
Arm® Cortex®-M33 Devices
Revision: r0p4

Generic User Guide

Copyright © 2017, 2018 Arm Limited or its affiliates. All rights reserved.
100235_0004_00_en

Arm® Cortex®-M33 Devices
Generic User Guide
Copyright © 2017, 2018 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0002-00 11 September 2017 Non-Confidential First release for r0p2

0003-00 28 November 2017 Non-Confidential First release for r0p4

0004-00 10 April 2018 Non-Confidential First release for r0p4

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2017, 2018 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

 Arm® Cortex®-M33 Devices

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 Arm® Cortex®-M33 Devices

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com

Contents
Arm® Cortex®-M33 Devices Generic User Guide

Preface
About this book 7
Feedback .. 10

Chapter 1 Introduction
1.1 About the Cortex®-M33 processor and core peripherals 1-12
1.2 Arm®v8-M enablement 1-17

Chapter 2 The Cortex®-M33 Processor
2.1 Programmer's model 2-19
2.2 Memory model 2-33
2.3 Exception model .. 2-42
2.4 Security state switches .. 2-57
2.5 Fault handling .. 2-58
2.6 Power management 2-62

Chapter 3 The Cortex®-M33 Instruction Set
3.1 Cortex®-M33 instructions 3-65
3.2 CMSIS functions .. 3-79
3.3 About the instruction descriptions .. 3-82
3.4 General data processing instructions 3-92
3.5 Coprocessor instructions 3-128
3.6 Multiply and divide instructions .. 3-134
3.7 Saturating instructions 3-155

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

3.8 Packing and unpacking instructions 3-165
3.9 Bit field instructions .. 3-172
3.10 Branch and control instructions 3-175
3.11 Floating-point instructions .. 3-184
3.12 Miscellaneous instructions 3-226
3.13 Memory access instructions 3-243

Chapter 4 The Cortex®-M33 Peripherals
4.1 About the Cortex®-M33 peripherals 4-266
4.2 System Control Block 4-267
4.3 System timer, SysTick 4-300
4.4 Nested Vectored Interrupt Controller 4-304
4.5 Security Attribution and Memory Protection 4-312
4.6 Floating-Point Unit 4-327

Appendix A Cortex®-M33 Options
A.1 Processor implementation options Appx-A-338

Appendix B Revisions
B.1 Revisions Appx-B-342

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

Preface

This preface introduces the Arm® Cortex®‑M33 Devices Generic User Guide.

It contains the following:
• About this book on page 7.
• Feedback on page 10.

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

 About this book
This book is a generic user guide for devices that implement the Arm Cortex®‑M33 processor.
Implementers of Cortex-M33 designs make several implementation choices that can affect the
functionality of the device. This means that, in this book some information is described as
implementation-defined, and some features are described as optional. In this book, unless the context
indicates otherwise, processor refers to the Cortex‑M33 processor, as supplied by Arm, and device refers
to an implemented device, which is supplied by an Arm partner, that incorporates a Cortex‑M33
processor. In particular, your device refers to the particular implementation of the Cortex‑M33 that you
are using. Some features of your device depend on the implementation choices made by the Arm partner
that made the device.

 Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rm Identifies the major revision of the product, for example, r1.
pn Identifies the minor revision or modification status of the product, for example, p2.

 Intended audience

This book is written for application and system-level software developers, familiar with programming,
who want to program a device that includes the Cortex®‑M33 processor.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter introduces the Cortex‑M33 processor and its features.

Chapter 2 The Cortex®-M33 Processor
This chapter describes how to program the Cortex‑M33 processor.

Chapter 3 The Cortex®-M33 Instruction Set
This chapter describes the Cortex‑M33 instruction set. It provides general information and
describes each Cortex‑M33 instruction in the functional group that they belong. All the
instructions that the Cortex‑M33 processor supports are described.

Chapter 4 The Cortex®-M33 Peripherals
This chapter describes the Cortex‑M33 peripherals.

Appendix A Cortex®-M33 Options
This appendix describes what the configuration options are and the affect these have on this book.
The configuration options for a Cortex‑M33 processor implementation are determined by the
device manufacturer.

Appendix B Revisions
This appendix describes the technical changes between released issues of this book.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Preface
 About this book

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Timing diagrams

The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the shaded
area at that time. The actual level is unimportant and does not affect normal operation.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

Figure 1 Key to timing diagram conventions

Signals

The signal conventions are:

 Preface
 About this book

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:
• HIGH for active-HIGH signals.
• LOW for active-LOW signals.

Lowercase n

At the start or end of a signal name denotes an active-LOW signal.

 Additional reading

This book contains information that is specific to this product. See the following documents for other
relevant information.

Arm publications
• Armv8‑M Architecture Reference Manual (DDI 0553)
• Arm® AMBA® 5 AHB Protocol Specification (IHI 0033)
• AMBA® APB Protocol Version 2.0 Specification (IHI 0024)
• AMBA® 4 ATB Protocol Specification (IHI 0032)
• CoreSight™ Components Technical Reference Manual (DDI 0314)
• Lazy Stacking and Context Switching Application Note 298 (DAI0298).
• AMBA® Low Power Interface Specification Arm® Q-Channel and P-Channel Interfaces (IHI

0068).
• Arm® Embedded Trace Macrocell Architecture Specification ETMv4 (IHI 0064).
• Arm® CoreSight™ Architecture Specification v3.0 (IHI 0029).
• Arm® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2 (IHI 0031).
• Armv8‑M Processor Debug (100734).
• ACLE Extensions for Armv8‑M (100739).
• Fault Handling and Detection (100691).
• Arm® Synchronization Primitives Development Article (ID012816).
• Armv8‑M Exception Handling (100701).
• Memory Protection Unit for Armv8‑M based platforms (100699).
• Armv8‑M Architecture Reference Manual (DDI 0553).
• TrustZone® technology for Armv8‑M Architecture (100690).
• Introduction to the Armv8‑M Architecture (100688).

The following confidential books are only available to licensees:
• Arm® Cortex®‑M33 Processor Integration and Implementation Manual (100323)

Other publications
• IEEE Std 1149.1-2001, Test Access Port and Boundary-Scan Architecture (JTAG).
• ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point Arithmetic.

 Preface
 About this book

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm Cortex‑M33 Devices Generic User Guide.
• The number 100235_0004_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

mailto:errata@arm.com

Chapter 1
Introduction

This chapter introduces the Cortex‑M33 processor and its features.

It contains the following sections:
• 1.1 About the Cortex®‑M33 processor and core peripherals on page 1-12.
• 1.2 Arm®v8‑M enablement on page 1-17.

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

1-11

Non-Confidential

1.1 About the Cortex®-M33 processor and core peripherals
The Cortex‑M33 processor is a high-performance 32-bit processor that is designed for the
microcontroller market. The processor offers outstanding performance, fast interrupt handling, and
enhanced system debug with extensive breakpoint and trace capabilities.

Other significant benefits to developers include:
• Efficient processor core, system, and memories.
• Instruction set extension for signal processing applications.
• Ultra-low power consumption with integrated sleep modes.
• Platform robustness with optional integrated memory protection.
• Extended security features with optional Security Extension for Armv8‑M.

Processor implementation

The Cortex‑M33 processor is built on a high-performance processor core, with a 3-stage pipeline
Harvard architecture, making it ideal for demanding embedded applications. The in-order processor
delivers exceptional power efficiency through an efficient instruction set and extensively optimized
design.

The Cortex‑M33 processor provides high-end processing hardware including:

• IEEE754-compliant single-precision floating-point computation.
• Single Instruction Multiple Data (SIMD) multiplication and multiply-with-accumulate capabilities.
• Saturating arithmetic and dedicated hardware division.

1 Introduction
1.1 About the Cortex®-M33 processor and core peripherals

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

1-12

Non-Confidential

Processor

Optional
Cross Trigger
Interface (CTI)

Nested Vector
Interrupt Controller

(NVIC)

Optional
Wake up Interrupt
Controller (WIC)

Interrupts

Bus matrix

Optional
Embedded Trace
Macrocell (ETM)

Trace
Interface

Processor core

Memory system

Optional
Micro Trace Buffer

(MTB)
MTB SRAM

Interface

MTB AHB Interface

AMBA5 AHB 5

Optional
Memory Protection Unit (MPU)

Debug
Interface

Optional Data
Watchpoint and Trace

Unit (DWT)

Optional Breakpoint
Unit

ROM tables

Coprocessor
interface

Optional Floating-point Unit (FPU)

Figure 1-1 Cortex-M33 processor implementation without the Security Extension

1 Introduction
1.1 About the Cortex®-M33 processor and core peripherals

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

Interrupts

Trace
Interface

Memory system

MTB SRAM
Interface

MTB AHB Interface

AMBA5 AHB 5

Debug
Interface

Coprocessor
interface

Implementation
Defined

Attribution Unit
(IDAU)

Processor

Optional
Cross Trigger
Interface (CTI)

Nested Vector
Interrupt Controller

(NVIC)

Optional
Wake up Interrupt
Controller (WIC)

Bus matrix

Optional
Embedded Trace
Macrocell (ETM)Processor core

Optional
Micro Trace Buffer

(MTB)

Optional Memory Protection
Optional Data

Watchpoint and Trace
Unit (DWT)

Optional Breakpoint
Unit

ROM tables

Optional Floating-point Unit (FPU)

Security
Attribution Unit

(SAU)

Secure Memory
Protection Unit

(MPU_S)

Non-secure
Memory

Protection Unit
(MPU_NS)

Figure 1-2 Cortex-M33 processor implementation with the Security Extension

To facilitate the design of cost-sensitive devices, the Cortex‑M33 processor implements tightly-coupled
system components that reduce processor area while significantly improving interrupt handling and
system debug capabilities. The Cortex‑M33 processor implements the T32 instruction set based on
Thumb®-2 technology, ensuring high code density and reduced program memory requirements. The
Cortex‑M33 processor instruction set provides the exceptional performance that is expected of a modern
32-bit architecture, with better code density than most other architectures.

The Cortex‑M33 processor closely integrates a configurable Nested Vectored Interrupt Controller
(NVIC) to deliver industry-leading interrupt performance. The NVIC includes a non-maskable interrupt,
and provides up to 256 interrupt priority levels for other interrupts. The tight integration of the processor
core and NVIC provides fast execution of Interrupt Service Routines (ISRs), which dramatically reduces
interrupt latency. This reduced latency is achieved through:
• The hardware stacking of registers.
• The ability to suspend load multiple and store multiple operations.
• Parallel instruction-side and data-side paths.
• Tail-chaining.
• Late-arriving interrupts.

Interrupt handlers do not require wrapping in assembler code, removing any code overhead from the
ISRs. The tail-chain optimization also significantly reduces the overhead when switching from one ISR
to another.

1 Introduction
1.1 About the Cortex®-M33 processor and core peripherals

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential

To optimize low-power designs, the NVIC supports different sleep modes, including a deep sleep
function that enables the entire device to be rapidly powered down while still retaining program state.

The MCU vendor determines the reliability features configuration, therefore reliability features can differ
across different devices and families.

To increase instruction throughput, the Cortex‑M33 processor can execute certain pairs of 16-bit
instructions simultaneously. This is called dual issue.

1.1.1 System-level interface

The Cortex‑M33 processor provides multiple interfaces using Arm AMBA technology to provide high
speed, low latency memory accesses.

1.1.2 Security Extension

The Armv8‑M Security Extension adds security through code and data protection features.

A processor with the Security Extension supports both Non-secure and Secure states, which are
orthogonal to the traditional thread and handler modes. The four modes of operation are:

• Non-secure Thread mode.
• Non-secure Handler mode.
• Secure Thread mode.
• Secure Handler mode.

When the Security Extension is implemented, the following happens:
• The processor resets into Secure state.
• Some registers are banked between Security states. There are two separate instances of the same

register, one in Secure state and one in Non-secure state.
• The architecture allows the Secure state to access the Non-secure versions of banked registers.
• Interrupts can be configured to target one of the two Security states.
• Some faults are banked between Security states or are configurable.
• Secure memory can only be accessed from Secure state.

1.1.3 Integrated configurable debug

The Cortex‑M33 processor implements a complete hardware debug solution. This provides high system
visibility of the processor and memory through either a traditional JTAG port or a 2-pin Serial Wire
Debug (SWD) port that is ideal for microcontrollers and other small package devices. The MCU vendor
determines the debug feature configuration, therefore debug features can differ across different devices
and families.

The processor provides instruction and data trace and profiling support. To enable simple and cost-
effective profiling of the resulting system events, a Serial Wire Viewer (SWV) can export a stream of
software-generated messages, data trace, and profiling information through a single pin.

When implemented, debuggers can use:
• The Breakpoint Unit (BPU), which supports four or eight hardware breakpoint comparators.
• The Data Watchpoint and Trace (DWT), which supports four or eight watchpoint comparators.

1 Introduction
1.1 About the Cortex®-M33 processor and core peripherals

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

1.1.4 Processor features and benefits summary

The Cortex‑M33 processor benefits include tight integration of system peripherals that reduces area and
development costs, T32 instruction set that combines high code density with 32-bit performance, and
IEEE754-compliant single-precision Floating-Point Unit (FPU).

Other processor features and benefits are:
• Power control optimization of system components.
• Integrated sleep modes for low power consumption.
• Armv8‑M Security Extension.
• Fast code execution permits slower processor clock or increases sleep mode time.
• Hardware integer division and fast multiply accumulate for digital signal processing.
• Saturating arithmetic for signal processing.
• Deterministic, high-performance interrupt handling for time-critical applications.
• MPU and SAU for safety-critical applications.
• Extensive debug and trace capabilities.

1.1.5 Processor core peripherals

The processor has the following core peripherals:

Nested Vectored Interrupt Controller
The NVIC is an embedded interrupt controller that supports low-latency interrupt processing.

System Control Space
The SCS is the programmer's model interface to the processor. It provides system
implementation information and system control.

System timer

The system timer, SysTick, is a 24 bit count-down timer. Use this as a Real Time Operating
System (RTOS) tick timer or as a simple counter. In an implementation with the Security
Extension, there are two SysTicks, one Secure and one Non-secure.

Security Attribution Unit
The SAU improves system security by defining security attributes for different regions. It
provides up to eight different regions and a default background region.

Memory Protection Unit

The MPU improves system reliability by defining the memory attributes for different memory
regions. It provides up to 16 different regions, and an optional predefined background region.
When the Security Extension is included, there can be two MPUs, one Secure and one Non-
secure. Each MPU can define memory attributes independently.

Floating-point Unit
The Floating-point Unit (FPU) provides IEEE754-compliant operations on 32-bit single-
precision floating-point values.

Related reference
2.3.7 Exception entry and return on page 2-51

1 Introduction
1.1 About the Cortex®-M33 processor and core peripherals

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

1.2 Arm®v8-M enablement
The following list of documents, while not specific to this product, contain important information that
can assist you in developing your Cortex‑M33 processor.

• Armv8‑M Processor Debug (100734).
• ACLE Extensions for Armv8‑M (100739).
• Fault Handling and Detection (100691).
• Arm® Synchronization Primitives Development Article (ID012816).
• Armv8‑M Exception Handling (100701).
• Memory Protection Unit for Armv8‑M based platforms (100699).
• Armv8‑M Architecture Reference Manual (DDI 0553).
• TrustZone® technology for Armv8‑M Architecture (100690).
• Introduction to the Armv8‑M Architecture (100688).

1 Introduction
1.2 Arm®v8-M enablement

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

Chapter 2
The Cortex®-M33 Processor

This chapter describes how to program the Cortex‑M33 processor.

It contains the following sections:
• 2.1 Programmer's model on page 2-19.
• 2.2 Memory model on page 2-33.
• 2.3 Exception model on page 2-42.
• 2.4 Security state switches on page 2-57.
• 2.5 Fault handling on page 2-58.
• 2.6 Power management on page 2-62.

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-18

Non-Confidential

2.1 Programmer's model
The programmer's model describes the modes, privilege levels, Security states, stacks and core registers
available for software execution.

2.1.1 Processor modes and privilege levels for software execution

Descriptions of the two modes and two privilege levels available are provided in this topic.

Modes

Thread mode

Intended for applications.

The processor enters Thread mode out of reset and returns to Thread mode on completion of an
exception handler.

Handler mode

Intended for OS execution.

All exceptions cause entry into Handler mode.

Privilege levels

There are two levels of privilege:

Unprivileged

Software has limited access to system resources.

Privileged
Software has full access to system resources, subject to security restrictions.

In Thread mode, the CONTROL register controls whether software execution is privileged or
unprivileged. In Handler mode, software execution is always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for software
execution in Thread mode. Unprivileged software can use the SVC instruction to make a Supervisor Call
to transfer control to privileged software.

2.1.2 Security states

There are two Security states, Secure and Non-secure.

Security states are orthogonal to mode and privilege. Therefore each Security state supports execution in
both modes and both levels of privilege.

2.1.3 Core registers

The following figures and tables illustrate the core registers of the Cortex‑M33 processor:
• Without the Security Extension.
• With the Security Extension.

2 The Cortex®-M33 Processor
2.1 Programmer's model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-19

Non-Confidential

Program Counter
LR (R14)
PC (R15)

R5
R6
R7

R0
R1

R3
R4

R2

R10
R11
R12

R8
R9

Low registers

High registers

PSP
Link Register

Active Stack Pointer

General purpose registers

Banked stack pointers

MSP

xPSR
PRIMASK

CONTROL

PSPLIM
MSPLIM

FAULTMASK
BASIPRI

Combined Program Status Registers

Control Register

Stack Pointer Limit registers

Exception mask registers

Special registers

SP (R13)

Figure 2-1 Core registers without the Security Extension

Table 2-1 Core register set summary without the Security Extension

Name Type a Required
privilege b

Reset value Description

R0-R12 RW Either UNKNOWN General-purpose registers on page 2-22

MSP RW Either -c Stack Pointer on page 2-22

PSP RW Either UNKNOWN

LR RW Either 0xFFFFFFFF Link Register on page 2-24

PC RW Either -c Program Counter on page 2-24

xPSR (includes
APSR, IPSR, and
EPSR)

RW Either -d Combined Program Status Register on page 2-24

APSR RW Either UNKNOWN Application Program Status Register on page 2-25

IPSR RO Privileged 0x00000000 Interrupt Program Status Register on page 2-25

EPSR RO Privileged -d Execution Program Status Register on page 2-26.

PRIMASK RW Privileged 0x00000000 Priority Mask Register on page 2-28

FAULTMASK RW Privileged 0x00000000 Fault Mask Register on page 2-28

BASEPRI RW Privileged 0x00000000 Base Priority Mask Register on page 2-29

CONTROL RW Privileged 0x00000000 CONTROL register on page 2-30

PSPLIM RW Privileged 0x00000000 Stack limit registers on page 2-23

MSPLIM RW Privileged

2 The Cortex®-M33 Processor
2.1 Programmer's model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-20

Non-Confidential

Combined Program Status Registers

Control Register

MSP_S
PSP_S

CONTROL_NS

General purpose registers

BASIPRI_NS

Banked stack pointers

PSP_NS
MSP_NS

Banked special registers

BASIPRI_S
CONTROL_S

MSPLIM_S
PSPLIM_S

MSPLIM_NS
PSPLIM_NS

Program Counter
LR (R14)
PC (R15)

R5
R6
R7

R0
R1

R3
R4

R2

R10
R11
R12

R8
R9

Low registers

High registers

Link Register
Active Stack Pointer

xPSR

SP (R13)

PRIMASK

CONTROL

PSPLIM
MSPLIM

FAULTMASK
BASIPRI

PRIMASK_NSPRIMASK_S
FAULTMASK_NSFAULTMASK_S

Stack Pointer Limit registers

Exception mask registers

Special registers

Figure 2-2 Core registers with the Security Extension

Table 2-2 Core register set summary with the Security Extension

Name Type a Required
privilegeb

Reset value Description

R0-R12 RW Either UNKNOWN General-purpose registers on page 2-22.

MSP_S RW Either -c Stack Pointer on page 2-22

MSP_NS Either

PSP_S RW Either UNKNOWN

PSP_NS Either

LR RW Either UNKNOWN Link Register on page 2-24

PC RW Either -c Program Counter on page 2-24

xPSR (includes APSR,
IPSR, and EPSR)

RW Either -d Combined Program Status Register on page 2-24

APSR RW Either UNKNOWN Application Program Status Register on page 2-25.

IPSR RO Privileged 0x00000000 Interrupt Program Status Register on page 2-25

a Describes access type during program execution in Thread mode and Handler mode. Debug access can differ.
b An entry of Either means privileged and unprivileged software can access the register.
c Soft reset to the value retrieved by the reset handler
d Bit[24] is the T-bit and is loaded from bit[0] of the reset vector. All other bits are reset to 0.

2 The Cortex®-M33 Processor
2.1 Programmer's model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-21

Non-Confidential

Table 2-2 Core register set summary with the Security Extension (continued)

Name Type a Required
privilegeb

Reset value Description

EPSR RO Privileged -d Execution Program Status Register on page 2-26

PRIMASK_S RW Privileged 0x00000000 Priority Mask Register on page 2-28

PRIMASK_NS Privileged 0x00000000

FAULTMASK_S RW Privileged 0x00000000 Fault Mask Register on page 2-28

FAULTMASK_NS Privileged 0x00000000

BASEPRI_S RW Privileged 0x00000000 Base Priority Mask Register on page 2-29

BASEPRI_NS Privileged 0x00000000

CONTROL_S RW Privileged 0x00000000 CONTROL register on page 2-30

CONTROL_NS Privileged 0x00000000

MSPLIM_S RW Privileged 0x00000000 Stack limit registers on page 2-23

MSPLIM_NS Privileged 0x00000000

PSPLIM_S RW Privileged 0x00000000

PSPLIM_NS Privileged 0x00000000

General-purpose registers

R0-R12 are 32-bit general-purpose registers for data operations.

Stack Pointer

The stack pointer (SP) is register R13.

The processor uses a full descending stack, meaning the Stack Pointer holds the address of the last
stacked item in memory. When the processor pushes a new item onto the stack, it decrements the Stack
Pointer and then writes the item to the new memory location.

When Security state is implemented, software must initialize MSP_NS.

Table 2-3 Stack pointer register without the Security Extension

Stack Stack pointer register

Main MSP

Process PSP

In Thread mode, the CONTROL.SPSEL bit indicates the stack pointer to use.

0 Main stack pointer (MSP). This is the reset value.
1 Process stack pointer (PSP)

Table 2-4 Stack pointer register with the Security Extension

Stack stack pointer register

Secure Main MSP_S

Process PSP_S

2 The Cortex®-M33 Processor
2.1 Programmer's model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-22

Non-Confidential

Table 2-4 Stack pointer register with the Security Extension (continued)

Stack stack pointer register

Non-secure Main MSP_NS

Process PSP_NS

In Non-secure Thread mode, the CONTROL_NS.SPSEL bit indicates the stack pointer to use:

0 Main stack pointer (MSP_NS). This is the reset value.
1 Process stack pointer (PSP_NS).

In Non-secure Handler mode, the MSP_NS is always used.

In Secure Thread mode, the CONTROL_S.SPSEL bit indicates the stack pointer to use:

0 Main stack pointer (MSP_S). This is the reset value.
1 Process stack pointer (PSP_S).

In Secure Handler mode, the MSP_S is always used.

The current Security state of the processor determines whether the Secure or Non-secure stacks are used.

To ensure that stacks do not overrun, the processor has stack limit check registers that can be
programmed to define the bounds for each of the implemented stacks.

Stack limit registers

The stack limit registers define the lower limit for the corresponding stack. The processor raises an
exception on most instructions that attempt to update the stack pointer below its defined limit.

If the Security Extension is not implemented, the Cortex‑M33 processor has two stack limit registers, as
the following table shows.

Table 2-5 Stack limit registers without the Security Extension

Stack Stack limit register

Main MSPLIM

Process PSPLIM

If the Security Extension is implemented, the Cortex‑M33 processor has four stack limit registers, as the
following table shows.

Table 2-6 Stack limit registers with the Security Extension

Security state Stack Stack limit register

Secure Main MSPLIM_S

Process PSPLIM_S

Non-secure Main MSPLIM_NS

Process PSPLIM_NS

 Note

The four stack limit registers are banked between Security states.

See Table 2-1 Core register set summary without the Security Extension on page 2-20 table for the stack
limit registers attributes.

2 The Cortex®-M33 Processor
2.1 Programmer's model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-23

Non-Confidential

The bit assignments for the MSPLIM and PSPLIM registers are as follows:

031 23

LIMIT RES 0

Table 2-7 MSPLIM and PSPLIM register bit assignments

Bits Name Function

[31:3] LIMIT Main stack limit or process stack limit address for the selected Security state. Limit address for the selected stack
pointer.

[2:0] - Reserved, RES0.

Link Register

The Link Register (LR) is register R14. It stores the return information for subroutines, function calls,
and exceptions. On reset, the processor sets the LR value to 0xFFFFFFFF.

Program Counter

The Program Counter (PC) is register R15. It contains the current program address.

On reset, the processor loads the PC with the value of the reset vector defined in the vector table.

Combined Program Status Register

The Combined Program Status Register (xPSR) consists of the Application Program Status Register
(APSR), Interrupt Program Status Register (IPSR), and Execution Program Status Register (EPSR).

These registers are mutually exclusive bit fields in the 32-bit PSR. The bit assignments are as follows:

25 24 23

Reserved ISR_NUMBER

31 30 29 28 27

N Z C V

0

ReservedAPSR

IPSR

EPSR Reserved Reserved

26 16 15 10 9

ReservedIT/ICI IT/ICIT

Q

81920

GE[3:0]Reserved

Access these registers individually or as a combination of any two or all three registers, using the register
name as an argument to the MSR or MRS instructions. For example:
• Read all the registers using PSR with the MRS instruction.
• Write to the APSR N, Z, C, V, and Q bits using APSR_nzcvq with the MSR instruction.

The PSR combinations and attributes are:

Table 2-8 xPSR register combinations

Register Type Combination

xPSR RWe, f APSR, EPSR, and IPSR

IEPSR ROf EPSR and IPSR

IAPSR RWe APSR and IPSR

EAPSR RWf APSR and EPSR

e The processor ignores writes to the IPSR bits.
f Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

2 The Cortex®-M33 Processor
2.1 Programmer's model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-24

Non-Confidential

See the MRS and MSR instruction descriptions for more information about how to access the Program
Status Registers.

Application Program Status Register

The APSR contains the current state of the condition flags from previous instruction executions.

See Table 2-1 Core register set summary without the Security Extension on page 2-20 for the APSR
attributes.

The APSR bit assignments are as follows:

Table 2-9 APSR bit assignments

Bits Name Function

[31] N Negative flag.

[30] Z Zero flag.

[29] C Carry or borrow flag.

[28] V Overflow flag.

[27] Q DSP overflow and saturation flag.

[26:20] - Reserved.

[19:16] GE[3:0] Greater than or Equal flags. See 3.4.12 SEL on page 3-109 for more information.

[15:0] - Reserved.

Interrupt Program Status Register

The IPSR contains the exception number of the current ISR.

The bit assignments are:

2 The Cortex®-M33 Processor
2.1 Programmer's model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-25

Non-Confidential

Table 2-10 IPSR bit assignments

Bits Name Function

[31:9] - Reserved.

[8:0] Exception number This is the number of the current exception:

0 = Thread mode.

1 = Reset.

2 = NMI.

3 = HardFault.

4 = MemManage.

5 = BusFault.

6 = UsageFault

7 = SecureFault

8-10 = Reserved.

7-10 = Reserved.

11 = SVCall.

12 = DebugMonitor.

13 = Reserved.

14 = PendSV.

15 =SysTick

16 = IRQ0.

.

.

.

495 = IRQ479.

The active bits in the Exception number field depend on the number of interrupts implemented.

0-47 interrupts = [5:0].

48-111 interrupts = [6:0].

112-239 interrupts = [7:0].

240-479 interrupts = [8:0].

Execution Program Status Register

The EPSR contains the Thumb state bit and the execution state bits for the If-Then (IT) instruction, and
Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple
instruction.

See the Table 2-1 Core register set summary without the Security Extension on page 2-20 for the EPSR
attributes.

The following table shows the EPSR bit assignments.

2 The Cortex®-M33 Processor
2.1 Programmer's model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-26

Non-Confidential

Table 2-11 EPSR bit assignments

Bits Name Function

[31:27] - Reserved

[26:25], [15:10] ICI Interruptible-continuable instruction bits, see Interruptible-continuable instructions on page 2-27

[26:25], [15:10] IT Indicates the execution state bits of the IT instruction, see 3.10.5 IT on page 3-180

[24] T Thumb state bit, see Thumb state on page 2-27

[23:16] - Reserved

[9:0] - Reserved

Attempts to read the EPSR directly through application software using the MSR instruction always return
zero. Attempts to write the EPSR using the MSR instruction in application software are ignored.

Interruptible-continuable instructions

When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH, or VPOP
instruction, the processor can stop the load multiple or store multiple instruction operation temporarily,
storing the next register operand in the multiple operation to be transferred into EPSR[15:12].

After servicing the interrupt, the processor resumes execution of the load or store multiple, starting at the
register stored in EPSR[15:12].

When the EPSR holds ICI execution state, bits[26:25,11:10] are zero.
 Note

There might be cases where the processor cannot pause and resume load or store multiple instructions in
this way. When this happens, the processor restarts the instruction from the beginning on return from the
interrupt. As a result, your software should never use load or store multiple instructions to memory that
is not robust to repeated accesses.

If-Then block

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the
block is conditional. The conditions for the instructions are either all the same, or some can be the
inverse of others.

 Note

Interruptible-continuable operation is not supported when the load multiple or store multiple instructions
are located inside an If-Then block. In these cases, the processor can take an interrupt part-way through
the load or store multiple instruction, restarting it from the beginning on return from the interrupt.

Thumb state

The Cortex‑M33 processor only supports execution of instructions in Thumb state.

The following can modify the T bit in the EPSR:
• Instructions BLX, BX, LDR pc, [], and POP{PC}.
• Restoration from the stacked xPSR value on an exception return.
• Bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is 0 results in a fault or lockup. See 2.5.4 Lockup
on page 2-61 for more information.

2 The Cortex®-M33 Processor
2.1 Programmer's model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-27

Non-Confidential

Exception mask registers

The exception mask registers disable the handling of exceptions by the processor. For example, you
might want to disable exceptions when running timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change
the value of PRIMASK.PM or FAULTMASK.FM.

Priority Mask Register

The PRIMASK register is intended to disable interrupts by preventing activation of all exceptions with
configurable priority in the current Security state.

See Table 2-1 Core register set summary without the Security Extension on page 2-20 table for the
PRIMASK attributes.

The bit assignments for the PRIMASK register are as follows:

RES0

0131

PM

Table 2-12 PRIMASK register bit assignments

Bits Name Function

[31:1] - Reserved, RES0.

[0] PM In an implementation without the Security Extension, setting this bit to one boosts the current execution priority to 0,
masking all exceptions with a programmable priority.

In an implementation with the Security Extension, setting PRIMASK_S to one boosts the current execution priority to
0. If AIRCR.PRIS is:

0 Setting PRIMASK_NS to one boosts the current execution priority to 0x0.
1 Setting PRIMASK_NS to one boosts the current execution priority to 0x80.

When the current execution priority is boosted to a particular value, all exceptions with a lower or equal priority are
masked.

Fault Mask Register
The FAULTMASK register prevents activation of all exceptions with configurable priority and also some
exceptions with fixed priority depending on the value of AIRCR.BFHFNMINS and AIRCR.PRIS.

See Table 2-1 Core register set summary without the Security Extension on page 2-20 table for the
FAULTMASK register attributes.

The bit assignments for the FAULTMASK register are as follows:

RES0

0131

FM

2 The Cortex®-M33 Processor
2.1 Programmer's model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-28

Non-Confidential

Table 2-13 FAULTMASK register bit assignments

Bits Name Function

[31:1] - Reserved, RES0

[0] FM In an implementation without the Security Extension, setting this bit to one boosts the current execution priority to -1,
masking all exceptions except NMI.

In an implementation with the Security Extension, if AIRCR.BFHFNMINS is:

0 Setting FAULTMASK_S to one boosts the current execution priority to -1.

If AIRCR.PRIS is:

0 Setting FAULTMASK_NS to one boosts the current execution priority to 0x0

1 Setting FAULTMASK_NS to one boosts the current execution priority to 0x80.

1 Setting FAULTMASK_S to one boosts the current execution priority to -3.

Setting FAULTMASK_NS to one boosts the current execution priority to -1.

When the current execution priority is boosted to a particular value, all exceptions with a lower or equal priority are
masked.

Base Priority Mask Register

Use the BASEPRI register to change the priority level that is required for exception preemption.

See Table 2-1 Core register set summary without the Security Extension on page 2-20 table for the
BASEPRI register attributes.

The bit assignments for the BASEPRI register are as follows:

BASEPRIRES0

31 078

Table 2-14 BASEPRI register bit assignments

Bits Name Function

[31:8] - Reserved, RES0

[7:0] BASEPRI g Software can boost the base priority by setting BASEPRI to a number between 1 and the maximum supported
priority number.

In an implementation with the Security Extension, the BASEPRI_NS is then mapped to the bottom half of the
priority range, so that the current execution priority is boosted to the mapped value in the bottom half of the
priority range.

When the current execution priority is boosted to a particular value, all exceptions with a lower priority are
masked. Writing 0 to BASEPRI disables base priority boosting.

g This field is similar to the priority fields in the interrupt priority registers. If the device implements only bits[7:M] of this field, bits[M-1:0] read as zero and ignore
writes. See 4.4.8 Interrupt Priority Registers on page 4-309 for more information. Remember that higher priority field values correspond to lower exception
priorities.

2 The Cortex®-M33 Processor
2.1 Programmer's model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential

CONTROL register

The CONTROL register controls the stack that is used, the privilege level for software execution when
the core is in Thread mode and indicates whether the FPU state is active.

See Table 2-1 Core register set summary without the Security Extension on page 2-20 table for the
CONTROL register attributes.

In an implementation with the Security Extension, this register is banked between Security states on a bit
by bit basis.

The bit assignments for the CONTROL register are as follows:

31 2 1 0

RES0

3

SPSELFPCA

4

nPRIVSFPA

Table 2-15 CONTROL register bit assignments

Bits Name Function

[31:4] - Reserved, RES0

[3] SFPA Indicates that the floating-point registers contain active state that belongs to the Secure state:

0 The floating-point registers do not contain state that belongs to the Secure state.

1 The floating-point registers contain state that belongs to the Secure state.

This bit is not banked between Security states and RAZ/WI from Non-secure state.

