00000032
Part is not secured

MDM AP Control : 0x00000014

Rel ease NRESET

Reset pin state: 01

MDM AP Control (Debug Request): 0x00000004
MDM- AP St atus: 0x0001003A

MDM AP Core Hal ted
============= END SCRI PT
Probe Firnware: LPC-LINK2 CVSI S-DAP V5. 361 (NXP Seni conduct ors)
Serial Nunmber: | QCYI2IV

VID: PID: 1FC9: 0090

USB Pat h: USB_1f c9_0090_314000_f f 00

Using nenory fromcore O after searching for a good core

debug interface type = Cortex-M3/4 (DAP DP | D 2BA01477) over SWD TAP 0
processor type = Cortex-M4 (CPU | D 00000C24) on DAP AP 0O

nunber of h/w breakpoints = 6

nunber of flash patches =2

nunber of h/w watchpoints = 4

Probe(0): Connected&Reset. DplD: 2BA01477. Cpul D 00000C24. |nfo: <None>

Debug protocol: SWD. RTCK: Disabl ed. Vector catch: Disabled.
Cont ent of CoreSi ght Debug ROV s):

RBASE EOOFF000: CI D B105100D PI D 04000BB4C4 ROM (type Ox1)
ROM 1 EOOOE000: CI D BLO5E00D PI D 04000BBOOC Gen SCS (type 0x0)
ROM 1 E0001000: CI D B1O5E00D PI D 04003BB002 Gen DWI (type 0x0)
ROM 1 E0002000: CI D BLO5E00D PI D 04002BB003 Gen FPB (type 0x0)
ROM 1 E0000000: CI D BLO5E00D PI D 04003BB0O01 Gen | TM (type 0x0)
ROM 1 E0040000: CI D B105900D PI D 04000BB9AL
ROM 1 E0041000: CI D B105900D PI D 04000BB925
ROM 1 E0042000: CI D B105900D PI D 04003BB907
ROM 1 E0043000: CI D B105900D PI D 04001BB908
NXP: MK64FN1MDxxx12

DAP stride is 4096 bytes (1024 words)
Inspected v.2 On chip Kinetis Flash nmenory nodul e FTFE_4K. cf x

I mage 'Kinetis Sem Generic Nov 7 2019 19:12:49'

Openi ng flash driver FTFE 4K cf x

Sendi ng VECTRESET to run flash driver

Fl ash variant 'K 64 FTFE Generic 4K detected (1MB = 256*4K at 0x0)
Cl osing flash driver FTFE 4K cfx

Connect ed: was_reset=true. was_stopped=true

Cst
Cst
Cst
Cst

Awai ting tel net connection to port 3330 ...

GDB nonst op node enabl ed

Opening flash driver FTFE 4K cfx (already resident)
Sendi ng VECTRESET to run flash driver

Fl ash variant 'K 64 FTFE Generic 4K detected (1MB = 256*4K at 0x0)
Witing 26880 bytes to address 0x00000000 in Fl ash
00001000 done 15% (4096 out of 26880)

00002000 done 30% (8192 out of 26880)

00003000 done 45% (12288 out of 26880)

00004000 done 60% (16384 out of 26880)

00005000 done 76% (20480 out of 26880)

00006000 done 91% (24576 out of 26880)

00007000 done 100% (28672 out of 26880)

Sectors witten: 7, unchanged: 0, total: 7

Erased/ Wote sector 0-6 with 26880 bytes in 276nsec

All information provided in this document is subject to legal disclaimers

TPIU type Ox11 Trace Sink - TPIU

ETM type 0x13 Trace Source - Core

ETB type 0x21 Trace Sink - ETB

CSTF type 0x12 Trace Link - Trace funnel/router

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

118

NXP Semiconductors MCUXpresso IDE User Guide

Cl osing flash driver FTFE 4K cfx

Fl ash Wite Done

Fl ash Program Sunmary: 26880 bytes in 0.28 seconds (95.11 KB/ sec)
Starting execution using systemreset and halt target

St opped (Was Reset) [Reset from Unknown]

St opped: Breakpoint #1

13.6.2 Flash programming

UG10055

Most debug sessions begin with the programming of Flash, followed by a reset of the MCU. Note:
If flash programming should fail then the debug operation is aborted.

Starting with MCUXpresso IDE version 11.1.0 — most LinkServer flash drivers now implement a
Verify Same operation (via a flash hashing mechanism) for any flash sector that is unchanged
from previous debug operations.

Starting with MCUXpresso IDE version 11.9.0 — LinkServer flash drivers now reside inside the
separate LinkServer package.

Below is a fragment of a debug log repeating the previous debug operation. The log reports the
Sectors that were unchanged from the previous operation and the resultant overall speed of the
flash operation — in this case, the equivalent of a programming speed of 937 KB/sec.

Openi ng flash driver FTFE 4K cfx (already resident)

Sendi ng VECTRESET to run flash driver

Fl ash variant 'K 64 FTFE Generic 4K detected (1MB = 256*4K at 0x0)
Witing 26880 bytes to address 0x00000000 in Fl ash

Sectors witten: 0, unchanged: 7, total: 7

Erased/ Wote sector 0-6 with 26880 bytes in 28nmsec

Cl osing flash driver FTFE 4K cfx

Fl ash Wite Done

Fl ash Program Sunmary: 26880 bytes in 0.03 seconds (937.50 KB/ sec)
Starting execution using systemreset and halt target

St opped (Was Reset) [Reset from Unknown]

St opped: Breakpoint #1

Note in the unlikely event of this feature causing problems, you can disable it from a project
LinkServer Launch Configuration by unchecking the Enable Flash hashing option. Alternatively,
you can disable the feature as a workspace preference via MCUXpresso IDE -> Debug Options
-> LinkServer Options -> Enable flash hashing.

Below is a brief discussion of the most common-low level flash operations:

1. Sector Erase: internally, Flash devices are divided into a number of sectors (or blocks), where
a sector is the smallest size of Flash that can be erased in a single operation. A sector is
larger than a page (see below). Sectors are usually the same size for the whole Flash device,
however, this is not always the case. A sector base address will be aligned on a boundary that
is a multiple of its size. A sector erase is usually the first step in a flash programming sequence.

2. Page Program: internally Flash devices are divided into a humber of pages, where a page
is the smallest size that can be programmed in a single operation. A page is smaller than a
sector. A page base address will be aligned on a boundary that is a multiple of its size.

3. Mass Erase: a mass erase resets all the bytes in Flash (usually to Oxff). Such an operation may
clear any internal low-level structuring such as protection of Flash areas (from programming).

The programming of an image (or data) comprises repeated operations of sector erase followed
by a set of program page operations; until the sector is fully programmed or there is no more
data to program.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 119

NXP Semiconductors MCUXpresso IDE User Guide

13.6.3

13.7

13.8

UG10055

One of the common problems when programming Kinetis parts relates to their use of Flash
configuration block at offset 0x400. For more information please see:

. Flash sector sizes on Kinetis MCUs range from less than 1 KB to
8 KB, therefore the first Sector Erase performed may clear the value of this block to all OxXFFs,
if this is not followed by a successful program operation and the part is reset, then it will likely
report as ‘Secured’ and subsequent debugging will not be possible until recovering the part.

Such an event can occur if accidentally performing a debug operation on the ‘wrong board’, so
a wrong Flash programmer is invoked.

Note: LinkServer mass erase operations restore this Flash configuration block automatically for
Kinetis parts. However, if a Kinetis device is mass erased by sector, this mechanism is bypassed,
therefore you should not perform this operation on Kinetis parts!

Should you need to recover a ‘locked’ part please see the section

LinkServer executables

LinkServer debug operations rely on 3 main debug executables.

e arm-none-eabi-gdb — this is a version of GDB built to target ARM-based MCUs.

e crt_emu_cm_redlink — this executable (known as the debug stub) communicates with GDB
through network sockets and passes low-level commands to the LinkServer executable (also
known as Redlink server). It is part of the separate LinkServer package.

« redlinkserv — this is the LinkServer executable and takes stub operations and communicates
directly with the ARM Cortex debug hardware via the debug probe. It is part of the separate
LinkServer package.

If a debug operation fails, or a crash occurs, it is possible that one or more of these processes
may fail to shut down correctly. Therefore, if the IDE has no active debug connection but is
experiencing problems making a new debug connection, ensure that none of these executables

is running. To simplify this process an IDE button % allows you to kill all low-level debug
executables (for all debug solutions). Therefore should a debug operation fail or a crash occur,
simply click this button before starting a new debug operation.

PEmicro debug connections

PEmicro software and drivers are automatically installed when MCUXpresso IDE installs. There
is no need to perform any additional setup to use PEmicro debug connections.

Currently, we have tested using:

* Multilink Universal (FX)
¢ Cyclone Universal (FX) (USB and Ethernet)

« PEmicro firmware installed into on-board OpenSDA debug probe hardware (as shipped by
default on certain Kinetis FRDM and TWR boards)

Note: Some Kinetis boards ship with OpenSDA supporting PEmicro VCOM but with no debug
support. To update this firmware visit the OpenSDA Firmware Update pages linked at: Help ->
Additional Resources -> OpenSDA Firmware Updates

PEmicro debug operation

The process to debug via a PEmicro compatible debug probe is exactly the same as for a native
LinkServer (CMSIS-DAP) compatible debug probe. Simply select the project via the ‘Project

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 120

NXP Semiconductors MCUXpresso IDE User Guide

13.8.1

13.8.2

UG10055

Explorer’ view then click Debug from the Quickstart panel and select the PEmicro debug probe
from the Probe Discovery Dialogue.

If more than one debug probe is presented, select the required probe and then click ‘OK’ to start
the debug session. At this point, the launch configuration files for the project are created. Note:
PEmicro Launch configuration files contain the string ‘PE’.

MCUXpresso IDE stores the probe information, along with its serial number in the launch
configuration of the project. This mechanism is used to match any attached probe when an
existing launcher configuration already exits.

To simplify debug operations, MCUXpresso IDE automatically starts PEmicro’s GDB Server and
selects and dynamically assigns the various ports needed as required. This means that you can
start, terminate, restart, and so on, multiple PEmicro debug connections, all without the need
for any user connection configuration. You can control these options if required by editing the
PEmicro launch configuration file.

For more information see

Note: If the project already had a PEmicro launch configuration, this is selected and used. If
they are no longer appropriate for the intended connection, simply delete the files and allow new
launch configuration files to be created.

Important Note: Low-level debug operations via PEmicro debug probes are supported by
PEmicro software. This includes Part Support handling, Flash Programming, and many other
features. If encountering problems, PEmicro maintains a range of support forums at https://
www.pemicro.com/forums/

Note: If a debug operation fails, or a crash occurs, it is possible that one or more debug processes
may fail to shut down correctly. Therefore, if the IDE has no active debug connection but is
experiencing problems making a new debug connection, ensure that none of these executables

is running. To simplify this process, an IDE button % allows you to kill all low-level debug
executables (for all debug solutions). Therefore should a debug operation fail or a crash occur,
simply click this button before starting a new debug operation.

PEmicro differences from LinkServer debug

MCUXpresso IDE core technology is intended to provide a seamless environment for code
development and debug.

When used with PEmicro debug probes, the debug environment is provided by the PEmicro
debug server. This debug server does not 100% match the features provided by native
LinkServer connections. However, basic debug operations are very similar to LinkServer debug.
For a description of some common debugging operations using supported debug probes see
Note: LinkServer advanced features such as Power Measurement are not available via a

PEmicro debug connection. However, additional functionality may be available using PEmicro-
supplied plugins.

PEmicro software updates

PEmicro support within MCUXpresso IDE is via an Eclipse plugin. The PEmicro update site is
automatically added to the list of Available Software Update sites.

To check whether an update is available, please select:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 121

https://www.pemicro.com/forums/
https://www.pemicro.com/forums/

NXP Semiconductors MCUXpresso IDE User Guide

Help -> Check for Updates
Any available updates from PEmicro are then listed for selection and installation.

Note: PEmicro may provide news and additional information on their website, for details see
https://www.pemicro.com

13.9 SEGGER debug connections
SEGGER J-Link software and documentation pack is installed automatically with the
MCUXpresso IDE Installation for each host platform. No user setup is required to use the
SEGGER debug solution within MCUXpresso IDE.
Currently, we have tested using:
¢ J-Link debug probes (USB and Ethernet)
¢ J-Link firmware installed into on-board OpenSDA debug probe hardware (as shipped by default
on certain Kinetis FRDM and TWR boards)
e J-Link firmware installed onto LPC-Link2 debug hardware and LPCXpresso V2/V3 boards
 For details see https://www.segger.com/Ipc-link-2.html
» Also, for firmware programming see https://www.nxp.com/LPCSCRYPT
13.9.1 SEGGER software installation
Unlike other debug solutions supplied with MCUXpresso IDE, the SEGGER software installation
is not integrated into the IDE installation, rather it is a separate SEGGER J-Link installation on
your host.
The installation location is similar to:
On Wndows: C:./Program Fil es/ SEGGER/ JLi nk
On Mac: /Applications/ SEGGER/ JLi nk
On Linux: /opt/SEGGER/ JLi nk
Note: The SEGGER J-Link package is available in two flavors. MCUXpresso IDE currently
installs and uses the 64-bit version on all operating systems. Older IDE versions used the
legacy 32-bit Windows package but starting with MCUXpresso IDE v11.5.0, the 64-bit package
is shipped. The installation folder for the 32-bit Windows version is usually:
On Wndows: C:/Program Files (x86)/SEGGER JLi nk
MCUXpresso IDE automatically locates the required executable and it is remembered as a
Workspace preference. This can be viewed or edited within the MCUXpresso IDE preferences
as below.
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 122

https://www.pemicro.com
https://www.segger.com/lpc-link-2.html
https://www.nxp.com/LPCSCRYPT

NXP Semiconductors

MCUXpresso IDE User Guide

Figure 13.7. Segger preferences

&) preferences o x®
J-Link Options A S

g:-cneral SEGGER J-Link probe preferences
H‘gp J-Link Server executable C\Program Files\SEGGERWLink\JLinkGDBServerCLexe Browse..
Install/Update [[] Enable discovering of SEGGER J-Link IP probes
Java [#] Enable SEGGER J-Link user actions
Library Hover J-Link Server: initial auto discover port 2331
Maven)) 3

v MCUXpresso IDE J-Link Server SWO: initial auto discover port 2332
w Debug Options J-Link Server Telnet: initial auto discover port 2333

J-Link Options

J-Link port auto discover retries attempts 100
LinkServer Options

[Enable Instruction Trace service

Enable Live Variables service

Enable Registers View Double-Precision registers group

[] Enable SEGGER FreeRTOS support for new launch configs

[] Enable auto-debug secondary project(s) for multicore projects

PEMicro Options
Prabe Discavery

Default Tool settings
Editor Awareness
Energy Measurement
General Auto-debug secondary project(s) delay for multicore projects (ms) | 1000
MCU settings
Paths and Directories
Quickstart Panel New...
RTOS TAD
SDK Handling
SWO Trace
User Interface Enablement
Utilities

Run/Debug Disable use of reset before running

SWTChart

Terminal

Validation

Version Control {Team)

XML

Disable use of reset on initialization

New...

Restore Defaults Apply

Apply and Close Cancel

UG10055

Note: this preference also provides the option to enable scanning for SEGGER IP probes (when
performing a probe discovery operation). By default, this option is disabled.

From time to time, SEGGER may release later versions of their software, which the user could
choose to manually install. For details see https://www.segger.com/downloads/jlink

MCUXpresso IDE continues to use the SEGGER installation path as referenced in the workspace
of a project unless it cannot find the required executable (for example, the referenced installation
has been deleted). If this occurs:

1. The IDE automatically searches for the latest installation it can find. If this is successful, the
Workspace preference is automatically updated
2. If the IDE cannot find a SEGGER installation, the user is prompted to locate an installation

To force a particular workspace to update to use a newer installation location simply click the
Restore Default button.

To permanently select a particular SEGGER installation version, the location of the SEGGER
GDB Server can be stored in an environment variable.

For example, under Windows you could set:

MCUX_SEGGER_SERVER="C: / Program Fi | es (x86)/ SEGGER/ JLi nk_V630k/j Li nkGDBSer ver CL. exe"

This location is then used, overriding any workspace preference that may be set.
SEGGER software un-installation

If MCUXpresso IDE is uninstalled, it does not remove the SEGGER J-Link installation. If this is
required, then the user must manually uninstall the SEGGER J-Link tools.

Note: If for any reason MCUXpresso IDE cannot locate the SEGGER J-Link software, then the
IDE prompts the user to either manually locate an installation or disable the further use of the
SEGGER debug solution.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 123

https://www.segger.com/downloads/jlink

NXP Semiconductors MCUXpresso IDE User Guide

13.10

13.10.1

13.11

UG10055

SEGGER debug operation

The process to debug via a J-Link compatible debug probe is exactly the same as for a native
LinkServer (CMSIS-DAP) compatible debug probe. Simply select the project via the ‘Project
Explorer’ view then click Debug from the Quickstart Panel and select the SEGGER Probe from
the Probe Discovery Dialogue.

If more than one debug probe is presented, select the required probe and then click ‘OK’ to start
the debug session. At this point, the launch configuration files for the project are created. Note:
SEGGER Launch configuration files contain the string ‘JLink’.

To simplify debug operations, MCUXpresso IDE automatically starts SEGGER’s GDB Server
and selects and dynamically assigns the various ports needed as required. This means that you
can start, terminate, restart, and so on, multiple SEGGER debug connections, all without the
need for any user connection configuration. You can control these options if required by editing
the SEGGER launch configuration file.

In MCUXpresso IDE, SEGGER Debug operations default to using the SWD Target Interface.
When debugging certain multicore parts such as the LPC43xx Series, the JTAG Target Interface
must be used to access the internal Secondary MCUs. To select JTAG as the Target Interface,
simply edit the SEGGER launch configuration file and select JTAG.

For more information see

Note: If the project already had a SEGGER launch configuration, this is selected and used. If
an existing launch configuration file is no longer appropriate for the intended connection, simply
delete the files and allow new launch configuration files to be created.

Tip

@ If Reset before running is set in the Launch configuration, then a default intelligent
reset is used. This reset automatically supports running from Flash or RAM. A
specific reset type can optionally be set from the free-form text field if required, please
consult SEGGER’s documentation for available reset types.

Important Note: SEGGER software supports low-level debug operations via SEGGER
debug probes. This includes Part Support handling, Flash Programming, and many other
features. If encountering problems, SEGGER provides a range of support forums at https://
forum.segger.com/

SEGGER differences from LinkServer debug

MCUXpresso IDE core technology is intended to provide a seamless environment for code
development and debug. When used with SEGGER debug probes, the SEGGER debug
server provides the debug environment. This debug server does not 100% match the features
provided by native LinkServer connections. However, basic debug operations are very similar
to LinkServer debug.

For a description of some common debugging operations using supported debug probes see

Note: LinkServer features such as Power Measurement are not available via a SEGGER debug
connection. However, additional functionality may be available using external SEGGER-supplied
applications.

SEGGER troubleshooting

When performing a debug operation to a SEGGER debug probe, the launch configuration file
provides a set of arguments that are used to call the SEGGER GDB server. The command and
resulting output are logged within the IDE SEGGER Debug Console. You can view the console
below:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 124

https://forum.segger.com/
https://forum.segger.com/

NXP Semiconductors

MCUXpresso IDE User Guide

1 RedlinkServer

=

X ™8

2 FreeRTOS Task Aware Debugger Console version 11.0.0 (201903291224)

£l 3 CDT Global Build Console
£l 4 CDT Build Console [frdmk6&4f_bubble]
v Bl 5 JLinkServer JLink600102843 for frdmk64f_bubble

6 frdmk64f_bubble JLink Debug [GDB SEGGER Interface Debugging] gdb traces
7 frdmk64f_bubble JLink Debug [GDB SEGGER Interface Debugging] frdmk64f_bubble.axf

Figure 13.8. Segger Server

You can copy and call the command independently of the IDE to start a debug session and

explore connection issues.

Below is the shortened output of a successful debug session to a Kinetis K64 Board.

[05-1-2023 11: 26: 24] "C:\ Program Fi | es\ SEGGER\ JLi nk\ JLi nkGDBSer ver CL. exe" [/
-SettingsFile "C \Users\ MCUXpr esso\ Docunent s\ MCUXpr essol DE_11. 7. O\ wor kspace\ /

Executing Server:

frdnk64f _bubbl e_peri pheral \ Debug\ f r dnk64f _bubbl e_peri pheral

JLink Debug SettingsFile.jlink"

-nosilent -swoport 2332 -select USB=174505240

-tel netport 2333 -singlerun -endian little /

-noir -speed 4000 -port 2331 -vd -device MKB64FNIMDxxx12 -if SWD -halt -reportuseraction
SEGGER J-Link GDB Server V7.84a Command Line Version

JLi nkARM dI | V7.84a (DLL conpil ed Dec 22 2022 16: 11: 39)

Command line: -SettingsFile C\Users\ MCUXpresso\ Docunent s\ MCUXpr essol DE_11. 7. O\ wor kspace\ /
frdnk64f _bubbl e_peri pheral \ Debug\ f r dnk64f _bubbl e_peri pheral JLink Debug SettingsFile.jlink /

-nosilent -swoport 2332 -sel ect USB=174505240 -tel netport 2333 -singlerun -endian little /
-noir -speed 4000 -port 2331 -vd -device MK64FNIMIxxx12 -if SWD -halt -reportuseraction

J-Link settings file:

Connecting to J-Link...
J-Link is connected.

UG10055

frdnk64f _bubbl e_peri pheral \ Debug\ f r dnk64f _bubbl e_peri pheral

All information provided in this document is subject to legal disclaimers

GDBInit file: none
GDB Server Listening port: 2331
SWO raw out put |istening port: 2332
Terminal 1/0 port: 2333
Accept renpte connection: | ocal host only
Generate logfile: of f
Verify downl oad: on
Init regs on start: of f
Si | ent node: of f
Singl e run node: on
Target connection timeout: 0 ns
------ J-Link related settings------
J-Link Host interface: UsB
J-Link script: none

C: \ User s\ MCUXpr esso\ Docunent s\ MCUXpr essol DE_11. 7. O\ wor kspace\ /
JLink Debug SettingsFile.jlink

------ Target related settings------

Tar get devi ce: M<K64FNLIMDIxxx12
Target device paraneters: none

Target interface: SWD

Target interface speed: 4000k Hz

Tar get endi an: little

/

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

125

NXP Semiconductors MCUXpresso IDE User Guide

Devi ce " MK64FNLMDXXX12" sel ect ed.

Fi rmware: J-Link Pro V4 conpiled Sep 22 2022 15:00: 37
Har dwar e: V4. 00

S/I'N: 174505240

Feature(s): RDI, FlashBP, FlashDL, JFl ash, GDB

Checki ng target voltage...

Target voltage: 3.26 V

Li stening on TCP/IP port 2331

Connecting to target. ..

I ni t Tar get ()

Found SWDP with | D 0x2BA01477

DPI DR 0x2BA01477

Cor eSi ght SoC-400 or earlier

Scanning AP map to find all avail abl e APs

AP[2]: Stopped AP scan as end of AP map has been reached
AP[0] : AHB-AP (I DR 0x24770011)

AP[1]: JTAG AP (I DR 0x001C0000)

Iterating through AP map to find AHB-AP to use

AP[0]: Core found

AP[0] : AHB- AP ROM base: OxEOOFF000

CPUI D regi ster: 0x410FC241. |nplenenter code: 0x41 (ARM
Found Cortex-M4 rOpl, Little endian.

FPUnit: 6 code (BP) slots and 2 literal slots

Cor eSi ght conponent s:

ROMTbI [0] @ EOOFF000

0][0]: EOOOEO000 Cl D B105E00D PI D 000BBOOC SCS- M7

0][1]: E0001000 CI D B105E00D PI D 003BB002 DWI

0][2]: E0002000 CI D B105E00D PI D 002BB003 FPB

0][3]: EO0000000 CI D B105E00D PI D 003BB001 | TM

0][4]: EO0040000 CI D B105900D PI D 000BB9A1l TPI U

0][5]: E0041000 CI D B105900D PI D 000BB925 ETM

0][6]: E0042000 CI D B105900D PI D 003BB907 ETB

0][7]: E0043000 CI D B105900D PI D 001BB908 CSTF
Connected to target

Waiting for GDB connection...Connected to 127.0.0.1

Readi ng common registers: RO, Rl, R2, R3, R4, R5, R6, R7, R8, R9, R10, Rl1l, R12, SP, /
LR, PC, XPSR

Connected to 127.0.0.1

Readi ng common registers: RO, Rl, R2, R3, R4, R5, R6, R7, R8, R9, R10, Rl1l, R12, SP, /
LR, PC, XPSR

Read 4 bytes @ address 0x000047E6 (Data = 0x46BD3714)
Read 4 bytes @ address 0x000047E6 (Data = 0x46BD3714)
Read 4 bytes @ address O0x00000E14 (Data = 0x687B6078)
Readi ng 64 bytes @ address 0x2002FE40

Read 4 bytes @ address 0x00000E14 (Data = 0x687B6078)
Readi ng 64 bytes @ address 0x2002FE40

Recei ved nonitor conmand: reset

Reset: Halt core after reset via DEMCR VC_CORERESET.
Reset: Reset device via Al RCR SYSRESETREQ

Af t er Reset Tar get ()

Resetting target

Downl oadi ng 16016 bytes @ address 0x00000000 - Verified OK
Downl oadi ng 8496 bytes @ address 0x00003E90 - Verified OK
Downl oadi ng 16 bytes @ address 0x00005FCO - Verified OK
J-Link: Flash downl oad: Bank O @ 0x00000000: Ski pped. Contents al ready nmatch
Witing register (PC = 0x 1d4)

Read 4 bytes @ address 0x000001D4 (Data = O0xF002B672)
Read 4 bytes @ address 0x000001D4 (Data = O0xF002B672)

[
[
[
[
[
[
[
[

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 126

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

Readi ng common registers: RO, Rl, R2, R3, R4, R5, R6, R7, R8, R9, R10, Rl1l, R12, SP, /
LR, PC, XPSR

Read 4 bytes @ address 0x000001D4 (Data = O0xF002B672)

Readi ng 64 bytes @ address 0x00000F00

Read 2 bytes @ address 0x00000F22 (Data = O0xF107)

Recei ved nonitor comnmand: sem hosting enabl e

Sem - hosting enabl ed (Handl e on breakpoint instruction hit)

Recei ved nonitor conmand: exec SetRestartOnd ose=1

Execut ed Set RestartOnCl ose=1

Recei ved nonitor conmand: reset

Reset: Halt core after reset via DEMCR VC_CORERESET.

Reset: Reset device via Al RCR SYSRESETREQ

Af t er Reset Tar get ()

Resetting target

Setting breakpoint @address 0x00000F22, Kind = 2, Type = THUMB, BPHandl e = 0x0001
Starting target CPU...

... Breakpoi nt reached @ address 0x00000F22

Readi ng common registers: RO, Rl, R2, R3, R4, R5, R6, R7, R8, R9, R10, Rl1l, R12, SP, /
LR, PC, XPSR

Renovi ng breakpoi nt @ address 0x00000F22, Size = 2

Read 4 bytes @ address 0x00000F22 (Data = 0x031CF107)

Readi ng 64 bytes @ address 0x2002FFCO

Read 4 bytes @ address OXEOOFFFF4 (Data = 0x00000010)

Note: If a SEGGER debug operation is not successful, the IDE generates an error dialog,
and the user can click the 'Details' button to display a copy of the SEGGER server log. One
possible reason for a SEGGER debug operation failing is due to a Device name mismatch.
MCUXpresso IDE tries to supply the expected Device name to the SEGGER server, however, on
rare occasions, this may not be the name expected. The SEGGER launch configuration Device
entry can be populated via a dropdown list or via a user-supplied device hame.

If required, you can set additional server options within the SEGGER launch configuration. For
example, to capture logging information to a file, you can set the additional server option:

-log $(CWD)/ ny. | og

where $(CWD) represents the current working directory of the debug connection, that is, the
dynamically created project build configuration folder.

Note: If a debug operation fails, or a crash occurs, it is possible that one or more debug processes
may fail to shut down correctly. Therefore, if the IDE has no active debug connection but is
experiencing problems making a new debug connection, ensure that none of these executables

is running. To simplify this process an IDE button % allows you to kill all low-level debug
executables (for all debug solutions). Therefore should a debug operation fail or a crash occur,
simply click this button before starting a new debug operation.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 127

NXP Semiconductors MCUXpresso IDE User Guide

14. Debugging a project

14.1

14.1.1

UG10055

This chapter describes many of the common debug features supported by the debug solutions
within MCUXpresso IDE. Please also refer to the chapter for
more details of the supported debug solutions and management of debug operations.

Debugging overview

A debug operation requires a physical connection between the host computer and the target
MCU via a debug probe. The debug probe translates the high-level commands provided by
MCUXpresso IDE into the appropriate low-level operations supported on the target MCU.

This connection to the debug probe is usually made via USB to the host computer (although
IP probes from PEmicro and SEGGER are also supported). Some debug probes such as LPC-
Link2 or SEGGER J-Link Plus are separate physical devices, however many LPCXpresso,
Freedom, Tower, and EVK boards also incorporate a built-in debug probe accessed by one of
the development boards USB connections.

Note: If you are using a separate debug probe, you must ensure that the appropriate cables are
used to connect the debug probe to the target board and that the target is correctly powered.

Typically, an on-board debug probe connection also provides power to the development board
and target MCU. In contrast, an external debug probe does not usually power the target, and
a second connection (often USB) is required to provide power to the board and MCU. Some
external debug probes such as the LPC-Link2 can also provide power to the target board —
you can enable this by connecting the link JP2. For other debug probes, refer to their supplied
documentation.

External debug probes usually provide superior features and performance compared to on-board
debug probes, however, please note that LPCXpresso V2 and V3 boards incorporate a full-
featured LPC-Link2 debug probe.

Note: Some LPCXpresso development boards have two USB connectors fitted. Make sure that
you have connected the lower connector marked DFU-Link. Many Freedom and Tower boards
also have two USB connectors fitted. Make sure that you have connected to the one marked
‘OpenSDA’ - this is usually (but not always) marked on the board. If in doubt, the debug processor
used on these designs is usually a Kinetis K20 MCU, which is approximately 6mm square. The
USB nearest to this MCU is the OpenSDA connection.

Debug launch

To debug a project on your target MCU, simply highlight the appropriate project in the ‘Project
Explorer’, and then in the Quickstart Panel click on the large Debug, as in Figure 14.1,

alternatively click the blue bug icon F to perform the same action.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 128

NXP Semiconductors MCUXpresso IDE User Guide

Figure 14.1. Launching a debug session

() Quickstart Panel X (= Variables ® Breakpoints = B8

- MCUXpresso IDE Quickstart
2] Project: Ipcxpresso55569_hello_world [Debug]

= Create or import a project

B Create a new C/C++ project...
Import SDK example(s)...
- . . i
Import from Application Code Hub...
® Import project(s) from file system...
& Import executable from file system...
= Build your project
% Build
¢ Clean

~ Debug your project B-E~-H-~

@)

~ Miscellaneous

® Edit project settings

By~

EF Quick Settings> >

& Export project(s) ta archive (zip)

X Export project(s) and references to archive (zip)
o4 Build all projects

UG10055

Note: You should not use the green bug icon Note: This default behavior can be changed
by editing the Workspace preference located at __ Preferences -> Run/Debug -> because this
invokes the standard Eclipse debug operation and so skips certain essential MCUXpresso IDE
debug steps.

For a newly created project, a debug operation performs a number of steps. By default, it first
builds the selected project and (assuming there are no build errors) launch a debug probe
discovery operation (see next section) to allow the user to select the required debug probe. A
launch configuration file is automatically created with default options (per build configuration)
and is associated with the project. Like the build configuration of a project, launch configuration
files control what occurs each time a debug operation is performed. Please see the section

for more information.

Note: You can change this default behavior by editing the Workspace preference located at
Preferences -> Run/Debug -> Launching -> Build (if required) before launching. For individual
projects, the Main tab of the launch configuration allows the workspace preference to be
overridden.

By default, once you have selected a debug probe (and clicked ‘OK’), the binary contents of

the .axf file are automatically downloaded to the target via the debug probe connection. Typically,

projects are built to target MCU Flash memory, and in these cases, a suitable Flash driver is

automatically selected to perform the Flash programming operation. Next, a default breakpoint

is set on the first instruction in main(), the application starts (by performing or simulating a

processor reset), and code executes until hitting the default breakpoint. See the section on
for additional information.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 129

NXP Semiconductors MCUXpresso IDE User Guide

14.1.2 Debug probe selection dialog (probes discovered)

The first time you debug a project, the IDE performs a probe discovery operation and displays
the discovered Debug Probes for selection. This shows a dialog listing all supported probes that
are attached to the host computer. In the example shown in Figure 14.2, a LinkServer (LPC-
Link2), a PEmicro Multilink, and also a J-Link (OpenSDA) probe have been found.

Figure 14.2. Attached probes: debug emulator selection

e o Probes discovered
Connect to target: MK64FN1MOxxx12
3 probes found. Select the probe to use:

Available attached probes

Name Serial number/ID Type Manufactur IDE Debug Mode
B8 LPC-LINK2 CMSIS-DAP V5.18 IWFUATEW LinkServe NXP Semi Non-Stop
m USB1 - Multilink Universal Rev PEM834663 usB1 P&E Micrc All-Stop
H J-Link OpenSDA 621000000 Use SEGGER All-Stop

Supported Probes (tick/untick to enable/disable)

MCUXpresso IDE LinkServer (inc. CMSIS-DAP) probes
P&E Micro probes

SEGGER J-Link probes

Probe search options

Search again

Remember my selection (for this Launch configuration)

\ ?,:' Cancel

UG10055

Note: if it finds only one probe, the IDE selects it automatically, so simply click OK or hit return
to use the probe displayed.

MCUXpresso IDE supports unique debug probe association.

Debug probes can return an ID (Serial number) that is used to associate a particular debug probe
with a particular project. Some debug probes always return the same ID, however, debug probes
such as the LPC-Link2 return a unique ID for each probe — in our example IWFUAL1EW.

For any future debug sessions, the stored probe selection is automatically used to match the
project being debugged with the previously used debug probe. This greatly simplifies the case
where multiple debug probes are being used.

However, if you perform a debug operation and the IDE cannot find the previously remembered
debug probe, then it performs a debug probe discovery operation from within the same family,
for example, LinkServer, PEmicro, or SEGGER.

See also

Sometimes a probe discovery finds no debug probes and returns a dialog as below:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 130

NXP Semiconductors MCUXpresso IDE User Guide

Figure 14.3. LPC-Link2 no longer connected

[BuN Probes discovered
Connect to target: LinkServer

€3 LinkServer not found.
This could be because it is disconnected, not powered, or already in use

Available attached probes

Name Serial number/ID Tvpe Manufactur IDE Debug Mode

Supperted Probes {tick/untick to enable/disable)
MCUXpresso IDE LinkServer (inc. CMSIS-DAP) probes

Probe search options

Search for LinkServer again Search for any enabled probe

?) Cancel

UG10055

This might have been because you had forgotten to connect the probe, in which case simply
connect it to your computer and select Search again. If you are using a different debug probe
from the same family of debug probes, simply select the new probe to replace the previously
selected probe.

Notes:

The “Remember my selection” option is enabled by default in the Debug Emulator Selection
Dialog, and causes the selected probe to be stored in the launch configuration for the current
configuration (typically Debug or Release) of the current project. You can thus remove the
probe selection at any time by simply deleting the launch configuration.

You need to select a probe for each project that you debug within a Workspace (as well as
for each configuration within a project).

If you wish to debug a project using a different family of debug probe(s), then the simplest
option is to delete the launch configuration files associated with the project and start a debug
operation. Please see the section "An Introduction to for more
information. Please also see

Firmware version check on MCU-Link / MCU-Link Pro probes

For MCU-Link and MCU-Link Pro probes, the Probes Discovered indicates if a newer firmware
version is available.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 131

NXP Semiconductors MCUXpresso IDE User Guide

[N Probes discovered

Connect to target: MK64FN1MOxxx12
I !, Firmware update(s) available for 1 of the discovered probesl 1

Available attached probes

me Serial number/ID Type Manufacturer

IS & | ACU-LINK r.C7 'ew. firmware vrsion .08 is availalé.
= PC-LINK2 CMSIS-DAPY The jatest firmware package can be downloaded from

g https://www.nxp.com/downloads/en/device-drivers/MCU-LINK_CMSIS-DAP-mac.zip

>

|DE Debug Mode

Supported Probes (tick/untick to enable/disable)

MCUXpresso IDE LinkServer (inc. CMSIS-DAP) probes
P&E Micro probes

SEGGER J-Link probes

Probe search options

Search again

Remember my selection (for this Launch configuration)

® corcel (D

Figure 14.4. MCU-Link available firmware update indication

1. Once the Probes Discovered opens, a warning indicates if there are debugger probes that
would require a firmware update.

2. Each discovered probe warns if a firmware update is available.

3. A tooltip (on each probe marked by a warning icon) specifies the download location and the
version of the firmware.

Note For details on how to wupdate the MCU-Link firmware, follow the
link from https://www.nxp.com/design/microcontrollers-developer-resources/mcu-link-debug-
probe:MCU-LINK and https://www.nxp.com/design/microcontrollers-developer-resources/mcu-
link-pro-debug-probe:MCU-LINK-PRO.

14.1.3 Controlling execution

When you have started a debug session a default is set on the first instruction
in mai n() , the application starts (by simulating or performing a processor reset), and code executes
until hitting the default "breakpoint.
You can now control program execution by using the common debug control buttons, as listed
in Table 14.1, which you can see on the global toolbar. The call stack is shown in the Debug
View, as in Figure 14.5.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 132

https://www.nxp.com/design/microcontrollers-developer-resources/mcu-link-debug-probe:MCU-LINK
https://www.nxp.com/design/microcontrollers-developer-resources/mcu-link-debug-probe:MCU-LINK
https://www.nxp.com/design/microcontrollers-developer-resources/mcu-link-pro-debug-probe:MCU-LINK-PRO
https://www.nxp.com/design/microcontrollers-developer-resources/mcu-link-pro-debug-probe:MCU-LINK-PRO

NXP Semiconductors MCUXpresso IDE User Guide

b=

1 Debug £2
v [frdmk64f_driver_examples_gpio_led_output LinkServer Debug [C/C++ (NXP Semiconductors) MCU Application]
v [frdmk64f_driver_examples_gpio_led_output.axf [MKE4FN1MOxxx12 (cortex-m4)]
¥ o Thread #1 1 (Stopped) (Suspended : Signal : SIGINT:Interrupt)
= delay() at gpio_led_output.c:61 0x806
= main() at gpio_led_output.c:91 0x852
w arm-none-eabi-gdb (7.12.0.20161204)

Figure 14.5. Debug controls and Debug Call Stack

Table 14.1. Program execution controls

Button Description Keyboard shortcut
& Restart program execution (from reset)
i Run/Resume the program F8
o Pause Execution of the running program
Terminate the debug Session Ctrl + F2
B, Clean up debug
e = Run, Pause, Terminate all debug sessions
[Step over a C/C++ line F6
s Step into a function F5
R Return from a function F7
O R Step in, over, out all debug sessions
i Show disassembled instructions
Tip
Clean up debug kills all debug processes associated with LinkServer, PEmicro,
and SEGGER debug connections. This may be necessary if the IDE restarts with
a connected debug session or if a crash occurs — and removes any failed or
orphaned debug processes. Note: a warning appears with the option to cancel
before performing any action since this kills all connected debug sessions.
Note: The debug controls for ‘all’ debug sessions perform identically to their single session
counterparts if only one debug session exists.
Note: Typically a user only has a single active debug session. However, if there is more than
one debug session, you can choose the active session by clicking within the debug call stack
within the Debug view. All debug views reflect the selected session.
Setting a breakpoint
To set a breakpoint, simply double-click on the left margin area of the line on which you wish to
set the breakpoint (before the line number).
Restarting the application
If you hit a breakpoint or pause execution and want to start execution of the application from the
beginning again, you can do this using the Restart button.
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 133

NXP Semiconductors MCUXpresso IDE User Guide

Stopping debugging

To stop debugging just press the Terminate/Stop button. This action disconnects MCUXpresso
IDE from the target (board). The subsequent behavior is controllable by the

Pause debugging

Typically, debugging is paused due to the action of a or

since these are set to observe the target when an event of interest has occurred. However, the
pause button can be used to pause the target at an instant of time.

To pause debugging

If you are debugging using the Debug Perspective, then to switch back to the C/C++

Perspective when you stop your debug session, just click on the C/C++ tab in the upper right
area of MCUXpresso IDE (as shown in Figure 3.4).

14.2 Launch configurations
Launch Configuration files are automatically created within the root directory of a project the first
time a debug operation occurs. They are typically named:
{proj nane} {debug sol uti on}Debug. | aunch
{proj nane} {debug sol uti on}Rel ease. | aunch
A file will be created for the build variant being debugged and is used to store the settings for
the debug connection for that build configuration.
Normally, there is no need to edit launch configurations, as the default settings created by the
IDE are suitable. However, in some circumstances, you may need to manage them — typically
under direction from an FAQ. In such cases, you can do this via the “Launch Configurations”
entry on the context-sensitive menu available from the Project Explorer view...
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 134

NXP Semiconductors MCUXpresso IDE User Guide

Figure 14.6. Create a launch configuration

[Project Explorer 532 " Peripherals+ 1! Registers . Symbol Viewer

| B framkeaf_d s

» 4 Binaries New
» Glincludes G0 Into
»EECMSIS | 5nen in New Window
» Baccel
+ & board [2) Copy 8
+ (B drivers Pasta
v (B source
» [3 bubbl ¥ Delete ®
» &5 startup Source >
» S utiities | Move...
» (= Debug Rename... F2
¥ & dog x Import...
B framks4 o P launch
Wirdmked = Export... zlaunch
Build Project
Clean Project
Refresh

Close Project
Close Unrelated Projects

Build Configurations >
Build Targets
Index >

v

Run As >
Debug As

Profile As

Restore from Local History...
Launch Configurations
Smart update

Utilities.

Tools

37 Run G/C++ Code Analysis
Team

Compare With

Configure >

vew

¥ Edit...

Create new...

¥# Create and edit new...

Delate...

%> Delete JTAG configurations...

LA 4 YV vYpl
vyYVYYY

Properties #l

UG10055

Note: to view the contents or edit an existing launch configuration file, you can also simply double-
click to open an edit view.

A number of options are available here:

Edit...

< Allows various debug settings to be modified
« Typically not required since the default options are correct for most debug operations

Create new...

¢ Create a launch configuration for a particular debug solution, if they do not already exist.

« Normally you do not need this option as it is carried out automatically the first time that you
debug your project. However, if you want the flexibility to debug a project with different debug
solutions for example, LinkServer and SEGGER, then you can create both sets of launch
configurations. On the next debug operation, the user can select the launch configuration
to use for that session.

Create and edit new...

¢ Allows new launch configurations to be created and immediately opened for editing.

Delete...

< Allows the launch configurations for the selected project (or projects) to be deleted.

e This can be useful as it allows you to put the debug connection settings back to the default
after making modifications for some reason, or if you are moving your project to a new version
of the tools, and want to ensure that your debug settings are correct for this version of the tools.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 135

NXP Semiconductors MCUXpresso IDE User Guide

Delete JTAG Configuration...

« Allows the deletion of JTAG configuration files for the selected project (or projects). These files
are stored in the Debug/Release subdirectories.

14.2.1 Editing a launch configuration (LinkServer)

WARNING: - Modifying the default settings for a launch configuration can prevent a successful
debug connection from being made.

After selecting the “Edit...” or “Create and edit New” launch configuration menu entry, you will
then see a new dialog box pop up, which looks similar to the following...

| @ Edit Configuration o

x
| L,
Modify configuration and continue. ﬁ\

Name: | Ipopressa$5s69_threadx_demo LinkServer Debug

Main| % GDB Debugodr (I LinkServer Debugger | § GUI Flash Tool | # Other Symbols| & Startup| ' Source|] Common
® LinkServer Debugger
Debug Options
Debug Connection 'Swp ~
LinkServer Options
= Debug Connection
[J Attach only [Reset on Connect [] Disable use of preconnect script
Reset script Workspace_. File System
Connect script Workspace.. File System.
BootROM stall | 0x50000040
Flash driver reset handling “ Reset handling
Disconnect behavior <cont ~ | Semihosting support |On
= Advanced Settings
[IMemory checking [] Debug memory cache [-] Enable range stepping 4] Enable flash hashing
Debug level 2
Override core index
Wirespeed (Hz
Additional options

Pre launch command

G Cancel

Figure 14.7. Edit a launch configuration

Most settings that you may need to modify can be found in the Debugger tab, in the Target
configuration sub-tab (as shown in the above screenshot).

Some examples of modifications that you may need to make in particular circumstances are:

¢ Changing the initial on debug startup

* When the debugger starts, it automatically sets an initial (temporary) breakpoint on the first
statement in main(). If desired, you can change where this initial breakpoint is set, or even
remove it completely.

« Modifying the Debugger connect behavior
* via a Connect Script, for example, kinetisconnect.scp
« Modifying the Debugger reset behavior.

» Flash driver reset handling is used to run the RAM-loaded flash driver, while Reset handling
is used to start the image loaded into flash/RAM. Possible choices:

» SOFT: Maintain the current software environment but change the SP and PC. Note that
the values for SP and PC are read from the first two words of the binary image, so SOFT is
not applicable in case of flash images which begin with a bootheader / configuration block.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 136

NXP Semiconductors MCUXpresso IDE User Guide

« VECTRESET: Execute a hardware reset of the core & catch the vectored ‘reset’ event.
ARMv8-M cores lack this reset mechanism, so SOFT reset is used instead.

« SYSRESETREQ: Execute a hardware restart of the system & catch the vectored ‘reset’
event.

» Default: For Flash driver reset handling it usually means VECTRESET, except for specific
parts. For Reset handling it means SYSRESETREQ for flash and VECTRESET for RAM.

« If the Reset script input field is not empty, the specified reset script executes instead of the
selected Reset handling.

« BootROM stall: Temporarily stall the boot loader post initialization on a read watchpoint to
reestablish debug control. Useful for ARMv8-M cores which lack vector catch.

¢ Connecting to a target via JTAG rather than SWD

« If supported by the target, you can edit the Debug type
¢ Connecting to a running target

e Set Attach only to True (see also
* Changing the debug stub connection parameters

« By default, the IDE attempts to start the GDB stub when initiating a debug connection. As a
result, the launch configuration is automatically created with the “Automatically start debug
server” checkbox enabled. If the GDB stub is already running, and the GDB client must
connect to that instance, it must be unchecked.

« Controls associated with the host name and with the network port number that are used
for listening to GDB client connections are grayed out by default. You can change these
parameters by disabling “Automatically start debug server”.

3 &dit Configuration o X
Modify configuration and continue. @

J
Name: | Ipcxpresso55s69_hello_world LinkServer Debug

Main | 3 GDB Debugger [LinkServer Debugger | @ GUI Flash Tool | %5 Other Symbols| # Startup % Source|] Common:

[JMemary checking [[] Debug memory cache [] Enable range stepping [Enable flash hashing
Debug level 2

Override core index

Wirespeed (Hz)

Additional options

Pre launch command

[Automatically start debug server

2 Continue Cancel

Figure 14.8. Debug Server connection

Note that you can also change the Debug Server Connection parameters by using the
Preferences page. All launch configurations are created using the values specified there.
Changes in the Preferences page do not affect any existing launch configurations. Go to Window
-> Preferences -> MCUXpresso IDE -> Debug Options -> LinkServer Options in order to
change any of the debug server-related parameters.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 137

NXP Semiconductors

MCUXpresso IDE User Guide

B Preterences o X

LinkServer Options B

g’("”‘ [Ask 1o boot LPC-Link2

SIS Packs Boot LPC-Link 2

Help LPCLink 2 boat type CMSIS-DAP (defaull) v
InstallfUpdate Redlink server port (restart equired) 302530503075

Library Hover

Redlink wirespeed in Hz (0= default 0
MCUXpresso Config Tools “ = G =9
 MCUXpresso IDE Iniial debug server port 10989
~ Debug Options Port auto-discover retries attempt for debug server 100
J-Link Options
lmksew: ;;‘im Data port for trace and analog tool: initial auto-discover port | 8389
PEMicro Options Control port for trace and analog tool:nitial auto-discover port | 18989

Probe Discovery Port auto-discover retries attempt for trace and analeg tool 100
Detault Too! settings
Editor Awareness

Energy Messrement [Block IDE requests to kil redlink server

[Shutdown redlink server

General
MCU settings [Kill rediink server on exit

Paths and Directories

Quickstart Panel [Use listusb.exe (ibusb) instead of cseript (WMI)
RTOS TAD 2] Use diu-util during discovery

SDK Handling [Show timestamps in Redlink console:

SWO Trace] Enable range stepping

User Interface Enablement | (] Enable flash hashing

Utilives [isable use of preconnect script
Run/Debug [Pull ISP on reset (on LPC-Link 2/MCU-Link)

SWTChart Extensions
Terminal LinkSes e
Vargaton inkServer path <onfiguration = ‘
Version Control (Team) -
XML Ocustom path
< 5 Restore Defaults Apply
D 3 S Apply and Close Cancel

Figure 14.9. Debug Server connection

Target boot configuration

« Changing target boot configuration

 LinkServer debug configuration has a section for Target Boot Control (highlighted below):

& edit Configuration [m] X
Modify configuration and continue. . @
Neme: [21 . hello_world LinkServer Debug |

[2 Main | % GDB Debugger | [LinkServer Debugger| € GUI Flash Tool | 35. Other Symbols| i Startup | & Source | [[] Commen

Debug server host name | localhost

Debug server port number | 10923

+ Target Boot Control
Settings for Target Boot Control using MCU-Link ISP control pins (x-do not drive, O-drive low, 1-drive high)

[AEnable Target Boot Control:

Target Boot Mode | Custom v

ISP contral pins [3:0] | x01x

vy

Revert Apply

Figure 14.10. Target Boot Control

UG10055

« The main purpose of this feature is to configure how the device boots on the reset requests

issued during the debug session. This feature requires an MCU-Link debug probe with the
ISPx boot control features implemented.

By default, the target boot control is disabled when the launch configuration is created. If
a specific target boot configuration is required, you need to enable the target boot control,
change the value present in the edit box, and/or select the boot mode from the list. At this
moment, there are no predefined target boot mode entries in the list. The combo box has
two generic entries:

» Custom entry: at least one ISP control pin is configured to be driven (custom
configuration)

* Empty entry: no ISP control pin is driven (default).

< When the target boot control is enabled, the selected configuration is stored on the probe

and a wire reset is issued to apply it at the very beginning of the debug session. Also, it
overrides the Pull ISP on reset option from Window -> Preferences -> MCUXpresso IDE

-> De b u g Op t I 0 Qﬁnf;rﬁa’lﬁri pol&r§dq1rt¥sggcu9eplg IsQJ{elﬁd legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 138

NXP Semiconductors

MCUXpresso IDE User Guide

* Note: The on-board MCU-Link probes have support for up to 4 ISP control pins, being able
to drive up to 4 target device pins, but this depends on how the target board is designed.
MCU-Link Pro and the MCU-Link base probes have one ISP control pin (ISPO).

« WARNING: Depending on the selected target boot mode (ISP control pins state), debug
session failures might occur in cases where code exists in the source of the boot media (for
example, in flash) and that code prevents the debugger from gaining control.

©

Tip

Each build configuration supports multiple launch configurations. It is possible to
create multiple launch configurations using standard Eclipse functionality — for
example, from the main menus, select Run -> Debug Configurations and double-
click on the C/C+ entry. Alternatively, you can clone an existing launch configuration.
Once this has been done, a debug operation will present the user a list of available
launch configurations. Simply double-click the required launch configuration to start
the debug session.

14.3 Common debug operations and launch configurations

14.3.1

Where possible, MCUXpresso IDE attempts to provide a common debug experience regardless

of the used

debug solution in use. However, some debug tasks require launch configuration

modifications and these are different for each debug solution. In this section, we discuss some
common debug operations for each debug solution.

Debug Quickstart shortcuts

MCUXpresso IDE Quickstart panel incorporates Debug shortcut buttons. These buttons invoke
actions only from their respective debug solutions.

(U Quickstart Panel X = Variables ®s Breakpoints

MCUXpresso IDE Quickstart

I2E ~lPrOJect: Ipcxpresso055s69_hello_world [Debug] l

~ Create or import a project

B create a new C/C++ project...
X Import SDK example(s)...

Import from Application Code Hub..
& Import project(s) from file system...

1= Import executable from file system...

~ Build your project

A Build
& Clean

« Debug yourproject

¥ Debug ® Debug using LinkServer probes (Ctrl+Alt+Shift+5)

~ Miscellaneous

® Edit project settings

€ Quick Settings> >

L Export project(s) to archive (zip)

& Export project(s) and references to archive (zip)
99 Build all projects

Attach to a running target using LinkServer (Ctrl+Alt+S)
Program flash action using LinkServer
Erase flash action using LinkServer

Figure 14.11. Debug shortcuts (LinkServer shown)

Each button provides the same 4 options for each debug solution:

Debug (default): make a Debug connection to the chosen debug probe. Create a launch
configuration if not present. Set the attach mode False. Note: a normal debug operation inherits

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

139

NXP Semiconductors MCUXpresso IDE User Guide

a launch configuration attach setting, whereas this operation forces attach mode to False. If a
launch configuration already exists, set its attach setting to False, and make no other changes.

Attach: make an Attach connection to a LinkServer compatible debug probe. Create a launch
configuration if not present. Set the attach mode to True. Gives the launch configuration a A

decorator to show that Attach is the set configuration. ¥ button. If a launch configuration already
exists, set its attach setting to True, and make no other changes.

Program Flash: perform the launch configuration Program action. By default, this programs the
‘project’ into flash. Build the selected project if required and create a default launch configuration
if one is not present.

Erase Flash: perform the launch configuration Erase action. By default, this erases the flash
memory via a mass erase. Creates a default launch configuration if one is not present.

Note: the selected action is remembered for subsequent shortcut uses, and the tooltip shows
the action to perform.

Tip

@ If an attach operation is performed, the created launch configuration has Attach set
to True. Therefore any subsequent debug operations will be in Attach Mode, until
either you edit the launch configuration to set Attach to false, or you use the Debug
shortcut again to force the attach mode to false.

14.3.2 Connecting to arunning target (attach)
A typical debug session begins by downloading code to Flash and then debugging from main()
onwards. However, to explore an already running system, you can make a debug connection
(attach) to the target MCU without affecting the code execution (at least until the user chooses
to halt the MCU!).
Note: Source-level debug of a running target is only possible if the sources of the project to be
attached exactly match the binary code running on the target.
Important Note: Please be sure to read and understand the section on
and also the implications in the related section on

LinkServer
Edit the project launch configuration by double-clicking on the launch config file, select the
Debugger tab and Target configuration view, and then set the ‘Attach only’ setting to True as
below:

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 140

NXP Semiconductors MCUXpresso IDE User Guide

Name: | evkmimxrt1060_iled_blinky LinkServer Debug

_ ¢ GUI Flash Tool | &= Startup | i~ Source

»,
1

LinkServer Debugger

Debug Options

Debug Connection SWD | ¥

LinkServer Options

~ Debug Connection
Settings for the debug connection

Attach only Reset on Connect

Reset script ﬂ Workspace... File System...
Connect script ﬁ Workspace... File System...
BOOtROM stall

Flash driver reset handling ﬁ Reset handling ﬂ
Disconnect behavior cont B seminosting support On il

Figure 14.12. Debug Launch Attach mode

When making a debug connection, the target continues running until a pause occurs. However,
if the IDE Debug Mode is set to Non-Stop (the default) then Global variables values can be
explored and displayed.

Other operations such as ITM console 10 also function. See the LinkServer SWO Trace Guide
for further information.

PEmicro

Edit the project launch configuration by double-clicking on the launch config file, select the Startup
tab, and then set the ‘Attach to a running target’ check box as below:

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 141

NXP Semiconductors MCUXpresso IDE User Guide

® @ Edit Configuration

Modify configuration and continue. ﬁ,

Name: MKB4FN1MOxxx12_Project PE Debug

[2] Main [%5 Debugger | € GUI Flash Todl (i
Semihosting Settings

% Source | [C] Common

Enable semihosting Console routed to: Telnet GDB client
Enable Telnet console Telnet Port: 51794

Load Symbois and Executable
Load symbols
' | o Use project binary: MK64FN1MOxxx12_Project.axf
1 " Use file:

Symbols offset (hex):

Load executable

° Use project binary: MKB4FN1MOxxx12_Project.axf

Use file:

Executable offset (hex):

Runtime Options

[Attach to Running Target] Run on reset
Set PC (absolute hex address or symbol):

GDB run commands:

Set breakpoint at: main

Figure 14.13. Debug Launch Attach mode PEmicro

When making a debug connection, the target continues running until a pause occurs.
SEGGER JLink

Edit the project launch configuration by double-clicking on the launch config file, select the
Debugger tab, and then set the *Attach to a running target’ check box as below:

Name: ‘ frdmk64f_bubble_peripheral JLink Debug

[Main |35 GDB Debugger |5 JLink Debugger |€ GUI Flash Tool | %5 Other Symbols| & Startup %~ Source|] Common

2332 .
2333

Endianess little bl

Disconnect behaviour Run v

[JPower Target [] Enable Semihosting
GDB Client Settings
Halt target on startup [] Initialize CPU registers
2331
Additional Options
Osilent (4 Verify [Single run|/Attach to a running target

Reset before running |

Script | | Browse
[Select RTOS plugin GDBServer/RTOSPlugin_FreeRTOS
Settings file ${ProjDirPath}/${ConfigName}/${LaunchConfigName} SettingsFile jlink Browse
Other server options [
v
Revert Apply

Figure 14.14. Debug Launch Attach Segger

When making a debug connection, the target continues running until a pause occurs.
14.3.3 Controlling the initial breakpoint (on main)

When the debugger starts, it automatically sets an initial (temporary) breakpoint on the first
statementin main(). If desired, you can change where to set this initial breakpoint, or even remove

UG10055

User Guide

All information provided in this document is subject to legal disclaimers

Rev. 11.9.0 — 5 January, 2024

© 2024 NXP Semiconductors. All rights reserved.

