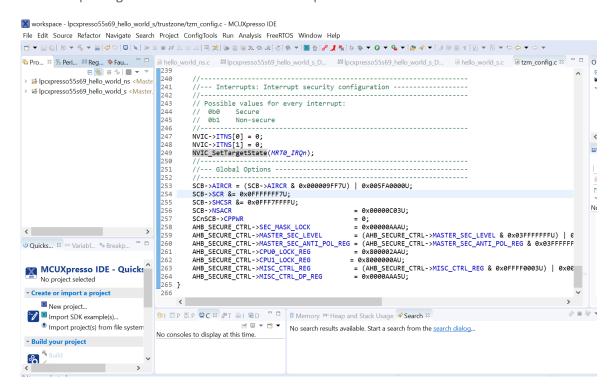
Generating interrupt in NON-security world


For the CM33 of LPC55S6x family, the trust zone module is integrated, the memory space and peripherals are classified as security and non-security space. In order to generate interrupt in non-security mode, the NVIC module especially the NVIC_ITNSx register must be initialized in security mode so that interrupt module can generate interrupt in non-security mode.

The example demos that MRTO module generates interrupt in non-security mode, the NVIC module is initialized at security mode, MRTO is initialized at non-security mode.

The project is based on MCUXpresso IDE ver11.1 tools, LPC55S69-EVK board and SDK_2.x_LPCXpresso55S69 SDK package version 2.7.1.

1) security and non-security mode introduction

The SDK package for LPC55S6x has an example:

The lpcxpresso55s69_hello_world_s is the code that the LPC55S69 runs in the security mode.

The lpcxpresso55s69_hello_world_ns is the code that the lpc55S69 runs in non-security mode.

Users can compile the two project, then download ONLY the lpcxpresso55s69_hello_world_s project, the lpcxpresso55s69_hello_world_ns is loaded to flash automatically by the lpcxpresso55s69_hello_world_s project.

The lpcxpresso55s69_hello_world_s is loaded into PROGRAM_FLASH (rx) : ORIGIN = 0x10000000, so the LPC55S69 runs in security mode after Reset.

2) NVIC-ITNSx registers introduction

For the CM33 core, there is additional NVIC-ITNSx registers,

Reset value Description Address Name Type Required privilege 0xE000E100-0xE000E13C NVIC ISER0-Privileged 4.4.2 Interrupt Set Enable Registers 0x00000000 on page 4-305 NVIC ISER15 NVIC ICER0-Privileged 4.4.3 Interrupt Clear Enable 0XE000E180- 0XE000E1BC 0x00000000 NVIC_ICER15 Registers on page 4-306 NVIC ISPR0-4.4.4 Interrupt Set Pending 0XE000E200- 0xE000E23C RW Privileged 0x00000000 NVIC ISPR15 Registers on page 4-307 NVIC ICPR0-Privileged 4.4.5 Interrupt Clear Pending 0XE000E280- 0XE000E2BC 0x00000000 NVIC ICPR15 Registers on page 4-307 NVIC IABR0-RW 4.4.6 Interrupt Active Bit Registers 0xE000E300-0xE000E33C Privileged 0×00000000 NVIC IABR15 on page 4-308 NVIC ITNS0-4.4.7 Interrupt Target Non-secure 0×E000E380-0×E000E3BC RWV Privileged ахаааааааа NVIC_ITNS15 Registers on page 4-308. NVIC IPR0-4.4.8 Interrupt Priority Registers 0×F000F400-0×F000F5DC Privileged 0×00000000 NVIC IPR119 on page 4-309 0xE000EF00 STIR WO Configurablew 0x00000000 4.4.9 Software Trigger Interrupt

Table 4-35 NVIC registers summary

Table 4-42 NVIC_ITNSn bit assignments

Register on page 4-310

Bits	Name	Function
[31:0]	ITNS	Interrupt Targets Non-secure bits. For ITNS[m] in NVIC_ITNSn, this field indicates and allows modification of the target Security state for interrupt 32n+m.
		 The interrupt targets Secure state. The interrupt targets Non-secure state.

The CM33 core has two interrupt vector table located at different memory space, one is for security mode, another is for non-security mode. In other words, each interrupt source has two interrupt vector, one is located in security interrupt vector table, another is located at non-security interrupt vector table.

If user wants to generate interrupt in non-security mode, user has to set the interrupt source bit in NVIC_ITNSx register in the secure project. In this way, the security project can control whether the interrupt source is allowed or not allowed in non-security project.

Generally, the code to initialize the NVIC_ITNSx register is located in the tzm_config.c to initialize the trust zone in the security project.

```
NVIC->ITNS[0] = 0;
NVIC->ITNS[1] = 0;
NVIC SetTargetState(MRT0 IRQn);
```

3) MRTO and NVIC code

3.1 The code required to be located at the lpcxpresso55s69_hello_world_s
project:

The NVIC module initialization must be located at the security side so

that the security side can determine what resource is open to non-security side. User can use NVIC module or NVIC_NS module, either of them is okay, because security can access non-security peripherals.

```
void MRT0_InterruptInit(void)
    NVIC \rightarrow IPR[9] = 0 \times 00;
    NVIC->ISER[0]|=1<<9;
    NVIC->ICPR[0]|=1<<9;
}
0r
void MRT0 NS InterruptInit(void)
    NVIC NS->IPR[9]=0\times00;
    NVIC NS->ISER[0]|=1<<9;
    NVIC_NS->ICPR[0]|=1<<9;
}
The NVIC->ITNSx register must be initialized in security side.
    NVIC \rightarrow ITNS[0] = 0;
    NVIC \rightarrow ITNS[1] = 0;
    NVIC SetTargetState(MRT0 IRQn);
       3.2 The code required to be located at the lpcxpresso55s69 hello world ns
project:
void Init_MRTO_NS(void)
    SYSCON_NS->AHBCLKCTRL.AHBCLKCTRL1 | =1<<0;
    //set up PIT0
    MRT0 NS->CHANNEL[0].INTVAL=12000000;
    //repeated interrupt mode
    MRT0 NS->CHANNEL[0].CTRL=0x00;
    //enable MRT channel0
    MRT0 NS->CHANNEL[0].CTRL=1<<0;}</pre>
void MRT0 IRQHandler(void)
{
    //toggle LED
    //clear flag
    MRTO_NS->CHANNEL[0].STAT=1<<0;</pre>
    GPIO_NS->NOT[1]|=1<<7;</pre>
//LEDG PIO1_7 as GPIO output mode
void Init PIO1 7 NS(void)
```

```
{
    //enable gated GPIOP1 clock
    SYSCON_NS->AHBCLKCTRL.AHBCLKCTRL0|=1<<15;
    //set the mux

    //set GPIO direction reg
    GPIO_NS->DIR[1]|=1<<7;
    //toggle the PIO1_4
    GPIO_NS->NOT[1]=1<<7;
    __asm("nop");
}</pre>
```

4. conclusion

In order to generate interrupt in non-security side, the NVIC module must be initialized in security side, which includes the initialization of the registers: ISER,ICPR,IPR and ITNS of NVIC. The module which generate interrupt can be initialized in the non-security side.