[2] FPCA Indicates whether floating-point context is active:

0 No floating-point context active.

1 Floating-point context active.

This bit is used to determine whether to preserve floating-point state when processing an exception.

This bit is not banked between Security states.

[1] SPSEL Defines the currently active stack pointer:

0 MSP is the current stack pointer.

1 PSP is the current stack pointer.

In Handler mode, this bit reads as zero and ignores writes. The Cortex‑M33 core updates this bit automatically on
exception return.

This bit is banked between Security states.

[0] nPRIV Defines the Thread mode privilege level:

0 Privileged.

1 Unprivileged.

This bit is banked between Security states.

2 The Cortex®-M33 Processor
2.1 Programmer's model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-30

Non-Confidential

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit
of the CONTROL register when in Handler mode. The exception entry and return mechanisms
automatically update the CONTROL register based on the EXC_RETURN value.

In an OS environment, Arm recommends that threads running in Thread mode use the process stack and
the kernel and exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer that is used in Thread mode to the
PSP, either:
• Use the MSR instruction to set the CONTROL.SPSEL bit, the current active stack pointer bit, to 1.
• Perform an exception return to Thread mode with the appropriate EXC_RETURN value.

 Note

When changing the stack pointer, software must use an ISB instruction immediately after the MSR
instruction. This ensures that instructions after the ISB instruction execute using the new stack pointer.

2.1.4 Exceptions and interrupts

The Cortex‑M33 processor implements all the logic required to handle and prioritize interrupts and other
exceptions. Software can control this prioritization using the NVIC registers. All exceptions are vectored
and except for reset, handled in Handler mode. Exceptions can target either Security state.

The NVIC registers control interrupt handling.

Related reference
4.4 Nested Vectored Interrupt Controller on page 4-304

2.1.5 Data types and data memory accesses

The Cortex‑M33 processor manages all data memory accesses as little-endian or big-endian. Instruction
memory and Private Peripheral Bus (PPB) accesses are always performed as little-endian.

The processor supports the following data types:
• 32-bit words.
• 16-bit halfwords.
• 8-bit bytes.
• 32-bit single-precision floating-point numbers.
• 64-bit double-precision floating-point numbers.

2.1.6 The Cortex Microcontroller Software Interface Standard

The Cortex Microcontroller Software Interface Standard (CMSIS) simplifies software development by
enabling the reuse of template code and the combination of CMSIS-compliant software components
from various middleware vendors. Vendors can expand the CMSIS to include their peripheral definitions
and access functions for those peripherals.

For a Cortex‑M33 microcontroller system, the CMSIS defines:

• A common way to:
— Access peripheral registers.
— Define exception vectors.

• The names of:
— The registers of the core peripherals.
— The core exception vectors.

• A device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex‑M33
processor.

2 The Cortex®-M33 Processor
2.1 Programmer's model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential

This document includes the register names defined by the CMSIS, and short descriptions of the CMSIS
functions that address the processor core and the core peripherals.

 Note

This document uses the register short names that are defined by the CMSIS. In a few cases these short
names differ from the architectural short names that might be used in other documents.

2 The Cortex®-M33 Processor
2.1 Programmer's model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential

2.2 Memory model
The Cortex‑M33 processor has a fixed default memory map that provides up to 4GB of addressable
memory.

2.2.1 Processor memory map

The Cortex‑M33 processor memory map.

Vendor-specific
memory

External device

External RAM

Peripheral

SRAM

Code

0xFFFFFFFF

Private peripheralbus
0xE0100000
0xE00FFFFF

0x9FFFFFFF
0xA0000000

0x5FFFFFFF
0x60000000

0x3FFFFFFF
0x40000000

0x1FFFFFFF
0x20000000

0x00000000

1.0GB

1.0GB

0.5GB

0.5GB

0.5GB

0xDFFFFFFF
0xE0000000

1MB

511MB

Figure 2-3 Cortex-M33 processor memory map

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral
registers.

2.2.2 Memory regions, types, and attributes
If your implementation has an MPU or has the Security Extension MPUs, programming the relevant
MPUs splits memory into regions.

The memory types are:

2 The Cortex®-M33 Processor
2.2 Memory model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-33

Non-Confidential

Normal
The processor can reorder transactions for efficiency, or perform Speculative reads.

Device
The processor preserves transaction order relative to other transactions to Device memory.

The additional memory attributes include:

Shareable

For a shareable memory region, the memory system might provide data synchronization
between bus masters in a system with multiple bus masters, for example, a processor with a
DMA controller.

If multiple bus masters can access a Non-shareable memory region, software must ensure data
coherency between the bus masters.

Device memory is always Shareable.

Execute Never (XN)
Means that the processor prevents instruction accesses. A MemManage fault exception is
generated on executing an instruction fetched from an XN region of memory.

2.2.3 Device memory

Device memory must be used for memory regions that cover peripheral control registers. Some of the
optimizations that are permitted for Normal memory, such as access merging or repeating, can be unsafe
for a peripheral register.

The Device memory type has several attributes:

G or nG Gathering or non-Gathering. Multiple accesses to a device can be merged into a single
transaction except for operations with memory ordering semantics, for example, memory
barrier instructions, load acquire/store release.

R or nR Reordering or non-Reordering.
E or nE Early Write Acknowledgement or no Early Write Acknowledgement.

For the Cortex‑M33 processor, only two combinations of these attributes are valid:

• Device-nGnRnE.
• Device-nGnRE.

 Note

• Device-nGnRnE is equivalent to Armv7‑M Strongly Ordered memory type
• Device-nGnRE is equivalent to Armv7‑M Device memory.
• Device-nGRE and Device-GRE are new to the Armv8‑M architecture.

Typically, peripheral control registers must be either Device-nGnRE or Device-nGnRnE to prevent
reordering of the transactions in the programming sequences.

 Note

Device memory is shareable, and must not be cached.

2.2.4 Secure memory system and memory partitioning
In an implementation with the Security Extension, the Security Attribution Unit (SAU) and
Implementation Defined Attribution Unit (IDAU) partition the 4GB memory space into Secure and Non-
secure memory regions.

2 The Cortex®-M33 Processor
2.2 Memory model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-34

Non-Confidential

 Note

The partitioning of the memory into Secure and Non-secure regions is independent of the Security state
that the processor executes in. See 2.4 Security state switches on page 2-57 for more information on
Security state.

Secure memory partitioning
Secure addresses are used for memory and peripherals that are only accessible by Secure
software or Secure masters. Transactions are deemed to be secure if they are to an address that is
defined as Secure. Illegitimate accesses that are made by Non-secure software to Secure
memory are blocked and raise an exception.

Non-secure Callable (NSC)
NSC is a special type of Secure location that is permitted to hold an SG instruction to enable
software to transition from Non-secure to Secure state. The inclusion of NSC memory locations
removes the need for Secure software creators to allow for the accidental inclusion of SG
instructions, or data sharing encoding values, in normal Secure memory by restricting the
functionality of the SG instruction to NSC memory only.

Non-secure (NS)
Non-secure addresses are used for memory and peripherals accessible by all software running on
the device.
Transactions are deemed to be Non-secure if they are to an address that is defined as Non-
Secure.

 Note

Transactions are deemed to be Non-secure even if secure software performs the access. Memory
accesses initiated by Secure software to regions marked as Non-secure in the SAU IDAU are
marked as Non-secure on the AHB bus.

The MPU is banked between Secure and Non-secure memory. For instructions fetches, addresses that are
Secure are subject to the Secure MPU settings. Addresses that are Non-secure are subject to the Non-
secure MPU settings. For data loads and data stores, accesses depend on the Security state of the
processor. For example, if the processor is in Secure state the access is subject to the Secure MPU
settings. If the processor is in Non-secure state the access is subject to the Non-secure MPU settings.

2 The Cortex®-M33 Processor
2.2 Memory model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-35

Non-Confidential

2.2.5 Behavior of memory accesses

Summary of the behavior of accesses to each region in the memory map.

Table 2-16 Memory access behavior

Address range Memory region Memory type  Shareability XN Description

0x00000000-0x1FFFFFFF Code Normal Non-shareable - Executable region for program code.
You can also put data here.

0x20000000-0x3FFFFFFF SRAM Normal Non-shareable - Executable region for data. You can
also put code here.

0x40000000-0x5FFFFFFF Peripheral Device, nGnRE Shareable XN On-chip device memory.

0x60000000-0x9FFFFFFF RAM Normal Non-shareable - Executable region for data.

0xA0000000-0xDFFFFFFF External device  Device, nGnRE Shareable XN External device memory.

0xE0000000-0xE003FFFF Private Peripheral
Bus

Device, nGnRnE Shareable XN This region includes the SCS, NVIC,
MPU, SAU, BPU, ITM, and DWT
registers.

0xE0040000-0xE0043FFF Device Device, nGnRnE Shareable XN This region is for debug components.
Contact your implementer for more
information.

0xE0044000-0xE00FFFFFF Private Peripheral
Bus

Device, nGnRnE Shareable XN This region includes the ROM tables.

0xE0100000-0xFFFFFFFFF Vendor_SYS Device, nGnRE Shareable XN Vendor specific.

 Note

For more information on memory types, see 2.2.2 Memory regions, types, and attributes on page 2-33.

The Code, SRAM, and RAM regions can hold programs.

The MPU can override the default memory access behavior described in this section.

Additional memory access constraints for caches and shared memory

When a system includes caches or shared memory, some memory regions have additional access
constraints, and some regions are subdivided.

This behavior is shown by the following table:

Table 2-17 Memory region shareability and cache policies

Address range Memory region Memory type  Shareability  Cache policy 

0x00000000-0x1FFFFFFF Code Normal - WT h

0x20000000-0x3FFFFFFF SRAM Normal - WBWAi

0x40000000-0x5FFFFFFF Peripheral  Device Shareable -

0x60000000-0x7FFFFFFF RAM Normal - WBWAi

0x80000000-0x9FFFFFFF WTh

0xA0000000-0xDFFFFFFF External device  Device Shareable -

2 The Cortex®-M33 Processor
2.2 Memory model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-36

Non-Confidential

Table 2-17 Memory region shareability and cache policies (continued)

Address range Memory region Memory type  Shareability  Cache policy 

0xE0000000-0xE003FFFF Private Peripheral Bus Device Shareable -

0xE0040000-0xE0043FFF Device Device Shareable -

0xE0044000-0xE00EFFFF Private Peripheral Bus - Shareable Device

0xF0000000-0xFFFFFFFF Vendor_SYS Device Shareable Device

 Note

For more information on memory types and shareability, see 2.2.2 Memory regions, types, and attributes
on page 2-33.

2.2.6 Software ordering of memory accesses

The order of instructions in the program flow does not always guarantee the order of the corresponding
memory transactions.

In the Cortex‑M33 processor this behavior can occur because of two reasons:
• Memory or devices in the memory map might have different wait states.
• Some memory accesses associated with instruction fetches are speculative.

2.2.3 Device memory on page 2-34 describes the cases where the memory system guarantees the order of
memory accesses. Otherwise, if the order of memory accesses is critical, software must include memory
barrier instructions to force that ordering.

The processor provides the following memory barrier instructions:

DMB The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions
complete before subsequent memory transactions.

DSB The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions
complete before subsequent instructions execute.

ISB The Instruction Synchronization Barrier (ISB) ensures that the effect of any context-changing
operations is recognizable by subsequent instructions.

The following are examples of using memory barrier instructions:

Exception vector and vector table programming
If the program changes an entry in the vector table, and then enables the corresponding
exception, use a DMB instruction between the operations. This ensures that if the exception is
taken immediately after being enabled, then the processor uses the new exception vector.
If the program updates the value of the VTOR, use a DMB instruction to ensure that the new
vector table is used for subsequent exceptions.

Self-modifying code
If a program contains self-modifying code, use a DSB instruction followed by an ISB instruction
immediately after the code modification in the program. This ensures subsequent instruction
execution uses the updated program.

h WT means Write through, no write allocate.
i WBWA means Write back, write allocate.

2 The Cortex®-M33 Processor
2.2 Memory model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-37

Non-Confidential

Memory map switching
If the system contains a memory map switching mechanism, use a DSB instruction followed by
an ISB instruction after switching the memory map. This ensures subsequent instruction
execution uses the updated memory map.

MPU programming
Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU
configuration is used by subsequent instructions.

SAU programming
Use a DSB followed by an ISB instruction or exception return to ensure that the SAU
configuration is used by subsequent instructions.

2.2.7 Memory endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For
example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word.

Byte-invariant big-endian format

In byte-invariant big-endian format, the processor stores the most significant byte (msbyte) of a word at
the lowest-numbered byte, and the least significant byte (lsbyte) at the highest-numbered byte.

Example 2-1 Byte-invariant big-endian example

Memory Register

A

A+1

msbyte

lsbyte

A+2

A+3

07

B3B2B0 B1
31 2423 1615 8 7 0

B0

B1

B2

B3

Address

Little-endian format

In little-endian format, the processor stores the least significant byte (lsbyte) of a word at the lowest-
numbered byte, and the most significant byte (msbyte) at the highest-numbered byte.

Example 2-2 Little-endian example

Register

A+1

lsbyte

msbyte

A+2

A+3

07

B0B1B3 B2
31 2423 1615 8 7 0

B0

B1

B2

B3

Memory

AAddress

2 The Cortex®-M33 Processor
2.2 Memory model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-38

Non-Confidential

2.2.8 Synchronization primitives

The instruction set support for the processor includes pairs of synchronization primitives. These provide
a non-blocking mechanism that a thread or process can use to obtain exclusive access to a memory
location. Software can use them to implement semaphores or an exclusive read-modify-write memory
sequence.

Instructions in synchronization primitives

A pair of synchronization primitives contains the following:

A Load-Exclusive instruction
Used to read the value of a memory location, requesting exclusive access to that location.

A Store-Exclusive instruction

Used to attempt to write to the same memory location, returning a status bit to a register. If this
bit is:

0 It indicates that the thread or process gained exclusive access to the memory, and the write
succeeded.

1 It indicates that the thread or process did not gain exclusive access to the memory, and no
write was performed.

Load-Exclusive and Store-Exclusive instructions
The pairs of Load-Exclusive and Store-Exclusive instructions are:
• The word instructions:

— LDAEX and STLEX.
— LDREX and STREX.

• The halfword instructions:
— LDAEXH and STLEXH.
— LDREXH and STREXH.

• The byte instructions:
— LDAEXB and STLEXB.
— LDREXB and STREXB.

Performing an exclusive read-modify-write

Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.

To perform an exclusive read-modify-write of a memory location, the software must:
1. Use a Load-Exclusive instruction to read the value of the location.
2. Modify the value, as required.
3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location.
4. Test the returned status bit. If this bit is:

0 The read-modify-write completed successfully.
1 No write was performed. This indicates that the value returned at step 1 might be out of date. The

software must retry the entire read-modify-write sequence.

Implementing a semaphore
The software can use the synchronization primitives to implement a semaphore as follows:
1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the

semaphore is free.
2. If the semaphore is free, use a Store-Exclusive to write the claim value to the semaphore address.
3. If the returned status bit from step 2 indicates that the Store-Exclusive succeeded, then the software

has claimed the semaphore. However, if the Store-Exclusive failed, another process might have
claimed the semaphore after the software performed step 1.

2 The Cortex®-M33 Processor
2.2 Memory model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-39

Non-Confidential

Exclusive tags

The processor includes an exclusive access monitor, that tags the fact that the processor has executed a
Load-Exclusive instruction. If the processor is part of a multiprocessor system with a global monitor, and
the address is in a shared region of memory, then the system also globally tags the memory locations that
are addressed by exclusive accesses by each processor.

The processor clears its exclusive access tag if:

• It executes a CLREX instruction.
• It executes a STREX or STLEX instruction, regardless of whether the write succeeds.
• An exception occurs. This means that the processor can resolve semaphore conflicts between

different threads.

In a multiprocessor implementation:

• Executing a CLREX instruction clears only the local exclusive access tag for the processor.
• Executing a STREX or STLEX instruction, or an exception, clears the local exclusive access tags for the

processor.
• Executing a STREX or STLEX instruction to a Shareable memory region can also clear the global

exclusive access tags for the processor in the system.

For more information about the synchronization primitive instructions, see 3.13.11 LDREX and STREX
on page 3-260 and 3.13.13 CLREX on page 3-264.

A global exclusive access can be performed:
• In a Shared region if the MPU is implemented.
• By setting ACTLR.EXTEXCLALL. In this case, exclusive information is always sent externally.

In any other case, exclusive information is not sent on the AHB bus, HEXCL is 0, and only the local
monitor is used.

If HEXCL is sent externally and there is no exclusive monitor for the corresponding memory region,
then STREX and STLEX fails.

2.2.9 Programming hints for the synchronization primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic functions
for generation of these instructions.

Table 2-18 CMSIS functions for exclusive access instructions

Instruction CMSIS function

LDAEX uint16_t __LDAEX (volatile uint16_t * ptr)

LDAEXB uint8_t __LDAEXB (volatile uint8_t * ptr)

LDAEXH uint16_t __LDAEXH (volatile uint16_t * ptr)

LDREX uint32_t __LDREXW (uint32_t *addr)

LDREXB uint8_t __LDREXB (uint8_t *addr)

LDREXH uint16_t __LDREXH (uint16_t *addr)

STLEX uint16_t __STLEX (uint16_t value, volatile uint16_t * ptr)

STLEXB uint8_t __STLEXB (uint8_t value, volatile uint8_t * ptr)

STLEXH uint16_t __STLEXH (uint16_t value, volatile uint16_t * ptr)

STREX uint32_t __STREXW (uint32_t value, uint32_t *addr)

STREXB uint8_t __STREXB (uint8_t value, uint8_t *addr)

2 The Cortex®-M33 Processor
2.2 Memory model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-40

Non-Confidential

Table 2-18 CMSIS functions for exclusive access instructions (continued)

Instruction CMSIS function

STREXH uint16_t __STREXH (uint16_t value, uint16_t *addr)

CLREX void __CLREX (void)

For example:

uint16_t value;
uint16_t *address = 0x20001002;
value = __LDREXH (address); // load 16-bit value from memory address 0x20001002

2 The Cortex®-M33 Processor
2.2 Memory model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-41

Non-Confidential

2.3 Exception model
This section contains information about different parts of the exception model such as exception types,
exception priorities and exception states.

2.3.1 Exception states

Each exception is in one of the following states.

Inactive
The exception is not active and not pending.

Pending

The exception is waiting to be serviced by the processor.

An interrupt request from a peripheral or from software can change the state of the
corresponding interrupt to pending.

Active
An exception is being serviced by the processor but has not completed.

 Note

An exception handler can interrupt the execution of another exception handler. In this case, both
exceptions are in the active state.

Active and pending

The exception is being serviced by the processor and there is a pending exception from the same
source.

2.3.2 Exception types

This section describes the exception types for a processor with and without the Security Extension.

Exception types with the Security Extension

Reset
The exception model treats reset as a special form of exception. When reset is asserted, the
operation of the processor stops, potentially at any point in an instruction. When either power-on
or warm reset is deasserted, execution restarts from the address provided by the reset entry in
the vector table. Execution restarts as privileged execution in Secure state in Thread mode.

This exception is not banked between Security states.

NMI

A Non-Maskable Interrupt (NMI) can be signaled by a peripheral or triggered by software. It is
permanently enabled and has a fixed priority of -2. NMI can only be preempted by reset and,
when it is Non-secure, by a Secure HardFault.

If AIRCR.BFHFNMINS=0, then the NMI is Secure.

If AIRCR.BFHFNMINS=1, then NMI is Non-secure.

2 The Cortex®-M33 Processor
2.3 Exception model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-42

Non-Confidential

HardFault

A HardFault is an exception that occurs because of an error during normal or exception
processing. HardFaults have a fixed priority of at least -1, meaning they have higher priority
than any exception with configurable priority.

This exception is not banked between Security states.

If AIRCR.BFHFNMINS=0, HardFault handles all faults that are unable to preempt the current
execution. The HardFault handler is always Secure.

If AIRCR.BFHFNMINS=1, HardFault handles faults that target Non-secure state that are unable
to preempt the current execution.

HardFaults that specifically target the Secure state when AIRCR.BFHFNMINS is set to 1 have a
priority of -3 to ensure they can preempt any execution. A Secure HardFault at Priority -3 is
only enabled when AIRCR.BFHFNMINS is set to 1. Secure HardFault handles Secure faults
that are unable to preempt current execution.

MemManage

A MemManage fault is an exception that occurs because of a memory protection violation,
compared to the MPU or the fixed memory protection constraints, for both instruction and data
memory transactions. This fault is always used to abort instruction accesses to Execute Never
(XN) memory regions.

This exception is banked between Security states.

BusFault
A BusFault is an exception that occurs because of a memory-related violation for an instruction
or data memory transaction. This might be from an error that is detected on a bus in the memory
system.

This exception is not banked between Security states.

If BFHFNMINS=0, BusFaults target the Secure state.

If BFHFNMINS=1, BusFaults target the Non-secure state.

UsageFault
A UsageFault is an exception that occurs because of a fault related to instruction execution. This
includes:
• An undefined instruction.
• An illegal unaligned access.
• Invalid state on instruction execution.
• An error on exception return.

The following can cause a UsageFault when the core is configured by software to report them:
• An unaligned address on word and halfword memory access.
• Division by zero.

This exception is banked between Security states.

SecureFault
This exception is triggered by the various security checks that are performed. It is triggered, for
example, when jumping from Non-secure code to an address in Secure code that is not marked
as a valid entry point. Most systems choose to treat a SecureFault as a terminal condition that
either halts or restarts the system. Any other handling of the SecureFault must be checked
carefully to make sure that it does not inadvertently introduce a security vulnerability.
SecureFaults always target the Secure state.

2 The Cortex®-M33 Processor
2.3 Exception model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-43

Non-Confidential

SVCall

A Supervisor Call (SVC) is an exception that is triggered by the SVC instruction. In an OS
environment, applications can use SVC instructions to access OS kernel functions and device
drivers.

This exception is banked between Security states.

DebugMonitor
A DebugMonitor exception. If Halting debug is disabled and the debug monitor is enabled, a
debug event causes a DebugMonitor exception when the group priority of the DebugMonitor
exception is greater than the current execution priority.

PendSV

PendSV is an asynchronous request for system-level service. In an OS environment, use
PendSV for context switching when no other exception is active.

This exception is banked between Security states.

SysTick

A SysTick exception is an exception the system timer generates when it reaches zero. Software
can also generate a SysTick exception. In an OS environment, the processor can use this
exception as a system tick.

This exception is banked between Security states.

Interrupt (IRQ)

An interrupt, or IRQ, is an exception signaled by a peripheral, or generated by a software
request. All interrupts are asynchronous to instruction execution. In the system, peripherals use
interrupts to communicate with the processor.

This exception is not banked between Security states. Secure code can assign each interrupt to
Secure or Non-secure state. By default all interrupts are assigned to Secure state.

Table 2-19 Properties of the different exception types with the Security Extension

Exception
number  (see
notes)

IRQ number 
(see notes)

Exception type Priority Vector address Activation

1 - Reset -4, the highest 0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 Secure HardFault when
AIRCR.BFHFNMINS is 1

-3 0x0000000C Synchronous

Secure HardFault when
AIRCR.BFHFNMINS is 0

-1

HardFault -1

4 -12 MemManage Configurable  0x00000010 Synchronous

5 -11 BusFault Configurable  0x00000014 Synchronous

6 -10 UsageFault Configurable  0x00000018 Synchronous

7 -9 SecureFault Configurable 0x0000001C Synchronous

8-10 - Reserved - - -

11 -5 SVCall Configurable  0x0000002C Synchronous

2 The Cortex®-M33 Processor
2.3 Exception model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-44

Non-Confidential

Table 2-19 Properties of the different exception types with the Security Extension (continued)

Exception
number  (see
notes)

IRQ number 
(see notes)

Exception type Priority Vector address Activation

12 -4 DebugMonitor Configurable 0x00000030 Synchronous

13 - Reserved - - -

14 -2 PendSV Configurable  0x00000038 Asynchronous

15 -1 SysTick Configurable 0x0000003C Asynchronous

16 and above 0 and above Interrupt (IRQ) Configurable  0x00000040 and
above. Increasing in
steps of 4

Asynchronous

 Note

• To simplify the software layer, the CMSIS only uses IRQ numbers. It uses negative values for
exceptions other than interrupts. The IPSR returns the Exception number, see Interrupt Program
Status Register on page 2-25.

• For configurable priority values, see 4.4.8 Interrupt Priority Registers on page 4-309.

For an asynchronous exception, other than reset, the processor can execute extra instructions between the
moment the exception is triggered and the moment the processor enters the exception handler.

Privileged software can disable the exceptions that have configurable priority, as shown in the table
above.

An exception that targets Secure state cannot be disabled by Non-secure code.

Exception types without the Security Extension

Reset

The exception model treats reset as a special form of exception. When either power-on or warm
reset is asserted, the operation of the processor stops, potentially at any point in an instruction.
When reset is deasserted, execution restarts from the address provided by the reset entry in the
vector table. Execution restarts as privileged execution in Thread mode.

NMI

A Non-Maskable Interrupt (NMI) can be signaled by a peripheral or triggered by software. This
is the highest priority exception other than reset. It is permanently enabled and has a fixed
priority of -2. NMIs cannot be masked or preempted by any exception other than Reset.

HardFault

A HardFault is an exception that occurs because of an error during exception processing, or
because an exception cannot be managed by any other exception mechanism. HardFaults have a
fixed priority of -1, meaning they have higher priority than any exception with configurable
priority.

MemManage

A MemManage fault is an exception that occurs because of a memory protection violation,
compared to the MPU or the fixed memory protection constraints, for both instruction and data
memory transactions. This fault is always used to abort instruction accesses to Execute Never
(XN) memory regions.

2 The Cortex®-M33 Processor
2.3 Exception model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-45

Non-Confidential

BusFault
A BusFault is an exception that occurs because of a memory-related fault for an instruction or
data memory transaction. This might be from an error that is detected on a bus in the memory
system.

UsageFault
A UsageFault is an exception that occurs because of a fault related to instruction execution. This
includes:
• An undefined instruction.
• An illegal unaligned access.
• Invalid state on instruction execution.
• An error on exception return.

The following can cause a UsageFault when the core is configured by software to report them:
• An unaligned address on word and halfword memory access.
• Division by zero.

SVCall

A Supervisor Call (SVC) is an exception that is triggered by the SVC instruction. In an OS
environment, applications can use SVC instructions to access OS kernel functions and device
drivers.

DebugMonitor
A DebugMonitor exception. If Halting debug is disabled and the debug monitor is enabled, a
debug event causes a DebugMonitor exception when the group priority of the DebugMonitor
exception is greater than the current execution priority.

PendSV

PendSV is an asynchronous request for system-level service. In an OS environment, use
PendSV for context switching when no other exception is active.

SysTick

A SysTick exception is an exception the system timer generates when it reaches zero. Software
can also generate a SysTick exception. In an OS environment, the processor can use this
exception as a system tick.

Interrupt (IRQ)

An interrupt, or IRQ, is an exception signaled by a peripheral, or generated by a software
request. All interrupts are asynchronous to instruction execution. In the system, peripherals use
interrupts to communicate with the processor.

Table 2-20 Properties of the different exception type without the Security Extensions

Exception number 
(see notes)

IRQ number 
(see notes)

Exception type Priority Vector address Activation

1 - Reset -4, the highest 0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 HardFault -1 0x0000000C Synchronous

4 -12 MemManage Configurable  0x00000010 Synchronous

5 -11 BusFault Configurable  0x00000014 Synchronous when
precise, asynchronous
when imprecise

6 -10 UsageFault Configurable  0x00000018 Synchronous

7-10 - Reserved - - -

2 The Cortex®-M33 Processor
2.3 Exception model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-46

Non-Confidential

Table 2-20 Properties of the different exception type without the Security Extensions (continued)

Exception number 
(see notes)

IRQ number 
(see notes)

Exception type Priority Vector address Activation

11 -5 SVCall Configurable  0x0000002C Synchronous

12 -4 DebugMonitor Configurable 0x00000030 Synchronous

13 - Reserved - - -

14 -2 PendSV Configurable  0x00000038 Asynchronous

15 -1 SysTick Configurable 0x0000003C Asynchronous

16 and above 0 and above Interrupt (IRQ) Configurable  0x00000040 and above.
Increasing in steps of 4

Asynchronous

 Note

• To simplify the software layer, the CMSIS only uses IRQ numbers. It uses negative values for
exceptions other than interrupts. The IPSR returns the Exception number, see Interrupt Program
Status Register on page 2-25.

• For configurable priority values, see 4.4.8 Interrupt Priority Registers on page 4-309.

For an asynchronous exception, other than reset, the processor can execute extra instructions between the
moment the exception is triggered and the moment the processor enters the exception handler.

Privileged software can disable the exceptions that have configurable priority, as shown in the table
above.

2.3.3 Exception handlers

The exception handlers are the following:

Interrupt Service Routines (ISRs)

Interrupts IRQ0-IRQ479 are the exceptions that are handled by ISRs.

In an implementation with the Security Extension, each interrupt is configured by Secure
software in Secure or Non-secure state, using NVIC_ITNS.

Fault handler
The fault handler handles the following exceptions:
• HardFault.
• MemManage.
• BusFault.
• UsageFault.
• SecureFault, when the Security Extension is implemented.

In an implementation with the Security Extension, there can be separate MemManage and
UsageFault handlers in Secure and Non-secure state. The AIRCR.BFHFNMINS bit controls the
target state for HardFault and BusFault. SecureFault always targets Secure State.

2 The Cortex®-M33 Processor
2.3 Exception model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-47

Non-Confidential

System handlers
The system handlers handle the following system exceptions:
• NMI.
• PendSV.
• SVCall.
• SysTick.

In an implementation with the Security Extension, most system handlers can be banked with
separate handlers between Secure and Non-secure state. The AIRCR.BFHFNMINS bit controls
the target state for NMI.

2.3.4 Vector table
The Vector Table Offset Register (VTOR) in the System Control Block (SCB) determines the starting
address of the vector table. In an implementation with the Security Extension, the VTOR is banked so
there is a VTOR_S and a VTOR_NS. The initial values of VTOR_S and VTOR_NS are system design
specific. The vector table used depends on the target state of the exception. For exceptions targeting the
Secure state, VTOR_S is used. For exceptions targeting the Non-secure state, VTOR_NS is used.

Vector table without the Security Extension

The following figure shows the order of the exception vectors in the vector table for an implementation
without the Security Extension. The least-significant bit of each vector is 1, indicating that the exception
handler is written in Thumb code.

Initial SP value

Reset

Exception number

2

3

4

5

6

11

12

14

15

16

18

13

7

10

1

Vector

.

.

.

8

9

17

463 .
.
.

IRQ number

479

HardFault

NMI

Reserved

SVCall

PendSV

SysTick

IRQ0

Reserved

IRQ1

IRQ2

IRQ479

.

.

.

MemManage

BusFaults

UsageFault

DebugMonitor

0x00
0x04
0x08
0x0C
0x10

0x2C

0x38
0x3C
0x40

Offset

0x44
0x48

.

.

.

0x7BC

0x30

0x14
0x18

-14

-13

-5

-2

-1

0

2

1

-13

-12

-11

-4

Figure 2-4 Vector table without the Security Extension

2 The Cortex®-M33 Processor
2.3 Exception model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-48

Non-Confidential

On system reset the vector table is set to the value of the external INITNSVTOR bus. Privileged
software can write to VTOR to relocate the vector table start address to a different memory location, in
the range 0x00000000 to 0xFFFFFF80, assuming access is allowed by the external LOCKNSVTOR pin.

The silicon vendor must configure the required alignment, which depends on the number of interrupts
implemented. The minimum alignment is 32 words, enough for up to 16 interrupts. For more interrupts,
adjust the alignment by rounding up to the next power of two. For example, if you require 21 interrupts,
the alignment must be on a 64-word boundary because the required table size is 37 words, and the next
power of two is 64.

Vector table with the Security Extension

The following figure shows the order of the exception vectors in the Secure and Non-secure vector
tables. The least-significant bit of each vector is 1, indicating that the exception handler is written in
Thumb code.

Initial SP value

Reset

HardFault_S

NMI_S

0x00
0x04
0x08
0x0C
0x10

Reserved

SVCall_S

PendSV_S

SysTick_S

IRQ0

Reserved

0x2C

0x38
0x3C
0x40

OffsetException number

2

3

4

5

6

11

12

14

15

16

18

13

7

10

1

Secure Vector

.

.

.

8

9

IRQ1

IRQ2

0x44

IRQ479

17

0x48

463

.

.

.

.

.

.

0x7BC
IRQ number

-14

-13

-5

-2

-1

0

2

1

479

HardFault_NS

NMI_NS

Reserved

SVCall_NS

PendSV_NS

SysTick_NS

IRQ0

Reserved

IRQ1

IRQ2

IRQ479

.

.

.

Non-secure Vector

MemManage_S MemManage_NS

BusFault_S BusFault_NS

UsageFault_S UsageFault_NS

-13

-12

-11

SecureFault

DebugMonitor DebugMonitor-3

-9

0x30

0x14
0x18
0x1C

Figure 2-5 Vector table with the Security Extension

Because reset always targets Secure state, the Non-secure Reset and Non-secure Initial SP value are
ignored by the hardware.

On system reset, the Non-secure vector table is set to the value of the external INITNSVTOR bus, and
the Secure vector table is set to the value of the external INITSVTOR bus. Privileged software can write
to VTOR_S and VTOR_NS to relocate the vector table start address to a different memory location, in
the range 0x00000000 to 0xFFFFFF80, assuming access is allowed by the external LOCKNSVTOR and
LOCKSVTAIRCR pins respectively.

2 The Cortex®-M33 Processor
2.3 Exception model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-49

Non-Confidential

The silicon vendor must configure the required alignment of the vector tables, which depends on the
number of interrupts implemented. The minimum alignment is 32 words, enough for up to 16 interrupts.
For more interrupts, adjust the alignment by rounding up to the next power of two. For example, if you
require 21 interrupts, the alignment must be on a 64-word boundary because the required table size is 37
words, and the next power of two is 64.

2.3.5 Exception priorities

All exceptions have an assigned priority that is used to control both pre-emption and prioritization
between pending exceptions. A lower priority value indicates a higher priority. You can configure
priorities for all exceptions except Reset, HardFault, and NMI.

If software does not configure any priorities, then all exceptions with a configurable priority have a
priority of 0. For information about configuring exception priorities, see:
• 4.2.9 System Handler Priority Registers on page 4-283.
• 4.4.8 Interrupt Priority Registers on page 4-309.