142

NXP Semiconductors MCUXpresso IDE User Guide

it completely. One common requirement is to debug an application from startup. You can identify
the entry point (startup) in a standard example application by a symbol called ResetISR. You can
set a breakpoint on this symbol to halt execution at the first instruction within an application.

LinkServer

To debug from the start of the image, edit the project launch configuration by double-clicking on
the launch config file, select the Debugger tab, replace main with ResetISR

Figure 14.15. Debug Launch ResetISR

=) Main i’: GDB Debugger LinkServer Debugger | € GUI Flash Tool | %5 Other Symb) Source ™

Initialization Commands
Reset and Delay (seconds):
Halt
set non-stop on
set pagination off
set mi-async
set rematetimeaut GOOO0
Load Image and Symbols
Load image
© Use project binary: MKG64FN1MOxxx12_Project.axf
Use file:
Image offset (hex):
Load symbols
© Use project binary: MKB4FN1MOxxx12_Project.axf

Use file:

Symbols offset (hex):

Run Commands

Set program counter at (hex);

Set breakpoint at:

Request hardware breakpoint

UG10055

When a debug connection is made, the target should halt at this symbol.
To disable the initial breakpoint, uncheck the option ‘Stop on startup at...". To restore the original

behavior, replace the symbol ResetISR with main, and check the option ‘Stop on startup at...".
Alternatively, you could delete the launch configuration and allow the IDE to create a new one.

PEmicro

Edit the project launch configuration by double-clicking on the launch config file, select the Startup
tab, replace main with ResetISR

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 143

NXP Semiconductors

MCUXpresso IDE User Guide

[Main | %5 Debugger | € GUI Flash Tdbl (|

Semihosting Settings
Enable semihosting Console routed to: [Telnet
Enable Telnet console Telnet Port: 51794

Load Symbols and Executable

Load symbols
0 Use project binary: MKE4FN1MOxxx12_Project.axf

Use file:

Symbols offset (hex):
Load executable
° Use project binary: MKB4FN1MOxxx12_Project.axf

Use file:
Executable offset (hex):

Runtime Options

Attach to Running Target Run on reset

Set PC (absolute hex address or symbol):

GDB run commands:

Figure 14.16. Debug Launch ResetISR PEmicro

5 Fource |] Common

GDB client

Set breakpoint af: | ResetisR |

When making a debug connection, the target should halt at this symbol.

To disable the initial breakpoint, uncheck the option ‘Set breakpoint at...". To restore the original
behavior, replace the symbol ResetISR with main, and check the option ‘Set breakpoint at...".
Alternatively, you could delete the launch configuration and allow the IDE to create a new one.

SEGGER JLink

Edit the project launch configuration by double clicking on the launch config file, select the Startup
tab, replace main with ResetISR

[Main |5 Debugger | €& GUI Flash To Source| [Common
Initializaticn Commands

Reset and Delay (seconds): |3

Halt
monitor reset

Load Image and Symbols

Load image

O Use project binary: MK64FN1MOxxx12_Project.axi
Use file:

Image offset (hex):

Load symbols

© Use project binary: MKB4FN1MOxxx12_Project.axf
Use file:

Symbols offset (hex):

Run Commands

Set program counter at (hex):

Set breakpoint at:

Figure 14.17. Debug Launch ResetISR Segger

When making a debug connection, the target should halt at this symbol.

To disable the initial breakpoint, uncheck the option ‘Set breakpoint at...". To restore the original
behavior, replace the symbol ResetISR with main, and check the option ‘Set breakpoint at...".
Alternatively, you could delete the launch configuration and allow the IDE to create a new one.

UG10055

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 144

NXP Semiconductors MCUXpresso IDE User Guide

14.3.4 Debugging pre-loaded binaries (add symbols)

In a typical debug scenario, a project is built, programmed into flash, and debugged. However,
a common requirement may be to debug via a bootloader or debug additional code preloaded
(into flash) generated by another project(s).

For a good debug experience, symbolic information (and source) for additional project code must
be made available to the debug environment.

You can now easily add symbolic information from additional projects via the Other Symbols tab
on the launch configuration of a project as shown below.

Figure 14.18. Debug Launch additional symbols

[BaN) Edit Configuration

Modify configuration and continue. @

Name: | MyApp_LinkServer Debud

[Main | %5 GDB Debugger LinkServer Debugger i3 | € GUI Flash Tool | & Startup | %~ Source |] Common

Load symbols: ${workspace_loc:/bootloader/Debug/bootioader.axf} Workspace. File System..

© Use addresses from file
Use load address (hex):

14.3.5

UG10055

To add symbolic information from other projects, simply browse to their .axf files and either use
either the default address or set a new base address for the image data. Use the + button to
add further symbolic information.

Disconnect behavior

Once the user has completed a debug session, the debugger connection can be terminated via
the Terminate button! The exact behavior of the target depends on the particular debug solution.

LinkServer
For LinkServer, the launch configuration contains a set of options to control what the target should

do when terminated. The default option is for the target to continue running from the current PC
value. However, you can change this by selecting a new setting within the launch configuration.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 145

NXP Semiconductors MCUXpresso IDE User Guide

Name: evkmimxrt1060_iled _li
[E/ Main | %5 GDB Debuggsd
LinkServer Debugger

¢ GUI Flash Tool | Other Symhuls‘ ¥ Startup | % Source 1 Common

Debug Options

Debug Connection SWD |¥

LinkServer Options

~ Debug Connection
Settings for the debug connection

Attach only Reset on Connect Disable use of preconnect script

Reset script E Waorkspace... File System...
Connect script .ﬁ Workspace. .. File System..
BootROM stall
Flash driver reset handling ﬂ Reset handling |7}
Disconnect behavior cont Semihosting support | On [T}

nochange

stop

v cont
run_cont

Figure 14.19. Debug Launch disconnect mode

Where:

¢ nochange - leaves the target in its current state

e stop - leaves the target in debug state, that is, halted

e cont - the default, either starts the image from its current PC value or leaves it running
e run cont - resets the target and lets it run

PEmicro

The Terminate button forces the target to halt. Alternatively, for PEmicro debug the IDE supports
another option —to disconnect and force the target to run. You can achieve this via the disconnect

' button.
SEGGER JLink

The target will Run on disconnect by default. You can change the launch configuration option,
Disconnect behavior to Halt, causing the target to halt on disconnect.

14.3.6 Project Flash programming

Launch configuration dialogs now contain a GUI Flash Tool tab. This along with the
and provide access to the flash programming
capabilities of each of the supported debug solutions.

For each debug solution, the options vary slightly but the presentation is broadly the same as
shown below. These options are self-describing.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 146

NXP Semiconductors MCUXpresso IDE User Guide

[5] Main [35- Debugger] /= GUI

GUI Flash™TSS
Program e& into flash Debug/MKG4FN1MOxxx12_Project.axf

Target: MKGAF IS
J Main %5 Debugger > Startup - Source| [[] Common
"""Q‘, o GUI Flash ™50
g et flesly Program file into flash: Debug/MK64FN1MOxxx12_Project.axf
Erase| Ra

Opti @
e Target: MK64j %ﬂ 2
Select the options tg

Format 1o use forpy Taraet Opeltions

ormattouseTorB select the target flash [5] Main [%5 Debugger (5 Sourt [common

Base podess Programi, Erase| GUI Flash Tool

Reset target on Fmgram file into 6 Debug/MK64FNIMOxxx12_Project.axf

Actions
Select the action &

© Erase, blank | Ter9et weaww%@

General Options Program and| Target Ope
Flash programming tool Verify Only Select tfe & flash operation to perform
Preview command p_.p’h&vase Resurrect locked Kinetis device
Options
m Select the options| AELio0s

Reset targatl] Select the action to perform

> Startup | &> Source |] Common

© Program Program (mass erase first)

Verify only Check file areas blank

General Options Options
Flash programming 16} Select the options to apply

Preview comman Format to use for programming @ axf) bin

Base address

1

Reset target on completion

General Options
Flash programming tool options
Preview command [Clear console

Figure 14.20. Debug Launch Flash programming

14.4

14.4.1

UG10055

To perform the selected operation, simply click the Run button.

Important Note: By default, a launch configuration has Program as the default Program action,
and Mass Erase as the default Erase action. When the user changes the settings, they are stored
within the launch configuration of that project and remain until a manual change occurs (or until
the deletion of the launch configuration). When using , they action the
current settings within the selected projects launch configuration (or if none exists, create a new
default launch configuration) - therefore if the Program action is set to Verify, a Verify is performed
as the Program action.

Breakpoints

When viewing the source (or disassembly) during a debug session, you can toggle breakpoints
by simply clicking/double-clicking in the leftmost side of the source view, typically shown as a
light blue column. This is also where the breakpoint symbol appears when you set it. You can
do this when the target is paused or running.

Breakpoints (and Watchpoints) also appear in the Breakpoints view. You can also use this view
to delete or disable them. If you are using the “Develop” perspective, then by default it will be in
the bottom left of the MCUXpresso IDE window tabbed with the Quickstart and other views.

If you have closed the Breakpoint view at some point, then you can re-open it using the “Window
-> Show view” menu or ‘Window -> Perspective -> Reset Perspective".

Breakpoint types

At a basic level, there are 2 types of breakpoints:

« Hardware: these are limited in quantity but can be set on ROM (Flash) or RAM. The debug
hardware built into the CPU provides these breakpoints.

e Software: these are implemented by a software instruction BKPT and can in normal
circumstances only be placed on addresses within RAM (since the underlying code must be
changed). These breakpoints can be applied in any quantity. The debugger invisibly places
(and removes) them.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 147

NXP Semiconductors MCUXpresso IDE User Guide

14.4.2

14.4.3

UG10055

Usually, the debugger automatically decides the best breakpoint to use for a particular memory
type or circumstance and this is invisible to the user.

Simplistically, software breakpoints are placed in RAM and Hardware breakpoints are placed in
ROM (Flash).

Tip

@ On some systems, a bootloader may copy code from ROM into RAM for execution
— if a symbol within this code is breakpointed — such as main(), then the debugger
may select a software breakpoint since it knows that main() resides in RAM. A
problem can arise if the debugger sets the software breakpoint before the bootloader
has relocated the code. If this occurs, any software breakpoint is overridden by the
relocated code. MCUXpresso IDE includes support for -to
ensure this problem does not arise in this case, MCUXpresso IDE forces a hardware
breakpoint onto main(). This is not overridden since this breakpoint type makes no
changes to memory.

Breakpoints resources

When debugging code running from Flash memory, the debugger is limited on how many
breakpoints it can set at any time by the number of hardware breakpoint units provided by the
ARM CPU within the MCU.

Note: Code located in RAM can use a different breakpoint mechanism offering the capability of
essentially unlimited breakpoints.

Typically, the number of hardware breakpoints/watchpoints that you can set are as follows:

Cortex- M)/ M+ (LPC) - 4 breakpoints, 2 watchpoints
Cortex- M)/ M+ (Kinetis) - 2 breakpoints, 1 watchpoints
Cortex-M3/ Md/ M/ - 6 breakpoints, 4 watchpoints

ARM does provide a level of implementation flexibility, so always consult your MCU
documentation.

If you try to set too many breakpoints/watchpoints when debugging, then the precise behavior
depends on the debug solution you are using. For LinkServer an error of the form below will be
generated.

15: Target error from Set break/watch
Unabl e to set an execution break - no resource avail able.

To fix the problem, simply remove the excess breakpoint(s).

Also, remember that a breakpoint is (temporarily) required for the initial breakpoint set by default
on the function main() when you initially debug your application. A breakpoint may also be
required (temporarily) when single stepping code.

Note: When the target is paused, you may set any number of breakpoints within the source or
disassembly views of the IDE, however only when the target is Resumed (Run) will the low-level
debug hardware attempt to set the required breakpoints. Therefore it is possible to request many
more breakpoints that are supported by the target MCU leading to the error described above.

Skip all breakpoints

You can use the “Skip all breakpoints” button ® in the Breakpoints view (or on the main toolbar)
to temporarily disable all breakpoints. This can be particularly useful on parts with only a few

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 148

NXP Semiconductors MCUXpresso IDE User Guide

breakpoints available, particularly when you want to reload your image, which typically causes
the default breakpoint on main() to be temporarily set again automatically by the tools.

14.5 Watchpoints

Watchpoints are Breakpoints for Data and are often referred to as Data Breakpoints. Watchpoints
are a powerful aid to debugging and work by allowing the monitoring of global variables,
peripheral accesses, stack depth, and so on. The humber of watchpoints that you can set varies
with the MCU family and implementation.

Watchpoints are implemented using watchpoints units which are data comparators within the
debug architecture of an MCU/CPU and sit close to the processor core. When configured, they
monitor the address lines of the processor and other signals for the specific event of interest.
This hardware is able to monitor data accesses performed by the CPU and force it to halt when
a particular data event has occurred.

The method for setting Watchpoints is rather more hidden within the IDE than some other
debugging features. One of the easiest ways to set a Watchpoint is to use the Outline View,
which by default is located within the IDE Quickstart panel.

From this view you can locate global and static variables then simply select Toggle Watchpoints.

) Quickst)= Global (x Variabl ©g Breakp EE Outline 82 = O

BV ok ¥

= LPC8Bxx.h

= cr_section_macros.h

= stdio.h

' giobs :Itl S Open Declaration Fa

o o Open Call Hierarchy AN H

Open Include Browser L Eel
Refactor >
Declarations >
References >

Smart update >
Utilities >

Figure 14.21. Toggle Watchpoint

Once set, they appear within the Breakpoint pane alongside any breakpoints that have been set.

The user can configure watchpoints to halt the CPU on a Read (or Load), Write (or Store), or
both. Since watchpoints ‘watch’ accesses to memory, they are suitable for tracking accesses to
global or static variables, and any data accesses to memory including those to memory-mapped
peripherals.

Note: To easily distinguish between Breakpoints and Watchpoints within the Breakpoint view,
you can choose to group entries by Breakpoint type. From within the Breakpoints view, click the
Eclipse Down Arrow Icon Menu, then you can select Group By Breakpoint Types as shown below:

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 149

NXP Semiconductors MCUXpresso IDE User Guide

) Quic ®=Glo -Vari 0= Outl % Bre | = O 67 * @brief main routine for hlinky example

coooQe

& s @\
v &5 C/C++ Line Breakpoints
~a systick.c [line: 62]

@ systick.c [line: 79

¥ gu C/C++ Watchpaints

& systick.c [expression: ‘counter1’] €0 Add Event Breakpoint (C/C++)...
i i ! ; & Ti n ~iodic P *

systick.c [expression: ‘counter2'] €% Add Watchpoint (C/C++)... ! Timer at a periodic rate */

= 68 ¥ @return Function should not exit.
] 69 */
ayout >

@ Add Line Breakpoint (C/C++)...
@' Add Function Breakpoint {C/C++)...

lock / TICKRATE_HZ1);:
«.» Show Full Paths

 Group By > @ 1 Breakpoints
oo Select Default Working Set...
Deselect Default Working Set é 3 Breakpoint ering Sets
Working Sets... | 4 Files
B == 5 Projects
Installed SDKs [Properties B Cor = 6 Resource Working Sets

nerinh svstick |inkSarver Dehiua [CIC++ (NX % 7 Advanced...

Figure 14.22. Watchpoints view

14.5.1

UG10055

As you can see from the above graphic, the option to set a Watchpoint is also available directly
from the Breakpoint view. When set from here, you are offered an unpopulated dialog — simply
entering an address causes a watchpoint to be created, monitoring accesses to that location.

Another place to set Watchpoints within the IDE is from the context-sensitive menu within a
Memory view.

Note: Watchpoint resources are shared with other debug features, in particular, an SWO Data
Watch item requires a dedicated watchpoint unit to monitor the value.

Note: The implementation of watchpoints results in the CPU performing any monitored access
before a halt occurs (unlike instruction breakpoints — which halt the CPU before the underlying
instruction executes). When a watchpoint is hit, you can see some ‘skid’ beyond the instruction
that performed the watched data access. If the instruction after the data access changes program
flow (for example, a branch or function return), then the IDE may not show the instruction or
statement that caused the CPU to halt.

Note: Application initialization performed by the C library may write to monitored memory
locations, therefore you may see your application halting during startup if watchpoints have been
set on initialized global data.

Using Watchpoints to monitor stack depth
Watchpoints provide a very simple way of monitoring stack depth when an application is running.

Stacks on ARM-based processors use a Full Descending scheme and so have the potential to
descend into areas of memory used for other purposes (typically holding global data or the heap).
Establishing the maximum depth of an applications stack can be a challenge especially since any
memory corruption due to excessive stack use may not be immediately apparent. Watchpoints
may be used to monitor and trap the stack exceeding a particular depth during execution enabling
positive reassurance that the true stack depth is understood.

The graphic below shows the use of the breakpoint view feature Add Watchpoint (C/C++) ...
where an address has been selected to watch for the Stack reaching 0x10007D00.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 150

NXP Semiconductors MCUXpresso IDE User Guide

[NaN) Broperties for C/C++ Watchpaint
Common Common - - v
Class: C/C++ Watchpoint

Expression to watch: | Ox10007D00
Range:

Read

Write
Enabled
Condition:
Ignore count: 0
@ cancel | (CTHEN |

Figure 14.23. Watchpoint on stack depth

14.6

14.6.1

UG10055

Registers

The Register view, by default located next to the Project Explorer view, displays the internal ARM
CPU registers when the core is halted, that is, when there is an active debug connection but the
target is paused. The contents of the registers view vary depending on the nature of the ARM
CPU inside the MCU being debugged, however, the base register is available for all MCUs.

The Register list as displayed is made up of the Basic Register set (Core Registers), Fault and
Status Registers, Pseudo Registers, and finally Floating point Registers (for Cortex M4/M7, and
so on). Since the register set for many MCUs is large, individual register groups can now be
hidden if required to reduce screen usage.

Note: For many debug tasks, the values of the CPU registers is of little concern, however
when debugging at the disassembly level (and single stepping), these values can be a powerful
debugging aid. For an in-depth understanding of the ARM register set for the CPU within your
NXP MCU, please consult the documentation available from ARM.

Tip
@ Even when operating in LinkServer None Stop mode, registers cannot be read or
written when the target is executing and the register display may appear blank.

Basic register set (core registers)

The basic register set comprises the 16 32-bit core registers of the CPU (r0 — r15), plus the
program status register, certain registers have a special function:

¢ r13 — SP Stack Pointer, this holds the address of the last entry on the stack

¢ rl4 — LR Link Register, this holds the return address for a BL (branch with link) instruction

¢ r15 — PC Program Counter, this holds the address of the instruction (to be) executed

e Xpsr — program status register, this combines the Application (APSR), Interrupt (IPSR), and
Execution (EPSR) program status registers, reflecting the state of the CPU

« flags — set by certain instructions performing arithmetic operations (contained within the APSR)

The register set (for a Cortex M4 CPU) is displayed below:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 151

NXP Semiconductors MCUXpresso IDE User Guide

Figure 14.24. Registers view

i) Project Explorer 2. Peripherals+ il Registers 52 |4 Faults X Symbol Viewer =l
BB Ot -
Name Value Description
fF % MK64FN1MOxxx12 (cortex-ma4) fr 4f_bubble.axf regi s j
itk OxfFFFFiff Argument/Scratch Register 1
i 0xbff00000 Argument/Scratch Register 2
iiir2 ox1 Argument/Scratch Register 3
Hith < ox1 Argument/Scratch Register 4
ilra OxbffO0000 Variable Register 1
Wi rs Oxc0180000 Variable Register 2
ol 0x0 Variable Register 3
iitr7 0x2002ffb0 Variable Register 4
Air8 0x0 Variable Register 5
i Ox0 Variable Register 6
Wir1o 0x0 Variable Register 7
Mir1l ox0 Variable Register 8
12 0x7fa1cO00 Intra-Procedure-Call Scratch Register
Wil SR 0x2002ffb0 Stack Pointer (r13)
it lr Oxad3 Link Register (r14)
D 0xa78 | Program Counter (r15)
b il xpsr 0x81000000 tus Register
B Tpscr O0x0 t Status Control Register
i msp 0x2002ffb0
i psp ox0
> i control Ox4
¥ it faultmask O0x0
> il basepri 0x0
» 1! primask 0x0
[L i
[v 1\ Status Registers Status Registers for Cortex-M4)
¥ iiilapsr Nzevg Application Program Status Register
N True Negative Flag
mZ False Zero Flag
L Ao False Carry (or NOT borrow) Flag
LA False Overflow Flag
,,?. Q False Sticky Saturation Flag
m GE 0x0 Greater Than or Equal Flags
» il ipsr no fault Interrupt Program Status Register
L lisner L Exacution Drogram Status Dgoistar _J
» &4 Additi isters Additional FPU Redisters for Cortex-M4
¥ %, DWT Registers Data Watchpoint and Trace Unit Registerd
iiiicycles Oxaf4ffd Cycle Count Register
__ilicycleDelta 0x31b8c Cucie Deltg
lame : pc
Hex:@xa78
Decimal: 2689
Octal: 05178
Binary:101021111080
Default:@xa78 <main+692>

UG10055

Note: in this graphic, the floating point registers have been hidden

Four blocks of registers are highlighted within the graphic

¢ Registers r0—r15 and the xpsr (the components of this are shown below in the status registers)
e Status registers apsr ipsr and epsr, these registers together combine to form the xpsr
» Certain bit fields such as the CPU flags are expressed alpha-numerically in this view

¢ Cycles is a memory-mapped register that increments for each core clock tick. CycleDelta is a
pseudo register that records the cycles since the last pause (see more below).

« Details view displays the selected register in various formats

When paused, all of these registers can be read (or written). The ability to write values to the
registers set is a powerful debug feature but should be used with care.

CycleDelta

CycleDelta holds the number of core clock ticks that have occurred since the last time the
CPU was paused. For example, if you run from the default breakpoint on main to a breakpoint,
cycledelta contains the number of clock ticks that occurred while executing this section of code.
If a step is performed, the cycledelta is the number of clock ticks for the code being stepped. If
stepping at the instruction level, this value is often 1 because many instructions execute within
a single clock cycle.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 152

NXP Semiconductors MCUXpresso IDE User Guide

14.7

UG10055

Vectpc

In previous versions of MCUXpresso IDE the pseudo register VectPC was used to display a
value when the CPU has experienced a Hard Fault. This functionality has been replaced by the

Faults

During application development, errors within a program or algorithm may lead to a CPU fault
(Hard Fault). These faults include:

» usage fault — such as a divide by zero

¢ bus fault — such as abort triggered by a memory controller

*« mem manage — such as a fault triggered by a memory protection unit

Such errors can be difficult to locate, so to aid the debugging of such problems MCUXpresso
IDE incorporates a Faults view.

If a fault occurs, the new Faults view automatically appears and the CPU halts (LinkServer). The
view offers a set of features including identifying the nature of the fault, the location (link) of the
code that caused the fault, and the location (link) of the function that called the ‘fault’ function.

Note: for non-LinkServer debug probes, a fault may leave the application running within the

default fault handler (usually implemented as a while(1)), hence a pause might be necessary to
see that a fault has occurred.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 153

NXP Semiconductors MCUXpresso IDE User Guide

| Peripherals+ Registers 't; Faults &2 Symbol View = O

roject Ex

o

1+ Active faults @ main.c [line 195]

(Hard Fault (HFSR)

Indicates a forced hard fault, generated by escalation of a fault with
4% FORCED (30) configurable priority that cannot be handled, either because of priority
\ or because it is disabled

[Usage Fault (UFSR)
4 DIVBYZERO (9) Divide by zero
.

/I:autt Status Registers

Name Value Description

XPSR 0x61000003 Exception Status Register

CFSR 0x02000000 Configurable fault Status Register
UFSR 0x0200 User fault Status Register

HFSR 0x40000000 Hard fault Status Register

DFSR 0x00000000 Debug fault Status Register
AFSR 0x00000000 Auxiliary fault Status Register

.

b

@ckeﬂ Registers (LR/JEXC_RETURN=0xffffff{9)

Name Value Description

RO 0x00000018B

R1 Ox1FFFO1B8

R2 Ox1FFFO1B8

R3 0x00000000

R12 0x00000011

LR 0x00000513 = main()

PC 0x0000261E = DivideByZero()
PSR 0x61000000

Q Ox1FFFO1 CO/

Figure 14.25. Faults View major features

UG10055

This view is titled with the source file and line number that caused the error. The view contains
the following features:

1. The Fault that occurred — in this example, a Usage Fault of type Divide by Zero

« certain faults may need to be enabled within the CPU, for example Divide by Zero is enabled
in the Cortex M4 Configuration and Control register

. The Action that was taken — in this example a Hard Fault was generated
. Links to the source of the fault function and its caller function, located from stacked registers
. Values of the registers automatically stacked on entry to the fault handler
. Fault status registers that may offer further information
. Additional options including:
< Button to cause disassembly to be opened in parallel with sources (3)
¢ Button to copy the fault details to the clipboard
« Button to display all fault registers and descriptions rather than the

O WDN

In some circumstances, a hard fault might be caused early on during the initialization of the
system before the breakpoint on main() is hit. This may mean that the fault is triggered before
the debugger can take action to display the faults view. If this happens, try setting a breakpoint in
the startup code — this might then allow your code to load without the hard fault being triggered.
You should then be able to single step/run until the cause of the hard fault is hit. You will then
see Faults View displayed.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 154

NXP Semiconductors MCUXpresso IDE User Guide

14.8

UG10055

Tip

@ If a repeated fault occurs that is difficult to debug, instruction trace could be enabled
(when supported by the MCU) and the captured trace dumped when the fault is
trapped. Looking back at the captured instructions should help find the reason for the
fault condition. Please see the MCUXpresso IDE Instruction Trace guide for more
information.

Note: Typically a Fault on an embedded system is fatal, however, this view also assists users
developing and testing fault handlers for recoverable fault situations.

Peripherals

Peripherals is a generic term referring to both core peripherals, for example, the System Timer
(SysTick) and SOC/MCU peripherals such as an ADC or UART. In both instances, these
hardware blocks are exposed within the address space of the MCU (known as memory-mapped
peripherals) and so can be interrogated by accesses to their specific memory locations.

The debug support of MCUXpresso IDE (whether built-in or provided by an SDK) includes

knowledge of the peripheral set of an MCU, this is available via the Peripherals tab within the
Project Explorer pane (once a debug connection is made).

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 155

NXP Semiconductors MCUXpresso IDE User Guide

[ty Project Explorer ifii Registers #% Faults 3, Peripherals+ i3 §B|lit g = O
Mame Value Access Location Description -~
» 7 ADCO Ox1c034000 LPC3410x% 12-bit ADC controller (ADC)

» &, ASYNC_SYSCON 0x40080000 LPC5410x Asynchronous system configuration (ASY
» F, CRC_ENGINE Ox1c010000 LPC3410x CRC engine
> E'-—e, CTIMERD Ox400b4000 LPC5410x Standard counter/timers (CTIMERO to 4)
» =, CTIMER1 Ox400b8000 LPC3410x Standard counter/timers (CTIMERO to 4)
> % CTIMER2 Ox40004000 LPC5410x Standard counter/timers (CTIMERO to 4)
> 2, CTIMER3 0x40008000 LPC5410x Standard counter/timers (CTIMERD to 4)
» E CTIMER4 Ox4000c000 LPC3410x Standard counter/timers (CTIMERD to 4)
v %‘ DMAD Ox1c004000 LPC5410x DMA controller
» o1 CTRL Ox 00000000 RW Ox1c004000 DMA control,
» ' CFG 000000000 RW Ox1c004000 Configuration register for DMA channel .
» o INTSTAT 0x00000000 R Ox1c004004 Interrupt status.
» 33 CTLSTAT (00000000 R Ox1c004004 Control and status register for DMA channel .
> 457 SRAMBASE 000000000 RW Ox1c004008 SRAM address of the channel configuration table.
» 33 XFERCFG DxD(I}(I}ODD RW Ox1c004008 Transfer configuration register for DMA channel
3 Mol ENARLESETO Ox1c004020 Channel Enable read and Set for all DMA channels.
__-__
» 8 ACTIVED RW Ox1c004030 Channel Active status for all DMA channels.
> i BUSYO OXOOOUODOD RW 0x1c004038 Channel Busy status for all DMA channels,
s 33 ERRINTO 000000000 RW Ox1c004040 Error Interrupt status for all DMA channels.
> 4h8 INTENSETD 0:00000000 RW Ox1c004048 Interrupt Enable read and Set for all DMA channels.
| >MINTENCLRO W Ox1c004050

RW Ox1c004058 Interrupt A status for all DMA channels.

RW O 1c004060 Interrupt B status for all DMA channels.
W 0x1c004068 Set ValidPending control bits for all DMA channels.
W (xIc004070 SetTrigger control bits for all DMA channels.
W 0x1c004078 Channel Abort control for all DMA channels.

> & GINTO 0x40010000 LPC5410x Group GPIO input interrupt (GINT0/1)

> Z, GINTI 040074000 LPC3410x Group GPIO input interrupt (GINTO/1)

b ?-h GPIO 0x1c000000 LPC5410x General Purpose |/0 (GPIO)

> E 12C0 040094000 12C-bus interface 0

» % 12C1 Oxd0098000 12C-bus interface 0

» & l2Q2 0x4009c000 12C-bus interface 0

< 3

Figure 14.26. Peripherals view

In this view, each peripheral is listed along with its value, base address, access, and a brief
description. The view also exposes the inner peripheral registers and offers bit field enumerations
to greatly simplify both reading existing configurations and setting new values.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 156

NXP Semiconductors MCUXpresso IDE User Guide

| iy Project Explorer LiLi Registers 4 Faults 7, Peripherals+ 13 Bl i =D
Name Value Access Location Description !
» 1 MAILBOX O1e02e000 LPCS10x Mailbox
v &, MRTD (x40074000 LPC5410x Multi-Rate Tirer (MRT)
» 7y NVIC Oue000e100 Mested Vectored Interrupt Controller
¥ 5 PINT 0aD018000 LPCHI0x Pin internupt and pattern match (PINT)
& RT 80070000 Repetitive Interrupt Timer
» Fa FIC (003000 LPC5410x Real-Time Clock (RTC)
y B 3CTO 01018000 SCTimer/PWM (5CT)
» 5L SPID (480024000 SP1
» B, SPIN 040028000 5PI
w 7 SYSCON (0000000 System configuration
» 4ii SYSMEMREMAP 0500000002 RW 00000000 Systern memary remap
s M3 AHEMATPRIO O Q0000000 RW (40000004 AHE multilayer matrix prionty contrel
» a1l SYSTCKCAL Do OODO0000 RW (20000014 System tick counter calibration
DacDOD00000 RW Dae8000001 € MM Source Select
) O 0000000 RW (0000020 Asynchronous APB Control
» a1l SYSRSTSTAT 0000001 RW (20000040 ° System reset status reguster
» 3y PRESETCTRLO DeeDODO0000 RW e 200000 Penipheral reset control n
» O 00D0000 " RW (ed0000043 Peripheral reset control n
» itsl PRESETCTRLSETO) Do OOOOO0D0 RwW (xd000004c Set bits'in PRESETCTRL n
5 3 PRESETCTRLSET]1) O 00000000 RW (80000050 Set bits in PRESETCTRL n
) PRESETCTRLCLR[D]) Qe DO000000 RW DedD000054 Clear bits in PRESETCTRL n
» 4 PRESETCTRLCLR{1] O OO0OO0D0 RwW (40000058 Clear bits in PRESETCTRL n
s Mt PIOPORCAPD O T9e2 3t RwW (000005 POR captured PIO status 0
» PIOPORCARY D DO RW Oe0000060 POR captured PIO status 1
¥ PIORESCAPD Ox T3 RW (0000068 Reset captured PIO status
L Ll PIORESCAP) QL0003 BW 0000006 Resel Cactured PIO gtatys |
w 1 MAIMCLKSELA D 00000000 RwW Ow40000020 Main clock source select A
L1 IRC OSCILLATOR ~ | RW 101 Clock source for main clock source selector A
> 8t MAINCLKSELB W (40000084 Main clock source select B
5 I8 ADCCLKSEL CLKIN (x4000008c ADC clock source select
» aiy CLKOUTSELA Wﬁ'{EHI}DG GKIL"&TO.R... OcdD000034 CLEQUT clock source select A
> a0 CLROUTSELE [T RW DHal0ues LLROUT clock source select B
» 214 SYSPLLCLKSEL 00000000 RW 02000000 PLL clock source select
W AHBCLKCTRLO 00000211k RW Oc200000c0 AHB Clock control n
AHBCLKCTRL1 O 000O0000 RW (000004 AHE Clock contrel n
AHBCLKCTRLSETIO] 000000000 Rw (4000008 Set bits in AHBCLKCTRL n
» 38 AHBCLKCTRLSET[1) CocOOOO00D0 RW (ud00000cc Set bits in AHBCLECTRL n
AHBCLKCTRLCLRIO] 000000000 RW (40000040 Clear bits in AHBCLECTRL n
3 AHBCLKCTRLCLR{1] 000000000 RW (40000044 Clear bits in AHBCLECTRL n
» 418 SYSTICKCLKDIV CocOOOOO0D0 RwW (000000 SYSTICK clock divider
Do OO00000 RW Q000004 TRACE clock divider
3 000000001 RwW (40000100 Systern clock divider
» 48 ADCCLKDIV CocOOOOO0N0 RW (40000108 ADC clock divider s
3

Figure 14.27. Peripheral register view modifying bit field value

UG10055

Important Note: When an MCU powers up, many peripherals are unavailable because they are
unpowered/not clocked. Attempting to access a peripheral in this state fails, and the peripheral
simply displays them in red. Certain peripherals may be partially available, while unavailable
sections are again displayed in red. Entries that have changed are displayed in yellow.

Tip

Even when operating in LinkServer None Stop mode, peripherals can not be read or
written when the target is executing. The main peripheral display may appear blank
when the target is executing regardless of LinkServer mode.

Warning: It is strongly advised that only peripherals that are well understood are accessed in
this manner since attempting to view certain peripherals can break a debug connection or perform
other unexpected actions. The debug features of MCUXpresso IDE cannot offer protection from
such occurrences.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 157

NXP Semiconductors

MCUXpresso IDE User Guide

The view also lists in the main menu the device memory regions. If these memory regions are
selected, a standard hex memory display is created. Memory regions are not peripherals in the
normal sense but are included here so their memory space can be easily displayed.

& Project Explorer UUlf Registers %5 Faults 2, Peripheralie 52
Hame Value Access Location
7, ADCO 01024000
7, ASYNC_SYSCON 040080000
7, CRC_ENGINE De1ed 10000
2, CTIMERD 040064000
2, CTIMER 040068000
CTIMER2 O 40004000
CTIMER3 040008000
7, CTIMER4 040006000
7, DMAD 01004000
2, GINTD 040010000
= GINT1 (40014000
, GPIO 01000000
5 12C0 O d0034000
2, 12C1 040098000
12c2 040096000

8 = m

Description
LPCS410x 12-bit ADf eantrelles (ADC) |
LPC3410x Asynchrofous system configuration (ASYN.
LPCS410x CRC engifle |
LPC5410x Standard founter/timers (CTIMERD to 4)

LPC5410k Stendard fountes/timers (CTIMERD to 4)

[Addmemorymeniter > L0 PROGRAM FLASH Blg
e e D1l (cortex-ma)]

{5 Debug 12

@ Thiesd

LPC5410x Standard counter/timers (CTIMERD to 4)
LPCS410x Standard counter/timers (CTIMERD to 4)
LPCS410x Standard countes/timers (CTIMERD to 4)
LPC3410x DMA controller

LPCS210x Greup GPIO input interrupt (GINTO/T)
LPC5410x Growp GPIO input interrupt (GINTO/1)
LPC5410x General Purpose /D (GPIO)

12C-bus interface 0

12C-bus interface 0

12C bus interface O

Figure 14.28. Peripherals view memory regions

[8] helio_wordde 53 [T] maind) at hello world.c:36 Dxd2e
10 #include "fsl_debug_console.h”
11 sinclude “board.h™

3 sinclude "pin_mux.h”
14 #include <stdbool.h>

++ (NXP Semiconductors) MCU Application]

14.8.1 Custom SVD file

Users can specify a custom SVD file location inside of a project. You can achieve this from Project
Properties -> Run/Debug Settings -> MCU Settings -> SVD Selection. The file is used by the
Peripherals+ view when debugging that project.

C/C++ General
Project Matures
Project References
~ Run/Debug Settings
MCU settings
Task Tags
+ Validation

n Properties for Ipcxpresso54102_hello_world

*| | MCU settings

» Resource .
Builders SVD selection
5 C/C++ Build Location | using default SVD file

Browse Project...

Restore Defaults

Apply and Close

O *
- ~ 8
[
Browse...
Apply
Cancel

Figure 14.29. SVD custom selection

The SVD file can be imported from:

« the selected project
¢ acustom file location

UG10055 All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

158

NXP Semiconductors MCUXpresso IDE User Guide

In the default case, where this file is not specified, the SVD is loaded from the associated SDK.

14.9 Offline Peripherals

MCUXpresso IDE provides a way to inspect the peripheral registers without the need for an
active debug session. Registers are shown with the fields, but of course without the actual values.
Instead, the view shows the reset value for the registers.

[Installed SDKs [[] Properties |2 Problems B Console 3 Terminal |5 Image Info E Debugger Con... =, Offline Periph.. 22 = O

(mHe]x e

=i

La
Context: LPC34102)512 - crmlplus
Name Reset Value Access Location Description i
> 2, ADCO (1034000 LPC5410x 12-bit ADC controller (ADC)
=2, ASYMNC_SYSCON 0x40080000 LPC3410x Asynchrenous system configuration (ASYN...
=2, CRC_ENGINE Ox1c010000 LPC53410x CRC engine
w o CTIMERD (eAD0b4000 LPC3410x Standard counter/timers (CTIMERD to 4)
w IR Ox 00000000 RW Ox400b4000 Interrupt Register. The IR can be written to clear interr...
il TCR Ox 00000000 RW 0x400b4004 Timer Control Register, The TCR is used to control the ..
T Ox 00000000 RW 0x400b4008 Timer Counter, The 32 bit TC is incremented every PR..
18 PR 0z 00000000 RW Ox400b400c Prescale Register. When the Prescale Counter (PC) is ...
i PC Ox 00000000 RW 0x400b4010 Prescale Counter. The 32 bit PC is a counter which is i...
i MCR 0w 00000000 RW 0400b4014 Match Control Register, The MCR is used to control if ...
8 MR[O] Ox 00000000 RW 0x400b4018 Match Register. MR can be enabled through the MC...
i MR[1] Ox 00000000 RW Ox400b401c Match Register . MR can be enabled through the MC...
w 301 MR[2] Ox 00000000 RWw Ox400b4020 Match Register . MR can be enabled through the MC...
& MATCH 0x0 RW [31:0] Tirmer counter match value,
i MR[3] Ox 00000000 RW 0x400b4024 Match Register. MR can be enabled through the MC...
i CCR Ox 00000000 RW Ox400b4028 Capture Control Register. The CCR controls which ed...
88 CRIO] Ox 00000000 R xd00b402c Capture Register . CR is loaded with the value of TC w...
w 308 CR[1] Ox 00000000 R On400b4030 Capture Register . CR is loaded with the value of TC w..,
& cap 00 R [31:0] Tirmer counter capture value,
w 0 CR[2] 0z 00000000 R Ox400b4034 Capture Register . CR is loaded with the value of TC w...
o cap Ox0 R [31:0] Timer counter capture value.
w 38 CRI3] O 00000000 R (40004038 Capture Register . CR is loaded with the value of TC w..,
& cap 00 R [31:0] Tirmer counter capture value,]

Figure 14.30. Offline Peripherals view

The view provides three ways of importing peripherals:

e from a local file
« for the device/core used by the selected project
« from a list of available devices
Tip
Holding the mouse over the bit field shows a tooltip that includes the detailed

description for the current value and also the descriptions for the other possible
values.

UG10055

User Guide

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

Rev. 11.9.0 — 5 January, 2024 159

NXP Semiconductors MCUXpresso IDE User Guide

({30 Installed SDKs [Properties [#] Problems B Console (® Terminal |5} Image Info [l DebuggerCon.. 2, OffinePeriph.. 22 = B
@ X8|

Context: LPC541021512 - emlplus

Name Reset Value Access Location Description e
» ‘.=il, CTIMER1 Ox40002000 LPC5410x Standard counter/timers (CTIMERD to 4)
» £, CTIMER2 Ox40004000 LPC5410x Standard counter/timers (CTIMERD to 4)
» &, CTIMER3 040008000 LPCS5410x Standard counter/timers (CTIMERD to 4)
% "Eil-| CTIMER4S Ox4000c000 LPC5410x Standard counter/timers (CTIMERD to 4)
w = DMAD Ox 1004000 LPC5410x DMA controller
w 1 CTRL Oae 00000000 RW Ox1c004000 DMA control.
& ENABLE DISABLED RW 0] DMA controller master enable.
w it CFG Che0OD0O000 RW 01004000 Configuration register for DMA channel .
& PERIPHREQEN DISABLED RW [0] Peripheral request Enable. If a DMA channel is used to...
® HWTRIGEN DISABLEM— g A . . nable for this channel.
3: TRIGPOL ACTIVE. Disabled. Hardware triggering is not used. | the polarity of a hardware trig. .
o TRIGTYPE EDGE |possible values: erdware trigger as edge triggere...
& TRIGBURST SIMGLE | - DISABLED (0nx0) - Disabled. Hardware triggering is not used. phether hardware triggers cause...
& BURSTPOWER o0 - ENABLED (0x1) - Enabled. Use hardware triggering. two ways. It always selects the ...
& SRCBURSTWRAP DISABLED RW [14] Source Burst Wrap. When enabled, the source data ad...
& DSTBURSTWRAP DISABLED RW [15] Destination Burst Wrap. When enabled, the destinatio...
:, CHPRIORITY 00 RW [18:16] Priority of this channel when multiple DMA requests ...
» Che0OOO0000 R 01004004 Interrupt status.
> Wit CTLSTAT 00000000 R (1004004 Control and status register for DMA channel .
SRAMEBASE (b 0ODDO000 RW Ox1c004008 SRAM address of the channel configuration table.
XFERCFG 000000000 RW Ox1c004008 Transfer configuration register for DMA channel ,
Wit ENABLESETD Oae 00000000 RW Ox1c004020 Channel Enable read and Set for all DMA channels.
% MW ENABLECLRO 0600000000 w 0x1c004028 Channel Enable Clear for all DMA channels. v

Figure 14.31. Offline Peripherals view bit field information

14.9.1 Loading custom SVD file in Offline Peripherals view

To load the custom SVD file which was set into Project Properties, just push the “Load peripherals
for device used by selected project” button. The location from where it was provided can be found

in Context.
@) Installed SD... [T] Properties [£] Problems) Console (8 Terminal |5 Image info GJ DebuggerC.. & OfflinePerip.. 32 = B
uf@e| % el
Context: ${workspace_loc)/${ProjName)/startup/LPC54102_cmdxml]
Mame Reset Value Access Location Description o
> 2 ADCO 0x1c034000 LPC5410x 12-bit ADC controller (ADC)
» % ASYNC_SYSCON (40080000 LPC5410x Asynchronous system configuration (ASYN
» 7 CRC_ENGINE 01010000 LPC3410x CRC engine
» ﬁ CTIMERD Ox400b4000 LPC5410x Standard counter/timers (CTIMERO to 4)
» % CTIMER1 Ox400b8000 LPC5410x Standard counter/timers (CTIMEROQ to 4)
» .71.'. CTIMER2 0x40004000 LPC5410x Standard counter/timers (CTIMERO to 4)
» % CTIMER3 0x40008000 LPC5410x Standard counter/timers (CTIMERQ to 4)
» 2, CTIMER4 0x4000c000 LPC5410x Standard counter/timers (CTIMERO to 4)
> 2, DMAD Cx1c004000 LPC5410x DMA controller
» &, GINTO 040010000 LPC5410x Group GPIO input interrupt (GINTD/1)
» #a GINTI 0x40014000 LPC35410x Group GPIO input interrupt (GINTO/1)
=TT [ANEPC T ST, Yol FET, Oy SSNE'Y SN Vo W71, 7,0
< >

Figure 14.32. Load custom SVD file

14.10 Global and live global variables

Global and Static variables are stored within system RAM memory and can therefore be
accessed by the debug chain (read and potentially written) while an application is both paused
and running.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 160

NXP Semiconductors MCUXpresso IDE User Guide

Note: The ARM processor inside the NXP MCU utilizes a load-store architecture, this means that
a global variable must be read (loaded) from memory and then written back by the processor (if
changed). The value of the variable displayed corresponds to the value in memory and this may
potentially be different from the value held by the processor. Modern MCUs execute millions of
instructions every second, so any variable observed while an application is running may have
been changed many times from the value displayed in the view, therefore take care that this is
understood before attempting to change a variable value within the Global variable view.

This view can be populated from a selection of the global variables of a project. Simply click the
“Add global” button to launch a dialog:

Quickstar - GlobalVa 3¢ (- Variables o Breakpo Outine = O
ar 3K t i -
—r
Mariaths Type *Adﬂ global variables jus

Figure 14.33. Add global variables

This then displays a list of the global variables available in the image being debugged. Select
the ones of interest via their checkboxes and click OK :

L] [] Select symbols.
Name ~ Address Size
_Ciob 0x2000007¢ 180
_end_of_heap 0x20000130 4
__heaps 0x20000134 4
_num_Ciob_streams 0x00008670 4
_Vectors 0x00000000 408
errno 0x20000138 4
Flash_Config 0x00000400 16
g.accel_address O0x00005974 4
g_MasterHandle 0x20000014 40
a_pfnVectors 0x00000000 408
I g_xAngle 0x2000003¢ 2
g_xDuty 0x20000040 2
g_xtal0Freq 0x20000044 4
g _xtal32Freq 0x20000048 4
g_yAngle 0x2000003e 2
g_yDuty 0x20000042 2
Select All Deselect All
@ Cancal | (L

Figure 14.34. Global variable selector

Note: to simplify the selection of a variable, this dialog supports the option to filter (highlighted)
and sorts on each column.

Once selected, the chosen variables are remembered for that occurrence of the dialog.

For all supported debug chains there is now the capability to view global variable values when the
debug target (MCU) is running. When this feature is used, these are known as " Live Variables".

For variables to be “Live”:

¢ The target must be running

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 161

NXP Semiconductors MCUXpresso IDE User Guide

« The enable/disable (run) button clicked (as shown highlighted below)

Once done, the display updates at the frequency selected (selectable from 500 ms to 10 s).

) Quickstart Panel ()= Global Variables 83 ()= Variables 9 Breakpoints 5= Outline = 0

X & @ 1000 o 4B I =
Variable Type Value Address

v (#®array uint32_t (4] 0x20000018 <array> 0x20000018

09=array[0] uint32_t 1 0x20000018
oa-array[1] uint32_t 85 0x2000001¢
co=array[2] uint32_t 10 0x20000020
-=array[3) uint32_t 7 0x20000024
9:g_xAngle volatile int16_t 25 0x20000120
©9:g_yAngle volatile int16_t 1 0x20000122

5 Add new expression

Figure 14.35. Global variable display

Also available is the ability to enter an expression (using standard C notation) or symbol. The
expression is evaluated and the address displayed in the Address column.

Quickstart Panel ®)= Global Variables 23 Variables Sreakpoints Outline =0
R4 Q1000 == =
variable Type Value Address
b (Barray uint32_t [4] 0x20000018 <array> 0x20000018

=g_xAngle volatile int16_t 86 0x20000120
(-9 gle volatile int16_t 3 0x20000122

0
0 t32_t *) 0x20000018 fuint32_t 103 0x20000018

Figure 14.36. Global variable display expression

Live Variables like normal Globals can also be edited in place. Simply click on the variable value
and edit the contents. During the edit operation, the display does not update. This mechanism
provides a powerful way of interacting with a running target without impacting any other aspect
of system performance.

Note: If you wish to have some global variables ‘Live’ and others not, then this can be achieved
by spawning a second Globals display via the ‘New View’' button and populating this without
enabling the ‘run’ feature for that view.

The usefulness of Live Variables reduces as the number of Globals monitored increases, and
ultimately there is a limit as to how many variables can be updated at the selected frequency.
However, a complex list of variables can be monitored if required. For example:

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 162

NXP Semiconductors

MCUXpresso IDE User

Guide

Variable
©)=_random_j
©9=_random_k
®=b
e-f
®=d
»p
=i
®=]
=k

¥ (®=uni_a
9= uni_a[0]
©9=uni_a[1]
6d=uni_a[2]
6d=uni_a[3]
©d=uni_a[4]
¥ (®bi_a
v (2 bi_a[0]
9=bi_a[0][0]
©09=bi_a[0][1]
69-bi_a[0][2]
v (®bi_a[1)
©9-bi_a[1][0]
69=bi_a[1][1]
©=bi_a[1]2]
> (= bi_a[2)
» (*=s example
v (25 exi
> #name
=5 |

) Quickstart Pa - Global Variabl &3 (<= Variabla

Type

<data variable, no debug info> 25
<data variable, no debug info> 2

_Bool
float
double
void *
volatile int
int

int
double [5]
double
double
double
double
double
float [3][3]
float (3]
float

float

float

float [3]
float

float

float

float [3]
char [15]
struct Struct_example
char [5]
int

Figure 14.37. Global variable display complex

true

62.9931755
-0.88162727834732613
0x20000130 <bi_a>

5

3

3

0x20000108 <uni_a>
0.64644408768343009
0.52534067329267975
0

0
-0.69493926395426475
0x20000130 <bi_a>
0x20000130 <bi_a>
77.4734955

92.8390503

46.7962074
0x2000013c <bi_a+12>
63.3472824

95.4246292

30.6657524
0x20000148 <bi_a+24>
0x20000154 <s_example>
-}

0x20000168 «<s_ex1>

3

o Breakooints OF Outline = O

& Q000

el

14.11 Live global variable plotting

In addition to displaying Live Variables, the IDE can also trace (sample) their values for plotting

as graphs, logging, or calculating statistics.

By default, it is assumed that variable values may be traced but alternatively, their values can be
displayed in a details view via a right-click menu selection.

View Memory

Number Format >
Find... #F
Show Details As L v 1 Trace Data Viewer
2 Number Formats Viewer
#, Cast To Type... .

«[] Display As Array...
Restore Original Type
%Y Watch

Variables can only be traced if they have first been added to the Global Variable panel as
discussed in the previous section. The selection of variables to plot is simply made by clicking
to highlight the variable of interest.

Note: Once a variable has been selected, the timebase (uptime) begins and variable values
are sampled and displayed. If additional variables are selected, their values join the display at
the current uptime. If a variable is unselected, its values are no longer sampled and displayed.
If however, it is selected again within the same debug session, it is displayed along with any
previously captured values. During any period it was not selected, its values show as zero.

Tip

If the display is paused, data will still be captured but the new values will not be
displayed, this can help detailed viewing of the data. Once un-paused, the captured

data will be added to the display.

Note: If the target is paused, time (x-axis) will continue to advance although the display will not
update until the target is resumed.

UG10055 All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

163

NXP Semiconductors MCUXpresso IDE User Guide

14.11.1 Live Global Variable graphing details

In the example below, two variables have been added to the Global variable view and both have
been selected for tracing.

2= Qutline | #9- Clobal Variables £ X 57 Q500 " #@O ™Y 20
Variable Type Value Address
69=sin_angle int32_t 74 0x2000011¢c

t9-=angle uint32_t 12 0x20000118
w"e Add new expre...

Trace | Statistics f f
A WDRF Ok 4 Fhsil@ (3]
frdmk641_bubble O

o

B
x
n

411.8+
200 -

0

sin_angle

=200

O

.1y |- X - [ST SOUNUENINER NAPRMRRR SRS ESFPIRIN SO UURIESURS UURNMSE SO NNGRIESI FERRRSE S S
10 ds 14s 24s 34s 44s 54s 1mds 1mids 1m3ds

t0 = 1m 58s O

mAQEBh @@ ghsol@ P

frdmk64f_bubble

394.8
300
2 200 4
-]
m
100

0, AR PRI YIOKiLCR MY BRI AR IURHRYAS MONAIEENS ISVELICHE WD
10 4s 14s 24s 34s 44s 54s 1mds Imids 1m34s

w=0

Figure 14.38. Global variable graphing major features

The highlighted features are explained below:

1. Selected variables. Click the checkbox to select a variable for plotting

* Once selected, the variable exists in the internal database of values and remains until the
debug session is terminated (even if it is later unselected)

2. Plot types: the traced data may be viewed in 3 ways:
« Plot — display as a graph over time
 trace — log the values
« Statistics — calculate statistics for the traced values (max, min, average)

3. Resume and Pause: Click Resume to start plotting variables. Click to pause the graph display
updated. Variables values are still captured but the screen does not update

4. Save: Click to save the captured data.

¢ The size of the PNG is proportional to the size of the global view. Therefore, for more detail,
increase the size of the global view before saving

e This button offers the option to save each of the Plot types: Plot (PNG), Trace (TSV),
Statistics (TSV)

5. Clear Data: Display: Click to discard any traced date
6. Show or Hide the Graph Toolbar

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 164

NXP Semiconductors MCUXpresso IDE User Guide

7. Multiple/Single Graphs: Click to toggle the display between separate graphs for each variable
and all variables plotted on a single graph

8. Click on the graph to see the X, Y coordinates for the selected point
9. Graph Toolbar — explained below

Clicking the button marked as (7) combines individual graphs into a single graph view.

9= Qutline - Global Variables ® &7 Q500 ¢ foff® Y =2 0
Variable Type Value Address |
4)-sin_angle int32_t 74 0x2000011¢

4| t2=angle uint32_t 12 0x20000118

o= Add new expre...

o G X =
lgﬂfg;ﬂ__Tra c'e'_ Statistics ,

waQhFH R 40 Frtal@
430.8

300
200 -

100 -

=100 -
-200 -

=300

-430.8 T T T T T T T T
10 4s 14s 24s 3d4s 44s 54s 1mds 1mids 1m3ds

——sin_angle —angle

Figure 14.39. Multiple global variable graph

Each graph view has an optionally visible Toolbar (6). The annotated image below shows a
magnified version of the Toolbar.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 165

NXP Semiconductors

MCUXpresso IDE User Guide

\Plot , Trace Siatistics

% a s Ok

5.5U.8
30 —_

‘-r IEIIJL_‘ \.I

Q,
1o o
0 | ‘I'
-100 '
-200 \

-300 \—f

-430.8
t0 ds 14s 24s 3ds

W=0

545 Tmds Tmids

Figure 14.40. Global variable graph toolbar

Where:

1. Autoscale the display to show all of the data

2. Zoom In and Out: Select the desired button and then click into the area of the graph where

zoom is required

3. Zoom Horizontally and Vertically: Select the desired button and then select and drag within

the graph to perform the desired zoom

4. Panning and None: Select Panning to click and drag a zoomed display. Select None to prevent

interaction with the graph

5. Undo and Redo: Click these buttons to cycle through previous actions

6. Add a Legend (shown)

7. Add and remove Annotations. Annotations can be named and will snap to a plotted point and

display its value

8. Measure Horizontally or Vertically: Click and drag to snap between plotted points to measure

the value of their separation
9. Save the graph as a PNG file

14.12 Heap and Stack view

Located by default in the MCUXpresso IDE Develop perspective, along with the Memory view

at the bottom right of the perspective.

One of the common issues within embedded system development is allocating the appropriate
memory for heap and stack usage. The Heap and Stack View offers the ability to monitor heap
and stack usage within their allocated regions of memory. The View allows the monitoring of heap
usage in real time (while an application is running). However. since the value of the Stack is held
within a processor register, Stack usage can only be updated when the application is paused.

The Heap and Stack view displays usage with respect to the configured heap and stack sizes as
set within the Projects Properties at: C/C++Build -> Settings -> Manager Linker Script -> Heap

and Stack placement

UG10055 All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

166

NXP Semiconductors MCUXpresso IDE User Guide

] Memory)= Heap & Stack Usage &2 Q Mt S El
Type L_Jsage (%) Used Free Last Used Address Address Range
Heap 31.54% 1.26 KB 2.74 KB 0x2000062¢c 0x20000120 - 0x20001120

stack B 335«8 6648 0x2002f208 0x2002f000 - 0x20030000

Figure 14.41. Heap and Stack view

This view automatically updates when the target is paused. To enable updating of the heap usage
when the debug target is running, click the Run icon at the top of the view to enable or disable
updates to the view. The frequency of the updates can be set between 500 ms and 10 seconds.