 Note

Configurable priorities are in the range 0-255. The Reset, HardFault, and NMI exceptions, with fixed
negative priority values always have higher priority than any other exception.

If the Security Extension is implemented, for configurable priority exceptions, the target Security state
also affects the programmed priority. Depending on the value of AIRCR.PRIS, the priority can be
extended.

In the table, the values in columns 2 and 3 must match, and increase from zero in increments of 32. The
values in column 4 start from 128 and increase in increments of 16.

Table 2-21 Extended priority

Priority value [7:5] Secure priority Non-secure priority when
AIRCR.PRIS = 0

Non-secure priority when
AIRCR.PRIS = 1

0 0 0 128

1 32 32 144

2 64 64 160

3 96 96 176

4 128 128 192

5 160 160 208

6 192 192 224

7 224 224 240

Assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has
higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception
number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same
priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher
priority exception occurs. If an exception occurs with the same priority as the exception being handled,
the handler is not preempted, irrespective of the exception number. However, the status of the new
interrupt changes to pending.

2 The Cortex®-M33 Processor
2.3 Exception model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-50

Non-Confidential

2.3.6 Interrupt priority grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides
each interrupt priority register entry into two fields, an upper field that defines the group priority, and a
lower field that defines a subpriority within the group.

Only the group priority determines pre-emption of interrupt exceptions. When the processor is executing
an interrupt exception handler, another interrupt with the same group priority as the interrupt being
handled does not pre-empt the handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in
which they are processed. If multiple pending interrupts have the same group priority and subpriority, the
interrupt with the lowest IRQ number is processed first.

If a pending Secure exception and a pending Non-secure exception both have the same group priority
field value, the same subpriority field value, and the same exception number, the Secure exception takes
precedence.

2.3.7 Exception entry and return

Descriptions of exception handling use the following terms.

Preemption

An exception can preempt the current execution if its priority is higher than the current
execution priority.

When one exception preempts another, the exceptions are called nested exceptions.

Return

This occurs when the exception handler is completed.

The processor pops the stack and restores the processor state to the state it had before the
interrupt occurred.

Tail-chaining
This mechanism speeds up exception servicing. On completion of an exception handler or
during the return operation, if there is a pending exception that meets the requirements for
exception entry, then the stack pop is skipped and control transfers directly to the new exception
handler.

Late arriving interrupts
This mechanism speeds up preemption. If a higher priority exception occurs during state saving
for a previous exception, the processor switches to handle the higher priority exception and
initiates the vector fetch for that exception. State saving may be affected by the late arrival
depending on the stacking requirements of the original exception and the late-arriving
exception. On return from the exception handler of the late-arriving exception, the normal tail-
chaining rules apply.

Exception entry

Exception entry occurs when there is a pending exception with sufficient priority and either the processor
is in Thread mode, or the new exception is of higher priority than the exception being handled, in which
case the new exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has higher priority than any limits set by the mask registers.
An exception with lower priority than this is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception,
the processor pushes information onto the current stack. This operation is referred to as stacking and the
structure of the data stacked is referred as the stack frame.

2 The Cortex®-M33 Processor
2.3 Exception model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-51

Non-Confidential

If the floating-point context is active, the Cortex‑M33 processor can automatically stack the architected
floating-point state on exception entry. The following figure shows the Cortex‑M33 processor stack
frame layout when an interrupt or an exception is preserved on the stack:
• with floating-point state.
• without floating-point state.

 Note

Where stack space for floating-point state is not allocated, the stack frame is the same as that of
Armv8‑M implementations without an FPU.

Exception frame with
floating-point storage

† † Or at offset 0x24 if at a word-aligned but not
 doubleword-aligned address.

SP offset Original SP†

Reserved

S15
S14
S13
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
S0

FP context

PC
LR (R14)

R12
R3
R2
R1
R0

State context

FPSCR

0x48
0x44
0x40
0x3C
0x38
0x34
0x30
0x2C
0x28
0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

0x4C

0x68
0x64
0x60
0x5C
0x58
0x54
0x50

xPSR
PC

LR (R14)
R12
R3
R2
R1
R0

Exception frame without
floating-point storage

State context

Original SP††SP offset 0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

† Or at offset 0x6C if at a word-aligned but not
 doubleword-aligned address.

xPSR

Figure 2-6 Stack frame when an interrupt or an exception is preserved on the stack with or
without floating-point state

If the Security Extension is implemented, when a Non-secure exception preempts software running in a
Secure state, additional context is saved onto the stack and the stacked registers are cleared to ensure no
Secure data is available to Non-secure software, as the following figure shows.

2 The Cortex®-M33 Processor
2.3 Exception model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-52

Non-Confidential

0x48
0x44
0x40
0x3C
0x38
0x34
0x30
0x2C
0x28
0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

R11
R10
R9
R8
R7
R6
R5
R4

Reserved
Integrity signature

State context

Additional
state context

New SP

Original SP†

PC
LR (R14)

R12
R3
R2
R1
R0

SP offset

† Or at offset 0x4C if at a word-aligned but not
doubleword-aligned address.

xPSR

Figure 2-7 Stack frame extended to save additional context when the Security Extension is
implemented

If the floating-point context is active, the Cortex‑M33 processor automatically stacks floating-point state
in the stack frame. There are two frame formats that contain floating-point context. If an exception is
taken from Secure state and FPCCR.TS is set, the additional floating-point context is stacked. In all other
cases, only the standard floating-point context is stacked, as the following figure shows.

 Note

The conditions that trigger saving additional FP context are different from those that trigger additional
integer context.

2 The Cortex®-M33 Processor
2.3 Exception model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-53

Non-Confidential

S31
S30
S29
S28
S27
S26
S25
S24
S23
S22
S21
S20
S19
S18
S17
S16

0xA4
0xA0
0x9C
0x98
0x94
0x90
0x8C
0x88
0x84
0x80
0x7C
0x78
0x74
0x70
0x6C
0x68

SP offset

Additional FP context

Original SP†

Reserved

S15
S14
S13
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
S0

0x64
0x60
0x5C
0x58
0x54
0x50
0x4C
0x48
0x44
0x40
0x3C
0x38
0x34
0x30
0x2C
0x28

0xCC
0xC8

FP context

PC
LR (R14)

R12
R3
R2
R1
R0

State context

0xC4
0xC0
0xBC
0xB8
0xB4
0xB0
0xAC
0xA8

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

R11
R10
R9
R8
R7
R6
R5
R4

Reserved
Integrity signature

Additional state context

New SP

† Or at offset 0xD4 if at a word-aligned but not doubleword-aligned address.

0xD0
0x8C
0x88
0x84
0x80
0x7C
0x78
0x74
0x70
0x6C
0x68

SP offset Original SP††

Reserved

S15
S14
S13
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
S0

0x64
0x60
0x5C
0x58
0x54
0x50
0x4C
0x48
0x44
0x40
0x3C
0x38
0x34
0x30
0x2C
0x28

FP context

PC
LR (R14)

R12
R3
R2
R1
R0

State context

0x24
0x20
0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

R11
R10
R9
R8
R7
R6
R5
R4

Reserved
Integrity signature

Additional state context

New SP

0x90

xPSR

xPSR

Stack frame for Secure floating-point state when FPCCR.TS = 1 Stack frame for Secure floating-point state when FPCCR.TS = 0

†† Or at offset 0x94 if at a word-aligned but not doubleword-aligned address.

FPSCR

FPSCR

Figure 2-8 Extended exception stack frame

The Stack pointer of the interrupted thread or handler is always used for stacking the state before the
exception is taken. For example if an exception is taken from Secure state to a Non-secure handler the
Secure stack pointer is used to save the state.

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame.

The stack frame includes the return address. This is the address of the next instruction in the interrupted
program. This value is restored to the PC at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception
handler start address from the vector table. When stacking is complete, the processor starts executing the

2 The Cortex®-M33 Processor
2.3 Exception model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-54

Non-Confidential

exception handler. At the same time, the processor writes an EXC_RETURN value to the LR. This value
is used to trigger exception return when the exception handler is complete.

If no higher priority exception occurs during exception entry, the processor starts executing the exception
handler and automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during exception entry, the processor starts executing the
exception handler for this exception and does not change the pending status of the earlier exception. This
is the late arrival case.

Exception return

Exception return occurs when the processor is in Handler mode and execution of one of the following
instructions attempts to set the PC to an EXC_RETURN value:

• A POP or LDM instruction that loads the PC.
• An LDR instruction that loads the PC
• A BX instruction using any register.

Exception return in an implementation with the Security Extension

The processor saves an EXC_RETURN value to the LR on exception entry. The exception mechanism
relies on this value to detect when the processor has completed an exception handler. When the processor
loads a value matching this pattern to the PC it detects that the operation is not a normal branch operation
and, instead, that the exception is complete. As a result, it starts the exception return sequence. Bits[6:0]
of the EXC_RETURN value indicate the required return stack, processor mode, Security state, and stack
frame as the following table shows.

Table 2-22 Exception return behavior

Bits Name Function

[31:24] PREFIX Indicates that this is an EXC_RETURN value.

This field reads as 0b11111111.

[23:7] - Reserved, RES1.

[6] S Indicates whether registers have been pushed to a Secure or Non-secure stack.

0 Non-secure stack used.

1 Secure stack used.

[5] DCRS Indicates whether the default stacking rules apply, or whether the callee registers are already on the stack.

0 Stacking of the callee saved registers is skipped.

1 Default rules for stacking the callee registers are followed.

[4] FType In a PE with the Main and Floating-point Extensions:

0 The PE allocated space on the stack for FP context.

1 The PE did not allocate space on the stack for FP context.

In a PE without the Floating-point Extension, this bit is Reserved, RES1.

[3] Mode Indicates the mode that was stacked from.

0 Handler mode.

1 Thread mode.

2 The Cortex®-M33 Processor
2.3 Exception model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-55

Non-Confidential

Table 2-22 Exception return behavior (continued)

Bits Name Function

[2] SPSEL Indicates which stack contains the exception stack frame.

0 Main stack pointer.

1 Process stack pointer.

[1] - Reserved, RES0.

[0] ES Indicates the Security state the exception was taken to.

0 Non-secure.

1 Secure.

Exception return in an implementation without the Security Extension

The processor saves an EXC_RETURN value to the LR on exception entry. The exception mechanism
relies on this value to detect when the processor has completed an exception handler. When the processor
loads a value matching this pattern to the PC it detects that the operation is not a normal branch operation
and, instead, that the exception is complete. As a result, it starts the exception return sequence. Bits[6:0]
of the EXC_RETURN value indicate the required return stack, processor mode, and stack frame as the
following table shows.

Table 2-23 Exception return behavior

Bits Name Function

[31:24] PREFIX Indicates that this is an EXC_RETURN value.

This field reads as 0b11111111.

[23:7] - Reserved, RES1.

[6] - Reserved, RES0.

[5] - Reserved, RES1.

[4] FType In a PE with the Main and Floating-point Extensions:

0 The PE allocated space on the stack for FP context.

1 The PE did not allocate space on the stack for FP context.

In a PE without the Floating-point Extension, this bit is Reserved, RES1.

[3] Mode Indicates the mode that was stacked from.

0 Handler mode.

1 Thread mode.

[2] SPSEL Indicates which stack contains the exception stack frame.

0 Main stack pointer.

1 Process stack pointer.

[1:0] - Reserved, RES0.

2 The Cortex®-M33 Processor
2.3 Exception model

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-56

Non-Confidential

2.4 Security state switches
The following table presents the possible security transitions, the instructions that can cause them, and
any faults that may be generated.

Table 2-24 Security state transitions

Current Security
state

Security attribute of the
branch target address

Security state change

Secure Non-secure Change to Non-secure state if the branch was a BXNS or BLXNS instruction,
with the lsb of its target address set to 0.

Otherwise, a SecureFault is generated.

Non-secure Secure and Non-secure callable Change to Secure state if the branch target address contains an SG instruction.

If the target address does not contain an SG a SecureFault is generated.

Non-secure Secure and not Non-secure
callable

A SecureFault is generated.

The following figure shows the Security state transitions:

Non-secure
state Secure state

BLXNS-call to Non-secure function

BL to SG-call to entry function

BXNS-return from entry function

BX to FNC_RETURN-return from Non-secure function

Figure 2-9 Security state transitions

Secure software can call a Non-secure function using the BLXNS instruction. When this happens, the LR
is set to a special value called FNC_RETURN, and the return address and XPSR is saved onto the Secure
stack. Return from Non-secure state to Secure state is triggered when one of the following instructions
attempts to set the PC to an FNC_RETURN value:

• A POP or LDM instruction that loads the PC.
• An LDR instruction that loads the PC.
• A BX instruction using any register.

When a return from Non-secure state to Secure state occurs the processor restores the program counter
and XPSR from the Secure stack.

Any scenario not listed in the table triggers a SecureFault. For example:
• Sequential instructions that cross security attributes from Secure to Non-secure.
• A 32-bit instruction fetch that crosses regions with different security attributes.

2 The Cortex®-M33 Processor
2.4 Security state switches

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-57

Non-Confidential

2.5 Fault handling
Faults can occur on instruction fetches, instruction execution, and data accesses. When a fault occurs,
information about the cause of the fault is recorded in various registers, according to the type of fault.
Faults are a subset of the exceptions.

Faults are generated by:
• A bus error on:

— An instruction fetch or vector table load.
— A data access.

• An internally-detected error such as an undefined instruction.
• Attempting to execute an instruction from a memory region marked as Execute Never (XN).
• A privilege violation or an attempt to access an unmanaged region causing an MPU fault.
• A security violation.

2.5.1 Fault types reference table

The table shows the types of fault, the handler used for the fault, the corresponding fault status register,
and the register bit that indicates that the fault has occurred.

Table 2-25 Faults

Fault Handler Bit name Fault status register

Bus error on a vector read HardFault VECTTBL 4.2.12 HardFault Status Register on page 4-295

Fault escalated to a hard fault FORCED

MPU or default memory map mismatch: MemManage - -

On instruction access IACCVIOL j MemManage Fault Status Register on page 4-289

On data access DACCVIOL

During exception stacking MSTKERR

During exception unstacking MUNSKERR

During lazy floating-point state preservation MLSPERR

Bus error: BusFault - -

During exception stacking STKERR BusFault Status Register on page 4-291

During exception unstacking UNSTKERR

During instruction prefetch IBUSERR

During lazy floating-point state preservation LSPERR

Precise data bus error PRECISERR

Imprecise data bus error IMPRECISERR

j Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

2 The Cortex®-M33 Processor
2.5 Fault handling

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-58

Non-Confidential

Table 2-25 Faults (continued)

Fault Handler Bit name Fault status register

Attempt to access a coprocessor UsageFault NOCP UsageFault Status Register on page 4-292

Undefined instruction UNDEFINSTR

Attempt to enter an invalid instruction set state k INVSTATE

Invalid EXC_RETURN value INVPC

Illegal unaligned load or store UNALIGNED

Stack overflow flag STKOF

Divide By 0 DIVBYZERO

Lazy state error flag SecureFault LSERR 4.5.7 Secure Fault Status Register on page 4-315

Lazy state preservation error flag LSPERR

Invalid transition flag INVTRAN

Attribution unit violation flag AUVIOL

Invalid exception return flag INVER

Invalid integrity signature flag INVIS

Invalid entry point INVEP

2.5.2 Fault escalation to HardFault

All fault exceptions other than HardFault have configurable exception priority. Software can disable
execution of the handlers for these faults.

Usually, the exception priority, together with the values of the exception mask registers, determines
whether the processor enters the fault handler, and whether a fault handler can preempt another fault
handler.

In some situations, a fault with configurable priority is treated as a HardFault. This is called priority
escalation, and the fault is described as escalated to HardFault. Escalation to HardFault occurs when:

• A fault handler causes the same kind of fault as the one it is servicing. This escalation to HardFault
occurs because a fault handler cannot preempt itself; it must have the same priority as the current
execution priority level.

• A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is
because the handler for the new fault cannot preempt the currently executing fault handler.

• An exception handler causes a fault for which the priority is the same as or lower than the currently
executing exception.

• A fault occurs and the handler for that fault is not enabled.

If a BusFault occurs during a stack push when entering a BusFault handler, the BusFault does not
escalate to a HardFault. This means that if a corrupted stack causes a fault, the fault handler executes
even though the stack push for the handler failed. The fault handler operates but the stack contents are
corrupted.

In an implementation with the Security Extension, BusFaults and fixed priority exceptions can be
designated as Secure or Non-secure under the control of AIRCR.BFHFMNINS. When
AIRCR.BFHFMNINS is set to:

The faults and fixed priority exceptions are also designated as Secure or Non-secure under the control of
AIRCR.BFHFMNINS. When AIRCR.BFHFMNINS is set to:

k Attempting to use an instruction set other than the T32 instruction set or returns to a non load/store-multiple instruction with ICI continuation.

2 The Cortex®-M33 Processor
2.5 Fault handling

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-59

Non-Confidential

0 BusFaults and fixed priority exceptions are designated as Secure. The exceptions retain the
prioritization of HardFault at -1 and NMI at -2.

1 BusFaults and fixed priority exceptions are designated as Non-secure. In this case, Secure HardFault
is introduced at priority -3 to ensure that faults that target Secure state are recognized.

The Non-secure state cannot inhibit BusFaults and fixed priority exceptions which target Secure state.
Therefore when faults and fixed priority exceptions are Secure, Non-secure FAULTMASK
(FAULTMASK_NS) only inhibits programmable priority exceptions, making it equivalent to Non-secure
PRIMASK (PRIMASK_NS).

Non-secure programmable priority exceptions are mapped to the regular priority range 0-255, if
AIRCR.PRIS is clear. Non-secure programmable priority exceptions are mapped to the bottom half the
regular priority range, 128-255, if AIRCR.PRIS is set to 1. Therefore the FAULTMASK_NS sets the
execution priority to 0x0 or 0x80, according to AIRCR.PRIS, to mask the Non-secure programmable
priority exception only.

When BusFaults and fixed priority exceptions are Secure, FAULTMASK_S sets execution priority to -1
to inhibit everything up to and including HardFault.

When BusFaults and fixed priority exceptions are designated as Non-secure, FAULTMASK_NS boosts
priority to -1 to inhibit everything up to Non-secure HardFault at priority -1, while FAULTMASK_S
boosts priority to -3 to inhibit all faults and fixed priority exceptions including the Secure HardFault at
priority -3.

 Note

Only Reset can preempt the fixed priority Secure HardFault when AIRCR.BFHFNMINS is set to 1. A
Secure HardFault when AIRCR.BFHFNMINS is set to 1 can preempt any exception other than Reset. A
Secure HardFault when AIRCR.BFHFNMINS is set to 0 can preempt any exception other than Reset,
NMI, or another HardFault.

 Note

In an implementation with the Security Extension, only Reset can preempt the fixed priority Secure
HardFault when AIRCR.BFHFNMINS is set to 1. A Secure HardFault when AIRCR.BFHFNMINS is
set to 1 can preempt any exception other than Reset. A Secure HardFault when AIRCR.BFHFNMINS is
set to 0 can preempt any exception other than Reset, NMI, or another HardFault.

2.5.3 Fault status registers and fault address registers
The fault status registers indicate the cause of a fault. For BusFaults and MemManage faults, the fault
address register indicates the address that is accessed by the operation that caused the fault. In an
implementation with the Security Extension, for SecureFaults the fault address register also indicates the
address that is accessed by the operation that caused fault.

In an implementation with the Security Extension, the processor has two physical fault address registers.
One shared between the MMFAR_S, SFAR, and BFAR (only if AIRCR.BFHFNMINS is set to 0), and
the other shared between the MMFAR_NS and BFAR (only if AIRCR.BFHFNMINS is set to 1). These
are targeted by Secure and Non-secure faults respectively.

In an implementation without the Security Extension, the processor has one physical fault address
register. It is shared between the MMFAR and BFAR.

For each physical fault address register, it is only possible to report the address of one fault at a time.
Each fault address register is updated when one of the *FARVALID bits is set for their respective faults
in the associated *FSR register. Any fault that targets a fault address register with one of its *FARVALID
bits already set does not update the fault address. The *FARVALID bits must be cleared before another
fault address can be reported.

The following table shows the fault status and fault address registers.

2 The Cortex®-M33 Processor
2.5 Fault handling

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-60

Non-Confidential

Table 2-26 Fault status and fault address registers

Handler Status register name Address register name Register description

HardFault HFSR - 4.2.12 HardFault Status Register on page 4-295

MemManage MMFSRl MMFARl MemManage Fault Status Register on page 4-289

4.2.13 MemManage Fault Address Register on page 4-296

BusFault BFSR BFAR BusFault Status Register on page 4-291

4.2.14 BusFault Address Register on page 4-296

UsageFault UFSRl - UsageFault Status Register on page 4-292

SecureFault SFSR SFAR 4.5.7 Secure Fault Status Register on page 4-315

4.5.8 Secure Fault Address Register on page 4-317

2.5.4 Lockup

The processor enters a lockup state if a fault occurs when it cannot be serviced or escalated. When the
processor is in lockup state, it does not execute any instructions.

The processor remains in lockup state until either:
• It is reset.
• Preemption by a higher priority exception occurs.
• It is halted by a debugger.

 Note

In an implementation with the Security Extension, if lockup state occurs from a Secure HardFault when
AIRCR.BFHFNMINS is set to 1 or the NMI handler, a subsequent NMI does not cause the processor to
leave lockup state.

l MMFSR, MMFAR, and UFSR are banked between Security states.

2 The Cortex®-M33 Processor
2.5 Fault handling

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-61

Non-Confidential

2.6 Power management
The Cortex‑M33 processor supports modes for sleep and deep sleep that reduce power consumption.
Sleep mode stops the processor clock. Deep sleep mode stops the system clock and, depending on the
system-specific power-saving measures, switches off the PLL and flash memory.

The SCR.SLEEPDEEP bit selects which sleep mode is used. For more information about the sleep
modes, see 4.2.7 System Control Register on page 4-279

2.6.1 Entering sleep mode

The system can generate spurious wakeup events. Therefore, software must be able to put the processor
back into sleep mode after such an event. A program might have an idle loop to put the processor back to
sleep mode.

Wait for interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode unless the wakeup
condition is true. When the processor executes a WFI instruction, it stops executing instructions and
enters sleep mode.

Wait for event

The wait for event instruction, WFE, causes entry to sleep mode depending on the value of a one-bit event
register.

When the processor executes a WFE instruction, it checks the value of the event register:

0 The processor stops executing instructions and enters sleep mode.
1 The processor clears the register to 0 and continues executing

instructions without entering sleep mode.

If the event register is 1, it indicates that the processor must not enter sleep mode on execution of a WFE
instruction. Typically, this is because an external event signal is asserted, or a processor in the system has
executed an SEV instruction.

Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of all
exception handlers, it immediately enters sleep mode without restoring the Thread context from the
stack. Use this mechanism in applications that only require the processor to run when an exception
occurs.

2.6.2 Wakeup from sleep mode

The conditions for the processor to wake up depend on the mechanism that causes it to enter sleep mode.

Wakeup from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to cause
exception entry. Some embedded systems might have to execute system restore tasks after the processor
wakes up, and before it executes an interrupt handler. To achieve this set the PRIMASK bit to 1 and the
FAULTMASK bit to 0. If an interrupt arrives that is enabled and has a higher priority than the current
exception priority, the processor wakes up but does not execute the interrupt handler until the processor
sets PRIMASK to zero.

Wakeup from WFE

Conditions which cause the processor to wakeup from WFE.

2 The Cortex®-M33 Processor
2.6 Power management

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-62

Non-Confidential

The processor wakes up if:
• It detects an exception with sufficient priority to cause exception entry.
• It detects an external event signal.
• In a multiprocessor system, another processor in the system executes an SEV instruction.

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event
and wakes up the processor, even if the interrupt is disabled or has insufficient priority to cause exception
entry.

2.6.3 The Wakeup Interrupt Controller

The Wakeup Interrupt Controller (WIC) is a peripheral that can detect an interrupt and wake the
processor from deep sleep mode. The WIC is enabled only when the DEEPSLEEP bit in the SCR is set
to 1.

The WIC is not programmable, and does not have any registers or user interface. It operates entirely from
hardware signals.

When the WIC is enabled and the processor enters deep sleep mode, the power management unit in the
system can power down most of the Cortex‑M33 processor. This might have the side effect of stopping
the SysTick timer. When the WIC receives an interrupt, it takes several clock cycles to wakeup the
processor and restore its state, before it can process the interrupt. This means interrupt latency is
increased in deep sleep mode.

 Note

If the processor detects a connection to a debugger, it disables the WIC.

2.6.4 The external event input

The processor provides an external event input signal. Peripherals can drive this signal, either to wake
the processor from WFE, or to set the internal WFE event register to 1 to indicate that the processor must
not enter sleep mode on a later WFE instruction.

2.6.5 Power management programming hints

ISO/IEC C cannot directly generate the WFI and WFE instructions.

The CMSIS provides the following functions for these instructions:

void __WFE(void) // Wait for Event
void __WFI(void) // Wait for Interrupt

2 The Cortex®-M33 Processor
2.6 Power management

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

2-63

Non-Confidential

Chapter 3
The Cortex®-M33 Instruction Set

This chapter describes the Cortex‑M33 instruction set. It provides general information and describes each
Cortex‑M33 instruction in the functional group that they belong. All the instructions that the Cortex‑M33
processor supports are described.

It contains the following sections:
• 3.1 Cortex®‑M33 instructions on page 3-65.
• 3.2 CMSIS functions on page 3-79.
• 3.3 About the instruction descriptions on page 3-82.
• 3.4 General data processing instructions on page 3-92.
• 3.5 Coprocessor instructions on page 3-128.
• 3.6 Multiply and divide instructions on page 3-134.
• 3.7 Saturating instructions on page 3-155.
• 3.8 Packing and unpacking instructions on page 3-165.
• 3.9 Bit field instructions on page 3-172.
• 3.10 Branch and control instructions on page 3-175.
• 3.11 Floating-point instructions on page 3-184.
• 3.12 Miscellaneous instructions on page 3-226.
• 3.13 Memory access instructions on page 3-243.

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-64

Non-Confidential

3.1 Cortex®-M33 instructions
The T32 instruction set is supported by the Cortex‑M33 processor.

 Note

In the following table:
• Angle brackets, <>, enclose alternative forms of the operand.
• Braces, {}, enclose optional operands.
• The Operands column is not exhaustive.
• Op2 is a flexible second operand that can be either a register or a constant.
• Most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 3-1 Cortex-M33 instruction set summary

Mnemonic Operands Brief description Flags Page

ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C,V 3.4.2 ADD, ADC, SUB, SBC, and RSB
on page 3-94

ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C,V 3.4.2 ADD, ADC, SUB, SBC, and RSB
on page 3-94

ADD, ADDW {Rd,} Rn, #imm12 Add - 3.4.2 ADD, ADC, SUB, SBC, and RSB
on page 3-94

ADR Rd, label Address to Register - 3.13.2 ADR on page 3-244

AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C 3.4.3 AND, ORR, EOR, BIC, and ORN
on page 3-96

ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C 3.4.4 ASR, LSL, LSR, ROR, and RRX
on page 3-97

B {cond} label Branch {conditionally} - 3.10.2 B, BL, BX, and BLX on page 3-176

BFC Rd, #lsb, #width Bit Field Clear - 3.9.2 BFC and BFI on page 3-173

BFI Rd, Rn, #lsb,
#width

Bit Field Insert - 3.9.2 BFC and BFI on page 3-173

BIC, BICS {Rd,} Rn, Op2 Bit Clear N,Z,C 3.4.3 AND, ORR, EOR, BIC, and ORN
on page 3-96

BKPT #imm8 Breakpoint - 3.12.2 BKPT on page 3-227

BL label Branch with Link - 3.10.2 B, BL, BX, and BLX on page 3-176

BLX Rm Branch indirect with Link
and Exchange

- 3.10.2 B, BL, BX, and BLX on page 3-176

BLXNS Rm Branch indirect with Link
and Exchange, Non-secure

- 3.10.3 BXNS and BLXNS on page 3-178

BX Rm Branch and Exchange - 3.10.2 B, BL, BX, and BLX on page 3-176

BXNS Rm Branch and Exchange, Non-
secure

- 3.10.3 BXNS and BLXNS on page 3-178

CBNZ Rn, label Compare and Branch on
Non Zero

- 3.10.4 CBZ and CBNZ on page 3-179

3 The Cortex®-M33 Instruction Set
3.1 Cortex®-M33 instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-65

Non-Confidential

Table 3-1 Cortex-M33 instruction set summary (continued)

Mnemonic Operands Brief description Flags Page

CBZ Rn, label Compare and Branch on
Zero

- 3.10.4 CBZ and CBNZ on page 3-179

CDP, CDP2 {cond} coproc, #op1,
Rt, CRn, CRm{, #op2}

Coprocessor Data
Processing

- 3.5.3 CDP and CDP2 on page 3-129

CLREX - Clear Exclusive - 3.13.13 CLREX on page 3-264

CLZ Rd, Rm Count Leading Zeros - 3.4.5 CLZ on page 3-99

CMN Rn, Op2 Compare Negative N,Z,C,V 3.4.6 CMP and CMN on page 3-100

CMP Rn, Op2 Compare N,Z,C,V 3.4.6 CMP and CMN on page 3-100

CPSID i Change Processor State,
Disable Interrupts

- 3.12.3 CPS on page 3-228

CPSIE i Change Processor State,
Enable Interrupts

- 3.12.3 CPS on page 3-228

DMB {opt} Data Memory Barrier - 3.12.5 DMB on page 3-229

DSB {opt} Data Synchronization
Barrier

- 3.12.6 DSB on page 3-230

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C 3.4.3 AND, ORR, EOR, BIC, and ORN
on page 3-96

FLDMDBX ,FLDMIAX Rn FLDMX (Decrement
Before, Increment After)
loads

- 3.11.2 FLDMDBX, FLDMIAX on page 3-187

FSTMDBX,FSTMIAX Rn FSTMX (Decrement Before,
Increment After) stores

- 3.11.3 FSTMDBX, FSTMIAX on page 3-188

ISB {opt} Instruction Synchronization
Barrier

- 3.12.7 ISB on page 3-231

IT - If Then condition block - 3.10.5 IT on page 3-180

LDA Rd, [Rn] Load-Acquire Word 3.13.10 LDA and STL on page 3-259

LDAB Rd, [Rn] Load-Acquire Byte 3.13.10 LDA and STL on page 3-259

LDAEX Rd, [Rn] Load-Acquire Exclusive
Word

- 3.13.12 LDAEX and STLEX on page 3-262

LDAEXB Rd, [Rn] Load-Acquire Exclusive
Byte

- 3.13.12 LDAEX and STLEX on page 3-262

LDAEXH Rd, [Rn] Load-Acquire Exclusive
Halfword

- 3.13.12 LDAEX and STLEX on page 3-262

LDAH Rd, [Rn] Load-Acquire Halfword - 3.13.10 LDA and STL on page 3-259

LDM Rn{!}, reglist Load Multiple - 3.13.7 LDM and STM on page 3-254

LDMDB, LDMEA Rn{!}, reglist Load Multiple Decrement
Before

- 3.13.7 LDM and STM on page 3-254

LDMIA, LDMFD Rn{!}, reglist Load Multiple, Increment
After

- 3.13.7 LDM and STM on page 3-254

3 The Cortex®-M33 Instruction Set
3.1 Cortex®-M33 instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-66

Non-Confidential

Table 3-1 Cortex-M33 instruction set summary (continued)

Mnemonic Operands Brief description Flags Page

LDR Rt, [Rn, Rm {,
LSL #shift}]

Load Register Word
(register offset)

- 3.13.4 LDR and STR, register offset
on page 3-248

LDR Rt, label Load Register Word (literal) - 3.13.6 LDR, PC‑relative on page 3-252

LDR, LDRT Rt, [Rn, #offset] Load Register Word
(immediate offset,
unprivileged)

- 3.13.3 LDR and STR, immediate offset
on page 3-245, 3.13.5 LDR and STR,
unprivileged on page 3-250

LDRB Rt, [Rn, Rm {,
LSL #shift}]

Load Register Byte (register
offset)

- 3.13.4 LDR and STR, register offset
on page 3-248

LDRB Rt, label Load Register Byte (literal) - 3.13.6 LDR, PC‑relative on page 3-252

LDRB, LDRBT Rt, [Rn, #offset] Load Register Byte
(immediate offset,
unprivileged)

- 3.13.3 LDR and STR, immediate offset
on page 3-245, 3.13.5 LDR and STR,
unprivileged on page 3-250

LDRD Rt, Rt2, [Rn,
#offset]

Load Register Dual
(immediate offset)

- 3.13.3 LDR and STR, immediate offset
on page 3-245

LDRD Rt, Rt2, label Load Register Dual (PC-
relative)

- 3.13.6 LDR, PC‑relative on page 3-252

LDREX Rt, [Rn, #offset] Load Register Exclusive - 3.13.11 LDREX and STREX on page 3-260

LDREXB Rt, [Rn] Load Register Exclusive
Byte

- 3.13.11 LDREX and STREX on page 3-260

LDREXH Rt, [Rn] Load Register Exclusive
Halfword

- 3.13.11 LDREX and STREX on page 3-260

LDRH Rt, [Rn, Rm {,
LSL #shift}]

Load Register Halfword
(register offset)

- 3.13.4 LDR and STR, register offset
on page 3-248

LDRH Rt, label Load Register Halfword
(literal)

- 3.13.6 LDR, PC‑relative on page 3-252

LDRH, LDRHT Rt, [Rn, #offset] Load Register Halfword
(immediate offset,
unprivileged)

- 3.13.3 LDR and STR, immediate offset
on page 3-245, 3.13.5 LDR and STR,
unprivileged on page 3-250

LDRSB Rt, [Rn, Rm {,
LSL #shift}]

Load Register Signed Byte
(register offset)

- 3.13.4 LDR and STR, register offset
on page 3-248

LDRSB Rt, label Load Register Signed Byte
(PC-relative)

- 3.13.6 LDR, PC‑relative on page 3-252

LDRSB, LDRSBT Rt, [Rn, #offset] Load Register Signed Byte
(immediate offset,
unprivileged)

- 3.13.3 LDR and STR, immediate offset
on page 3-245, 3.13.5 LDR and STR,
unprivileged on page 3-250

LDRSH Rt, [Rn, Rm {,
LSL #shift}]

Load Register Signed
Halfword (register offset)

- 3.13.4 LDR and STR, register offset
on page 3-248

LDRSH Rt, label Load Register Signed
Halfword (PC-relative)

- 3.13.6 LDR, PC‑relative on page 3-252

LDRSH, LDRSHT Rt, [Rn, #offset] Load Register Signed
Halfword (immediate offset,
unprivileged)

- 3.13.3 LDR and STR, immediate offset
on page 3-245, 3.13.5 LDR and STR,
unprivileged on page 3-250

3 The Cortex®-M33 Instruction Set
3.1 Cortex®-M33 instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-67

Non-Confidential

Table 3-1 Cortex-M33 instruction set summary (continued)

Mnemonic Operands Brief description Flags Page

LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C 3.4.4 ASR, LSL, LSR, ROR, and RRX
on page 3-97

LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C 3.4.4 ASR, LSL, LSR, ROR, and RRX
on page 3-97

MCR,MCR2 {cond} coproc,
#opc1, Rt, CRn, CRm{,
#opc2}

Move to Coprocessor from
Register

- 3.5.4 MCR and MCR2 on page 3-130

MCRR,MCRR2 {cond} coproc,
#opc1, Rt, Rt2, CRm

Move to Coprocessor from
two Registers

- 3.5.5 MCRR and MCRR2 on page 3-131

MLA Rd, Rn, Rm, Ra Multiply Accumulate - 3.6.2 MUL, MLA, and MLS on page 3-136

MLS Rd, Rn, Rm, Ra Multiply and Subtract - 3.6.2 MUL, MLA, and MLS on page 3-136

MOV, MOVS Rd, Op2 Move N,Z,C 3.4.7 MOV and MVN on page 3-101

MOV, MOVS Rd, Rm Move (register) N,Z 3.4.7 MOV and MVN on page 3-101

MOVT Rd, #imm16 Move Top - 3.4.8 MOVT on page 3-103

MOVW Rd, #imm16 Move 16-bit constant N,Z,C 3.4.7 MOV and MVN on page 3-101

MRC,MRC2 {cond} coproc,
#opc1, Rt, CRn, CRm{,
#opc2}

Move to Register from |
Coprocessor

- 3.5.6 MRC and MRC2 on page 3-132

MRRC,MRRC2 {cond} coproc,
#opc1, Rt, Rt2, CRm

Move to two Registers from
Coprocessor.