Tip

@ Although real-time monitoring of the stack is not possible, a watchpoint could be used
to force a target halt when an access to a particular stack depth is performed. Please
see further details in the section on

The symbols used to generate this view are created by the Managed Linker Script mechanism.
However, other symbols can be substituted if required via the workspace preferences as shown

below:
¥ C/C++ Build
ﬂ“"“’ Variables 2 Build steps Build Artifact o Binary Parsers @ Error Parsers
Environment
:‘:’CQS'"QW v 3 MCU C Compiler Last used address of the heap _end_of_heap
SOtungs (&= Dialect
< = i

?enlwéis g 5 Preprocessor First address of the heap _pvHeapStart

008 Lstathy EOTOY = Includes Maximum extent of heap _pvHeapLimit

»C/C++ General
MCUXpresso Config Too
Project Natures
Project References # Miscellaneous

2 -
Run/Debug Settings (% Architecture
Tas‘k‘@gs ¥ i3 MCU Assembler
» Validation = General
&=
(= Architecture & Headers
¥ 8 MCU Linker
(#General

3 Libraries

(2 Miscellaneous

(% Shared Library Settings

(% Architecture

=

¥ Managed Linker Script

(£ Optimization
(%2 Debugging
& Warnings

¥ i MCU Debugger

Debug

Figure 14.42. Heap and Stack view symbols

Tip

@ As a guide the memory usage % display is colored green when more than half of
the available memory is free, then changing through yellow to red if more memory
is used

14.13 Additional debug features

14.13.1 Local variables

Situated alongside the Quickstart panel, the local variable view displays the local variables in
scope when the target is paused. Typically, local variables are held within processor registers

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 167

NXP Semiconductors MCUXpresso IDE User Guide

and so they cannot be accessed when the processor is running. From this view registers can be
viewed and their values edited if required.

Quickstart Panel ()= Variables &3 Breakpoints =3
=
Name Type Value
» (= fxosHandle fxos_handle_t {.}
» (#sensorData fxos_data_t $ud
» (= config fxos_config_t {.}
9=sensorRange uint8_t 1 001"
(x)-dataScale uint8_t 4 004"
9=xData int16_t -537
(9-yData int16_t -37
=i uint8_t 11001"
(d-array_addr_size uint8_t 4 '\004'
- result status_t 0
Figure 14.43. Local variables view

14.13.2 Disassembly view

The Disassembly view allows the code of an application to be viewed at the assembler level (as
generated by the compiler).

The view can be enabled (if required) via the Instruction Stepping button within a debug
stack view. This button has two functions, in that it both spawns the view and also switches
stepping mode from source level to assembler level. Assembler level stepping is typically used
in conjunction with the Registers view to examine the detailed behavior of short pieces of code.

Stepping mode can be returned to source level by re-clicking this button.

45 Debug 2 = = |
¥ B frdmké4f_bubble LinkServer Debug [C/C++ (NXP Semiconductors) MCU Application]
¥ [frdmk64f_bubble.axf [MKE4FN1MOxxx12 (cortex-mé)]
¥ ® Thread #1 1 (Suspended : Breakpoint)
= main() at bubble.c:364 Oxaae
. arm-none-eabi-gdb (8.2.50.20181213)

Figure 14.44. Disassembly enable

Once enabled, the disassembly view displays the low-level assembler instructions usually from
the current PC.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 168

NXP Semiconductors

MCUXpresso IDE User Guide

B aslE)e ~=0o

[Enter location here

A0e0dala: strh r2, [r3, #0]
359 if (g_yAngle < ANGLE_LOWER_BOUND)
00000a9c: dr r3, [pc, #92] ; (@xafc <main+824>)
a00e0ale: ldrh r3, [r3, #0]
00000aan: sxth r3, r3
00000aaZ: uxth r3, r3
00ebdaad: cmp r3, #4
00000aa6: bhi.n @xaae <main+746>
361 g_yDuty = 8;
00000aad: dr r3, [pc, #88] ; (@xbed4 =main+832>)
0000d0aaa: movs r2, #0 e
pBeedaac: strh r2, [r3, #0]
2364 PRINTF("x= %2d y = %2d\r\n", g_xAngle, g_yAngle);
» 0000Paae: dr r3, [pc, #72] ; (@xaf8 <main+820>)
20000abe: ldrh r3, [r3, #0]
00000ab2: sxth r3, r3
20000abd: mov rl, r3
20000ab6: dr r3, [pc, #68] ; (exafc <main+824>)
00000ab3: ldrh r3, [r3, #0]
Aoeddaba: sxth r3, r3

00000abc: mov re, 3
0BBRdabe: ldr re, [pc, #72]
00000ac: bl 8x3c94 < printf>

i (8xbe8 <main+836>)

Figure 14.45. Disassembly view

The view has a number of features including:

e Setting a new address to view
Refreshing the view contents (this might be useful if the underlying code may have changed)
The linking and unlinking from the current debug session (PC)
* The intermixing of source code lines with their related assembler instructions
« The usefulness of this feature decreases as compiler optimization increases

14.13.3 Memory view
Stacked by default in the MCUXpresso IDE Develop perspective, along with the Heap and Stack
view. The memory view allows debug target memory to be explored in a traditional manner. The
view can be populated with target memory regions via the or by entering
required address values.
0 Memory & mg e [S0 BH SR SR T T
Muanilixs @ % (0x0; 0x0 <Traditional> 53\, <+ New Renderings...
@ 0x0 - | 0x00000000 20030000 0000O1DS 00008251 0BERATTE wes DiauluanAG
& 0x20000000 | exeeeaee1s 00000255 00000257 00000259 00280800 U... W... Yiss .u..
| 0x00000020 00GO0DOD 00OVAGED 00ORBABE DOLBO25E au.. |
|0xﬁeﬂﬂﬂﬁ3ﬂ 00000250 00OODOGE 0ORBB25F GRR0B261 Vi wwwn _ses 8.
® @ Monitor Memory 94395 00004390 000043A5 0BEGA3AD Cos Cau¥Cou C
P43B5 000043BD 000043C5 0BRB43CD uC. . %C.. AC.. Ic
Enter address or expression to monitor: p43D5 0@ee43DD 0PPOA3ES 00ee43ED OC.. YC.. 8C.. iC
F - P43F5 008043FD 00004405 0VBRE44ED GCas ¥Cov oDeu D
”. ﬁ 4415 00004410 00004425 0OEA442D D...D..%D..-D
4435 00004430 00004445 0DEO4L44D 5D..=D.. ED.. MD
4455 00004450 00004465 0BOO446D UD.. ID.. eD.. mD
_ @4475 00004470 00004485 00BE8448D uDes Dus oDus WD
(Cancel _ B4495 00004490 0OARA4A5 002044AD .D...D..¥D..D
B44B5 000@44BD 000044C5 000Q44CD HD. . %D . AD.. fD

Figure 14.46. Memory view

00004400

0e20e6B1

00@R44ES

0D.. YD.. ... 8D..

UG10055

Note: Although it is technically possible to populate this view while the target is running, this
mode of operation is not currently supported. A particular memory of interest can be monitored
live via Global variable expressions if required.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 169

NXP Semiconductors MCUXpresso IDE User Guide

15. Configuring a project

15.1

When a project is imported or generated using a wizard, there are many configuration options
available at creation time. However, once a project has been created or if a project is shared by
other means, then there still may be a requirement to make changes.

The range of possible project changes is almost infinite but below we discuss several common
changes that may be required and the potential ramifications that may be encountered. Note that
many of these changes can be started from the of a project.

Note: This section only discusses a few of the common changes that may be made. Please
also see the sections on , ,

, and the additional Config Tool documentation for a more comprehensive
description of the options available.

Changes available via Quickstart Quick Settings

MCUXpresso IDE provides quick access to a range of project settings via the Quickstart Panel
as shown below:

Figure 15.1. Quick Settings

~ Miscellaneous

@) Edit project settings

. MCUXpresso Config Tools>>
3 Quick Sett

1 % Defined symbols [frdmk64f_bubble Debug]
Export pra

2 B3 Undefined symbols [frdmk6&4f_bubble Debug]
3 4 Include paths [frdmk64f_bubble Debug]

4 & Library search paths [frdmk6&4f_bubble Debug]
5 & Libraries [frdmk64f_bubble Debug]

6 (& SDK Debug Console
7
8

R

=R =

Export pra
¢ Build all pt

A

0

>
(% Set Floating Point type >
(# Set library/header type >

UG10055

Note: These settings apply to the active build configuration of the selected project only and
simplify access to commonly used settings normally accessed from Properties -> C/C++ Build -
> Settings Also note Quick Settings changes may be made to multiple projects if more than one
project is selected (where their settings are compatible).

Tip
@ The current setting for Debug Console, Floating Point, and Library type is shown

. Defined symbols — select to edit the (-D) symbols

. Undefined symbols — select to edit the (-U) symbols

. Include paths — select to edit the (-I) the include paths

. Library search paths — select to edit the (-L) the library

. Libraries — select to edit the () the linker libraries search

. SDK Debug Console — select the SDK Debug Console’s PRINTF output to be via UART or
to redirect via the C libraries printf function
» Selecting printf increases the size of the project binary compared to the UART output
¢ For semihosted printf output to be generated, the project must be linked against a suitable

library

OOk, WDNPRE

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 170

NXP Semiconductors

MCUXpresso IDE User Guide

* For more information see the section on

7. Set Floating Point type — select to switch between the available Floating Point options

* For more information see the section on

8. Set Library/Header type — select to switch the current C/C++ Library

* For more information see the section on

15.2 Project settings

Many features of a Project can be viewed (and edited) via Virtual Nodes. Project Virtual Nodes
are contained within a Project structure and provide virtual folders to display and allow the easy

editing of project settings.

v =5 frdmk64f_led_blinky

| N @ Project Settings |

¥ =\ Associated SDK

o chip = 'MKB64FN1MOxxx12'
o package = 'MK64FN1MOVLL12
© processor = '‘corf
¥ ifs Memory
o Flash name='PROGRAM_FLASH' typgs=
o RAM name="SRAM_UPPER'
o RAM2 name='SRANM_J
o RAM3 names
v [T Options
o Defined symbols (-D) (C) = [
» 3 Binaries
» i}l Includes
> (5 CMSIS
» (2 board
» (2 drivers

REDLIB

» (8 source

> (5 startup

» (2 utilities

» (= Debug

» (= doc
.frd mk64f_led_blinky LinkServer Debug.launch
.frdmkﬁdi_led_biinky LinkServer Release.launch

Figure 15.2. Project settings

{5 Project Explorer 82 7, Peripherals+ i Registers .| Symbol Viewer

o name = 'SDK_2.x_FRDM-K64F"

o version = '2.4.0' ;
v =i Libraries (and semihosting)

(] LibraW
v @& MCU [

sh' address="0x0" size='0x100000"' FTFE_4K.cfx
AM' address="0x20000000" size='0x30000"

R' type='RAM' address="0x1fff0000" size="0x10000"

RAM' type="RAM' address="'0x14000000" size="0x1000"

, CPU_MKB4FN1MOVLL12_cmd, CPU_MKB84FNTMOVLL12,

=i, Edit Libraries >

¢ Edit MCU

ste Edit memory

M Edit options

These are automatically generated for any project and provide a quick way to view many key
project settings. In addition, a right-click on these nodes provides direct options to edit the
associated settings that otherwise require many more mouse clicks to reach.

15.3

Changing the MCU (and associated SDK)

All projects are associated with a particular MCU at creation time. The target MCU determines
the project memory layout, startup code, LinkServer flash driver, libraries, supporting sources,
launch configuration options, and so on, so changing the associated MCU of a project should
not be undertaken unless you have a total grasp of the consequence of this change.

Therefore rather than changing the associated MCU of a project, it is strongly
recommended that instead a new project is generated for the desired MCU and this new

project is edited as required.

UG10055

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

171

NXP Semiconductors MCUXpresso IDE User Guide

However, on occasion, it may be expedient to reset the MCU (and associated SDK) of a project
and this can be achieved as follows. From the project virtual nodes, select Edit MCU.

~ @ Project Settings
~ B\ Associated SDK
0 name = SDK_2.x_|LPC55526'
© version = '2.12.0'
B Libraries (and semihosting)

v & MC!
¢ Edit MCU

€ Change Package >

package = 'LPC55528)BD100"

8
o
o
O processor = ‘cm33”

Figure 15.3. Edit MCU

You are then presented with the MCU Setting dialog (as below)

~ SDK MCUs @ - Preinstalled MCUs
MCUs from installed SDKs. Please click above MCUs from preinstalled LPC and generic
or visit mcuxpresso.nxp.com to obtain Cortex-M part support
additional SDKs. Target S
MNXP LPC55528 CTMNsoo
v LPC552x%_S2x LPC1102
LPC55526 LPC112x
LPC55528 LPC11Axx
MIMXRT1050 LPC11E6xX
LPC11Exx
1DC11URy v
Target architecture: cortex-m33

Preserve memory configuration
Preserve project configuration

Figure 15.4. Select MCU

From here, an alternative MCU can be selected but note that two checkboxes must be set as
required before this is done:

« Preserve Memory Configuration — if set (the default), the original project memory settings is
preserved, otherwisem, the MCU setting for the chosen MCU replaces the original settings

* Preserve Project Configuration — if not set (the default), the new MCUs configurations (such
as Cortex Architecture) replaces the original settings

When the new MCU is selected, a warning dialog as below is generated:

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 172

NXP Semiconductors MCUXpresso IDE User Guide

38 Mcuxpresso IDE X

Changing selected MCU to a different one will modify project settings and may prevent
successful project building and debugging. Components linked to current project,
preprocessor defines, include files and paths, and other build settings will be affected.

Are you sure?

Figure 15.5. Select MCU warning

Project changes are only made if Yes is selected and Apply and/or Apply and Close are then
further clicked to close the Properties dialog.

The actual changes that are made inside the project depend on a few more user inputs asked
before completing the entire process:

1. Confirm selection of the new board, new device package, and new core associated with the
project.

2. Allow removal of the SDK components associated with the old MCU. Only SDK components
that have an associated component to the new MCU are actually removed at this step.

3. Allow addition of SDK components associated with the new MCU. Only SDK components that
had an associated component to the old MCU are actually added at this step.

Note: Back up the original project before initiating the change of device process.

15.3.1 Confirm device information

This step allows the selection of the new board, new device package, and new core. These
selections depend on the SDK (or no SDK if dealing with pre-installed part support) that is
associated with the new MCU. An MCU can be fitted on multiple boards, comes in different
packages and might be a multi-core device.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 173

NXP Semiconductors MCUXpresso IDE User Guide

. Change device attributes for project m] X

@ The available boards, packages and cores are shown below, Please make the appropriate selections,

Also, the list of compaonents (if any) ir availability for the new device can be the tabl
rBoanis Device packages
(@) Ipcxpresso55s28 (@) LPC55526)BD100 (@) cm33_core0_LPC55526
(O Ipcxpresso55528_om13790host (O LPC55526JEVS8
_ (O LPC55526)BD64
Components m
e Version Description ‘X
Ig- debug_console_lite 1.00 Utility debug_consale_lite
& misc_utilities 1.1.0 Utilities miscellaneous
g flexcomm 202 FLEXCOMM Driver
I lists 1.00 Component lists
(- LPC55528 startup 1.1.0 Device LPC55528 startup
i gpio 217 GPIO Driver
(- assert_lite 100 Utility assert_lite
- power 2.30 Driver power
- LPC55528_CMSIS 1.00 Device LPC55528_cmsis
s usart 270 FLEXCOMM USART Driver
- LPC55528,_system 100 Device LPC55528_system
(3 reset 21.2 Reset Driver
(- CMSIS_Include_CM 550 CMSIS Include For Cortex-M, ARMvE-M, ARMvE.1-M
- clock 233 Clock Driver
§- iocon 220 IOCON Driver

- common 232 COMMON Driver
usart_adapter 1.0.0 usart_adapter

(
L

Figure 15.6. Change device attributes (same SDK)

In the above screenshot, the following sections can be highlighted:

1. Available boards

A W N

UG10055

. Available device packages
. Available cores
. The list of SDK components found inside the project. The table contains a read-only list of

checkbox items. If an entry is ticked, it means that the SDK component associated with the
old MCU has an associated SDK component for the new MCU. Tooltips offer more details
about the old-to-new mapping. All SDK components that are selected inside the table are
“migrated” (that is, old components removed, new components added) during the process of
changing the device.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 174

NXP Semiconductors

MCUXpresso IDE User Guide

. Change device attributes for project

@ The available boards, packages and cores are shown below, Please make the appropriate selections.
Also, the list of components (if any) and their availability for the new device can be seen in the table below.

Boards

(@ evkbimxrt1050
() evibimxrt1050_om13790host

Device packages

@ MIMXET1052DVLES
() MIMXRT1052CVL58

Cores

(@ cored_MIMXRT 10520008

) MIMXRT 105200158
) MIMXET10520V)68
Components
MName Version Description
4 LPC55526_startup 110 Device LPC55526_startup
] 4§ assert_lite 1.00 Utility assert_lite
4 debug_console_lite 1.00 Lhility debug_console_lite
] % LPC55526 system 1.000 Device LPC35526_system
P CMSIS_Include_CM 5.5.0 CMSIS Include For
[@ clock 233 Clock Driver
¥ gpio 217 GPIO Driver
[1% iocon 220 IOCON Driver
[w] & LPC55526_CMSIS 1.000 Device LPC55526_cmisis
[% usart_adapter 1.00 usart_adapter
% power 230 Driver power

[% flexcomm
EA 4 common
G lists

FLEXCOMM Driver
COMMON Driver
Component lists

M, ARMvB-M, ARMvE.1-M

[% reset|Name:) 212 Reset Driver
@ misc| :‘“'re':'l!:;:.“‘r’ 1.1.0 Utilities miscellaneous
1% usart| ~ oS 270 FLEXCOMM USART Driver
Internal ID:
> Current ‘component.lists.LPC55526°
> New: ‘component.lists. MIMXRT1052'
@

Figure 15.7. Change device attributes (different SDK)

UG10055

We can see in the above screenshot some components that are not going to be migrated (1). This
is because the IDE was unable to match the old internal SDK component ID to an ID associated
with a new SDK component for the new MCU. The tooltips (2) offer some insights about the

actual migration.

When switching from an SDK-supported part to a pre-installed part, all SDK components
information is lost from the project description. However, no source files are removed/changed/

added along the process.

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

175

NXP Semiconductors

MCUXpresso IDE User Guide

. Change device attributes for project

(@ The available boards, packages and cores are shown below. Please make the appropriate selections.
Also, the list of components (if any) and their availability for the new device can be seen in the table below.

Boards Device packages Cores
No boards available @ LPC4367-MO @ Cortex-M0
Components

Version Description

m
| [[] Components information is lost when switching to a pre-installed part]

Figure 15.8. Change device attributes (pre-installed part)

UG10055

15.3.2 Removal of SDK components associated with the old MCU

The following step requires confirmation on the removal of outdated SDK components (that is,
associated with the old MCU). Files listed in the dialog are removed from the project and also
replaced by their counterpart associated with the new device. These are SDK-specific source
files and no user changes are expected to be found inside. In this context, any change is lost

once the removal of components is confirmed.

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

176

NXP Sem

iconductors

MCUXpresso IDE User Guide

. SDK Component Management

The following files will be removed:]

Component source

hd '@‘ reset
w

I:EI
w

El

v i LPC55528 startup
~ = devices/LPC55528/mcuxpresso
=] startup_lpc55528.c
~ = devices/LPC55528/mcuxpresso
|=| startup_lpc55s28.cpp
v & lists
~ = components/lists
=l fsl_component_generic_listh
~ = components/lists
|5 fsl_component_generic_list.c

v g

[] Skip add/remove compaonents confirmation in future

O X
Project Path(s) Infao &
startup 1.1.0
startup SRC_C
startup SRC CPP
lists 1.00
component/lists C_INCLUDE
component/lists SRC
L
Yes Mo

Figure 15.9. Confirm removal of outdated SDK components

15.3.3 Addition of SDK components associated with the new MCU

UG10055

This is the last step of the process. At this point, components associated with the new MCU/SDK
are added to the project. Depending on the imported SDK type (zipped or unzipped), files can
be copied inside the project or linked. Only unzipped SDKs allow the linking of source files.

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

177

NXP Semiconductors MCUXpresso IDE User Guide

. SDK Component Management O it

The following files will be added or updated if required:

Component source Project Path(s) Info &
~ 4% usart

I

~ 4 lists lists 1.0.0
~ = components/lists component/lists C_INCLUDE
=l fsl_component_generic_listh
~ = components/lists component/lists SRC
fsl_component_generic_list.c

I

- B

[[

I

v i v

Copy files (link files when unchecked)]
[] Skip add/remove components confirmation in future

Yes MNo

Figure 15.10. Confirm addition of new SDK components

15.4 Changing the MCU (SDK) package type

MCUs are commonly available in a range of package types. Different packages may impact the
options available on the MCU external pins, for example, the number of GPIO lines. MCUXpresso
IDE makes no use of this package type however it is significant to the included

As shown in the previous section, from the project virtual nodes, select Edit MCU.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 178

NXP Semiconductors

MCUXpresso IDE User Guide

~ @ Project Settings
» B4 Associated SDK
» B4 Libraries (and semihosting)

(YNl

€ Edit MCU |
© ChangePackage » v LPC55526/BD100
© package = 'LPC55526JBI LPC55526JEV98

LPC55526)BD64

© processor = ‘cm33’

> Wi Memaory
» [@ Options

Figure 15.11. Edit package

then select Change Package and choose the package required.

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

179

UG10055

User Guide Rev. 11.9.0 — 5 January, 2024

NXP Semiconductors

MCUXpresso IDE User Guide

16. MCUXpresso Config Tools

This chapter provides an introduction to the features of the MCUXpresso Config Tools installed
by default with MCUXpresso IDE. The Config Tools present new perspectives in addition to the

Develop and Debug perspectives of the IDE.

8 workspace - Welcome page - MCUXpresso IDE
Ele Edit Navigate Search Project ConfigTools Pins Run Window Help

- | G | tramkB2f_cmsis_i2c_edma_b2b_tri v | # | A B Update Code ~ ‘Functional Group | BOARD.InitPins

»e ®~-Q Q- = v
£ Pins 22 & Peripheral Signals = 5 B Package QeQao
SIB8I0 wiw| elele| ¥ o |ype fiter text
Pin Pinname Label Identifier GPIO FTM Pl LPUART 4
1 PTEO SPIPCST LPUARTITX
2 PTET SPISCKL.] LPUARTIRX
3 PTE2 SPI1_SOUTL.] LPUART1 CT.
4 T PTES SPI1_PCS2(.] LPUARTI RT. o
s Vsss L = s cun o
6 |VDDIOES U fieo o rur
7] PTE4 SPI1_SIN LPUART3_TX V0S| fs e s
8 PTES/SPI PTES FIM3.CHO SPIIPCSO LPUART3RX s oo o =
9 PTES FTM3.CH1 SPIPCS3 LPUART3.CT. e s o sy
10 PTE7 FIM3.CH2 SPR.SCK LPUART3RT. . o s s
n R PTES FIM3CH3 SPI2.SOUT — — — —
12 PTE) FTM3.CH4 SPI2PCST - o - -
13 10/ PTE10 FTM3_CHS SPI2_SIN — — — —
14 PTEN PTETT FTM3.CH6 SPI2.PCSO
15 |VDDIO €17
V16 vss23
17 |USBODP. MKB2FN256VLL15 - LQFP 100 package
18 |USBO.OM
/19 \vourss
20 |VREGIN i
< >
£ Routed Pins
type filter text
Routed Pins for BOARDInitP... | 2 |© @ = v
Peripheral Signal Routeto label Identfier Direction GPIOinitialstate GPIOinterrupt Slewrate Open drain Drive strength Pull select Pull enable Passive filter
Bl pusrs Rx LPUART4_RX na Input n/a na Fast Disabled Low Pulldown Disabled Disabled
87 LPUARTA TX LPUART4 TX na Not Specified n/a na Fast Disabled Low Pulldown Disabled Disabled

<

frdmk82f_cmsis_i2c_edma_b2b_transfer_master

- o X

Quick Access| | &8 | % @l ¢ OB
=5
v Configuration - General Info
~ Configuration - HW Info
Processor: MKB2FN25610015
Part number: MK82FN256VLL15
Core: Cortex-M4F
SDK Version: ksdk2_0
v Project

~ Pins
ool for pin routing configuration, including pin
inctional roperties, power rails, and

fumctional/electial prope:

run-time configurations.
@ a

“ Generated code
[Update code enabled

~ Functional groups
® BO/ ns &

=5~ Othertools

(an\ (D) .

 Problems i BlY =0
Digital filt

na
nfa

ype filter text
Level Issue

+ Warning Peripheral LPUART4 is not i

Warning Peripheral 120 is not iniial.

+ Warning Peripheral ADCO is not iiti

Origin
Pins:BOARD_InitPin
Pins12C0_InitPins

Pins12C0_DeinitPins

Y _workspace

Figure 16.1. Config Tools showing Pins perspective

Please refer to the MCUXpresso IDE Config Tools User Manual for detailed information.

16.1 Using the Config Tools

MCUXpresso IDE includes the following Config Tools:

¢ Pins Tool

« allows you to configure pin routing and generates ‘pin_mux.c & .h’ source files

Clocks Tool

« allows you to configure system clocks and generates ‘clock_config.c & .h’ source files
Peripherals Tool

« allows you to configure other peripherals and generates ‘peripherals.c & .h’ source files
Device Configuration Tool

« allows you to configure the initialization of memory interfaces of your device and generate
dcd.d and dcd.h source files in C array or binary format

TEE Tool

« allows you to configure security policies of memory areas, bus masters, and peripherals, in
order to isolate and safeguard sensitive areas of your application and generate tzm_config.c
& .h source files.

MCUXpresso Config Tools can be used to review or modify the configuration of SDK example
projects or new projects based on SDK 2.x. To open the tool, simply right-click on the project in
Project Explorer and select the appropriate Open command:

UG10055

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 180

NXP Semiconductors MCUXpresso IDE User Guide

Figure 16.2. Config Tools launch

v Validate
MCUXpresso Config Tools i Open Pins

' %" Run C/C++ Code Analysis 11 Open Clocks

{ Team ¥ Open Peripherals

| Compare With [Open Device Configuration
Configure
Source

Y I IYYX

Open Tools Overview

16.1.1

16.1.2

16.1.3

16.1.4

16.1.5

UG10055

If the project does not contain any configuration file (.mex) yet, it is automatically created by
importing the existing source files (from YAML comments from pin_mux.c, clock_config.c, and/
or peripherals.c). If there are no source files in the project, a default configuration is created. The
configuration is stored in the root of the project folder with the “.mex” file extension.

Tool perspectives

Each tool is displayed in a separate perspective. Once the configuration is opened, you can
switch between perspectives to review/modify the configuration of each tool — using the toolbar
on the upper right part of the IDE window:

Quick Access|:| B | X %= @& 10| ¢ O B

If your workspace contains multiple projects, please be aware that the MCUXpresso Config Tools
only support one configuration to be opened at a time and that configuration must be opened
explicitly for each project using the Open command from the popup menu. Switching perspectives
does not switch the selected configuration.

Pins tool

The Pins Tool allows you to display and configure the pins of the MCU. Basic configuration can
be done in either of these views Pins, Peripheral Signals, or Package. More advanced settings
(pin electrical features) can be adjusted in the Routed Pins view.

Clocks tool @

The Clocks Tool allows you to display and modify clock sources and output settings in the Table
view. More advanced settings can be adjusted via the Diagram view and Details view. Global
settings of the clocking environment such as run modes, MCG modes, and SCG modes can be
modified via the main application toolbar.

Peripherals tool ®

You can use the Peripherals tool to configure the initialization of selected peripherals and
generate code for them. In the Peripherals view, select the peripheral to configure and confirm
the addition of the configuration component. Then you can select the mode of the peripheral and
configure the settings within the settings editor.

Device Configuration tool
The Device Configuration tool allows you to configure the initialization of memory interfaces

of your device. Use the Device Configuration Data (DCD) view to create different types of
commands and specify their sequence, define their address, values, sizes, and polls.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 181

NXP Semiconductors MCUXpresso IDE User Guide

16.1.6

16.1.7

16.1.8

UG10055

TEE tool ©

In the Trusted Execution Environment, or TEE tool, you can configure security policies of memory
areas, bus masters, and peripherals, in order to isolate and safeguard sensitive areas of your
application. You can set security policies of different parts of your application in the Security
access configuration and its sub-views, and review these policies in the Memory map and Access
overview views. Use the User Memory Regions view to create a convenient overview of memory
regions and their security levels.

Generate code

To update sources in the project, simply hit the “Update Code” button on the toolbar. The
command opens a dialog with a list of files that will be re-generated and allows one to select
which tools generate the code.

Alternatively, it is also possible to export a selected source file by hitting the export button in the
Sources view.

SDK components
Generated code uses the API of the SDK components to configure peripherals. SDK components

missing in the IDE project are reported in the problems view. It is possible to add components to
an IDE project by right-clicking on the reported problem and selecting the proposed quick fix.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 182

NXP Semiconductors MCUXpresso IDE User Guide

17. The GUI Flash tool

The GUI Flash tool provides flash programming capabilities for all supported debug solutions.

As well as implementing seamless programming of Flash when starting a debug session,
MCUXpresso IDE enables the Flash programming capabilities of the supported debug solutions
to be accessed directly, both via the GUI and from the command line (which might be useful for
performing small production runs).

These flash programming capabilities can be accessed from three distinct places with the IDE.

Firstly, the most feature-capable (advanced) variant is launched via the IDE button (and is
described in this section):

el L% A

GUI Flash Tool

Clicking this launches a dialog similar to:

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 183

NXP Semiconductors MCUXpresso IDE User Guide

e @ GUI Flash Tool

GUI Flash Tool for:
MCUXpresso IDE LinkServer (inc. CMSIS-DAP) probes
»;mlmf Program file into flash: MK64F12_Project.axf
Target: MKBAFN1MOxxx12

Probe Options
Probe specific options

Reset script

[-] Warkspace.. File System..
Connect script _kinetisconnect.scp g Workspace. File System.
Default Flash Driver 8
Reset Handling Default (2]
Flash Reset Handling Default (2]
Boot ROM Stall
Wire Speed

Reset the target on connection Disable use of preconnect seript

Target Operations
Select the target flash operation to perform

lbmgram . Erase Resurrect locked Kinetis device J

Actions

Select the action to perform

© Program Program (mass erase first)

Verify only Check file areas blank

Options
Select the options to apply

File to program [${workspace_loc}/MKB4F12_Project/Debug/MKB84F12_Project.axf @] Waorkspace.. File System..

Format to use for programming € axf bin
Base address

Reset target on completion

General Options

Flash programming tosl options
Additional options

Repeat on completion B3 Enable flash hashing Preview command
Clear console

cancel | (CT

Figure 17.1. GUI Flash Tool

Note: This dialog varies subtly for each debug solution.

Secondly, project launch configurations now contain a GUI Flash Tool Tab providing project-
specific flash operations. Please see for more information.

Finally, the Quickstart panel Debug Shortcuts provide easy access for simple project flash
programming. Please see for more information.

Tip
For Multicore MCUs, the core selection is usually made automatically, but for GUI

flash operations, it may be necessary to take direct control of core selection, so this
option is made available to the user.

17.1 The advanced GUI Flash Tool

The operations below are supported for each debug solution.

1. Programming a .axf or .bin file into flash
2. Flash Mass Erase

3. Various debug solution-specific features

UG10055

User Guide

All information provided in this document is subject to legal disclaimers

Rev. 11.9.0 — 5 January, 2024

© 2024 NXP Semiconductors. All rights reserved.

184

NXP Semiconductors MCUXpresso IDE User Guide

When launched, each debug solution presents a dialog similar to the LinkServer variant —
described below:

@] GUI Flash Tool

GUI Flash Tool for:
Y MCUXpresso IDE LinkServer (inc. CMSIS-DAP) probes
“U;Wf Program file into flash: MK64F12_Project.axf
Target: MK6AFNTMOxxx12

Probe specific options
Reset script O B Workspace... File System...
Connect script L kinellsmnnect.scd' B Workspace... File System...

Default Flash Driver 8 O
Reset Handling Default O (2]

Flash Reset Handling Default
Boot ROM Stall
Wire Speed

Reset the target on connection Disable use of preconnect script

Target Operations

Select the target flash operation to perform

li’mgram Erase | Resurrect locked Kinetis dev'\ce]

Actions
Select the action to perform
© Program Program (mass erase first)
Verify only Check file areas blank
Options
Select the options to apply
File to program [${workspace_loc}/MK64F12_Project/Debug/MKB4F12_Project.axf] Workspace... File System...

Format to use for programming O

Base address

Reset target on completion

General Options
ash programming tool options

Additional options

Repeat on completion Enable flash hashing Preview command

Clear console

Cancel [Run]

Figure 17.2. GUI Flash Tool major features

Note: Probe options (highlighted above) are different for each debug solution, whereas Target
and General Options (also highlighted) are broadly similar.

Tip

@ A project must first be selected before the Advanced GUI Flash Tool can be
launched. The device and other project configurations (such as flash drivers) are
inherited from this selected project. The advanced GUI Flash tool does not create
or use the information within project-associated launch configurations.

1. Reset and Connect scripts: Any SDK-specified Reset or Connect scripts are automatically
selected. A different script can be selected if required using the Workspace or File System
shortcut buttons. If specified, a Reset script overrides the Reset Handling.

2. Reset Handling: The device default reset handling can be overridden from the selection:
Default, SYSRESETREQ, VECTRESET, SOFT

3. Flash Reset Handling: The flash drivers default reset handling can be overridden from the
selection: Default, SYSRESETREQ, VECTRESET, SOFT

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 185

NXP Semiconductors MCUXpresso IDE User Guide

4. Program/Erase/Resurrect locked Kinetis Device

¢ Program view (displayed) should be selected to program an application of binary into flash.
Only the Program options will be described below.

¢ Erase view should be selected for options to erase a flash device to its blank state
» Offers options to Mass erase, Erase by sector, and Check blank (to verify a blank flash).

« Fenerally flashes do not need to be erased, since program operations automatically erase
sections of the flash as required. However, on occasion, it can be useful to erase a flash
most often because the image in the flash is causing problems.

« Erase by sector is not recommended for Kinetis parts since this leaves the device fully
erased and therefore in a locked state — should this occur, use the option below ...

¢ Resurrect locked Kinetis device view should be selected to recover a locked device.
5. Programming actions:

¢ Program: the default action programs the selected application or binary erasing only the
required sections of the flash device.

¢ Program (mass erase first): erases the whole device before programming the selected
application or binary. This ensures that any previous flash contents are erased.

e Verify only: this option compares the contents of flash with the selected application or
binary. Note: most flash programming operations are verified at the programming stage.
Flash contents are not changed.

¢ Check file areablank: this can be used to verify that a program operation does not overwrite
any data already programmed into flash. Flash contents are not changed.

6. File selection: if the selected project contains a built .axf file, then this is automatically selected.
Alternatively, a different file can be selected using the Workspace and File System shortcut
buttons.

7. Format: these radio buttons are preset by the File to Program type. However, if a .axf file is
selected, clicking bin automatically generates a .bin from the selected .axf.

« for file types containing no base address information, such as .bin, a base address must
be specified.

8. Preview command: select this option to be presented with a preview programming command
to be issued and a script that can perform this action independently of the IDE (see below)

e The previewed command can be edited if required, and changes are reflected within the
script. Various shell script flavors can be selected, and finally, the script can be copied to
the clipboard with a single click

Finally, click Run to execute the flash programming operation, a dialog displaying the success
of the operation is displayed once the program operation has completed.

17.1.1 Advanced GUI Flash Tool command preview

As discussed in point 8 above, the GUI Flash Tool can optionally display the command to be
issued — allowing the opportunity to edit the command before execution.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 186

NXP Semiconductors MCUXpresso IDE User Guide

B8 rrogram file into flash: MK64F12_Project.axf [m

Command to be executed...

crt_emu_cm_redlink --flash-load-exec "CANXP\workspace\MKB4F12_Project\Debug\MK64F 12_Projectaxf” -g --debug 2 --vendor NXP -p MK64FNTMOmxx12 --
‘ConnectScript kinetisconnectscp -ProbeHandle=1 -Corelndex=0 --flash-driver= -x C/NXP/workspace/MK64F12_Project/Debug --flash-dir
C:/NXP/MCUXpresso/LinkServer_1.4.48/binaries/Flash --flash-dir C:/NXP/workspace/ mcuxpressoide_packages_support/MKE4FN1MMoc12_support/Flash -
flash-hashing

Command to use in a script

set MCUX_WORKSPACE_LOC=Cy/NXP/workspace

set MCUX_FLASH_DIRO=C./NXP/MCUXpresso/LinkServer_1.4.48/binaries/Flash

set MCUX_FLASH_DIR 1=C;/NXPAworkspace/ mcuxpressoide_packages_support/MKE4FN 1Mook 12_support/Flash

set LINKSERVER_BIN=C./NXP/MCUXpresso/LinkServer_1.4.48/binaries

set MCUX_IDE_BIN=C/NXP/MCUXpresso/MCUXpressolDE_11.9.0_2089_prc 1/ide/plugins/com.nxp.mcuxpresso.tools.binwin32_11.9.0.202310251229/binaries/

SLINKSERVER_BIN%/crt_emu_cm_redlink --flash-load-exec “%MCUX_WORKSPACE_LOC%/MK64F12_Project/Debug/MK64F12_Project.axf” -p C Shell !

MKG64FN1M0x0:12 --ConnectScript kinetisconnect.scp -ProbeHandle=1 -Corelndex=0 --flash-driver= -x %MCUX_WORKSPACE_LOC

9%/MK64F12_Project/Debug --flash-dir %MCUX_FLASH_DIR0% --flash-dir %MCUX_FLASH_DIR1% --flash-hashing Bourne Shell
Powershell

& command Shell

Figure 17.3. GUI Flash Tool command preview

In addition to displaying the command to be issued, the dialog also contains a script that can
be issued independently of the IDE to perform the flash programming operation. Changes to the

command to be executed are also reflected within the script.

Notes

« The script setups the local environment to be independent of your local shells configuration.

However, components of MCUXpresso IDE are of course referenced so the script can only be
used if MCUXpresso IDE is installed and any referenced workspace files are present.

Debug probes may install drivers when first seen by a host, this driver installation may take
some time to complete.

MCUXpresso IDE is able to maintain connection to multiple debug probes, while the IDE can
dynamically maintain knowledge of connected probes, any generated command line will be
a snhapshot of a given instance. Therefore it is essential that only a single debug probe is
connected if the command script is to be captured for re-use.

Typically, LPC-Link2 or LPCXpresso V2 and V3 boards have debug probe firmware soft loaded
automatically by the IDE when a debug operation is first performed. Therefore to use these
debug probes from the command line they must either have their firmware softloaded or
have probe firmware programmed into the Flash. Probe firmware can be soft-loaded from the
command line by use of scripts boot_link1 for LPC-Link and boot_link2 for LPC-Link2, these
are located at mcuxpresso_install_dir/ide/binaries. To program debug probe firmware into the
Flash memory of an LPC-Link2 debug probe, please see: https://www.nxp.com/LPCSCRYPT

17.1.2 Advanced GUI Flash Tool logged output

When a GUI Flash Tool operation is performed, the low-level output is logged into the debug log.

A snippet of a LinkServer successful program operation is shown below:

Loadi ng ' MK64FN1MDxxx12_Proj ect . axf' ELF 0x00000000 | en Ox3CF8
Opening flash driver FTFE_4K. cfx (al ready resident)
Sendi ng VECTRESET to run flash driver

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

187

https://www.nxp.com/LPCSCRYPT

NXP Semiconductors MCUXpresso IDE User Guide

Witing 15608 bytes to address 0x00000000 in Fl ash
1of 1 (0) Witing pages 0-3 at 0x00000000 with 15608 bytes
(0) at 00000000: O bytes - 0/15608

(26) at 00000000: 4096 bytes - 4096/ 15608

(52) at 00001000: 4096 bytes - 8192/ 15608

(78) at 00002000: 4096 bytes - 12288/ 15608

(100) at 00003000: 4096 bytes - 16384/ 15608
Erased/ Wote page 0-3 with 15608 bytes in 693nsec
Cl osing flash driver FTFE 4K cfx

(100) Finished witing Flash successfully.

Fl ash Wite Done

Loaded O0x3CF8 bytes in 1081ns (about 14kB/s)

Reset target (system

Starting execution using systemreset

17.1.3 Advanced GUI Flash Tool programming an arbitrary binary

UG10055

The GUI Flash tool is usually used to program a binary generated from the .axf file of a Project.
However, on occasion, it might be required to program a binary (or .axf) file generated elsewhere.
This can be achieved by generating a project with the required memory/chip combination and
simply dropping the .bin file into this project. When the GUI Flash tool is invoked, the user can
browse for the required binary file and program this in the usual way.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 188

NXP Semiconductors MCUXpresso IDE User Guide

18. LinkServer Flash support

18.1

UG10055

LinkServer (CMSIS-DAP) Flash drivers are used by LinkServer debug connections only. Please
refer to the section on for details of the LinkServer debug solution.

The LinkServer-based debug connections of MCUXpresso IDE make use of a RAM-loadable
Flash driver mechanism. Such a Flash driver contains the knowledge required to program the
internal Flash on a particular MCU (or potentially, family of MCUs). This knowledge may be
either hardwired into the driver, or some of it may be determined by the driver as it starts up
(typically known as a ‘generic’ Flash driver).

At the time a debug connection is started by MCUXpresso IDE, a LinkServer debug session
running on the host typically downloads a Flash driver into RAM on the target MCU. It then
communicates with the downloaded Flash driver via the debug probe in order to program the
required code and data into the Flash memory.

In addition, the loadable Flash driver mechanism also provides the ability to support Flash
drivers which can be used to program external Flash memory (for instance via the SPIFI Flash
memory interface on LPC18x, LPC40xx, LPC43xx, LPC5460x, and iMXRT families). The sources
for some of these drivers are provided in the /LinkServer/Examples/Flashdrivers subdirectory
accessible within the MCUXpresso IDE installation directory. Note that these are part of the actual
LinkServer package that is installed in a separate folder from the IDE.

Note: Quad SPI (QSPI) and SPIFI are used interchangeably within this section. The term SPIFI
(SPI Flash Interface) is commonly used to reference LPC use of QSPI.

LinkServer Flash drivers have a .cfx file extension. For Preinstalled MCUs, the Flash driver used
for each part/family is located in the LinkServer/binaries/Flash subdirectory of the MCUXpresso
IDE installation — note that these are part of the LinkServer package that is installed in a separate
folder than the IDE. For SDK-installed MCUs, the Flash driver is generally supplied within the
SDK, although copies may also be provided in the /LinkServer/binaries/Flash subdirectory.

Important Note: LinkServer flash drivers are fully integrated into the MCUXpresso IDE Managed
Linkerscript build mechanism and specified within SDK metadata. Other debug solutions invoke
MCU-specific flash programming strategies based on their debug implementation’s knowledge
of the MCU being debugged.

Default vs per-region Flash drivers

By default, for legacy reasons, Preinstalled MCUs are configured to use what is called a ‘Default’
Flash driver. This means that this Flash driver is used for all Flash memory blocks that are defined
for that MCU (that is, as displayed in the Memory Configuration Editor).

For most users, there is never any need to change the automatically selected Flash driver for
the MCU being programmed.

However, MCUXpresso IDE also supports the creation and programming of projects that span
multiple Flash devices. In order to allow this to work, Flash drivers can also be specified per
memory region.

For example, this allows a project based on an LPC43xx device with internal Flash to also make
use of an external SPIFI Flash device. This is achieved by removing the default Flash driver from
the memory configuration and instead explicitly specifying the Flash driver to use for each Flash
memory block (per-region Flash drivers). A typical use case could be to create an application to
run from the internal Flash of the MCU that makes use of static constant data (for example, for
graphics) stored in an external SPIFI device. An example memory configuration is shown below:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 189

NXP Semiconductors MCUXpresso IDE User Guide

Figure 18.1. Per region drivers

‘@ MCUXpresso IDE

Memory configuration editor
Edit configuration for LPC4337 m

Memory configuration

Default flash driver Browse...

Type Name Alias Location Size Driver -
Flash MFlashA512 Flash O0x1a000000 Ox80000] LPC18x7_43x7_2x512_BootA.c v
Flash MFlashB512 Flash2 Ox1b000000 O0x80000] LPC18x7_43x7_2x512_BootA.c
Flash Flash_SPIFI Flash3 Ox14000000 O0x10000@ LPC18_43_SPIFI_GENERIC.cfx
RAM RamLoc3Z RAM Ox10000000 OxBO0O
RAM RamLoc40 RAM2 Ox10080000 0xa000
RAM RamAHB32 RAM3 0x20000000 0x8000
RAM RamAHB16 RAM4 Ox20008000 0x4000

!'_E |

Add Flash Add RAM Split Delete

Import... Merge... Export... Generate...

Sl FCIO—

18.2

18.2.1

UG10055

Note: SDK-installed MCU support always uses Per-Region Flash drivers.

Advanced Flash drivers

Most wizard-generated projects or projects imported from SDKs (or LPCOpen) are pre-
configured with an appropriate LinkServer flash driver for the target flash device. As a result, in
many cases, users need to pay little attention to the actual flash driver being used. However,
for MCUs supporting complex flash strategies or external flash devices, the situation is more
complex. This section discusses these situations but note that, even in these cases, the flash
driver may be automatically selected and so require no user attention.

LPC18xx / LPC43xx internal Flash drivers

A number of LPC18/43 parts provide dual banks of internal Flash, with bank A starting at address
0x1A000000, and bank B starting at address 0x1B000000.

* LPC18x3/LPC43x3 : Flash = 2x 256KB (512 KB total)
* LPC18x5/ LPC43x5 : Flash = 2x 384KB (768 KB total)
* LPC18x7/ LPC43x7 : Flash = 2x 512KB (1 MB total)

When you create a new project using the New Project Wizard for one of these
parts, an appropriate default Flash driver (from LPC18x3 43x3 2x256 BootA.cfx /
LPC18x5_43x5 2x384 BootA.cfx /LPC18x7_43x7_2x512_ BootA.cfx) is selected which, after
programming the part, also configures it to boot from Bank A Flash.

If you wish to boot from Bank B Flash instead, then you need to manually configure the
project to use the corresponding “BootB” Flash driver (LPC18x3_43x3_2x256_BootB.cfx /
LPC18x5_43x5_2x384_BootB.cfx / LPC18x7_43x7_2x512_BootB.cfx). This can be done by
selecting the appropriate driver file in the “Flash driver” field of the Memory Configuration Editor.
Note: you also need to delete Flash Bank A from the list of available memories (or at least reorder
so that Flash Bank B is first).

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 190

NXP Semiconductors

MCUXpresso IDE User Guide

18.2.2 LPC SPIFI QSPI Flash drivers

A number of parts provide support for external SPIFI Flash, sometimes in addition to internal
Flash. Programming these Flash memories provides several challenges because the size of
memory (if present) is unknown, and the actual memory device is also unknown. These issues
are handled using Generic Drivers which can interrogate the memory device to find its size and
programming requirements.

At the time of writing, these LPC devices comprise:

Table 18.1. SPIFI details

LPC part SPIFI address Bootable Flash driver
LPC18xx/LPC43xx | 0x14000000 Yes LPC18 43 SPIFI_GENERIC.cfx
LPC40xx 0x28000000 No LPC40xx_SPIFI_GENERIC.cfx
LPC5460x 0x10000000 No LPC5460x_SPIFI_GENERIC.cfx
LPC540xx 0x10000000 Yes LPC540xx_SPIFI_GENERIC.cfx
During a programming operation, the Flash driver interrogates the SPIFI Flash device to identify
its configuration. If the device is recognized, its size and name are reported in the MCUXpresso
IDE Debug log - as below:
I nspected v.2 External Flash Device on SPI using SPIFl |ib LPC18_43_SPI Fl _GENERI C. cf x
| mage ' LPC18/43 Generic SPIFI Mar 7 2017 13:14:25'
Openi ng flash driver LPC18_43_SPI FI _GENERI C. cf x
flash variant ' MX25L8035E' detected (1MB = 16*64K at 0x14000000)
Note: Although the Flash driver reports the size and location of the SPIFI device, the view of
the world of the IDE is determined by the project memory configuration settings. It remains the
user’s responsibility to ensure these settings match the actual device in use.
Flash devices supported by our LPC SPIFI Flash drivers
The paragraph below contains information that is largely deprecated — please see the section
Below is a list of SPIFI Flash devices supported by our supplied Generic SPIFI Flash drivers.
Note: additional devices which identify as one of the devices below are also expected to work.
However, if a device is not supported by our supplied Flash Drivers, sources to generate these
drivers are supplied in the Examples/Flashdrivers subdirectory within the MCUXpresso IDE
installation directory. Users may thus add support for new SPIFI devices if needed.
@25@2C
MIr25Q.128AB
MI25Q612A
MI25Q56A
N25QR56
N25QL28
N25Q64
N25@B2
PMR5LQ32C
MX25L1606E
MX25L1635E
MX25L3235E
MX25R6435F
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 191

NXP Semiconductors

MCUXpresso IDE User Guide

18.2.3

MX25L6435E
MX25L12835E
MX25V8035F
MX25L8035E
S25FL016K
S25FL032P
S25FL064P
S25FL129P 64kSec
S25FL129P 256kSec
S25FL164K
S25FL256S 64kSec
S25FL256S 256kSec
S25FL512S
V25Q40CV
VR5@B2FV
VR5Q64FV
VR5QL28FV
W5@56FV_Unt est ed
V25Q80BV

i.MX RT QSPI and Hyper Flash frivers

I.MX.RT MCUs support external flash via a QSPI/Hyperbus interface, and a range of
LinkServer flash drivers supporting devices fitted to EVK development boards are included with
MCUXpresso IDE (as described below).

Note: these drivers are also supplied in source project form so they may be used as a base for
the development of drivers for other external flash parts. These driver projects can be found at
Examples/Flashdrivers/INXP/iIMXRT

Table 18.2. Flash details

iMX RT part Base address Bootable Flash driver
i.MX RT 1050 0x60000000 Yes MIMXRT1050-EVK_S26KS512S.cfx
i.MX RT 1050 0x60000000 Yes MIMXRT1050-EVK_IS25WP064A.cfx
i.MX RT 1050 0x60000000 Yes MIMXRT1050-EcoXiP_ATXP032.cfx
i.MX RT 1020 0x60000000 Yes MIMXRT1020-EVK_1S25LP064.cfx
When used with the appropriate SDK for your development board, the correct driver is
automatically selected
Important Note: For an application to Boot and execute in place (XIP) from these flash
devices (post reset), a correct header for the specific device MUST be programmed into
the flash (as part of the Project). SDK examples are built to include an appropriate header
automatically, however, MCUXpresso IDE does not prevent users from programming projects
without headers into these devices. If this occurs, the application does not boot and subsequent
flash programming operations may fail.
Should this occur, the recommended recovery procedure is to change the boot strategy of the
board (via DIP switches) to prevent booting from QSPI or hyperflash. Power cycle the board and
then perform a Mass Erase of the flash. Next, reprogram with an image that has an appropriate
header, restore the boot strategy, and power cycle again.
Tip
In addition, these drivers are complemented by a range of self-configuring drivers
supporting all current iMX RT EVK boards, please see
for more information on the drivers and this methodology.
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 192

NXP Semiconductors

MCUXpresso IDE User Guide

18.2.4

Flash drivers using SFDP (LPC and iMX RT)

As discussed above, programming these Flash memories provides several challenges because
the size of memory (if present) is unknown, and the actual memory device is also unknown

LinkServer Generic flash drivers attempted to solve this problem by recognizing specific devices
(via their JEDEC ID) and then setting their sizes and programming parameters accordingly.
However, this mechanism only works if the device is recognized by the flash driver, and in
consequence fails if any device is not recognized.

This issue, combined with the sheer volume of devices available has forced a different approach
to be taken. Fortunately, modern flash devices typically contain a data block describing their
properties including device size, low-level structure and programming details, and so on. These
data blocks and their use are collectively known as Serial Flash Discovery Protocol or SFDP.
The standard for these blocks is described by JEDEC JESD216 standard(s).

Introduced in MCUXpresso IDE version 10.2.0 are a range of Generic flash drivers built to self-
configure via SFDP data and these have been extended for later MCUXpresso IDE versions.
The current list of supported SFDP drivers is shown below:

Table 18.3. SFDP Flash details

Part Base address Bootable Flash driver

LPC18xx/LPC43xx | 0x14000000 Yes LPC18 43 SPIFI_SFDP.cfx

LPC546xx 0x10000000 No LPC546xx_SPIFI_SFDP.cfx

LPC540xx 0x10000000 Yes LPC540xx_SPIFI_SFDP.cfx

LPC55S36 0x10000000 Yes LPC553x_FlexSPI_A_MXIC_OPI.cfx

i.MX RT 1170 0x30000000 Yes MIMXRT1170_SFDP_MXIC_OPI.cfx

i.MX RT 1170 0x30000000 Yes MIMXRT1170_SFDP_QSPI.cfx

i.MX RT 1160 0x30000000 Yes MIMXRT1160_SFDP_MXIC_OPI.cfx

i.MX RT 1160 0x30000000 Yes MIMXRT1160_SFDP_QSPI.cfx

i.MX RT 1064 0x70000000 Yes MIMXRT1064.cfx

i.MX RT 1060 0x60000000 Yes MIMXRT1060_SFDP_HYPERFLASH.cfx

i.MX RT 1060 0x60000000 Yes MIMXRT1060_SFDP_QSPI.cfx

i.MX RT 1050 0x60000000 Yes MIMXRT1050_SFDP_HYPERFLASH.cfx

i.MX RT 1050 0x60000000 Yes MIMXRT1050_SFDP_QSPI.cfx

i.MX RT 1024 0x60000000 Yes MIMXRT1024.cfx

i.MX RT 1020 0x60000000 Yes MIMXRT1020_SFDP_QSPI.cfx

i.MX RT 1015 0x60000000 Yes MIMXRT1015_SFDP_QSPI.cfx

i.MX RT 1010 0x60000000 Yes MIMXRT1010_SFDP_QSPI.cfx

i.MX RT 600 0x8000000 Yes MIMXRT600_FlexSPI_A_MXIC_OPI.cfx

i.MX RT 600 0x8000000 Yes MIMXRT600_FlexSPI_A_SFDP_QSPI.cfx

i.MX RT 600 0x8000000 Yes MIMXRT600_FlexSPI_B_MXIC_OPI.cfx

i.MX RT 600 0x8000000 Yes MIMXRT600_FlexSPI_B_SFDP_QSPI.cfx

i.MX RT 500 0x8000000 Yes MIMXRT500_SFDP_MXIC_OSPI.cfx

i.MX RT 500 0x8000000 Yes MIMXRT500_SFDP_QSPI.cfx

PN7640 0x218000 Yes PN76xx.cfx
Important Note: for some iMX RT parts, the current SDKs reference the device-specific flash
driver rather than the SFDP version. However, you can modify your project to use the SFDP
version if required. Flashdrivers cannot detect whether QSPI or Hyperflash is fitted on a board,
therefore it is the responsibility of the user to ensure the correct driver is used.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 193

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

Note: The iIMX RT 1024 and 1064 MCUs incorporate a flash device within the MCU package
itself however, the flash driver still uses the SFDP mechanism to detect the device and hence
is listed in the table above.

QSPI SFDP issues and limitations

Some (usually older) QSPI parts do not support the SFDP mechanism and are therefore not
programmable via this protocol. However since some of these QSPI devices are fitted to NXP
(LPC) manufactured development boards, some basic assumptions are made by these drivers
if SFDP data is not found. In such a case, the device and its size are assumed to be 1 MB and
some standard programming mechanisms are used. This scheme should ensure that NXP LPC
development boards with QSPI can be used with this driver type.

Note: this information is correct at the time of writing and only applies to LPC Drivers — future
development of these drivers may change their capabilities.

Flash programming log

When programming code or data into flash, a portion of the debug log displays the flash
programming operations (as below):

I nspected v.2 External Flash Device on SPlI using SFDP JEDEC | D LPC18_43_SPI FI _SFDP. cfx —(1)
| mage ' LPC1843_JEDEC_SFDP May 1 2018 15:32:05'

Openi ng flash driver LPC18_43_SPIFl _SFDP.CfX ---------ocmomm i (2)
Sendi ng VECTRESET to run flash driver
flash variant 'JEDEC SFDP_EF4014' detected (1MB = 16*64K at 0x14000000) ---------------- (3)

Closing flash driver LPC18_43_SPI FI _SFDP. cf x
NXP: LPC43S37

Connected: was_reset=true. was_stopped=fal se
Awai ting tel net connection to port 3330 ...
GDB nonstop node enabl ed

Opening flash driver LPC18_43_SPIFI _SFDP.cfx (already resident) -----------oommmoonnoon (4)
Sendi ng VECTRESET to run flash driver

Witing 1046900 bytes to address 0x14000000 in Flash ----------cmmmmmmmm e (5)
Erased/ Wote page 0-15 with 1046900 bytes in 7548mBeC -------------mmmmmmmma (6)

Closing flash driver LPC18_43_SPI FI _SFDP. cf x

Fl ash Wite Done

Fl ash Program Summary: 1046900 bytes in 7.55 seconds (135.45 KB/seC) ------------------- (7)
St opped: Breakpoi nt #1

Note: when accessing unknown flash devices, the driver is called twice. First to identify the device
and second to perform the required programming. In a situation where multiple devices are being
programmed, the flash driver(s) may be (re)loaded for each use.

Where:

1. SFDP JEDEC ID is the method used to access the flash and LPC18_43_ SPIFI_SFDP.cfx is
the flash driver used

2. The driver named above is loaded and initialized (this step setups clocks, pin muxing, and
performs some investigation of the connected device)
3. The driver returns a string JEDEC_SFDP indicating that SFDP data was found and
successfully read
e The JEDEC ID of the device was read as EF4014, in this case corresponding to a Winbond
25Q80DVSIG (as fitted to the LPC-Link2 board used in Target mode)

¢ The size of the device was read as 1 MB divided up into 16 64KB Sectors/Blocks — these
blocks are the erase size that is used for programming and so any operation to program
this flash must start on an address aligned to this 64 KB size

4. The driver is opened a second time (without reloading since it remains from the previous call)

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 194

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

5. The project that referenced this driver requested that 1046900 bytes of data be written to the
address starting 0x14000000, as set within the memory configuration of the project

6. The write operation is performed via 16 page writes

« Note: this flash driver (like many LinkServer drivers) uses a virtual page size that is much
larger than the actual flash device page size to optimize driver operation

7. Finally, a summary of the operation is printed showing the flash programming performance

Note: If the driver fails to find SFDP data, it attempts to program the device with standard routines.
If this occurs, the size is assumed to be 1 MB and the flash variant is reported as ID rather than
SFDP as shown below:

flash variant 'JEDEC | D_EF4014' detected (1MB = 16*64K at 0x14000000)

On occasion, some devices that report the same JEDEC ID are actually different, in this particular
case the device is a very similar Winbond 25Q80BVSIG, that is, ..BV rather than ..DV

QSPI programming and booting

When dealing with an external flash, it is important to understand the difference between the
flash programming operation performed by the flash driver and the subsequent use of the flash
for executing code and/or providing data. Essentially the responsibility of the flash driver ends
with a successful program operation, after this point, the correct operation of the MCU/SPI flash
combination lies elsewhere.

Thus, once the MCU is reset (or power cycled), the responsibility for the configuration of the
device and operation lies entirely outside of MCUXpresso IDE and instead lies with one or all
of the following:

¢ Development board/MCU boot settings
* These may be DIP switches or Jumpers providing inputs to the MCU boot flow, alternatively,
these could be OTP bits programmed within the MCU
« MCU’s BootROM'’s ability to understand and setup the device
* BootROMSs on devices such as the LPC1800 and LPC4300 have an inbuilt understanding
of certain QSPI devices allowing them to be configured for boot. However, this boot process
may fail with some QSPI flash despite the fact that it has been correctly programmed

« BootROMs on devices such as the LPC540xx and RT10xx rely on the correct header (XIP)
information being programmed (as part of the Application) into the QSPI flash itself. If this
data is incorrect (or not present), the boot/reset fails.

» Devices that incorporate both internal boot flash and external SPIFI/QSPI flash such as the
LPC546xx typically place the responsibilities for QSPI configuration on the user’s application,
where this might include

e Setup of pinmuxing
* QSPI/SPIFI clock setup
 Flash interface initialization
* QSPI initialization (this may be QSPI device-specific)
« Including setup of appropriate waitstates for QSPI operation at the selected QSPI clock
frequency

FlexSPI Flash reset

A number of IMX RT MCUs that support external flash via the FlexSPI interface implement a
flash device reset sequence.

During FlexSPI boot the boot process requires the FlexSPI Flash device to be in a certain mode,
for example, 1-bit SPI compatible mode. The Flash device is naturally in this mode after a POR
reset because the power-up sequence resets it with the RT MCU device together. However, the
Flash device is not in 1-bit SPI compatible mode if the flash device is configured to DPI mode,

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 195

NXP Semiconductors MCUXpresso IDE User Guide

18.3

UG10055

QPI mode, or Octal mode when any non-POR resets happen. In such cases, special processing
is required by the boot process to restore the Flash device to 1-bit SPI-compatible mode before
continuing access to the Flash device. In general, this can be achieved by using a GPIO to assert
areset pin on the Flash device. The bootloader can perform the reset process and reset the Flash
device to 1-bit SPI-compatible mode based on fuse configuration, using the GPIO specified by
the combination of FLEXSPI_RESET_PIN_PORT and FLEXSPI_RESET_PIN_GPIO.

When starting a flash-resident debug session in MCUXpresso IDE this reset sequence may need
to be performed by the flash driver as well. Flash drivers for IMX RT500 and RT600 MCUs
implement this functionality.

Note: Custom boards may not be wired identically to EVK development boards in regards to
the actual pin dedicated to flash device reset. In such cases the pre-connect script needs to be
modified in order to pass to the flash drivers the relevant information about the GPIO pin used
for flash reset.

Kinetis Flash drivers

Kinetis MCUs make use of a range of generic drivers, which are supplied as part of the SDK
part support package. When a project is created or imported, the appropriate Flash driver is
automatically selected and associated with the project.

Kinetis Flash drivers generally follow a simple naming convention, that is, FTFx_nK_xx where:

¢ FTFx is the Flash module name of the MCU, where x can take the value E, A, or L

« nK represents the Flash sector size the Flash device supports, where n can take the value
1,2,4,8
» A sector size is the smallest amount of Flash that can be erased on that device

« XX represents optional additional characters for special case drivers, for example, _ Tiny for
use on parts with a small quantity of RAM
A further optional _D suffix is used to show the driver is written to target Data Flash rather

than the more common Program Flash

So for example, the Flash driver of a K64F MCU is called FTFE_4K, because the K64F MCU
uses the FTFE Flash module type and supports a 4 KB Flash sector size.

When a debug session is started that programs data into Flash memory, the debug log file of
the IDE reports the Flash driver used and parameters it has read from the MCU. Below we can
see the driver identified a K64 part and the size of the internal Flash available. It also reports the
programming speed achieved when programming this device. These logs can be useful when
problems are encountered.

Note: when the Flash driver starts up, it interrogates the MCU and report a number of data items.
However, due to the nature of internal registers with the MCU, these may not exactly match the
MCU being debugged.

Inspected v.2 On chip Kinetis Flash nmenory nodul e FTFE_4K. cf x

I mage 'Kinetis Sem Generic Feb 17 2017 17:24:02'

Openi ng flash driver FTFE 4K cf x

Sendi ng VECTRESET to run flash driver

Fl ash variant 'K 64 FTFE Generic 4K detected (1MB = 256*4K at 0x0)
Cl osing flash driver FTFE 4K cfx

Connect ed: was_reset=true. was_stopped=true

Awai ting tel net connection to port 3330 ...

GDB nonst op node enabl ed

Openi ng flash driver FTFE 4K cfx (already resident)

Sendi ng VECTRESET to run flash driver

Fl ash variant 'K 64 FTFE Generic 4K detected (1MB = 256*4K at 0x0)

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 196

NXP Semiconductors MCUXpresso IDE User Guide

18.4

18.5

18.6

Witing 25856 bytes to address 0x00000000 in Fl ash
00001000 done 15% (4096 out of 25856)

00002000 done 31% (8192 out of 25856)

00003000 done 47% (12288 out of 25856)

00004000 done 63% (16384 out of 25856)

00005000 done 79% (20480 out of 25856)

00006000 done 95% (24576 out of 25856)

00007000 done 100% (28672 out of 25856)

Erased/ Wote sector 0-6 with 25856 bytes in 301lnsec
Cl osing flash driver FTFE 4K cfx

Fl ash Wite Done

Fl ash Program Sunmary: 25856 bytes in 0.30 seconds (83.89 KB/sec)

Flash drivers for a number of Kinetis MCUs are listed below:

K64F FTFE_4K (1MB)

K22F FTFA_2K (512KB)
KL43 FTFA_1K (256KB)
KL27 FTFA_1K (64KB)
K40 FTFL_2K (256KB)

Configuring projects to span multiple Flash devices

https://community.nxp.com/thread/388979

The LinkServer GUI Flash Programmer

The LinkServer GUI Flash Programmer has been replaced by the debug solution independent

The LinkServer command-line Flash Programmer

While the information below is still current, for most users this functionality has been replaced
by features within the

18.6.1 Command-line programming
Flash programming is usually invoked automatically when a debug session is launched from
within MCUXpresso IDE, but flash programming operations can also be accessed directly using
a command line utility (also known as the LinkServer debug stub). This can be useful for things
like programming the Flash for devices with limited production runs.
The MCUXpresso IDE Flash programming utility is part of the external LinkServer package but
can also be accessed from:
<install _dir>/ide/LinkServer/binaries/
To run a Flash programming operation from the command line, the correct Flash utility stub for
your part should be called with appropriate options. For boards containing Cortex-M MCUSs, the
utility is called crt_emu_cm_redlink.
For example:
crt_emu_cmredlink -p LPC11U68 --flash-1oad "LPC11U68_App. axf"
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 197

https://community.nxp.com/thread/388979

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

loads the AXF file LPC11U68_App.axf into Flash on an LPC11U68.

Note: typically, LPC-Link2 or LPCXpresso V2 and V3 boards have debug probe firmware soft
loaded automatically by the IDE when a debug operation is first performed. Therefore to use
these debug probes from the command line they must either have their firmware softloaded or
have probe firmware programmed into the Flash. Probe firmware can be soft-loaded from the
command line by use of scripts boot_link1 for LPC-Link and boot_link2 for LPC-Link2, these are
located at mcuxpresso_install_dir/ide/binaries. To program debug probe firmware into the Flash
memory of an LPC-Link2 debug probe, please see: https://www.nxp.com/LPCSCRYPT

Programming an image into Flash

In the simplest case, the Flash programming utility takes the following options if the file to be
flashed is an AXF (or ELF) file:

crt_emu_cmredlink -p target --flash-load "filenane" [--flash-driver "flashdriver"]

t is also possible to flash binary files using:

crt_emu_cmredlink -p target --flash-l1oad "fil ename" --1oad-base base_address [--flash-driver /

"flashdriver"]

Where:

e crt_emu_cm_redlink is the name of the Flash utility

« target is the target chip name. For example LPC1343, LPC1114/301, LPC1768, and so on
(see ‘Finding Correct Parameters...” below)

» --flash-load can actually be one of a few different options. Use:

» --flash-load to write the file to Flash,

- --flash-load-exec to write it to Flash and then cause it to start running,

» --flash-mass-load to erase the Flash and then write the file to the Flash, and

» --flash-mass-load-exec to erase the Flash, write the file to Flash, and then cause it to start
running.

« filename is the file to Flash program. It may be an executable (axf) or a binary (bin) file. If using
a binary file, the base_address also must be specified. Using enclosing quotes is optional
unless the name includes unusual characters or spaces.

* base_address is the address where the binary file is written. It can be specified as a hex value
with a leading Ox.

If you are using Flash memory that is external to the main chip you need to specify an appropriate
Flash driver that supports the device. This usually takes the name of a .cfx file held in a default
location. In unusual circumstances, it is possible to specify an absolute file system name of a
file. Using enclosing quotes is optional unless the name includes unusual characters or spaces
(see ‘Finding Correct Parameters...” below).

WARNING: When crt_emu_cm_redlink Flash drivers program data that they believe will form
the start of an execute-in-place image, they determine where the vector table of the image is and
automatically insert a checksum of the initial few vectors, as required in many LPC parts. This
may not be the value held in that location by the file from which the Flash was programmed. This
means that if the content of the Flash were to be compared against the file a difference at that
specific location may be found.

WARNING: Flash is programmed in sectors. The sizes and distributions of Flash sectors are
determined by the Flash device used. Data is programmed in separate contiguous blocks — there
may be many contiguous blocks of data specified in an EFL (.AXF) file but there is only one in
a binary file. When a contiguous data block is programmed into Flash data preceding the block
start in its Flash sector is preserved. Data following data in the block in the final sector, however,
is erased.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 198

https://www.nxp.com/LPCSCRYPT

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

Programming Flash with SDK Part Support

The above method works for parts supported with preinstalled part support. If SDK part support
is required, then additional options must be passed to the utility.

« sdk_parts_directory - the place where the utility can find SDK part information; and
« sdk_flash_directory - the place where the utility can find Flash drivers provided by the SDK.

These are supplied to the utility by adding the following two options

-x "sdk_parts_directory" --flash-dir "sdk_flash_directory"

on to the command line already described. For example:

crt_emu_cmredlink -p LPC54018 --flash-1oad "LPC54018_app. axf" \
-x ~/ mcuxpresso/ 01/ . ncuxpr essoi de_packages_support/LPC54018_support \

--flash-dir ~/ ncuxpresso/ 01/ . ncuxpressoi de_packages_support/LPC54018_support/Fl ash

Since this is quite a lot to type you might wish to put the location of your SDK support directory
into an environment variable as follows:

Windows:

set DIR_SDK ...\ nctuxpresso\01\. ncuxpressoi de_packages_support\LPC54018_support
crt_emu_cmredlink -p LPC54018 --flash-1oad "LPC54018_app. axf" -x %O R_SDK% \
--flash-dir %Ol R_SDK% Fl ash

MacOS or Linux:

export DI R_SDK="~/.ntuxpresso/ 01/ . ncuxpressoi de_packages_support/LPC54018_support "
crt_emu_cmredlink -p LPC54018 --flash-load "LPC54018_app. axf" -x $DI R_SDK \
--flash-dir $DI R _SDK/ Fl ash

Use “Finding Correct Parameters from MCUXpresso IDE”, below, to determine what values you
require for these options.

Programming Flash taking MCUXpresso IDE project memory edits into account

MCUXpresso IDE allows the user to modify the default definition of the memory areas (including
the specification of different named Flash regions) used in a hardware using the Edit... button
found in the properties of the project at C/C++Build -> MCU Settings under the heading “Memory
details”. The editor can create multiple named Flash regions.

In order to use these updates to the part information of the project, the utility must use the directory
where MCUXpresso IDE stores the products of the project for whatever configuration has been
modified (typically the configuration is called ‘Debug’) as the source of its part information.

To find the location of this directory in MCUXpresso expand the project in the Project Editor view,
select the directory with the required configuration name (for example, ‘Debug’), right-click on it
to bring up its properties and see the ‘Resource’ heading.

Supply this directory name as the sdk_parts_directory to the utility by adding the options:

-x "sdk_parts_directory"

Even if the part is supported by an SDK this is the correct option to use for -x.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 199

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

Programming Flash for complex debug connections

Some boards or chips occasionally need additional steps to occur before a stable debug
connection can be established. Such debug connections are set up by small BASIC-like
programs called Connect Scripts. A good indication as to whether your chip or board
normally requires a connect script can be discovered when “Finding Correct Parameters from
MCUXpresso IDE” (see below).

Connect scripts are distributed within the product and do not normally need to be written from
scratch.

If a connect script is required it can be supplied by adding the following option to the command
line already described:

--connectscript "connectscript”

In addition to connect scripts, some chips also require a preconnect script that prepares the
target MCU for the initial debug connection. A preconnect script can be supplied by adding the
following option to the command line already described:

--preconnectscript "preconnectscript"

If you are using --flash-load-exec rather than --flash-load you may also find that the part that you
are using requires its own “reset script” to replace the standard means of starting the execution of
the flashed image. Again you may discover whether one is necessary as below. When required
it can be supplied by adding the following option to the command line:

--resetscript "resetscript"

(As usual, the quotes are required only if the script file name contains a space or other unprintable
character.)

Finding the correct parameters from MCUXpresso IDE

Note: A simple way of finding the correct command and options is to use the GUI Flash
Programmer described above, the completion dialog shows the exact command line invoked by
the GUI. On this line, the IDE will have chosen the correct

« target name

« a default Flash driver, flashdriver

e aconnect script to be run, if needed

e a preconnect script to be run, if needed

e areset script to be run, if needed with --flash-load-exec

¢ an sdk_parts_directory where XML information about the part being used (if it is provided via
an SDK) can be found

¢ an sdk_flash_directory where flash drivers supporting the part being used (if it is provided via
an SDK) can be found

Note: that the details appear and are relevant only if a project supporting the relevant chip or
board is selected in the project explorer view.

For example, the command line produced might be:

crt_emu_cmredlink "/Wrkspace/frdnk64f_driver_exanpl es_blinky.axf" -g --debug 2 --vendor NXP \
-p MK64FN1MDxxx12 - ProbeHandl e=1 - Corel ndex=0 -- Connect Scri pt ki netisconnect.scp -x \
/ User s/ nxp/ ncuxpr esso/ 01/ . ncuxpr essoi de_packages_suppor t / MK6B4FNLMOxxx12_support --flash-dir \
/ User s/ nxp/ ncuxpr esso/ 01/ . ntuxpr essoi de_packages_support / MK64FNLMOxxx12_suppor t/ Fl ash

Looking at this the target name follows -p; the flashdriver follows --flash-driver; a connectscript
follows --connectscript; a resetscript follows --resetscript; any sdk_flash_directory is provided
following --flash-dir and any sdk_parts_directory is provided following -x.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 200

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

If the target does not require a connect script or reset script the relevant options do not appear.
If the project is not based on an SDK -x and --flash-dir do not appear.

Dealing with errors during Flash operations

If your board requires a connect script to be run in order to provide a stable environment for Flash
drivers you may see errors when you undertake a Flash operation without using it. You can use
‘Finding Correct Parameters from MCUXpresso IDE’, above, to check whether a connect script
is required.

On some boards, it is possible to run an image which is incompatible with the Flash driver (which
crt_emu_cm_redlink runs on the target to help it manipulate a Flash device). This incompatibility
is likely to show in the form of programming errors signaled as the operation progresses. Often
they are due to unmaskable exceptions (such as watchdog timers) being used by the previous
image that interfere with the operation of a Flash driver.

There are a number of ways to address this situation:

* Does your board support In System Processing (ISP) Reset? Using it usually resets the
hardware and stop in the Boot ROM, thus ensuring a stable environment for Flash drivers. If
present, it can usually be activated with one or more on-board switches. You may have to refer
to the documentation of the board.

¢ Use the --vc option with crt_emu_cm_redlink. This option causes a reset when the utility’s
connection to the debug port of the board is established. Most chips will be left having executed
part of the Boot ROM and usually the resulting state is suitable for running a Flash driver (there
are exceptions, however).

« Erase the contents of Flash (see below) or program a (for example, small) image that ensures
no non-maskable exceptions are involved. Naturally, these solutions have the problem that
they are as likely to fail (and for the same reason) as the programming operation. It is
sometimes the case that an incompatible image allows the Flash drivers to operate for a short
period in which there is a chance that one of these ‘solutions’ can be used.

Validating the content of Flash

The Flash programming utility can validate the content of Flash programmed as an AXF (or ELF)
file:

crt_emu_cmredlink -p target --flash-verify "filename" [--flash-driver "flashdriver"]

t is also possible to verify binary files using:

crt_emu_cmredlink -p target --flash-verify "filenane" --Iload-base base_address \
[--flash-driver "flashdriver"]

Where target and Flash driver have the same meaning as above.

For example:

crt_emu_cmredlink -p LPC11U68 --flash-verify "LPC11U68_App. axf"

Note: the issues described in ‘Dealing with Errors During Flash Operation’ still apply when
executing this command.

Erasing the Flash

The Flash programming utility can also delete the content of Flash. To do so it takes the following
options:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 201

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

crt_emu_cmredlink -p target --flash-mass-erase [--flash-driver "flashdriver"]

Where target and Flash driver have the same meaning as above.

For example:

crt_emu_cmredlink -p LPC11U68 --fl ash-nmass-erase

Note: the issues described in ‘Dealing with Errors During Flash Operation’ still apply when
executing this command.)

Validating that Flash has been erased

The Flash programming utility can validate that the content of Flash has been erased:

crt_emu_cmredlink -p target --flash-check --area flash " [--flash-driver "flashdriver"]

For example:

crt_emu_cmredlink -p LPC11U68 --fl ash-check --area flash

It is also possible to check that just the specific areas that would have been programmed by a
given AXF or binary file are blank.

crt_emu_cmredlink -p target --flash-check-file "filename" [--flash-driver "flashdriver"]

it is also possible to verify binary files using:

crt_emu_cmredlink -p target --flash-check-file "fil ename" --1oad-base base_address \

[--flash-driver "flashdriver"]

Where target and Flash driver have the same meaning as above.

For example:

crt_emu_cmredlink -p LPC11U68 --fl ash-check-file "LPC11U68_App. axf"

Note: the issues described in ‘Dealing with Errors During Flash Operation’ still apply when
executing this command.)

Examples

To load the binary executable file app.bin at location 0 on an LPC54113J128 target using LPC-
Link2, use the following command line:

crt_emu_cmredlink -p LPC54113J128 --1o0ad-base 0 --flash-1oad-exec app.bin

To load the executable file app.axf and start it executing on an LPC1768 target using LPC-Link2,
use:

crt_emu_cmredlink -p LPC1768 --flash-1oad-exec "app. axf"

To erase Flash, program the executable app.axf into an LPC18S37 board, which has no internal
Flash but supports external Flash on the board, and then run it:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 202

NXP Semiconductors

MCUXpresso IDE User Guide

UG10055

crt_emu_cmredlink -p LPC18S37 --flash-nmass-1oad-exec "app.axf" --flash-driver \
LPC18x7_43x7_2x512_Boot A. cf x

To erase then program app.axf into a Kinetis MK64FN1MOxxx12, which is supported through an

SDK, and requiring a connect script (on MacOS/Linux):

crt_emu_cmredlink -p MK64FNLMOxxx12 --flash-mass-1oad "app. axf" \
--connectscript kinetisconnect.scp \
-x ~/ mcuxpresso/ 01/ . ncuxpr essoi de_packages_support/ MK64FNLMOxxx12_support \
--flash-dir ~/ncuxpresso/ 01/ . ncuxpressoi de_packages_support/ MK64FNLMDxxx12_support/ Fl ash

To delete the Flash on an LPC1343:

crt_emu_cmredlink -p LPC1343 --fl ash-nmass-erase

To delete the Flash on an LPC54113J128 using vector catch to ensure that the currently booted

code does not interfere with the Flash driver:

crt_emu_cmredlink -p LPC54113J128 --fl ash-erase --vc

To check that the Flash is blank on an LPC54018 which is supported by an SDK and which
has modified its memory layout stored in the MCUXpresso SDK example project held at ~/ws/

Ipcxpresso54018 driver_examples_gpio_gpio_led_output:

crt_emu_cmredlink -p LPC54018 --flash-check -x \
~/ ws/ | pcxpr esso54018_dri ver _exanpl es_gpi o_gpi o_| ed_out put/ Debug \
--flash-dir ~/ ntuxpresso/01/. ncuxpressoi de_packages_support/LPC54018_support/ Fl ash

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

203

NXP Semiconductors MCUXpresso IDE User Guide

19. C/C++ library support

19.1

19.1.1

19.1.2

UG10055

MCUXpresso IDE ships with three different C/C++ library families. This provides the maximum
possible flexibility in balancing code size and library functionality.

Overview of Redlib, Newlib, and NewlibNano

¢ Redlib Our own (non-GNU) ISO C90 standard C library, with some C99 extensions.
¢ Newlib GNU C/C++ library
« NewlibNano a version of the GNU C/C++ library optimized for embedded.

By default, MCUXpresso IDE uses Redlib for C projects, NewlibNano for SDK C++ projects, and
Newlib for C++ projects for preinstalled MCUs.

Newlib provides complete C99 and C++ library support at the expense of a larger (in some cases,
much larger) code size in your application.

NewlibNano was produced as part of ARM’s “GNU Tools for ARM Embedded Processors”
initiative in order to provide a version of Newlib focused on code size. Using NewlibNano can
help dramatically reduce the size of your application compared to using the standard version of
Newlib — for both C and C++ projects.

If you need a smaller application size and don’t need the additional functionality of the C99 or C+
+ libraries, we recommend the use of Redlib, which can often produce much smaller applications.

Redlib extensions to C90

Although Redlib is basically a C90 standard C library, it does implement a number of extensions,
including some from the C99 specification. These include:

 Single precision math functions
 Single precision implementations of some of the math.h functions such as sinf() and cosf()
are provided.
* stdbool.h
< An implementation of the C99 stdbool.h header is provided.
* inttypes.h
* An implementation of the C99 inttypes.h header is provided.
* itoa
« itoa() is a non-standard library function which is provided in many other toolchains to convert
an integer to a string. To ease porting, an implementation of this function is provided,
accessible via stdlib.h. More details can be found later in this chapter.

Newlib vs NewlibNano

Differences between Newlib and NewlibNano include:

« NewlibNano is optimized for size.

¢ The printf and scanf family of routines have been re-implemented in NewlibNano to remove
a direct dependency on the floating-point input/output handling code. Projects that need to
handle floating-point values using these functions must now explicitly request the feature
during linking.

e The printf and scanf family of routines in NewlibNano support only conversion specifiers
defined in the C89 standard. This provides a good balance between a small memory footprint
and a full-feature formatted input/output.

* NewlibNano removes the now redundant integer-only implementations of the printf/scanf
family of routines (iprintf/iscanf, and so on). These functions are now aliases to the standard
routines.

* In NewlibNano, only unwritten buffered data is flushed on exit. Open streams are not closed.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 204

NXP Semiconductors

MCUXpresso IDE User Guide

« In NewlibNano, the dynamic memory allocator has been re-implemented

19.2 Library variants

Each C library family is provided in a number of different variants: None, Nohost and Nohost-nf,

Semihost and Semihost-nf (Redlib only). These variants

each provide a different set of ‘stubs’

that form the very bottom of the C library and include certain low-level functions used by other

functions in the library.

Each variant has a differing set of these stubs, and hence provides differing levels of functionality:

e Semihost(-mb)

« This library variant provides an implementation of all functions, including file 1/0. The file
I/O is directed through the debugger and is performed on the host system (semihosting).
For example, printf/scanf uses the debugger console window and fread/fwrite operates on
files on the host system. Note: emulated I/O is relatively slow and can only be used when

debugging.
¢ Semihost(-mb)-nf (no files)

< Redlib only. Similar to Semihost, but only provides support for the 3 standard built-in streams
— stdin, stdout, stderr. This reduces the memory overhead required for the data structures
used by streams, but means that the user application cannot open and use files, though
generally this is not a problem for embedded applications.

* Nohost and Nohost-nf

 This library variant provides the string and memory handling functions and some file-based
I/O functions. However, it assumes that you have no debugging host system, thus any file
I/O does nothing. However, it is possible for the user to provide their own implementations
of some of these 1/0O functions, for example, to redirect output to the UART.

¢ None

e This has literally no stub and has the smallest memory footprint. It excludes low-level
functions for all file-based 1/0 and some string and memory handling functions.

Note: -mb library variants are not selected by default during any wizard project creation however
they may optionally be selected for enhanced semihost performance with the penalty of slightly

larger RAM usage. Please see

for additional information.

In many embedded microcontroller applications it is possible to use the None variant by careful

use of the C library, for instance avoiding calls to printf().

If you are using the wrong library variant, then you will see build errors in the form:

¢ Linker error "Undefined reference to ‘xxx

For example for a project linking against Redlib(None) but using printf() :

...libcr_c.a(fpprintf.o):

In function “printf':

fpprintf.c:(.text.printf+0x38):
fpprintf.c:(.text.printf+0x4c):

undefined reference to
undefined reference to

t__sys_wite'
*__Giob'

...libcr_c.a(_deferredl azyseek.o0): In function *__flsbuf’

_deferredl azyseek.c: (.text.__flsbuf+0x88): undefined ref
T _Owritebuf':

undefined reference

..libcr_c.a(_witebuf.o): In function
c:(.text._Owitebuf+0x16):
c:(.text._Owitebuf+0x26):
c:(.text._Owitebuf+0x3c):

a(alloc.o0):

_writebuf.
_writebuf. undefined reference
_writebuf. undefined reference

...libcr_c. I'n function *_Csys_alloc':

alloc.c:(.text._Csys_all oc+Oxe): undefined reference to
text._Csys_al | oc+0x12):
a(fseek.0):

text.fseek+0x16):

alloc.c: (. undefined reference to

...libcr_c. In function " fseek':

fseek.c: (. undefined reference to ~__sy

UG10055

All information provided in this document is subject to legal disclaimers

erence to ~__sys_istty'
to " __sys_flen'
to ~__sys_seek'
to " __sys_wite'
T __sys_wite'

' __sys_appexit'

s_istty'

© 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

205

NXP Semiconductors MCUXpresso IDE User Guide

fseek.c:(.text.fseek+0x3a): undefined reference to *__sys_flen'

Or if linking against NewlibNano(None):

...libc_nano.a(lib_a-witer.o0): In function ~_wite_r":
witer.c:(.text._wite_r+0x10): undefined reference to ~_wite'
...libc_nano.a(lib_a-closer.o0): In function ~_close_r":
closer.c:(.text._close_r+0xc): undefined reference to "~ _close'
...libc_nano.a(lib_a-1seekr.o0): In function "~ _lseek_r":

| seekr.c: (.text._|l seek_r+0x10): undefined reference to " _I|seek’
...libc_nano.a(lib_a-readr.o): In function ~_read_r':

readr.c: (.text._read_r+0x10): undefined reference to "~ _read
...libc_nano.a(lib_a-fstatr.o): In function ~_fstat_r":
fstatr.c:(.text._fstat_r+Oxe): undefined reference to ~_fstat'
...libc_nano.a(lib_a-isattyr.o): In function "~_isatty_r':
isattyr.c:(.text._isatty_r+0xc): undefined reference to "_isatty'

In such cases, simply change the library hosting being used (as described below), or remove the
call to the triggering C library function.

19.3 Switching the selected C library

Normally the library variant used by a project is set up when the project is first created by the
New Project Wizard. However, it is quite simple to switch the selected C library between Redlib,
Newlib, and NewlibNano, as well as switching the library variant in use.

To switch, highlight the project in the Project Explorer view and go to:
Quickstart -> Quick Settings -> Set library/header type

and select the required library and variant.

19.3.1 Manually switching
Alternatively, you can make the required changes to your project properties manually as follows...

When switching between Newlib(Nano) and Redlib libraries you must also switch the headers
(since the 2 libraries use different header files). To do this:

1. Select the project in Project Explorer

2. Right-click and select Properties

3. Expand C/C++ Build and select Settings

4. In the Tools settings tab, select Miscellaneous under MCU C Compiler. Note: Redlib is not
available for C++ projects

5. In Library headers, select Newlib or Redlib

6. In the Tools setting tab, select Architecture & Headers under MCU Assembler

7. In Library headers, select Newlib or Redlib

Repeat the above sequence for all Build Configurations (typically Debug and Release).

To then change the libraries actually being linked with (assuming you are using Managed linker
scripts):

. Select the project in Project Explorer

. Right-click and select Properties

. Expand C/C++ Build and select Settings

. In the Tools settings tab, select Managed Linker Script under MCU Linker

. In the Library drop-down, select the Newlib, NewlibNano, or Redlib library variant that you
require (None, Nohost, Semihost, Semihost-nf).

a s wnN kP

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 206

NXP Semiconductors MCUXpresso IDE User Guide

19.4

19.4.1

19.4.2

19.4.3

19.4.4

UG10055

Again repeat the above sequence for all Build Configurations (typically Debug and Release).
Note: Redlib is not available for C++ projects.

What is Semihosting?

Semihosting is a term to describe application 10 via the debug probe. For this to operate, library
code and debug support are required.

Background to Semihosting

When creating a new embedded application, it can sometimes be useful during the early stages
of development to be able to output debug status messages to indicate what is happening as
your application executes.

Traditionally, this might be done by piping the messages over a serial cable connected to a

MCUXpresso IDE offers an alternative to this
scheme, called semihosting. Semihosting provides a mechanism for code running on the target
board to use the facilities of the PC running the IDE. The most common example of this is for the
strings passed to a printf being displayed in the console view of the IDE.

The term “semihosting” was originally termed by ARM in the early 1990s, and basically indicates
that part of the functionality is carried out by the host (the PC with the debug tools running on
it), and partly by the target (your board). The original intention was to provide 1/O in a target
environment where no real peripheral-based 1/0O was available at all.

Semihosting implementation

The way it is actually implemented by the tools depends upon which target CPU you are running
on. With Cortex-M-based MCUs, the bottom level of the C library contains a special BKPT
instruction. The execution of this is trapped by the debug tools which determine what operation
is being requested — in the case of a printf, for example, this is effectively a “write character to
stdout”. The debug tools then read the character from the memory of the target board — and
display it in the console window within the IDE.

Semihosting also provides support for a number of other 1/O operations (though this relies upon
your debug probe also supporting them)... For example, it provides the ability for scanf to read
its input from the IDE console. It also allows file operations, such that fopen can open a file onthe
hard drive of your PC, and fscanf can then be used to read from that file.

Semihosting performance

It is fair to say that the semihosting mechanism does not provide a high-performance 1/0O system.
Each time a semihosting operation takes place, the processor is basically stopped whilst the data
transfer takes place. The time this takes depends somewhat on the target CPU, the debug probe
being used, the PC hardware, and the PC operating system. But it takes a definite period of time,
which may make your code appear to run more slowly.

In MCUXpresso IDE version 10.2.0 semihosting performance has been enhanced to deliver
roughly double the speed when compared with the previous IDE release. Furthermore, a new
MB library variant is been supplied that delivers a significant further improvement in performance
when combined with LinkServer debug connections. This library along with new LinkServer
debug support provides the added benefit of no impact on code execution performance.

Important notes about using Semihosting

When you have linked with the semihosting library, your application will no longer work
standalone — it only works when connected to the debugger.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 207

NXP Semiconductors MCUXpresso IDE User Guide

19.4.5

UG10055

Semihosting operations cause the CPU to drop into a “debug state”, which means that for the
duration of the data transfer between the target and the host PC, no code (including interrupts)
gets executed on the target. Thus if your application uses interrupts, then it is normally advisable
to avoid the use of semihosting whilst interrupts are active — and certainly within interrupt handlers
themselves. If you still need to use printf, then you can retarget the bottom level of the C library
to use an alternative communication channel, such as a UART or the ITM channel of Cortex-
M CPUs.

Semihosted printf and debugging

Semihosting is common to all supported debug solutions so the implications of this mechanism
should be understood:

Projects linked against semihosting libraries that perform semihosted operations, for example,
printf, can not execute without a debugger connected. This is because semihosted operations
make use of a BreakPoint instruction that is intercepted by the debug tools to trigger the
desired behavior (typically the printf string appearing within the IDE console). Without a debug
connection, these BreakPoint instructions are not trapped and a Hard Fault exception occurs.
By default, the supplied Hard Fault handler implementation is an infinite loop. Therefore if an
‘attach’ is performed to such a target, the user can observe the code running within the hard fault
handler. To avoid this occurring, ensure that the project makes no use of semihosted operations
via sending output to a UART, using the ITM feature, commenting out semihosted operations,
and so on.

In consequence, if for example, a user had created an LED blinky application that also performed
semihosted printf operations, then without a debug connection the blinky would stop when the
first printf was executed.

Introduced in MCUXpresso IDE version 10.1.0: New projects and newly imported SDK example
projects automatically include a semihost hardfault handler (as can be seen in the image below).
The purpose of this handler is to prevent the problem described above. Now, if a semihosted
operation is performed without debug tools attached, the new semihost hardfault handler will be
entered. The handler checks to see if a semihosted operation caused it to be entered and if so,
simply return.

v 5 MKL28Z51 2xxx7_Project

» 3, Binaries

F ki Includes

» ECMSIS

» 2 board

v 2 source
b € MKL28Z51 2xxx7_Project.c
b [mib.c
» [semihost_hardfault.c

» & startup

In consequence, if the user creates an LED blinky application that also performs semihosted
printf operations, then without a debug connection the blinky continues regardless of any printf
operation that may occur.

This functionality can be disabled if required by either simply deleting the handler file, or by
defining a symbol:

__SEM HOST_HARDFAULT_DI SABLE

Note: Previously created projects imported into MCUXpresso IDE (such as LPCOpen projects)
do not inherit this feature.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 208

NXP Semiconductors MCUXpresso IDE User Guide

19.4.6

19.5

19.5.1

UG10055

Introduced in MCUXpresso IDE version 10.2.0: The inclusion of the hardfault handler can be
controlled via a preference preferences -> MCUXpresso IDE -> SDK Options -> Include semihost
hardfault handler ..., where the default is to include.

Introduced in MCUXpresso IDE version 10.2.0: is the optional Redlib Semihost
MB library variant. This library provides enhanced semihosting performance from
LinkServer debug connections (other debug solutions perform as before) with the
added benefit of no impact on code execution performance. There is a small
penalty of slightly larger code and data sizes compared to other Redlib Semihost
libraries. This optional library is recommended for users needing high semihosting
performance and/or having slow debug probe performance.

@ Redlib Semihost MB

Semihosting specification

The semihosting mechanism used within MCUXpresso IDE is based on the specification
contained in the following document available from ARM'’s website... => ARM Developer Suite
(ADS) v1.2 Debug Target Guide, Chapter 5. Semihosting

Use of printf

By default, the output from printf() (and puts()) is displayed in the debugger console via the
semihosting mechanism. This provides a very easy way of getting basic status information out
from your application running on your target.

For printf() to work like this, you must ensure that you are linking with a “semihost” or “semihost-
nf” library variant.

Note: If you only require the display of fixed strings, then using puts() rather than printf()
noticeably reduces the code size of your application.

Redlib printf variants

Redlib provides the following two variants of printf. Many of the MCUXpresso New project wizards
provide options to select which of these to use when you create a new project.

Character vs string output

By default printf() and puts() functions output the generated string at once, so that a single
semihosted operation can output the string to the console of the debugger. Note: these versions
of printf() /puts() make use of malloc() to provide a temporary buffer on the heap in order to
generate the string to be displayed.

It is possible to switch to using “character-by-character” versions of these functions (which do
not require heap space) by specifying the build define “CR_PRINTF_CHAR” (which should be
set at the project level). This can be useful, for example, if you are retargeting printf() to write out
over a UART (as detailed below)- as in this case, it is pointless creating a temporary buffer to
store the whole string, only to then print it out over the UART one character at a time

Integer-only vs full printf (including floating point)

The printf() routine incorporated into Redlib is much smaller than that in Newlib. Thus if code
size is an issue, then always try to use Redlib if possible. In addition, if your application does
not pass floating point numbers to printf, you can also select an “integer only” (non-floating point
compatible) variant of printf. This further reduces code size.

To enable the “integer only” printf from Redlib, define the symbol “CR_INTEGER_PRINTF”" (at
the project level). This is done by default for projects created from the SDK new project wizard.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 209

NXP Semiconductors MCUXpresso IDE User Guide

19.5.2

19.5.3

19.5.4

19.5.5

19.5.6

UG10055

NewlibNano printf variants

By default, NewlibNano uses non-floating point variants of the printf and scanf family of functions,
which can help to dramatically reduce the size of your image if only integer values are used by
such functions.

If your codebase does require floating point variants of printf/scanf, then these can be enabled
by going to:

Project -> Properties -> C/C++ Build -> Settings -> MCU Linker -> Managed Linker Script and
selecting the " Enable printf/scanf float" tick box.

Newlib printf variants

Newlib provides an “iprintf” function which implements integer-only printf.

Printf when using LPCOpen

If you are building your application against LPCOpen, you may find that printf output does not get
displayed in the debug console of MCUXpresso IDE by default. This is due to many LPCOpen
board library projects by default redirecting printf to a UART output.

If you want to direct printf output to the debug console instead, then you need to modify your
projects so that:

1. Your main application project is linked against the “semihost” variant of the C library, and
2. You can disable the LPCOpen board library’s redirection of printf output by either:
« locating the source file board.c within the LPCOpen board library and comment out the line:
#include retarget.h, or
« locating the file board.h and enable the line: #define DEBUG_SEMIHOSTING

Printf when using SDK

The MCUXpresso SDK codebase provides its own printf-style functionality through the macro
PRINTF. This is set up in the header file fs|_debug_console.h such that it can either point to
the printf function provided by the C library itself, or can be directly to the SDK function pseudo-
printf function: DbgConsole_Printf(). This typically causes the output to be sent out via a UART
(which may be connected to an on-board debug probe which sends it back to the host over a
USB VCOM channel). This is controlled by the macro SDK_DEBUGCONSOLE thus:

e |f SDK_DEBUGCONSOLE ==
* PRINTF is directed to the C library printf()
» |If SDK_DEBUGCONSOLE ==
* PRINTF is directed to SDK DbgConsole_Printf()

The Advanced page of the SDK new project wizard and Import SDK examples wizard offer
the option to configure a project so that PRINTF is directed to C library printf() by setting
SDK_DEBUGCONSOLE appropriately.

In addition, if PRINTF is being directed to the C library printf(), then if
SDK_DEBUGCONSOLE_UART is also defined, printf output is still directed to the UART. Again
the Advanced page of the SDK new project wizard and Import SDK examples wizard offer an
option to control this.

Retargeting printf/scanf

By default, the printf function outputs text to the debug console using the “semihosting”
mechanism.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 210

NXP Semiconductors MCUXpresso IDE User Guide

19.5.7

UG10055

In some circumstances, this output mechanism may not be suitable for your application. Instead,
you may want printf to output via an alternative communication channel such as a UART or — on
Cortex-M3/M4 —the ITM channel of SWO Trace. In such cases, you can retarget the appropriate
portion of the bottom level of the library.

The section “How to use ITM Printf” below provides an example of how this can be done.

Note: when retargeting these functions, you can typically link against the “nohost” variant of the
C Library, rather than the “semihost” one.

Redlib

To retarget Redlib’s printf(), you need to provide your own implementations of the function
__sys_write():

int __sys_ wite(int iFileHandl e, char *pcBuffer, int ilLength)

The function returns the number of unwritten bytes if error, otherwise 0 for success.

Similarly, if you want to retarget scanf(), you need to provide your own implementations of the
function __sys_readc():

int __sys_readc(void)

The function returns character read.
Note: these two functions effectively map directly onto the underlying “semihosting” operations.
Newlib / NewlibNano

To retarget printf(), you need to provide your own implementation of the Newlib system function
_write():

int _wite(int iFileHandl e, char *pcBuffer, int ilLength)

The function returns the number of unwritten bytes if error, otherwise 0 for success.

To retarget scanf, you need to provide your own implementation of the Newlib system function
_read():

int _read(int iFileHandl e, char *pcBuffer, int ilLength)

The function returns the number of characters read, stored in pcBuffer.

More information on the Newlib system calls can be found at: https://sourceware.org/newlib/
libc.html#Syscalls

How to use ITM printf

ITM Printf is a scheme to achieve application 10 via a debug probe without the usual semihosting
penalties.

ITM overview

As part of the Cortex-M3/M4 SWO Trace functionality available when using an LPC-Link2 (with
NXP’s CMSIS-DAP firmware), MCUXpresso IDE provides the ability to make use of the ITM: The
Instrumentation Trace Macrocell (ITM) block provides a mechanism for sending data from your
target to the debugger via the SWO trade stream. This communication is achieved through a

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 211

https://sourceware.org/newlib/libc.html#Syscalls
https://sourceware.org/newlib/libc.html#Syscalls

NXP Semiconductors MCUXpresso IDE User Guide

memory-mapped register interface. Data written to any of the 32 stimulus registers is forwarded to
the SWO stream. Unlike other SWO functionality, using the ITM stimulus ports requires changes
to your code and so should not be considered non-intrusive.

Printf operations can be carried out directly by writing to the ITM stimulus port. However, the
stimulus port is output only. And therefore scanf functionality is achieved via a special global
variable, which allows the debugger to send characters from the console to the target (using
the trace interface). The debugger writes data to the global variable named ITM_RxBuffer to be
picked up by scanf.

Note: MCUXpresso IDE currently only supports ITM via stimulus port 0.

Note: For more information on SWO Trace, please see the MCUXpresso IDE LinkServer SWO
Trace Guide.

ITM printf with SDK

The Advanced page of the SDK new project wizard and Import SDK examples wizard offer the
option to configure a project so as to redirect printf/scanf to ITM. Selecting this option causes the
file retarget_itm.c to be generated in your project to carry out the redirection.

ITM printf with LPCOpen

To use this functionality with an LPCOpen project you need to: Include the file retarget_itm.c in
your project — available from the Examples subdirectory of your IDE installation Ensure you are
using a semihost, semihost-nf, or nohost C library variant. Then simply add calls to printf and
scanf to your code.

If you want just linking against the LPCOpen Chip library, then this is all you need to do. However
if you are also linking against an LPCOpen board library then you will likely see build errors in
the form:

../srclretarget.h:224: multiple definition of ~__sys wite'
../srclretarget.h:240: nmultiple definition of ~__sys_readc’

locating the file board.h and enabling the line: #define DEBUG_SEMIHOSTING, or locating the
source file board.c within the LPCOpen board library and commenting out the line: #include
"retarget.h"

19.6 itoa() and uitoa()
itoa() is a non-standard library function which is provided in many other toolchains to convert
an integer to a string.
19.6.1 Redlib
To ease porting, MCUXpresso IDE provides two variants of this function in the Redlib C library...
char * itoa(int value, char *vstring, unsigned int base);
char * uitoa(unsigned int value, char *vstring, unsigned int base);
which can be accessed via the system header...
#i ncl ude <stdlib. h>
itoa() converts an integer value to a null-terminated string using the specified base and stores
the result in the array pointed to by the vstring parameter. Base can take any value between 2
and 16; where 2 = binary, 8 = octal, 10 = decimal, and 16 = hexadecimal.
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 212

NXP Semiconductors MCUXpresso IDE User Guide

If the base is 10 and the value is negative, then the resulting string is preceded with a minus sign
(-). With any other base, value is always considered unsigned. The return value to the function
is a pointer to the resulting null-terminated string, the same as the parameter vstring.

uitoa() is similar but treats the input value as unsigned in all cases.
Note: the caller is responsible for reserving space for the output character array — the
recommended length is 33, which is long enough to contain any possible value regardless of

the base used.

Example invocations

char vstring [33]

itoa (value,vstring,10); // convert to deci nal
itoa (value,vstring,16); // convert to hexadeci nal
itoa (value,vstring,8);; // convert to octal

Standards compliance

As noted above, itoa() / uitoa() are not standard C library functions. A standard-compliant
alternative for some cases may be to use sprintf() - though this is likely to cause an increase in
the size of your application image:

sprintf(vstring,"%l",value); // convert to decim
sprintf(vstring,"%",value); // convert to hexadeci nal
sprintf(vstring, "%",value); // convert to octa

19.6.2 Newlib/NewlibNano
Newlib and NewlibNano now also provide similar functionality though with slightly different
naming - itoa() and utoa().
19.7 Libraries and linker scripts
When using the managed linker script mechanism, as described in the chapter “Memory
configuration and Linker Script Generation”, then the appropriate settings to link against the
required library family and variant are handled automatically.
However, if you are not using the managed linker script mechanism, then you need to define
which library files to use in your linker script. To do this, add one of the following entries before
the SECTION line in your linker script:
¢ Redlib (None), add
* [C project only]: GROUP (libcr_c.a libcr_eabihelpers.a)
¢ Redlib (Nohost), add
 [C projects only]: GROUP (libcr_nohost.a libcr_c.a libcr_eabihelpers.a)
* Redlib (Semihost-nf), add
* [C projects only]: GROUP (libcr_semihost_nf.a libcr_c.a libcr_eabihelpers.a)
¢ Redlib (Semihost), add
* [C projects only]: GROUP (libcr_semihost.a libcr_c.a libcr_eabihelpers.a)
* NewlibNano (None), add
* [C projects]: GROUP (libgcc.a libc_nano.a libm.a libcr_newlib_none.a)
» [C++ projects]: GROUP (libgcc.a libc_nano.a libstdc++_nano.a libm.a libcr_newlib_none.a)
* NewlibNano (Nohost), add
* [C projects]: GROUP (libgcc.a libc_nano.a libm.a libcr_newlib_nohost.a)
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 213

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

o [C++ projects]: GROUP (libgcc.a libc_nano.a libstdc++_nano.a libm.a
libcr_newlib_nohost.a)

NewlibNano (Semihost), add

e [C projects]: GROUP (libgcc.a libc_nano.a libm.a libcr_newlib_semihost.a)

o [C++ projects]: GROUP (libgcc.a libc_nano.a libstdc++_nano.a libm.a
libcr_newlib_semihost.a)

Newlib (None), add

* [C projects]: GROUP (libgcc.a libc.a libm.a libcr_newlib_none.a)

e [C++ projects]: GROUP (libgcc.a libc.a libstdc++.a libm.a libcr_newlib_none.a)
Newlib (Nohost), add

e [C projects]: GROUP (libgcc.a libc.a libm.a libcr_newlib_nohost.a)

e [C++ projects]: GROUP (libgcc.a libc.a libstdc++.a libm.a libcr_newlib_nohost.a)
Newlib (Semihost), add

* [C projects]: GROUP (libgcc.a libc.a libm.a libcr_newlib_semihost.a)

e [C++ projects]: GROUP (libgcc.a libc.a libstdc++.a libm.a libcr_newlib_semihost.a)

In addition, if using NewlibNano, then the tick box method of enabling printf/scanf floating point
support in the Linker pages of Project Properties is also not available. In such cases, you can
enable floating point support manually by going to:

Project Properties -> C/C++ Build -> Settings -> MCU Linker -> Miscellaneous
and entering -u _printf_float and/or -u _scanf_float into the “Linker flags” box.

A further alternative is to put an explicit reference to the required support function into your project
codebase itself. One way to do this is to add a statement such as:

asm (“.global _printf_float”);

to one (or more) of the C source files in your project.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 214

NXP Semiconductors MCUXpresso IDE User Guide

20. Memory configuration and linker scripts

20.1 Introduction

A key part of the core technology within MCUXpresso IDE is the principle of a default-defined
memory map for each MCU. For devices with internal Flash, this also specifies a Flash driver to
be used to program that Flash memory (for use with LinkServer “native” debug probes).

For preinstalled MCUs, the definition of the memory map is contained within the MCU part
knowledge that is built into the product. For MCUs installed into MCUXpresso IDE from an SDK,
the definition of the memory map is loaded from the manifest file within the SDK structure.

But in both cases, the defined memory map is used by MCUXpresso IDE to drive the “managed
linker script” mechanism. This auto-generates a linker script to place the code and data from
your project appropriately in memory, as well as being made available to the debugger.

The memory map of a project can be viewed and modified by the user to add, remove (split/
join), or reorder blocks using the in-place Memory Configuration Editor. For example, if a project
targets an MCU that supports external Flash (for example, SPIFI), then its memory map can be
easily extended to define the SPIFI memory region (base and size). In addition, an appropriate
Flash driver can be associated with the newly defined region.

Memory details (MK64FN1MOxxx12)*

Default LinkServer Flash Driver:

Default LinkServer Flash Driver Browse...
Type Name Alias Location Size Driver —
Flash PROGRAM_FLASH Flash Ox0 0x100000 FTFE_4K.cfx k'

RAM SRAM_UPPER RAM 0x20000000 0x30000

RAM SRAM_LOWER RAM2 Ox1fff0000 0x10000 s

RAM FLEX_RAM RAM3 0x14000000 0x1000
Add Flash Add RAM Split Delete
Import... Merge... Export... Generate..

Refresh MCU Cache

Figure 20.1. Memory configuration

Introduced in MCUXpresso IDE version 10.3.0 Memory configurations can be edited directly
in place rather than requiring a separate Edit to launch a separate dialog. In place editing of
memory configurations is incorporated within all project wizards and project properties views.

20.2 Managed linker script overview

By default, the use of “managed linker scripts” is enabled for projects. This mechanism allows
MCUXpresso IDE to automatically create a script for each build configuration that is suitable for
the MCU selected for the project and the C libraries being used. It creates (and at times modify)
three linker script files for each build configuration of your project:

<pr oj name>_<bui | dconfig>_lib.ld
<pr oj nane>_<bui | dconfi g>_nmem | d
<pr oj name>_<bui | dconfi g>.1d

This set of hierarchical files is used to define the C libraries being used, the memory map of the
system, and the way your code and data are placed into the memory map. These files will be
located in the build configuration subdirectories of your project (typically — Debug and Release).

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 215

NXP Semiconductors MCUXpresso IDE User Guide

Figure 20.2. Project Explorer Debug folder linker scripts

&5 Project Explor 32 2, Peripherals+ iii' Registers & Fau

= :-’:? # “\
v == frdmk64f_bubble
» € Project Settings
B 1:;? Binaries
» il Includes
» (2 CMSIS
» 2 accel
» 2 board
» (£ component
» [© device
» (2 drivers
» (& source
»Bsrc
> (= startup
> (£ utilities
¥ (= Debug
» (= accel
» (= board
» (= component
» (= device
» (= drivers
» (= source
» = startup
» (= utilities

3 xf - [armile]

fa frdmk64f_bubble_Debug_library.ld
i frdmk64f_bubble_Debug_memory.ld
S frdmk64f_bubble_Debug.Id

] frdmk64f_bubble.map

20.3

UG10055

The managed linker script mechanism also automatically takes into account memory map
changes made in the Memory Configuration Editor as well as other configuration changes, such
as C/C++ library settings.

See also the section on

How are managed linker scripts generated?

MCUXpresso IDE passes a set of parameters into the linker script generator (based on the
“FreeMarker” scripting engine) to create an appropriate linker script for your project. This
generator uses a set of conditionally-parsed template files, each of which controls different
aspects of the generated linker script.

It is possible to modify certain aspects of the generated linker script by providing one or more
modified template files locally within the linkscripts folder of the project directory structure. Any
such templates that you provide locally then override the default ones built into MCUXpresso
IDE. A full set of the default linker templates (.Idt) files are provided inside /LinkServer/Wizards/
linker subdirectory of the IDE install. Note that LinkServer is a symbolic link to the LinkServer
installation folder.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 216

NXP Semiconductors

MCUXpresso IDE User Guide

20.4 Default image layout

Code and initial values of initialized data items are placed into the first bank of Flash (as shown
in the memory configuration editor). During startup, MCUXpresso IDE startup code copies the
data into the first bank of RAM (as shown in the memory configuration editor), and zero initializes
the BSS data directly after this in memory. This process uses a global section table generated
into the image from the linker script.

Other RAM blocks can also have data items placed into them under user control and the startup
code also initializes these automatically. See later in this chapter for more details.

Figure 20.3. Default memory layout

0x2000 4000
RAM2 ZErt BSS2
0x2000 0000 | o DATA2
0x1000 8000 |
Stack {}
c ﬁ F
RAM ":F‘F Heap
ZErg - BSS
0x1000 0000 | [DATA
0x0001 0000 | 5
- Gopy
DATAZ | |
Flash DATA i
{ it
CODE . Code CODE
0X0000 0000
Load view Runtime view

UG10055

Note: The above memory layout is simply the default used by the managed linker script
mechanism of the IDE. There are a number of mechanisms that can be used to modify the layout
according to the requirements of your actual project — such as simply editing the order of the
RAM banks in the Memory Configuration Editor. These various methods are described later in
this chapter.

The default memory layout also locates the heap and stack in the first RAM bank, such that:

« the heap is located directly after the BSS data, growing upwards through memory
« the stack located at the end of the first RAM bank, growing down towards the heap

Again this heap and stack placement is a default and it is very easy to modify the locations for
a particular project, as described later in this chapter.

Note: When you import a project, you may find that the defaults have already been modified.
Check the Project Properties to confirm the exact details.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 217

NXP Semiconductors MCUXpresso IDE User Guide

20.5 Examining the layout of the generated image

Looking at the size of the AXF file generated by building your project on disk does not provide any
information as to how much Flash/RAM space your application will occupy when downloaded
to your MCU. The AXF file contains a lot more information than just the binary code of
your application, for example, the debug data used to provide source-level information when
debugging, that is never downloaded to your MCU.

20.5.1 Linker --print-memory-usage

MCUXpresso IDE projects use the --print-memory-usage option on the link step of a build to
display memory usage information in the build console of the following form:

Menory region Used Size Region Size %age Used
PROGRAM_FLASH: 25960 B 1 MB 2.48%
SRAM_UPPER: 8472 B 192 KB 4.31%
SRAM_LOVNER: 0 & 64 KB 0. 00%
FLEX_RAM 0 & 4 KB 0. 00%

Fi ni shed building target: frdnk64f_bubbl e. axf

The memory regions displayed here match up to the memory banks displayed in the memory
configuration editor when the managed linker script mechanism is being used.

By default, the application builds and links against the first Flash memory found within the memory
configuration of the MCU. For most MCUs there will only be one Flash device available. In this
case, our project requires 25960 bytes of Flash memory storage, 2.48% of the available Flash
storage.

RAM will be used for global variables, the heap, and the stack. MCUXpresso IDE provides a
flexible scheme to reserve memory for Stack and Heap. This build has reserved 4 KB each for
the stack and the heap contributing 8 KB to the overall 8472 bytes reported.

If using the 'LPCXpresso style' of heap and stack placement (described later in this chapter), the
RAM consumption provided by this feature is only that of your global data. It does not include
any memory consumed by your stack and heap when your application is actually executing.

Note: A project imported into MCUXpresso IDE may not have been created with this option.
To add this, right-click on the project and select C/C++ Build ->Settings -> MCU Linker ->
Miscellaneous then click ‘+' and add --print-memory-usage

Comparing code size

This summary provides a quick method to see the usage of the memory regions and also changes
in efficiency. Below are examples of Memory Usage for the same project compiled on an older
version of MCUXpresso IDE vs the current version.