- 3.5.7 MRRC and MRRC2 on page 3-133

MRS Rd, spec_reg Move from Special Register
to general register

- 3.12.8 MRS on page 3-232

MSR spec_reg, Rn Move from general register
to Special Register

- 3.12.9 MSR on page 3-233

MUL, MULS {Rd,} Rn, Rm Multiply N,Z 3.6.2 MUL, MLA, and MLS on page 3-136

MVN, MVNS Rd, Op2 Bitwise NOT N,Z,C 3.4.7 MOV and MVN on page 3-101

NOP - No Operation - 3.12.10 NOP on page 3-234

ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,Z,C 3.4.3 AND, ORR, EOR, BIC, and ORN
on page 3-96

ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C 3.4.3 AND, ORR, EOR, BIC, and ORN
on page 3-96

PKHTB, PKHBT {Rd,} Rn, Rm, {,
Op2}

Pack Halfword - 3.8.2 PKHBT and PKHTB on page 3-166

PLD [Rn {, #offset}] Preload Data - 3.13.8 PLD on page 3-256

POP reglist Pop registers from stack - 3.13.9 PUSH and POP on page 3-257

PUSH reglist Push registers onto stack - 3.13.9 PUSH and POP on page 3-257

QADD {Rd,} Rn, Rm Saturating Add Q 3.7.4 QADD and QSUB on page 3-158

QADD16 {Rd,} Rn, Rm Saturating Add 16 - 3.7.4 QADD and QSUB on page 3-158

QADD8 {Rd,} Rn, Rm Saturating Add 8 - 3.7.4 QADD and QSUB on page 3-158

3 The Cortex®-M33 Instruction Set
3.1 Cortex®-M33 instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-68

Non-Confidential

Table 3-1 Cortex-M33 instruction set summary (continued)

Mnemonic Operands Brief description Flags Page

QASX {Rd,} Rn, Rm Saturating Add and Subtract
with Exchange

- 3.7.5 QASX and QSAX on page 3-160

QDADD {Rd,} Rn, Rm Saturating Double and Add Q 3.7.6 QDADD and QDSUB on page 3-161

QDSUB {Rd,} Rn, Rm Saturating Double and
Subtract

Q 3.7.6 QDADD and QDSUB on page 3-161

QSAX {Rd,} Rn, Rm Saturating Subtract and Add
with Exchange

- 3.7.5 QASX and QSAX on page 3-160

QSUB {Rd,} Rn, Rm Saturating Subtract Q 3.7.4 QADD and QSUB on page 3-158

QSUB16 {Rd,} Rn, Rm Saturating Subtract 16 - 3.7.4 QADD and QSUB on page 3-158

QSUB8 {Rd,} Rn, Rm Saturating Subtract 8 - 3.7.4 QADD and QSUB on page 3-158

RBIT Rd, Rn Reverse Bits - 3.4.9 REV, REV16, REVSH, and RBIT
on page 3-104

REV Rd, Rn Reverse byte order in a word - 3.4.9 REV, REV16, REVSH, and RBIT
on page 3-104

REV16 Rd, Rn Reverse byte order in each
halfword

- 3.4.9 REV, REV16, REVSH, and RBIT
on page 3-104

REVSH Rd, Rn Reverse byte order in
bottom halfword and sign
extend

- 3.4.9 REV, REV16, REVSH, and RBIT
on page 3-104

ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,Z,C 3.4.4 ASR, LSL, LSR, ROR, and RRX
on page 3-97

RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C 3.4.4 ASR, LSL, LSR, ROR, and RRX
on page 3-97

RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C,V 3.4.2 ADD, ADC, SUB, SBC, and RSB
on page 3-94

SADD16 {Rd,} Rn, Rm Signed Add 16 GE 3.4.10 SADD16 and SADD8 on page 3-105

SADD8 {Rd,} Rn, Rm Signed Add 8 GE 3.4.10 SADD16 and SADD8 on page 3-105

SASX {Rd,} Rn, Rm Signed Add and Subtract
with Exchange

GE 3.4.11 SASX and SSAX on page 3-107

SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C,V 3.4.2 ADD, ADC, SUB, SBC, and RSB
on page 3-94

SBFX Rd, Rn, #lsb,
#width

Signed Bit Field Extract - 3.9.3 SBFX and UBFX on page 3-174

SDIV {Rd,} Rn, Rm Signed Divide - 3.6.3 SDIV and UDIV on page 3-137

SEL {Rd,} Rn, Rm Select bytes GE 3.4.12 SEL on page 3-109

SEV - Send Event - 3.12.11 SEV on page 3-235

SG - Secure Gateway - 3.12.12 SG on page 3-236

SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 - 3.4.13 SHADD16 and SHADD8
on page 3-110

3 The Cortex®-M33 Instruction Set
3.1 Cortex®-M33 instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-69

Non-Confidential

Table 3-1 Cortex-M33 instruction set summary (continued)

Mnemonic Operands Brief description Flags Page

SHADD8 {Rd,} Rn, Rm Signed Halving Add 8 - 3.4.13 SHADD16 and SHADD8
on page 3-110

SHASX {Rd,} Rn, Rm Signed Halving Add and
Subtract with Exchange

- 3.4.14 SHASX and SHSAX on page 3-111

SHSAX {Rd,} Rn, Rm Signed Halving Subtract and
Add with Exchange

- 3.4.14 SHASX and SHSAX on page 3-111

SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 - 3.4.15 SHSUB16 and SHSUB8
on page 3-112

SHSUB8 {Rd,} Rn, Rm Signed Halving Subtract 8 - 3.4.15 SHSUB16 and SHSUB8
on page 3-112

SMLABB,
SMLABT,
SMLATB, SMLATT

Rd, Rn, Rm, Ra Signed Multiply
Accumulate halfwords

Q 3.6.4 SMLAWB, SMLAWT, SMLABB,
SMLABT, SMLATB, and SMLATT
on page 3-138

SMLAD, SMLADX Rd, Rn, Rm, Ra Signed Multiply
Accumulate Dual

Q 3.6.5 SMLAD and SMLADX on page 3-140

SMLAL RdLo, RdHi, Rn,
Rm

Signed Multiply
Accumulate Long (32 × 32
+ 64), 64-bit result

- 3.6.12 UMULL, UMAAL, UMLAL, SMULL,
and SMLAL on page 3-153

SMLALBB,
SMLALBT,
SMLALTB,
SMLALTT

RdLo, RdHi, Rn,
Rm

Signed Multiply
Accumulate Long,
halfwords

- 3.6.6 SMLALD, SMLALDX, SMLALBB,
SMLALBT, SMLALTB, and SMLALTT
on page 3-142

SMLALD,
SMLALDX

RdLo, RdHi, Rn,
Rm

Signed Multiply
Accumulate Long Dual

- 3.6.6 SMLALD, SMLALDX, SMLALBB,
SMLALBT, SMLALTB, and SMLALTT
on page 3-142

SMLAWB, SMLAWT Rd, Rn, Rm, Ra Signed Multiply
Accumulate, word by
halfword

Q 3.6.4 SMLAWB, SMLAWT, SMLABB,
SMLABT, SMLATB, and SMLATT
on page 3-138

SMLSD, SMLSDX Rd, Rn, Rm, Ra Signed Multiply Subtract
Dual

Q 3.6.7 SMLSD and SMLSLD on page 3-144

SMLSLD,
SMLSLDX

RdLo, RdHi, Rn,
Rm

Signed Multiply Subtract
Long Dual

- 3.6.7 SMLSD and SMLSLD on page 3-144

SMMLA, SMMLAR Rd, Rn, Rm, Ra Signed Most Significant
Word Multiply Accumulate

- 3.6.8 SMMLA and SMMLS on page 3-146

SMMLS, SMMLSR Rd, Rn, Rm, Ra Signed Most Significant
Word Multiply Subtract

- 3.6.8 SMMLA and SMMLS on page 3-146

SMMUL, SMMULR Rd, Rn, Rm Signed Most Significant
Word Multiply

- 3.6.9 SMMUL on page 3-148

SMUAD, SMUADX {Rd,} Rn, Rm Signed Dual Multiply Add Q. 3.6.10 SMUAD and SMUSD on page 3-149

SMULBB,
SMULBT,
SMULTB, SMULTT

{Rd,} Rn, Rm Signed Multiply (halfwords) - 3.6.11 SMUL and SMULW on page 3-151

3 The Cortex®-M33 Instruction Set
3.1 Cortex®-M33 instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-70

Non-Confidential

Table 3-1 Cortex-M33 instruction set summary (continued)

Mnemonic Operands Brief description Flags Page

SMULL RdLo, RdHi, Rn,
Rm

Signed Multiply Long (32 ×
32), 64-bit result

- 3.6.12 UMULL, UMAAL, UMLAL, SMULL,
and SMLAL on page 3-153

SMULWB, SMULWT {Rd,} Rn, Rm Signed Multiply word by
halfword

- 3.6.11 SMUL and SMULW on page 3-151

SMUSD, SMUSDX {Rd,} Rn, Rm Signed Dual Multiply
Subtract

- 3.6.10 SMUAD and SMUSD on page 3-149

SSAT Rd, #n, Rm
{,shift #s}

Signed Saturate Q 3.7.2 SSAT and USAT on page 3-156

SSAT16 Rd, #n, Rm Signed Saturate 16 Q 3.7.3 SSAT16 and USAT16 on page 3-157

SSAX {Rd,} Rn, Rm Signed Subtract and Add
with Exchange

GE 3.4.11 SASX and SSAX on page 3-107

SSUB16 {Rd,} Rn, Rm Signed Subtract 16 GE 3.4.16 SSUB16 and SSUB8 on page 3-113

SSUB8 {Rd,} Rn, Rm Signed Subtract 8 GE 3.4.16 SSUB16 and SSUB8 on page 3-113

STL Rt, [Rn] Store-Release Word - 3.13.10 LDA and STL on page 3-259

STLB Rt, [Rn] Store-Release Byte - 3.13.10 LDA and STL on page 3-259

STLEX Rt, Rt [Rn] Store-Release Exclusive
Word

- 3.13.12 LDAEX and STLEX on page 3-262

STLEXB Rt, Rt [Rn] Store-Release Exclusive
Byte

- 3.13.12 LDAEX and STLEX on page 3-262

STLEXH Rt, Rt [Rn] Store-Release Exclusive
Halfword

- 3.13.12 LDAEX and STLEX on page 3-262

STLH Rt, [Rn] Store-Release Halfword - 3.13.10 LDA and STL on page 3-259

STM Rn{!}, reglist Store Multiple - 3.13.7 LDM and STM on page 3-254

STMDB, STMEA Rn{!}, reglist Store Multiple Decrement
Before

- 3.13.7 LDM and STM on page 3-254

STMIA, STMFD Rn{!}, reglist Store Multiple Increment
After

- 3.13.7 LDM and STM on page 3-254

STR Rt, [Rn, Rm {,
LSL #shift}]

Store Register Word
(register offset)

- 3.13.4 LDR and STR, register offset
on page 3-248

STR, STRT Rt, [Rn, #offset] Store Register Word
(immediate offset,
unprivileged)

- 3.13.3 LDR and STR, immediate offset
on page 3-245, 3.13.5 LDR and STR,
unprivileged on page 3-250

STRB Rt, [Rn, Rm {,
LSL #shift}]

Store Register Byte (register
offset)

- 3.13.4 LDR and STR, register offset
on page 3-248

STRB, STRBT Rt, [Rn, #offset] Store Register Byte
(immediate offset,
unprivileged)

- 3.13.3 LDR and STR, immediate offset
on page 3-245, 3.13.5 LDR and STR,
unprivileged on page 3-250

STRD Rt, Rt2, [Rn,
#offset]

Store Register Dual two
words

- 3.13.3 LDR and STR, immediate offset
on page 3-245

STREX Rd, Rt, [Rn,
#offset]

Store Register Exclusive - 3.13.11 LDREX and STREX on page 3-260

3 The Cortex®-M33 Instruction Set
3.1 Cortex®-M33 instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-71

Non-Confidential

Table 3-1 Cortex-M33 instruction set summary (continued)

Mnemonic Operands Brief description Flags Page

STREXB Rd, Rt, [Rn] Store Register Exclusive
Byte

- 3.13.11 LDREX and STREX on page 3-260

STREXH Rd, Rt, [Rn] Store Register Exclusive
Halfword

- 3.13.11 LDREX and STREX on page 3-260

STRH Rt, [Rn, Rm {,
LSL #shift}]

Store Register Halfword
(register offset)

- 3.13.4 LDR and STR, register offset
on page 3-248

STRH, STRHT Rt, [Rn, #offset] Store Register Halfword
(immediate offset,
unprivileged)

- 3.13.3 LDR and STR, immediate offset
on page 3-245, 3.13.5 LDR and STR,
unprivileged on page 3-250

SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C,V 3.4.2 ADD, ADC, SUB, SBC, and RSB
on page 3-94

SUB, SUBW {Rd,} Rn, #imm12 Subtract - 3.4.2 ADD, ADC, SUB, SBC, and RSB
on page 3-94

SVC #imm Supervisor Call - 3.12.13 SVC on page 3-237

SXTAB {Rd,} Rn, Rm
{,ROR #n}

Sign extend 8 bits to 32 and
Add

- 3.8.3 SXTA and UXTA on page 3-168

SXTAB16 {Rd,} Rn, Rm
{,ROR #n}

Sign extend two 8-bit values
to 16 and Add

- 3.8.3 SXTA and UXTA on page 3-168

SXTAH {Rd,} Rn, Rm
{,ROR #n}

Sign extend 16 bits to 32
and Add

- 3.8.3 SXTA and UXTA on page 3-168

SXTB Rd, Rm {,ROR #n} Sign extend 8 bits to 32 - 3.8.4 SXT and UXT on page 3-170

SXTB16 {Rd,} Rm {,ROR
#n}

Sign extend 8 bits to 16 - 3.8.4 SXT and UXT on page 3-170

SXTH {Rd,} Rm {,ROR
#n}

Sign extend a Halfword to
32

- 3.8.4 SXT and UXT on page 3-170

TBB [Rn, Rm] Table Branch Byte - 3.10.6 TBB and TBH on page 3-182

TBH [Rn, Rm, LSL #1] Table Branch Halfword - 3.10.6 TBB and TBH on page 3-182

TEQ Rn, Op2 Test Equivalence N,Z,C 3.4.17 TST and TEQ on page 3-115

TST Rn, Op2 Test N,Z,C 3.4.17 TST and TEQ on page 3-115

TT Rd, [Rn] Test Target - 3.12.14 TT, TTT, TTA, and TTAT
on page 3-238

TTA Rd, [Rn] Test Target Alternate
Domain

- 3.12.14 TT, TTT, TTA, and TTAT
on page 3-238

TTAT Rd, [Rn] Test Target Alternate
Domain Unprivileged

- 3.12.14 TT, TTT, TTA, and TTAT
on page 3-238

TTT Rd, [Rn] Test Target Unprivileged - 3.12.14 TT, TTT, TTA, and TTAT
on page 3-238

UADD16 {Rd,} Rn, Rm Unsigned Add 16 GE 3.4.18 UADD16 and UADD8 on page 3-116

UADD8 {Rd,} Rn, Rm Unsigned Add 8 GE 3.4.18 UADD16 and UADD8 on page 3-116

3 The Cortex®-M33 Instruction Set
3.1 Cortex®-M33 instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-72

Non-Confidential

Table 3-1 Cortex-M33 instruction set summary (continued)

Mnemonic Operands Brief description Flags Page

UASX {Rd,} Rn, Rm Unsigned Add and Subtract
with Exchange

GE 3.4.19 UASX and USAX on page 3-118

UBFX Rd, Rn, #lsb,
#width

Unsigned Bit Field Extract - 3.9.3 SBFX and UBFX on page 3-174

UDF {c}{q} {#}imm Permanently Undefined. - 3.12.15 UDF on page 3-240

UDIV {Rd,} Rn, Rm Unsigned Divide - 3.6.3 SDIV and UDIV on page 3-137

UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 - 3.4.20 UHADD16 and UHADD8
on page 3-120

UHADD8 {Rd,} Rn, Rm Unsigned Halving Add 8 - 3.4.20 UHADD16 and UHADD8
on page 3-120

UHASX {Rd,} Rn, Rm Unsigned Halving Add and
Subtract with Exchange

- 3.4.21 UHASX and UHSAX on page 3-121

UHSAX {Rd,} Rn, Rm Unsigned Halving Subtract
and Add with Exchange

- 3.4.21 UHASX and UHSAX on page 3-121

UHSUB16 {Rd,} Rn, Rm Unsigned Halving Subtract
16

- 3.4.22 UHSUB16 and UHSUB8
on page 3-123

UHSUB8 {Rd,} Rn, Rm Unsigned Halving Subtract
8

- 3.4.22 UHSUB16 and UHSUB8
on page 3-123

UMAAL RdLo, RdHi, Rn,
Rm

Unsigned Multiply
Accumulate Accumulate
Long (32 × 32 + 32 + 32),
64-bit result

- 3.6.12 UMULL, UMAAL, UMLAL, SMULL,
and SMLAL on page 3-153

UMLAL RdLo, RdHi, Rn,
Rm

Unsigned Multiply
Accumulate Long (32 × 32
+ 64), 64-bit result

- 3.6.12 UMULL, UMAAL, UMLAL, SMULL,
and SMLAL on page 3-153

UMULL RdLo, RdHi, Rn,
Rm

Unsigned Multiply Long (32
× 32), 64-bit result

- 3.6.12 UMULL, UMAAL, UMLAL, SMULL,
and SMLAL on page 3-153

UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 - 3.7.8 UQADD and UQSUB on page 3-163

UQADD8 {Rd,} Rn, Rm Unsigned Saturating Add 8 - 3.7.8 UQADD and UQSUB on page 3-163

UQASX {Rd,} Rn, Rm Unsigned Saturating Add
and Subtract with Exchange

- 3.7.7 UQASX and UQSAX on page 3-162

UQSAX {Rd,} Rn, Rm Unsigned Saturating
Subtract and Add with
Exchange

- 3.7.7 UQASX and UQSAX on page 3-162

UQSUB16 {Rd,} Rn, Rm Unsigned Saturating
Subtract 16

- 3.7.8 UQADD and UQSUB on page 3-163

UQSUB8 {Rd,} Rn, Rm Unsigned Saturating
Subtract 8

- 3.7.8 UQADD and UQSUB on page 3-163

USAD8 {Rd,} Rn, Rm Unsigned Sum of Absolute
Differences

- 3.4.23 USAD8 on page 3-124

USADA8 Rd, Rn, Rm, Ra Unsigned Sum of Absolute
Differences and Accumulate

- 3.4.24 USADA8 on page 3-125

3 The Cortex®-M33 Instruction Set
3.1 Cortex®-M33 instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-73

Non-Confidential

Table 3-1 Cortex-M33 instruction set summary (continued)

Mnemonic Operands Brief description Flags Page

USAT Rd, #n, Rm{,shift
#s}, Ra

Unsigned Saturate Q 3.7.2 SSAT and USAT on page 3-156

USAT16 Rd, #n, Rm Unsigned Saturate 16 Q 3.7.3 SSAT16 and USAT16 on page 3-157

USAX {Rd,} Rn, Rm Unsigned Subtract and Add
with Exchange

GE 3.4.19 UASX and USAX on page 3-118

USUB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE 3.4.25 USUB16 and USUB8 on page 3-126

USUB8 {Rd,} Rn, Rm Unsigned Subtract 8 GE 3.4.25 USUB16 and USUB8 on page 3-126

UXTAB {Rd,} Rn, Rm
{,ROR #n}

Rotate, unsigned extend 8
bits to 32 and Add

- 3.8.3 SXTA and UXTA on page 3-168

UXTAB16 {Rd,} Rn, Rm
{,ROR #n}

Rotate, unsigned extend two
8-bit values to 16 and Add

- 3.8.3 SXTA and UXTA on page 3-168

UXTAH {Rd,} Rn, Rm
{,ROR #n}

Rotate, unsigned extend and
Add Halfword

- 3.8.3 SXTA and UXTA on page 3-168

UXTB Rd, Rm {,ROR #n} Unsigned zero-extend Byte - 3.8.4 SXT and UXT on page 3-170

UXTB16 {Rd,} Rm {,ROR
#n}

Unsigned zero-extend Byte
16

- 3.8.4 SXT and UXT on page 3-170

UXTH Rd, Rm {,ROR #n} Unsigned zero-extend
Halfword

- 3.8.4 SXT and UXT on page 3-170

VABS .F32 Sd, Sm Floating-point Absolute - 3.11.4 VABS on page 3-189

VADD .F32 {Sd,} Sn, Sm Floating-point Add - 3.11.5 VADD on page 3-190

VCMP .F32 Sd, <<Sm|
#0.0>

Compare two floating-point
registers, or one floating-
point register and zero

N,Z,C,V 3.11.6 VCMP and VCMPE on page 3-191

VCMPE .F32 Sd, <<Sm|
#0.0>

Compare two floating-point
registers, or one floating-
point register and zero with
Invalid Operation check

N,Z,C,V 3.11.6 VCMP and VCMPE on page 3-191

VCVT .F32.Tm <Sd>, Sm Convert from floating-point
to integer

- 3.11.7 VCVT and VCVTR between floating-
point and integer on page 3-192

VCVT .Td.F32 Sd, Sd,
#fbits

Convert from floating-point
to fixed point

- 3.11.8 VCVT between floating-point and
fixed-point on page 3-193

VCVTA .Tm.F32 <Sd>, Sm Convert from floating-point
to integer with directed
rounding to nearest with
Ties Away

- 3.11.36 VCVTA, VCVTM VCVTN, and
VCVTP on page 3-221

VCVTB VCVTT .F32.F16 Sd, Sm Convert half-precision value
to single-precision or
double-precision

- 3.11.37 VCVTB and VCVTT on page 3-222

VCVTB VCVTT .F16.F32 Sd, Sm Convert single-precision or
double-precision register to
half-precision

- 3.11.37 VCVTB and VCVTT on page 3-222

3 The Cortex®-M33 Instruction Set
3.1 Cortex®-M33 instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-74

Non-Confidential

Table 3-1 Cortex-M33 instruction set summary (continued)

Mnemonic Operands Brief description Flags Page

VCVTM .Tm.F32 <Sd>, Sm Convert from floating-point
to integer with directed
rounding towards Minus
infinity

- 3.11.36 VCVTA, VCVTM VCVTN, and
VCVTP on page 3-221

VCVTN .Tm.F32 <Sd>, Sm Convert from floating-point
to integer with directed
rounding to nearest with
Ties to even

- 3.11.36 VCVTA, VCVTM VCVTN, and
VCVTP on page 3-221

VCVTP .Tm.F32 <Sd>, Sm Convert from floating-point
to integer with directed
rounding towards Plus
infinity

- 3.11.36 VCVTA, VCVTM VCVTN, and
VCVTP on page 3-221

VCVTR .Tm.F32 <Sd>, Sm Convert between floating-
point and integer with
rounding.

- 3.11.7 VCVT and VCVTR between floating-
point and integer on page 3-192

VDIV .F32 {Sd,} Sn, Sm Floating-point Divide - 3.11.9 VDIV on page 3-194

VFMA .F32 {Sd,} Sn, Sm Floating-point Fused
Multiply Accumulate

- 3.11.10 VFMA and VFMS on page 3-195

VFMS .F32 {Sd,} Sn, Sm Floating-point Fused
Multiply Subtract

- 3.11.10 VFMA and VFMS on page 3-195

VFNMA .F32 {Sd,} Sn, Sm Floating-point Fused Negate
Multiply Accumulate

- 3.11.11 VFNMA and VFNMS on page 3-196

VFNMS .F32 {Sd,} Sn, Sm Floating-point Fused Negate
Multiply Subtract

- 3.11.11 VFNMA and VFNMS on page 3-196

VLDM {mode}{.size}
Rn{!}, list

Floating-point Load
Multiple extension registers

- 3.11.12 VLDM on page 3-197

VLDR .F32 Sd, [<Rn> {,
#offset}]

Floating-point Load an
extension register from
memory (immediate)

- 3.11.13 VLDR on page 3-198

VLDR .F32 Sd, <label> Load an extension register
from memory

- 3.11.13 VLDR on page 3-198

VLDR .F32 Sd, [PC,#-0] Load an extension register
from memory

- 3.11.13 VLDR on page 3-198

VLLDM <c> Rn Floating-point Lazy Load
multiple

- 3.11.14 VLLDM on page 3-199

VLSTM <c> Rn Floating-point Lazy Store
multiple

- 3.11.15 VLSTM on page 3-200

VMAXNM .F32 Sd, Sn, Sm Maximum of two floating-
point numbers with
IEEE754-2008 NaN
handling

- 3.11.38 VMAXNM and VMINNM
on page 3-223

3 The Cortex®-M33 Instruction Set
3.1 Cortex®-M33 instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-75

Non-Confidential

Table 3-1 Cortex-M33 instruction set summary (continued)

Mnemonic Operands Brief description Flags Page

VMINNM .F32 Sd, Sn, Sm Minimum of two floating-
point numbers with
IEEE754-2008 NaN
handling

- 3.11.38 VMAXNM and VMINNM
on page 3-223

VMLA .F32 Sd, Sn, Sm Floating-point Multiply
Accumulate

- 3.11.16 VMLA and VMLS on page 3-201

VMLS .F32 Sd, Sn, Sm Floating-point Multiply
Subtract

- 3.11.16 VMLA and VMLS on page 3-201

VMOV <Sn|Rt>, <Rt|Sn> Copy core register to single-
precision

- 3.11.20 VMOV core register to single-
precision on page 3-205

VMOV <Sm|Rt>, <Sm1|
Rt2>, <Rt|Sm>,
<Rt2|Sm1>

Copy two core registers to
two single-precision

- 3.11.21 VMOV two core registers to two
single-precision registers on page 3-206

VMOV {.size} Dd[x], Rt Copy core register to scalar - 3.11.23 VMOV core register to scalar
on page 3-208

VMOV {.dt} Rt, Dn[x] Copy scalar to core register - 3.11.19 VMOV scalar to core register
on page 3-204

VMOV .F32 Sd, #immm Floating-point Move
immediate

- 3.11.17 VMOV Immediate on page 3-202

VMOV .F32 Sd, Sd, Sm Copies the contents of one
register to another

- 3.11.18 VMOV Register on page 3-203

VMOV <Dm|Rt>, <Rt|
Rt2>, <Rt2|Dm>

Floating-point Move
transfers two words between
two core registers and a
doubleword register

- 3.11.22 VMOV two core registers and a
double-precision register on page 3-207

VMRS Rt, FPSCR Move to core register from
floating-point Special
Register

N,Z,C,V 3.11.24 VMRS on page 3-209

VMSR FPSCR, Rt Move to floating-point
Special Register from core
register

- 3.11.25 VMSR on page 3-210

VMUL .F32 {Sd,} Sn, Sm Floating-point Multiply - 3.11.26 VMUL on page 3-211

VNEG .F32 Sd, Sm Floating-point Negate - 3.11.27 VNEG on page 3-212

VNMLA .F32 Sd, Sn, Sm Floating-point Multiply
Accumulate and Negate

- 3.11.28 VNMLA, VNMLS and VNMUL
on page 3-213

VNMLS .F32 Sd, Sn, Sm Floating-point Multiply,
Subtract and Negate

- 3.11.28 VNMLA, VNMLS and VNMUL
on page 3-213

VNMUL .F32 {Sd,} Sn, Sm Floating-point Multiply and
Negate

- 3.11.28 VNMLA, VNMLS and VNMUL
on page 3-213

VPOP {.size} list Load multiple consecutive
floating-point registers from
the stack

- 3.11.29 VPOP on page 3-214

3 The Cortex®-M33 Instruction Set
3.1 Cortex®-M33 instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-76

Non-Confidential

Table 3-1 Cortex-M33 instruction set summary (continued)

Mnemonic Operands Brief description Flags Page

VPUSH {.size} list Store multiple consecutive
floating-point registers to
the stack

- 3.11.30 VPUSH on page 3-215

VRINTA .F32 Sd, Sm Float to integer in floating-
point format conversion
with directed rounding to
Nearest with Ties Away

- 3.11.40 VRINTA, VRINTN, VRINTP,
VRINTM, and VRINTZ on page 3-225

VRINTM .F32 Sd, Sm Float to integer in floating-
point format conversion
with directed rounding to
Minus infinity

- 3.11.40 VRINTA, VRINTN, VRINTP,
VRINTM, and VRINTZ on page 3-225

VRINTN .F32 Sd, Sm Float to integer in floating-
point format conversion
with directed rounding to
Nearest with Ties to even

- 3.11.40 VRINTA, VRINTN, VRINTP,
VRINTM, and VRINTZ on page 3-225

VRINTP .F32 Sd, Sm Float to integer in floating-
point format conversion
with directed rounding to
Plus infinity

- 3.11.40 VRINTA, VRINTN, VRINTP,
VRINTM, and VRINTZ on page 3-225

VRINTR .F32 Sd, Sm Float to integer in floating-
point format conversion
with rounding towards value
specified in FPSCR

- 3.11.39 VRINTR and VRINTX on page 3-224

VRINTX .F32 Sd, Sm Float to integer in floating-
point format conversion
with rounding specified in
FPSCR

- 3.11.39 VRINTR and VRINTX on page 3-224

VRINTZ .F32 Sd, Sm Float to integer in floating-
point format conversion
with rounding towards Zero

- 3.11.40 VRINTA, VRINTN, VRINTP,
VRINTM, and VRINTZ on page 3-225

VSEL .F32 Sd, Sn, Sm Select register, alternative to
a pair of conditional VMOV

- 3.11.35 VSEL on page 3-220

VSQRT .F32 Sd, Sm Calculates floating-point
Square Root

- 3.11.31 VSQRT on page 3-216

VSTM {mode}{.size}
Rn{!}, list

Floating-point Store
Multiple

- 3.11.32 VSTM on page 3-217

VSTR .F32 Sd, [Rn{,
#offset}]

Floating-point Store
Register stores an extension
register to memory

- 3.11.33 VSTR on page 3-218

VSUB F32 {Sd,} Sn, Sm Floating-point Subtract - 3.11.34 VSUB on page 3-219

WFE - Wait For Event - 3.12.16 WFE on page 3-241

WFI - Wait For Interrupt - 3.12.17 WFI on page 3-242

YIELD - Suspend task - 3.12.18 YIELD on page 3-242

3 The Cortex®-M33 Instruction Set
3.1 Cortex®-M33 instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-77

Non-Confidential

3.1.1 Binary compatibility with other Cortex processors

The processor implements the T32 instruction set and features provided by the Armv8‑M architecture
profile. There are restrictions on moving code designed for processors that are implementations of the
Armv6‑M or Armv7‑M architectures.

If code designed for other Cortex‑M processors relies on memory protection, it cannot be moved to the
Cortex‑M33 processor. In this case, the memory protection scheme and driver code must be updated
from PMSAv7 to PMSAv8.

If code for the Armv7‑M processor relies on double-precision-floating point, it cannot be moved to the
Cortex‑M33 processor. Any Armv7‑M code that uses double-precision arithmetic must be recompiled to
use a software library, or DP emulation if supported by the tools.

To ensure a smooth transition, Arm recommends that code designed to operate on other Cortex‑M profile
processor architectures obey the following rules and that you configure the Configuration and Control
Register (CCR) appropriately:
• Use word transfers only to access registers in the NVIC and System Control Space (SCS).
• Treat all unused SCS registers and register fields on the processor as Do-Not-Modify.
• Configure the following fields in the CCR:

— STKALIGN bit to 1.
— UNALIGN_TRP bit to 1.
— Leave all other bits in the CCR register at their original value.

3 The Cortex®-M33 Instruction Set
3.1 Cortex®-M33 instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-78

Non-Confidential

3.2 CMSIS functions
ISO/IEC C code cannot directly access some Cortex‑M33 processor instructions. Instead, intrinsic
functions that are provided by the CMSIS or a C compiler are used to generate them. If a C compiler
does not support an appropriate intrinsic function, you might have to use inline assembler to access some
instructions.

3.2.1 List of CMSIS functions to generate some processor instructions

List of intrinsic functions that are provided to generate instructions that ISO/IEC C code cannot directly
access.

Table 3-2 CMSIS functions to generate some Cortex-M33 processor instructions

Instruction CMSIS function

BKPT void __BKPT

CLREX void __CLREX

CLZ uint8_t __CLZ (uint32_t value)

CPSID F void __disable_fault_irq(void)

CPSID I void __disable_irq(void)

CPSIE F void __enable_fault_irq(void)

CPSIE I void __enable_irq(void)

DMB void __DMB(void)

DSB void __DSB(void)

ISB void __ISB(void)

LDA uint32_t __LDA (volatile uint32_t * ptr)

LDAB uint8_t __LDAB (volatile uint8_t * ptr)

LDAEX uint32_t __LDAEX (volatile uint32_t * ptr)

LDAEXB uint8_t __LDAEXB (volatile uint32_t * ptr)

LDAEXH uint16_t __LDAEXH (volatile uint32_t * ptr)

LDAH uint32_t __LDAH (volatile uint32_t * addr)

LDRT uint32_t __LDRT (uint32_t ptr)

NOP void __NOP (void)

RBIT uint32_t __RBIT(uint32_t int value)

REV uint32_t __REV(uint32_t int value)

REV16 uint32_t __REV16(uint32_t int value)

REVSH uint32_t __REVSH(uint32_t int value)

ROR uint32_t __ROR (uint32_t value, uint32_t shift)

RRX uint32_t __RRX (uint32_t value)

SEV void __SEV (void)

STL void __STL (uint32_t value, volatile uint32_t * ptr)

STLEX uint32_t __STLEX (uint16_t value, volatile uint32_t * ptr)

3 The Cortex®-M33 Instruction Set
3.2 CMSIS functions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-79

Non-Confidential

Table 3-2 CMSIS functions to generate some Cortex-M33 processor instructions (continued)

Instruction CMSIS function

STLEXB uint32_t __STLEXB (uint16_t value, volatile uint8_t * ptr)

STLEXH uint32_t __STLEXH (uint16_t value, volatile uint16_t * ptr)

STLH void __STLH (uint16_t value, volatile uint16_t * ptr)

STREX uint32_t __STREXW (uint32_t value, uint32_t *addr)

STREXB uint32_t __STREXB (uint8_t value, uint8_t *addr)

STREXH uint32_t __STREXH (uint16_t value, uint16_t *addr)

WFE void __WFE(void)

WFI void __WFI(void)

3.2.2 CMSE

CMSE is the compiler support for the Security Extension (architecture intrinsics and options) and is part
of the Arm C Language (ACLE) specification.

CMSE features are required when developing software running in Secure state. This provides
mechanisms to define Secure entry points and enable the tool chain to generate correct instructions or
support functions in the program image.

The CMSE features are accessed using various attributes and intrinsics. Additional macros are also
defined as part of the CMSE.

3.2.3 CMSIS functions to access the special registers

List of functions that are provided by the CMSIS for accessing the special registers using MRS and MSR
instructions.

Table 3-3 CMSIS functions to access the special registers

Special register Access CMSIS function

PRIMASK Read uint32_t __get_PRIMASK (void)

Write void __set_PRIMASK (uint32_t value)

FAULTMASK Read uint32_t __get_FAULTMASK (void)

Write void __set_FAULTMASK (uint32_t value)

BASEPRI Read uint32_t __get_BASEPRI (void)

Write void __set_BASEPRI (uint32_t value)

CONTROL Read uint32_t __get_CONTROL (void)

Write void __set_CONTROL (uint32_t value)

MSP Read uint32_t __get_MSP (void)

Write void __set_MSP (uint32_t TopOfMainStack)

PSP Read uint32_t __get_PSP (void)

Write void __set_PSP (uint32_t TopOfProcStack)

APSR Read uint32_t __get_APSR (void)

IPSR Read uint32_t __get_IPSR (void)

3 The Cortex®-M33 Instruction Set
3.2 CMSIS functions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-80

Non-Confidential

Table 3-3 CMSIS functions to access the special registers (continued)

Special register Access CMSIS function

xPSR Read uint32_t __get_xPSR (void)

BASEPRI_MAX Write void __set_BASEPRI_MAX (uint32_t basePri)

FPSCR Read uint32_t __get_FPSCR (void)

Write void __set_FPSCR (uint32_t fpscr)

MSPLIM Read uint32_t __get_MSPLIM (void)

Write void __set_MSPLIM (uint32_t MainStackPtrLimit)

PSPLIM Read uint32_t __get_PSPLIM (void)

Write void __set_PSPLIM (uint32_t ProcStackPtrLimit)

3.2.4 CMSIS functions to access the Non-secure special registers

The CMSIS also provides several functions for accessing the Non-secure special registers in Secure state
using MRS and MSR instructions:

Table 3-4 CMSIS intrinsic functions to access the Non-secure special registers

Special register Access CMSIS function

PRIMASK_NS Read uint32_t __TZ_get_PRIMASK_NS (void)

Write void __TZ_set_PRIMASK_NS (uint32_t value)

FAULTMASK_NS Read uint32_t __TZ_get_FAULTMASK_NS (void)

Write void __TZ_set_FAULTMASK_NS (uint32_t value)

CONTROL_NS Read uint32_t __TZ_get_CONTROL_NS (void)

Write void __TZ_set_CONTROL_NS (uint32_t value)

MSP_NS Read uint32_t __TZ_get_MSP_NS (void)

Write void __TZ_set_MSP_NS (uint32_t TopOfMainStack)

PSP_NS Read uint32_t __TZ_get_PSP_NS (void)

Write void __TZ_set_PSP_NS (uint32_t TopOfProcStack)

MSPLIM_NS Read uint32_t __TZ_get_MSPLIM_NS (void)

Write void __TZ_set_MSPLIM_NS (uint32_t MainStackPtrLimit)

PSPLIM_NS Read uint32_t __TZ_get_PSPLIM_NS (void)

Write void __TZ_set_PSPLIM_NS (uint32_t ProcStackPtrLimit)

3 The Cortex®-M33 Instruction Set
3.2 CMSIS functions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-81

Non-Confidential

3.3 About the instruction descriptions
Additional information about using the instructions, including operands, restrictions when using PC or
SP, flexible second operand, and shift operations.

3 The Cortex®-M33 Instruction Set
3.3 About the instruction descriptions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-82

Non-Confidential

3.3.1 Operands

An instruction operand can be an Arm register, a constant, or another instruction-specific parameter.
Instructions act on the operands and often store the result in a destination register. When there is a
destination register in the instruction, it is usually specified before the operands.

Operands in some instructions are flexible in that they can either be a register or a constant.

3.3.2 Restrictions when using PC or SP

Many instructions have restrictions on whether you can use the Program Counter (PC) or Stack Pointer
(SP) for the operands or destination register. See instruction descriptions for more information.

 Note

• In an implementation with Armv8‑M Security Extension, for correct operation of B{L}XNS, Rm[0]
must be 0 for correct Secure to Non-secure transition.

• Bit[0] of any address you write to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for
correct execution, because this bit indicates the required instruction set, and the Cortex‑M33
processor only supports T32 instructions.

3.3.3 Flexible second operand

Many general data processing instructions have a flexible second operand. This is shown as Operand2 in
the descriptions of the syntax of each instruction.

Operand2 can be:
• A constant.
• A register with optional shift.

Constant

Instruction form when specifying an Operand2 constant.

#constant

where constant can be:
• Any constant that can be produced by shifting an 8‑bit value left by any number of bits within a

32‑bit word.
• Any constant of the form 0x00XY00XY.
• Any constant of the form 0xXY00XY00.
• Any constant of the form 0xXYXYXYXY.

 Note

In these constants, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These are
described in the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ
or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be
produced by shifting an 8-bit value. These instructions do not affect the carry flag if Operand2 is any
other constant.

Instruction substitution

Your assembler might be able to produce an equivalent instruction in cases where you specify a constant
that is not permitted.

3 The Cortex®-M33 Instruction Set
3.3 About the instruction descriptions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-83

Non-Confidential

For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the equivalent
instruction CMN Rd, #0x2.

Register with optional shift

Instruction form when specifying an Operand2 register.

Rm {, shift}

Where:

Rm Is the register holding the data for the second operand.
shift Is an optional shift to be applied to Rm. It can be one of:

ASR #n

Arithmetic shift right n bits, 1 ≤ n ≤ 32.

LSL #n
Logical shift left n bits, 1 ≤ n ≤ 31.

LSR #n
Logical shift right n bits, 1 ≤ n ≤ 32.

ROR #n
Rotate right n bits, 1 ≤ n ≤ 31.

RRX
Shift right one bit and insert the carry flag into the
most significant bit of the result.

-
If omitted, no shift occurs, equivalent to LSL #0.

If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the
instruction. However, the contents in the register Rm remain unchanged. Specifying a register with shift
also updates the carry flag when used with certain instructions.

3.3.4 Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the shift
length.

Register shift can be performed:
• Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination

register.
• During the calculation of Operand2 by the instructions that specify the second operand as a register

with shift. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction, see the individual instruction
description or the Flexible second operand. If the shift length is 0, no shift occurs. Register shift
operations update the carry flag except when the specified shift length is 0. The following sub-sections
describe the various shift operations and how they affect the carry flag. In these descriptions, Rm is the
register containing the value to be shifted, and n is the shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places,
into the right-hand 32-n bits of the result. And it copies the original bit[31] of the register into the
left‑hand n bits of the result.

You can use the ASR #n operation to divide the value in the register Rm by 2n, with the result being
rounded towards negative-infinity.

3 The Cortex®-M33 Instruction Set
3.3 About the instruction descriptions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-84

Non-Confidential

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of
the register Rm.

 Note

• If n is 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
• If n is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Carry
Flag

031 5 4 3 2 1

Figure 3-1 ASR #3

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into
the right-hand 32-n bits of the result. And it sets the left‑hand n bits of the result to 0.

You can use the LSR #n operation to divide the value in the register Rm by 2n, if the value is regarded as
an unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of
the register Rm.

 Note

• If n is 32 or more, then all the bits in the result are cleared to 0.
• If n is 33 or more and the carry flag is updated, it is updated to 0.

Carry
Flag

031 5 4 3 2 1

000

Figure 3-2 LSR #3

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into
the left-hand 32-n bits of the result. And it sets the right‑hand n bits of the result to 0.

You can use the LSL #n operation to multiply the value in the register Rm by 2n, if the value is regarded
as an unsigned integer or a two’s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions
MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out,
bit[32-n], of the register Rm. These instructions do not affect the carry flag when used with LSL #0.

 Note

• If n is 32 or more, then all the bits in the result are cleared to 0.
• If n is 33 or more and the carry flag is updated, it is updated to 0.

3 The Cortex®-M33 Instruction Set
3.3 About the instruction descriptions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-85

Non-Confidential

031 5 4 3 2 1

Carry
Flag

000

Figure 3-3 LSL #3

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the
right-hand 32-n bits of the result. And it moves the right‑hand n bits of the register into the left‑hand n
bits of the result.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the
register Rm.

 Note

• If n is 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is
updated to bit[31] of Rm.

• ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Carry
Flag

031 5 4 3 2 1

Figure 3-4 ROR #3

RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit. And it copies the carry
flag into bit[31] of the result.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

30

Carry
Flag

031 1

Figure 3-5 RRX

3 The Cortex®-M33 Instruction Set
3.3 About the instruction descriptions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-86

Non-Confidential

3.3.5 Address alignment

An aligned access is an operation where a word-aligned address is used for a word, dual word, or
multiple word access, or where a halfword-aligned address is used for a halfword access. Byte accesses
are always aligned.

The Cortex‑M33 processor supports unaligned access only for the following instructions:
• LDR, LDRT.
• LDRH, LDRHT.
• LDRSH, LDRSHT.
• STR, STRT.
• STRH, STRHT.

All other load and store instructions generate a UsageFault exception if they perform an unaligned
access, and therefore their accesses must be address aligned.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might
not support unaligned accesses. Therefore, Arm recommends that programmers ensure that accesses are
aligned. To trap accidental generation of unaligned accesses, use the UNALIGN_TRP bit in the
Configuration and Control Register.

3.3.6 PC-relative expressions

A PC‑‑relative expression or label is a symbol that represents the address of an instruction or literal data.
It is represented in the instruction as the PC value plus or minus a numeric offset. The assembler
calculates the required offset from the label and the address of the current instruction. If the offset is too
big, the assembler produces an error.

 Note

• For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus
4 bytes.

• For all other instructions that use labels, the value of the PC is the address of the current instruction
plus 4 bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

• Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus
a number, or an expression of the form [PC, #number].

3 The Cortex®-M33 Instruction Set
3.3 About the instruction descriptions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-87

Non-Confidential

3.3.7 Conditional execution

Most data processing instructions can optionally update the condition flags in the Application Program
Status Register (APSR) according to the result of the operation. Some instructions update all flags, and
some only update a subset. If a flag is not updated, the original value is preserved. See the instruction
descriptions for the flags they affect.

You can execute an instruction conditionally, based on the condition flags set in another instruction,
either:

• Immediately after the instruction that updated the flags.
• After any number of intervening instructions that have not updated the flags.

Conditional execution is available by using conditional branches or by adding condition code suffixes to
instructions. The condition code suffix enables the processor to test a condition based on the flags. If the
condition test of a conditional instruction fails, the instruction:
• Does not execute.
• Does not write any value to its destination register.
• Does not affect any of the flags.
• Does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then instruction block.
Depending on the vendor, the assembler might automatically insert an IT instruction if you have
conditional instructions outside the IT block.

Use the CBZ and CBNZ instructions to compare the value of a register against zero and branch on the
result.

3 The Cortex®-M33 Instruction Set
3.3 About the instruction descriptions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-88

Non-Confidential

The condition flags

The APSR contains the N, Z, C, and V condition flags.

N Set to 1 when the result of the operation was negative, cleared to 0
otherwise.

Z Set to 1 when the result of the operation was zero, cleared to 0
otherwise.

C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.
V Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about APSR, see Application Program Status Register on page 2-25

The C condition flag is set in one of four ways:

• For an addition, including the comparison instruction CMN, C is set to 1 if the addition produced a
carry (that is, an unsigned overflow), and to 0 otherwise.

• For a subtraction, including the comparison instruction CMP, C is set to 0 if the subtraction produced a
borrow (that is, an unsigned underflow), and to 1 otherwise.

• For non-addition or subtractions that incorporate a shift operation, C is set to the last bit shifted out of
the value by the shifter.

• For other non-addition or subtractions, C is normally left unchanged. See the individual instruction
descriptions for any special cases.

Overflow occurs when the sign of the result, in bit[31], does not match the sign of the result had the
operation been performed at infinite precision. For example, the V condition flag can be set in one of
four ways:

• If adding two negative values results in a positive value.
• If adding two positive values results in a negative value.
• If subtracting a positive value from a negative value generates a positive value.
• If subtracting a negative value from a positive value generates a negative value.

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is
discarded. See the instruction descriptions for more information.

 Note

Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions
for more information.

Condition code suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as
{cond}. Conditional execution requires a preceding IT instruction. An instruction with a condition code
is only executed if the condition code flags in the APSR meet the specified condition.

You can use conditional execution with the IT instruction to reduce the number of branch instructions in
code.

The following table also shows the relationship between condition code suffixes and the N, Z, C, and V
flags.

Table 3-5 Condition code suffixes

Suffix Flags Meaning

EQ Z = 1 Equal.

NE Z = 0 Not equal.

CS or HS C = 1 Higher or same, unsigned.

3 The Cortex®-M33 Instruction Set
3.3 About the instruction descriptions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-89

Non-Confidential

Table 3-5 Condition code suffixes (continued)

Suffix Flags Meaning

CC or LO C = 0 Lower, unsigned.

MI N = 1 Negative.

PL N = 0 Positive or zero.

VS V = 1 Overflow.

VC V = 0 No overflow.

HI C = 1 and Z = 0 Higher, unsigned.

LS C = 0 or Z = 1 Lower or same, unsigned.

GE N = V Greater than or equal, signed.

LT N != V Less than, signed.

GT Z = 0 and N = V Greater than, signed.

LE Z = 1 and N != V Less than or equal, signed.

AL Can have any value Always. This is the default when no suffix is specified.

The following example shows the use of a conditional instruction to find the absolute value of a number.
R0 = abs(R1).

Absolute value

MOVS R0, R1 ; R0 = R1, setting flags.
IT MI ; Skipping next instruction if value 0 or positive.
RSBMI R0, R0, #0 ; If negative, R0 = -R0.

The following example shows the use of conditional instructions to update the value of R4 if the signed
values R0 is greater than R1 and R2 is greater than R3.

Compare and update value

CMP R0, R1 ; Compare R0 and R1, setting flags.
ITT GT ; Skip next two instructions unless GT condition holds.
CMPGT R2, R3 ; If 'greater than', compare R2 and R3, setting flags.
MOVGT R4, R5 ; If still 'greater than', do R4 = R5.

3 The Cortex®-M33 Instruction Set
3.3 About the instruction descriptions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-90

Non-Confidential

3.3.8 Instruction width selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on
the operands and destination register specified. For some of these instructions, you can force a specific
instruction size by using an instruction width suffix. The .W suffix forces a 32-bit instruction encoding.
The .N suffix forces a 16-bit instruction encoding.

If you specify an instruction width suffix and the assembler cannot generate an instruction encoding of
the requested width, it generates an error.

 Note

In some cases it might be necessary to specify the .W suffix, for example if the operand is the label of an
instruction or literal data, as in the case of branch instructions. This is because the assembler might not
automatically generate the right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition
code, if any. The following example shows instructions with the instruction width suffix.

Instruction width selection

BCS.W label ; Creates a 32-bit instruction even for a short branch.
ADDS.W R0, R0, R1 ; Creates a 32-bit instruction even though the same
 ; operation can be done by a 16-bit instruction.

3 The Cortex®-M33 Instruction Set
3.3 About the instruction descriptions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-91

Non-Confidential

3.4 General data processing instructions
Reference material for the Cortex‑M33 processor data processing instruction set.

3.4.1 List of data processing instructions

An alphabetically ordered list of the data processing instructions, with a brief description and link to the
syntax definition, operations, restrictions, and example usage for each instruction.

Table 3-6 Data processing instructions

Mnemonic Brief description See

ADC Add with Carry 3.4.2 ADD, ADC, SUB, SBC, and RSB on page 3-94

ADD Add 3.4.2 ADD, ADC, SUB, SBC, and RSB on page 3-94

ADDW Add 3.4.2 ADD, ADC, SUB, SBC, and RSB on page 3-94

AND Logical AND 3.4.3 AND, ORR, EOR, BIC, and ORN on page 3-96

ASR Arithmetic Shift Right 3.4.4 ASR, LSL, LSR, ROR, and RRX on page 3-97

BIC Bit Clear 3.4.3 AND, ORR, EOR, BIC, and ORN on page 3-96

CLZ Count leading zeros 3.4.5 CLZ on page 3-99

CMN Compare Negative 3.4.6 CMP and CMN on page 3-100

CMP Compare 3.4.6 CMP and CMN on page 3-100

EOR Exclusive OR 3.4.3 AND, ORR, EOR, BIC, and ORN on page 3-96

LSL Logical Shift Left 3.4.4 ASR, LSL, LSR, ROR, and RRX on page 3-97

LSR Logical Shift Right 3.4.4 ASR, LSL, LSR, ROR, and RRX on page 3-97

MOV Move 3.4.7 MOV and MVN on page 3-101

MOVT Move Top 3.4.8 MOVT on page 3-103

MOVW Move 16-bit constant 3.4.7 MOV and MVN on page 3-101

MVN Move NOT 3.4.7 MOV and MVN on page 3-101

ORN Logical OR NOT 3.4.3 AND, ORR, EOR, BIC, and ORN on page 3-96

ORR Logical OR 3.4.3 AND, ORR, EOR, BIC, and ORN on page 3-96

RBIT Reverse Bits 3.4.9 REV, REV16, REVSH, and RBIT on page 3-104

REV Reverse byte order in a word 3.4.9 REV, REV16, REVSH, and RBIT on page 3-104

REV16 Reverse byte order in each halfword 3.4.9 REV, REV16, REVSH, and RBIT on page 3-104

REVSH Reverse byte order in bottom halfword and sign extend 3.4.9 REV, REV16, REVSH, and RBIT on page 3-104

ROR Rotate Right 3.4.4 ASR, LSL, LSR, ROR, and RRX on page 3-97

RRX Rotate Right with Extend 3.4.4 ASR, LSL, LSR, ROR, and RRX on page 3-97

RSB Reverse Subtract 3.4.2 ADD, ADC, SUB, SBC, and RSB on page 3-94

SADD16 Signed Add 16 3.4.10 SADD16 and SADD8 on page 3-105

SADD8 Signed Add 8 3.4.10 SADD16 and SADD8 on page 3-105

SASX Signed Add and Subtract with Exchange 3.4.11 SASX and SSAX on page 3-107

SEL Select bytes 3.4.12 SEL on page 3-109

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-92

Non-Confidential

Table 3-6 Data processing instructions (continued)

Mnemonic Brief description See

SSAX Signed Subtract and Add with Exchange 3.4.11 SASX and SSAX on page 3-107

SBC Subtract with Carry 3.4.2 ADD, ADC, SUB, SBC, and RSB on page 3-94

SHADD16 Signed Halving Add 16 3.4.13 SHADD16 and SHADD8 on page 3-110

SHADD8 Signed Halving Add 8 3.4.13 SHADD16 and SHADD8 on page 3-110

SHASX Signed Halving Add and Subtract with Exchange 3.4.14 SHASX and SHSAX on page 3-111

SHSAX Signed Halving Subtract and Add with Exchange 3.4.14 SHASX and SHSAX on page 3-111

SHSUB16 Signed Halving Subtract 16 3.4.15 SHSUB16 and SHSUB8 on page 3-112

SHSUB8 Signed Halving Subtract 8 3.4.15 SHSUB16 and SHSUB8 on page 3-112

SSUB16 Signed Subtract 16 3.4.16 SSUB16 and SSUB8 on page 3-113

SSUB8 Signed Subtract 8 3.4.16 SSUB16 and SSUB8 on page 3-113

SUB Subtract 3.4.2 ADD, ADC, SUB, SBC, and RSB on page 3-94

SUBW Subtract 3.4.2 ADD, ADC, SUB, SBC, and RSB on page 3-94

TEQ Test Equivalence 3.4.17 TST and TEQ on page 3-115

TST Test 3.4.17 TST and TEQ on page 3-115

UADD16 Unsigned Add 16 3.4.18 UADD16 and UADD8 on page 3-116

UADD8 Unsigned Add 8 3.4.18 UADD16 and UADD8 on page 3-116

UASX Unsigned Add and Subtract with Exchange 3.4.19 UASX and USAX on page 3-118

USAX Unsigned Subtract and Add with Exchange 3.4.19 UASX and USAX on page 3-118

UHADD16 Unsigned Halving Add 16 3.4.20 UHADD16 and UHADD8 on page 3-120

UHADD8 Unsigned Halving Add 8 3.4.20 UHADD16 and UHADD8 on page 3-120

UHASX Unsigned Halving Add and Subtract with Exchange 3.4.21 UHASX and UHSAX on page 3-121

UHSAX Unsigned Halving Subtract and Add with Exchange 3.4.21 UHASX and UHSAX on page 3-121

UHSUB16 Unsigned Halving Subtract 16 3.4.22 UHSUB16 and UHSUB8 on page 3-123

UHSUB8 Unsigned Halving Subtract 8 3.4.22 UHSUB16 and UHSUB8 on page 3-123

USAD8 Unsigned Sum of Absolute Differences 3.4.23 USAD8 on page 3-124

USADA8 Unsigned Sum of Absolute Differences and Accumulate 3.4.24 USADA8 on page 3-125

USUB16 Unsigned Subtract 16 3.4.25 USUB16 and USUB8 on page 3-126

USUB8 Unsigned Subtract 8 3.4.25 USUB16 and USUB8 on page 3-126

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-93

Non-Confidential

3.4.2 ADD, ADC, SUB, SBC, and RSB

Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Syntax

op{S}{cond} {Rd,} Rn, Operand2 ; ADD; ADC; SBC; RSB

op{S|W}{cond} {Rd,} Rn, #imm12 ; ADD; SUB

Where:

op Is one of:

ADD Add.
ADC Add with Carry.
SUB Subtract.
SBC Subtract with Carry.
RSB Reverse Subtract.

S Is an optional suffix. If S is specified, the condition code
flags are updated on the result of the operation.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination

register is Rn.
Rn Is the register holding the first operand.
Operand2 Is a flexible second operand.
imm12 Is any value in the range 0-4095.

Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.

The ADC instruction adds the values in Rn and Operand2, together with the carry flag.

The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the
result is reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the
wide range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic.

 Note

ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax
that uses the imm12 operand.

Restrictions

In these instructions:

• Operand2 must not be SP and must not be PC.
• Rd can be SP only in ADD and SUB, and only with the additional restrictions:

— Rn must also be SP.
— Any shift in Operand2 must be limited to a maximum of 3 bits using LSL.

• Rn can be SP only in ADD and SUB.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-94

Non-Confidential

• Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:
— You must not specify the S suffix.
— Rm must not be PC and must not be SP.
— If the instruction is conditional, it must be the last instruction in the IT block.

• with the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and
only with the additional restrictions:
— You must not specify the S suffix.
— The second operand must be a constant in the range 0-4095.

 Note

— When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to 0b00 before
performing the calculation, making the base address for the calculation word-aligned.

— If you want to generate the address of an instruction, you have to adjust the constant based on the
value of the PC. Arm recommends that you use the ADR instruction instead of ADD or SUB with Rn
equal to the PC, because your assembler automatically calculates the correct constant for the ADR
instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:
• Bit[0] of the value written to the PC is ignored.
• A branch occurs to the address created by forcing bit[0] of that value to 0.

Condition flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

Example 3-1 Examples

ADD R2, R1, R3
SUBS R8, R6, #240 ; Sets the flags on the result.
RSB R4, R4, #1280 ; Subtracts contents of R4 from 1280.
ADCHI R11, R0, R3 ; Only executed if C flag set and Z.
 ; flag clear.

Multiword arithmetic examples

The following example shows two instructions that add a 64‑bit integer contained in R2 and R3 to another
64‑bit integer contained in R0 and R1, and place the result in R4 and R5.

64-bit addition ADDS R4, R0, R2 ; Add the least significant words.
ADC R5, R1, R3 ; Add the most significant words with
carry.

Multiword values do not have to use consecutive registers. The following example shows instructions
that subtract a 96‑bit integer contained in R9, R1, and R11 from another contained in R6, R2, and R8.
The example stores the result in R6, R9, and R2.

96-bit subtraction SUBS R6, R6, R9 ; Subtract the least significant words.
SBCS R9, R2, R1 ; Subtract the middle words with carry.
SBC R2, R8, R11 ; Subtract the most significant words
with carry.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-95

Non-Confidential

3.4.3 AND, ORR, EOR, BIC, and ORN

Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax

op{S}{cond} {Rd,} Rn, Operand2

Where:

op Is one of:

AND Logical AND.
ORR Logical OR, or bit set.
EOR Logical Exclusive OR.
BIC Logical AND NOT, or bit clear.
ORN Logical OR NOT.

S Is an optional suffix. If S is specified, the condition code
flags are updated on the result of the operation.

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination

register is Rn.
Rn Is the register holding the first operand.
Operand2 Is a flexible second operand.

Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the
values in Rn and Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

Restrictions

Do not use SP and do not use PC.

Condition flags
If S is specified, these instructions:
• Update the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Do not affect the V flag.

Example 3-2 Examples

AND R9, R2, #0xFF00
ORREQ R2, R0, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BIC R0, R1, #0xab
ORN R7, R11, R14, ROR #4
ORNS R7, R11, R14, ASR #32

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-96

Non-Confidential

3.4.4 ASR, LSL, LSR, ROR, and RRX

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with
Extend.

Syntax

op{S}{cond} Rd, Rm, Rs

op{S}{cond} Rd, Rm, #n

RRX{S}{cond} Rd, Rm

Where:
op Is one of:

ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

S Is an optional suffix. If S is specified, the condition code
flags are updated on the result of the operation.

Rd Is the destination register.
Rm Is the register holding the value to be shifted.
Rs Is the register holding the shift length to apply to the value in

Rm. Only the least significant byte is used and can be in the
range 0-255.

n Is the shift length. The range of shift length depends on the
instruction:

ASR Shift length from 1 to 32
LSL Shift length from 0 to 31
LSR Shift length from 1 to 32
ROR Shift length from 1 to 31.

 Note

MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places
specified by constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For
details on what result is generated by the different instructions.

Restrictions

Do not use SP and do not use PC.

Condition flags
If S is specified:
• These instructions update the N, Z and C flags according to the result.
• The C flag is updated to the last bit shifted out, except when the shift length is 0.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-97

Non-Confidential

Example 3-3 Examples

ASR R7, R8, #9 ; Arithmetic shift right by 9 bits.
LSLS R1, R2, #3 ; Logical shift left by 3 bits with flag update.
LSR R4, R5, #6 ; Logical shift right by 6 bits.
ROR R4, R5, R6 ; Rotate right by the value in the bottom byte of R6.
RRX R4, R5 ; Rotate right with extend.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-98

Non-Confidential

3.4.5 CLZ

Count Leading Zeros.

Syntax

CLZ{cond} Rd, Rm

Where:

cond Is an optional condition code.
Rd Is the destination register.
Rm Is the operand register.

Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd.
The result value is 32 if no bits are set and zero if bit[31] is set.

Restrictions

Do not use SP and do not use PC.

Condition flags

This instruction does not change the flags.

Example 3-4 Examples

CLZ R4,R9
CLZNE R2,R3

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-99

Non-Confidential

3.4.6 CMP and CMN

Compare and Compare Negative.

Syntax

CMP{cond} Rn, Operand2

CMN{cond} Rn, Operand2

Where:

cond Is an optional condition code.
Rn Is the register holding the first operand.
Operand2 Is a flexible second operand.

Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the
result, but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS
instruction, except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS
instruction, except that the result is discarded.

Restrictions
In these instructions:
• Do not use PC.
• Operand2 must not be SP.

Condition flags

These instructions update the N, Z, C and V flags according to the result.

Example 3-5 Examples

CMP R2, R9
CMN R0, #6400
CMPGT SP, R7, LSL #2

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-100

Non-Confidential

3.4.7 MOV and MVN

Move and Move NOT.

Syntax

MOV{S}{cond} Rd, Operand2

MOV{S}{cond} Rd, Rm

MOV{W}{cond} Rd, #imm16

MVN{S}{cond} Rd, Operand2

Where:

S Is an optional suffix. If S is specified, the condition code
flags are updated on the result of the operation.

cond Is an optional condition code.
Rd Is the destination register.
Operand2 Is a flexible second operand.
Rm The source register.
imm16 Is any value in the range 0-65535.

Operation

The MOV instruction copies the value of Operand2 into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is
the corresponding shift instruction:Also, the MOV instruction permits additional forms of Operand2 as
synonyms for shift instructions:

• ASR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n.
• LSL{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #n if n != 0.
• LSR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n.
• ROR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n.
• RRX{S}{cond} Rd, Rm is the preferred syntax for MOV{S}{cond} Rd, Rm, RRX.

• MOV{S}{cond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs.
• MOV{S}{cond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs.
• MOV{S}{cond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs.
• MOV{S}{cond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value,
and places the result into Rd.

 Note

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.

Restrictions

You can use SP and PC only in the MOV instruction, with the following restrictions:

• The second operand must be a register without shift.
• You must not specify the S suffix.

When Rd is PC in a MOV instruction:
• Bit[0] of the value written to the PC is ignored.
• A branch occurs to the address created by forcing bit[0] of that value to 0.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-101

Non-Confidential

 Note

Though it is possible to use MOV as a branch instruction, Arm strongly recommends the use of a BX or BLX
instruction to branch for software portability to the Arm instruction set.

Condition flags
If S is specified, these instructions:
• Update the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2.
• Do not affect the V flag.

Example 3-6 Examples

MOVS R11, #0x000B ; Write value of 0x000B to R11, flags get updated.
MOV R1, #0xFA05 ; Write value of 0xFA05 to R1, flags are not updated.
MOVS R10, R12 ; Write value in R12 to R10, flags get updated.
MOV R3, #23 ; Write value of 23 to R3.
MOV R8, SP ; Write value of stack pointer to R8.
MVNS R2, #0xF ; Write value of 0xFFFFFFF0 (bitwise inverse of 0xF).
 ; to the R2 and update flags.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-102

Non-Confidential

3.4.8 MOVT

Move Top.

Syntax

MOVT{cond} Rd, #imm16

Where:

cond Is an optional condition code.
Rd Is the destination register.
imm16 Is a 16‑bit immediate constant and must be in the range

0-65535.

Operation

MOVT writes a 16‑bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register.
The write does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32‑bit constant.

Restrictions

Rd must not be SP and must not be PC.

Condition flags

This instruction does not change the flags.

Example 3-7 Examples

MOVT R3, #0xF123 ; Write 0xF123 to upper halfword of R3, lower halfword
 ; and APSR are unchanged.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-103

Non-Confidential

3.4.9 REV, REV16, REVSH, and RBIT

Reverse bytes and Reverse bits.

Syntax

op{cond} Rd, Rn

Where:

op Is one of:

REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword

independently.
REVSH Reverse byte order in the bottom

halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32‑bit word.

cond Is an optional condition code.

Rd Is the destination register.
Rn Is the register holding the operand.

Operation

Use these instructions to change endianness of data:

REV
converts either:
• 32‑bit big‑endian data into little‑endian data.
• 32‑bit little‑endian data into big‑endian data.

REV16
converts either:
• 16‑bit big‑endian data into little‑endian data.
• 16‑bit little‑endian data into big‑endian data.

REVSH
converts either:
• 16‑bit signed big‑endian data into 32‑bit signed little‑endian data.
• 16‑bit signed little‑endian data into 32‑bit signed big‑endian data.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Example 3-8 Examples

REV R3, R7 ; Reverse byte order of value in R7 and write it to R3.
REV16 R0, R0 ; Reverse byte order of each 16-bit halfword in R0.
REVSH R0, R5 ; Reverse Signed Halfword.
REVHS R3, R7 ; Reverse with Higher or Same condition.
RBIT R7, R8 ; Reverse bit order of value in R8 and write the result to R7.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-104

Non-Confidential

3.4.10 SADD16 and SADD8

Signed Add 16 and Signed Add 8.

Syntax

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

SADD16 Performs two 16-bit signed integer
additions.

SADD8 Performs four 8-bit signed integer
additions.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn Is the first operand register.
Rm Is the second operand register.

Operation

Use these instructions to perform a halfword or byte add in parallel.

The SADD16 instruction:The SADD8 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the result in the corresponding halfwords of the destination register.
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Writes the result in the corresponding bytes of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions set the APSR.GE bits according to the results of the additions.