Code size with MCUXpresso IDE version 11.0.x:

Menory region Used Size Region Size %age Used
BOARD_FLASH: 40244 B 64 MB 0. 06%
SRAM DTC: 8580 B 128 KB 6. 55%
SRAM | TC: 0 GB 128 KB 0. 00%
SRAM_CC: 0 GB 256 KB 0. 00%
BOARD_SDRAM 0 GB 32 MB 0. 00%

Fi ni shed buil ding target: evkbinxrt1050_bubbl e_peri pheral . axf

Code size with MCUXpresso IDE version 11.1.x:

Menory region Used Size Region Size %age Used

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 218

NXP Semiconductors MCUXpresso IDE User Guide

BOARD_FLASH: 36192 B 64 MB 0. 05%
SRAM DTC: 8580 B 128 KB 6. 55%
SRAM | TC: 0 GB 128 KB 0. 00%
SRAM _CC: 0 GB 256 KB 0. 00%
BOARD_SDRAM 0 GB 32 MB 0. 00%

Fi ni shed buil ding target: evkbi nxrt1050_bubbl e_peri pheral . axf

See the section on the view for details on further image exploration.
20.5.2 arm-none-eabi-size
In addition, a post-build step normally invokes the arm-none-eabi-size utility to provide this
information in a slightly different form....
t ext data bss dec hex filenane
2624 524 32 3180 c6e LPCXpresso1768_systi ck_t wi nkl e. axf
« text - shows the code and read-only data in your application (in decimal)
« data - shows the read-write data in your application (in decimal)
¢ bss - show the zero-initialized (‘bss’ and ‘common’) data in your application (in decimal)
« dec - total of ‘text’ + ‘data’ + ‘bss’ (in decimal)
¢ hex - hexadecimal equivalent of 'dec’
Typically:
« The Flash consumption of your application will then be text + data
* The RAM consumption of your application will then be data + bss
Again, if using the 'LPCXpresso style' of heap and stack placement (described later in this
chapter), the RAM consumption does not include any memory allocated for your stack and heap
when your application is actually executing.
You can also manually run the arm-none-eabi-size utility on both your final application image, or
on individual object files within your build directory by right-clicking on the file in Project Explorer
and selecting the Binary Utilities -> Size option.
20.5.3 Linker map files
The linker option “-map” option, which is enabled by default by the project wizard when a new
project is created, allows you to analyze in more detail the contents of your application image.
When you do a build, this causes a file called projectname.map to be created in the Debug (or
Release) subdirectory, which can be loaded into the editor view. This contains a large amount
of information, including:
¢ A list of archive members (library objects) included with details
« Alist of discarded input sections (because they are unused and the linker option --gc-sections
is enabled)
e The location, size, and type of all code, data and bss items that have been placed in the image
20.6 Image information (info)
The Image Info view provides tools for detailed analysis of an image structure and memory
footprint.
The Image Info view is stacked by default in the MCUXpresso IDE Develop perspective, along
with Problems and/or Console views.
The toolbar icons for this view are shown and detailed below:
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 219

NXP Semiconductors MCUXpresso IDE User Guide

Name

nstalled SDKs

S B8O B 1 g
& frdmk64f_bubble/Debug/frdmké4f_bubble.axf - =2019 10:47:34 /

Properties Jroblems rogress Conscle 4® Termina |m Image Info ESI # Debugger Console s

5| = =

v [y o [bt (J] i

Memory Usage |Memory Contents, (O O O O O O O O O O Type

v ¢ PROGRAM_FLASH n memory region
Bk text OxO 26 35 K8 section
» - .data 0x20000000 0xB968 248B section
Ii- .data_RAM2 0x1fff0000 0x6968 0B section

Figure 20.4. Image Info toolbar

UG10055

Where:

1. Loads the build artifact (.axf) associated with the active build configuration of the currently
selected project for analysis. This is the simplest option to follow to populate this view.

« Alternatively, an image, object, or static library can be dragged onto this view

¢ Once loaded, the selected artifact name and build information (plus warnings if any) are
displayed as a title to the view

« If more than one project (or file) is selected and more than one Image Info view is open
within the IDE, then the additional views are also populated from the selection

¢ Also, if more than one build configuration is available, the dropdown option allows All build
configurations to be opened

e Thisicon is grayed out if the active build configuration of the selected project has not been
built

2. Browse to a build artifact containing symbolic information
3. Reload information from the currently loaded build artifact

¢ This may be required when a project is rebuilt from changed sources
4. Open the Map file associated with the currently selected build artifact

e This file opens up within the editor view where helps
navigation
5. Open the Linker Script (.Id file) associated with the currently selected build artifact
e This file opens up with the editor view where helps

navigation and understanding
6. Locate the main symbol if present in the current tab
7. Enable/Disable C++ name mangling
¢ This uses the c++filt binutils application to demangle C++ symbols from the view
« All (mangled) items from the view are affected — not only the current selection
8. Toggle between sizes in bytes and larger units (KB, MB, and so on.)

9. Click to compare with contents from another (new) Image Info view using the standard Eclipse
compare utility

e To use this feature, create a second Image Info view and load with another image, object,
and so on, click compare in both views

10(A) Copy highlighted information to the clipboard
e Copied information is held in .tsv format with the table headers added to the selection

Tip
@ These options are also available from a right-click menu within the Image Info view

Also highlighted is the searchffilter button, this can be used to switch between the highlighting
of lines containing an entered search item and only displaying matching lines. This feature can
be useful to remove clutter from large groups of items.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 220

NXP Semiconductors MCUXpresso IDE User Guide

20.6.1

Note: information from highlighted lines is shown in the Properties view

The Image Information view (usually) consists of 3 subviews offering — Memory Usage, Memory
Contents, and (static) Call Graph information.

Memory usage

The Memory Usage view shows how much memory (Flash and RAM) is used by the associated
build artifact.

\Memory Usage Memory Contents | Call Graph

Region Start address End address Size Free Used Usage (%)
€ PROGRAM_FLASH 0x0 0x100000 1MB 998.65 KB 25,35 KB 2,48%
ifii SRAM_UPPER 0x20000000 0x20030000 192 KB 183.73 KB 8.27 KB 4.31%
31 SRAM_LOWER O0x1fff0000 0x20000000 64 KB 64 KB 0B 0.00%
il FLEX_RAM 0x14000000 0x14001000 4KB 4KB 0B 0.00%

Figure 20.5. Image Info memory usage

20.6.2

The memory regions displayed will be the same as the build artifact of the selected project
(typically the generated elf (.axf) file of a project). The detailed information is broadly the same
as that provided by the Linker --print-memory-usage switch however, this view can be used to
easily compare memory usage from one build to another following code changes, improvements,
different build configurations, and so on.

Tip
@ As a guide the memory usage % display is colored green when more than half of the
available memory is free, then changing from yellow to red if more memory is used

Note: The Memory Usage tab is not displayed in the following situations:

¢ A not-yet-linked file (*.0) was processed

e A static library (*.a) was processed

¢ A build artifact from outside the current workspace was processed — memory regions cannot
be obtained in this case

Double-click a Memory region to jump its Contents.
Memory contents

The Memory Contents view provides a detailed view of the contents of each memory region. The
image below shows various linker sections distributed within the memory regions.

Memory Usage |Memory Contents, Call Graph

Name Run address Load address Size Type

v €2 PROGRAM_FLASH 0x0 1MB memory region
P B text 0x0 25.34 KB section
P 1 data 0x20000000 0x6558 16B section
k= .data_RAM2 0x1fffO000 0x6558 0B section
- data_RAM3 0x14000000 0x6558 0 section
P - *ABS* 0x0 0B section

¥ il SRAM_UPPER 0x20000000 192 KB memory region
b 1 data 0x20000000 0x6558 168 section
> % .bss 0x20000010 2648 section
> 1 .uninit_RESERVED 0x20000000 0B section
> L noinit 0x20000118 0B section
» 4 .heap 0x20000118 4 KB section
- .heapZstackfill 0x20001118 4 KB section
b k- .stack 0x2002f000 0B section
> B *ABS* 0x0 0B section

Figure 20.6. Image Info memory contents

UG10055

Double-clicking or pressing the Enter key on any selected symbol opens its definition.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 221

NXP Semiconductors MCUXpresso IDE User Guide

L] slartup,m 564*1 2.c E@

6= __attribute__ {Eused secnon(Flashtc ﬂ.q)}) const struct {
unsigned int wordl;
unsigned int word2;
unsigned int word3;
unsigned int word4;
} F‘Lash Coan.g = {GXFFFFFFfF exFFFFFFFF, BXFFFFFFFF GXFFFFFFFE};

...

Memory Usage Memery Contents Call Graph

Name Run address Load address Size Type

DMA7_DriverlRQHandler Ox262 2B weak function
i - — oB global

I > Flash Config 0x400 l 168 global object
. CILACLL COMICLE CAIDY AN no _mladaal

Figure 20.7. Image Info memory symbol linkage

Note: If a symbol cannot be found within the sources, for example, the symbol is within a C library
function, a message is displayed in the Eclipse status bar.

Selecting multiple lines within this view totals their memory usage.

[3 items selected, totalling 6 / Ox6 bytes (6 B)]

Memory Usage me Call Graphr

| Name Run address Load address S‘\ze

- rrups AL uuuu U o

@ ermo 0x2000010¢c
-_—_
[-gyngle _Jox0000112 [28 |

@ g_xDuty 0x20000114 2B
DU 10x20000116 128

Figure 20.8. Image Info memory size

Note: When selecting multiple symbols, the sum of their individual sizes is computed without
taking into account any space that was used for padding or alignment within the section. As a
result, the actual section size might differ compared to the size of a multiple symbols selection.
Note that the real section size within the application is the size displayed next to the section
name, in the appropriate table column.

20.6.3 Call graph

The Call Graph tab shows the static stack cost for the selected build artifact as generated via
the -fstack-usage compiler option. The generation of Stack Usage information is now a default
option within MCUXpresso IDE version 11.0.0 but can be controlled via the Workspace project
property shown below:

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 222

NXP Semiconductors MCUXpresso IDE User Guide

Figure 20.9. Image Info call graph enable

Settings = ” <
> Resource
Builders ~ i
Configuration: | Debug [Active] Manage Configurations...
*C/C++ Bulld 2 2 B
Build Variables
Environment
Logging W # Build steps Build Artifact (& Binary Parsers @ Error Parsers
MCU settings
Semngs. . ¥ & MCU C Compiler Other flags -c -ffunction-sections -fdata-sections -ffreestanding -
Tool Chain Editor B Dialect
¥ C/C++ General E Preprocessor Yertaseii)
MCUXpresso Config Too #Includes Support ANSI programs (-ansi)
Project Natures (5 Optimization Position Independent Code (-fPIC)

Project References
Run/Debug Settings Library headers | Redlib (Auto)

(= Warnings
Task Tags & Miscellaneous Generate Stack Usage Info (-fstack-usage)]
> Validation

(% Architecture
v i3 MCU Assembler

(2 Debugging

This option enables the generation of .su (stack usage) files by the compiler and these are
consumed (along with other information) to populate the Call Graph view. Note: the generation
of these additional files has minimal impact on project build times.

If a project has been built and loaded, the call graph information for the selected build
configuration will be available. Below is a truncated view of a call graph display, expanded and
highlighted to display the main() function.

Figure 20.10. Image Info call graph

Memory Usage | Memory Contents | Call Graph,

Function Depth Location Type Local Cost Full Cost Comment
¥ & ResetlSR 17 startup_mk64f12.c:461 static 8B & 256 B
» o Systeminit 1 system_MK64F12.c:130 static 8B 128
¥ e _main 16 ? 4248 B No available stack cost information (library...
v @ main 15 bubble.c:244 static 728 /&, 248 B
| v - BOARDINi®ns 11 lpinmuxc:77 ____static 8B _____JazB | ________________________|
» CLOCK_EnableClock [} fsl_clock.h:692 static 248 248
PORT_SetPinMux 0 fsl_port.h:371 static 248 248

static 16B 176 B

= BOARD_InitDebugConsole 13 board.c:43

o bss_init 4] startup_mk64f12.c:436 static 0B 0B
P @ BOARD_Accel_12C_Send 9 board.c:104 static 408 1688
» = BOARD_Accel 12C_Receive 9 board.c:111 static 3zs 1608
P = exception handlers [+] ? 408 No available stack cost information (library...

In this view, the columns have the following meaning:

¢ Function: displays the function name

¢ Depth: displays the maximum call depth
« Where N means the function has at least 1 child with a depth of N-1
* And 0 means there are no child functions

¢ Location: function location within the source (file:line)
 This is empty if no source is found

« Type: show static or dynamic allocation type

¢ Local Cost: shows the number of bytes allocated by the function itself

¢ Full Cost: shows the number of bytes allocated by the function itself plus that of the deepest
child function

« Comment: shows additional information such as recursive calls

Within the view, symbols are colored to convey meaning, as follows:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 223

NXP Semiconductors

MCUXpresso IDE User Guide

Memory Usage Memory Contents m

Function Depth Location Type Local Cost Full Cost Comment
 —— 16 ? #2488 No available stack cost information (library
@ main bubble.c:260 static 728 #2488
¢ __aeabi_d2iz 0 s 0B No available stack cost information (library
¥ o yecursivefunc 4 bubble.c:98 static 16 B & 168
£y, & L —Punolo.c(g ti 168 0B Recursive call found, the cost will not cons
o - T H i 18 0 A Q
. ¥ @ main o
O » _aeabi_d2iz

¥ @ recursivefunc

¥4 recursivefunc

@)

Figure 20.11. Image Info call graph display types

20.6.4

1. A symbol in black can be double-clicked to open the associated source code
2. A symbol in gray has no associated source information
¢ This might indicate an assembly or library symbol

3. A symbol with circular arrows indicates it has a recursive call so its stack costs cannot be
added to the full cost

4. Exception handlers in gray (not shown) group any root symbol with a Handler suffix

Finally, if for any reason Call Graph information is limited or stale, clear self-describing warnings
are displayed.

Use of filters

The search filter now supports both simple and regular expression search.

Below a filter for the symbol main locates ‘' __main’ and ‘main’.

Figure 20.12. Call graph simple filter

H S MG BEES RO
Ipcxpresso54608_hello_world_swo/Debug/Ipcxpresso54608_hello_world_swo.axf - 27-Nov-2019 15:14:38
2 items selected, totalling Local: 8 bytes (8 B) / Full: 640 bytes (640 B) R
Memory Usage Memory Contents |Call Graph|
Function Depth Location Type Local Cost. Full Cost Comment
¥ @ Reset/SR 18 startup_Ipc54808.c:356 static 8B 3288
» @ Systeminit 1 system_LPC54608.c:250 static 8B 12B
@ data_init 0 startup_Ipc54608.c:322 static 4B 48
@ bss_init 0 startup_lpc54608.c:331 static 0B 0B
¥ & _main 17 e} No available stack cost informatiol
> & _initio 8 7 No available stack cost informatiol
¥ & main 16 hello_world_swo.c:79 static 8B 3208
@ CLOCK_AttachClk 0 fsl_clock.c:147 static 328 32

Regular expression filter supports standard regex searching...

Figure 20.13. Call graph RegEx Filterl

Ipcxpresso54608_hello_world_swo/Debug/ipcxpresso54608_hello_world_swo.axf - 27-Nov-2019 15:14:38
2 items selected, totalling Local: 8 bytes (8 B) / Full: 8 bytes (8 B)

\d[2]*Freq | =

Memory Usage | Memory Contents |Call Graph |

Function Depth Location Type Local Cost Full Cost Comment
¥ @ CLOCK GetFreq 5 fsl_clock.c:967 static 248 1208
¥ @ CLOCK GetCoreSysClkFreq 1 fsl_clock.c:714 static 168 328

© CLOCK_GetFro12MFreq 0 fsl_clock.c:619 static 4B 4B
@ CLOCK GetExtClkFreq) fsl_clock.c:628 static 4B 4B
@ CLOCK_GetwdtOscFreq 1] fsl_clock.c:637 static 168 168
@ CLOCK GetFroHfFreq o fsl_clock.c:657 static 4B 4B
@ CLOCK_ GetPllQutFreq o] fsl_clock.c:678 static 4B 4B
@ CLOCK GetOsc32KFreq 0 fsl_clock.c:705 static 4B 4B
» @ CLOCK_GetClockOutClkFreq 2 fsl_clock.c:310 static 168 488
> @ CLOCK GetSpifiClkFreg 2 fsl_clock.c:358 static 168 488

UG10055

Use of NOT searching — search for CLOCK but not containing Xtal ...

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 224

NXP Semiconductors MCUXpresso IDE User Guide

Figure 20.14. Call graph RegEx Filter2

e BMOLCEER RV

frdmk641f_bubble/Debug/frdmk64f_bubble.axf - 27-Nov-2019 10:47:34

28 items selected, totalling Local: 476 bytes (476 B) | Full: 936 bytes (936 B) CLOCK(?!*Xtal) |=

Memory Usage | Memory Contents |Call Graph/
Function Depth Location Type Local Cost. Full Cost Comment

¥ @ main 15 bubble.c:228 static 728 5208
» @ BOARD_InitPins 1 pin_mux.c:52 static 8B 328
¥ & BOARD_BootClockRUN 10 clock_config.c:168 static 8B 648

© CLOCK_SetSimSafeDivs 0 fsl_clock.h:888 static 48 4B
¥ @ CLOCK_InitOscO 1 fsl_clock.c:1186 static 248 488
® CLOCK GetOscRangeFromFreq 0 fsl_clock.c:326 static 248 248
@ OSC_SetCapLoad 0 fsl_clock.h:1190 static 248 248
@ OSC_SetExtRefClkConfig 0 fsl_clock.h:1164 static 24 248
® CLOCK_SetXtalOFreq 0 fsl_clock.h:1228 static 168 168
© CLOCK_SetinternalRefClkConfig 0 fsl_clock.c:808 static 248 248
@ CLOCK_CONFIG_SetFlIExtRefDiv 0 clock_config.c:76 static 168 168

Note: If an error occurs when entering a regular expression, the message becomes red as you
type and the tooltip indicates the expression error.

Tip

@ Typically, to search for a string within a regular expression, you would write
(.*)string(.*) ... In order to remove this requirement from users, strings are guarded
by default at the beginning and end resulting in a search for anything containing the
string. A side effect of this guard is that you can't search for something starting or
ending with *.".

20.7 Enhanced syntax highlighting

UG10055

Introduced in MCUXpresso IDE version 11.0.0, additional editor capability delivering Enhanced
Syntax Highlighting for GNU Linker Script .Id files (also Linker Script template and .map files).
The primary goal of these enhancements is to simplify the exploration of these files and also ease
the manual creation of Linker Script files for situations where the auto-generated linker script
mechanism of MCUXpresso IDE cannot support the required configuration.

The new editor is invoked automatically by double-clicking on the .Id, .Idt, or .map file within
the project explorer view. If needed, this functionality can be disabled via Preferences ->
MCUXpresso IDE -> Editor Awareness, the changes taking effect after restarting MCUXpresso
IDE.

Note: To ensure that enabling and disabling the editors work as expected, MCUXpresso IDE
should be launched in clean mode. This can be done either by calling the IDE executable from the
command line with the -clean argument or by adding -clean on the first line of the .ini configuration
file (which can be found in the same folder as the MCUXpresso IDE executable).

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 225

NXP Semiconductors MCUXpresso IDE User Guide

i Project Explor 82 . Peripherals+ iii Registers % Fau
5% @9
v == frdmk64f_bubble
» € Project Settings
i 4;-?' Binaries
¥) Includes
» B2 CMSIS
» 2 accel
2 board
2 component
2 device
B drivers
2 source
Esrc
(= startup
(£ utilities
= Debug
» (= accel
» (= board
» (= component
» (= device
» (=drivers
» (= source
» = startup
» = utilities

4 V¥ ¥y Y Y YYVYY

S frdmk64f_bubble_Debug_library.ld

S frdmk64f_bubble_Debug_memory.ld

S frdmk64f_bubble_Debug.ld
frdmk64f_bubble.map

Figure 20.15. Project build configuration files

Note: these files are automatically generated by the
for the selected build configuration when a project is built

Once a file is opened as below, a number of features are available.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 226

NXP Semiconductors

MCUXpresso IDE User Guide

4 frdmk64f_bubble_Debug.ld 22

'.-l/x
GENERATED FILE - DO NOT EDIT
Copyright (c) 2008 - 2013 Code Red Technologies Ltd,
Copyright 2015, 2818 NXP
(c) NXP Semiconductors 2013-2019
Generated linker script file for MKG64FN1M@xxx12
Created from linkscript.ldt by FMCreatelinkLibraries
Using Freemarker v2.3.23

=W
*

L A I S

-

INCLUDE] " frdmk64f_bubble_Debug_library.1d"
INCLUDE] " frdmk64f_bubble_Debug_memory. ld"

ENTRY({ResetISR)
= SECTIONS
{

19 /% MAIN TEXT SECTION =/
206 .text : ALIGN(B)
{

FILL(BXTf)

__vectors_start__ = ABSOLUTE(.) ;
KEEP

/* Global Section Table */

. = ALIGN(4) ;
__section_table_start = .;
__data_section_table = .;
LONG(LOADADDR(.data));

MCUXpresso IDE v11.0.@_alpha [Build 2495] [2019-85-15] on 19-May-2019 15:54:07

LONG(

ADDR(.data));

LONG(SIZEOF(.
LONG (LOADADDR (.

data));
data_RAM2));

LONG(ADDR(.data_RAM2));
LONG(SIZEOF(.data_RAM2));
LONG (LOADADDR (. data_RAM3));
LONG(ADDR(.data_RAM3));
LONG(SIZEOF(.data_RAM3));
__data_section_table_end = .;
__bss_section_table = .;

40 LONG(
41 LONG(
42 LONG(
43 LONG(
14 LONG(
LONG(

ADDR(.bss));
SIZEOF(.bss));

ADDR(.bss_RAMZ));
SIZEOF(.bss_RAMZ));

ADDR(.bss_RAM3)) ;
SIZEOF (.bss_RAM3));

__bss_section_table_end = .;
__section_table_end = . ;
/* End of Global Section Table %/

Figure 20.16. Linker description file

Include files and Symbols source (as highlighted) can be opened in a new editor view via CTRL

+ Click (CMD + Click for Mac) on their filename.

The Editor also provides context-aware code completion accessible by pressing CTRL + SPACE.

17+ SECTIONS
19 /% MAIN TEXT SECTION =/
ALIGN(8)

20 .text :
21 {

=
LO "'=PROVIDE

L = PROVIDE_HIDDEN
L0:=quap

| QHORT

Lg

Figure 20.17. Auto completion

UG10055

The editor also provides error checking — validating that any changes are in accordance with

the linker script syntax.

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

227

NXP Semiconductors MCUXpresso IDE User Guide

17 SECTIONS
18 {
19 /% MAIN TEXT SECTION */
20= .text : ALIGN(B)
31 i
22 abc
0 23 FILL(@xff)
r: —Vv —Start__ = ABSOLUTE(.) ;
25 KEEP()
26 /* Global Section Table =/

Figure 20.18. Error checking syntax

Furthermore, INCLUDE paths are verified and any error is shown as below.

- F FLUAYTESSU LULC VIL.U.Y_dlipild [DULW £93J] LZY%
10/

12 INCLUDE "frdmk64f_bubble_Debug_library. 1d"
13 y‘ ld”

|
17 ENTRY(ResetISR)

Figure 20.19. Error checking files

Error markers are shown on the navigation bar and in the title of the editor window.

The Outline view displays an outline of the file that is currently open in the editor area.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

228

NXP Semiconductors MCUXpresso IDE User Guide

Figure 20.20. Linker description Outline association Id

¥4 frdmk64f_bubble_Debug.ld & =
18 /*
2 * GENERATED FILE - DO NOT EDIT
3 % Copyright (c) 2008 - 2013 Code Red Technologies Ltd,
4 % Copyright 2015, 2018 NXP
5 * (c) NXP Semiconductors 2013-2019 5= Outline £3
6 = Generated linker script file for MKG64FNIM@xxx3 -
7 % Created from linkscript.ldt by FMCreateLinkLiff Y '=frdmk64f bubble Debug
8 * Using Freemarker v2.3.23 U frdmk64f_bubble_Debug_library.ld
9 :/MCUXpressu IDE v11.0.0 alpha [Build 2495] [203 L frdmk64f_bubble_Debug_memory.Id
= ResetISR
INCLUDE "frdmk&4f_bubble_Debug_library.ld" v EISECTIONS
INCLUDE "frdmk64f_bubble_Debug_memory.ld" » ©.text
> =@ .text
ENTRY (ResetISR) » = .ARM.extab
= SECTIONS] *exidaqtart
{ » & . ARM.exidx
/% MAIN TEXT SECTION */ = _exidx_end
S +.:text + ALIGN(8) . _etext
FILL(Oxff) > ©.m_usb_data
E;::tors;tani :)ABSOLUTE(-) - » = .data_RAM2
/% Global Section Table #/ " Ei.da.ta._RAMfi
. = ALIGN(4) ; » & .uninit_RESERVED
__section_table_start = .; » ©.data
__data_section_table = .;
LONG(LOADADDR (. data)) ; > ©.bss RAM2
LONG(ADDR(.data)); » ©.bss_RAM3
LONG(SIZEOF(.data)); » ®.bss
LONG (LOADADDR(.data_RAM2)); init RAM?2
LONG{ ADDR(.data_RAMZ)); . S.ncinit. RAM
LONG(SIZEOF(.data_RAM2)); » ®.noinit_RAM3
LONG(LOADADDR(.data_RAM3)); » ®.noinit
LONG(ADDR(.data_RAM3)); ok .
LONG(SIZEOF(.data_RAM3)); | _HeapSize
__data_section_table_end = .; » =.heap
__bss_section_table = .; StackSi
TONG(~ ADDR(.bss}); S
LONG(SIZEOF(.bss)): » © .heap2stackfill
LONG(ADDR(.bss_RAM2)) ; » ©.stack
LONG(SIZEOF(.bss_RAM2)); i
LONG(ADDR(.bss_RAM3)) ; = _‘\mage_start
LONG(SIZEOF(.bss_RAM3)); = _jmage_end
‘b.s,sﬁiqcxigru‘amsﬁendv.54..;*1 = _image_size

This is particularly useful for navigations through complex auto-generated .map files

UG10055

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

229

NXP Semiconductors

MCUXpresso IDE User Guide

30

LU B W N

=)

10

|
= /Applications/MCUXpressoIDE_11|

7= /Applications/MCUXpressoIDE_11|

/Applications/MCUXpressoIDE_11,

i
/Applications/MCUXpressoIDE_11|

/hppluatiuns/ﬂcuxpressoIDE_llj
58 /Applications/MCUXpressuIDEﬁlli
: hhppli(atinnslMCUXpressoIDE_ll‘\
/Appllcations/MCHXpressnIDEAlli‘
hhppli:ationslMCuXpressoIDE_l]:

1
/Applications/MCUXpressoIDE_11|

[frdmk64f_bubble.map &2
1= Archive member included to satisfy reference by file (symbol)

/Applications/MCUXpressoIDE_11.8.8_2495_alpha/ide/plugins/com.nxp.mcuxpresso.tools., L

- /Applications/MCUXpressoIDE_11, o= Outline £

rdmk64f_bubble

9= /Applications/MCUXpressoIDE_11, * ©Discarded input sections
‘

v ﬁMemory configuration
CJPROGRAM_FLASH
ISRAM_UPPER
LJSRAM_LOWER
LIFLEX_RAM
O*default*

|
17= /Applications/MCUXpressoIDE 11y i=|inker script and memory map

» (=LOAD DIRECTIVES
» ® SYMBOLS

/Applications/MCUXpressoIDE_11, v = SECTIONS
text (Address: 0x0000000000000000; Size: 0x74e8)
-glue_7 (Address: OxO0000000000074e8; Size: Ox0)
.glue_7t (Address: 0x00000000000074e8; Size: 0x0)
~vfp11_veneer (Address: 0x00000000000074e8; Size: 0x0)
v4_bx (Address: 0x00000000000074e8; Size: 0x0)

.iplt (Address: Ox00000000000074e8; Size: 0x0)

.rel.dyn (Address: 0x0000000000007 4e8; Size: 0x0)

EEEES

-ARM .extab
ARM.exidx
.m_usb_data

EEEEEE

-

Figure 20.21. Map file Outline association map

v
» B Archive members

.data_RAM2 (Address: 0x000000001fff0000; Size: Ox0)
.data_RAM3 (Address: 0x0000000014000000; Size: 0x0)
.uninit RESERVED (Address: 0x0000000020000000; Size: 0x0)
.data (Address: 0x0000000020000000; Size: 0x10)

.igot.plt (Address: Ox0000000020000010; Size: 0x0)

=0

UG10055

All information provided in this document is subject to legal disclaimers

Right-clicking within the outline view allows the opening of related source files.

Finally, if required, colors used for syntax highlighting can be configured via Preferences ->
MCUXpresso IDE -> Editor Awareness as below.

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

230

NXP Semiconductors

MCUXpresso IDE User Guide

e 8 Preferences
Syntax Coloring =S

: g?g&‘fm Token Styles
4
» Help Comment Color | |

* Install/Update Default

» Java Input section Background —]
» Library Hover Keyword

MCUXpresso Config Tools Memory 'ng“” Style
TMCUXpresso IDE Punctuation character

Debug Options [Advanced Section
Dehu: Oz!ions {Miscellane}nus] String Underline Strike through
Debug Probe Discovery Symbol
Default Tool settings Font
¥ Editor Awarenass
¥GNU Linker Script

Italic Bold

Menlo-regular-12 Change...

¥Linker Script Template
Syntax Coloring

¥Map File
Syntax Coloring

General

J-Link Options
LinkServer Opticns
LPC-Link Options
MCU settings

Paths and Directories
PEMicro Options

Restore Defaults Apply

) g 175 Cancel

= &

Figure 20.22. Editor awareness syntax highlighting preferences

20.8 Other options affecting the generated image

20.8.1 LPC MCUs — Code Read Protection

UG10055

Most of NXP’s LPC Cortex-M-based MCUs which have internal Flash memory contain “Code
Read Protection” (CRP) support. This mechanism uses one of a number of known values being
placed in a specific location in Flash memory to provide several levels of protection. When the
MCU boots, this specific location in Flash memory is read, and depending upon its value, the
MCU may prevent access to the Flash memory by external devices. This location is typically at
0x2FC though for LPC18xx/43xx parts with internal Flash, the CRP location is at an offset of
0x2FC from the start of the Flash bank being used.

CRP: Preinstalled MCUs

Support for setting up the CRP memory location is provided via a combination of the Project
Wizard, a header file, and a number of macros. This support allows specific values to be easily
placed into the CRP memory location, based on the user’s requirements.

The New Project wizard contains an option to allow linker support for placing a CRP word to be
enabled when you create a new project. This is typically enabled by default. This wizard option
actually then controls the “Enable CRP” checkbox of the Project Properties linker Target tab.

In addition, the wizard creates a file, ‘crp.c’ which defines the ‘CRP_WORD’ variable which
contains the required CRP value. A set of possible values is provided by the NXP/crp.h header
file that this then includes. Thus, for example, ‘crp.c’ typically contains:

#i ncl ude <NXP/crp. h>
__CRP const unsigned int CRP_WORD = CRP_NO CRP ;

which is then placed at the correct location in Flash by the linker script generated by the managed
linker script mechanism:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 231

NXP Semiconductors MCUXpresso IDE User Guide

20.8.2

UG10055

. = 0x000002FC ;
KEEP(* (. crp))

Note: the value CRP_NO_CRP ensures that the Flash memory is fully accessible. When you
reach the stage of your project where you want to protect your image, you need to modify the
CRP word to contain an appropriate value.

Important Note: You should take particular care when modifying the value placed in the CRP
word, as some CRP settings can disable some or all means of access to your MCU (including
debug). Before making use of CRP, you are strongly advised to refer to the User Manual for the
LPC MCU that you are using.

CRP: MCUs installed by importing an SDK

The support for CRP in LPC parts imported into MCUXpresso IDE from an SDK, is generally
similar to the Preinstalled MCUs. However rather than having a separate crp.c file, the
CRP_WORD variable definition is generally found within the startup code.

Kinetis MCUs — Flash Config Blocks

Kinetis MCUs provide an alternative means of protecting the user’'s image in Flash using the
Flash Configuration Block. The Flash Configuration Field is generally located at addresses
0x400-0x40F and unlike the LPC CRP mechanism, only specific values give access, whereas
any other values are likely to lock the part.

The value of the Flash Configuration block for a project is provided by the following structure
which will be found in the startup code:

_attribute__ ((used,section(".FlashConfig"))) const struct {
unsi gned int wordi;
unsi gned int word2;
unsi gned int word3;
unsi gned i nt word4;

} Flash_Config = {OxFFFFFFFF, OXFFFFFFFF, OxFFFFFFFF, OxFFFFFFFE};

which is then placed appropriately by the linker script generated by the managed linker script
mechanism.

/* Kinetis Flash Configuration data */

. = 0x400 ;

PROVI DE(__FLASH CONFI G START__ = .) ;

KEEP(* (. Fl ashConfi g))

PROVI DE(__FLASH CONFIGEND = .) ;

ASSERT(! (__FLASH CONFI G START __ == _ FLASH CONFI G END),
"Li nker Flash Config Support Enabl ed, but no .Fl ashConfig
section provided within application");

/* End of Kinetis Flash Configuration data */

Important Note: The support for placing the Flash Configuration Block can be disabled by
unticking a checkbox of the Project Properties linker Target tab. However, this is generally not
advisable as it is very likely to result in a locked MCU.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 232

NXP Semiconductors

MCUXpresso IDE User Guide

[] Properties for MKG4FN1MOxxx12_Project
Settings Le=1" .-
» Resource
Builders % A : = P 2
Configuration: = Debug [Active] Manage Coenfigurations...
vC/C++ Build v = -~

Build Variables
Environment

Logging ¥ | #Build steps Build Artifact | Binary Parsers @ Error Parsers
MCU settings
Settings ¥ i3 MCU C Compiler Manage linker script

Tool Chain Editor

» C/C++ General
MCUXpresso Config Too
Project Natures
Project References
Run/Debug Settings
Task Tags

» Validation

Figure 20.23. Linker settings

i
(% Dialect

Linker script

(B ncludes Script path
(# Optimization
ﬁ‘-”.Dsbugging
(# Warnings
(2 Miscellaneous
(& Architecture

¥ i MCU Assembler
(= General
(£ Architecture & Headers

¥ H3MCU Linker
(¥ General
(£ Libraries
2 Miscellaneous
(2 Shared Library Settings
(2 Architecture

£ Managed Linker Script |k

eap
(2 Multicore Stck
¥ i$3 MCU Debugger
(# Debug
(& Miscellaneous

[Enable automatic placement of Flash Configuration field in image]
Redlib (semihost-nf) ﬂ

Library

Link application to RAM

Plain load image SRAM_UPPER

Heap and Stack placement = MCUXpresso Style

Stack offset 0

Region Location Size
Default Post Data Default
Default End Default

Default H

Extra linker seript input sections % K

Global data placement

Input section description

Region

Section Type

Restore Defaults

Cancel

20.8.3

20.8.4

UG10055

Placement of USB data

For MCUs where part support is imported from an SDK, the managed linker script mechanism
supports the automatic placement of USB global data (as used by the SDK USB Drivers),
including for parts with dedicated USB_RAM (small or large variants).

Plain load image

The LPC540xx family provides no built-in flash, but rather offers a quad SPI Flash Interface
(SPIFI) so that external flash can be used. The most straightforward way of using external flash
is that the image is built to be programmed into the external flash and executed directly from the
same location (XIP — eXecute In Place).

However, the LPC540xx boot ROM also offers an alternative way of using the external flash —
such that the application is programmed into the flash, but the boot ROM relocates it into a bank
of the onboard SRAM for execution. Generally, it is expected that the SRAMX bank (at address
0x0) will be used for this. An application that runs in this manner is known as a “plain load image”.

The managed linker script mechanism of MCUXpresso IDE offers a simple way of configuring an
application project so that it builds as a plain load image. This can be controlled for a particular
build configuration via:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 233

NXP Semiconductors MCUXpresso IDE User Guide

Project -> Properties -> C/C++ Build -> Settings -> Tools Settings -> MCU Linker -> Managed

Linker Script
L §;<;'I’CU Assembler Link application to RAM
General - . N —
et Plain load image SRAMX
@ Architecture & Headers . <

L %:' MCU Linker H Generate an image suitable for relocating by a Style ﬁ
ﬁﬁ? General bootloader from its load address in Flash to an
(® Libraries g execute address in RAM - such aslthu "plain

load image” on the LPCE40xx devices

1 M
(=*Miscellaneous Region Location Size

(% Shared Library Settings
(& Architecture

[Managed Linker Script
& Multicore

Heap Default Post Data Default
Stack Default End Default

Figure 20.24. Plain load image

Please see also the shortcuts.

Enabling the “Plain load image” option:

1. Modifies the generated linker script so that the main code section is located so that it is
programmed into flash, but expect to be copied into the specified RAM bank by the boot ROM
before being executed

2. Modifies the startup code, using symbols provided from the generated linker script, so that
the appropriate data is placed into the image so that the boot ROM knows that it needs to
relocate the image from flash into RAM.

Note 1: This functionality requires the application project to be based on the LPC540xx part
support from SDK v2.4.0 (or later).

Note 2: The size of the application image (including the initialized global data) must be less than
the size of the RAM bank that the code will execute from.

Note 3: LPC540xx supports plain load images being executed from either address 0x0 or address
0x20000000. However, if the RAM at 0x20000000 is used then the debugger is not able to stop
on the default breakpoint on main(). This is because a hardware breakpoint needs to be used
(as the copying of the code from flash into RAM by the boot ROM would overwrite a software
breakpoint), but the Cortex-M4 cannot set a hardware breakpoint this high in the memory map.

20.8.5 Link application to RAM

The MCUXpresso IDE managed linker mechanism defaults to placing the code and initialized
data values to the first Flash region listed within the memory configuration of a project, as
discussed in the section.

On occasion, it can be useful to debug a project directly from RAM since this offers some benefits
such as avoiding the flash programming element of the debug session, and so on. Linking to
RAM could be achieved by deleting the Flash memory regions from the memory configuration of
the project and rebuilding the application — however, this is not the most convenient approach!

Therefore MCUXpresso IDE offers the option to tell the managed linker script mechanism to
simply ignore any flash regions listed in the memory configuration of the project via a simple
checkbox at:

Project -> Properties -> C/C++ Build -> Settings -> Tools Settings -> MCU Linker -> Managed
Linker Script

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 234

NXP Semiconductors MCUXpresso IDE User Guide

¥ 5 MCU Assembler

20.9

(#General Link application to RAM
(2 Architecture & Headers R
¥ B3 MCU Linker Link all sections to RAM (i.e. ignore Flash)
2 General
B Libraries Heap and Stack placement | MCUXpresso Style < |
L‘_‘\j:-MiscaHan.enus 1 Stack offset 0
(#2Shared Library Settings
(&2 Architecture Region Location Size
(¥:Managed Linker Script Heap Default Post Data Default
(2 Multicore Stack Default End Ox4
Figure 20.25. Link to RAM
Please see also the shortcuts.

With this option set, the application instead links to the first RAM region listed within the the
memory configuration of the project.

There are two important considerations when developing with RAM based projects:

1. They require support from the debug environment to be run and so may not execute in exactly
the same manner as a true application running from an MCU reset. Please see the section
for more information. Please note: if you are using

debug solutions other than LinkServer, additional user setup may be required.

2. Unlike projects running from Flash, global variable load and execute addresses are by default
the same. The consequence of this is that global variables values persist at their current value
if an application is restarted. Therefore this is not recommended, and instead, a restart should
be achieved by terminating and restarting the whole debug session. See also:

Note: Some MCU/development boards make use of SDRAM. These memories are typically
initialized by the MCU BootROM during reset and this initialization may require user-supplied
configuration data to be programmed into flash. Therefore you must ensure that any SDRAM
regions are correctly initialized before they are used for RAM-based debug operations.

Modifying the generated linker script / memory layout

The linker script generated by the managed linker script mechanism is suitable for use, as
is, for many applications. However, in some circumstances, you may need to make changes.
MCUXpresso IDE provides a number of mechanisms to allow you to do this whilst still being able
to use the managed linker script mechanism. These include:

¢ Changing the layout and order of memory using the Memory Configuration Editor
¢ Changing the size and location of the stack and heap using the Heap and Stack Editor

« Decorating the definitions of variables and functions in your source code with macros from the
cr_section_macros.h to cause them to be placed into different memory blocks

« Providing project-specific versions of FreeMarker linker script templates to change particular
aspects of how the managed linker script mechanism creates the final linker script

The following sections describe these in more detail.

20.10 Using the Memory Configuration Editor
The Memory Configuration Editor is accessed via the MCU settings dialog, which can be found at
Project Properties -> C/C++ Build -> MCU settings
This lists the memory details for the selected MCU, and displays, by default, the memory regions
that have been defined by MCUXpresso IDE itself (from installed or SDK part support).
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 235

NXP Semiconductors

MCUXpresso IDE User Guide

@ [] _ Properties for LPC4337
| MCU settings . .-
| »Resource
Builders . Available parts
¥ C/C++ Build __IDE)
Build Variables
Environment .
Logging SDK MCUs Preinstalled MCUs
MCU settings MCUs from installed SDKs MCUs from preinstalled LPC and generic
Settings Target Cortex-M part support
Tool Chain Editor FK32W0x2S NXP LPC4337
» C{C++ General > K6x LPC4337
Project References PKL2x LPC4337-M0
Run/Debug Settings FLPC5411x LPC4350
Task Tags FLPC548xx LPC4350-M0
» Validation »LPC55xx LPC4353
»LPCBNO4 LPC4353-M0
»MIMXRT1050 LPC4357
»MIMXRT1064 LPC4357-M0
LPCA4367
LPC4367-M0
1BrA3TN
Target architecture: cortex-md
Preserve memory configuration
Memory details (LPC4337)
Default LinkServer Flash Driver LPC1sx?,aax?_hsm,amm,chﬂ Browse...
(Type Name Alias Location Size Driver .
Flash MFlashA512 Flash 0x1a000000 0x80000 T
Flash MFlashB512 Flash2 0x1b000000 0x80000 o
| RAM RamLoc32 RAM 0x10000000 0x8000 L
E RAM RamlLoc40 RAM2 0x10080000 0xa000
RAM RamAHB32 RAM3 0x20000000 0x8000
RAM RamAHB16 RAM4 0x20008000 0x4000
RAM RamAHB_ETB16 RAMS 0x2000c000 0x4000
Add Flash Add RAM Split Delete
Import... Merge... Export... Generate...
Refresh MCU Cache
Restore Defaults Apply
@ Cancel " Apply and Close

Figure 20.26. LPC4337... default memory regions

20.10.1 Editing a memory configuration

In the example below, we show how the default memory configuration for an LPC4337... can
be changed.

Introduced in MCUXpresso IDE version 10.3.0, the memory configuration can simply be edited
in place to create the desired memory map.

© 2024 NXP Semiconductors. All rights reserved.

236

UG10055

User Guide

All information provided in this document is subject to legal disclaimers

Rev. 11.9.0 — 5 January, 2024

NXP Semiconductors

MCUXpresso IDE User Guide

Default LinkServer Flash Driver LPC18x7_43x7_2x512_BootA.cfx Browse...
Type Name Alias Location Size Driver —
Flash MFlashA512 Flash 0x1a000000 0x80000 L
Flash MFlashB512 Flash2 0x1b000000 0x80000 B
RAM RamLoc32 RAM 0x10000000 0x8000 -
RAM RamLoc40 RAM2 0x10080000 Oxa000

RAM RamAHB32 RAM3 0x20000000 0x8000

RAM RamAHB16 RAM4 0x20008000 0x4000

RAM RamAHB_ETB16 RAMS 0x2000c000 0x4000

Add Flash Add RAM Split Delete

Import...

Merge... Export... Generate...

Figure 20.27. Memory configuration editor

Known blocks of memory, with their type, base location, and size are displayed. Entries can be
created, deleted, and so on by using the provided buttons.

For simplicity, the additional memory regions are given sequential aliases, starting from 2, so
RAM2, RAMS3, and so on (as well as using their “formal” region name — for example, RamAHB32).

Table 20.1. Memory editor controls

Button Details

Add Flash Add a new memory block of the appropriate type.

Add RAM Add a new memory block of the appropriate type.

Split Split the selected memory block into two equal halves.

Join Join the selected memory block with the following block (if the two are contiguous).

Delete Delete the selected memory block.

Import Import a memory configuration that has been exported from another project,
overwriting the existing configuration.

Merge Import a partial memory configuration from a file, merging it with the existing
memory configuration. This allows you, for example, to add an external Flash bank
definition to an existing project.

Export Export a memory configuration for use in another project.

Up / Down Reorder memory blocks. This is important: if there is no Flash block, then code
is placed in the first RAM block, and data is placed in the block following the one
used for the code (regardless of whether the code block was RAM or Flash).

Generate Generates local part support for the selected MCU.

Driver Highlighted in blue, shows the selection of a per-Flash region Flash driver. Click

this field to see a dropdown of all available drivers. Please see:

Browse(Flash driver)

Select the appropriate driver for programming the Flash memory specified in
the memory configuration. For more information please see the section on

The name, location, and size of this new region can be edited in place. Note: When entering
the size of the region, you can enter full values in decimal or in hex (by prefixing with ox), or by
specifying the size in kilobytes or megabytes. For example:

¢ To enter a region size of 32 KB, enter 32768, 0x8000 Of 32k
¢ To enter a region size of 1 MB, enter ox100000 OF 1m

UG10055

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 237

NXP Semiconductors MCUXpresso IDE User Guide

Note: Memory regions must be located on four-byte boundaries, and be a multiple of four bytes
in size.

The screenshot below shows the dialog after the “Add Flash” button has been clicked. Use
the highlighted up/down buttons to move this region to be top of the list. This action forces the
managed linker script mechanism of MCUXpresso IDE to link against this new flash region.

Figure 20.28. Effect of Add Flash

Default LinkServer Flash Driver LPC18x7_43x7_2x512_BootA.cfx Browse...
Type Name Alias Location Size Driver

Flash MFlashA512 Flash 0x1a000000 0x80000

Elash MFlashB512 Flash2 0x1b000000 0x80000

Flash Flash_00 Flash3 Ox1b080000 0x400

RAM RamLoc32 RAM 0x10000000 0x8000

RAM RamlLoc40 RAM2 0x10080000 Oxa000

RAM RamAHB32 RAM3 0x20000000 0x8000

RAM RamAHB16 RAM4 0x20008000 0x4000

RAM RamAHB_ETB16 RAMS 0x2000c000 0x4000

Add Flash Add RAM Split Delete

Import... Merge... Export... Generate...

Tip
@ Once a change has been made, ensure a mouse click is made outside any
changed cell, this action forces the change to be recognized by Eclipse

Figure 20.29. Updated MCU settings

Default LinkServer Flash Driver Browse...

Type Name Alias Location Size Driver -
[Flash _[SPIFL1MB_____|Flash __|0x14000000 0x100000 L
Flash MFlashA512 Flash2 Ox1a000000 Ox80000 | LPC18x7_43x7_2x512 B... =
Flash MFlashB512 Flash3 0x1b000000 Ox80000 | LPC18x7_43x7_2x512_B... i
RAM RamLoc32 RAM 0x10000000 0x8000
RAM RamLoc40 RAM2 0x10080000 Oxa000
RAM RamAHB32 RAM3 0x20000000 0x8000
RAM RamAHB16 RAM4 0x20008000 0Ox4000

RAM RamAHB_ETB16 RAMS 0x2000c000 0x4000

Add Flash Add RAM Split Delete

Import... Merge... Export... Generate...

UG10055

Here you can see that the new region has been named SPIFI_1MB, its base address set to
0x14000000, its size to 1 MB and the default Flash driver has been deleted and an SFDP SPIFI
driver selected for the newly created SPIFI_1MB region.

MCUXpresso IDE provides extended support for the creation and programming of projects that
span multiple Flash devices. In addition to a single default Flash driver, per region Flash drivers
can also be specified (as above). Using this scheme projects can be created that span Flash
regions and can be programmed in a single ‘debug’ operation.

Note: Once the memory details have been modified, the selected MCU as displayed on the
“Status Bar” (at the bottom of the IDE window) is displayed with an asterisk (*) next to it. This

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 238

NXP Semiconductors

MCUXpresso IDE User Guide

20.10.2

20.10.3

20.10.4

20.11

provides an indication that the MCU memory configuration settings for the selected project have
been modified.

Device-specific vs default Flash drivers

When a project is configured to use additional Flash devices via the Memory Configuration Editor,
the Flash driver to be used for programming that Flash device has to be specified in the Driver
column. Typically for a SPIFI device, this should be:

LPC18_43_SPIFI_GENERIC.cfx (for LPC18/LPC43 series MCUSs)
LPC40xx_SPIFI_GENERIC.cfx (for LPC407x/8x MCUSs)
LPC5460x_SPIFI_GENERIC.cfx (for LPC5460x MCUS)
* LPC540xx_SPIFI_GENERIC.cfx (for LPC540xx MCUSs)

For further information please also see the section on

Restoring a memory configuration

To restore the memory configuration of a project back to the default settings, simply reselect the
MCU type, or use the “Restore Defaults” button, on the MCU Settings properties page.

Copying Memory Configurations

Memory configurations can be exported for import into another project. Use the Export and Import
buttons for this purpose.

Global data placement

By default, global data items are located at run time in the ‘default’ memory region (that is, the
first RAM block displayed in the memory configuration area).

However, MCUXpresso IDE version 10.2 introduced a mechanism to the Managed Linker Script
mechanism to allow the user to specify a specific memory region to be used for the global data,
without the need to change the order of the RAM blocks in the memory configuration editor.

This can be done via the Managed Linker Script page of Project Properties:

¥ ¥ MCU Linker Plain load image

X
(% General

= Libraries Heap and Stack placement = MCUXpresso Style ﬂ

(B Miscellaneous Stack offset 0

(#3shared Library Settings

g?ArchitecturE Region Location Size

(%3 Managed Linker Script Heap Default Post Data Default

(5 Multicore Stack Default End Default

¥ & MCU Debugger
(2 Debug
(# Miscellaneous —
[Global data placement Default <]]

Extra linker script input sections 4 X

Input section description Region Section Type

Figure 20.30. MCUXpresso IDE global data placement

UG10055

To change the memory region to be used, simply use the dropdown box to select the memory
region you wish to locate the global data.

Note: the above placement of global data applies to global data items that are not explicitly placed

elsewhere in the memory map see:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 239

NXP Semiconductors MCUXpresso IDE User Guide

20.12 Modifying heap/stack placement

MCUXpresso IDE provides two models of heap/stack placement. The first of these is the
“LPCXpresso Style”, which is the mechanism provided by the previous generation LPCXpresso
IDE. This is the default model used for projects created for Preinstalled MCUs. The second model

is the “MCUXpresso style”. This is the default model used for projects created for MCUs imported
from SDKs.

The heap/stack placement model being used for a particular project/build configuration can be
modified by right-clicking on the project and selecting:

Project Properties -> C/C++ Build -> Settings -> MCU Linker -> Managed Linker Scripts

[NN] Properties for MK64FN1MOxxx12_Project
Settings L= R
» Resource
Builders > A . |~ : .
2 M Confi t
vC/C++ Build Configuration: = Debug [Active] H anage Configurations.

Build Variables
Environment
Legging

MCU settings
Settings

IR #Build steps Build Artifact @ Error Parsers

) Binary Parsers

Tool Chain Editor

» C/C++ General
MCUXpresso Config Too
Project Natures
Project References
Run/Debug Settings
Task Tags

» Validation

¥ 3 MCU C Compiler
(2 Dialect
(2 Preprocessor
(EIncludes
(# Optimization
Debugging
(# Warnings
(2 Miscellaneous
(& Architecture
¥ i MCU Assembler
(= General
(£ Architecture & Headers
¥ 3 MCU Linker
(¥ General
(£ Libraries
2 Miscellaneous
(2 Shared Library Settings
(2 Architecture
£ Managed Linker Script
(2 Multicore
¥ i$3 MCU Debugger
(# Debug

Miscellaneous

Manage linker script

Linker script
Script path

Enable automatic placement of Flash Configuration field in image

Library Redlib (semihost-nf) ﬂ
Link application to RAM
Plain load image SRAM_UPPER

Heap and Stack placement [MCUXpresso Style

Stack offsat 0
Region Location Size

Heap Default Post Data Default

Stack Default End Default

Global data placement Default B

Extra linker script input sections & X

Input section description Region Section Type
Restore Defaults Apply
Cangel

Figure 20.31. MCUXpresso IDE Linker Settings

In the dialog above, highlights show the managed linker script option along with the selection of
the MCUXpresso Style scheme.

20.12.1 MCUXpresso style heap and stack
By default, the heap and stack are placed in the “default” memory region (that is, the first RAM
block displayed in the memory configuration area), with the heap placed after the application’s
data and the stack rooted at the top of this block.
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 240

NXP Semiconductors MCUXpresso IDE User Guide

However, using the Heap and Stack editor in Project Properties, it is very simple to individually
change the stack and heap locations (both the memory block used, and the location within that
block), and also the size of the memory to be used by each of them.

Region

¢ Default: Place into first RAM bank as shown in Memory Configuration Editor
« List of memory regions, and aliases, as shown in Memory Configuration Editor

Location

« Start: Place at the start of the specified RAM bank.
e Post Data: Place after any data in the specified RAM bank. Default for heap.
« End: Place at the end of the specified RAM bank. Default for stack.

Size

e Default: 1/16th of the memory region size, up to a maximum of 4 KB (and a minimum of
128bytes). Hovering the cursor over the field shows the current value that will be used.

¢ Value: Specify the exact required size. Must be a multiple of 4. Note: When entering the size of
the region, you can enter full values in decimal or in hex (by prefixing with 0x), or by specifying
the size in Kilobytes (or Megabytes). For example:
* To enter a size of 32 KB, enter 32768, 0x8000, or 32k.
« Avalue of 0 can be entered to prevent any heap use by an application.

* Note: For semihosted printf to operate without any heap space, you must enable the
“character only” version. For Redlib, define the symbol “CR_PRINTF_CHAR” (at the
project level) and remove other semihosting defines such as CR_INTEGER_PRINTF.
Character-only semihosted printf is significantly slower than the default version and may
display differently depending on your debug solution.

Note: The MCUXpresso style of setting heap and stack has the advantage over the LPCXpresso
style described below in that the memory allocated for heap/stack usage is also taken into
account in the image size information displayed in the Build console when your project is built.

20.12.2 LPCXpresso style heap and stack
By default, the heap and stack are still placed in the “default” memory region (that is, the first RAM
block displayed in the memory configuration area), with the heap placed after the application’s
data and the stack rooted at the top of this block.
To relocate the stack or heap, or provide a maximum extent of the heap, the linker “--defsym”
option can be used to define one or more of the following symbols:
__user_stack_top
__user_heap_base
_pvHeapLim t
To do this, use the MCU Linker -> Miscellaneous -> Other Options box in Project Properties.
For example:
--defsym=__user_stack_top=__top_RAM?2
¢ Locate the stack at the top of the second RAM bank (as listed in the memory configuration
editor)
¢ Note: The symbol _ top RAM2 is defined in the project by the managed linker script
mechanism at:
<pr oj nane>_<bui | dconfi g>_nem | d
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 241

NXP Semiconductors MCUXpresso IDE User Guide

20.12.3

--defsym=__user_heap_base=__end_bss_RAM2
¢ Locate the start of the heap in the second RAM bank, after any data that has been placed there
--defsym=_pvHeapLimit=__end_bss_RAM2+0x8000

« Locate the end of the heap in the second RAM bank, offset by 32 KB from the end of any data
that has been placed there

--defsym=_pvHeapLimit=0x10004000

¢ Locate the end of the heap at the absolute address 0x10004000

Reserving RAM for IAP Flash programming

The IAP Flash programming routines available in NXP’s LPC MCUs generally make use of some
of the onchip RAM when executed. For example, on the LPC1343 the top 32 bytes of onchip RAM
are used. Thus if you are calling the IAP routines from your own application, you need to ensure
that this memory is not used by your main application — which typically means by the stack.

However, with the managed linker script mechanism, it is easy to modify the start position of the
stack (remember that stacks grow down) to avoid this clash with the IAP routines. To do this go to:

Project Properties -> C/C++ Build -> Settings -> MCU Linker -> Manager Linker Script

and modify the value in the “Stack Offset” field from 0 to 32. This works whether you are using
the LPCXpresso style or MCUXpresso style of heap/stack placement.

v 1) MCU Linker Plain load image SRAM_UPPER

é‘? Architecture Region Location Size

(%2 Managed Linker Script Heap Default Post Data Default

(5 Multicore Stack Default End Default

¥ £ MCU Debugger

(2 Debug

(#=Miscellaneous =
Global data placement Default ﬁ
Extra linker script input sections & K
Input section description Region Section Type

Figure 20.32. MCUXpresso IDE linker reserve stack space

(22 General
(= Libraries Heap and Stack placement MCUXpresso Style

(%2 Miscellaneous Stack offsat |3_2] I

(%2 Shared Library Settings

20.12.4

UG10055

The value you enter in this field must be a multiple of 4.

You are also advised to check the documentation for the actual MCU that you are using to confirm
the amount of memory required by the IAP routines.

Stack checking

Although, as described above, it is possible to define a size of memory to be used for the stack,
Cortex-M CPUs have no support for hardware stack checking. Thus if you want to automatically

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 242

NXP Semiconductors MCUXpresso IDE User Guide

detect if the stack exceeds the memory set aside for it — other mechanisms must be used. For
example:

« ldentify a suitable memory region (or portion of one) that will fault for accesses below the
region’s base address, then locate the stack as desired within this region and watch for a
possible fault

« Include code that sets the stack to a known value, and periodically checks whether the lowest
address has been overwritten

« When debugging, set a watchpoint on the lowest address the stack is allowed to reach
« Use the Memory Protection Unit (MPU) to detect overflow, on parts which implement one

20.12.5 Heap checking

By default, the heap used by the malloc() family of routines grows upwards from the end of the
user data in RAM up towards the stack — a “one region memory model”.
When a new block of memory is requested, the memory allocation function _sbrk() makes a call
to the following function to check for heap overflow:

unsi gned __check_heap_overflow (void * new end_of _heap)
This should return:
e 1 - If the heap overflows
¢ 0 - If the heap is still OK
If 1 is returned, Redlib’s malloc() sets errno to ENOMEM and return a null pointer to the caller
The default version of __ _check_heap_overflow() built into MCUXpresso IDE-supplied C
libraries carries out no checking unless the symbol “_pvHeapLimit” has been created in your
image, to mark the end location of the heap.
This symbol will have been created automatically if you are using the MCUXpresso style of heap
and stack placement described earlier in this chapter. Alternatively, if using the LPCXpresso style
of heap and stack placements, you can use the --defsym option to set this.
If you wish to use a different means of heap overflow checking, then you can find a reference
implementation of __check_heap_overflow() in the file _cr_check_heap.c that can be found
in the Examples subdirectory of your IDE installation.
This file also provides functionality to allow simple heap overflow checking to be done by
looking to see if the heap has reached the current location of the stack point, which of course
assumes that the heap and stack are in the same region. This check is not enabled by default
implementation within the C library as it can break in some circumstances — for example when
the heap is being managed by an RTOS.

20.12.6 Checking the heap from your application

The symbol __end_of_heap indicates the current end of the heap and can be used by user code
to track heap usage. For instance:

extern unsigned int __end_of _heap;

end_of _heap = __end_of _heap;

nmyBuf f ptr=(ui nt 32_t*) mal | oc(20*si zeof (uint32_t));

new_end_of _heap = __end_of _heap;

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 243

NXP Semiconductors MCUXpresso IDE User Guide

20.13

20.13.1

However, it should be noted that the location this points to includes any last block that has been
free’d. In other words, it effectively provides the maximal extent of the heap so far, not the end
of the currently “active” last block.

Thus in some cases, if you check __end_of _heap before calling malloc(), then again afterward, it
is possible that the value does not change if the heap request can be fulfilled using the free'd last
block, that is, there is no need to extend the heap further. In certain cases, __end_of heap can
reduce, for example, if a block at the end of the heap is freed and a smaller block is subsequently
allocated.

Placement of specific code/data items

It is possible to make changes to the placement of specific code/data items within the final image
without modifying the FreeMarker linker script templates. Such placement can be controlled via
macros provided in an MCUXpresso IDE-supplied header file which can be pulled into your
project using:

#i ncl ude <cr_section_nacros. h>

Alternatively Introduced in MCUXpresso IDE version 10.2, the managed linker script
mechanism now also provides a means of placing arbitrarily named code or data sections into a
specified memory region of the generated image and is described in the next section. (See also

Placing code and data into different memory regions

Unlike the macros provided by cr_section_macros.h (described later), this method does not
require any change to the source code declaring the affected code/data (which basically renames
the generated code/data sections to match the memory region name). And in many cases, it
can avoid the need to provide project local FreeMarker linker script templates (described later
in this chapter).

To place the code or data, you simply need to add the details of the section nhame, the memory
region to place it in, and the type of the code/data, as per the below screenshot(s):

¥ B MCU Linker

MCUXpresso Style i

(General Heap and Stack placement p yl ﬂ

(HELibraries Stack offset 0

M

l_’g;glscegagious S Region Location Size

fg,:A a}:i tl faty o Heap Default Post Data Default

e e . Stack Default End Default

(22Managed Linker Script

(= Multicore

v i) MCU Debugger

5 Deb =

. Ariaont Global data placement Default w
Extra linker script input sections & K
Input section description Region Section Type
*(NonCacheable.init) SRAM_DTC data
*(NonCacheable) SRAM_DTC .bss

Figure 20.33. Adding an extra linker section

UG10055

which modifies the generated linker script to contain the sections specified in the appropriate
region:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 244

NXP Semiconductors MCUXpresso IDE User Guide

/* Main DATA section (SRAM_DTC) */
.data : ALIGN(4)
{

FILL(@xfF)

_data = . ;

*(wvtable)

*(NonCacheable . init)

. = ALIGN(4) ;
_edata = . ;
} > SRAM_DTC AT>BOARD_FLASH

R OV W S S N A A oY o o o o

/* MAIN BSS SECTION */
.bss : ALIGN(4)
{

*(NonCacheable)

*(COMMON)

. = ALIGN(4) ;

_ebss = .;

PROVIDE(end = .);
} > SRAM_DTC

Figure 20.34. Extra linker section script

The second example graphic shows both the placement of a constant data table and also the
powerful technigue of specifying a project source folder and placing the entire contents of that
folder (.text sections of flash2) into a chosen flash device. Using this scheme the user can drag
and drop source files within the project structure to choose which location to use for their linkage
and so their flash storage.

Extra linker script input sections & %
Input section description Region Section Type
*(.big_const_data_table) ELASH2 .rodata
flash2/(.text*) FLASH2 Jtext

Figure 20.35. Adding an extra linker 2 section

Note: that the format of the “input section description” is as detailed in the GNU Linker
documentation, which can be found within the built-in help system of the IDE:

Help -> Help Contents -> Tools (Compilers, Debugger, Utilities) -> GNU Linker -> Linker Scripts
-> SECTIONS Command -> Input Section Description

or directly in the online GNU documentation at:
https://sourceware.org/binutils/docs/ld/Input-Section-Basics.html

Also, this functionality only allows you to add sections to the linker script, not to remove something
that the managed linker script already puts in. Thus if you need to remove part of the contents
of the generated linker script — then you still need to modify the underlying FreeMarker linker
script templates.

Finally, remember that the GNU linker script mechanism functions such that the first match
encountered for a section wins (not the best match found). Thus this mechanismis just a request,
not a guarantee. Always check the generated linker script and the map file output by the link
step to confirm the expected placement of sections. In some problem cases, you may be able

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 245

https://sourceware.org/binutils/docs/ld/Input-Section-Basics.html

NXP Semiconductors MCUXpresso IDE User Guide

20.13.2

20.13.3

UG10055

to force the required placement by use of an EXCLUDE in one memory region, as well as the
section in the required region.

Placing data into different RAM blocks using macros

Many MCUs provide more than one bank of RAM. By default, the managed linker script
mechanism places all of the application data and bss (as well as the heap and stack) into the
first bank of RAM.

However, itis also possible to place specific data or bss items into any of the defined banks for the
target MCU, as displayed in the Memory Configuration Editor, by decorating their definitions in
your source code with macros from the cr_section_macros.h MCUXpresso IDE supplied header
file

For simplicity, the additional memory regions are named sequentially, starting from 2, so RAM2,
RAM3, and so on (as well as using their “formal” region name — for example, RamAHB32).

For example, the LPC1768 has a second bank of RAM at address 0x2007c000. The managed
linker script mechanism creates a data (and equivalent bss) load section for this region thus:

.data_RAM2 : ALI G\N(4)
{
FI LL(Oxff)
(. dat a. $RAMR)
* (. dat a. $RamAHB32*)
} > RamAHB32 AT>MFl ash512

To place data into this section, you can use the _ DATA macro, thus:

/1l create an unitialised 1k buffer in RAM2
__DATA(RAMR) char data_buffer[1024];

Or the _ BSS macro:

/] create a zero-init buffer in RAM2
__BSS(RAMR) char bss_buffer[128];

In some cases, you might need a finer level of granularity than just placing a variable into a
specific memory bank, and rather need to place it at a specific address. In such a case you
could then edit the predefined memory layout for your particular project using the “Memory
Configuration Editor” to divide up (and rename) the existing banks of RAM. This then allows
you to provide a specific named block of RAM into which to place the variable that you need at
a specific address, again by using the attribute macros provided by the “cr_section_macros.h”
header file.

Noinit memory sections

Normally global variables in an application end up in either a “.data” (initialized) or “.bss” (zero-
initialized) data section within your linked application. Then when your application starts
executing, the startup code automatically copies the initial values of the “.data” sections from
Flash to RAM, and zero-initialize “.bss” data sections directly in RAM.

The managed linker script mechanism of MCUXpresso IDE also supports the use of “.noinit” data
within your application. Such data is similar to “.bss” except that it does not get zero-initialized
during startup.

Note: Great care must be taken when using “.noinit” data such that your application code makes
no assumptions about the initial value of such data. This normally means that your application

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 246

NXP Semiconductors MCUXpresso IDE User Guide

code needs to explicitly set up such data before using it — otherwise, the initial value of such a
global variable is basically random (that is, it depends upon the value that happens to be in RAM
when your system powers up).

One common example of using such .noinit data items is in defining the frame buffer stored in
SDRAM in applications which use an onchip LCD controller (for example NXP LPC178x and
LPC408x parts).

Making global variables Noinit

The linker script generated by the managed linker script mechanism of the IDE contains a section
for each RAM memory block to contain “.noinit” items, as well as the “.data” and “.bss” items.
Note: For a particular RAM memory block, all “.data” items are placed first, followed by “.bss”
items, and then “.noinit” items.

However, normally for a particular RAM memory block where you are going to put “.noinit” items,
you would actually be making all of the data placed into that RAM “.noinit”.

The “cr_section_macros.h” header file then defines macros which can be used to place global
variables into the appropriate “.noinit” section. First of all, include this header file:

#i ncl ude <cr_section_nacros. h>

The _ NOINIT macro can then be used thus:

/] create a 128 byte noinit buffer in RAM2
__NO NIT(RAM2) char noinit_buffer[128];

And if you want “.noinit” items placed into the default RAM bank, then you can use the
__NOINIT_DEF macro thus:

/] create a noinit integer variable in the main bl ock of RAM
__NO NIT_DEF int noinit_var ;

20.13.4 Placing code/rodata into different FLASH blocks
Most MCUs only have one bank of Flash memory. But with some parts more than one bank may
be available — and in such cases, by default, the managed linker script mechanism still places
all of the application code and rodata (consts) into the first bank of Flash (as displayed in the
Memory Configuration Editor).
For example:
¢ most of the LPC18 and LPC43xx parts containing internal Flash (such as LPC1857 and
LPC4357) actually provide dual banks of Flash
« some MCUs have the ability to access external Flash (typically SPIFI) as well as their built-in
internal Flash (for example, LPC18xx, LPC40xx, LPC43xx, LPC546xx)
However, it is also possible to place specific functions or rodata items into the second
(or even third) bank of Flash. This placement is controlled via macros provided in the
"cr_section_macros.h" header file.
For simplicity, the additional Flash region can be referenced as Flash2 (as well as using its
“formal” region name — for example, MFlashB512 — which varies depending on the part).
First of all, include this header file:
#i ncl ude <cr_section_nacros. h>
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 247

NXP Semiconductors MCUXpresso IDE User Guide

Then, for example, to place a rodata item into this section, you can use the __ RODATA macro,
thus:

__RODATA(Fl ash2) const int roarray[] = {10, 20, 30, 40, 50};

Or to place a function into it you can use __ TEXT macro:

__TEXT(Fl ash2) void systick_delay(uint32_t del ayTicks) {

In addition, you can use the _ RODATA_EXT and __ TEXT_EXT macros to place functions/
rodata into a more specifically named section, for example:

__ TEXT_EXT(Fl ash2, systi ck_del ay) void systick_del ay(uint32_t del ayTi cks) {

is placed into the section “.text.$Flash2.systick_delay” rather than “.text.$Flash2”.

20.13.5 Placing specific functions into RAM blocks

In most modern MCUSs with built-in Flash memory, code is normally executed directly from Flash
memory. Various techniques, such as prefetch buffering are used to ensure that code executes
with minimal or zero wait states, even a higher clock frequencies. Please see the documentation
for the MCU that you are using for more details.
However, it is also possible to place specific functions into any of the defined banks of RAM for
the target MCU, as displayed in:
Project -> Properties -> C/C++ Build -> MCU settings
and sometimes there can be advantages in relocating small, time-critical functions so that they
run out of RAM instead of Flash.
For simplicity, the additional memory regions are named sequentially, starting from 2, (as well
as using their “formal” region name — for example, RamAHB32). So for a device with 3 RAM
regions, alias names RAM, RAM2, and RAM3 will be available.
This placement is controlled via macros provided in a header file which can be pulled into your
project using:

#i ncl ude <cr_section_nacros. h>
The macro _ RAMFUNC can be used to locate a function in a specific RAM region.
For example, to place a function into the main RAM region, use:

__RAMFUNC(RAM) void fooRAMvoid) {...
To place a function into the RAM2 region, use:

__RAMFUNC(RAMR) voi d fooRAM2(void) {...
Alternatively, RAM can be selected by formal name (as listed in the memory configuration editor),
for example:

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 248

NXP Semiconductors MCUXpresso IDE User Guide

20.13.6

20.14

UG10055

__RAMFUNC(RamAHB32) voi d Handl erRAMvoid) {...

To initialize RAM-based code (and data) into specified RAM banks, the managed linker script
mechanism creates a “Global Section Table” in your image, directly after the vector table. This
contains the addresses and lengths of each of the data (and bss) sections so that the startup
code can then perform the necessary initialization (copy code/data from Flash to RAM).

Long branch veneers and debugging

Due to the distance in the memory map between Flash memory and RAM, you typically require
a “long branch veneer” between the function in RAM and the calling function in Flash. The linker
can automatically generate such a veneer for direct function calls, or you can effectively generate
your own by using a call via a function pointer.

One point to note is that debugging code with a linker-generated veneer can sometimes cause
problems. This veneer does not have any source-level debug information associated with it, so
if you try to step in to a call to your code in RAM, typically the debugger steps over it instead.

You can work around this by single stepping at the instruction level, setting a breakpoint in your
RAM code, or by changing the function call from a direct one to a call via a function pointer.

Reducing code size when support for LPC CRP or Kinetis Flash
Config Block is enabled

One of the consequences of the way that LPC CRP and Kinetis Flash Configuration Blocks work
is that the memory between the vector table of the CPU and the CRP word/ Flash Config Block is
often left largely unused. This can typically increase the size of the application image by several
hundred bytes (depending upon the MCU being used).

However, you can easily reclaim this unused space by choosing one or more functions to be
placed into this unused memory. To do this, you simply need to decorate their definitions with
the macro __ AFTER_VECTORS which is supplied in the “cr_section_macros.h” header file

Obviously, to do this effectively, you need to identify functions which will occupy as much of this
unused memory as possible. The best way to do this is to look at the linker map file.

MCUXpresso IDE startup code already uses this macro to place the various initialization functions
and default exception handlers that it contains into this space, thus reducing the ‘default’ unused
space. But you can also place additional functions there by decorating their definitions with the
macro, for example

__AFTER VECTORS voi d nyStartupFunction(void);

Note: you get a link error if the _ AFTER_VECTORS space grows beyond the CRP/Flash
Configuration Block (when this support is enabled):

nyproj _Debug. | d: 98 cannot nove |ocation counter backwards (from 00000334
to 000002f c)

collect2: Id returned 1 exit status

make: *** [nyproj.axf] Error 1

In this case, you need to remove the __ AFTER_VECTORS macro from the definition of one or
more of your functions.

FreeMarker linker script templates

By default, MCUXpresso IDE projects use a managed linker script mechanism which
automatically generates a linker script file without user intervention — allowing the project code

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 249

NXP Semiconductors MCUXpresso IDE User Guide

20.14.1

and data to be laid out in memory based on the IDE’s knowledge of the memory layout of the
target MCU.

However, sometimes the linker script generated in this way may not provide exactly the memory
layout required. MCUXpresso IDE therefore provides a highly flexible and powerful linker script
template mechanism to allow the user to change the content of the linker script generated by
the managed linker script mechanism

Basics

FreeMarker is a template engine: a generic tool to generate text output (HTML web pages, e-
mails, configuration files, source code, and so on) based on templates and changing data. Built
into MCUXpresso IDE is a set of templates that are processed by the FreeMarker template engine
to create the linker script. Templates are written in the FreeMarker Template Language (FTL),
which is a simple, specialized language, not a full-blown programming language like PHP. Full
documentation for FreeMarker can be found at https://freemarker.org/docs/index.html.

MCUXpresso IDE automatically invokes FreeMarker, passing it a data model that describes
the memory layout of the target together with a ‘root’ template that is processed to create the
linker script. This root template, #includes further ‘component’ templates. This structure allows
a linker script to be broken down into various components and allows a user to provide their
own templates for a component, instead of having to (re-)write the whole template. For example,
component templates are provided for text, data, and bss sections, allowing the user to provide
different implementations as necessary, but leaving the other parts of the linker script untouched.

MCUXpresso IDE Project

Target System User
Definition Templates Templates

Freemarker
Template engine

Linker script

20.14.2 Reference

UG10055

FreeMarker reads input files, copies text and processes FreeMarker directives and ‘variables’,
and writes an output file. As used by the managed linker script mechanism of MCUXpresso IDE,
the input files describe the various components of a linker script which, together with variables
defined by the IDE, are used to generate a complete linker script. Any of the component template
input files may be overridden by providing a local version in the project.

The component template input files are provided as a hierarchy, shown below, where each file
#includes those files nested below. This allows for individual components of the linker script to be
overridden without having to supply the entire linker script, increasing flexibility, while maintaining
the benefits of Managed Linker Scripts.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 250

https://freemarker.org/docs/index.html

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

Linker script template hierarchy

linkscript.ldt (top level)

user.ldt (an empty file designed to be overridden by users that is included in linkscript, memory,
and library templates)

user_linkscript.ldt (an empty file designed to be overridden by users that is included in
linkscript only)

linkscript_common.ldt (root for main content)

header.ldt (the header for scripts)

« listvars.Idt (a script to output a list of all predefined variables available to the template)

includes.Idt (includes the memory and library scripts)

section_top.ldt (top of the linker script SECTION directive)

sgstubs_fixed.ldt (allow absolute veneer table for TrustZone application)

text_section.Idt (text sections for each secondary Flash)

» text_section_multicore.ldt (text sections for multicore targets)
 text_section_multicore_checks_partfamily.ldt (part-specific sanity checks)

» extrasections_text.ldt ()

* text.Idt (for inserting *text)

« extrasections_rodata.ldt ()

 rodata.ldt (for inserting rodata)

boot_hdr.Idt (allows placement of optional header before main code section)
* boot_hdr_partfamily.ldt

main_text _section.ldt (the primary text section)

» global_section_table.ldt (the global section table)

« crp.ldt (the CRP information)

« flashconfig.ldt (flash security prototype)

+ extrasections_text.ldt ()

¢ main_text.ldt (for inserting *text)

e extrasections_rodata.ldt ()

« freertos_debugconfig.ldt (to force placement of FreeRTOSDebugConfig rodata section)
e main_rodata.ldt (read-only data)

e cpp_info.ldt (additional C++ requirements)

exdata.ldt (placement of LPCXpresso style exdata sections)
sgstubs.Idt (allow absolute veneer table for TrustZone application)
end_text.Idt (end of text marker)
usb_ram_section.Idt (placement of SDK USB data structures)
stack_heap_sdk_start.ldt (placement of MCUXpresso style heap/stack)
data_section.ldt (data sections for secondary ram)
» data_section_multicore.ldt (data sections for multicore targets)

» data_section_multicore_checks_partfamily.ldt (part-specific sanity checks)
* extrasections_data.ldt ()
 data.ldt (for inserting *data)

mtb_default_section.ldt (special section for MTB (cortex-m0+ targets)
uninit_reserved_section.Idt (uninitialized data)

main_data_section.ldt (primary data section)
 extrasections_data.ldt ()

« main_data.ldt (for inserting *data)

ecrp.ldt (Enhanced Code Read Protection support)
bss_section.ldt (secondary bss sections)

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 251

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

» extrasections_bss.Idt ()
 bss.Idt (for inserting *bss)

¢ main_bss_section.ldt primary bss section)
» extrasections_bss.Idt ()
* main_bss.Idt (for inserting *bss)

¢ noinit_section.ldt (no-init data)
« extrasections_noinit.Idt ()

 noinit_noload_section.ldt (no-load data)
e exdata_sdk.ldt (placement of MCUXpresso style exdata sections)
» data_section_exceptions_multicore_sdk.ldt (additional multicore exdata sections
information)
« text _section_exceptions_multicore_sdk.ldt (additional multicore exdata sections
information)

e stack_heap_sdk_postdata.ldt (placement of MCUXpresso style heap/stack)
» stack_heap_sdk_end.ldt (placement of MCUXpresso style heap/stack)
¢ stack_heap.ldt (define the stack and heap)
e checksum.ldt (create the LPC checksum)
e image_size.ldt (provide basic symbols giving location and size of image)
« symbols.Idt (provide additional symbols needed to built image)
e symbols_partfamily.ldt (part specific “symbol”)

¢ section_tail.ldt (immediately before the send of linker SECTION directive)

library.ldt (the standard libraries used in the application)

 user.ldt (an empty file designed to be overridden by users that is included in linkscript, memory,
and library templates)
e user_library.ldt (an empty file designed to be overridden by users that is included in library only)

memory.ldt (the memory map)

« user.ldt (an empty file designed to be overridden by users that is included in linkscript, memory,
and library templates)
e user_memory.ldt (an empty file designed to be overridden by users that is included in memory

only)

Linker script search paths

Whenever a linker script template is used, MCUXpresso IDE searches in the following locations,
in the order shown:

* project/linkscripts

¢ The searchPath global variable
» The searchPath can be set in a script by using the syntax <#global searchPath="c:/windows/
path;d:/another/windows/path”>

» Each directory to search is separated by a semicolon ';'

* mcuxpresso_install_dir/ide/Data/Linkscripts
» Linker templates can be placed in this directory to override the default templates for an entire
installation

« MCUXpresso IDE internally provided templates (not directly visible to users)

Thus, a project can simply override any template by simply creating a linkscript directory within
the project and placing the appropriate template in there. Using the special syntax “super@” an
overridden template can reference a file from the next level of the search path

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 252

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

for example, <#include “super@user.ldt">
Linker script templates

Copies of the default linker script templates used within MCUXpresso IDE can be accessed
through the /LinkServer symbolic link found inside the IDE installation, more specifically /
LinkServer/Wizards/linker. Note that the templates are part of the external LinkServer package.
These can be used as the basis of any project local scripts you wish to write.

Predefined variables (macros)
List (sequence) variables (used in #list)

librariesl]

« list of the libraries to be included in the “lib” script
» for example (Redlib nohost)

libraries[0]=libcr_c.a
libraries[1] =libcr_eabihel pers. a

configMemory][] list of each memory region defined in the memory map for the project. Each
entry has the following fields defined

e name — the name of the memory region

« alias — the alias of the memory region

* location — the base address of the memory

» size — the size of the memory region

 sizek — the printable size of the memory region in k or M

* mcuPattern

» defaultRAM — boolean indicating if this is the default RAM region
» defaultFlash — boolean indication if this is the default Flash region
* RAM - boolean indicating if this is RAM

¢ Flash — boolean indicating if this is Flash

for example:

confi gMenory[0] = name=MFl ashA512 al i as=Fl ash | ocati on=0x1a000000
si ze=0x80000 si zek=512K byt es ntuPattern=Fl ash fl ash=true RAM-fal se
def aul t Fl ash=true defaul t RAM=f al se

confi gMenory[2] = nanme=RanlLoc32 al i as=RAM | ocat i on=0x10000000
si ze=0x8000 si zek=32K byt es ntuPattern=RAM f| ash=f al se RAM:true
def aul t Fl ash=f al se def aul t RAM=t r ue

Slaves]] list of the Secondaries in a Multicore project. This variable is only defined in Multicore
projects. Each entry has the following fields defined

¢ name — name of the Secondary reference

¢ enabled — boolean indicating if this Secondary reference is enabled

« objPath — path to the object file for the Secondary image

« linkSection — name of the section this Secondary entity is to be linked in
e runtimeSection

 textSection — name of the text section

¢ textSectionNormalized — normalized name of the text section

¢ dataStartSymbol — name of the Symbol defining the start of the data

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 253

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

« dataEndSymbol — name of the Symbol defining the end of the data

for example:

sl aves[0] = nane=MDAPP obj ect Pat h=${ wor kspace_| oc: / MCB4357_Bl i nky_Dual M)/ Debug
/ MCB4357_Bl i nky_Dual M. axf. o}l i nkSecti on=Fl ash2 runti neSecti on= text Secti on=
.core_nDapp text SectionNornmal i zed=_core_nDappdata Start Synbol =__start_data

dat aEndSynbol =__end_dat a enabl ed=true; </ notextil e>

Simple variables include:

CODE - name of the memory region to place the default code (text) section
CRP_ADDRESS - location of the Code Read Protect value

DATA — name of the memory region to place the default data section
LINK_TO_RAM — value of the “Link to RAM” linker option
STACK_OFFSET - value of the Stack Offset linker option

FLASHnN — defined for each FLASH memory

RAMnN — defined for each RAM memory

basename — internal name of the process

bss_align — alignment for .bss sections

buildConfig — the name of the configuration being built

chipFamily — the chip family

chipName — name of the target chip

data_align — alignment for .data section

date — date string

heap_symbol — name of the symbol used to define the heap

isCppProject — boolean indicating if this is a C++ project

isSlave — boolean indicating if this target is a Secondary — true if is a secondary core in a
multicore system

library_include — name of the library include file

libtype — C library type

memory_include — name of the memory include file

mtb_supported — boolean indicating if mtb is supported for this target
numCores — number of cores in this target

procName — the name of the target processor

project — the name of the project

script — name of the script file

slaveName — is the name of the Secondary (only present for Secondaries)
stack_section — the name of the section where the stack is to be placed
start_symbol — the name of the start symbol (entry point)

scriptType — the type of script being generated (one of “script”, “memory”, or “library”)
text_align — alignment for .text section

version — product version string

workspace_loc — workspace directory

year — the year (extracted from the date)

Extended variables
Two ‘extended’ variables are available:

environment

« The environment variable makes the host Operating System environment variables available.

For example, the Path variable is available as ${environment[“Path"]}.

Note: Environment variables are case-sensitive.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 254

NXP Semiconductors MCUXpresso IDE User Guide

systemProperties

¢ The Java system properties are available through the systemProperties variable. For example,
the “os.name” system property is available as ${systemProperties[‘0s.name”]}. Note: System
properties are case-sensitive.

Outputting variables

A list of all predefined variables and their values can be output to the generated linker script
by setting the Preference: MCUXpresso IDE -> Default Tool settings -> ... and list predefined
variables in the script

A list of extended variables and their values can be output to the generated linker script by
creating a linkscripts/user.ldt file in the project with the content

<#assign |istvarsext=true>

(This is likely to be used less often, hence the slightly longer winded method of specifying the
option)

20.15 FreeMarker linker script template examples
The use of FreeMarker linker script templates allows more wide-ranging changes to be made to
the generated link script than is possible using the cr_section_macros.h macros. The following
examples provide some examples of this.
20.15.1 Relocating code from FLASH to RAM

If you have specific functions in your code base that you wish to place into a particular block
of RAM, then the simplest way to do this is to decorate the function definition using the macro
__RAMFUNC described earlier in this chapter.
However, once you want to relocate more than a few functions, or when you don’t have direct
access to the source code, this becomes impractical. In such cases, the use of FreeMarker linker
script templates is a better approach. The following sections provide a number of such examples.
Relocating particular objects into RAM
In some cases, it may be required to relocate all of the functions (and rodata) from a given object
file in your project into RAM. This can be achieved by providing three linker script template files
into a linkscripts folder within your project. For example, if it was required that all code/rodata
from the files foo.c and bar.c were relocated into RAM, then this could be achieved using the
following linker script templates:
main_text.ldt

*(EXCLUDE_FI LE(*f00.0 *bar.o) .text*)
main_rodata.ldt

*(EXCLUDE_FI LE(*f 00o. 0 *bar.o0) .rodata)

*(EXCLUDE_FI LE(*f00.0 *bar.0) .rodata.*)

*(EXCLUDE_FI LE(*f 00. 0 *bar.o0) .constdata)

*(EXCLUDE_FI LE(*f 00. 0 *bar.o0) .constdata.*)

. = ALIGN(${text_align});
main_data.ldt

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 255

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

foo.0(.text)

foo.o0(.rodata .rodata. .constdata .constdata.*)
bar. o(.text)

pbar.o(.rodata .rodata. .constdata .constdata.*)
. = ALIGN(${text_align});

(.data)

What each of these EXCLUDE_FILE lines (in main_text.Idt and main_rodata.ldt) is doing in
pulling in all of the sections of a particular type (for example .text), except for the ones from the
named object files. Then in main_data.ldt, we specify explicitly that the text and rodata sections
should be pulled in from the named object files. Note: that with the GNU linker, LD, the first
match found in the final generated linker script is always used, which is why the EXCLUDE_FILE
keyword is used in the first two template files.

Note: EXCLUDE_FILE only acts on the closest input section specified, which is why we have
4 separate EXCLUDE_FILE lines in the main_rodata.ldt file rather than just a single combined
EXCLUDE_LINE.

Once you have built your project using the above linker script template files, then you can check
the generated .Id file to see the actual linker script produced, together with the linker map file to
confirm where the code and rodata have been placed.

Relocating particular libraries into RAM

In some cases, it may be required to relocate all of the functions (and rodata) from a given library
in your project into RAM. One example of this might be if you are using a flashless LPC43xx
MCU with an external SPIFI Flash device being used to store and execute your main code from,
but you need to actually update some data that you are also storing in the SPIFI Flash. In this
case, the code used to update the SPIFI Flash cannot run from SPIFI Flash.

This can be achieved by providing three linker script template files into a linkscripts folder
within your project. For example, if it was required that all code/rodata from the library
MYLIBRARYPROJ were relocated into RAM, then this could be achieved using the following
linker script templates:

main_text.ldt

(EXCLUDE_FI LE(| i bMYLI BRARYPRQJ. a:) . text*)

main_rodata.ldt

* (EXCLUDE_FI LE(*1 i bMYLI BRARYPRQJ. a:) . rodat a)

* (EXCLUDE_FI LE(*1 i bMYLI BRARYPRQJ. a:) .rodat a. *)

* (EXCLUDE_FI LE(*1 i bMYLI BRARYPRQJ. a:) . const dat a)
* (EXCLUDE_FI LE(*1 i bMYLI BRARYPRQJ. a:) . const dat a. *)
. = ALIGN(${text_align});

main_data.ldt

*| i bMYLI BRARYPRQJ. a: (. t ext *)

| i bMYLI BRARYPRQJ. a: (.rodata .rodata. .constdata .constdata.*)
. = ALIGN(${text_align});

(.data)

Note: When extending this example to more than one library, please mind the semantics of the
EXCLUDE_FILE directive which is pulling in all of the sections of a particular type, except for
the ones from the named object files. Therefore, all of the library objects need to be specified

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 256

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

in EXCLUDE_FILE for a particular section type (in main_text.Idt and main_rodata.ldt templates).
For example:

* (EXCLUDE_FI LE(*I'i bMYLI BRARYPRQJ1. a *| i bMYLI BRARYPROJ2. a *| i bMYLI BRARYPRQJ3. a:) .text*)

On the other hand, the library objects in main_data.ldt template, since they are not using
EXCLUDE_FILE, need to be listed on separate lines:

*1 i bMYLI BRARYPRQJ1. a: (. t ext *)
*1 i bMYLI BRARYPRQJ2. a: (. t ext *)
*1 i bMYLI BRARYPRQJ3. a: (. t ext *)

Relocating the majority of an application into RAM

In some situations, you may wish to run the bulk of your application code from RAM — typically
just leaving the startup code and the vector table in Flash. This can be achieved by providing
three linker script template files into a linkscripts folder within your project:

main_text.ldt

startup_.o (.text.*)
*(.text. min)
*(.text.__main)

main_rodata.ldt

startup_.o (.rodata .rodata.* .constdata .constdata.*)
. = ALIGN(${text_align});

main_data.ldt

(.text)

(.rodata .rodata. .constdata .constdata.*)
. = ALIGN(${text_align});

(.data)

The above linker template scripts causes the main body of the code to be relocated into the
main (first) RAM bank of the target MCU, which by default also contains data/bss, as well as
the stack and heap.

Important Note: The code that performs this relocation is executed early within the reset handler
(within startup_xx file). However, there is the potential for other critical functions to be called
before this relocation is performed, for example, Systeminit() may be called first to perform
essential operations such as enabling RAM!

Any function that is called before the relocation is performed must not itself be relocated! For the
specific case above, the following changes to main_text.Idt and main_rodata.ldt are required:

main_text.Idt

startup_.o (.text.*)
system.o (.text.*)
*(.text. main)
*(.text.__main)

main_rodata.ldt

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 257

NXP Semiconductors MCUXpresso IDE User Guide

20.15.2

UG10055

startup_.o (.rodata .rodata.* .constdata .constdata.*)
system.o (.rodata .rodata.* .constdata .constdata.*)
. = ALIGN(${text_align});

Finally, If the MCU being targeted has more than one RAM bank, then the main body of the code
could be relocated into another RAM bank instead. For example, if you wanted to relocate the
code into the second RAM bank, then this could be done by providing the following data.ldt file
instead of the main_data.ldt above:

data.ldt

<#i f menory. al i as==" RAM2" >

(.text)

(.rodata .rodata. .constdata .constdata.*)
. = ALIGN(${text_align});

</ #if>

(.data. $${nenory. al i as})

*(.dat a. $${ nenory. nane} *)

Note: memory.alias value is taken from the Alias column of the Memory Configuration Editor.

Configuring projects to span multiple Flash devices

Most MCUs only have one bank of Flash memory. But with some parts more than one bank may
be available — and in such cases, by default, the managed linker script mechanism still places
all of the application code and rodata (consts) into the first bank of Flash (as displayed in the
Memory Configuration Editor).

For example

¢ most of the LPC18 and LPC43xx parts containing internal Flash (such as LPC1857 and
LPC4357) actually provide dual banks of Flash.

* some MCUs have the ability to access external Flash (typically SPIFI) as well as their built-in
internal Flash (for example, LPC18xx, LPC40xx, LPC43xx, LPC546xx).

The macros provided in the “cr_section_macros.h” header file provide some ability to control the
placement of specific functions or rodata items into the second (or even third) bank of Flash.
However, the use of FreeMarker linkers script templates allows this to be done in a much more
powerful and flexible way.

One typical use case for this is a project which stores its main code and data in internal Flash,
but additional rodata (for example graphics data for displaying on an LCD) in the external SPIFI
Flash.

For instance, consider an example project where such rodata is all contained in a set of specific
files, which we therefore want to place into the external Flash device. One very simple way to do
this is to place such source files into a separate source folder within your project. You can then
supply linker script templates to place the code and rodata from these files into the appropriate
Flash.

For example, for a project using the LPC4337 with two internal Flash banks, plus external SPIFI
Flash, if the source folder used for this purpose were called ‘spifidata’, then placing the following
files into a linkscripts directory within your project would have the desired effect:

text.ldt

<#if menory.alias=="Fl ash3">
*spifidatal/ *(.text*)

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 258

NXP Semiconductors MCUXpresso IDE User Guide

20.16

UG10055

</ #if>

(.text_${nenory.alias}) /* for conpatibility with previous rel eases */
(.text_${nenory.nane}) /* for conpatibility wth previous releases */
(.text.$${nenory. al i as})

(.text.$${nenory. nane})

rodata.ldt

<#i f menory.alias=="Fl ash3">
spi fidatal(.rodata*)

</ #if>

(rodata. $${menory. al i as})
*(rodat a. $${ menory. nane} *)

Note: the check of the memory.alias being Flash3 is to prevent the code/rodata items from ending
up in the BankB Flash bank (which is Flash2 by default).

Disabling managed linker scripts

It is possible to disable the managed linker script mechanism if required and provide your own
linker scripts, but this is not recommended for most users. In most circumstances, the facilities
provided by the managed linker script mechanism, and its underlying FreeMarker template
mechanism should allow you to avoid the need for writing your own linker scripts. But if you do
wish to do this, then untick the appropriate option at:

Properties -> C/C++ Build -> Settings -> MCU Linker -> Managed Linker Script

And then in the field Script Path provide the name and path (relative to the current build directory)
of your own, manually maintained linker script.

In such cases you can either create your own linker script from scratch, or you can use the
managed linker scripts as a starting point. One very important point though is that you are advised
not to simply modify the managed linker scripts in place, but instead to copy them to another
location and modify them there. This prevents any chance of the tools accidentally overwriting
them if, at some point in the future, you turn the managed make script mechanism back on.

Note: if your linker script includes additional files (as the managed linker scripts do), then you
also need to include the relative path information in the include inside the top-level script file.

For more details on writing your own linker scripts, please see the GNU Linker (Id) documentation:
Help -> Help Contents -> Tools (Compilers, Debugger, Utilities) -> GNU Linker

There is also a good introduction to linker scripts available in Building Bare-Metal ARM Systems
with GNU: Part 3 at:

https://www.embedded.com/design/mcus-processors-and-socs/4026080/Building-Bare-Metal-
ARM-Systems-with-GNU-Part-3

See also the section on to review editor assistance when
manually creating Linker Scripts.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 259

https://www.embedded.com/design/mcus-processors-and-socs/4026080/Building-Bare-Metal-ARM-Systems-with-GNU-Part-3
https://www.embedded.com/design/mcus-processors-and-socs/4026080/Building-Bare-Metal-ARM-Systems-with-GNU-Part-3

NXP Semiconductors MCUXpresso IDE User Guide

21. Multicore projects

21.1

UG10055

Additional information can be found our the MCUXpresso IDE Community pages specifically see
the blog articles:

LPC55xx Multicore Applications with MCUXpresso IDE, and also the article: Using LPC55S69
SDK Trustzone examples with MCUXpresso IDE v11.0.0

Introduction

Multicore MCUs can be designed in many ways, however, within MCUXpresso IDE there is an
underlying expectation that one core (the Primary) controls the execution (or at least the startup)
of code running on other (Secondary) core(s).

Multicore application projects as described below consist of two (or more) linked projects — one
project containing the code of the Primary core and the other project(s) containing the code of
the Secondary core. The ‘Primary’ project contains a link to the ‘Secondary’ project which causes
the output image from the ‘Secondary’ to be included into the ‘Primary’ image when the Primary
project is built. Building the Primary project triggers the Secondary project to be built first.

After a power-on or Reset, the Primary core boots and is then responsible for booting the
Secondary core. However, this relationship only applies to the booting process; after boot, an
application may treat either of the cores as Primary or Secondary.

For this concept to work, the memory configurations of these related projects must be
carefully managed to avoid unintended overlap or contention. One way to achieve this is
by linking the Secondary application to execute entirely from a RAM location unused by
the Primary. Our automatic linkerscript generation then locates the code of the Secondary
within the generated image of the Primary, this code is relocated to the correct RAM
location by the initialization code of the Primary project at run time.

In practice, the memory configuration of the Primary project is the same as for a single core
project, whereas the memory configuration of the Secondary project is set to use a ‘spare’ or
dedicated Secondary RAM region. In addition, a shared region may be used for communication
between the CPUs.

Note: MCUs supporting dedicated Flash regions for each core can also be supported by this
scheme, in such cases the Secondary project would simply be linked to the Secondary core’s
Flash location.

To complete the story ... the Primary project is debugged first, which leads to the combined
image being programmed into Flash and the Primary code executed. The initialization code of
the Primary core copies (in addition to other things) the code of the Secondary core into RAM
(if appropriate) and then stops on Main. When the Secondary project is debugged, the launch
configuration is automatically set to ‘Attach’ by the IDE since there is no need for this code to be
programmed/downloaded by the debugger. When the Primary application is resumed, it releases
the Secondary core and both projects can be debugged as required.

Important Note: Multicore MCUs may offer significant flexibility in how they can be used. The
mechanism described above (as used in example projects) is not necessarily the only way (or
even the best way) for a user’'s multicore projects to be configured. However, it has been chosen
as the simplest and safest way to demonstrate the concepts and issues involved.

MCUXpresso IDE allows for the easy creation of “linked” projects that support the targeting of
Multicore MCUs.

The rest of this chapter describes the use of the LPC5411x multicore MCU, however, the

concepts discussed are the same (or similar) for other multicore MCUs such as the LPC43xx
and LPC5410x.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 260

https://community.nxp.com/community/mcuxpresso/mcuxpresso-ide/

NXP Semiconductors

MCUXpresso IDE User Guide

21.2 Creating a primary/secondary project pair (using an SDK)

The example described below is based on the LPC5411x multicore MCU using the

LPCXpresso54114 SDK.

Note: Be sure to have installed the LPCXpresso54114 SDK into MCUXpresso IDE if you wish

to follow this example.

21.2.1 Creating the MO Secondary project

As discussed above, the configuration of the Primary project needs to reference the Secondary
project, therefore the Secondary project should be created first.

Launch the New Project Wizard and select the LPCXpresso54114 SDK board. Entering 54114
into the boards filter reduces the number of boards to help selection, then click Next.

B soK Wizard

(D) Creating project for device: LPCS41 141256 with no baard.

. Board and/or Device selection page

B ottt

MCUs from installed SOKs. Please click Please select an available board for your project
above or visit maupresse nxp.cam o
obtain additional SDKs.

NP LPC541121256
w LPCS411x

LPCS41141256

[Supported boards for device: LPC541141256

= Preinstalled MOUs
MCUs from preinstalled LPC and
generic Cortex-M part suppern
Target ~
LPCT102
LPC112x
LPC11dxx
LPC11E6x
LPC11E
LPC1 T
LPC 1 ey
LPCT T
LPC T Tl

w

Selected Device: LPC54114J256 with no board.

Target Core: multicore device with cones: cortex-m0plus cortex-m4
Description: Low Power 32-bit Microcontroller based on ARM Cortex-hd

Figure 21.1. New Project Wizard SDK MultiCore MO

o x
MO =
» P~
!‘32 .I.J: 1
-
:
SDKs for selected MOU
MName DK Verzion Manifest V.. Lecation
i SDK_ 2. _| PCrpresso54114 2,82 (376.202(3.60 t <Commaon=\SDK_2.8.2 | PCXpres:
: . &

From the next wizard page, select the cmOplus Core, and see that the MOSLAVE is selected in
the core options. Also, note that the project is automatically given the suffix MOSLAVE. Drivers,
utilities, and so on can be selected at this stage for the Secondary project if required.

UG10055 All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

261

NXP Semiconductors

MCUXpresso IDE User Guide

B 50K wizard

. Configure the project

Project name: | LPC54114_Project

[#] Use default location

sersynxf855 16

Device Packages
(@) LPCS411412568D64
() LPC54114)256UK49

i The source from the SDK will be copied inta the workspace. If you want to use linked files, please ungzip the "SDK_2.x_LPCXpresso54114° SDK

* | Project name suffioc | MOSLAVE

alphalworkspace\LPC54114_Project

Board

'@‘.— Default board files
() Empty board files

Project Type

® C Project (O C++ Project
(0 € Static Library () C++ Static Library

Project Options.
SDK Debug Console () Semihost @ UART

LOopY sources
] Import other files

Cores

emOplus Role: MOSLAVE ~

Components x| =

Add or remow

e SDK software components

type to filter

Mame Description Version Info
[] & Abstraction Layer
[& Board Components
[& cM3IS Drivers
CMSIS Include
[W] & Orivers
[& Middieware
v [4] B Operating Systems
[@ baremetal
m o Dthers
» [m] & Project Template
(] & Software Components
[m] 2 Unilities

Middleware baremetal 1.0.0

< Back Cancel

Figure 21.2. New Project Wizard SDK MO secondary

Next, the MO Secondary memory configuration needs to be set.

Note: The managed linker script mechanism of MCUXpresso IDE defaults to link code to the first
Flash region in this view (if one exists) and use the first RAM region for data, heap, and stack.

To force our project to link to a private area of RAM, we must ensure that the Flash region is
removed and the chosen RAM bank is at the top of the list of memory regions. Note here that the
SDK we are using has presented the RAM regions in a non-sequential order. In this example,
we configure the memory so that the MO Secondary project links to the RAM region starting at
address 0x20010000 (the first region).

UG10055

User Guide

All information provided in this document is subject to legal disclaimers

Rev. 11.9.0 — 5 January, 2024

© 2024 NXP Semiconductors. All rights reserved.

262

NXP Semiconductors MCUXpresso IDE User Guide

B soK wizard o X
Ts-i{ =
Y a -
. Advanced project settings
= C/C++ Library Settings
Set library type {and hosting variant) pedih {semihost-nf) w
] Rediib: Use floating point version of printf
[[] Redfit: Wse character rather than string based printf
[Redirect SDK "PRINTF" to C library "printf™ Redire ank to TV
4 Inchude semihast HardFault handler] Redirect printf/scanf to UART
= MECU € Compiler
Language standard | Compiler default bod
= MCU Linker
[Link application to RAM
= Memory Confguration
Memaory details
Default LinkServer Flash Drives | | Browse..
Type Hame Alias Location Size Driver
I Flash PROGRAM FLASH Flash 0 D 405000 LPT541 b 56K ch
RAM SRam RAM l (0 20010000 I Coe 10000
RAM SRAMD RAM2 020000000 O 10000
RAM SRAMX RANM3 T 4000000 D BO00
Rt SRAM2 RAKA O 20020000 CooBOOD
Add Flash | | Add RAM Splt dour Import.. Merge..| | Export. Geneisie
. - — . -

Figure 21.3. New Project Wizard SDK MO secondary memory

21.2.2

UG10055

From this wizard, select the PROGRAM_FLASH and click Delete to remove the region. Ensure
that the top RAM region has the base address (location) 0x20010000, then click Finish to
complete the creation of the Secondary project.

Tip
@ Memory regions can be reordered by selecting a region and using the up/down
arrows to move the selected region.

Creating the M4 Primary project

To create the Primary project, launch the New Project Wizard and again select the
LPCXpresso54114 SDK board, and click Next. This time, select the cm4 Core, and click the
MASTER check box, this configures the wizard to create a Multicore project. Note that the
Project is automatically given the suffix MASTER.

Drivers, utilities, and so on, can be selected at this stage for the Primary project if required.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 263

NXP Semiconductors MCUXpresso IDE User Guide

B soK Wizard

. Configure the project

Project name: | LPC54114_Project * | Project name suffix] MASTER

[l Use default location

sersimefas5

Device Packages Board Project Type
@ LPCS41141256BD64 (® Default board files @ C Project () C++ Project
ok . :
O LPCS4114)256UK49 () Empty board files)€ static Library () C++ Static Library

Cores

cm4 et Role: | Master .

Components

Add or remove SDK software components

Description

= |[=
&

FOmO00 2

Abstraction Layer

£ Board Components
CMSIS Drivers

£ CMSIS Include

= Drivers

= Middleware
Operating Systems

% baremetal Middleware baremetal

% Others

m| = Project Template

¢ Software Components

£ Utilities

=] [m] [m] (=]

Figure 21.4. New Project Wizard SDK M4 primary

!\ The source from the SDK will be copied into the workspace. If you want to use linked files, please unzip the "SDK_2.x_LPCXpresso54114° SDK.

m] b4
™) €
a —,

Project Options
SDK Debug Console () Seminhost @ UART

Copy sources
[l import other files

Version Info

1.00

@ < Back Finish Cancel

Next, the memory configuration of the M4 Primary project needs to be set. Typically we might
leave the memory setting unaltered, however, the SDK we are using presents the RAM regions
in a non-sequential way. In this example, we wish to select the RAM region at 0x20000000 for
the Primary projects data and the Flash at 0x0 for the Primary projects code (and also a copy

of the Secondary projects code)

Note: MCUXpresso IDEs managed linker script mechanism defaults to link code to the first Flash

region in this view (if one exists) and use the first RAM region for data, heap, and stack.

UG10055 All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

264

NXP Semiconductors MCUXpresso IDE User Guide

13 son Wizasd o x

€3 Plesse select a shave project to fink for multicore projects! x | .l I

. Advanced project settings

» G+ s Librany Settings
Sek library type (and hosting vanent] | pediik (semihest-nf) w

] Redlit: Use flaating peint verion of prntf P
(] Readlib: Use character rather than string bazed prirtf He U= g point

= Relinect SOK “PRINTF to € liksary *printi” [0 Reeiresct peintfy scamf te TR
&1 Include semihost HardFault handler) Reedirect printfiscant to UART

= Hardware settings

Set Floating Point type | £p.4-5P (Hard ABI) -
= MCU C Compiles

Language standard | Compiler default
= MCU Linker

] Link apglication to RAM

= Memory Configuration

Memiory details
Default LirkServer Flash Driver | | Browse
Type Hame Alias Location Size: Driver i
Hish PROGRAM FLASH Flash o] 040000 LPCHE11x 236K, of
RAzA SRAMIT Rt 20010000 O 10000
RAM SRAMD RAMZ D 20000000 D 10000
RAM SRAMX Rz 000000 [8000
RAM SRAMZ2 Rk 20020000 CxBODD
Add Flash | Add RAM Spiit | | loin | Delete Import_. | | Merge | | Export... | Generate

= Multicore slave projects settings
Optionally sllow am exeting slave project to be associated with this praject

Slave project for MOSLAVE mlt Section w

& By default, the slave smages will be placed m the RAME block of the master projects memody map, The ilave memany setting in the madter propect should match how the Slave propect was built,

7 _m Mt Fireihi Cangel

Figure 21.5. New Project Wizard SDK M4 primary memory

To adjust the memory layout, select the second RAM region (at location 0x20000000) and click
the ‘Up’ arrow to move this to the top of the RAM regions. The highlighted regions as shown
above will be effectively swapped.

Once this has been done, click ‘OK'.

Next, click Browse to locate a Secondary project within the Workspace and select the previously
created Secondary project, then click ‘OK’.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 265

NXP Semiconductors MCUXpresso IDE User Guide

E Slave project selection for MOSLAVE = i

Select a slave project to link with the master project being created.

(5 LPC54114)256_Project_MOSLAVE|

® I oK] I Cancel

Figure 21.6. New Project Wizard SDK M4 primary/secondary selection

Note: ensure the Link Section name (default of RAM2 highlighted) selects a Primary memory
region that matches the linked address of the Secondary project. In this case, RAM2 should
correspond to the address 0x2001000. If required, other memory regions can be selected here
but please note: the first Flash Region and the first RAM Region are not included in the dropdown

list because it is assumed that these will be used for the Primary Project. If required, this setting
can be changed later from:

Project Properties -> C/C++ Build -> Settings -> Multicore
Where all of the memory regions are available for selection.

Below we can see the edited project settings for the Primary project.

~ Memory Configuration

Memory details

Default LinkServer Flash Driver Browse...

Type Name Alias Location size Driver .
Flash PROGRAM_FLASH Flash Qx0 0x40000 LPC5411x_256K.cfx v
RAM SRAMO RAM 0x20000000 0x10000 =
RAM SRAM1 RAM2 0x20010000 0x10000 =
RAM SRAMX RAM3 0x4000000 0x8000
RAM SRAM2 RAM4 0x20020000 0x8000

Add Flash Add RAM Split Join Delete

Import... Merge... Export...
~ Multicore slave projects settings
Optionally allow an existing slave project to be associated with this project.
Slave project for MOSLAVE [LPC54114J256_Project MOSLAVE _r,] Browse... | Link Section RAM2 a

% By default, the slave images will be placed in the RAM2 block of the master project's memory map. The slave memory setting in the master project should match how the slave project was built.

Figure 21.7. New Project Wizard SDK M4 primary project

Finally, click Finish to generate the Primary project.

Note: if the memory regions of these projects overlap, the linker generates an error similar to:

MSLAVE execute address differs from address provided in source i mage

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 266

NXP Semiconductors MCUXpresso IDE User Guide

To fix this issue, review (and edit) the memory settings of the related projects so that their
addresses do not overlap via Project Properties -> C/C++ Build -> MCU settings.

21.3 Creating a primary/secondary project pair (using preinstalled
part support)
The example described below is based on the LPC5411x multicore MCU.
Note: It is recommended to create and build LPC541xx multicore projects which are linked to
LPCOpen. Thus before you follow the below sequence, please ensure that you have imported

the chip and (optionally) the board library projects (for both the M4 and M0+) from an LPCOpen
package for the LPC5410x family or LPC5411x family (depending upon your target part).

21.3.1 Creating the MO Secondary project

As discussed above, the configuration of the Primary project needs to reference the Secondary
project, therefore the Secondary project should be created first.

Launch the New Project Wizard and select the LPC54114-MO0 from the Preinstalled MCUs.

(30 sDK Wizard = =R

(1) Cresting project for device: LPC54114)256-M0 } N L \57

. Board and/or Device selection page

b SDK MCUs Available boards iaz Taz | 7

- Preinstalled MCUs Please select an available board for your project.
WCUs from preinctaned LPC and generic =
Cortex-M part support Supported boards for device: LPC5411x

NXP LPC54114)256- MO 2 ‘

LPC54114)256-M0

PCE0x

> LPCB2x

> LPCB4x

» LPCBNOx
LPChwx

 PMT 300 LPCXpresso54114
b PNT4io00 =

[om

Selected Device: LPC54114J256-M0 with no board. SDKs for selected MCU

Target Core: cortex-m0 MName SDK Version Manifest Ve.. Location

Description: Dual Cortex-M4/Cortex-M0+ based microcentroller, with up to 256KB
Flash and 192KB RAM

®@ T

Figure 21.8. New Project Wizard preinstalled MO

Next, select a MultiCore MO Secondary project type, below we have selected an LPCOpen —
C Project.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 267

NXP Semiconductors

MCUXpresso IDE User Guide

New project...
LPC5411x Multicore (M0+ slave) -> LPCOpen - C Project

. Wizard selection page.

Wizard
4 LPC54110
4 LPC5411x (MD+]
LPCOpen - C Project
LPCOpen - C Static Library Project
LPCOpen - C++ Project
LPCOpen - C++ Static Library Project
C Project
C Project (Semihosted)
C Static Library Project
C++ Project
C++ Static Library Project
4 LPC5411x Multicore (MO+ slave)
LPCOpen - C Project
LPCOpen - C++ Project
C Project
C Project (Semihosted)
C++ Project

(?:' < Back MNext >

Lo = =s]

Figure 21.9. New Project Wizard preinstalled MO C project

Next, name the project, for example LPC54114 MO_Slave, then click next until the Memory
Configuration page is reached. From here we can see the MCU memory regions.

Note: The managed linker script mechanism of MCUXpresso IDE defaults to link code to the first
Flash region in this view (if one exists) and use the first RAM region for data.

To force our project to link to a private area of RAM, simply delete the Flash and first RAM region
(RAMO_64) from this view (since these are used for the M4 Primary project). To do this, just
select the regions and click Delete. Since there is no longer any Flash region, the default Flash

driver can also be removed.

UG10055 All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

268

NXP Semiconductors

MCUXpresso IDE User Guide

New project...
Memory Configuration Editor

. Wizard properties page.

Allows external flash to be defined and appropriate flash driver allocated, or for layout of internal RAM to be reconfigured.

Default flash driver
Type Name Alias Location Size Driver
"’Hash MFlash256 Flash 0 040000) s
NRAM __ Rami0 64 RAM 0x20000000 0,10000 &
RAM Ramil_64 RAM2 (20010000 010000
RAM Ram2.32 RAM3 (x20020000 0x8000
RAM RamX_32 RAM4 04000000 0x8000
Add Flash Joil [1mport..] [Merge...| |Export...| [Generate...
©) ot | [(e

Figure 21.10. New Project Wizard preinstalled MO memory

The memory setting should then look as below. In this case, the code and data of our Secondary
project are linked to address 0x20010000 with the stack set to the top of this region.

New project...
Memoery Configuration Editor

. Wizard properties page.

Allows external flash to be defined and appropriate flash driver allocated, or for layout of internal RAM to be reconfigured.

= (2=

Default flash driver | R
Type MName Alias Driver
RAM Raml 64 RAM i
RAM Ram2_32 RAM2 . 2
RAM RamX_32 RAM3 04000000 0xB000
Add RAM @ {Import..w IMerge...] [Etport...l [Ganerate...]
@ vews ([Fnsh)| Conce

Figure 21.11. New Project Wizard preinstalled MO memory edited

Now click Next -> Finish to complete the MO Secondary projects creation.

21.3.2

Creating the M4 Primary project

To create the Primary, Launch the New Project Wizard again and this time select the LPC54114
(M4) part and click Next. Select the matching ‘MultiCore M4 Master -> LPCOpen -C Project’ and
click Next again. Now, name the new project, for example, LPC54114 M4 Master and click next
until the Multicore Project Setup page is reached.

Note: The wizard presents an identical memory configuration page, but on this occasion, no
editing is required since the default Flash and RAM settings are used.

From here, click browse to select the previously created Secondary project from the existing

Workspace

UG10055

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

269

NXP Semiconductors MCUXpresso IDE User Guide

® = ==
New project...
Multicore Project Setup

. Wizard properties page.

Multicore Slave Project selection

Select an existing slave project to be associated with this master project

Slave Project ~([Browse..)

[X] slave Project =8 ECR (==

Browse to the slave project associated with this master project

(5 LPC54114_MO_Slave '
P Do PeRpTEso
(% Ipe_board_lpcxpresso_54114_m0

(5 Ipe_chip_5411x
(5 Ipe_chip_5411%_mD

Figure 21.12. New Project Wizard preinstalled M4 select secondary

Now click Next -> Finish to complete the M4 Primary projects creation.

21.4 Debugging multicore projects

The debug story for MultiCore MCUs can vary with their implementation and also the chosen
debug solution.

Our MultiCore model as described above, assumes that the Primary project both copies the
Secondary MCUs code and data (into RAM) but also releases the Secondary core from reset.
Therefore the Primary project should be run (debugged) first and typically run to main(). Once
here, the instantiation of the code of the Secondary core will be complete but the Secondary core
will not have been released. On some MCUSs, a debug connection can be made to the Secondary
core before it has been released, but on others, this is only possible after they are released.

Note: Secondary projects debug launch configurations may require user modification before a
debug connection can be made. Please see the section

In our example LPC54114, the debug connection of the Secondary core can be made as soon
as the Primary core reaches main(). The debug window then looks similar to that below.