For SADD16:

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
 sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
 R[d]<15:0> = sum1<15:0>;
 R[d]<31:16> = sum2<15:0>;
 APSR.GE<1:0> = if sum1 >= 0 then '11' else '00';
 APSR.GE<3:2> = if sum2 >= 0 then '11' else '00';

For SADD8:

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);
 sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
 sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
 sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
 R[d]<7:0> = sum1<7:0>;
 R[d]<15:8> = sum2<7:0>;
 R[d]<23:16> = sum3<7:0>;
 R[d]<31:24> = sum4<7:0>;
 APSR.GE<0> = if sum1 >= 0 then '1' else '0';
 APSR.GE<1> = if sum2 >= 0 then '1' else '0';
 APSR.GE<2> = if sum3 >= 0 then '1' else '0';
 APSR.GE<3> = if sum4 >= 0 then '1' else '0';

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-105

Non-Confidential

Example 3-9 Examples

SADD16 R1, R0 ; Adds the halfwords in R0 to the corresponding halfwords of
 ; R1 and writes to corresponding halfword of R1.SADD8 R4, R0, R5
 ; Adds bytes of R0 to the corresponding byte in R5 and writes
 ; to the corresponding byte in R4.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-106

Non-Confidential

3.4.11 SASX and SSAX

Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

Syntax

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

SASX Signed Add and Subtract with
Exchange.

SSAX Signed Subtract and Add with
Exchange.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn Is the first operand register.
Rm Is the second operand register.

Operation

The SASX instruction:

1. Adds the signed top halfword of the first operand with the signed bottom halfword of the second
operand.

2. Writes the signed result of the addition to the top halfword of the destination register.
3. Subtracts the signed bottom halfword of the second operand from the top signed halfword of the first

operand.
4. Writes the signed result of the subtraction to the bottom halfword of the destination register.
The SSAX instruction:
1. Subtracts the signed bottom halfword of the second operand from the top signed halfword of the first

operand.
2. Writes the signed result of the addition to the bottom halfword of the destination register.
3. Adds the signed top halfword of the first operand with the signed bottom halfword of the second

operand.
4. Writes the signed result of the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions set the APSR.GE bits according to the results.

For SASX:

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
 sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
 R[d]<15:0> = diff<15:0>;
 R[d]<31:16> = sum<15:0>;
 APSR.GE<1:0> = if diff >= 0 then '11' else '00';
 APSR.GE<3:2> = if sum >= 0 then '11' else '00';

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-107

Non-Confidential

For SSAX:

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
 diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
 R[d]<15:0> = sum<15:0>;
 R[d]<31:16> = diff<15:0>;
 APSR.GE<1:0> = if sum >= 0 then '11' else '00';
 APSR.GE<3:2> = if diff >= 0 then '11' else '00';

Example 3-10 Examples

SASX R0, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5 and
 ; writes to top halfword of R0.
 ; Subtracts bottom halfword of R5 from top halfword of R4
 ; and writes to bottom halfword of R0.
SSAX R7, R3, R2 ; Subtracts top halfword of R2 from bottom halfword of R3
 ; and writes to bottom halfword of R7.
 ; Adds top halfword of R3 with bottom halfword of R2 and
 ; writes to top halfword of R7.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-108

Non-Confidential

3.4.12 SEL

Select bytes. Selects each byte of its result from either its first operand or its second operand, according
to the values of the GE flags.

Syntax

SEL{cond} {Rd,} Rn, Rm

Where:

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn Is the first operand register.
Rm Is the second operand register.

Operation
The SEL instruction:
1. Reads the value of each bit of APSR.GE.
2. Depending on the value of APSR.GE, assigns the destination register the value of either the first or

second operand register.

The behavior is:

if ConditionPassed() then
 EncodingSpecificOperations();
 R[d]<7:0> = if APSR.GE<0> == '1' then R[n]<7:0> else R[m]<7:0>;
 R[d]<15:8> = if APSR.GE<1> == '1' then R[n]<15:8> else R[m]<15:8>;
 R[d]<23:16> = if APSR.GE<2> == '1' then R[n]<23:16> else R[m]<23:16>;
 R[d]<31:24> = if APSR.GE<3> == '1' then R[n]<31:24> else R[m]<31:24>;

Restrictions

None.

Condition flags

These instructions do not change the flags.

Example 3-11 Examples

SADD16 R0, R1, R2 ; Set GE bits based on result.
SEL R0, R0, R3 ; Select bytes from R0 or R3, based on GE.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-109

Non-Confidential

3.4.13 SHADD16 and SHADD8

Signed Halving Add 16 and Signed Halving Add 8.

Syntax

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

SHADD16 Signed Halving Add 16.
SHADD8 Signed Halving Add 8.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn Is the first operand register.
Rm Is the second operand register.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to
the destination register.

The SHADD16 instruction:The SHADD8 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halfword results in the destination register.
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Example 3-12 Examples

SHADD16 R1, R0 ; Adds halfwords in R0 to corresponding halfword of R1 and
 ; writes halved result to corresponding halfword in R1.
SHADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and
 ; writes halved result to corresponding byte in R4.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-110

Non-Confidential

3.4.14 SHASX and SHSAX

Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with Exchange.

Syntax

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

SHASX Add and Subtract with Exchange and
Halving.

SHSAX Subtract and Add with Exchange and
Halving.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn Is the first operand register.
Rm Is the second operand register.

Operation

The SHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.
2. Writes the halfword result of the addition to the top halfword of the destination register, shifted by

one bit to the right causing a divide by two, or halving.
3. Subtracts the top halfword of the second operand from the bottom highword of the first operand.
4. Writes the halfword result of the division in the bottom halfword of the destination register, shifted by

one bit to the right causing a divide by two, or halving.
The SHSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Writes the halfword result of the addition to the bottom halfword of the destination register, shifted

by one bit to the right causing a divide by two, or halving.
3. Adds the bottom halfword of the first operand with the top halfword of the second operand.
4. Writes the halfword result of the division in the top halfword of the destination register, shifted by

one bit to the right causing a divide by two, or halving.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

Example 3-13 Examples

SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2
 ; and writes halved result to top halfword of R7.
 ; Subtracts top halfword of R2 from bottom halfword of
 ; R4 and writes halved result to bottom halfword of R7.
SHSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword
 ; of R3 and writes halved result to top halfword of R0.
 ; Adds top halfword of R5 to bottom halfword of R3 and
 ; writes halved result to bottom halfword of R0.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-111

Non-Confidential

3.4.15 SHSUB16 and SHSUB8

Signed Halving Subtract 16 and Signed Halving Subtract 8.

Syntax

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

SHSUB16 Signed Halving Subtract 16.
SHSUB8 Signed Halving Subtract 8.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn Is the first operand register.
Rm Is the second operand register.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to
the destination register.

The SHSUB16 instruction: The SHSUBB8 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfwords of the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halved halfword results in the destination register.
1. Subtracts each byte of the second operand from the corresponding byte of the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the corresponding signed byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Example 3-14 Examples

SHSUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword
 ; of R1 and writes to corresponding halfword of R1.
SHSUB8 R4, R0, R5 ; Subtracts bytes of R0 from corresponding byte in R5,
 ; and writes to corresponding byte in R4.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-112

Non-Confidential

3.4.16 SSUB16 and SSUB8

Signed Subtract 16 and Signed Subtract 8.

Syntax

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

SSUB16 Performs two 16-bit signed integer
subtractions.

SSUB8 Performs four 8-bit signed integer
subtractions.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn Is the first operand register.
Rm Is the second operand register.

Operation

Use these instructions to change endianness of data.

The SSUB16 instruction:The SSUB8 instruction:
1. Subtracts each halfword from the second operand from the corresponding halfword of the first

operand.
2. Writes the difference result of two signed halfwords in the corresponding halfword of the destination

register.
1. Subtracts each byte of the second operand from the corresponding byte of the first operand.
2. Writes the difference result of four signed bytes in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions set the APSR.GE bits according to the results of the subtractions.

For SSUB16:

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);
 diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
 R[d]<15:0> = diff1<15:0>;
 R[d]<31:16> = diff2<15:0>;

 APSR.GE<1:0> = if diff1 >= 0 then '11' else '00';

 APSR.GE<3:2> = if diff2 >= 0 then '11' else '00';

For SSUB8:

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);
 diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
 diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
 diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
 R[d]<7:0> = diff1<7:0>;
 R[d]<15:8> = diff2<7:0>;
 R[d]<23:16> = diff3<7:0>;

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-113

Non-Confidential

 R[d]<31:24> = diff4<7:0>;
 APSR.GE<0> = if diff1 >= 0 then '1' else '0';
 APSR.GE<1> = if diff2 >= 0 then '1' else '0';
 APSR.GE<2> = if diff3 >= 0 then '1' else '0';

 APSR.GE<3> = if diff4 >= 0 then '1' else '0';

Example 3-15 Examples

SSUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword of R1
 ; and writes to corresponding halfword of R1.
SSUB8 R4, R0, R5 ; Subtracts bytes of R5 from corresponding byte in
 ; R0, and writes to corresponding byte of R4.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-114

Non-Confidential

3.4.17 TST and TEQ

Test bits and Test Equivalence.

Syntax

TST{cond} Rn, Operand2

TEQ{cond} Rn, Operand2

Where:

cond Is an optional condition code.
Rn Is the first operand register.
Operand2 Is a flexible second operand.

Operation

These instructions test the value in a register against Operand2. They update the condition flags based on
the result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2.
This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has that bit
set to 1 and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of
Operand2. This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive
OR of the sign bits of the two operands.

Restrictions

Do not use SP and do not use PC.

Condition flags
These instructions:
• Update the N and Z flags according to the result.
• Can update the C flag during the calculation of Operand2,
• Do not affect the V flag.

Example 3-16 Examples

TST R0, #0x3F8 ; Perform bitwise AND of R0 value to 0x3F8,
 ; APSR is updated but result is discarded
TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to
 ; value in R9, APSR is updated but result is discarded.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-115

Non-Confidential

3.4.18 UADD16 and UADD8

Unsigned Add 16 and Unsigned Add 8.

Syntax

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

UADD16 Performs two 16-bit unsigned integer
additions.

UADD8 Performs four 8-bit unsigned integer
additions.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn Is the first operand register.
Rm Is the second operand register.

Operation

Use these instructions to add 16- and 8-bit unsigned data.

The UADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the unsigned result in the corresponding halfwords of the destination register.
The UADD8 instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Writes the unsigned result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions set the APSR.GE bits according to the results of the additions.

For UADD16:

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);
 sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
 R[d]<15:0> = sum1<15:0>;
 R[d]<31:16> = sum2<15:0>;
 APSR.GE<1:0> = if sum1 >= 0x10000 then '11' else '00';
 APSR.GE<3:2> = if sum2 >= 0x10000 then '11' else '00';

For UADD8:

if ConditionPassed() then
 EncodingSpecificOperations();
 sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);
 sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
 sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
 sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
 R[d]<7:0> = sum1<7:0>;
 R[d]<15:8> = sum2<7:0>;
 R[d]<23:16> = sum3<7:0>;
 R[d]<31:24> = sum4<7:0>;
 APSR.GE<0> = if sum1 >= 0x100 then '1' else '0';
 APSR.GE<1> = if sum2 >= 0x100 then '1' else '0';

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-116

Non-Confidential

 APSR.GE<2> = if sum3 >= 0x100 then '1' else '0';
 APSR.GE<3> = if sum4 >= 0x100 then '1' else '0';

Example 3-17 Examples

UADD16 R1, R0 ; Adds halfwords in R0 to corresponding halfword of R1,
 ; writes to corresponding halfword of R1.
UADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and writes
 ; to corresponding byte in R4.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-117

Non-Confidential

3.4.19 UASX and USAX

Unsigned Add and Subtract with Exchange and Unsigned Subtract and Add with Exchange.

Syntax

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

UASX Add and Subtract with Exchange.
USAX Subtract and Add with Exchange.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn Is the first operand register.
Rm Is the second operand register.

Operation

The UASX instruction:

1. Subtracts the top halfword of the second operand from the bottom halfword of the first operand.
2. Writes the unsigned result from the subtraction to the bottom halfword of the destination register.
3. Adds the top halfword of the first operand with the bottom halfword of the second operand.
4. Writes the unsigned result of the addition to the top halfword of the destination register.
The USAX instruction:
1. Adds the bottom halfword of the first operand with the top halfword of the second operand.
2. Writes the unsigned result of the addition to the bottom halfword of the destination register.
3. Subtracts the bottom halfword of the second operand from the top halfword of the first operand.
4. Writes the unsigned result from the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions set the APSR.GE bits according to the results.

For UASX:

if ConditionPassed() then
 EncodingSpecificOperations();
 diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
 sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
 R[d]<15:0> = diff<15:0>;
 R[d]<31:16> = sum<15:0>;
 APSR.GE<1:0> = if diff >= 0 then '11' else '00';
 APSR.GE<3:2> = if sum >= 0x10000 then '11' else '00';

For USAX:

if ConditionPassed() then
 EncodingSpecificOperations();
 sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
 diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
 R[d]<15:0> = sum<15:0>;
 R[d]<31:16> = diff<15:0>;
 APSR.GE<1:0> = if sum >= 0x10000 then '11' else '00';
 APSR.GE<3:2> = if diff >= 0 then '11' else '00';

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-118

Non-Confidential

Example 3-18 Examples

UASX R0, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5 and
 ; writes to top halfword of R0.
 ; Subtracts bottom halfword of R5 from top halfword of R0
 ; and writes to bottom halfword of R0.
USAX R7, R3, R2 ; Subtracts top halfword of R2 from bottom halfword of R3
 ; and writes to bottom halfword of R7.
 ; Adds top halfword of R3 to bottom halfword of R2 and
 ; writes to top halfword of R7.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-119

Non-Confidential

3.4.20 UHADD16 and UHADD8

Unsigned Halving Add 16 and Unsigned Halving Add 8.

Syntax

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

UHADD16 Unsigned Halving Add 16.
UHADD8 Unsigned Halving Add 8.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn Is the register holding the first operand.
Rm Is the register holding the second operand.

Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing the result to
the destination register.

The UHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the halfword result by one bit to the right, halving the data.
3. Writes the unsigned results to the corresponding halfword in the destination register.
The UHADD8 instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the byte result by one bit to the right, halving the data.
3. Writes the unsigned results in the corresponding byte in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Example 3-19 Examples

UHADD16 R7, R3 ; Adds halfwords in R7 to corresponding halfword of R3
 ; and writes halved result to corresponding halfword in R7.
UHADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and writes
 ; halved result to corresponding byte in R4.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-120

Non-Confidential

3.4.21 UHASX and UHSAX

Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add with
Exchange.

Syntax

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

UHASX Unsigned Halving Add and Subtract
with Exchange.

UHSAX Unsigned Halving Subtract and Add
with Exchange.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn Is the first operand register.
Rm Is the second operand register.

Operation

The UHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.
2. Shifts the result by one bit to the right causing a divide by two, or halving.
3. Writes the halfword result of the addition to the top halfword of the destination register.
4. Subtracts the top halfword of the second operand from the bottom halfword of the first operand.
5. Shifts the result by one bit to the right causing a divide by two, or halving.
6. Writes the halfword result of the subtraction in the bottom halfword of the destination register.
The UHSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top halfword of the first operand.
2. Shifts the result by one bit to the right causing a divide by two, or halving.
3. Writes the halfword result of the subtraction in the top halfword of the destination register.
4. Adds the bottom halfword of the first operand with the top halfword of the second operand.
5. Shifts the result by one bit to the right causing a divide by two, or halving.
6. Writes the halfword result of the addition to the bottom halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

Example 3-20 Examples

UHASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2
 ; and writes halved result to top halfword of R7.
 ; Subtracts top halfword of R2 from bottom halfword of
 ; R7 and writes halved result to bottom halfword of R7.
UHSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of
 ; R3 and writes halved result to top halfword of R0.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-121

Non-Confidential

 ; Adds top halfword of R5 to bottom halfword of R3 and
 ; writes halved result to bottom halfword of R0.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-122

Non-Confidential

3.4.22 UHSUB16 and UHSUB8

Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8.

Syntax

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

UHSUB16 Performs two unsigned 16-bit integer
subtractions, halves the results, and
writes the results to the destination
register.

UHSUB8 Performs four unsigned 8-bit integer
subtractions, halves the results, and
writes the results to the destination
register.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn Is the first operand register.
Rm Is the second operand register.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to
the destination register.

The UHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfword of the first operand.
2. Shuffles each halfword result to the right by one bit, halving the data.
3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.
The UHSUB8 instruction:
1. Subtracts each byte of second operand from the corresponding byte of the first operand.
2. Shuffles each byte result by one bit to the right, halving the data.
3. Writes the unsigned byte results to the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Example 3-21 Examples

UHSUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword of
 ; R1 and writes halved result to corresponding halfword in
 ; R1.
UHSUB8 R4, R0, R5 ; Subtracts bytes of R5 from corresponding byte in R0 and
 ; writes halved result to corresponding byte in R4.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-123

Non-Confidential

3.4.23 USAD8

Unsigned Sum of Absolute Differences.

Syntax

USAD8{cond} {Rd,} Rn, Rm

Where:

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination

register is Rn.
Rn Is the first operand register.
Rm Is the second operand register.

Operation
The USAD8 instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the first operand

register.
2. Adds the absolute values of the differences together.
3. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Example 3-22 Examples

USAD8 R1, R4, R0 ; Subtracts each byte in R0 from corresponding byte of R4
 ; adds the differences and writes to R1.
USAD8 R0, R5 ; Subtracts bytes of R5 from corresponding byte in R0,
 ; adds the differences and writes to R0.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-124

Non-Confidential

3.4.24 USADA8

Unsigned Sum of Absolute Differences and Accumulate.

Syntax

USADA8{cond} Rd, Rn, Rm, Ra

Where:

cond Is an optional condition code.
Rd Is the destination register.
Rn Is the first operand register.
Rm Is the second operand register.
Ra Is the register that contains the accumulation value.

Operation
The USADA8 instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the first operand

register.
2. Adds the unsigned absolute differences together.
3. Adds the accumulation value to the sum of the absolute differences.
4. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Example 3-23 Examples

USADA8 R1, R0, R6 ; Subtracts bytes in R0 from corresponding halfword of R1
 ; adds differences, adds value of R6, writes to R1.
USADA8 R4, R0, R5, R2 ; Subtracts bytes of R5 from corresponding byte in R0
 ; adds differences, adds value of R2 writes to R4.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-125

Non-Confidential

3.4.25 USUB16 and USUB8

Unsigned Subtract 16 and Unsigned Subtract 8.

Syntax

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

USUB16 Unsigned Subtract 16.
USUB8 Unsigned Subtract 8.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn Is the first operand register.
Rm Is the second operand register.

Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the destination register.

The USUB16 instruction:

1. Subtracts each halfword from the second operand register from the corresponding halfword of the
first operand register.

2. Writes the unsigned result in the corresponding halfwords of the destination register.
The USUB8 instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the first operand

register.
2. Writes the unsigned byte result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions set the APSR.GE bits according to the results of the subtractions.

For USUB16:

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);
 diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
 R[d]<15:0> = diff1<15:0>;
 R[d]<31:16> = diff2<15:0>;
 APSR.GE<1:0> = if diff1 >= 0 then '11' else '00';
 APSR.GE<3:2> = if diff2 >= 0 then '11' else '00';

For USUB8:

if ConditionPassed() then
 EncodingSpecificOperations();
 diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);
 diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
 diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
 diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
 R[d]<7:0> = diff1<7:0>;
 R[d]<15:8> = diff2<7:0>;
 R[d]<23:16> = diff3<7:0>;
 R[d]<31:24> = diff4<7:0>;
 APSR.GE<0> = if diff1 >= 0 then '1' else '0';
 APSR.GE<1> = if diff2 >= 0 then '1' else '0';

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-126

Non-Confidential

 APSR.GE<2> = if diff3 >= 0 then '1' else '0';
 APSR.GE<3> = if diff4 >= 0 then '1' else '0';

Example 3-24 Examples

USUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword of R1
 ; and writes to corresponding halfword in R1.
USUB8 R4, R0, R5 ; Subtracts bytes of R5 from corresponding byte in R0 and
 ; writes to the corresponding byte in R4.

3 The Cortex®-M33 Instruction Set
3.4 General data processing instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-127

Non-Confidential

3.5 Coprocessor instructions
Reference material for the Cortex‑M33 processor coprocessor instruction set.

3.5.1 List of coprocessor instructions

An alphabetically ordered list of the coprocessor instructions, with a brief description and link to the
syntax definition, operations, restrictions, and example usage for each instruction.

Table 3-7 Coprocessor instructions

Mnemonic Brief description See

CDP, CDP2 Coprocessor data processing 3.5.3 CDP and CDP2 on page 3-129

MCR, MCR2 Move to Coprocessor from Register 3.5.4 MCR and MCR2 on page 3-130

MCRR, MCRR2 Move to Coprocessor from two Registers 3.5.5 MCRR and MCRR2 on page 3-131

MRC, MRC2 Move to Register from Coprocessor 3.5.6 MRC and MRC2 on page 3-132

MRRC, MRRC2 Move to two Registers from Coprocessor 3.5.7 MRRC and MRRC2 on page 3-133

3.5.2 Coprocessor intrinsics

The following table shows intrinsics for coprocessor data-processing instructions.

Intrinsics Equivalent Instruction

void __arm_cdp(coproc, opc1, CRd, CRn, CRm, opc2) CDP coproc, #opc1, CRd, CRn, CRm, #opc2

void __arm_cdp2(coproc, opc1, CRd, CRn, CRm, opc2) CDP2 coproc, #opc1, CRd, CRn, CRm, #opc2

The following table shows intrinsics that map to coprocessor to core register transfer instructions.

Intrinsics Equivalent Instruction

void __arm_mcr(coproc, opc1, uint32_t value, CRn, CRm,
opc2)

MCR coproc, #opc1, Rt, CRn, CRm, #opc2

void __arm_mcr2(coproc, opc1, uint32_t value, CRn, CRm,
opc2)

MCR2 coproc, #opc1, Rt, CRn, CRm, #opc2

uint32_t __arm_mrc(coproc, opc1, CRn, CRm, opc2) MRC coproc, #opc1, Rt, CRn, CRm, #opc2

uint32_t __arm_mrc2(coproc, opc1, CRn, CRm, opc2) MRC2 coproc, #opc1, Rt, CRn, CRm, #opc2

void __arm_mcrr(coproc, opc1, uint64_t value, CRm) MCRR coproc, #opc1, Rt, Rt2, CRm

void __arm_mcrr2(coproc, opc1, uint64_t value, CRm) MCRR2 coproc, #opc1, Rt, Rt2, CRm

uint64_t __arm_mrrc(coproc, opc1, CRm) MRRC coproc, #opc1, Rt, Rt2, CRm

uint64_t __arm_mrrc2(coproc, opc1, CRm) MRRC2 coproc, #opc1, Rt, Rt2, CRm

3 The Cortex®-M33 Instruction Set
3.5 Coprocessor instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-128

Non-Confidential

3.5.3 CDP and CDP2

Coprocessor Data Processing tells a coprocessor to perform an operation.

Syntax

CDP{cond} coproc, #opc1, CRd, CRn, CRm{, #opc2}

CDP2{cond} coproc, #opc1, CRd, CRn, CRm{, #opc2}

Where:

cond is an optional condition code.

coproc is the name of the coprocessor the instruction is for. The standard name is pn, where n
is an integer whose value must be in the range 0-7.

opc1 is a 4-bit coprocessor-specific opcode.
opc2 is an optional 3-bit coprocessor-specific opcode.
CRd, CRn, CRm are coprocessor registers.

Operation

The operation of these instructions depends on the coprocessor. See the coprocessor documentation for
details.

3 The Cortex®-M33 Instruction Set
3.5 Coprocessor instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-129

Non-Confidential

3.5.4 MCR and MCR2

Move to Coprocessor from Register. Depending on the coprocessor, you might be able to specify various
additional operations.

Syntax

MCR{cond} coproc, #opc1, Rt, CRn, CRm{, #opc2}

MCR2{cond} coproc, #opc1, Rt, CRn, CRm{, #opc2}

where:

cond is an optional condition code.

coproc is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer whose value must be In the range 0-7.

opc1 is a 3-bit coprocessor-specific opcode.
opc2 is an optional 3-bit coprocessor-specific opcode.
Rt is an Arm source register. Rt must not be PC.
CRn, CRm are coprocessor registers.

Operation

The operation of these instructions depends on the coprocessor. See the coprocessor documentation for
details.

3 The Cortex®-M33 Instruction Set
3.5 Coprocessor instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-130

Non-Confidential

3.5.5 MCRR and MCRR2

Move to Coprocessor from two Registers. Depending on the coprocessor, you might be able to specify
various additional operations.

Syntax

MCRR{cond} coproc, #opc1, Rt, Rt2, CRm

MCRR2{cond} coproc, #opc1, Rt, Rt2, CRm

Where:

cond is an optional condition code.

coproc is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer whose value must be In the range 0-7.

opc1 is a 3-bit coprocessor-specific opcode.
Rt, Rt2 are Arm source registers. Rt and Rt2 must not be PC.
CRm are coprocessor registers.

Operation

The operation of these instructions depends on the coprocessor. See the coprocessor documentation for
details.

3 The Cortex®-M33 Instruction Set
3.5 Coprocessor instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-131

Non-Confidential

3.5.6 MRC and MRC2

Move to Register from Coprocessor. Depending on the coprocessor, you might be able to specify various
additional operations.

Syntax

MRC{cond} coproc, #opc1, Rt, CRn, CRm{, #opc2}

MRC2{cond} coproc, #opc1, Rt, CRn, CRm{, #opc2}

where:

cond is an optional condition code.

coproc is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer whose value must be in the range 0-7.

opc1 is a 3-bit coprocessor-specific opcode.
opc2 is an optional 3-bit coprocessor-specific opcode.
Rt is the Arm destination register. Rt must not be PC.

Rt can be APSR_nzcv. This means that the coprocessor executes an instruction that changes
the value of the condition flags in the APSR.

CRn, CRm are coprocessor registers.

Operation

The operation of these instructions depends on the coprocessor. See the coprocessor documentation for
details.

3 The Cortex®-M33 Instruction Set
3.5 Coprocessor instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-132

Non-Confidential

3.5.7 MRRC and MRRC2

Move to two Registers from Coprocessor. Depending on the coprocessor, you might be able to specify
various additional operations.

Syntax

MRRC{cond} coproc, #opc1, Rt, Rt2, CRm

MRRC2{cond} coproc, #opc1, Rt, Rt2, CRm

Where:

cond is an optional condition code.

coproc is the name of the coprocessor the instruction is for. The standard name is pn, where n is an
integer whose value must be in the range 0-7.

opc1 is a 3-bit coprocessor-specific opcode.
Rt, Rt2 are Arm destination registers. Rt and Rt2 must not be PC.

CRm is a coprocessor register.

Operation

The operation of these instructions depends on the coprocessor. See the coprocessor documentation for
details.

3 The Cortex®-M33 Instruction Set
3.5 Coprocessor instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-133

Non-Confidential

3.6 Multiply and divide instructions
Reference material for the Cortex‑M33 processor multiply and divide instruction set.

3.6.1 List of multiply and divide instructions

An alphabetically ordered list of the multiply and divide instructions, with a brief description and link to
the syntax definition, operations, restrictions, and example usage for each instruction.

Table 3-8 Multiply and divide instructions

Mnemonic Brief description See

MLA Multiply with Accumulate, 32-bit result 3.6.2 MUL, MLA, and MLS on page 3-136

MLS Multiply and Subtract, 32-bit result 3.6.2 MUL, MLA, and MLS on page 3-136

MUL Multiply, 32-bit result 3.6.2 MUL, MLA, and MLS on page 3-136

SDIV Signed Divide 3.6.3 SDIV and UDIV on page 3-137

SMLA[B,T] Signed Multiply Accumulate (halfwords) 3.6.4 SMLAWB, SMLAWT, SMLABB, SMLABT, SMLATB, and
SMLATT on page 3-138

SMLAD, SMLADX Signed Multiply Accumulate Dual 3.6.5 SMLAD and SMLADX on page 3-140

SMLAL Signed Multiply with Accumulate (32 × 32 +
64), 64-bit result

3.6.12 UMULL, UMAAL, UMLAL, SMULL, and SMLAL
on page 3-153

SMLAL[B,T] Signed Multiply Accumulate Long
(halfwords)

3.6.6 SMLALD, SMLALDX, SMLALBB, SMLALBT, SMLALTB,
and SMLALTT on page 3-142

SMLALD, SMLALDX Signed Multiply Accumulate Long Dual 3.6.6 SMLALD, SMLALDX, SMLALBB, SMLALBT, SMLALTB,
and SMLALTT on page 3-142

SMLAW[B|T] Signed Multiply Accumulate (word by
halfword)

3.6.4 SMLAWB, SMLAWT, SMLABB, SMLABT, SMLATB, and
SMLATT on page 3-138

SMLSD Signed Multiply Subtract Dual 3.6.7 SMLSD and SMLSLD on page 3-144

SMLSLD Signed Multiply Subtract Long Dual 3.6.7 SMLSD and SMLSLD on page 3-144

SMMLA Signed Most Significant Word Multiply
Accumulate

3.6.8 SMMLA and SMMLS on page 3-146

SMMLS, SMMLSR Signed Most Significant Word Multiply
Subtract

3.6.8 SMMLA and SMMLS on page 3-146

SMMUL, SMMULR Signed Most Significant Word Multiply 3.6.9 SMMUL on page 3-148

SMUAD, SMUADX Signed Dual Multiply Add 3.6.10 SMUAD and SMUSD on page 3-149

SMUL[B,T] Signed Multiply (word by halfword) 3.6.11 SMUL and SMULW on page 3-151

SMULL Signed Multiply (32 × 32), 64-bit result 3.6.12 UMULL, UMAAL, UMLAL, SMULL, and SMLAL
on page 3-153

SMULWB, SMULWT Signed Multiply (word by halfword) 3.6.11 SMUL and SMULW on page 3-151

SMUSDX ,SMUSD Signed Dual Multiply Subtract 3.6.10 SMUAD and SMUSD on page 3-149

UDIV Unsigned Divide 3.6.3 SDIV and UDIV on page 3-137

UMAAL Unsigned Multiply Accumulate Accumulate
Long (32 × 32 + 32 + 32), 64-bit result

3.6.12 UMULL, UMAAL, UMLAL, SMULL, and SMLAL
on page 3-153

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-134

Non-Confidential

Table 3-8 Multiply and divide instructions (continued)

Mnemonic Brief description See

UMLAL Unsigned Multiply with Accumulate (32 × 32
+ 64), 64-bit result

3.6.12 UMULL, UMAAL, UMLAL, SMULL, and SMLAL
on page 3-153

UMULL Unsigned Multiply (32 × 32), 64-bit result 3.6.12 UMULL, UMAAL, UMLAL, SMULL, and SMLAL
on page 3-153

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-135

Non-Confidential

3.6.2 MUL, MLA, and MLS

Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32‑bit operands, and producing a
32-bit result.

Syntax

MUL{S}{cond} {Rd,} Rn, Rm ; Multiply

MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate

MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract

Where:

cond Is an optional condition code.
S Is an optional suffix. If S is specified, the condition code

flags are updated on the result of the operation.
Rd Is the destination register. If Rd is omitted, the destination

register is Rn.
Rn, Rm Are registers holding the values to be multiplied.
Ra Is a register holding the value to be added or subtracted

from.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the
result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least
significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra,
and places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.

Restrictions

In these instructions, do not use SP and do not use PC.

If you use the S suffix with the MUL instruction:
• Rd, Rn, and Rm must all be in the range R0-R7.
• Rd must be the same as Rm.
• You must not use the cond suffix.

Condition flags
The MLA instruction and MULS instructions:
• Only MULS instruction updates the N and Z flags according to the result.
• No other MUL, MLA, or MLS instruction affects the condition flags.

Example 3-25 Examples

MUL R10, R2, R5 ; Multiply, R10 = R2 × R5
MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 × R1) + R5
MULS R0, R2, R2 ; Multiply with flag update, R0 = R2 × R2
MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 × R2
MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 × R6)

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-136

Non-Confidential

3.6.3 SDIV and UDIV

Signed Divide and Unsigned Divide.

Syntax

SDIV{cond} {Rd,} Rn, Rm

UDIV{cond} {Rd,} Rn, Rm

Where:

cond Is an optional condition code.
Rd Is the destination register. If Rd is omitted, the destination

register is Rn.
Rn Is the register holding the value to be divided.
Rm Is a register holding the divisor.

Operation

The SDIV instruction performs a signed integer division of the value in Rn by the value in Rm.

The UDIV instruction performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards
zero.

For the Cortex‑M33 processor, the integer divide operation latency is in the range of 2-11 cycles.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Example 3-26 Examples

SDIV R0, R2, R4 ; Signed divide, R0 = R2/R4
UDIV R8, R8, R1 ; Unsigned divide, R8 = R8/R1

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-137

Non-Confidential

3.6.4 SMLAWB, SMLAWT, SMLABB, SMLABT, SMLATB, and SMLATT

Signed Multiply Accumulate (halfwords).

Syntax

op{cond} Rd, Rn, Rm, Ra

Where:

op Is one of:

SMLAWB Signed Multiply Accumulate (word by
halfword)

The bottom halfword, bits [15:0], of Rm
is used.

SMLAWT Signed Multiply Accumulate (word by
halfword)

The top halfword, bits [31:16] of Rm is
used.

SMLABB, SMLABT Signed Multiply Accumulate Long
(halfwords)

The bottom halfword, bits [15:0], of Rm
is used.

SMLATB, SMLATT Signed Multiply Accumulate Long
(halfwords)

The top halfword, bits [31:16] of Rm is
used.

cond Is an optional condition code.

Rd Is the destination register.
Rn, Rm Are registers holding the values to be multiplied.
Ra Is a register holding the value to be added or subtracted

from.

Operation

The SMLABB, SMLABT, SMLATB, SMLATT instructions:

• Multiply the specified signed halfword, top or bottom, values from Rn and Rm.
• Add the value in Ra to the resulting 32-bit product.
• Write the result of the multiplication and addition in Rd.

The non-specified halfwords of the source registers are ignored.

The SMLAWB and SMLAWT instructions:
• Multiply the 32-bit signed values in Rn with:

— The top signed halfword of Rm, T instruction suffix.
— The bottom signed halfword of Rm, B instruction suffix.

• Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product
• Write the result of the multiplication and addition in Rd.

The bottom 16 bits of the 48-bit product are ignored.

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-138

Non-Confidential

If overflow occurs during the addition of the accumulate value, the SMLAWB, SMLAWT, instruction sets the
Q flag in the APSR. No overflow can occur during the multiplication.

Restrictions

In these instructions, do not use SP and do not use PC.

Condition flags

If an overflow is detected, the Q flag is set.

Example 3-27 Examples

SMLABB R5, R6, R4, R1 ; Multiplies bottom halfwords of R6 and R4, adds
 ; R1 and writes to R5.
SMLATB R5, R6, R4, R1 ; Multiplies top halfword of R6 with bottom halfword
 ; of R4, adds R1 and writes to R5.
SMLATT R5, R6, R4, R1 ; Multiplies top halfwords of R6 and R4, adds
 ; R1 and writes the sum to R5.
SMLABT R5, R6, R4, R1 ; Multiplies bottom halfword of R6 with top halfword
 ; of R4, adds R1 and writes to R5.
SMLABT R4, R3, R2 ; Multiplies bottom halfword of R4 with top halfword of
 ; R3, adds R2 and writes to R4.
SMLAWB R10, R2, R5, R3 ; Multiplies R2 with bottom halfword of R5, adds
 ; R3 to the result and writes top 32-bits to R10.
SMLAWT R10, R2, R1, R5 ; Multiplies R2 with top halfword of R1, adds R5
 ; and writes top 32-bits to R10.

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-139

Non-Confidential

3.6.5 SMLAD and SMLADX

Signed Multiply Accumulate Long Dual, Signed Multiply Accumulate Long Dual exchange.

Syntax

op{X}{cond} Rd, Rn, Rm, Ra

Where:

op Is one of:

SMLAD Signed Multiply Accumulate Long
Dual.

SMLADX Signed Multiply Accumulate Long Dual
exchange.

X specifies which halfword of the source
register Rn is used as the multiply
operand.

If X is omitted, the multiplications are
bottom × bottom and top × top.

If X is present, the multiplications are
bottom × top and top × bottom.

cond Is an optional condition code.

Rd Is the destination register.
Rn Is the first operand register holding the values to be

multiplied.
Rm Is the second operand register.
Ra Is the accumulate value.

Operation

The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit values.

The SMLAD instruction:

1. Multiplies the top signed halfword value in Rn with the top signed halfword of Rm and the bottom
signed halfword value in Rn with the bottom signed halfword of Rm.

2. Adds both multiplication results to the signed 32-bit value in Ra.
3. Writes the 32-bit signed result of the multiplication and addition to Rd.
The SMLADX instruction:
1. Multiplies the top signed halfword value in Rn with the bottom signed halfword of Rm and the bottom

signed halfword value in Rn with the top signed halfword of Rm.
2. Adds both multiplication results to the signed 32-bit value in Ra.
3. Writes the 32-bit signed result of the multiplication and addition to Rd.

Restrictions

Do not use SP and do not use PC.

Condition flags

Sets the Q flag if the accumulate operation overflows.

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-140

Non-Confidential

Example 3-28 Examples

SMLAD R10, R2, R1, R5 ; Multiplies two halfword values in R2 with
 ; corresponding halfwords in R1, adds R5 and writes to
 ; R10.
SMLALDX R0, R2, R4, R6 ; Multiplies top halfword of R2 with bottom halfword
 ; of R4, multiplies bottom halfword of R2 with top
 ; halfword of R4, adds R6 and writes to R0.

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-141

Non-Confidential

3.6.6 SMLALD, SMLALDX, SMLALBB, SMLALBT, SMLALTB, and SMLALTT

Signed Multiply Accumulate Long Dual and Signed Multiply Accumulate Long (halfwords).

Syntax

op{cond} RdLo, RdHi, Rn, Rm

Where:

op Is one of:

SMLALBB,
SMLALBT

Signed Multiply Accumulate Long
(halfwords, B and T).

B and T specify which halfword of the
source registers Rn and Rm are used as
the first and second multiply operand:

The bottom halfword, bits [15:0], of Rn
is used.

SMLALBB: the bottom halfword, bits
[15:0], of Rm is used. SMLALBT: the top
halfword, bits [31:16], of Rm is used.

SMLALTB,
SMLALTT

Signed Multiply Accumulate Long
(halfwords, B and T).

The top halfword, bits [31:16], of Rn is
used.

SMLALTB: the bottom halfword, bits
[15:0], of Rm is used. SMLALTT: the top
halfword, bits [31:16], of Rm is used.

SMLALD Signed Multiply Accumulate Long
Dual.

The multiplications are bottom × bottom
and top × top.

SMLALDX Signed Multiply Accumulate Long Dual
reversed.

The multiplications are bottom × top
and top × bottom.

cond Is an optional condition code.

RdHi, RdLo Are the destination registers. RdLo is the lower 32 bits and
RdHi is the upper 32 bits of the 64-bit integer. The
accumulating value for the lower and upper 32 bits are held
in the RdLo and RdHi registers respectively.

Rn, Rm Are registers holding the first and second operands.

Operation
• Multiplies the two’s complement signed word values from Rn and Rm.
• Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.
• Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-142

Non-Confidential

• Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.
• Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.
• Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The non-specified halfwords of the source registers are ignored.

The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s
complement signed 16-bit integers. These instructions:
• SMLALD multiplies the top signed halfword value of Rn with the top signed halfword of Rm and the

bottom signed halfword values of Rn with the bottom signed halfword of Rm.
• SMLALDX multiplies the top signed halfword value of Rn with the bottom signed halfword of Rm and

the bottom signed halfword values of Rn with the top signed halfword of Rm.
• Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the resulting

64-bit product.
• Write the 64-bit product in RdLo and RdHi.

Restrictions
In these instructions:
• Do not use SP and do not use PC.
• RdHi and RdLo must be different registers.

Condition flags

These instructions do not affect the condition code flags.

Example 3-29 Examples

SMLALBT R2, R1, R6, R7 ; Multiplies bottom halfword of R6 with top
 ; halfword of R7, sign extends to 32-bit, adds
 ; R1:R2 and writes to R1:R2.
SMLALTB R2, R1, R6, R7 ; Multiplies top halfword of R6 with bottom
 ; halfword of R7,sign extends to 32-bit, adds R1:R2
 ; and writes to R1:R2.
SMLALD R6, R8, R5, R1 ; Multiplies top halfwords in R5 and R1 and bottom
 ; halfwords of R5 and R1, adds R8:R6 and writes to
 ; R8:R6.
SMLALDX R6, R8, R5, R1 ; Multiplies top halfword in R5 with bottom
 ; halfword of R1, and bottom halfword of R5 with
 ; top halfword of R1, adds R8:R6 and writes to
 ; R8:R6.

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-143

Non-Confidential

3.6.7 SMLSD and SMLSLD

Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual.

Syntax

op{X}{cond} Rd, Rn, Rm, Ra ; SMLSD

op{X}{cond} RdLo, RdHi, Rn, Rm ; SMLSLD

Where:

op Is one of:

SMLSD Signed Multiply Subtract Dual.
SMLSDX Signed Multiply Subtract Dual reversed.
SMLSLD Signed Multiply Subtract Long Dual.
SMLSLDX Signed Multiply Subtract Long Dual

reversed.

If X is present, the multiplications are bottom × top and top ×
bottom. If the X is omitted, the multiplications are bottom ×
bottom and top × top.

cond Is an optional condition code.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.
Ra Is the register holding the accumulate value.
RdLo Supplies the lower 32 bits of the accumulate value, and is the

destination register for the lower 32 bits of the result.
RdHi Supplies the upper 32 bits of the accumulate value, and is the

destination register for the upper 32 bits of the result.

Operation

The SMLSD instruction interprets the values from the first and second operands as four signed halfwords.
This instruction:

• Optionally rotates the halfwords of the second operand.
• Performs two signed 16 × 16-bit halfword multiplications.
• Subtracts the result of the upper halfword multiplication from the result of the lower halfword

multiplication.
• Adds the signed accumulate value to the result of the subtraction.
• Writes the result of the addition to the destination register.

The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords. This instruction:
• Optionally rotates the halfwords of the second operand.
• Performs two signed 16 × 16-bit halfword multiplications.
• Subtracts the result of the upper halfword multiplication from the result of the lower halfword

multiplication.
• Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.
• Writes the 64-bit result of the addition to the RdHi and RdLo.

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-144

Non-Confidential

Restrictions
In these instructions:
• Do not use SP and do not use PC.

Condition flags

The SMLSD{X} instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur
during the multiplications or subtraction.

For the T32 instruction set, these instructions do not affect the condition code flags.

Example 3-30 Examples

SMLSD R0, R4, R5, R6 ; Multiplies bottom halfword of R4 with bottom
 ; halfword of R5, multiplies top halfword of R4
 ; with top halfword of R5, subtracts second from
 ; first, adds R6, writes to R0.
SMLSDX R1, R3, R2, R0 ; Multiplies bottom halfword of R3 with top
 ; halfword of R2, multiplies top halfword of R3
 ; with bottom halfword of R2, subtracts second from
 ; first, adds R0, writes to R1.
SMLSLD R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with bottom
 ; halfword of R2, multiplies top halfword of R6
 ; with top halfword of R2, subtracts second from
 ; first, adds R6:R3, writes to R6:R3.
SMLSLDX R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with top
 ; halfword of R2, multiplies top halfword of R6
 ; with bottom halfword of R2, subtracts second from
 ; first, adds R6:R3, writes to R6:R3.

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-145

Non-Confidential

3.6.8 SMMLA and SMMLS

Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word Multiply
Subtract.

Syntax

op{R}{cond} Rd, Rn, Rm, Ra

Where:

op Is one of:

SMMLA Signed Most Significant Word Multiply
Accumulate.

SMMLS Signed Most Significant Word Multiply
Subtract.

R If R is present, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to
the product before the top halfword is extracted.

cond Is an optional condition code.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second multiply operands.
Ra Is the register holding the accumulate value.

Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLA instruction:

• Multiplies the values in Rn and Rm.
• Optionally rounds the result by adding 0x80000000.
• Extracts the most significant 32 bits of the result.
• Adds the value of Ra to the signed extracted value.
• Writes the result of the addition in Rd.

The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLS instruction:
• Multiplies the values in Rn and Rm.
• Optionally rounds the result by adding 0x80000000.
• Extracts the most significant 32 bits of the result.
• Subtracts the extracted value of the result from the value in Ra.
• Writes the result of the subtraction in Rd.

Restrictions
In these instructions:
• Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

Example 3-31 Examples

SMMLA R0, R4, R5, R6 ; Multiplies R4 and R5, extracts top 32 bits, adds
 ; R6, truncates and writes to R0.
SMMLAR R6, R2, R1, R4 ; Multiplies R2 and R1, extracts top 32 bits, adds

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-146

Non-Confidential

 ; R4, rounds and writes to R6.
SMMLSR R3, R6, R2, R7 ; Multiplies R6 and R2, extracts top 32 bits,
 ; subtracts R7, rounds and writes to R3.
SMMLS R4, R5, R3, R8 ; Multiplies R5 and R3, extracts top 32 bits,
 ; subtracts R8, truncates and writes to R4.

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-147

Non-Confidential

3.6.9 SMMUL

Signed Most Significant Word Multiply.

Syntax

op{R}{cond} Rd, Rn, Rm

Where:

op Is one of:

SMMUL Signed Most Significant Word Multiply.

R If R is present, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to
the product before the top halfword is extracted.

cond Is an optional condition code.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.

Operation
The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit signed integers.
The SMMUL instruction:
• Multiplies the values from Rn and Rm.
• Optionally rounds the result, otherwise truncates the result.
• Writes the most significant signed 32 bits of the result in Rd.

Restrictions
In this instruction:
• Do not use SP and do not use PC.

Condition flags

This instruction does not affect the condition code flags.

Example 3-32 Examples

SMMUL R0, R4, R5 ; Multiplies R4 and R5, truncates top 32 bits
 ; and writes to R0.
SMMULR R6, R2 ; Multiplies R6 and R2, rounds the top 32 bits
 ; and writes to R6.

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-148

Non-Confidential

3.6.10 SMUAD and SMUSD

Signed Dual Multiply Add and Signed Dual Multiply Subtract.

Syntax

op{X}{cond} Rd, Rn, Rm

Where:

op Is one of:

SMUAD Signed Dual Multiply Add.
SMUADX Signed Dual Multiply Add reversed.
SMUSD Signed Dual Multiply Subtract.
SMUSDX Signed Dual Multiply Subtract reversed.

If X is present, the multiplications are bottom × top and top ×
bottom. If the X is omitted, the multiplications are bottom ×
bottom and top × top.

cond Is an optional condition code.
Rd Is the destination register.
Rn, Rm Are registers holding the first and the second operands.

Operation

The SMUAD instruction interprets the values from the first and second operands as two signed halfwords in
each operand. This instruction:

• Optionally rotates the halfwords of the second operand.
• Performs two signed 16 × 16-bit multiplications.
• Adds the two multiplication results together.
• Writes the result of the addition to the destination register.

The SMUSD instruction interprets the values from the first and second operands as two’s complement
signed integers. This instruction:
• Optionally rotates the halfwords of the second operand.
• Performs two signed 16 × 16-bit multiplications.
• Subtracts the result of the top halfword multiplication from the result of the bottom halfword

multiplication.
• Writes the result of the subtraction to the destination register.

Restrictions
In these instructions:
• Do not use SP and do not use PC.

Condition flags

SMUAD, SMUADX set the Q flag if the addition overflows. The multiplications cannot overflow.

Example 3-33 Examples

SMUAD R0, R4, R5 ; Multiplies bottom halfword of R4 with the bottom
 ; halfword of R5, adds multiplication of top halfword
 ; of R4 with top halfword of R5, writes to R0.
SMUADX R3, R7, R4 ; Multiplies bottom halfword of R7 with top halfword
 ; of R4, adds multiplication of top halfword of R7
 ; with bottom halfword of R4, writes to R3.
SMUSD R3, R6, R2 ; Multiplies bottom halfword of R4 with bottom halfword
 ; of R6, subtracts multiplication of top halfword of R6
 ; with top halfword of R3, writes to R3.

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-149

Non-Confidential

SMUSDX R4, R5, R3 ; Multiplies bottom halfword of R5 with top halfword of
 ; R3, subtracts multiplication of top halfword of R5
 ; with bottom halfword of R3, writes to R4.

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-150

Non-Confidential

3.6.11 SMUL and SMULW

Signed Multiply (halfwords) and Signed Multiply (word by halfword).

Syntax

op{XY}{cond} Rd,Rn, Rm ; SMUL

op{Y}{cond} Rd. Rn, Rm ; SMULW

For SMUL{XY} only:

op Is one of SMULBB, SMULBT, SMULTB, SMULTT:
SMUL{XY} Signed Multiply (halfwords)

X and Y specify which halfword of the source registers Rn
and Rm is used as the first and second multiply operand. If X
is B, then the bottom halfword, bits [15:0] of Rn is used. If X
is T, then the top halfword, bits [31:16] of Rn is used. If Y is
B, then the bottom halfword, bits [15:0], of Rm is used. If Y is
T, then the top halfword, bits [31:16], of Rm is used.
SMULW{Y} Signed Multiply (word by halfword)
Y specifies which halfword of the source register Rm is used
as the second multiply operand. If Y is B, then the bottom
halfword (bits [15:0]) of Rm is used. If Y is T, then the top
halfword (bits [31:16]) of Rm is used.

cond Is an optional condition code.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.

Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four signed
16-bit integers.

These instructions:

• Multiply the specified signed halfword, Top or Bottom, values from Rn and Rm.
• Write the 32-bit result of the multiplication in Rd.

The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and Rm as
two halfword 16-bit signed integers. These instructions:
• Multiply the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second

operand.
• Write the signed most significant 32 bits of the 48-bit result in the destination register.

Restrictions
In these instructions:
• Do not use SP and do not use PC.
• RdHi and RdLo must be different registers.

Example 3-34 Examples

SMULBT R0, R4, R5 ; Multiplies the bottom halfword of R4 with the
 ; top halfword of R5, multiplies results and
 ; writes to R0.
SMULBB R0, R4, R5 ; Multiplies the bottom halfword of R4 with the
 ; bottom halfword of R5, multiplies results and
 ; writes to R0.
SMULTT R0, R4, R5 ; Multiplies the top halfword of R4 with the top

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-151

Non-Confidential

 ; halfword of R5, multiplies results and writes
 ; to R0.
SMULTB R0, R4, R5 ; Multiplies the top halfword of R4 with the
 ; bottom halfword of R5, multiplies results and
 ; and writes to R0.
SMULWT R4, R5, R3 ; Multiplies R5 with the top halfword of R3,
 ; extracts top 32 bits and writes to R4.
SMULWB R4, R5, R3 ; Multiplies R5 with the bottom halfword of R3,
 ; extracts top 32 bits and writes to R4.

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-152

Non-Confidential

3.6.12 UMULL, UMAAL, UMLAL, SMULL, and SMLAL

Signed and Unsigned Multiply Long, with optional Accumulate, using 32‑bit operands and producing a
64‑bit result.

Syntax

op{cond} RdLo, RdHi, Rn, Rm

Where:

op Is one of:

UMULL Unsigned Multiply Long.
UMLAL Unsigned Multiply, with Accumulate

Long.
UMAAL Unsigned Long Multiply with

Accumulate Accumulate.
SMULL Signed Multiply Long.
SMLAL Signed Multiply, with Accumulate

Long.

cond Is an optional condition code.

RdHi, RdLo Are the destination registers. For UMLAL and SMLAL they also
hold the accumulating value of the lower and upper words
respectively.

Rn, Rm Are registers holding the operands.

Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these
integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of
the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these
integers, adds the 64‑bit result to the 64‑bit unsigned integer contained in RdHi and RdLo, and writes the
result back to RdHi and RdLo.

The UMAAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these
integers, adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication, adds the
unsigned 32-bit integer in RdLo to the 64-bit result of the addition, writes the top 32-bits of the result to
RdHi and writes the lower 32-bits of the result to RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It
multiplies these integers and places the least significant 32 bits of the result in RdLo, and the most
significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It
multiplies these integers, adds the 64‑bit result to the 64‑bit signed integer contained in RdHi and RdLo,
and writes the result back to RdHi and RdLo.

Restrictions
In these instructions:
• Do not use SP and do not use PC.
• RdHi and RdLo must be different registers.

Condition flags

These instructions do not affect the condition code flags.

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-153

Non-Confidential

Example 3-35 Examples

UMULL R0, R4, R5, R6 ; Unsigned (R4,R0) = R5 × R6SMLAL R4, R5, R3, R8 ;
Signed (R5,R4) = (R5,R4) + R3 × R8

3 The Cortex®-M33 Instruction Set
3.6 Multiply and divide instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-154

Non-Confidential

3.7 Saturating instructions
Reference material for the Cortex‑M33 processor saturating instruction set.

3.7.1 List of saturating instructions

An alphabetically ordered list of the saturating instructions, with a brief description and link to the syntax
definition, operations, restrictions, and example usage for each instruction.

Table 3-9 Saturating instructions

Mnemonic Brief description See

QADD Saturating Add 3.7.4 QADD and QSUB on page 3-158

QASX Saturating Add and Subtract with Exchange 3.7.5 QASX and QSAX on page 3-160

QDADD Saturating Double and Add 3.7.6 QDADD and QDSUB on page 3-161

QDSUB Saturating Double and Subtract 3.7.6 QDADD and QDSUB on page 3-161

QSAX Saturating Subtract and Add with Exchange 3.7.5 QASX and QSAX on page 3-160

QSUB Saturating Subtract 3.7.4 QADD and QSUB on page 3-158

QSUB16 Saturating Subtract 16 3.7.4 QADD and QSUB on page 3-158

SSAT Signed Saturate 3.7.2 SSAT and USAT on page 3-156

SSAT16 Signed Saturate Halfword 3.7.3 SSAT16 and USAT16 on page 3-157

UQADD16 Unsigned Saturating Add 16 3.7.8 UQADD and UQSUB on page 3-163

UQADD8 Unsigned Saturating Add 8 3.7.8 UQADD and UQSUB on page 3-163

UQASX Unsigned Saturating Add and Subtract with Exchange 3.7.7 UQASX and UQSAX on page 3-162

UQSAX Unsigned Saturating Subtract and Add with Exchange 3.7.7 UQASX and UQSAX on page 3-162

UQSUB16 Unsigned Saturating Subtract 16 3.7.8 UQADD and UQSUB on page 3-163

UQSUB8 Unsigned Saturating Subtract 8 3.7.8 UQADD and UQSUB on page 3-163

USAT Unsigned Saturate 3.7.2 SSAT and USAT on page 3-156

USAT16 Unsigned Saturate Halfword 3.7.3 SSAT16 and USAT16 on page 3-157

For signed n-bit saturation, this means that:

• If the value to be saturated is less than −2n−1, the result returned is −2n-1
• If the value to be saturated is greater than 2n−1−1, the result returned is 2n-1−1
• Otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation, this means that:
• If the value to be saturated is less than 0, the result returned is 0
• If the value to be saturated is greater than 2n−1, the result returned is 2n−1
• Otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If saturation
occurs, the instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To
clear the Q flag to 0, you must use the MSR instruction.

To read the state of the Q flag, use the MRS instruction.

3 The Cortex®-M33 Instruction Set
3.7 Saturating instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-155

Non-Confidential

3.7.2 SSAT and USAT

Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

Syntax

op{cond} Rd, #n, Rm {, shift #s}

Where:

op Is one of:

SSAT Saturates a signed value to a signed
range.

USAT Saturates a signed value to an unsigned
range.

cond Is an optional condition code.

Rd Is the destination register.
n Specifies the bit position to saturate to:

• n ranges from 1 to 32 for SSAT.
• n ranges from 0 to 31 for USAT.

Rm Is the register containing the value to saturate.

shift #s Is an optional shift applied to Rm before saturating. It must be
one of the following:

ASR #s where s is in the range 1-31.
LSL #s where s is in the range 0-31.

Operation

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range −2n–1 ≤ x ≤ 2n–1−1.

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 ≤ x ≤ 2n−1.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Example 3-36 Examples

SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
 ; saturate it as a signed 16-bit value and
 ; write it back to R7.
USATNE R0, #7, R5 ; Conditionally saturate value in R5 as an
 ; unsigned 7 bit value and write it to R0.

3 The Cortex®-M33 Instruction Set
3.7 Saturating instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-156

Non-Confidential

3.7.3 SSAT16 and USAT16

Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax

op{cond} Rd, #n, Rm

Where:

op Is one of:

SSAT16 Saturates a signed halfword value to a
signed range.

USAT16 Saturates a signed halfword value to an
unsigned range.

cond Is an optional condition code.

Rd Is the destination register.
n Specifies the bit position to saturate to:

• n ranges from 1 to 16 for SSAT.
• n ranges from 0 to 15 for USAT.

Rm Is the register containing the values to saturate.

Operation

The SSAT16 instruction:

1. Saturates two signed 16-bit halfword values of the register with the value to saturate from selected by
the bit position in n.

2. Writes the results as two signed 16-bit halfwords to the destination register.
The USAT16 instruction:
1. Saturates two unsigned 16-bit halfword values of the register with the value to saturate from selected

by the bit position in n.
2. Writes the results as two unsigned halfwords in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Example 3-37 Examples

SSAT16 R7, #9, R2 ; Saturates the top and bottom highwords of R2
 ; as 9-bit values, writes to corresponding halfword
 ; of R7.

USAT16NE R0, #13, R5 ; Conditionally saturates the top and bottom
 ; halfwords of R5 as 13-bit values, writes to
 ; corresponding halfword of R0.

3 The Cortex®-M33 Instruction Set
3.7 Saturating instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-157

Non-Confidential

3.7.4 QADD and QSUB

Saturating Add and Saturating Subtract, signed.

Syntax

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

QADD Saturating 32-bit add.
QADD8 Saturating four 8-bit integer additions.
QADD16 Saturating two 16-bit integer additions.
QSUB Saturating 32-bit subtraction.
QSUB8 Saturating four 8-bit integer subtraction.
QSUB16 Saturating two 16-bit integer

subtraction.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn, Rm Are registers holding the first and second operands.

Operation

These instructions add or subtract two, four or eight values from the first and second operands and then
writes a signed saturated value in the destination register.

The QADD and QSUB instructions apply the specified add or subtract, and then saturate the result to the
signed range −2n–1 ≤ x ≤ 2n–1−1, where x is given by the number of bits applied in the instruction, 32,
16 or 8.

If the returned result is different from the value to be saturated, it is called saturation. If saturation
occurs, the QADD and QSUB instructions set the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag
unchanged. The 8-bit and 16-bit QADD and QSUB instructions always leave the Q flag unchanged.

To clear the Q flag to 0, you must use the MSR instruction.

To read the state of the Q flag, use the MRS instruction.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

If saturation occurs, the QADD and QSUB instructions set the Q flag to 1.

Example 3-38 Examples

QADD16 R7, R4, R2 ; Adds halfwords of R4 with corresponding halfword of
 ; R2, saturates to 16 bits and writes to corresponding
 ; halfword of R7.

QADD8 R3, R1, R6 ; Adds bytes of R1 to the corresponding bytes of R6,
 ; saturates to 8 bits and writes to corresponding byte of
 ; R3.

QSUB16 R4, R2, R3 ; Subtracts halfwords of R3 from corresponding halfword

3 The Cortex®-M33 Instruction Set
3.7 Saturating instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-158

Non-Confidential

 ; of R2, saturates to 16 bits, writes to corresponding
 ; halfword of R4.

QSUB8 R4, R2, R5 ; Subtracts bytes of R5 from the corresponding byte in
 ; R2, saturates to 8 bits, writes to corresponding byte of
 ; R4.

3 The Cortex®-M33 Instruction Set
3.7 Saturating instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-159

Non-Confidential

3.7.5 QASX and QSAX

Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, signed.

Syntax

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

QASX Add and Subtract with Exchange and
Saturate.

QSAX Subtract and Add with Exchange and
Saturate.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn, Rm Are registers holding the first and second operands.

Operation

The QASX instruction:

1. Adds the top halfword of the source operand with the bottom halfword of the second operand.
2. Subtracts the top halfword of the second operand from the bottom highword of the first operand.
3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range –215 ≤ x ≤ 215 –

1, where x equals 16, to the bottom halfword of the destination register.
4. Saturates the results of the sum and writes a 16-bit signed integer in the range –215 ≤ x ≤ 215 – 1,

where x equals 16, to the top halfword of the destination register.
The QSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the source operand with the top halfword of the second operand.
3. Saturates the results of the sum and writes a 16-bit signed integer in the range –215 ≤ x ≤ 215 – 1,

where x equals 16, to the bottom halfword of the destination register.
4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range –215 ≤ x ≤ 215 –

1, where x equals 16, to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

Example 3-39 Examples

QASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2,
 ; saturates to 16 bits, writes to top halfword of R7
 ; Subtracts top highword of R2 from bottom halfword of
 ; R4, saturates to 16 bits and writes to bottom halfword
 ; of R7

QSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of
 ; R3, saturates to 16 bits, writes to top halfword of R0
 ; Adds bottom halfword of R3 to top halfword of R5,
 ; saturates to 16 bits, writes to bottom halfword of R0.

3 The Cortex®-M33 Instruction Set
3.7 Saturating instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-160

Non-Confidential

3.7.6 QDADD and QDSUB

Saturating Double and Add and Saturating Double and Subtract, signed.

Syntax

op{cond} {Rd}, Rm, Rn

Where:

op Is one of:

QDADD Saturating Double and Add.
QDSUB Saturating Double and Subtract.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rm, Rn Are registers holding the first and second operands.

Operation

The QDADD instruction:

• Doubles the second operand value.
• Adds the result of the doubling to the signed saturated value in the first operand.
• Writes the result to the destination register.

The QDSUB instruction:
• Doubles the second operand value.
• Subtracts the doubled value from the signed saturated value in the first operand.
• Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit signed integer
range –231 ≤ x ≤ 231– 1. If saturation occurs in either operation, it sets the Q flag in the APSR.

Restrictions

Do not use SP and do not use PC.

Condition flags

If saturation occurs, these instructions set the Q flag to 1.

Example 3-40 Examples

QDADD R7, R4, R2 ; Doubles and saturates R4 to 32 bits, adds R2,
 ; saturates to 32 bits, writes to R7

QDSUB R0, R3, R5 ; Subtracts R3 doubled and saturated to 32 bits
 ; from R5, saturates to 32 bits, writes to R0.

3 The Cortex®-M33 Instruction Set
3.7 Saturating instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-161

Non-Confidential

3.7.7 UQASX and UQSAX

Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, unsigned.

Syntax

op{cond} {Rd,} Rn, Rm

Where:

type Is one of:

UQASX Add and Subtract with Exchange and
Saturate.

UQSAX Subtract and Add with Exchange and
Saturate.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn, Rm Are registers holding the first and second operands.

Operation

The UQASX instruction:

1. Adds the bottom halfword of the source operand with the top halfword of the second operand.
2. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
3. Saturates the results of the sum and writes a 16-bit unsigned integer in the range 0 ≤ x ≤ 216 – 1,

where x equals 16, to the top halfword of the destination register.
4. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 ≤ x ≤ 216 –

1, where x equals 16, to the bottom halfword of the destination register.
The UQSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the first operand with the top halfword of the second operand.
3. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 ≤ x ≤ 216 –

1, where x equals 16, to the top halfword of the destination register.
4. Saturates the results of the addition and writes a 16-bit unsigned integer in the range 0 ≤ x ≤ 216 – 1,

where x equals 16, to the bottom halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

Example 3-41 Examples

UQASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2,
 ; saturates to 16 bits, writes to top halfword of R7
 ; Subtracts top halfword of R2 from bottom halfword of
 ; R4, saturates to 16 bits, writes to bottom halfword of R7
UQSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of R3,
 ; saturates to 16 bits, writes to top halfword of R0
 ; Adds bottom halfword of R4 to top halfword of R5
 ; saturates to 16 bits, writes to bottom halfword of R0.

3 The Cortex®-M33 Instruction Set
3.7 Saturating instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-162

Non-Confidential

3.7.8 UQADD and UQSUB

Saturating Add and Saturating Subtract Unsigned.

Syntax

op{cond} {Rd,} Rn, Rm

Where:

op Is one of:

UQADD8 Saturating four unsigned 8-bit integer
additions.

UQADD16 Saturating two unsigned 16-bit integer
additions.

UQSUB8 Saturating four unsigned 8-bit integer
subtractions.

UQSUB16 Saturating two unsigned 16-bit integer
subtractions.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn, Rm Are registers holding the first and second operands.

Operation

These instructions add or subtract two or four values and then writes an unsigned saturated value in the
destination register.

The UQADD16 instruction:

• Adds the respective top and bottom halfwords of the first and second operands.
• Saturates the result of the additions for each halfword in the destination register to the unsigned range

0 ≤ x ≤ 216−1, where x is 16.

The UQADD8 instruction:

• Adds each respective byte of the first and second operands.
• Saturates the result of the addition for each byte in the destination register to the unsigned range 0 ≤ x

≤ 28−1, where x is 8.

The UQSUB16 instruction:

• Subtracts both halfwords of the second operand from the respective halfwords of the first operand.
• Saturates the result of the differences in the destination register to the unsigned range 0 ≤ x ≤ 216−1,

where x is 16.

The UQSUB8 instructions:
• Subtracts the respective bytes of the second operand from the respective bytes of the first operand.
• Saturates the results of the differences for each byte in the destination register to the unsigned range 0

≤ x ≤ 28−1, where x is 8.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

3 The Cortex®-M33 Instruction Set
3.7 Saturating instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-163

Non-Confidential

Example 3-42 Examples

UQADD16 R7, R4, R2 ; Adds halfwords in R4 to corresponding halfword in R2,
 ; saturates to 16 bits, writes to corresponding halfword
 ; of R7
UQADD8 R4, R2, R5 ; Adds bytes of R2 to corresponding byte of R5, saturates
 ; to 8 bits, writes to corresponding bytes of R4
UQSUB16 R6, R3, R0 ; Subtracts halfwords in R0 from corresponding halfword
 ; in R3, saturates to 16 bits, writes to corresponding
 ; halfword in R6
UQSUB8 R1, R5, R6 ; Subtracts bytes in R6 from corresponding byte of R5,
 ; saturates to 8 bits, writes to corresponding byte of R1.

3 The Cortex®-M33 Instruction Set
3.7 Saturating instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-164

Non-Confidential

3.8 Packing and unpacking instructions
Reference material for the Cortex‑M33 processor packing and unpacking instruction set.

3.8.1 List of packing and unpacking instructions

An alphabetically ordered list of the packing and unpacking instructions, with a brief description and link
to the syntax definition, operations, restrictions, and example usage for each instruction.

Table 3-10 Packing and unpacking instructions

Mnemonic Brief description See

PKH Pack Halfword 3.8.2 PKHBT and PKHTB on page 3-166

SXTAB Extend 8 bits to 32 and add 3.8.3 SXTA and UXTA on page 3-168

SXTAB16 Dual extend 8 bits to 16 and add 3.8.3 SXTA and UXTA on page 3-168

SXTAH Extend 16 bits to 32 and add 3.8.3 SXTA and UXTA on page 3-168

SXTB Sign extend a byte 3.8.4 SXT and UXT on page 3-170

SXTB16 Dual extend 8 bits to 16 and add 3.8.4 SXT and UXT on page 3-170

SXTH Sign extend a halfword 3.8.4 SXT and UXT on page 3-170

UXTAB Extend 8 bits to 32 and add 3.8.3 SXTA and UXTA on page 3-168

UXTAB16 Dual extend 8 bits to 16 and add 3.8.3 SXTA and UXTA on page 3-168

UXTAH Extend 16 bits to 32 and add 3.8.3 SXTA and UXTA on page 3-168

UXTB Zero extend a byte 3.8.4 SXT and UXT on page 3-170

UXTB16 Dual zero extend 8 bits to 16 and add 3.8.4 SXT and UXT on page 3-170

UXTH Zero extend a halfword 3.8.4 SXT and UXT on page 3-170

3 The Cortex®-M33 Instruction Set
3.8 Packing and unpacking instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-165

Non-Confidential

3.8.2 PKHBT and PKHTB

Pack Halfword.

Syntax

op{cond} {Rd}, Rn, Rm {, LSL #imm} ;PKHBT

op{cond} {Rd}, Rn, Rm {, ASR #imm} ;PKHTB

Where:

op Is one of:

PKHBT Pack Halfword, bottom and top with
shift.

PKHTB Pack Halfword, top and bottom with
shift.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn Is the first operand register.
Rm Is the second operand register holding the value to be

optionally shifted.
imm Is the shift length. The type of shift length depends on the

instruction:For PKHBT:

For PKHTB:

LSL A left shift with a shift length from 1 to
31, 0 means no shift.

ASR An arithmetic shift right with a shift
length from 1 to 32, a shift of 32-bits is
encoded as 0b00000.