B2 2T bl EERR)S LI FH OG-
%5 Debug 2

4 . LPC54114J256 _Project_MASTER LinkServer Debug [C/C++ (NXP Semicenductors) MCU Application]
4 [LPC54114)256_Project_MASTER. ax‘F[LPC54114J256 (cortex-md)]

-gdb (£ LLLAMLTURLT}
4 . LPC54114J256 Project MOSLAVE LinkServer Debug [C/C++ (NXP Semiconductors) MCU Application]
4 {g LPC54114)256 Project MOSLAVE. a)dLnPC54114J156 (cortex-m0plus)]

o e e G S AT e

Q‘P@ Thread #1 1 (Stopped) (Running)
gl arm-none-eabi-gdb (LLLLAULIUALTT

Figure 21.13. MultiCore Debug

Note above: that the MultiCore debug controls have been highlighted, these controls differ from

the standard controls in that they operate on all cores being debugged. Via these, the system to
be stepped, run, paused, terminated, and so on.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 270

NXP Semiconductors

MCUXpresso IDE User Guide

214.1

In addition, the debug stack of the M4 Primary core (blue) is shown stopped at main, while
the stack of the Secondary core (green) is waiting to be released by the Primary core; clicking
between these stacks changes the debug scope of the IDE from one core to the other. The
currently selected core is the one used for displaying many of the debug-related views, such as

Registers and Locals

Controlling debug views

It is also possible to create copies of many of the debug-related views, and then lock each copy
to a particular core (as described below).

For example, to create two register views, one for the M4 and one for the MO+ ...First of all, use
the ‘Open New view’ button in the Registers view to create a second Registers view:

roject Ex Peripheral ifii Registers 3 Symbol V =0 4l
' tE gt vVl
Mame Value Description :
| vAALPC54114J256 (cortex-m4) LPCE4114.20an Hew View
bE 0 0x00000000
BiEir 0x200000F8
. i 0x00000400 M |
| Mir3 0x00000001
e rd 0x00000160
i rs 0x00000001
i 6 0x40000000
W7 Ox2000FFFO
M8 0x00000000
| b 0x00000000

110

Figure 21.14. MultiCore Debug New view

Now pin the original view to the core currently selected in the Debug, using the ‘Pin to Debug

context’ button :

[Project Ex 2, Periphera

LPC54114.256_Project MASTER.axf: Thread [1]

Name Value
¥ 54LPC54114J256 (cortex-md)
i r0 0x00000000
et 0x200000F8
Heir2 0x00000400
3 0x00000001
lira 0x00000160
5 0x00000001
e Ox40000000
w7 Ox2000FFFO
8 0x00000000
Hrg 0x00000000
110 0x00000000

Figure 21.15. MultiCore Debug Pin view

14! Registers 52 . Symbol Vi

= O | 4 Debug &
v@Lrcs:
h v iRLPC
" Pin to Debug Context

t B il v
Description

LPC54114J256_F =

s arm

v@lLrese

v ELPC

Ll

ol arm

[g LPCEAT"

UG10055

Now select the other core in the Debug view, and go to the second Register view. Use the ‘Pin
to Debug Context’ button from this view to lock this second Registers view to the selected core:

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

271

NXP Semiconductors

MCUXpresso IDE User Guide

Project Exp Peripherals i1}

Registers B3

LPC54114J256_Project_MASTER.axf: Thread [1]
Name Value
v 44 LPCE4114J266 (cortex-m4)

Hiro 0x00000018
Ox2000FFB8
0x20000010
0x0000000F
0x00000160
0x00000001
0x40000000

Nw2INNNCEEN

i1 Registers <2> 23]
LPC54114J2586_Project_MOSLAVE.axf: Thread [1]
Name Value

v AALPC54114J256 (cortex-mO...

fiti] 0x00000017
it gl 0x20011EE4
w2 0x00714F42
itir3 Ox00714F42
itirg 0x20010110
it 0x00000001
e OxFFFFFFFF

itir7? Ox2001FFE8

Figure 21.16. MultiCore debug registers

SymbolVie = O % Debug &2
t © 9 v vELPC541140256 Project MASTER LinkServer C
¥ 2 LPCE4114J266_Project MASTER.axf [LPCE
Description v &% Thread #1 1 (Stopped) (Suspended : Sigr
LPCE4114J2566_F = main() at LPC54114J256_Project_MAS
s arm-none-eabi-gdb (7.12.1.20170417)
".LPCEM 14J256_Project_MOSLAVE LinkServer
¥ (2 LPC54114J256_Project_MOSLAVE.axf [LPC
v % Thread #1 1 (Stopped) (Suspended : Sigr
= main() at LPC54114J256_Project_MO¢
s arm-none-eabi-gdb (7.12.1.20170417)

B Cisf ¥= 0 | [gLPC54114J256_Project MASTER.c X | [€] LPCE

/* Start slave CPU. */

Description Z
L boot_multicore_slave(};

LPC54114J256_f

s
50
1)
61 printf("Hello World from MASTER\n");
63 /* Force the counter to be placed in
64 volatile static int i = @ ;

65 /* Enter an infinite loop, just incr
66 while(1) {

67 | it ;

68 1

69 return @ ;

21.4.2 Secondary project debug

Typically, the Primary project is debugged first in exactly the same way as a single CPU project.
However, the debug launch configuration of the secondary project may require special settings
to establish a debug connection to the secondary CPU.

MCUXpresso IDE automatically configures the correct settings for secondary launch
configurations on all debug solutions. However, there might be situations when the debug
settings of the Secondary project may require modifications.

¢ Core Selection - within a MultiCore MCU there is more than one CPU (sometimes referred
to as a device). The debug connection needs to be made to the appropriate internal CPU for
both the Primary and Secondary projects.

e LinkServer CMSIS-DAP Debug: this process is automatic and hidden from the user. The
selection details are stored within the build configuration folder(s) of the project and take

the suffix .jtag or .swd

« PEmicro Debug: appropriate cores inside Primary and Secondary launch configurations
are automatically selected by the IDE
* SEGGER Debug: appropriate cores inside Primary and Secondary launch configurations
are automatically selected by the IDE. However, there might be certain situations when the
Secondary core should be manually selected. In this case, the IDE displays a warning about

the incapability of finding a matching core (based on the project description).

¢ Attach mode for the Secondary CPU — as described above, the debug connection to the
secondary core(s) should be via an attach

e LinkServer CMSIS-DAP Debug: this option is set automatically when the LinkServer
debug launch configuration is created

« PEmicro Debug: this option is set automatically when the PEmicro debug launch

configuration is created

« SEGGER Debug: this option is set automatically when the J-Link debug launch

configuration is created

¢ Managing the Debug Server - this is the low-level interface between the debugger and the

target

e LinkServer CMSIS-DAP Debug: the LinkServer launch configuration is automatically
correctly configured when the debug connection is made

UG10055 All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024

272

NXP Semiconductors MCUXpresso IDE User Guide

« PEmicro Debug: the PEmicro launch configuration is automatically correctly configured
when the debug connection is made

« SEGGER Debug: the J-Link launch configuration is automatically correctly configured
when the debug connection is made

21.4.3 Auto-debug secondary project(s) for multicore projects

When using LinkServer as a debug connection, secondary projects can be automatically
debugged once initiating debug on the primary project. This behavior is controlled by
a LinkServer-specific preference that can be accessed via Eclipse menu -> Window ->
Preferences -> MCUXpresso IDE -> Debug Options -> LinkServer Options -> Miscellaneous
-> "Enable auto-debug secondary project(s) for multicore projects". By default, the
preference is enabled in a fresh workspace, meaning that debug sessions for secondary projects
are automatically started.

[type filter text Miscellaneous v v §
S:;eral LinkServer Debug Miscellaneous Options
++
CMSIS-Packs RedLink Server Connection Timeout (s) |10
Help SWV Packet Timeout | 0

Install/Update

Library Hover

MCUXpresso Config Tools
~ MCUXpresso IDE

~ Debug Options

Extended debug trace (DEBUG_TRACE)
[—] Stream all stub messages to Console
[Show stub warnings as notes

[:| Show debug log when written to

J-Link Options Display asynchronous error messages
~ LinkServer Options [[] Disable Auto-select device on multicore target
Advanced Enable auto-debug secondary proj&(s} for multicore projects.]
DFU Options Auto-debug secondary project(s) delay for multicore projects (ms) | 1000
Miscellaneous Exclude target from multicore auto-debug mechanism.
PEMicro Options
Probe Discovery JRTTIE! New...
Default Tool settings no
Editor Awareness 10V
Energy Measurement
General un
MCU settings
Paths and Directories [Always show JTAG selection dialog
Quickstart Panel [[] show progress messages in log
RTOS TAD Show extended debug messages
SDK Handiling [~] Enable Non-Stop Mode
SWO Trace Enable Registers View Double-Precision registers group
User .Interface Enablement [Initialise LPC-Link as HID (Requires power-cycle)
Ruit[')l:;; Ignore LPC-Link HID (Windows 8 only)
SWTChart Extensions LPC-Link boot delay (ms) [290
Terminal LPC-Link driver settle time (s) 30
Validation - r
Version Control (Team) Extended boot logging file] Browse...
XML Restore Defaults Apply
® i Caree

Figure 21.17. Auto-debug secondary project enable option

Subsequent debug sessions started for secondary projects are delayed and the actual delay is
specified in another preference, as depicted below. If required, users can change the default
1000ms value.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 273

NXP Semiconductors MCUXpresso IDE User Guide

~ MCUXpresso IDE U R LR L I L
~ Debug Options [Show debug log when written to
J-Link Options Display asynchronous error messages
v LinkServer Options [[] Disable Auto-select device on multicore target
Advanced Enable auto-debug secondary project(s) for multicore projects
DFU Options [Auto-debug secondary project(s) delay for multicore projects (ms) | 1000]

Miscellaneous

Exclude target from multicore auto-debug mechanism.

Figure 21.18. Auto-debug secondary project delay option

To refine which projects are affected by auto-debug, the preference page allows you to specify,
via regular expressions, a list of excluded devices. Projects targeting devices whose names
match any of the entries in the list do not trigger the auto-debug mechanism for secondary

project(s).

Advanced Enable auto-debug secondary project(s) for multicore projects

DFU Options Auto-debug secondary project(s) delay for multicore projects (ms) | 1000
BEselanSons Exclude target from multicore auto-debug mechanism.

PEMicro Options r RTI18"

Probe Discovery il —_— New...
Default Tool settings e
Editor Awareness —
Energy Measurement . Regex part matching X

General
| MCU settings L Regular expression to match target's name to disable auto-debug
| Paths and Directories

Quickstart Panel

O
- [\ wpesssed |

RTOS TAD =

SDK Handling =

SWO Trace B

User Interface Enablement _“ Cancel
‘ . C
| Utilities

Run/Nehun Ignore LPC-Link HID (Windows 8 only)

Figure 21.19. Auto-debug secondary project filter list

In the case, you don’t want to have this feature enabled (so if you want to start debug sessions
for each core independently), uncheck this option.

Similar to LinkServer, the option for auto-debug of secondary project(s) for multicore projects
becomes enabled by default for multicore debug purposes when using PEmicro and J-Link. To
configure the enablement, go to the appropriate Preferences page:

¢ PEmicro: Window -> Preferences -> MCUXpresso IDE -> Debug Options -> PEMicro
Options -> "Enable auto-debug secondary project(s)"

e J-Link: Window -> Preferences -> MCUXpresso IDE -> Debug Options -> J-Link Options
-> "Enable auto-debug secondary project(s)"

21.5 Multicore projects additional information

21.5.1 Defines

A number of compiler defines are automatically created for LPC5410x projects to allow
conditional compilation of certain blocks of code depending upon whether a specific project is
configured to be a Secondary, a Primary, or neither.

__MULTICORE_MASTER
< Defined automatically for a project that has been configured to be a Primary project

_ MULTICORE_MASTER_SLAVE_MOSLAVE

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 274

NXP Semiconductors MCUXpresso IDE User Guide

21.5.2

21.5.3

UG10055

« Defined automatically for a project that has been configured to be a Primary project and has
had a Secondary project associated with it (hence indicating to the Primary project which CPU
type the Secondary project is for).

__MULTICORE_MOSLAVE

« Appropriate one defined automatically for a project that has been configured to be a Secondary
project

__MULTICORE_NONE

« Defined automatically for a project which has not been configured as either a Secondary or
Primary project

Note: The multicore support within MCUXpresso IDE is highly flexible and provides
functionality beyond that required for the LPC5411x family. Thus the symbols
__MULTICORE_MASTER_SLAVE_MA4SLAVE and _ MULTICORE_M4SLAVE are also
provided for completeness.

Secondary boot code

boot_multicore_slave() is called by the Primary project code created directly by the New project
wizard to release the Secondary core from sleep.

Note: The source files containing this function are included in all LPC541xx projects, but are
conditionally compiled so that it is included only when required. This has been done to allow
projects originally created, for example, as a Secondary project, to be reconfigured (via the
project properties — linker multicore tab) as a Primary project.

Reset handler code

When configured as a Primary project, the LPC541xx startup file is built with additional
(assembler) code at the beginning of the reset handler, ResetISR(), with the ‘standard ‘ reset
handler code moved to ResetISR2().

This additional code is required to allow correct booting of both the Primary and Secondary cores.
It is written in assembler in order to force it to be ‘Thumbl’ code, and hence runnable by both
cores.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 275

NXP Semiconductors MCUXpresso IDE User Guide

22. Appendix — Additional hints and tips

These additional hints and tips extend the information provided in the main body of this guide.

22.1 Part support handling from SDKs

MCUXpresso IDE needs specific device information provided by the SDK in order to properly:

¢ Create/import projects
« With part-specific startup code
« Define memory layout
¢ Create debugging launch configuration
e Perform flash programming

This detailed part knowledge is known as Part Support.

22.1.1 SDK version control

MCUXpresso IDE obtains new Part Support from installed SDKs. The internal database of the
IDE only uses SDKs with the highest version number (latest version is v2.9). For example, a user
may have installed two SDKs for a single part:

+ SDK_2.3.0_FRDM-K64F
+ SDK_2.0.0_FRDM-K64F

The IDE loads only the 2.3.0 version of that SDK, and also provides a warning in the SDK View
header:

) Installed SDKs £2 [Properties [Console |* Problems [] Memary Q Instruction Trace .| SWO Trace Config ED Power Measure

% Installed SDKs 'SDK 2.x FROM-KBAF' {'2.2.0') replaced by SDK version ('2.3.0').

To install an SDK, simply drag and drop an SDK (zip file/folder) into the ‘Installed SDKs' view.

Name SDK Version Manifest Version Location
o SDK_2.x_FRDM-KG4F 2.3.0 3.2.0 @_ {SDK_2.3.0_FRDM-KB4F.zip

In this situation, it is likely that the user no longer needs the older version of the SDK. Therefore
the IDE provides an option to delete this older SDK by clicking on the warning message, and
clicking the ‘X.

[j Installed SDKs £3 j Properties E Console |:_ Problems [} Memory @ Instruction Trace ’;;' SWO Trace Config ED Power Measuremi

1 Installed SDKs 'Sni 2w« ERDM-KRAR! (192 0 raniacad by SNK werginn (9.3 00

To Install an SDK, simply dra * 'SDK_2.x_FRDM-KG64F' ('2.2.0') replaced by SDK version 1'2.3.

MName SDK Version Manifest Version Location

11t SDK_2.x_FRDM-K&4F 2.3.0 3.2.0 @‘ /SDK_2.3.0_FRDM-KE4F.zip

Note: Installation of a new SDK for a part always replaces any previously installed older SDK
for that part, even if the new SDK is deactivated (by unchecking the associated tick box).
Deactivating an SDK results in the removal of part support and wizard from internal views. These
are restored after activating the SDK again.

22.1.2 SDK manifest versioning

Along with SDK versioning, also the internal manifest in an SDK can have multiple versions.
MCUXpresso IDE loads the manifest associated with its internal version head info. Thus,

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 276

NXP Semiconductors MCUXpresso IDE User Guide

22.1.3

UG10055

assuming an IDE with the internal head version set to 3.3, we could have an SDK with the
following manifests:

* Manifest version 3.3

* Manifest version 3.2

* Manifest version 3.1

* Manifest version 3.0

In such a case, the IDE loads the manifest version 3.3.

After loading, the IDE validates the manifest against the schema version head, and if for any
reason this is not valid, it tries with the other schema versions. If it cannot validate the manifest
3.3, then it tries with manifest 3.2, validating it, and so on. Manifest version details appear in the
SDK View, while the Error log shows any validation errors that have appeared in the process.
In the case that the IDE loads an older manifest, or in the case the SDK contains a manifest 3.4

and the IDE manifest head is 3.3, the SDK View decorates the SDK image with a warning and,
by clicking on the SDK, a message appears in the SDK view header:

(7] Installed SDKs £3 [Properties [Console |*/ Problems [] Memory

I Installed SDKs A newer version of MCUXpresso IDE is recommendei

To install an SDK, simply drag and drop an SDK (zip file/folder) into the ‘Installe

Mame SDK Version Manifest
‘h SDK_2.x_FRDM-KGAF 2.3.0 3.2.0

The full error looks like: "A newer version of the MCUXpresso IDE is recommended for use with
the selected SDK. Please update your MCUXpresso IDE in order to get full SDK features"

Note Even if not intended, newer SDKs may support features not understood by the current
version of the IDE. A message appears to warn users that there is a mismatch between the SDK
and IDE capabilities.

Device versions

If the user installs more than one SDK containing the same device (that is, a device with the
same identifier), the IDE loads the part support from the device with the highest version number,
regardless of which SDK it is located within. If two or more SDKs have the same device with the
same version number, then the order the host OS presents them to the IDE determines which
SDK to use.

If an SDK in the Installed SDK view contains a device that is not installed (because another SDK
supplies it), its image (and the device in the SDK tree) is decorated with an icon:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 277

NXP Semiconductors MCUXpresso IDE User Guide

22.2

22.2.1

22.2.2

UG10055

{J} Installed SDKs 2 7] properties &) Console |*! Problems G Memary & Instruction Trace ;;; SWO Trace Config BD Power Measurement £, Symbol Viewe
X
@ Installed SDKs

To install an SDK, simply drag and drop an SDK (zip file/ffolder) into the 'Installed SDKs' view.

Name SDK Version Manifest Version Lucalmn

1 SDK_2.x_FRDM-K&4F-AGMO1 2.2.0 3.0.0 (SDK_2.0_FRDM-KB4F-agm(» . Boards

[v] "% SDK_2.x_FRDM-KG4F 2. .0. Fk <Default Location>/SDK_2.0.0_FRDOM-KG4F.zip [S sl

B

¥ [oig Compilers
¥ i3 Toolchains
P (2 Toolchain Se
¥ <k Components

How do | switch between Debug and Release builds?

By default, MCUXpresso IDE projects automatically have two build configurations, Debug and
Release. Typically a project is developed using the Debug build variant, but switched to Release
late in the development cycle to benefit from more compilation optimisations.

Changing the build configuration of a single project

You can switch between Debug and Release build configurations by selecting the project you
want to change the build configuration for in the Project Explorer view, then using one of the
below methods:

¢ Select the menu item Project->Build Configuration->Set Active and select Release or
Debug as necessary

¢ Use the dropdown arrow next to the ‘sundial’ (Manage configurations for the current project)
icon on the main toolbar (next to the ‘hammer’ icon) and select Release or Debug as
necessary. Alternatively, you can use the dropdown next to the ‘hammer’ icon to change the
current configuration and then immediately trigger a build.

% - % - 5 | {,:3 ..,;';'- - C::::I -'T'
0 v’th Debug (Debug bmldj ;
' 2 Releasze (Release build)

&

* Right-click in the Project Explorer view to display the context-sensitive menu and select the
Build Configurations->Set Active entry.

Changing the build configuration of multiple projects

Itis also possible to set the build configuration of multiple projects at once. This may be necessary
if you have a main application project linked with a library project, or you have linked projects for
a multicore MCU such as an LPC43xx or LPC541xx (one project for the primary Cortex-M4 CPU
and another for a secondary Cortex-M0/M0+ CPU).

To do this, first of all, you need to select the projects that you wish to change the build
configuration for in the Project Explorer view — by clicking to select the first project, then use
shift-click or control-click to select additional projects as appropriate. If you want to change all
projects, then you can simply use Ctrl-A to select all of them.

Note: it is important that when you select multiple projects, you should ensure that none of the
selected projects are opened out — in other words, when you selected the projects, you must not
have been able to see any of the files or the directory structure within them. If you do not do this,
then some methods for changing the build configuration will not be available.

After selecting the required projects, you then need to simply change the build configuration as
you would do for a single project.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 278

NXP Semiconductors MCUXpresso IDE User Guide

22.3 Editing hints and tips

The editor view within Eclipse, which sits under the MCUXpresso IDE, provides a large number
of powerful features for editing your source files.

22.3.1 Link Project Explorer view to the active editor

Eclipse offers the possibility to highlight the file opened in the active editor, inside Project Explorer
view. When multiple files are opened, the switch to a new editor also updates the Project Explorer
selection. You can control the enablement of this feature by using the “Link with Editor” toggle
button inside the Project Explorer view, as illustrated in the picture below.

) workspace - - MCUXpresso IDE - o x

File Edit Navigate Search Project ConfigTools Bun RIOS Analysis Window Help

0~ = ~ Q= = Bonh sle-% B0~ %™~ - i r e Q s|E

& Project Explo. xl Registers % Faults 7, Peripherals+ = O = B = Outiine x - Global Variables Wewmg=0
@ M SDK Details

There are no projects in your workspace.

© Quickstart Panel X - Variables % Breakpoints

FA MCUXpresso IDE Quickstart Installed SDKs Moritors

) No project selected

* Create or import a project Installed SDKs . Available Boards| Available Devices

- Build your project

No SDK selected

=a Installed SDKs % (2] Problems @ Console 4 Terminal & Image Info @ Debugger Console rEe T = B0 0 Memory ¥ -Heap and Stack Usage

To install an SDK, simply drag and drop an SDK (zip file/folder) or an SDK Git repository into the Tnstalled SDKs' view. [Common

Name SDK Version Manifest Version Location

Figure 22.1. Link with Editor — Project Explorer

UG10055

MCUXpresso IDE adds extra flexibility for the above-mentioned feature by allowing users to set
a certain configuration to use at IDE startup. The user can control the enablement of “Link with
Editor” by using the Preferences page accessed via Window -> Preferences -> MCUXpresso
IDE -> General. The screenshot below highlights the two relevant checkboxes:

1. It controls MCUXpresso IDE-specific feature. In other words, if ticked, the IDE enables or
disables the “Link with Editor” functionality according to the next checkbox.

2. It controls whether to enable or disable “Link with Editor” at IDE startup. This is only taken into
consideration when the previous checkbox is ticked.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 279

NXP Semiconductors MCUXpresso IDE User Guide

. Preferences O X
‘ type filter text ‘ General (=T 4 v §
v MCUXpresso ”;)E Link with Editor configuration
Debug Options Set Link with Editor value in Project Explorer at startup
Default Tool settings |. Link with Editor value in Project Explorer I.
Editor Awareness
Show verbose error messages
Energy Measurement))
General [“] Auto hide Debug View
MCU settings Help us improve the tool
Paths and Directories Command prompt | cmd.exe /C start ‘
Quickstart Panel Wizard home (blank for default) | Browse..
RTOS TAD
SDK Handling Spawner timeout (ms) | 5000 ‘
SWO Trace ["] Extended tools support (experimental)
User Interface Enablem Logging level Eiar o
Utilities
Run/Debug
SWTChart Extensions
Terminal v
@ B Restore Defaults Apply
f:?:‘ 2y 3 Apply and Close Cancel

Figure 22.2. Link with Editor — Preferences page

Note that “Link with Editor” also works while having an active debug session and navigating
through the code actively debugged.

22.3.2 Multiple views onto the same file
The Window -> Editor menu provides several ways of looking at the same file in parallel.
« Clone: two editor views onto the same file
« Toggle Split Editor: splits the view onto the current file into two (either horizontally or vertically)

22.3.3 Viewing two edited files at once
To see more than one file at the same time, simply click the file tabs that you have open in
the editor view, and then keep the mouse button held down and drag that file tab across to the
right. After you've moved to the side, or below, an outline should appear, showing you the future
placement of that tab after releasing the mouse button.

22.3.4 Source folding
Within the editor view, functions, structures, and so on, may be folded to show the structure and
hide the details.
The user can control folding via right-clicking in the margin of the editor view to bring up the
context-sensitive menu, then selecting Folding -> <option required>
When folding is enabled, you can then click on the + or - icon that now appears in the margin next
to each function, structure, and so on, to expand or collapse it, or use the Folding -> Expand
all and Folding -> Collapse all options from the context-sensitive menu
It is also possible to control various settings for Folding through:
Preferences -> C/C++ -> Editor -> Folding

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 280

NXP Semiconductors MCUXpresso IDE User Guide

22.3.5 Editor templates and Code completion
Within the editor, a number of related pieces of functionality allow you to enter code quickly and
easily.
First of all, templates are fragments of code that can be inserted in a semi-automatic manner to
ease the entering of repetitive code — such as blocks of code for C code structures such as for
loops, if-then-else statements, and so on.
Secondly, the indexing of your source code that is done by default by the tools, allows for auto-
completion of function and variable names. This is known as “content assist”.
¢ Ctrl-Space at any point lists available editor templates, function names, and so on
« Ctrl-Shift-Space displays function parameters
« Alt-/ for word completion (press multiple times to cycle through multiple options)
In addition, the predefined templates are user-extensible via:
Preferences -> C/C++ -> Editor -> Templates
22.3.6 Brace matching
The editor can highlight corresponding open and closing braces in a couple of ways.
First of all, if you place the cursor immediately to the right of a brace (either an opening or closing
brace), then the editor displays a rectangle around the corresponding brace.
Secondly, if you double-click immediately to the right of a brace, then the editor automatically
highlights all of the text between this brace and the corresponding one.
22.3.7 Syntax coloring
Syntax Coloring specifies how to render your source code in the editor view, with different colors
used for different elements of the code. The settings used can be modified in:
Preferences -> C/C++ -> Editor -> Syntax Coloring
Note that you can configure general text editor settings such as the background color in:
Preferences -> General -> Text Editors
You can also configure fonts in:
Preferences -> General -> Appearance -> Colors and Fonts
22.3.8 Comment/uncomment block
The editor offers a number of ways of commenting in or out one or more lines of text. The user
can access these by using the Source entry of the editor context-sensitive menu, or using the
following keyboard shortcuts...
¢ Select the line(s) to comment, then hit Ctrl-/ to comment out using // at the start of the line, or
uncomment if the line is currently commented out.
¢ Select the line(s) to comment, then hit Ctrl-Shift-/ to block comment out (placing /* at the start
and */ at the end).
e To remove a block comment, hit Ctrl-Shift-\.
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 281

NXP Semiconductors MCUXpresso IDE User Guide

22.3.9

22.3.10

22.3.11

22.3.12

22.4

UG10055

Format code

The editor can format your code to match the coding standards in use (Preferences -> C/C++ -
> Code Style). This can automatically deal with layout elements such as indentation and where
to place braces. You can perform this action on the currently selected text by using the Source-
>Format entry of the editor context-sensitive menu, or using the keyboard shortcuts Ctrl-Shift-F.
If no text is selected, then the formatting takes place on the whole of the current file.

Correct indentation

As you enter code in the editor, it attempts to automatically indent your code appropriately,
based on the code standards in use, and also the layout of the preceding text. However, in
some circumstances, for example after manually laying text out, you may end up with incorrect
indentation.

This can usually be corrected using the Source->Correct Indentation entry of the editor context-
sensitive menu, or using the keyboard shortcuts Ctrl-I.

Alternatively, use the “Format code” option which fixes other layout issues in addition to
indentation.

Insert spaces for tabs in editor

You can configure the IDE so that when editing a file, pressing the TAB key inserts spaces instead
of tab characters. To do this go to

Preferences -> General -> Editors -> Text Editors

and tick the “Insert spaces for tabs” box. If you tick “Show white-space characters” you can see
whether a tab character or space characters are being inserted when you press the TAB key

Replacing tabs with spaces
To replace existing tabs with spaces throughout the file, open the Code Style preferences:

Preferences -> C/C++ -> Code Style

¢ Select a Code Style profile and then select Edit...
¢ Choose the Indentation tab

« For the Tab policy, select Spaces only

Apply the changes

« Note: If the Code Style has not been edited before, you must rename the Profile before
applying the change.

* The new style is applied when the source is next formatted using Source -> Format

Hardware floating-point support

Most ARM-based systems —including those based on Cortex-M0, MO+, and M3, have historically
not implemented any form of floating point in hardware. This means that any floating point
operations contained in your code are converted into calls to library functions that then implement
the required operations in software.

However, many Cortex-M4 based MCUs do incorporate a single-precision floating point

hardware unit. Note: the optional Cortex-M4 floating-point unit implements single-precision
operations (C/C++ float) only. Thus, if your code makes use of double-precision floating point (C/

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 282

NXP Semiconductors MCUXpresso IDE User Guide

224.1

22.4.2

22.4.3

UG10055

C++ double), then any such floating-point operations contained in your code are still converted
into calls to library functions that then implement the required operations in software.

Similarly, Cortex-M7-based MCUs may incorporate a single-precision or double-precision
floating-point hardware unit.

Floating-point variants

When implementing a hardware floating-point unit, ARM defines that it may be used in one of
two modes.

SoftABI

¢ Single-precision floating-point operations are implemented in hardware and hence provide a
large performance increase over code that uses traditional floating-point library calls, but when
making calls between functions, any floating-point parameters are passed in ARM (integer)
registers or on the stack.

« SoftABIl is the ‘most compatible’ as it allows code that is not built with hardware floating-point
usage enabled to be linked with code that is built using software floating point library calls.

HardABI

¢ Single-precision floating-point operations are implemented in hardware, and floating-point
registers are used when passing floating-point parameters to functions.

HardABI provides the highest absolute floating-point performance, but is the ‘least compatible’
as it means that all of the code base for a project (including all library code) must be built for
HardABI.

Floating point use — preinstalled MCUs

When targeting preinstalled MCUs, MCUXpresso IDE generally assumes that when using the
Cortex-M4 hardware floating point, then the SoftABI is used. Thus generally, this is the mode
that example code (including for example, LPCOpen chip and board libraries) is compiled for.
This is done as it ensures that components will tend to work out of the box with each other.

When you use a project wizard for a Cortex-M4 where a hardware floating-point unit may be
implemented, there is an option to enable the use of the hardware within the options of the wizard.
This defaults to SoftABI — for compatibility reasons.

Selecting this option makes the appropriate changes to the compiler, assembler, and linker
settings to cause SoftABI code to be generated. It also typically enables code within the startup
code generated by the wizard that turns the floating-point unit on.

You can also select the use of HardABI in the wizards. Again, this causes the appropriate tool
settings to be used. But if you use this, you must ensure that any library projects used by your
application project are also configured to use HardABI. If such projects already exist, then you can
manually modify the compiler/assembler/linker settings in Project Properties to select HardABI.

Warning: Creating a project that uses HardABI when linked library projects have not been
configured and built with this option results in link time errors.

Floating point use — SDK-installed MCUs

When targeting SDK installed MCUs, MCUXpresso IDE generally assumes that when hardware
floating point is available, then the HardABI is used. This generally works without a problem as
generally projects for such MCUs contain all required code (with no use of library projects).

However, it is still possible to switch to using SoftABI using the “Advanced Properties settings”
page of the |[New project" and “Import SDK examples” wizards.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 283

NXP Semiconductors MCUXpresso IDE User Guide

22.4.4

22.4.5

22.4.6

22.5

UG10055

Modifying floating-point configuration for an existing project

If you wish to change the floating point ABI for an existing project (for example to change it from
using SoftABI to HardABI), then go to:

Quickstart -> Quick Settings -> Set Floating Point type

and choose the required option.

Alternatively, you can configure the settings manually by going to:
Project -> Properties -> C/C++ Build -> Settings -> Tool Settings

and changing the setting in ALL of the following entries:

« MCU C Compiler -> Architecture -> Floating point
¢ MCU Assembler -> Architecture & Headers -> Floating point
¢ MCU Linker -> Architecture -> Floating point

Note: For C++ projects, you also need to modify the setting for the MCU C++ Compiler. Warning:
Remember to change the setting for all associated projects, otherwise linker errors may result.

Do all Cortex-M4 MCUs provide floating point in hardware?

Not all Cortex-M4-based MCUs implement floating point in hardware, so please check the
documentation provided for your specific MCU to confirm.

In particular, with some MCU families, some specific MCUs may not provide hardware floating
point, even though most of the members of the family do (for example the LPC407x_8x). Thus it
is a good idea to double-check the documentation, even if the project wizard in the MCUXpresso
IDE for the family that you are targeting suggests that hardware floating point is available.

Why do | get a hard fault when my code executes a floating-point
operation?

If you are getting a hard fault when your application tries to execute a floating point operation,
then you are almost certainly not enabling the floating-point unit. This is normally done in the
LPCOpen or SDK initialization code, or else in the startup file that MCUXpresso IDE generates.
But if there are configuration issues with your project, then you can run into problems.

For more information, please see the Cortex-M4 Technical Reference Manual, available on the
ARM website.

LinkServer scripts

The LinkServer debug server supports a Basic-like programming language that can be used to
script low-level target operations. Within a LinkServer debug connection, we provide two callouts
where scripts can be referenced (if required). The first callout is intended to assist with the initial
debug connection, via a Connect Script, and the second is to assist with the targets reset via
a Reset Script.

These scripts are specified within a LinkServer launch configuration file and are preselected if
needed for projects performing standard connections to known debug targets.

Note: Starting with MCUXpresso IDE v11.9.0, LinkServer-specific scripts are part of the
standalone LinkServer package. Therefore, they can be inspected directly inside the LinkServer
installation folder or via the /LinkServer symbolic link, more specifically /LinkServer/binaries/
Scripts.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 284

NXP Semiconductors MCUXpresso IDE User Guide

22.5.1

22.5.2

22.5.3

UG10055

Supplied scripts

A set of scripts are supplied within the MCUXpresso IDE installation at:

<install dir>/ide/LinkServer/binaries/Scripts

These scripts are used to prepopulate LinkServer launch configuration files when needed.

The purpose of certain scripts is described below:

* kinetismasserase.scp - invoked by the GUI Flash Programmer to Resurrect locked Kinetis
device

« kinetisunlock.scp - if for any reason the GUI Flash Programmer fails to resurrect a locked part
(as above), this script can be specified in place of the above and the recovery attempt repeated

« delayexample.scp - an example script showing how a delay can be performed

Note: Some chips also require a preconnect script that prepares the target MCU for the initial
debug connection. A set of preconnect scripts can be found within the MCUXpresso IDE
installation at:

<install dir>/ide/LinkServer/binaries/Tool Scripts

User scripts

Additional user-generated scripts can be added directly to the product installation but more
typically they should be located within a project. The LinkServer launch configuration allows the
location of scripts to be either project-relative, absolute, or product-local.

Debugging code from RAM

[This section is deprecated — please see
for details of the improved scheme]

MCUs have well-defined boot strategies from reset, typically they first run some internal
manufacturer boot ROM code that performs some hardware setup and then control passes to
code in flash (that is, the user’'s Application).

On occasion, it can be useful to run and debug code directly from RAM. Since an MCU does not
boot from RAM, a scheme is needed to take control of the reset mechanism of the debugger.
This can be achieved with the use of a LinkServer reset script.

Within MCUXpresso IDE, certain pre-created scripts are located at:

{install dir}/ide/LinkServer/binaries/Scripts

Contained in this directory is a script called kinetisRamReset.scp (see below).

10 REM Kinetis K64F Internal RAM (@ 0x20000000) reset script

20 REM Connect script is passed PC/SP fromthe vector table in the i mage by the debugger

30 REM For the sinple use case we pass them back to the debugger with the | ocation of \
the reset context.

40 REM

50 REM Syntax here is that '~ commands a hex output, all integer variables are a%to z%

70 REM Find the probe index

80 p% = probefirstfound

90 REM Set the 'this' probe and core

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 285

NXP Semiconductors MCUXpresso IDE User Guide

2254

UG10055

100 sel ect probecore p% 0

110 REM NOTE!'! Vector table presumed RAM | ocation is address 0x20000000

120 REM The script passes the SP (%) and PC (%) back to the debugger as the reset context.
130 b% = peek32 this 0x20000000

140 a% = peek32 this 0x20000004

145 d% = 0x20000000

150 print "Vector table SP/PC is the reset context."

160 print "PC = "; ~a%
170 print "SP = "; ~b%
180 print "XPSR = "; ~c%
185 print "VIOR = "; ~d%
190 end

This reset script assumes that the user intends to run code from RAM at 0x20000000 - this is
the value of the SRAM_Upper RAM block on Kinetis parts.

Note: To build a project to link against RAM, you can simply delete any flash entries within the
memory configuration of the project. If the MCUXpresso IDE default linker settings are used, then
the project links to the first RAM block in the list. For many Kinetis parts, this address matches the
expected address within the script. For some parts (for example KLxx) however, the first RAM
block may take a different value. This problem can be resolved by editing the script or modifying
the RAM addresses of the project.

For users of LPC parts, the RAM addresses are different but the principal remains the same.
Within the Scripts directory, you can find a RAM reset script for the LPC18LPCA43 parts, this script
is identical to the one above apart from the assumed RAM address.

Finally, to use the script, simply edit the launch configuration of the project for the ‘Reset Script’
entry, and browse to the appropriate ‘RAMReset.scp’ script.

Note: When executing code from RAM, the Vector table of the project can also be located at the
start of the RAM block. Cortex-M MCUs can locate their vector table using an internal register
called VTOR (the vector table offset register). Typically, this register is set automatically by the
startup or init code of a project. However, if execution fails when an interrupt occurs, check that
this register is set to the correct value.

LinkServer scripting features

LinkServer scripts are written in a simple version of the BASIC programming language. In this
variant of BASIC, 26 variables are available (%a through %z). On entry to the script, some
variables have assigned values:

a%is the PC
b%is the SP
c%is the XPSR
d%is the VIOR

On exit from the script, a% is loaded into the PC, b% is loaded into the SP, and d% is loaded into
the VTOR, thus providing a way for the script to change the startup behavior of the application.

They offer functionality as shown below:

Generic BASIC-like functions that only work inside scripts

GOTO ' Li neNunber'
IF '"relation' THEN 'statenent'
REPEAT: Start of a repeat block

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 286

NXP Semiconductors

MCUXpresso IDE User Guide

UG10055

UNTIL "relation': End with condition of repeat block
BREAKREPEATTO ' Li neNunber': Premature end of a repeat |oop
GOSUB ' Li neNunber'

RETURN

TIME: Returns a 10ns increnenting count fromthe host

Generic BASIC-like functions

PEEKS {[TH S|
PEEK16 {[THI S|

[[<Probel ndex> <Cor el ndex>]} <Address>
[
PEEK32 {[TH]
[
[

[<Probel ndex> <Cor el ndex>]} <Address>

[<Probel ndex> <Cor el ndex>]} <Address>

POKE8 {[TH]

POKEL6 {[TH S]

POKE32 {[TH]

QPOKE8 {[THI 9]

QPOKEL6 {[THI 9]

QPOKE32 {[THI'S] | [<Probel ndex> <Corel ndex>]} <Address> <Dat a>

QSTARTTRANSFERS {[THI S] | [<Probel ndex> <Corel ndex>]} <NunReads>

MEMDUMP {[THI S] | [<Probel ndex> <Corel ndex>]} <Byte Address> <Length>

MEMLOAD {[THI S] | [<Probel ndex> <Corel ndex>]} <FileNane> <Byte Address> <Length
Limt> Loads binary file data to nmenory

MEMSAVE {[THI S] | [<Probel ndex> <Corel ndex>]} <FileNane> <Byte Address> <Length>

[<Probel ndex> <Cor el ndex>]} <Address> <Data>

[<Probel ndex> <Cor el ndex>]} <Address> <Data>

[<Probel ndex> <Cor el ndex>]} <Address> <Data>
| [<Probel ndex> <Corel ndex>]} <Address> <Data>
|

[<Probel ndex> <Cor el ndex>]} <Address> <Dat a>

Saves nmenory to binary file

PRI NT "TEXT"[;[~] Vari able | Constant]: Print statenent. Prints quoted text

and/or value of an internal variable (a%b6- z%4, or constant integer

expression in decimal, or hexadecimal[~] format
TIME: Returns an increnenting centisecond count fromthe host
TI MEMS: Returns an increnenting mllisecond count fromthe host
VWAI T <nsec>: Wait for the nunber of milliseconds before proceeding

LI ST: Lists a | oaded scri pt

NEW Erases a | oaded script from nmenory

RENUMBER <Del t a>: Renunber script lines with Delta increnent (default is 10)

LOAD <"FI LENAME">: Loads a script fromthe current, absolute, or relative directory
SAVE <"FI LENAME'>: Saves a script to the current, absolute, or relative directory

Probe related functions

PROBEL| ST: Enunerates and returns an indexed |ist of known probe types

PROBENUM Returns the nunber of probes attached

PROBEOPENBY! NDEX <Probel ndex> [<"FI LENAME">]: Opens the probe associated with Probel ndex
FI LENAME is text of <key = value> pairs used for internal configuration
PROBEOPENBYSERI AL <" Seri al Nunber">: Opens the probe associated with Serial Nunber
PROBECLOSEBY! NDEX <Pr obel ndex>: Cl oses the probe associated w th Probel ndex
PROBECLOSEBYSERI AL <" Seri al Nunber">: Cl oses the probe associated with Serial Nunber
PROBEFI RSTFOUND: Returns the THI' S Probel ndex or index of the first probe in the
enunerated |ist

PROBETI ME <Probel ndex>: Returns el apsed tinme fromfirnmware boot, if supported
PROBESTATUS [<Probel ndex>]: Returns an indexed |ist sunmary of the status of the
probes connected to the system

PROBEVERSI ON <Pr obel ndex>: Returns version informati on about probe firmare
PROBEDAPI NFO <Pr obel ndex>: Returns CMSI S- DAP probe infornmation

PROBEI SOPEN <Pr obel ndex>: Returns TRUE or FALSE

PROBEHASJTAG <Pr obel ndex>: Returns TRUE or FALSE

PROBEHASSWD <Pr obel ndex>: Returns TRUE or FALSE

PROBEHASSW <Probel ndex>: Returns TRUE or FALSE

PROBEHASETM <Pr obel ndex>: Returns TRUE or FALSE

PROBERESET <Probel ndex> <Reset Type>: Resets the probe (use 1 for |SP reset)

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

287

NXP Semiconductors

MCUXpresso IDE User Guide

UG10055

Core/TAP related functions

CORECONFI G {[THI S] | [<Probelndex>]}: Queries the scan chain configuration
CORESCONFI GURED <Probel ndex>: Returns TRUE or FALSE
APLIMT {[TH S] | [<Probelndex>]}: <APIndex>: Linmt the AP Query (set once)
APLI ST {[THI S] | [<Probelndex>]}: [<APLimit>]: Detailed Iist of APs
connected to the specified probe. APLimt restricts queries to the AP index.
CORELI ST {[THI'S] | [<Probelndex>]}: [<APLinmt>]: Detailed |ist of APs/Cores
connected to the specified probe. APLimt restricts queries to the AP index.
COREREADI D {[THI S] | [<Probel ndex> <Corelndex>]}: Returns the DplD
DEBUGVAI LBOXREQ {[THI S] | [<Probel ndex> <API ndex>]} <Request>: Debug Mail box Request

Wire related functions

W RESWDCONNECT {[THI S] | [<Probel ndex>]}: Configures the wire for SWD and

returns the Dpl D

W REJTAGCONNECT {[THI S] | [<Probelndex>]}: Configures the wire for JTAG

W REDI SCONNECT {[THI S] | [<Probelndex>]}: C oses the wire connection (SWY JTAQ

W REI SPRESET {[THI S] | [<Probelndex>]}: Resets an LPC part into the ISP

boot | oader

W REBOOTCONFI GSET {[THI S] | [<Probel ndex>]} <"DATA">: Stores boot configuration data
that will be automatically applied during subsequent reset commands.

DATA is a string with up to 4 characters describing how each | SP_CTRL[3..0] pin
shoul d be handled: '0' (= drive low), '1" (= drive high), 'x' (= do not drive)

W REBOOTCONFI GGET {[THI S] | [<Probelndex>]}: Returns previously stored configuration data
W REBOOTCONFI GREAD {[THI S] | [<Probelndex>]}: Returns the current state of |SP_CTRL[3:0] pins
W REBOOTCONFI GAPPLY {[THI S] | [<Probelndex>]} <1/0>: Immediately starts/stops driving
the |1 SP_CTRL pins based on previously stored boot configuration data

W RETI MEDRESET <Probel ndex> <ns>: Asserts (Low) reset for ns nilliseconds and

returns the end state of the wire

W REHOLDRESET <Probel ndex> <State>: Asserts/Rel eases (Low Hi gh) reset and

returns the end state of the wire

W RESETSPEED <Pr obel ndex> <Hz>: Requests a particular wire speed in Hz

W REGETSPEED <Probel ndex>: Returns the current wire speed

W RESETI DLECYCLES <Pr obel ndex> <Cycl es>: Sets the nunber of idle cycles between

debug transacti ons

W REGETI DLECYCLES <Probel ndex>: Returns the current nunber of debug idle cycles

W REI SCONNECTED <Pr obel ndex>: Returns TRUE or FALSE if W RESWDCONNECT or

W REJTAGCONNECT is conpl ete

W REGETPROTOCOL <Probel ndex>: Returns SWD or JTAG

SELECTPROBECORE <Pr obel ndex> <Corel ndex> : Sets the THI S paraneter Probe/Core

pair

TH S: Displays the current Probe, Core pair

Cortex-M related functions

CM NI TAPDP {[THI S] | [<Probel ndex> <Corelndex>]}: Initialize a CMk core ready
for debug connections

CMUNI NI TAPDP {[THI S] | [<Probel ndex> <Corelndex>]}: Unlnitialize a CW core
(de-assert debug and system power - up)

CMARI TEDP {[THI S] | [<Probel ndex> <Corel ndex>]} <REG> <DATA>: Returns zero on
success

CMARI TEAP {[THI S] | [<Probel ndex> <Corel ndex>]} <REG> <DATA>: Returns zero on
success

CVMREADDP {[THI S] | [<Probel ndex> <Corel ndex>]} <REG>: Returns data

CVMREADAP {[THI S] | [<Probel ndex> <Corel ndex>]} <REG>: Returns data (handl es
RDBUF on AP reads)

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

288

NXP Semiconductors MCUXpresso IDE User Guide

22.6

UG10055

CMCLEARERRORS {[THI S] | [<Probel ndex> <Cor el ndex>] }

CVHALT {[THI S] | [<Probel ndex> <Corel ndex>]}

CVMRUN {[THI S] | [<Probel ndex> <Cor el ndex>]}

CVMSTEP {[THI S] | [<Probel ndex> <Corel ndex>]}

CVREGS {[THI S] | [<Probel ndex> <Corel ndex>]}

CVDEBUGSTATUS {[THI S] | [<Probel ndex> <Cor el ndex>] }

CMARI TEREG {[THI S] | [<Probel ndex> <Corel ndex>]} <RegNunmber> <Val ue>
CVMREADREG {[THI S] | [<Probel ndex> <Corel ndex>]} <RegNumber >

CMMTCHLI ST {[THI S] | [<Probel ndex> <Cor el ndex>] }

CMMTCHSET {[THI S] | [<Probel ndex> <Corel ndex>]} <DWIl ndex> <Address> [<RW R W]
CMMTCHCLEAR {[THI S] | [<Probel ndex> <Corel ndex>]} <DWII ndex>

CMBREAKLI ST {[THI S] | [<Probel ndex> <Corelndex>]}: List the FPB breakpoints
CMBREAKSET {[THI S] | [<Probel ndex> <Corel ndex>]} <Address>: Set an FPB
CMBREAKCLEAR {[THI S] | [<Probel ndex> <Corel ndex>]} [<Address>]: Cl ear an FPB

CVMSYSRESETREQ {[THI S] | [<Probel ndex> <Corel ndex>]}: System reset request

CWECTRESETREQ {[THI S] | [<Probel ndex> <Corelndex>]}: Core reset request

CVRESETVECTORCATCHSET {[THI S] | [<Probel ndex> <Corel ndex>]}: Enable reset
vector catch

CVRESETVECTORCATCHCLEAR {[THI S] | [<Probel ndex> <Corel ndex>]}: Disable reset
vector catch

Miscellanious

HELP: display hel p on LinkServer comands

VERSI ON: returns the LinkServer version

CONNECTI ONS: di spl ay active connections

Scripts can be specified within a LinkServer launch configuration to be run before a connection
and/or before a reset.

RAM projects with LinkServer

MCUs have well-defined boot strategies from reset, typically they first run the internal
manufacturer boot ROM code to perform some hardware setup and then pass control to code
in flash (that is, the user’s Application).

Most examples and wizards create projects to run from MCU flash memory but on occasion, it
can be useful to debug code directly from RAM. There are two stages to such a task:

1. Modify a project so that it links to run from RAM
2. Modify the default reset mechanism to ensure that the RAM image is executed

To build a project to link against RAM, simply delete any flash entries within the memory
configuration of the project. If the MCUXpresso IDE default linker settings are used, then
the project links against the first RAM block in the list (provided no Flash entry is present).
Alternatively, from:

Project Properties -> C/C++ Build -> Settings -> MCU Linker -> Manager Linker Script, you can
check the entry Link application to RAM.

Note: if the project has already been built to link to flash, then it should be cleaned before being
rebuilt.

Since an MCU does not automatically boot from RAM, a scheme is needed to take control of
the reset mechanism of the debugger. This can be achieved via the use of a SOFT reset type.
LinkServer launch configurations can take an additional option, add the line --reset soft to override
the default reset type. Or preferably, set the reset type to 'SOFT' as shown below.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 289

NXP Semiconductors MCUXpresso IDE User Guide

LinkServer Options

~ Debug Connection
Settings for the debug connection

Attach only Reset on Connect

Reset script B4 | Workspace... File System...

Connect script | kinetisconnect.scp “ Workspace... File System...
Default

BootROM stall
SYSRESETREQ
VECTRESET

Flash driver reset handling 4 Resst handling v SOFT

Disconnect behavior cont u Semihosting support s a

A soft reset is performed by setting the PC to the images resetISR() address, the stack pointer
to the top of the first RAM region, and VTOR (Vector Table Offset Register) to the base address
of the first RAM region.

Note: Typically, MCU RAM sizes are smaller than Flash sizes, therefore such a scheme may
not be suitable for larger images.

22.6.1 Advantages of developing with RAM projects

There are a number of advantages when debugging from RAM:

* Breakpoints in RAM do not require dedicated HW resources, essentially there is no limit to the
number of breakpoints that can be set.

« Flash programming step is not required, so the build and debug cycle are faster.

* Development of secondary bootloaders is free from BootROM considerations

¢ No risk of accidentally triggering Flash security features.

« No requirement to understand or have flash programming capability allowing code (including
flash drivers) can be developed.

< Any flash contents are preserved while debugging

¢ Unit development of large applications

Note: It should be remembered that since the MCU does not undergo a true hardware reset,

peripheral configurations are inherited from one debug session to the next.

22.7 The Console view

The Console view contains a number of different consoles providing textual information about the

operation of various parts of MCUXpresso IDE. It is located by default in the bottom right of the

Debug Perspective, in parallel with a number of other views — including the ‘Installed SDKs’ view.

The actual consoles available within the Console view depend upon what operations are currently

taking place — in particular a number of consoles only becomes available once a debug session

is started.

The currently displayed console provides a local toolbar, with icons to do things like copying the

contents of the console or clearing its contents.

To see the list of currently available consoles, and, if required, change to a different one:

1. Switch to the Console View

2. Using the toolbar within the Console View click on the drop-down arrow next to the Display
Selected Console icon (which looks like a small monitor)

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 290

NXP Semiconductors MCUXpresso IDE User Guide

3. Select the required console from the dropdown list

{7 Installed SDKs [—] Properties [/ Problems & Console 82 & Terminal ¢ Image Info 3 Debugger Console sl

MKBAEN T MOxox 1™ Prmimmd | imlef e Pl PR o IRV B " A AAALL A malinadian] LIS ACAIA LI A A Panlant auk

|[MCUXpresso 5 1 RedlinkServer b
2 FreeRTOS Task Aware Debugger Console version 11.0.0 (201904171217)

E 3 CDT Global Build Console
[l 4 CDT Build Console [MKB4FN1MOxxx12_Project]
5 MK64FN1MOxxx12_Project LinkServer Debug [C/C++ (NXP Semiconductors) MCU Application] gdb traces
[6 MKB4FN1MOxxx12_Project Debug messages
v [B 7 MK64FN 1M0xxx12_Project LinkServer Debug [C/C++ (NXP Semiconductors) MCU Application] MK64FN 1M0xxx12_Project.axt

22.7.1 Console types

UG10055

Consoles you can typically see include the following...
Build Console and Global Build Console

The Build Console (sometimes referred to as the Build Log) is used by the MCUXpresso IDE
build tools (compiler, linker, and so on) to display output generated when building your project.
In fact, MCUXpresso IDE has two build consoles — one of which records the output from building
the current project, and the second a global build console which records the output from building
all projects.

By default, the number of lines stored in the Build Console is limited to 500 lines. You can increase
this to any reasonable number as follows:

1. Select the Windows->Preferences menu option
2. Now choose C/C++ -> Build -> Console
3. Increase the "Limit Console out (number of lines)" to a larger number, for instance 5000.

Note: This setting, like most within the MCUXpresso IDE is saved as part of your workspace.
Thus you need to make this change each time you create a new workspace.

Other options that can be set in Preferences include whether the console is cleared before a
build, whether it should be opened when a build starts, and whether to bring the console to the
top when building.

Once your build has been completed, if you have any build errors displayed in the console,
clicking on them causes, by default, the appropriate source file to be opened at the appropriate
place for you to fix the error.

FreeRTOS task-aware debugger console

This console displays status about the FreeRTOS TAD views. Enablement and persistence of the
logs can be controlled via the Preferences page. For more details, please see the MCUXpresso
IDE FreeRTOS Debug Guide.

Azure RTOS ThreadX task-aware debugger console
This console displays status about the Azure RTOS ThreadX TAD views. Enablement and

persistence of the logs can be controlled via the Preferences page. For more details, please see
the MCUXpresso IDE Azure RTOS ThreadX Debug Guide.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 291

NXP Semiconductors MCUXpresso IDE User Guide

Zephyr RTOS task-aware debugger console
This console displays status about the Zephyr RTOS TAD views. Enablement and persistence
of the logs can be controlled via the Preferences page. For more details, please see the
MCUXpresso IDE Zephyr RTOS Debug Guide.

gdb traces and arm-none-eabi-gdb consoles

These consoles give access to the GDB command line debugger, that sits underneath the
graphical debugging front end of MCUXpresso IDE.

RedlinkServer/LinkServer console

This console gives access to the server application that sits at the bottom of the debug stack
when using a debug probe connected via the MCUXpresso IDEs native “LinkServer” debugging
mechanism. LinkServer commands can be entered from this console.

Debug messages console

The Debug Messages console (sometimes referred to as the Debug Log) is used by the
debug driver to display additional information that may help understand connection issues when
debugging your target MCU.

Semihosting console

This console, generally displayed with .axf, allows semihosted output from the application running
on the MCU target to be displayed, and potentially for input to be sent down to the target.

SWO and Trace console

This console displays all information related to CoreSight components creation and
configuration, starting with the base address of the ROM table that is being scanned
for the purpose of CoreSight identification. For more information please refer to
MCUXpresso_IDE_SWO_Trace.pdf documentation.

22.7.2 Copying the contents of a console
Occasionally, you may wish to copy out the contents of a console. For instance, the MCUXpresso
IDE support team may ask you to provide the details of your Build Console in a forum thread.
To do this:
1. Clean, then build your project.
2. Select the appropriate Build Console as above:
3. Select the contents (for example, Ctrl-A)
4. Copy to the clipboard (for example, Ctrl-C).
5. Paste from clipboard into forum thread (for example, Ctrl-V). If there is a large amount of text
in the build console, it is advisable to paste it into a text file, which can be ZIPed if appropriate.
Note: some consoles provide a button in their local toolbar to copy or save their contents.
22.7.3 Relocating and duplicating the Console view
By default, the Console view is positioned in parallel with a number of other views. This can mean
that if a console is being regularly updated with new output (for instance the view displaying
semihosted output from the application running on the target MCU), then by default this may
cause the console to keep jumping to the foreground — hence hiding other views that you are
using (for instance one of the SWO Trace views).
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 292

NXP Semiconductors

MCUXpresso IDE User Guide

To avoid this you may wish to relocate the Console. To do this:

1. Click and hold down on the Console view

2. Continue to hold down, and drag the cursor to the location where you want to Console view
to be displayed

3. Then release the mouse click, and the Console view will be placed at the required position

UG10055

e [1 (D Conente
I . & EE =g
b IF (hydrgle » MGLEIPBERBNR s g, sppe ol Debug €10+« B3 Smiconscte
wLyiegls = 18 | Rdngle = Ley o ::\- .]
T A el lE 2 E (3)
sl C aenle - el ey
T S— LY LT LICLE Reledse the modse Elick; and the”
o o M1 A bl s b — Console view will be placed at the:
5 Click and hold down on o ot 5 EqUed-pesitin = «
" the Console View o P il M ot bt
" - [r':-b-(\w"'u-rd

Vinsale. [Pecpete. O Corech

Srdmikdild derne_appr, bulbbie Detug [0+ [NEP Sermcensusion) MOU Applicmion] Sfmitd Semo_app Suishie.ad
s -n

= Protberrn [} Memory G It 2, WO e 0 B —
- EE AP~

Continue to hold down, and drag ~
the cursor to the location you

want to Console view to be
displayed

Another alternative is to spawn a duplicate instance of the Console view. This allows multiple
consoles to be visible at the same time. To do this use the Open Console button on the Console
view local toolbar

and then select "New Console View"

P % BRERFE B~

1 C/C++ Build Console
By 2¢cvs

3 New Console View

4 FreeRTOS Task Aware Debugger Conscle

This then displays a second console view, which can be dragged and dropped to a new location
within the Perspective, as shown for the single Console view case described above.

All information provided in this document is subject to legal disclaimers

© 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024

293

NXP Semiconductors MCUXpresso IDE User Guide

22.8

UG10055

(€ bubble.c 53 Melcome G = & Console &2 = 8
: 38 . &] | &R E #B -~
= = ram _demo_a 5_Du e Uebdu i+t Emiconauc
E {g_wyfngle > ANGLE_UPPER_BOL frdmk6af_d spps_bubble Debug [C/C++ (NXP Semicond
Angle = 1@e; . =
1 e g J = -35 y = -34 i
/* Update angles to turn off | xi 2h i Ee
if (g xAngle < ANGLE LOWER BOL a0 el
= i N X= =38 y = -37
g xAngle = @; d = -28 y = -48
1 - i K= 35 y = -41 o
r - - \:’_ e S -

&) Install... [] Proper.. B Console &2 [%] Proble.. [J Memory @ Instruc.. [SWOT.. ED Power.. =

_x B B -

Awaiting telnet connection on port 3338 ... 2
GDB nonstop mode enabled

Opening flash driver FTFE_4K.cfx (already resident)

Writing 26688 bytes to address @x89608088 in Flash

Erased/Wrote page @-6 with 26688 bytes in 324msec

Closing flash driver FTFE_4K.cfx

Flash Write Done

Flash Program Summary: 26638 bytes in 8.32 seconds (88.44 KB/sec)
Stopped: Breakpoint #1 o

B]

frdmkb4f_demo_apps_bubble Debug messages

e = == .

Having opened a second console view, select which console you want displayed in it, and then
use the “Pin Console” button to ensure that it does not switch to one of the other consoles when
output is displayed.

& B~

apps
APEE Pin Conscle §

Using Terminal view for UART communication with a target

MCUXpresso IDE provides a Terminal View, which can be used to display UART (serial) input/
output between a host PC and the target MCU. In situations where a debug probe is built into
the target board, UART comms are often possible via a VCOM connection over the same USB
cable as the debug connection. However, where this is not the case a serial_to_USB cable can
be used, alternatively, if the target MCU has a built-in USB then a VCOM port can implemented
in the application code running on the target MCU.

Using a Terminal View offers an alternative way of interacting with the target when compared to
semihosting output via the debug channel (which is displayed in the Console View). There are
pros and cons to both approaches, but one distinct advantage to using the Terminal View for
serial output is that you can interact with the target MCU without a debug session being active!

To use the Terminal View within MCUXpresso IDE, the first thing you need to do is open it (as it
is not visible by default). To do this go to: Window -> Show View -> Other and select Terminal.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 294

NXP Semiconductors MCUXpresso IDE User Guide

(=3 @ Show View

» = Git

> (= Help

» (= Java

» (= Java Browsing

> (= Make

> [>MCUXpresso Config Toals

» (= MCUXpresso IDE

* [~>MCUXpresso |DE FreeRTOS

» = MCUXpresso |IDE Power Measurement
» [=MCUXpresso |DE Trace

» (= PEmicro

A Terminal
b (= \alidatinn Wisar

Cancel

Alternatively, just type “Terminal” into the “Quick Access” button in the top right of the window
of the IDE.

Next, ensuring that the serial connection between your PC and the target MCU is active first,
click on the “Open a Terminal” button in the toolbar of the Terminal View:

& Terminal 2 2 i &= 0

Open a Terminal (“CGT)

Note: If using the LPC-Link2 built into many LPCXpresso boards, then you need to make sure the
probe has been booted before the serial connection can be available. You can do this manually
by using the “Boot Debug probe” button in the toolbar towards the top of the IDE window. Or else
you can pre-program the probe firmware into flash using LPCScrypt.

Now select the type of terminal required — a serial one :

® © Launch Terminal ‘
Choose terminal + Local Terminal ’
Setti SSH Terminal
Ll Serial Terminal _
Encoding: (Telnet Terminal ‘

P e RV e P I

And then select the appropriate settings:

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 295

NXP Semiconductors MCUXpresso IDE User Guide

Launch Terminal

<>

Choose terminal: Serial Terminal
Settings
Serial port: jdev/cu.usbmodemDSATBQD2 ¥

Baudrate: 115200

<>

<>

Data size: 8

<>

Parity: None

<>

Stop bits: 1

Encoding: Default (ISO-8859-1)

<>

) Cancel OK

Note: that if you are receiving serial output via USB (for instance over a VCOM port from the
debug probe), then the default settings should normally be fine. The one setting you do need
to get correct is the Serial port to use. This varies depending on what devices are connected to
your PC, what OS you are running, and what the source for your serial port is.

For instance, if you are running on Windows, then the simplest way to identify the required serial
port is to open “Device Manager” (typically via the “Start Menu”), and then expand the “Ports”
tab. This should allow you to identify the appropriate COM port needed.

After configuring the settings as required, click on the “OK” button. You should now see serial
output from the application running on the target MCU within the Terminal View:

® Terminal 2 = e ARERE Y Be-=

SHELL (build: Apr 20 2018)
Copyright (c) 2017 NXP Semiconductor
SHELL>> help

"help": Lists all the registered commands
"exit": Exit program

"led argl arg2":

Usage:
argl: 1121314... Led index
arg2: onloff Led status

SHELL>>

PUPO Y T P L Y

Note: The Terminal view only offers a simple terminal mechanism with a small number of
configuration options. If you require more control over the way the terminal behaves, you may
still need to use a standalone terminal application, such as PuUTTY, CoolTerm, or Tera Term.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 296

NXP Semiconductors MCUXpresso IDE User Guide

22.9

229.1

22.9.2

22.9.3

UG10055

Using and troubleshooting LPC-Link2

LPC-Link2 hardware

LPC-Link2 is a powerful, low-cost debug probe design from NXP Semiconductors based on the
LPC43xx MCU. It has been implemented into a number of different systems, including:

¢ The standalone LPC-Link2 debug probe
e The debug probe built into the range of LPCXpresso V2/V3 boards

For more details, see https://www.nxp.com/Ipcxpresso-boards

Softloaded vs pre-programmed probe firmware

One thing that most LPC-Link2 implementations offer is the ability to either softload the debug
probe firmware (using USB DFU functionality) or to have the debug probe firmware pre-
programmed into flash.

Programming the firmware into flash has some advantages, including:

¢ Allows the use of the LPC-Link2 with toolchains that, unlike MCUXpresso IDE, do not support
softloading of the probe firmware

« Better supports the use of LPC-Link2 as a small production run programmer

¢ Allows the LPC-Link2 to be used with SEGGER J-Link firmware as an alternative to the normal
CMSIS-DAP firmware. For more details please visit https://www.segger.com

¢ Avoids issues that the re-enumeration of the LPC-Link2 can sometimes trigger as the firmware
softloads (particularly where virtual machines are in use)

The recommended way to program the firmware into the flash of LPC-Link2 is NXP’s LPCScrypt
flash programming tool. For more details, see https://www.nxp.com/LPCSCRYPT

However, when used with MCUXpresso IDE, softloading the probe firmware is the recommended
method of using LPC-Link2 in most circumstances.

This ensures that the firmware version matching the MCUXpresso IDE version can automatically
be loaded when the first debug session is started (so normally the latest version). It also allows
different probe firmware variants to be softloaded, depending on current user requirements.

For this to work, you need to make sure that the probe hardware is configured to allow DFU
booting. To do this:

¢ For standalone LPC-Link2: remove the link from header JP1 (nearest USB)
e For LPCXpresso V2/V3: add a link to the header "DFU link"

LPC-Link2 firmware variants

As well as providing debug probe functionality, NXP's CMSIS-DAP firmware for LPC-Link2 by
default also includes bridge channels to provide:

¢ Support for SWO Trace capture from the MCUXpresso IDE

¢ Support for Power Measurement from the MCUXpresso IDE (certain LPCXpresso V3 boards
only)

¢ Support fora UART VCOM port connected to the target processor (LPCXpresso V2/V3 boards
only)

¢ Support for an LPCSIO bridge that provides communication to 12C and SPI slave devices
(LPCXpresso V3 boards only)

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 297

https://www.nxp.com/lpcxpresso-boards
https://www.segger.com
https://www.nxp.com/LPCSCRYPT

NXP Semiconductors MCUXpresso IDE User Guide

22.9.4

UG10055

However, two other variants of the CMSIS-DAP firmware are provided that remove some of these
bridge channels.

« “Non Bridged”: This version of firmware provides debug features only — removing the bridged
channels such as trace, power measurement, and VCOM. By removing the requirement for
these channels, USB bandwidth is reduced, therefore this firmware may be preferable if
multiple debug probes are to be used concurrently. The non-bridged build also provides an
increase in download and general debug performance.

¢ “VYCOM Only”: This version of firmware provides only debug and VCOM features. The removal
of the other bridges allows better VCOM performance (though generally, the bridged firmware
provides more than good enough VCOM performance).

A particular workspace can be switched to softload a different firmware variant via: Preferences
-> MCUXpresso IDE -> Debug Options -> LinkServer Options -> LPC-Link2 boot type.

[NN) Preferences

LinkServer Options Sy v w

> General Ask to boot LPC-Link 2

»C/C++
| & HI:EIp Boot LPC-Link 2
* Install/Update LPC-Link 2 boot type v CMSIS-DAP (default) '
> Java . CMSIS-DAP (Non-bridged - Debug only)
» Library Hover Redlink server port (restart required) CMSIS-DAP (VCOM serial bridge only)

MCUXpresso Config Tools
¥MCUXpresso IDE
Debug Options (Advanced) CMSIS-DAP SWO server port 8989
Debug Options (Miscellaneous) Enable Registers View Double-Precision registers group
Debug Probe Discovery
Default Tool settings
» Editor Awareness

Redlink wirespeed in Hz (0 = default) 0

Block IDE requests to kill redlink server

FreeRTOS TAD Shutdown redlink server
General Kill redlink server on exit
| J-Link Options
| LinkServer Options . r .
LPC-Link Options Show timestamps in Redlink console
MCU settings Enable range stepping
Paths and Directories Pull ISP on reset (on LPC-Link 2)

PEMirro Ontions

Note: If a mix of bridged and unbridged debug probes is required, then it is recommended that
these probes are pre-programmed with the required debug firmware. This can easily be done
via LPCScrypt.

Manually booting LPC-Link2

The recommended way to use LPC-Link2 with the MCUXpresso IDE is to allow the GUI to boot
and softload a debug firmware image at the start of a debug session.

Normally, LPC-Link2 is booted automatically (when configured to operate in DFU mode)
however, under certain circumstances — such as when troubleshooting issues, or using the
LinkServer command line flash utility, you may need to boot it manually.

LPC-Link2 USB details

The standard utilities to explore USB devices on MCUXpresso IDE-supported host platforms are:

¢ Windows — Device Manager
* MCUXpressolDE also provides a listusb utility in:
« install_dir/ide/binaries/Scripts
¢ Linux — terminal command: Isusb
¢ Mac OS X — terminal command: system_profiler SPUSBDataType

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 298

NXP Semiconductors MCUXpresso IDE User Guide

Before boot, LPC-Link2 appears as a USB device with details:

Devi ce Vendor | D/ Product | D 0x1FC9/ 0x000C (NXP Semi conduct or s)

and appears in Windows -> Devices and Printers, as below:

=

LPC

After boot, LPC-Link2 appears by default as a USB device with details:

Devi ce Vendor| D/ Product | D: Ox1FC9/ 0x0090

and appears in Windows -> Devices and Printers similar to below:

S

LPC-LINK2
CMSIS-DAP
V3.224

Note: Text details vary depending on version number and which probe firmware variant is booted.
Booting from the command line
MCUXpresso IDE provides a boot script for all supported platforms. To make use of this script

first of all connect the LPC-Link2 to your PC then enter the commands into a DOS command
prompt (or equivalent):

cd <install_dir>\ide\LinkServer\binaries
boot _I i nk2

This invokes the dfu-util utility to download the probe firmware into the RAM of the LPC43xx MCU
of LPC-Link2 and then re-enumerate the probe.

Booting from the GUI
It is also possible to manually boot LPC-Link2 from the MCUXpresso IDE GUI, which may be a

more convenient solution than using the command line. To do this, first of all, connect the LPC-
Link2 to your PC, then locate the red Boot icon on the Toolbar:

P R0~ Q

Boot Debug Probe

and then click OK in the dialog displayed :

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 299

NXP Semiconductors MCUXpresso IDE User Guide

|82

Debug probe selection B

Select the debug probes to be booted

[¥] LinkServer

[selectan | [Deselectan |

@.,\' [OK] | Cancel |

22.9.5 LPC-Link2 windows drivers
The drivers for LPC-Link2 are installed as part of the main MCUXpresso IDE installation process.
Note: One thing to be aware of is that the first time you debug using a particular LPC-Link2
on a particular PC, the drivers need to be loaded. This first time can take a variable period of
time depending upon your PC and operating system version. This may mean that the first debug
attempt fails, as the IDE may time out waiting for the booted LPC-Link2 to appear. In such as
case, a second debug attempt should complete successfully. Otherwise, try booting the LPC-
Link2 manually and checking the drivers load correctly.
If you need to reinstall the drivers, then the installer can be found at:
C:\nxp\<linkserver_install_dir>\drivers\|pc_driver_installer.exe
22.9.6 LPC-Link2 failing to enumerate

On some systems, after booting LPC-Link2 with CMSIS-DAP firmware, the booted debug probe
does not enumerate correctly and the MCUXpresso IDE (or other toolchain) is unable to see the
debug probe. This problem is normally caused by an old, obsolete, version of the VCOM driver
being found by Windows instead of the correct driver. To see if this is the cause of a problem
on your computer, find the version number of the LPC-Link2 VCOM driver. The obsolete driver
version is 1.0.0.0.
To find the version number of the LPC-Link2 VCOM driver
If you are using a soft-booted LPC-Link2 debug probe, start by booting your LPC-Link2, as
described in . If your LPC-Link2 debug probe is booting from
an image preprogrammed into the flash, you can skip this step.
Once your LPC-Link2 has booted, find the device in Device Manager and look at the driver
version number.
¢ Open the Windows Device Manager
¢ Expand the “Ports (COM and LPT)” section
¢ Right-click on “LPC-Linkll UCom Port”, and select Properties
¢ Click on the Driver tab of the Properties dialog

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 300

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

File Action View Help

¢+ mEOBmBEXe

A PetePC A
i ! LPC-Linkll UCom Port (COM3) Properties x

i Audio inputs and outputs
4@ Batteries

fi| Biometric devices

B Bluetooth

® Cameras ¥

& Computer
" A Driver Provider: ~ NXP
= Disk drives

[Display adapters Driver Date: 211124
¥ Firmware Driver Version: ~ 2.0.0.0
Digial Signer: NXP Semiconductors USA. Inc.

General Port Settings Driver Details Events

LPC-Linkll UCom Port (COM3)

i Human Interface Devices
:i‘; Imaging devices
& Jungo Connectivity

E= Keyboards View details about the installed driver files.
m Mice and other pointing devices
[Monitors Update: Drver Update the driver for this device.

= N TR
~ @@ Ports (COM &LPT) Foll Back Driver
§ LPC-Linkll UCom Port (COM3)

If the device fails after updating the driver, ol
back to the previously installed driver.

Disable Device Disable the device.
™ Printers
[Processors Uninstall Device Uninstall the device from the system (Advanced).
B Security devices
f Software components
B Software devices OK Cancel

Bl Snund wviden and name rontrollers

Note: that this image shows the current correct version of the driver (2.0.0.0).

Removing the obsolete 1.0.0.0 LPC-Linkll UCOM driver

To remove the obsolete driver, perform the following actions:

00 ~NO Ol WODN B

9.

. In Device Manager, right-click on the LPC-Linkll UCOM device and select Uninstall

. If there is an option to delete the driver software, make sure it is checked, and press OK

. Select the menu item Action->Scan for hardware changes

. In Windows Control Panel, select Add/Remove program or Uninstall a program option

. Find the LPC Driver Installer, right-click on choose Uninstall

. Let the uninstaller complete

. Switch back to the Device Manager and Scan for hardware changes again

. If the LPC-Linkll UCOM driver version is still present, Uninstall it again (steps 1 through 3) and

repeat until the LPC-Linkll UCOM driver no longer appears
Now run the Ipc_driver_installer.exe found in the MCUXpresso IDE “Drivers” directory

Note: A reboot is recommended after running the Ipc_driver_installer.exe installer.

Now manually reboot the probe again (if softloading) and check Windows — Devices and
Printers to see if the device now appears correctly as an LPC-Link2 CMSIS-DAP VX.XXX.

If this fails to correct the problem, there is one final thing to try:

Open a Command Prompt as the Administrative user and run the following commands

cd % enmp%
pnputil -e >devices.txt
not epad devi ces. t xt

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 301

NXP Semiconductors MCUXpresso IDE User Guide

¢ Search devices.txt for an entry similar to this, and note down the Published name (oemXX.inf)

Publ i shed nane : oenB8. i nf

Driver package provider : NXP

Class : Ports (COM & LPT)

Driver date and version : 09/12/2013 1.0.0.0

Si gner nane : NXP Semi conductors USA. |nc

¢ Using the name notes above, run the following command (replacing XX with the number found
above)

pnputil -f -d oemXX inf

22.9.7 Troubleshooting LPC-Link2

UG10055

If you have been able to use LPC-Link2 in a debug session but now see issues such as “No
compatible emulator available” or “Priority O connection to this core already taken” when trying
to perform a debug operation ...

¢ Ensure you have shut down any previous debug session

« You must close a debug session (press the Red ‘terminate’ button) before starting another
debug session

« ltis possible that the debug driver is still running in the background. Use the task manager or
equivalent to kill any tasks called:

« redlinkserv
¢ arm-none-eabi_gdb*
e crt_emu_*

MCUXpresso IDE provides an IDE button " to kill all low-level debug executables.

A failure occurring while initiating a debug connection might also be caused by the GDB client
being unable to communicate with the GDB stub. In this case, the error usually indicates
a networking-related error, such as “Connection timed out”. The firewall and the launch
configuration should be checked. Note that the stub needs to be listening on a networking port in
order to communicate with the GDB client. For more details about the Debug Server Connection
parameters, see also section.

If your host has never worked with LPC-Link2, then the following may help to identify the problem:

¢ Try manually booting your LPC-Link2 as per Manually booting LPC-Link2, and ensure that the
drivers have installed correctly.

e Try a different USB cable!

e Try a different USB port. If your host has USB3 and USB2, then try a USB2 port

e There are known issues with motherboard USB3 firmware, ensure your host is using the
latest driver from the manufacturer. Note: this is not referencing the host OS driver but the
motherboard firmware of the USB port

« If using a USB hub, first try a direct connection to the host computer

« If using a USB hub, try using one with a separate power supply — rather than relying on the
supply over USB from your PC.

« Try completely removing and re-installing the host device driver. See also
above.

 If using Windows 8.1 or later, then sometimes the Windows USB power settings can cause
problems. For more details use your favorite search engine to search for “windows usb power
settings” or similar.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 302

Link2ManualBoot

NXP Semiconductors MCUXpresso IDE User Guide

22.10 Using and troubleshooting MCU-Link
22.10.1 MCU-Link hardware
MCU-Link is a new powerful and cost-effective debug probe architecture that can be used
seamlessly with MCUXpresso IDE and is also compatible with 3rd party IDEs that support
CMSIS-DAP protocol.
There is a range of debug solutions based on the MCU-Link architecture, which include the
standalone very low-cost base model (MCU-Link probe), a fully featured MCU-Link Pro probe,
and various implementations built into NXP evaluation boards. MCU-Link Pro includes many
additional features to facilitate embedded software development, like energy consumption
analysis and support of peripheral and host emulation via USB bridging functions. On-board
implementations support all the base model features and can optionally support additional
features available on MCU-Link Pro.
MCU-Link solutions are based on the powerful, low-power LPC55S69 microcontroller, and all
versions run the same firmware from NXP.
MCU-Link common features:
¢ CMSIS-DAP firmware to support all NXP Arm Cortex®-M based MCUs with SWD or JTAG
debug interfaces
¢ High-speed USB host interface
* USB to target UART bridge (VCOM)
¢ SWO profiling and 1/O features
MCU-Link Pro additional features:
¢ SEGGER J-Link firmware option
« Circuitry to measure the target’'s supply voltage and current drawn
« Trigger-based measurement
¢ Analog signal trace input
« A second USB to target UART bridge (VCOM)
« USB SPI and 12C bridges for programming/provisioning and host-based application
development
« Option to power target system at up to 350 mA (at 1.8 V or 3.3 V)
¢ On-board, user-programmable LPC804 for peripheral emulation
« Multiple status LEDs for diagnosis of issues
e Target reset button
For more details, please refer to the Getting Started guides available on the product web pages
on nxp.com:
¢ MCU-Link debug probe: https://www.nxp.com/pages/:MCU-LINK
¢ MCU-Link Pro debug probe: https://www.nxp.com/pages/:MCU-LINK-PRO
22.10.2 MCU-Link CMSIS-DAP firmware

MCU-Link debug probes are factory-programmed with NXP’'s CMSIS-DAP protocol-based
firmware, which also supports all other features supported in hardware.
Besides SWD/JTAG debug probe functionality, NXP’s CMSIS-DAP firmware for MCU-Link by
default also includes bridge channels to provide:
¢ Support for SWO Trace capture from the MCUXpresso IDE

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 303

https://www.nxp.com/pages/:MCU-LINK
https://www.nxp.com/pages/:MCU-LINK-PRO

NXP Semiconductors MCUXpresso IDE User Guide

UG10055

¢ Support for a UART VCOM port (UART interface to target)

Support for a second UART VCOM port [MCU-Link Pro]

Support for USB serial I/O (SPI, 12C, GPIO) bridge compatible with LIBUSBSIO [MCU-Link Pro]
Support for energy measurement from the MCUXpresso IDE [MCU-Link Pro]

MCU-Link probe type and firmware details are displayed in the Probes Discovered dialog of
MCUXpresso IDE when the probe is attached:

Available attached probes

Name Serial number [ID / Nickname Type Manufacturer IDE Debug Mode
MCU-LINK Pro (rOCF) CMSIS-DAP V2.249 12PDSKZHWMUQD LinkServer NXP Semiconductors Non-Stop
MCU-LINK on-board (rOC7) CMSIS-DAP V2.249 AAMO1QI2CPGRH LinkServer NXP Semiconductors Non-Stop

Probes Discovered indicates if a newer firmware version is available. It is recommended to
update the MCU-Link firmware to the latest version using the provided firmware update utility. Go
to the Design Resources section of the board web page and navigate to “Development software”
from the SOFTWARE section. Installation packages for each host OS are shown. Download and
run the installer for your host OS. A step-by-step installation guide is provided on the board web
page on nxp.com

CMSIS-DAP versions

Firmware versions V2.xxx implement an older version of CMSIS-DAP 1.1.0 and use USB HID
as an interface to the host PC.

Firmware versions V3.xxx are based on the latest CMSIS-DAP version 2.1.0 and use WinUSB
as an interface to the host PC and are therefore faster. Since the firmware implements Microsoft
descriptors to declare WCID (Windows Compatible ID), no additional WinUSB driver is required
on Windows.

Note

Firmware versions 3.xxx are supported in MCUXpresso IDE 11.7.0 or newer. If
using an older MCUXpresso IDE product, please install MCU-Link Firmware version
V2.263.

MCU-Link USB details

The standard utilities to explore USB devices on MCUXpresso IDE-supported host platforms are:

* Windows — Device Manager
« MCUXpressolDE also provides a listusb utility in:
« install_dir/ide/LinkServer/binaries/Scripts
¢ Linux — terminal command: Isusb
¢ macOS - terminal command: system_profiler SPUSBDataType

In ISP mode (firmware update enabled), MCU-Link appears as a USB device with details:

Devi ce Vendor | D/ Product | D 0x1FC9/ 0x0021

In normal use, MCU-Link appears as a USB device with details:

Devi ce Vendor| D/ Product| D: Ox1FC9/ 0x0143

MCU-Link appears in Windows Control Panel -> Hardware and Sound -> Devices and Printers
similar to below:

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 304

https://www.nxp.com/pages/:LIBUSBSIO

NXP Semiconductors MCUXpresso IDE User Guide

—

MCU-LINK
on-board (fC7)
CMSIS-DAP
V2.249

Note: Text details vary depending on firmware version and probe configuration.

22.10.3 MCU-Link host drivers
MCU-Link debug probes are supported on Windows 10, macOS, and Ubuntu Linux platforms.
MCU-Link probes use standard OS drivers, however, on Windows, an inf driver is provided to
allow displaying friendly names in Device Manager for the MCU-Link VCom Port(s). The driver
for MCU-Link is installed as part of the MCUXpresso IDE installation process as well as during
the installation of the firmware update utility. If you need to reinstall the driver, it can be found at:
MCUXpresso | DE: <install _dir>\LinkServer\drivers\ MCU Li nk
MCU- LI NK_i nstal l er: <install _dir>\LinkServer\drivers
To install the driver, navigate to MCU-Link drivers and install the file by right-clicking —> Install:
¢ mcu-link-vcom.inf
22.10.4 MCU-Link JLink-compatible firmware
A custom version of J-Link firmware to make MCU-Link Pro compatible with SEGGER'’s popular
J-Link LITE is also available, but note that this firmware is limited to supporting debug (including
SWO) and VCOM features only.
22.10.5 Troubleshooting MCU-Link
If you have been able to use MCU-Link in a debug session but now see issues such as “No
compatible emulator available” or “Priority 0 connection to this core already taken” when trying
to perform a debug operation ...
¢ Ensure you have shut down any previous debug session
* You must close a debug session (press the Red ‘terminate’ button) before starting another
debug session
 ltis possible that the debug driver is still running in the background. Use the task manager or
equivalent to kill any tasks called:
* redlinkserv
e arm-none-eabi_gdb*
e crt_emu_*
Use MCUXpresso IDE button % to kill all low-level debug executables.
A failure occurring while initiating a debug connection might also be caused by the GDB client
being unable to communicate with the GDB stub. In this case, the error usually indicates
a networking-related error, such as “Connection timed out’. The firewall and the launch
configuration should be checked. Note that the stub needs to be listening on a networking portin
order to communicate with the GDB client. For more details about the Debug Server Connection
parameters, see also section.
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 305

NXP Semiconductors MCUXpresso IDE User Guide

22.11

22.11.1

UG10055

If your host has never worked with MCU-Link, then the following may help to identify the problem:

Try updating the MCU-Link firmware and ensure that the drivers have installed correctly. See
above.

Make sure it is plugged into a high-speed USB 2.0 port!
Try a different USB cable!
Try a different USB port. If your host has USB3 and USB2, then try a USB2 port

* There are known issues with motherboard USB3 firmware, ensure your host is using the
latest driver from the manufacturer. Note: this is not referencing the host OS driver but the
motherboard firmware of the USB port

If using a USB hub, first try a direct connection to the host computer

If using a USB hub, try using one with a separate power supply — rather than relying on the
supply over USB from your PC.

Try completely removing and re-installing the host device driver. See
above.

Creating bin, hex, or S-Record files

When building a project, the MCUXpresso IDE tools create an ARM executable format (AXF) file
— which is actually a standard ELF/DWAREF file. This file can be programmed directly down to
your target using the MCUXpresso IDE debug functionality, but it may also be converted into a
variety of formats suitable for use in other external tools.

Simple conversion within the IDE

The simplest way to create a one-off binary or hex file is to open up the Debug (or Release)
folder in Project Explorer right-click on the .axf file, and " Binary Utilities -> Create binary" (or
Create hex, S-Record).

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 306

NXP Semiconductors MCUXpresso IDE User Guide

22.11.2

UG10055

[Proje 32| &, Perip % Regis £8ym = O Welcome [¢] bubble.c &3
=] Q:D - 111 PORT_SetPinConfig{I2C_RELEASE_SDA_PORT, I2(
112
¥ (=Debug 113 GPIO_PinInit{I2C_RELEASE_SCL_GPIO, I2C_RELI
F =accel 114 GPIO_PinInit{I2C_RELEASE_SDA_GPIO, I2C_RELI
iy ope: i /* Dri SDA 1 fi imul
> cMSIS 116 rive A low first to simulate a start
Ed : 117 GPIO_WritePinOutput(IZ2C_RELEASE_SDA_GPIO, !
F (= drivers 118 i2c_release_bus_delay();
(= s0Urce 119
= startup 120 /* Send 9 pulses on SCL and keep SDA high °
» = utilities 121 for (i =@; 1 = 9; i+4)
123 L7

‘= frdmk64f_demo_ap

New P GPIO WritePinOutput(I2C_RELEASE_SCL_GP:
i2c_release_bus_delay();

frdmk&4f_demo_ap
El frdmk64f_demo_ap Open

) frdmke4f_demo_ap open Wit » | GPIO_WritePinOutput(I2C_RELEASE_SDA_GP!
frdmkSAi_demo_ap i2c_release_bus_delay();
{ = Copy #C p10_Wri LePinOutput(T2C_RELEASE_SCL_GP:
™ Paste i2c_release_bus_delay();
O Qui #=Glo = Vari 3¢ Delete E i2c_release_bus_delay(D;
. MCUXpresso IDE (Pt Move...
_DE) Rename... F2 Eend stop */
D_WritePinOutput(I2C_RELEASE_SCL_GPIO, !
~ Start here s Import... _release_bus_delay():;
. Mew project... [Expon'" AL R AL L L FTE AP FACE FRA SATA

. Import SDK example(s).. Refresh

F5
g ! I Propertie B Console &2 Problem
% Import project(s) from fili Run As >
%, Build 'frdmk64f_demo_a ng_ug As > L S et
& Clean ‘frdmk64f demo ; Frofile As > . /board/board.c
, Launch Configurations B | C Compiler
Debug 'frdmk64f_demo_ Smart update p -gcc -std=gnu39 -DCR_INTEGER_PRINTF -DDE
¥ | Utilities > ding: ../board/board.c
B Edit 'frdmkB4f_demo_api et s Aol > Create hex
Tools > Create binary
® Quick Settings
D—? i %’ Run C/C++ Code Analysis Create S-Record
e Team S & LinkServer GUI Flash programmer
JB Compare With > Disassemble
Replace With > Size

{mo Build all projects [Debug
= Strip debug symbols
Properties 38l Process symdefs file

o HedrmmlBAF Aarma anne biik 4

You can also change the underlying commands and options that are called by these menu entries
from the " Preferences -> MCUXpresso IDE -> Utilities" preference page.

From the command line

The above “Binary Utilities” option within the IDE GUI simply invokes the command line objcopy
tool (arm-none-eabi-objcopy). Objcopy can convert into the following formats:

« srec (Motorola S record format)
¢ binary

ihex (Intel hex)

* tekhex

For example, to convert an example.axf into binary format, use the following command:
arm-none-eabi-objcopy -O binary example.axf example.bin

If you ctrl-click on the project name on the right-hand side of the bottom bar of the IDE, this
launches a command prompt in the project directory with appropriate tool paths set up. You can
also use the Project Explorer right-click “Utilities->Open command prompt here” option to do this.

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 307

NXP Semiconductors MCUXpresso IDE User Guide

All you need to do before running the objcopy command is change into the directory of the
required Build configuration.

22.11.3 Automatically converting the file during a build
Objcopy may be used to automatically convert an axf file during a build. To do this, create an
appropriate Post-build step
22.11.4 Binary files and checksums
When creating a binary file for most LPC MCUSs, you also need to ensure that you apply a
checksum to it — so that the LPC bootloader sees the image as being valid. Generally, the linker
script does this if the managed linker script mechanism is used. Otherwise, the “checksum” utility
found in the \ide\binaries subdirectory of your MCUXpresso IDE installation can be used.
22.12 Post-build (and pre-build) steps
It is sometimes useful to be able to automatically post-process your linked application, typically
to run one or more of the GNU ‘binutils’ on the generated AXF file.
For example, any application project that you create using the Project wizard has at least one
such “post-build step” - typically to display the size of your application.
® Post-build steps
Notes:
- A comment character (#) disables ALL FOLLOWING COMMANDS.
= Enter one command per line.
- After editing, commands are concatenated with a ;' separator.
arm-none-eabi-size “${BuildArtifactFileName}"
arm-none-eabi-objcopy -v -0 binary "${BuildArtifactFileName}" "${BuildArtifactFileBaseName}.bin"
checksum -p ${TargetChip} -d "${BuildArtifactFileBaseName}.bin"
Cancel ————
Note: Additional commands may also be listed (for example, to create a binary and to run
a checksum command), but can be commented out by use of a # character and hence not
executed. Any commands following a comment #command is ignored.
Adding additional steps is very simple. In the below example we are going to carry out three
post-link steps:
« Displaying the size of the application
¢ Generate an interleaved C / assembler listing
« Create a hex version of the application image
To do this:
* Open the Project properties. There are a number of ways of doing this. For example, make
sure the Project is highlighted in the Project Explorer view then open the menu “Project ->
Properties”.
¢ In the left-hand list of the Properties window, open “C/C++ Build” and select “Settings”.
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 308

NXP Semiconductors MCUXpresso IDE User Guide

¢ Select the “Build steps” tab
« In the “Post-build steps - Command” field, click 'Edit...'
e Paste in the lines below and click 'OK'

ar m none- eabi - si ze ${Buil dArtifactFil eNane};
ar m none- eabi - obj dunp -S ${Bui | dArtifactFil eName} > ${Buil dArtifactFileBaseNane}.|ss;
ar m none- eabi - obj copy -O i hex ${Buil dArtifactFil eNanme} ${Buil dArtifactFil eBaseNane}. hex;

¢ Click apply

Repeat for your other Build Configurations (Debug/Release)

Next time you do a build, this set of post-build steps will run, displaying the application size in
the console, creating an interleaved C/assembler listing file called .Iss and a hex file called hex.

Note: Pre-build steps can be added to a project in exactly the same way if required.

22.12.1 Temporarily removing post-build steps
If you want to temporarily remove a step from your post-build process, rather than deleting it
completely — move that entry to the end of the line and pre-fix it with a “#” (hash) character. This
acts as a comment, causing the rest of the post-build steps to be ignored.
22.13 Save info for support
When reporting an issue, itis recommended to send to the product team all necessary information
to easily reproduce the error you experience in the IDE working environment. For this reason, a
new option (" Help -> MCUXpresso IDE Save Info for Support") is introduced in the Eclipse
Help menu that helps you to gather and pack all information related to workspace, logs, and
consoles:
Help
i Welcome
@ Help Contents
Bl MCUXpresso IDE User Guide
4 Search
Show Contextual Help
Show Active Keybindings... Ctrl+Shift+L
~ Tips and Tricks...
Cheat Sheets...
@ Eclipse User Storage >
% Check for Updates
4 Install New Software...
& Eclipse Marketplace...
* Additional resources >
B MCUXpresso IDE installation details
® MCUXpresso IDE Save Info for Support
® MCUXpresso IDE support forum
® About MCUXpresso IDE
Once the wizard is open, various types of information can be individually selected (by default,
all categories are preselected):
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 309

NXP Semiconductors MCUXpresso IDE User Guide

@ @ MCUXpresso IDE
MCUXpresso IDE Save Info for Support

The wizard exports necessary support information into an archive file.

Source Description

¥ General information Basic information of the current workspace

Installation details Details of the MCUXpresso IDE installation

Workspace files Listed workspace files

Installed SDKs Installed SDKs information (Name, SDK Version, Manifest Version and Location)
Jog Workspace log file

¥ Console View All of the entries in the Console View (debug and build related)

CDT Build Console [frdmk64f_hello_world]

Archive file: [Users{202004240826_Supportinfo.zip Browse
Notes:

@ cancel | (I

« Installation details — information about installation paths, tool version, OS and Java versions,
and IDE plugin versions

* Workspace files — a list with all flenames and directory structure within the workspace

* Installed SDKs — a list with generic information about all installed SDKs: name, SDK and
manifest versions, and location path

e .log — can be one or more files and contain Eclipse logs generated in <workspace
dir>/.metadata directory

e Console view — all consoles (Console eclipse views) content: build log, debug and flash
programming logs, standard input/output console, and so on

Note: No sensitive information like source code or file content (other than eclipse/build/debug
logs) is included!

Optionally, add details in the “Notes:” edit box, located at the bottom of the “Save Info for Support”
window, regarding any information you think might be helpful: steps to reproduce, errors you
observe, expected results, and so on. If used, the text content is added to the final zip file.

After the selection is done and a proper zip filename and path are chosen, press the ‘Finish’
button to generate the archived support information. Use afterwards this zip as an attachment
when reporting the problem.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 310

NXP Semiconductors

MCUXpresso IDE User Guide

23. Revision history

Table 23.1. Revision history

Revision no. Release date Changes

11.8.0 July 2023 Major release version update. See chapter 2 for
details.

11.9.0 January 2024 Major release version update. See chapter 2 for
details.

UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide Rev. 11.9.0 — 5 January, 2024 311

NXP Semiconductors MCUXpresso IDE User Guide

24. Legal information

24.1

24.2

UG10055

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and
subject to formal approval, which may result in modifications or additions. NXP Semiconductors
does not give any representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no liability for the
consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate
and reliable. However, NXP Semiconductors does not give any representations or warranties,
expressed or implied, as to the accuracy or completeness of such information and shall have
no liability for the consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information source outside of
NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including — without limitation — lost profits, lost
savings, business interruption, costs related to the removal or replacement of any products or
rework charges) whether or not such damages are based on tort (including negligence), warranty,
breach of contract or any other legal theory. Notwithstanding any damages that customer
might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in accordance with the Terms
and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to
information published in this document, including without limitation specifications and product
descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted
to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in
applications where failure or malfunction of an NXP Semiconductors product can reasonably
be expected to result in personal injury, death or severe property or environmental damage.
NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore such inclusion and/
or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for
illustrative purposes only. NXP Semiconductors makes no representation or warranty that
such applications will be suitable for the specified use without further testing or modification.
Customers are responsible for the design and operation of their applications and products
using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any
assistance with applications or customer product design. It is customer’'s sole responsibility
to determine whether the NXP Semiconductors product is suitable and fit for the customer’s
applications and products planned, as well as for the planned application and use of customer’s
third party customer(s). Customers should provide appropriate design and operating safeguards
to minimize the risks associated with their applications and products. NXP Semiconductors does
not accept any liability related to any default, damage, costs or problem which is based on any
weakness or default in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all necessary testing for
the customer’s applications and products using NXP Semiconductors products in order to avoid
a default of the applications and the products or of the application or use by customer’s third
party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject
to the general terms and conditions of commercial sale, as published at https://www.nxp.com/

All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.

User Guide

Rev. 11.9.0 — 5 January, 2024 312

http://www.nxp.com/profile/terms

NXP Semiconductors MCUXpresso IDE User Guide

profile/terms, unless otherwise agreed in a valid written individual agreement. In case an
individual agreement is concluded only the terms and conditions of the respective agreement
shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general
terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to
export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified, the product is
not suitable for automotive use. It is neither qualified nor tested in accordance with automotive
testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or
use of non-automotive qualified products in automotive equipment or applications. In the event
that customer uses the product for design-in and use in automotive applications to automotive
specifications and standards, customer (a) shall use the product without NXP Semiconductors’
warranty of the product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond NXP Semiconductors’
specifications such use shall be solely at customer’s own risk, and © customer fully indemnifies
NXP Semiconductors for any liability, damages or failed product claims resulting from customer
design and use of the product for automotive applications beyond NXP Semiconductors’ standard
warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including the legal information
in that document, is for reference only. The English version shall prevail in case of any
discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified
vulnerabilities or may support established security standards or specifications with known
limitations. Customer is responsible for the design and operation of its applications and
products throughout their lifecycles to reduce the effect of these vulnerabilities on customer’s
applications and products. Customer’'s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s applications. NXP
accepts no liability for any vulnerability. Customer should regularly check security updates from
NXP and follow up appropriately. Customer shall select products with security features that best
meet rules, regulations, and standards of the intended application and make the ultimate design
decisions regarding its products and is solely responsible for compliance with all legal, regulatory,
and security related requirements concerning its products, regardless of any information or
support that may be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute or sell products.

24.3 Trademarks
Notice: All referenced brands, product names, service hames, and trademarks are the property
of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
UG10055 All information provided in this document is subject to legal disclaimers © 2024 NXP Semiconductors. All rights reserved.
User Guide Rev. 11.9.0 — 5 January, 2024 313

http://www.nxp.com/profile/terms
mailto:PSIRT@nxp.com

	MCUXpresso IDE User Guide
	Table of Contents
	1. Introduction to MCUXpresso IDE
	1.1 MCUXpresso IDE overview of features
	1.1.1 Summary of features
	1.1.2 Supported debug probes
	1.1.3 Development boards
	 LPCXpresso boards for LPC
	 Freedom and Tower boards for Kinetis
	 iMX RT Crossover processor boards

	2. New features in MCUXpresso IDE version 11.9.0
	2.1 Feature highlights from previous releases of MCUXpresso IDE

	3. IDE overview
	3.1 Workspaces
	3.2 Welcome view
	3.3 Documentation and help
	3.4 Perspectives and views
	3.5 Major components of the Develop perspective
	3.5.1 Dark theme

	3.6 The Quickstart Panel
	3.7 Project Explorer and new projects
	3.8 Updating MCUXpresso IDE
	3.8.1 Locating IDE components

	4. Part support overview (preinstalled and via SDKs)
	4.1 Preinstalled part support
	4.1.1 Differences in preinstalled and SDK part handling
	4.1.2 Viewing preinstalled part support

	4.2 SDK part support
	4.2.1 Obtaining and installing a Plugin SDK
	4.2.2 SDK part support via SDK Builder
	4.2.3 Obtaining and installing an SDK via SDK Builder
	4.2.4 Installing SDKs by importing a remote SDK Git repository
	4.2.5 Installing SDKs by importing a local clone of an SDK Git repository
	4.2.6 Installed SDKs operations
	 Converting a Plugin SDK into a FileSystem SDK
	 Uninstalling (deleting) an installed SDK

	4.2.7 Installed SDKs features
	4.2.8 Advanced use: SDK importing and configuration
	4.2.9 Advanced use: SDK misc options
	4.2.10 Important notes for SDK users
	 Only SDKs created for MCUXpresso IDE can be used
	 SDK compatibility with earlier versions of MCUXpresso IDE
	 Shared part support handling
	 Building a Fat SDK
	 Uninstallation considerations
	 Sharing projects

	4.3 Enhanced project sharing features
	4.3.1 Project drag and drop
	4.3.2 Project-local SDK part support
	4.3.3 Project-local support files
	4.3.4 Export project to local SDK Git repository

	5. Creating new projects using installed SDK part support
	5.1 New Project Wizard
	5.1.1 SDK New Project Wizard: Basic project creation and settings
	5.1.2 SDK New Project Wizard: Advanced project settings

	5.2 Project build
	5.2.1 Build configurations

	6. Importing example projects (from installed SDKs)
	6.1 SDK example import wizard
	6.1.1 SDK example import wizard: basic selection
	6.1.2 SDK example import wizard: advanced options
	6.1.3 SDK example import wizard: import from an XML fragment
	6.1.4 Importing examples to non-default locations

	7. Importing projects from Application Code Hub
	7.1 MCUXpresso IDE offering
	7.1.1 The import wizard
	7.1.2 The MCUXpresso IDE Quickstart panel link to Application Code Hub import wizard
	7.1.3 The Additional Resources link to Application Code Hub import wizard
	7.1.4 The dedicated view that renders the Application Code Hub website

	7.2 Import of Application SW Packs
	7.2.1 Cloning and initialization of Application SW Pack
	7.2.2 Importing the Application SW Pack in Installed SDKs

	7.3 Import MCUXpresso IDE-specific projects

	8. SDK project component management
	8.1 SDK project component management example
	8.2 SDK project refresh

	9. Open-CMSIS component management
	9.1 Install a pack
	9.2 Add an Open-CMSIS-Pack component to a project
	9.3 Manage components inside the project

	10. Creating new projects using preinstalled part support
	10.1 New Project Wizard
	10.2 Creating a project
	10.2.1 Selecting the wizard type
	10.2.2 Configuring the project
	10.2.3 Wizard options
	 LPCOpen library project selection
	 CMSIS-CORE selection
	 CMSIS DSP library selection
	 Peripheral driver selection
	 Enable the use of floating-point hardware
	 Code Read Protect
	 Enable use of Romdivide library
	 Disable watchdog
	 LPC1102 ISP pin
	 Memory configuration editor
	 Redlib printf options

	10.2.4 Project created

	11. Importing example projects (from the file system)
	11.1 Code cundles for LPC800 family devices
	11.2 LPCOpen software drivers and examples
	11.3 Importing an example project
	11.3.1 Importing examples for the LPCXpresso4337 development board

	11.4 Exporting projects
	11.5 Building projects
	11.5.1 Build configurations

	12. Importing existing executables
	13. Debug solutions overview
	13.1 Starting a debug session
	13.2 An introduction to launch configuration files
	13.3 LinkServer debug connections
	13.4 LinkServer debug operation
	13.4.1 LinkServer debug scripts

	13.5 LinkServer path configuration
	13.6 LinkServer troubleshooting
	13.6.1 Debug log
	13.6.2 Flash programming
	13.6.3 LinkServer executables

	13.7 PEmicro debug connections
	13.8 PEmicro debug operation
	13.8.1 PEmicro differences from LinkServer debug
	13.8.2 PEmicro software updates

	13.9 SEGGER debug connections
	13.9.1 SEGGER software installation
	 SEGGER software un-installation

	13.10 SEGGER debug operation
	13.10.1 SEGGER differences from LinkServer debug

	13.11 SEGGER troubleshooting

	14. Debugging a project
	14.1 Debugging overview
	14.1.1 Debug launch
	14.1.2 Debug probe selection dialog (probes discovered)
	 Firmware version check on MCU-Link / MCU-Link Pro probes

	14.1.3 Controlling execution

	14.2 Launch configurations
	14.2.1 Editing a launch configuration (LinkServer)
	 Target boot configuration

	14.3 Common debug operations and launch configurations
	14.3.1 Debug Quickstart shortcuts
	14.3.2 Connecting to a running target (attach)
	 LinkServer
	 PEmicro
	 SEGGER JLink

	14.3.3 Controlling the initial breakpoint (on main)
	 LinkServer
	 PEmicro
	 SEGGER JLink

	14.3.4 Debugging pre-loaded binaries (add symbols)
	14.3.5 Disconnect behavior
	 LinkServer
	 PEmicro
	 SEGGER JLink

	14.3.6 Project Flash programming

	14.4 Breakpoints
	14.4.1 Breakpoint types
	14.4.2 Breakpoints resources
	14.4.3 Skip all breakpoints

	14.5 Watchpoints
	14.5.1 Using Watchpoints to monitor stack depth

	14.6 Registers
	14.6.1 Basic register set (core registers)
	 CycleDelta
	 Vectpc

	14.7 Faults
	14.8 Peripherals
	14.8.1 Custom SVD file

	14.9 Offline Peripherals
	14.9.1 Loading custom SVD file in Offline Peripherals view

	14.10 Global and live global variables
	14.11 Live global variable plotting
	14.11.1 Live Global Variable graphing details

	14.12 Heap and Stack view
	14.13 Additional debug features
	14.13.1 Local variables
	14.13.2 Disassembly view
	14.13.3 Memory view

	15. Configuring a project
	15.1 Changes available via Quickstart Quick Settings
	15.2 Project settings
	15.3 Changing the MCU (and associated SDK)
	15.3.1 Confirm device information
	15.3.2 Removal of SDK components associated with the old MCU
	15.3.3 Addition of SDK components associated with the new MCU

	15.4 Changing the MCU (SDK) package type

	16. MCUXpresso Config Tools
	16.1 Using the Config Tools
	16.1.1 Tool perspectives
	16.1.2 Pins tool
	16.1.3 Clocks tool
	16.1.4 Peripherals tool
	16.1.5 Device Configuration tool
	16.1.6 TEE tool
	16.1.7 Generate code
	16.1.8 SDK components

	17. The GUI Flash tool
	17.1 The advanced GUI Flash Tool
	17.1.1 Advanced GUI Flash Tool command preview
	17.1.2 Advanced GUI Flash Tool logged output
	17.1.3 Advanced GUI Flash Tool programming an arbitrary binary

	18. LinkServer Flash support
	18.1 Default vs per-region Flash drivers
	18.2 Advanced Flash drivers
	18.2.1 LPC18xx / LPC43xx internal Flash drivers
	18.2.2 LPC SPIFI QSPI Flash drivers
	 Flash devices supported by our LPC SPIFI Flash drivers

	18.2.3 i.MX RT QSPI and Hyper Flash frivers
	18.2.4 Flash drivers using SFDP (LPC and iMX RT)
	 QSPI SFDP issues and limitations
	 Flash programming log
	 QSPI programming and booting
	 FlexSPI Flash reset

	18.3 Kinetis Flash drivers
	18.4 Configuring projects to span multiple Flash devices
	18.5 The LinkServer GUI Flash Programmer
	18.6 The LinkServer command-line Flash Programmer
	18.6.1 Command-line programming
	 Programming an image into Flash
	 Programming Flash with SDK Part Support
	 Programming Flash taking MCUXpresso IDE project memory edits into account
	 Programming Flash for complex debug connections
	 Finding the correct parameters from MCUXpresso IDE
	 Dealing with errors during Flash operations
	 Validating the content of Flash
	 Erasing the Flash
	 Validating that Flash has been erased
	 Examples

	19. C/C++ library support
	19.1 Overview of Redlib, Newlib, and NewlibNano
	19.1.1 Redlib extensions to C90
	19.1.2 Newlib vs NewlibNano

	19.2 Library variants
	19.3 Switching the selected C library
	19.3.1 Manually switching

	19.4 What is Semihosting?
	19.4.1 Background to Semihosting
	19.4.2 Semihosting implementation
	19.4.3 Semihosting performance
	19.4.4 Important notes about using Semihosting
	19.4.5 Semihosted printf and debugging
	19.4.6 Semihosting specification

	19.5 Use of printf
	19.5.1 Redlib printf variants
	 Character vs string output
	 Integer-only vs full printf (including floating point)

	19.5.2 NewlibNano printf variants
	19.5.3 Newlib printf variants
	19.5.4 Printf when using LPCOpen
	19.5.5 Printf when using SDK
	19.5.6 Retargeting printf/scanf
	 Redlib
	 Newlib / NewlibNano

	19.5.7 How to use ITM printf
	 ITM overview
	 ITM printf with SDK
	 ITM printf with LPCOpen

	19.6 itoa() and uitoa()
	19.6.1 Redlib
	 Example invocations
	 Standards compliance

	19.6.2 Newlib/NewlibNano

	19.7 Libraries and linker scripts

	20. Memory configuration and linker scripts
	20.1 Introduction
	20.2 Managed linker script overview
	20.3 How are managed linker scripts generated?
	20.4 Default image layout
	20.5 Examining the layout of the generated image
	20.5.1 Linker --print-memory-usage
	 Comparing code size

	20.5.2 arm-none-eabi-size
	20.5.3 Linker map files

	20.6 Image information (info)
	20.6.1 Memory usage
	20.6.2 Memory contents
	20.6.3 Call graph
	20.6.4 Use of filters

	20.7 Enhanced syntax highlighting
	20.8 Other options affecting the generated image
	20.8.1 LPC MCUs – Code Read Protection
	 CRP: Preinstalled MCUs
	 CRP: MCUs installed by importing an SDK

	20.8.2 Kinetis MCUs – Flash Config Blocks
	20.8.3 Placement of USB data
	20.8.4 Plain load image
	20.8.5 Link application to RAM

	20.9 Modifying the generated linker script / memory layout
	20.10 Using the Memory Configuration Editor
	20.10.1 Editing a memory configuration
	20.10.2 Device-specific vs default Flash drivers
	20.10.3 Restoring a memory configuration
	20.10.4 Copying Memory Configurations

	20.11 Global data placement
	20.12 Modifying heap/stack placement
	20.12.1 MCUXpresso style heap and stack
	20.12.2 LPCXpresso style heap and stack
	20.12.3 Reserving RAM for IAP Flash programming
	20.12.4 Stack checking
	20.12.5 Heap checking
	20.12.6 Checking the heap from your application

	20.13 Placement of specific code/data items
	20.13.1 Placing code and data into different memory regions
	20.13.2 Placing data into different RAM blocks using macros
	20.13.3 Noinit memory sections
	 Making global variables Noinit

	20.13.4 Placing code/rodata into different FLASH blocks
	20.13.5 Placing specific functions into RAM blocks
	 Long branch veneers and debugging

	20.13.6 Reducing code size when support for LPC CRP or Kinetis Flash Config Block is enabled

	20.14 FreeMarker linker script templates
	20.14.1 Basics
	20.14.2 Reference
	 Linker script template hierarchy
	 Linker script search paths
	 Linker script templates
	 Predefined variables (macros)
	 Extended variables
	 Outputting variables

	20.15 FreeMarker linker script template examples
	20.15.1 Relocating code from FLASH to RAM
	 Relocating particular objects into RAM
	 Relocating particular libraries into RAM
	 Relocating the majority of an application into RAM

	20.15.2 Configuring projects to span multiple Flash devices

	20.16 Disabling managed linker scripts

	21. Multicore projects
	21.1 Introduction
	21.2 Creating a primary/secondary project pair (using an SDK)
	21.2.1 Creating the M0 Secondary project
	21.2.2 Creating the M4 Primary project

	21.3 Creating a primary/secondary project pair (using preinstalled part support)
	21.3.1 Creating the M0 Secondary project
	21.3.2 Creating the M4 Primary project

	21.4 Debugging multicore projects
	21.4.1 Controlling debug views
	21.4.2 Secondary project debug
	21.4.3 Auto-debug secondary project(s) for multicore projects

	21.5 Multicore projects additional information
	21.5.1 Defines
	21.5.2 Secondary boot code
	21.5.3 Reset handler code

	22. Appendix – Additional hints and tips
	22.1 Part support handling from SDKs
	22.1.1 SDK version control
	22.1.2 SDK manifest versioning
	22.1.3 Device versions

	22.2 How do I switch between Debug and Release builds?
	22.2.1 Changing the build configuration of a single project
	22.2.2 Changing the build configuration of multiple projects

	22.3 Editing hints and tips
	22.3.1 Link Project Explorer view to the active editor
	22.3.2 Multiple views onto the same file
	22.3.3 Viewing two edited files at once
	22.3.4 Source folding
	22.3.5 Editor templates and Code completion
	22.3.6 Brace matching
	22.3.7 Syntax coloring
	22.3.8 Comment/uncomment block
	22.3.9 Format code
	22.3.10 Correct indentation
	22.3.11 Insert spaces for tabs in editor
	22.3.12 Replacing tabs with spaces

	22.4 Hardware floating-point support
	22.4.1 Floating-point variants
	22.4.2 Floating point use – preinstalled MCUs
	22.4.3 Floating point use – SDK-installed MCUs
	22.4.4 Modifying floating-point configuration for an existing project
	22.4.5 Do all Cortex-M4 MCUs provide floating point in hardware?
	22.4.6 Why do I get a hard fault when my code executes a floating-point operation?

	22.5 LinkServer scripts
	22.5.1 Supplied scripts
	22.5.2 User scripts
	22.5.3 Debugging code from RAM
	22.5.4 LinkServer scripting features

	22.6 RAM projects with LinkServer
	22.6.1 Advantages of developing with RAM projects

	22.7 The Console view
	22.7.1 Console types
	 Build Console and Global Build Console
	 FreeRTOS task-aware debugger console
	 Azure RTOS ThreadX task-aware debugger console
	 Zephyr RTOS task-aware debugger console
	 gdb traces and arm-none-eabi-gdb consoles
	 RedlinkServer/LinkServer console
	 Debug messages console
	 Semihosting console
	 SWO and Trace console

	22.7.2 Copying the contents of a console
	22.7.3 Relocating and duplicating the Console view

	22.8 Using Terminal view for UART communication with a target
	22.9 Using and troubleshooting LPC-Link2
	22.9.1 LPC-Link2 hardware
	22.9.2 Softloaded vs pre-programmed probe firmware
	22.9.3 LPC-Link2 firmware variants
	22.9.4 Manually booting LPC-Link2
	 LPC-Link2 USB details
	 Booting from the command line
	 Booting from the GUI

	22.9.5 LPC-Link2 windows drivers
	22.9.6 LPC-Link2 failing to enumerate
	 To find the version number of the LPC-Link2 VCOM driver
	 Removing the obsolete 1.0.0.0 LPC-LinkII UCOM driver

	22.9.7 Troubleshooting LPC-Link2

	22.10 Using and troubleshooting MCU-Link
	22.10.1 MCU-Link hardware
	22.10.2 MCU-Link CMSIS-DAP firmware
	 CMSIS-DAP versions
	 MCU-Link USB details

	22.10.3 MCU-Link host drivers
	22.10.4 MCU-Link JLink-compatible firmware
	22.10.5 Troubleshooting MCU-Link

	22.11 Creating bin, hex, or S-Record files
	22.11.1 Simple conversion within the IDE
	22.11.2 From the command line
	22.11.3 Automatically converting the file during a build
	22.11.4 Binary files and checksums

	22.12 Post-build (and pre-build) steps
	22.12.1 Temporarily removing post-build steps

	22.13 Save info for support

	23. Revision history
	24. Legal information
	24.1 Definitions
	24.2 Disclaimers
	24.3 Trademarks