Operation

The PKHBT instruction:

1. Writes the value of the bottom halfword of the first operand to the bottom halfword of the destination
register.

2. If shifted, the shifted value of the second operand is written to the top halfword of the destination
register.

The PKHTB instruction:
1. Writes the value of the top halfword of the first operand to the top halfword of the destination

register.
2. If shifted, the shifted value of the second operand is written to the bottom halfword of the destination

register.

Restrictions

Rd must not be SP and must not be PC.

Condition flags

This instruction does not change the flags.

3 The Cortex®-M33 Instruction Set
3.8 Packing and unpacking instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-166

Non-Confidential

Example 3-43 Examples

PKHBT R3, R4, R5 LSL #0 ; Writes bottom halfword of R4 to bottom halfword of
 ; R3, writes top halfword of R5, unshifted, to top
 ; halfword of R3

PKHTB R4, R0, R2 ASR #1 ; Writes R2 shifted right by 1 bit to bottom halfword
 ; of R4, and writes top halfword of R0 to top
 ; halfword of R4.

3 The Cortex®-M33 Instruction Set
3.8 Packing and unpacking instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-167

Non-Confidential

3.8.3 SXTA and UXTA

Signed and Unsigned Extend and Add.

Syntax

op{cond} {Rd,} Rn, Rm {, ROR #n}

Where:

op Is one of:

SXTAB Sign extends an 8‑bit value to a 32‑bit
value and add.

SXTAH Sign extends a 16‑bit value to a 32‑bit
value and add.

SXTAB16 Sign extends two 8-bit values to two 16-
bit values and add.

UXTAB Zero extends an 8‑bit value to a 32‑bit
value and add.

UXTAH Zero extends a 16‑bit value to a 32‑bit
value and add.

UXTAB16 Zero extends two 8-bit values to two 16-
bit values and add.

cond Is an optional condition code.

Rd Is the destination register. If Rd is omitted, the destination
register is Rn.

Rn Is the first operand register.
Rm Is the register holding the value to rotate and extend.
ROR #n Is one of:

ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

Operation
These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:

• SXTAB extracts bits[7:0] from Rm and sign extends to 32 bits.
• UXTAB extracts bits[7:0] from Rm and zero extends to 32 bits.
• SXTAH extracts bits[15:0] from Rm and sign extends to 32 bits.
• UXTAH extracts bits[15:0] from Rm and zero extends to 32 bits.
• SXTAB16 extracts bits[7:0] from Rm and sign extends to 16 bits, and extracts bits [23:16] from Rm

and sign extends to 16 bits.
• UXTAB16 extracts bits[7:0] from Rm and zero extends to 16 bits, and extracts bits [23:16] from Rm

and zero extends to 16 bits.
3. Adds the signed or zero extended value to the word or corresponding halfword of Rn and writes the

result in Rd.

Restrictions

Do not use SP and do not use PC.

3 The Cortex®-M33 Instruction Set
3.8 Packing and unpacking instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-168

Non-Confidential

Condition flags

These instructions do not affect the flags.

Example 3-44 Examples

SXTAH R4, R8, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom
 ; halfword, sign extends to 32 bits, adds R8,and
 ; writes to R4
UXTAB R3, R4, R10 ; Extracts bottom byte of R10 and zero extends to 32
 ; bits, adds R4, and writes to R3.

3 The Cortex®-M33 Instruction Set
3.8 Packing and unpacking instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-169

Non-Confidential

3.8.4 SXT and UXT

Sign extend and Zero extend.

Syntax

SXTop{cond} Rd, Rn {, ROR #n}

UXTop{cond} Rd, Rn {, ROR #n}

Where:

op Is one of:

SXTB Sign extends an 8‑bit value to a 32‑bit
value.

SXTH Sign extends a 16‑bit value to a 32‑bit
value.

SXTB16 Sign extends two 8-bit values to two 16-
bit values.

UXTB Zero extends an 8‑bit value to a 32‑bit
value.

UXTH Zero extends a 16‑bit value to a 32‑bit
value.

UXTB16 Zero extends two 8-bit values to two 16-
bit values.

cond Is an optional condition code.

Rd Is the destination register.
Rn Is the register holding the value to extend.
ROR #n Is one of:

ROR #8 Value from Rn is rotated right 8 bits.
ROR #16 Value from Rn is rotated right 16 bits.
ROR #24 Value from Rn is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

Operation
These instructions do the following:
1. Rotate the value from Rn right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:

• SXTB extracts bits[7:0] and sign extends to 32 bits.
• UXTB extracts bits[7:0] and zero extends to 32 bits.
• SXTH extracts bits[15:0] and sign extends to 32 bits.
• UXTH extracts bits[15:0] and zero extends to 32 bits.
• SXTB16 extracts bits[7:0] and sign extends to 16 bits, and extracts bits [23:16] and sign extends to

16 bits.
• UXTB16 extracts bits[7:0] and zero extends to 16 bits, and extracts bits [23:16] and zero extends to

16 bits.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

3 The Cortex®-M33 Instruction Set
3.8 Packing and unpacking instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-170

Non-Confidential

Example 3-45 Examples

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the lower
 ; halfword of the result and then sign extend to
 ; 32 bits and write the result to R4.
UXTB R3, R10 ; Extract lowest byte of the value in R10 and zero
 ; extend it, and write the result to R3.

3 The Cortex®-M33 Instruction Set
3.8 Packing and unpacking instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-171

Non-Confidential

3.9 Bit field instructions
Reference material for the Cortex‑M33 processor bit field instruction set.

3.9.1 List of bit field instructions

An alphabetically ordered list of the bit field instructions, with a brief description and link to the syntax
definition, operations, restrictions, and example usage for each instruction.

Table 3-11 Bit field instructions

Mnemonic Brief description See

BFC Bit Field Clear 3.9.2 BFC and BFI on page 3-173

BFI Bit Field Insert 3.9.2 BFC and BFI on page 3-173

SBFX Signed Bit Field Extract 3.9.3 SBFX and UBFX on page 3-174

UBFX Unsigned Bit Field Extract 3.9.3 SBFX and UBFX on page 3-174

3 The Cortex®-M33 Instruction Set
3.9 Bit field instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-172

Non-Confidential

3.9.2 BFC and BFI

Bit Field Clear and Bit Field Insert.

Syntax

BFC{cond} Rd, #lsb, #width

BFI{cond} Rd, Rn, #lsb, #width

Where:

cond Is an optional condition code.
Rd Is the destination register.
Rn Is the source register.
lsb Is the position of the least significant bit of the bit field. lsb

must be in the range 0-31.
width Is the width of the bit field and must be in the range

1-32−lsb.

Operation

BFC clears a bit field in a register. It clears width bits in Rd, starting at the low bit position lsb. Other bits
in Rd are unchanged.

BFI copies a bit field into one register from another register. It replaces width bits in Rd starting at the
low bit position lsb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Example 3-46 Examples

BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to 0
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with
 ; bit 0 to bit 11 from R2.

3 The Cortex®-M33 Instruction Set
3.9 Bit field instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-173

Non-Confidential

3.9.3 SBFX and UBFX

Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax

SBFX{cond} Rd, Rn, #lsb, #width

UBFX{cond} Rd, Rn, #lsb, #width

Where:

cond Is an optional condition code.
Rd Is the destination register.
Rn Is the source register.
lsb Is the position of the least significant bit of the bit field. lsb

must be in the range 0-31.
width Is the width of the bit field and must be in the range

1-32−lsb.

Operation

SBFX extracts a bit field from one register, sign extends it to 32 bits, and writes the result to the
destination register.

UBFX extracts a bit field from one register, zero extends it to 32 bits, and writes the result to the
destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Example 3-47 Examples

SBFX R0, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from R1 and sign
 ; extend to 32 bits and then write the result to R0.
UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R11 and zero
 ; extend to 32 bits and then write the result to R8.

3 The Cortex®-M33 Instruction Set
3.9 Bit field instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-174

Non-Confidential

3.10 Branch and control instructions
Reference material for the Cortex‑M33 processor branch and control instruction set.

3.10.1 List of branch and control instructions

An alphabetically ordered list of the branch and control instructions, with a brief description and link to
the syntax definition, operations, restrictions, and example usage for each instruction.

Table 3-12 Branch and control instructions

Mnemonic Brief description See

B Branch 3.10.2 B, BL, BX, and BLX on page 3-176

BL Branch with Link 3.10.2 B, BL, BX, and BLX on page 3-176

BLX Branch indirect with Link 3.10.2 B, BL, BX, and BLX on page 3-176

BLXNS Branch indirect with Link, Non-secure 3.10.3 BXNS and BLXNS on page 3-178

BX Branch indirect 3.10.2 B, BL, BX, and BLX on page 3-176

BXNS Branch indirect, Non-secure 3.10.3 BXNS and BLXNS on page 3-178

CBNZ Compare and Branch if Non Zero 3.10.4 CBZ and CBNZ on page 3-179

CBZ Compare and Branch if Zero 3.10.4 CBZ and CBNZ on page 3-179

IT If‑Then 3.10.5 IT on page 3-180

TBB Table Branch Byte 3.10.6 TBB and TBH on page 3-182

TBH Table Branch Halfword 3.10.6 TBB and TBH on page 3-182

3 The Cortex®-M33 Instruction Set
3.10 Branch and control instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-175

Non-Confidential

3.10.2 B, BL, BX, and BLX

Branch instructions.

Syntax

B{cond} label

BL label

BX Rm

BLX Rm

Where:

cond Is an optional condition code.

label Is a PC-relative expression.

Rm Is a register providing the address to branch to.

Operation
All these instructions cause a branch to the address indicated by label or contained in the register
specified by Rm. In addition:
• The BL and BLX instructions write the address of the next instruction to LR, the link register R14.
• The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

BL and BLX instructions also set bit[0] of the LR to 1. This ensures that the value is suitable for use by a
subsequent POP {PC} or BX instruction to perform a successful return branch.

The following table shows the ranges for the various branch instructions.

Table 3-13 Branch ranges

Instruction Branch range

B label −2KB to +2KB.

Bcond label −256 bytes to +254 bytes.

BL label −16MB to +16MB.

BX Rm Any value in register.

BLX Rm Any value in register.

Restrictions
In these instructions:
• Do not use SP or PC in the BX or BLX instruction.
• For BX and BLX, bit[0] of Rm must be 1 for correct execution. Bit[0] is used to update the EPSR T-bit

and is discarded from the target address.

 Note

Bcond is the only conditional instruction on the processor.

BX can be used an Exception or Function return.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.10 Branch and control instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-176

Non-Confidential

Examples
 B loopA ; Branch to loopA
 BL funC ; Branch with link (Call) to function funC, return address
 ; stored in LR
 BX LR ; Return from function call if LR contains a FUNC_RETURN value.
 BLX R0 ; Branch with link and exchange (Call) to a address stored
 ; in R0
 BEQ labelD ; Conditionally branch to labelD if last flag setting
 ; instruction set the Z flag, else do not branch.

3 The Cortex®-M33 Instruction Set
3.10 Branch and control instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-177

Non-Confidential

3.10.3 BXNS and BLXNS

Branch and Exchange Non-secure and Branch with Link and Exchange Non-secure.

Syntax

BXNS <Rm>

BLXNS <Rm>

Where:

Rm Is a register containing an address to branch to.

Operation

The BLXNS instruction calls a subroutine at an address contained in Rm and conditionally causes a
transition from the Secure to the Non-secure state.

For both BXNS and BLXNS, Rm[0] indicates a transition to Non-secure state if value is 0, otherwise the
target state remains Secure. If transitioning to Non-secure, BLXNS pushes the return address and partial
PSR to the Secure stack and assigns R14 to a FNC_RETURN value.

These instructions are available for Secure state only. When the processor is in Non-secure state, these
instructions are UNDEFINED and triggers a UsageFault if executed.

Restrictions

PC and SP cannot be used for Rm.

Condition flags

These instructions do not change the flags.

Examples
LDR r0, =non_secure_function
MOVS r1, #1
BICS r0, r1 # Clear bit 0 of address in r0
BLXNS r0 ; Call Non-secure function. This sets r14 to FUNC_RETURN value

 Note

For information about how to build a Secure image that uses a previously generated import library, see
the Arm® Compiler Software Development Guide.

3 The Cortex®-M33 Instruction Set
3.10 Branch and control instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-178

Non-Confidential

3.10.4 CBZ and CBNZ

Compare and Branch on Zero, Compare and Branch on Non‑Zero.

Syntax

op{cond} Rn, label

Where:

cond Is an optional condition code.
Rn Is the register holding the operand.
label Is the branch destination.

Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of
instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0 BEQ label

CBNZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0 BNE label

Restrictions
The restrictions are:
• Rn must be in the range of R0-R7.
• The branch destination must be within 4 to 130 bytes after the instruction.
• These instructions must not be used inside an IT block.

Condition flags

These instructions do not change the flags.

Example 3-48 Examples

CBZ R5, target ; Forward branch if R5 is zero
CBNZ R0, target ; Forward branch if R0 is not zero

3 The Cortex®-M33 Instruction Set
3.10 Branch and control instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-179

Non-Confidential

3.10.5 IT

If-Then condition instruction.

Syntax

IT{x{y{z}}} cond

Where:

x specifies the condition switch for the second instruction in
the IT block.

y Specifies the condition switch for the third instruction in the
IT block.

z Specifies the condition switch for the fourth instruction in
the IT block.

cond Specifies the condition for the first instruction in the IT
block.

The condition switch for the second, third and fourth instruction in the IT block can be either:

T Then. Applies the condition cond to the instruction.
E Else. Applies the inverse condition of cond to the instruction.

 Note

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of the
instructions in the IT block must be unconditional, and each of x, y, and z must be T or omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all the
same, or some of them can be the logical inverse of the others. The conditional instructions following the
IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of
their syntax.

 Note

Your assembler might be able to generate the required IT instructions for conditional instructions
automatically, so that you do not have to write them yourself. See your assembler documentation for
details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT
block. Such an exception results in entry to the appropriate exception handler, with suitable return
information in LR and stacked PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception,
and execution of the IT block resumes correctly. This is the only way that a PC‑modifying instruction is
permitted to branch to an instruction in an IT block.

Restrictions

The following instructions are not permitted in an IT block:

• IT.
• CBZ and CBNZ.
• CPSID and CPSIE.

3 The Cortex®-M33 Instruction Set
3.10 Branch and control instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-180

Non-Confidential

Other restrictions when using an IT block are:
• A branch or any instruction that modifies the PC must either be outside an IT block or must be the

last instruction inside the IT block. These are:
— ADD PC, PC, Rm.
— MOV PC, Rm.
— B, BL, BX, BLX.
— Any LDM, LDR, or POP instruction that writes to the PC.
— TBB and TBH.

• Do not branch to any instruction inside an IT block, except when returning from an exception
handler.

• All conditional instructions except Bcond must be inside an IT block. Bcond can be either outside or
inside an IT block but has a larger branch range if it is inside one.

• Each instruction inside the IT block must specify a condition code suffix that is either the same or
logical inverse as for the other instructions in the block.

 Note

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of
assembler directives within them.

Condition flags

This instruction does not change the flags.

Example 3-49 Examples

ITTE NE ; Next 3 instructions are conditional
ANDNE R0, R0, R1 ; ANDNE does not update condition flags
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags
MOVEQ R2, R3 ; Conditional move
CMP R0, #9 ; Convert R0 hex value (0 to 15) into ASCII
 ; ('0'-'9', 'A'-'F')
ITE GT ; Next 2 instructions are conditional
ADDGT R1, R0, #55 ; Convert 0xA -> 'A'
ADDLE R1, R0, #48 ; Convert 0x0 -> '0'
IT GT ; IT block with only one conditional instruction
ADDGT R1, R1, #1 ; Increment R1 conditionally ITTEE EQ
 ; Next 4 instructions are conditional
MOVEQ R0, R1 ; Conditional move
ADDEQ R2, R2, #10 ; Conditional add
ANDNE R3, R3, #1 ; Conditional AND
BNE.W dloop ; Branch instruction can only be used in the last
 ; instruction of an IT block
IT NE ; Next instruction is conditional
ADD R0, R0, R1 ; Syntax error: no condition code used in IT block

3 The Cortex®-M33 Instruction Set
3.10 Branch and control instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-181

Non-Confidential

3.10.6 TBB and TBH

Table Branch Byte and Table Branch Halfword.

Syntax

TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

Where:

Rn Is the register containing the address of the table of branch
lengths.

If Rn is PC, then the address of the table is the address of the
byte immediately following the TBB or TBH instruction.

Rm Is the index register. This contains an index into the table.
For halfword tables, LSL #1 doubles the value in Rm to form
the right offset into the table.

Operation

These instructions cause a PC‑relative forward branch using a table of single byte offsets for TBB, or
halfword offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index into the table. For
TBB the branch offset is the unsigned value of the byte returned from the table, and for TBH the branch
offset is twice the unsigned value of the halfword returned from the table. The branch occurs to the
address at that offset from the address of the byte immediately after the TBB or TBH instruction.

Restrictions
The restrictions are:
• Rn must not be SP.
• Rm must not be SP and must not be PC.
• When any of these instructions is used inside an IT block, it must be the last instruction of the IT

block.

Condition flags

These instructions do not change the flags.

Example 3-50 Examples

ADR.W R0, BranchTable_Byte
TBB [R0, R1] ; R1 is the index, R0 is the base address of the
 ; branch table
Case1
; an instruction sequence follows
Case2
; an instruction sequence follows
Case3
; an instruction sequence follows
BranchTable_Byte
 DCB 0 ; Case1 offset calculation
 DCB ((Case2-Case1)/2) ; Case2 offset calculation
 DCB ((Case3-Case1)/2) ; Case3 offset calculation
 TBH [PC, R1, LSL #1] ; R1 is the index, PC is used as base of the
 ; branch table
BranchTable_H
 DCW ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
 DCW ((CaseB - BranchTable_H)/2) ; CaseB offset calculation
 DCW ((CaseC - BranchTable_H)/2) ; CaseC offset calculation
CaseA
; an instruction sequence follows
CaseB
; an instruction sequence follows

3 The Cortex®-M33 Instruction Set
3.10 Branch and control instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-182

Non-Confidential

CaseC
; an instruction sequence follows

3 The Cortex®-M33 Instruction Set
3.10 Branch and control instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-183

Non-Confidential

3.11 Floating-point instructions
Reference material for the Cortex‑M33 processor floating-point instruction set that the FPU uses.

3.11.1 List of floating-point instructions

An alphabetically ordered list of the floating-point instructions, with a brief description and link to the
syntax definition, operations, restrictions, and example usage for each instruction.

 Note

These instructions are only available if the FPU is included, and enabled, in the system.

Table 3-14 Floating-point instructions

Mnemonic Brief description See

FLDMDBX FLDMX (Decrement Before) loads multiple
extension registers from consecutive memory
locations

3.11.2 FLDMDBX, FLDMIAX on page 3-187

FLDMIAX FLDMX (Increment After) loads multiple extension
registers from consecutive memory locations

3.11.2 FLDMDBX, FLDMIAX on page 3-187

FSTMDBX FSTMX (Decrement Before) stores multiple
extension registers to consecutive memory
locations

3.11.3 FSTMDBX, FSTMIAX on page 3-188

FSTMIAX FSTMX (Increment After) stores multiple
extension registers to consecutive memory
locations

3.11.3 FSTMDBX, FSTMIAX on page 3-188

VABS Floating-point Absolute 3.11.4 VABS on page 3-189

VADD Floating-point Add 3.11.5 VADD on page 3-190

VCMP Compare two floating-point registers, or one
floating-point register and zero

3.11.6 VCMP and VCMPE on page 3-191

VCMPE Compare two floating-point registers, or one
floating-point register and zero with Invalid
Operation check

3.11.6 VCMP and VCMPE on page 3-191

VCVT Convert between floating-point and integer 3.11.7 VCVT and VCVTR between floating-point and
integer on page 3-192

VCVT Convert between floating-point and fixed point 3.11.8 VCVT between floating-point and fixed-point
on page 3-193

VCVTA, VCVTN,
VCVTP, VCVTM

Float to integer conversion with directed rounding 3.11.36 VCVTA, VCVTM VCVTN, and VCVTP
on page 3-221

VCVTB Converts half-precision value to single-precision 3.11.37 VCVTB and VCVTT on page 3-222

VCVTR Convert between floating-point and integer with
rounding

3.11.7 VCVT and VCVTR between floating-point and
integer on page 3-192

VCVTT Converts single-precision register to half-
precision

3.11.37 VCVTB and VCVTT on page 3-222

VDIV Floating-point Divide 3.11.9 VDIV on page 3-194

VFMA Floating-point Fused Multiply Accumulate 3.11.10 VFMA and VFMS on page 3-195

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-184

Non-Confidential

Table 3-14 Floating-point instructions (continued)

Mnemonic Brief description See

VFMS Floating-point Fused Multiply Subtract 3.11.10 VFMA and VFMS on page 3-195

VFNMA Floating-point Fused Negate Multiply
Accumulate

3.11.11 VFNMA and VFNMS on page 3-196

VFNMS Floating-point Fused Negate Multiply Subtract 3.11.11 VFNMA and VFNMS on page 3-196

VLDM Load Multiple extension registers 3.11.12 VLDM on page 3-197

VLDR Loads an extension register from memory 3.11.13 VLDR on page 3-198

VMAXNM, VMINNM Maximum, Minimum with IEEE754-2008 NaN
handling

3.11.38 VMAXNM and VMINNM on page 3-223

VMLA Floating-point Multiply Accumulate 3.11.16 VMLA and VMLS on page 3-201

VMLS Floating-point Multiply Subtract 3.11.16 VMLA and VMLS on page 3-201

VMOV Floating-point Move Immediate 3.11.17 VMOV Immediate on page 3-202

VMOV Floating-point Move Register 3.11.18 VMOV Register on page 3-203

VMOV Copy Arm core register to single-precision 3.11.20 VMOV core register to single-precision
on page 3-205

VMOV Copy 2 Arm core registers to 2 single-precision 3.11.21 VMOV two core registers to two single-precision
registers on page 3-206

VMOV Copies between Arm core register to scalar 3.11.23 VMOV core register to scalar on page 3-208

VMOV Copies between Scalar to Arm core register 3.11.19 VMOV scalar to core register on page 3-204

VMRS Move to Arm core register from floating-point
System Register

3.11.24 VMRS on page 3-209

VMSR Move to floating-point System Register from
Arm Core register

3.11.25 VMSR on page 3-210

VMUL Multiply floating-point 3.11.26 VMUL on page 3-211

VNEG Floating-point negate 3.11.27 VNEG on page 3-212

VNMLA Floating-point multiply and add 3.11.28 VNMLA, VNMLS and VNMUL on page 3-213

VNMLS Floating-point multiply and subtract 3.11.28 VNMLA, VNMLS and VNMUL on page 3-213

VNMUL Floating-point multiply 3.11.28 VNMLA, VNMLS and VNMUL on page 3-213

VPOP Pop extension registers 3.11.29 VPOP on page 3-214

VPUSH Push extension registers 3.11.30 VPUSH on page 3-215

VRINTA, VRINTN,
VRINTP, VRINTM

Float to integer (in floating-point format)
conversion with directed rounding

3.11.40 VRINTA, VRINTN, VRINTP, VRINTM, and VRINTZ
on page 3-225

VRINTR, VRINTX Float to integer (in floating-point format)
conversion

3.11.39 VRINTR and VRINTX on page 3-224

VSEL Select register, alternative to a pair of conditional
VMOV

3.11.35 VSEL on page 3-220

VSQRT Floating-point square root 3.11.31 VSQRT on page 3-216

VSTM Store Multiple extension registers 3.11.32 VSTM on page 3-217

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-185

Non-Confidential

Table 3-14 Floating-point instructions (continued)

Mnemonic Brief description See

VSTR Stores an extension register to memory 3.11.33 VSTR on page 3-218

VSUB Floating-point Subtract 3.11.34 VSUB on page 3-219

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-186

Non-Confidential

3.11.2 FLDMDBX, FLDMIAX

FLDMX (Decrement Before, Increment After) loads multiple extension registers from consecutive memory
locations using an address from a general-purpose register.

Syntax

FLDMDBX{cond} Rn!, dreglist

FLDMIAX{cond} Rn{!}, dreglist

Where:

cond Is an optional condition code.
Rn Is the base register. If write-back is not specified, the PC can be used.
! Specifies base register write-back.
dreglist Is the list of consecutively numbered 64-bit SIMD and FP registers to be transferred. The list

must contain at least one register, all registers must be in the range D0-D15, and must not
contain more than 16 registers.

Operation

FLDMX loads multiple SIMD and FP registers from consecutive locations in the Advanced SIMD and
floating-point register file using an address from a general-purpose register.

Arm deprecates use of FLDMDBX and FLDMIAX, except for disassembly purposes, and reassembly of
disassembled code.

Depending on settings in the CPACR and NSACR and the Security state and mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-187

Non-Confidential

3.11.3 FSTMDBX, FSTMIAX

FSTMX (Decrement Before, Increment After) stores multiple extension registers to consecutive memory
locations using an address from a general-purpose register.

Syntax

FSTMDBX{c}{q} Rn!, dreglist

FSTMIAX{c}{q} Rn{!}, dreglist

Where:

cond Is an optional condition code.
Rn Is the base register. If write-back is not specified, the PC can be used. However, Arm

deprecates use of the PC.
! Specifies base register write-back.
dreglist Is the list FP registers to be transferred. The list must contain at least one register, all

registers must be in the range D0-D15, and must not contain more than 16 registers.

Operation

FSTMX stores multiple SIMD and FP registers from the Advanced SIMD and floating-point register file to
consecutive locations using an address from a general-purpose register.

Arm deprecates use of FLDMDBX and FLDMIAX, except for disassembly purposes, and reassembly of
disassembled code.

Depending on settings in the CPACR, NSACR, and FPEXC Registers, and the security state and mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-188

Non-Confidential

3.11.4 VABS

Floating-point Absolute.

Syntax

VABS{cond}.F32 Sd, Sm

Where:

cond Is an optional condition code.
Sd, Sm Are the destination floating-point value and the operand

floating-point value.

Operation
This instruction:
1. Takes the absolute value of the operand floating-point register.
2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Example 3-51 Examples

VABS.F32 S4, S6

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-189

Non-Confidential

3.11.5 VADD

Floating-point Add.

Syntax

VADD{cond}.F32 {Sd,} Sn, Sm

Where:

cond Is an optional condition code.
Sd Is the destination floating-point value.
Sn, Sm Are the operand floating-point values.

Operation
This instruction:
1. Adds the values in the two floating-point operand registers.
2. Places the results in the destination floating-point register.
3. the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Example 3-52 Examples

VADD.F32 S4, S6, S7

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-190

Non-Confidential

3.11.6 VCMP and VCMPE

Compares two floating-point registers, or one floating-point register and zero.

Syntax

VCMP{E}{cond}.F32 Sd, Sm|#0.0

VCMP{E}{cond}.F32 Sd, #0.0

Where:

cond Is an optional condition code.
E If present, any NaN operand causes an Invalid Operation

exception. Otherwise, only a signaling NaN causes the
exception.

Sd Is the floating-point operand to compare.
Sm|Dm Is the floating-point operand that is compared with.

Operation
This instruction:
1. Compares either:

• Two floating-point registers.
• Or one floating-point register and zero.

2. Writes the result to the FPSCR flags.

Restrictions

This instruction can optionally raise an Invalid Operation exception if either operand is any type of
NaN. It always raises an Invalid Operation exception if either operand is a signaling NaN.

Condition flags

When this instruction writes the result to the FPSCR flags, the values are normally transferred to the Arm
flags by a subsequent VMRS instruction.

Example 3-53 Examples

VCMP.F32 S4, #0.0VCMP.F32 S4, S2

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-191

Non-Confidential

3.11.7 VCVT and VCVTR between floating-point and integer

Converts a value in a register from floating-point to and from a 32-bit integer.

Syntax

VCVT{R}{cond}.Tm.F32 Sd, Sm

VCVT{cond}.F32.Tm Sd, Sm

Where:

R If R is specified, the operation uses the rounding mode
specified by the FPSCR. If R is omitted. the operation uses the
Round towards Zero rounding mode.

cond Is an optional condition code.
Tm Is the data type for the operand. It must be one of:

• S32 signed 32-bit value.
• U32 unsigned 32-bit value.

Sd, Sm Are the destination register and the operand register.

Operation
These instructions:
1. Either:

• Convert a value in a register from floating-point value to a 32-bit integer.
• Convert from a 32-bit integer to floating-point value.

2. Place the result in a second register.

The floating-point to integer operation normally uses the Round towards Zero rounding mode, but can
optionally use the rounding mode specified by the FPSCR.

The integer to floating-point operation uses the rounding mode specified by the FPSCR.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-192

Non-Confidential

3.11.8 VCVT between floating-point and fixed-point

Converts a value in a register from floating-point to and from fixed-point.

Syntax

VCVT{cond}.Td.F32 Sd, Sd, #fbits

VCVT{cond}.F32.Td Sd, Sd, #fbits

Where:

cond Is an optional condition code.
Td Is the data type for the fixed-point number. It must be one of:

• S16 signed 16-bit value.
• U16 unsigned 16-bit value.
• S32 signed 32-bit value.
• U32 unsigned 32-bit value.

Sd Is the destination register and the operand register.

fbits Is the number of fraction bits in the fixed-point number:
• If Td is S16 or U16, fbits must be in the range 0-16.
• If Td is S32 or U32, fbits must be in the range 1-32.

Operation
This instruction:
1. Either

• Converts a value in a register from floating-point to fixed-point.
• Converts a value in a register from fixed-point to floating-point.

2. Places the result in a second register.

The floating-point values are single-precision or double-precision.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand
from the low-order bits of the source register and ignore any remaining bits.

Signed conversions to fixed-point values sign-extend the result value to the destination register width.

Unsigned conversions to fixed-point values zero-extend the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-
point to floating-point operation uses the Round to Nearest rounding mode.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-193

Non-Confidential

3.11.9 VDIV

Divides floating-point values.

Syntax

VDIV{cond}.F32 {Sd,} Sn, Sm

Where:

cond Is an optional condition code.
Sd Is the destination register.
Sn, Sm Are the operand registers.

Operation
This instruction:
1. Divides one floating-point value by another floating-point value.
2. Writes the result to the floating-point destination register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-194

Non-Confidential

3.11.10 VFMA and VFMS

Floating-point Fused Multiply Accumulate and Subtract.

Syntax

VFMA{cond}.F32 {Sd,} Sn, Sm

VFMS{cond}.F32 {Sd,} Sn, Sm

Where:

cond Is an optional condition code.
Sd Is the destination register.
Sn, Sm Are the operand registers.

Operation

The VFMA instruction:

1. Multiplies the floating-point values in the operand registers.
2. Accumulates the results into the destination register.

The result of the multiply is not rounded before the accumulation.

The VFMS instruction:
1. Negates the first operand register.
2. Multiplies the floating-point values of the first and second operand registers.
3. Adds the products to the destination register.
4. Places the results in the destination register.

The result of the multiply is not rounded before the addition.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-195

Non-Confidential

3.11.11 VFNMA and VFNMS

Floating-point Fused Negate Multiply Accumulate and Subtract.

Syntax

VFNMA{cond}.F32 {Sd,} Sn, Sm

VFNMS{cond}.F32 {Sd,} Sn, Sm

Where:

cond Is an optional condition code.
Sd Is the destination register.
Sn, Sm Are the operand registers.

Operation

The VFNMA instruction:

1. Negates the first floating-point operand register.
2. Multiplies the first floating-point operand with second floating-point operand.
3. Adds the negation of the floating -point destination register to the product
4. Places the result into the destination register.

The result of the multiply is not rounded before the addition.

The VFNMS instruction:
1. Multiplies the first floating-point operand with second floating-point operand.
2. Adds the negation of the floating-point value in the destination register to the product.
3. Places the result in the destination register.

The result of the multiply is not rounded before the addition.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-196

Non-Confidential

3.11.12 VLDM

Floating-point Load Multiple.

Syntax

VLDM{mode}{cond}{.size} Rn{!}, list

Where:

mode Is the addressing mode:

IA Increment after. The consecutive
addresses start at the address specified
in Rn.

DB Decrement before. The consecutive
addresses end before

the address specified in Rn.

cond Is an optional condition code.

size Is an optional data size specifier.
Rn Is the base register. The SP can be used.
! Is the command to the instruction to write a modified value

back to Rn. This is required if mode == DB, and is optional if
mode == IA.

list Is the list of extension registers to be loaded, as a list of
consecutively numbered doubleword or singleword registers,
separated by commas and surrounded by brackets.

Operation

This instruction loads multiple extension registers from consecutive memory locations using an address
from an Arm core register as the base address.

Restrictions
The restrictions are:
• If size is present, it must be equal to the size in bits, 32 or 64, of the registers in list.
• For the base address, the SP can be used. In the Arm instruction set, if ! is not specified the PC can be

used.
• list must contain at least one register. If it contains doubleword registers, it must not contain more

than 16 registers.
• If using the Decrement before addressing mode, the write back flag, !, must be appended to the

base register specification.

Condition flags

These instructions do not change the flags.

Example 3-54 Examples

VLDMIA.F64 r1, {d3,d4,d5}

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-197

Non-Confidential

3.11.13 VLDR

Loads a single extension register from memory.

Syntax

VLDR{cond}{.F<32|64>} <Sd|Dd>, [Rn {, #imm}]

VLDR{cond}{.F<32|64>} <Sd|Dd>, label

VLDR{cond}{.F<32|64>} <Sd|Dd>, [PC, #imm]

Where:

cond Is an optional condition code.
32, 64 Are the optional data size specifiers.
Dd Is the destination register for a doubleword load.
Sd Is the destination register for a singleword load.
Rn Is the base register. The SP can be used.
imm Is the + or - immediate offset used to form the address.

Permitted address values are multiples of 4 in the range
0-1020.

label Is the label of the literal data item to be loaded.

Operation

This instruction loads a single extension register from memory, using a base address from an Arm core
register, with an optional offset.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-198

Non-Confidential

3.11.14 VLLDM

Floating-point Lazy Load Multiple restores the contents of the Secure floating-point registers that were
protected by a VLSTM instruction, and marks the floating-point context as active.

Syntax

VLLDM {cond}<Rn>

Where:

cond Is an optional condition code.
Rn Is the base register.

Operation

If the lazy state preservation set up by a previous VLSTM instruction is active (FPCCR.LSPACT == 1),
this instruction deactivates lazy state preservation and enables access to the Secure floating-point
registers. If lazy state preservation is inactive (FPCCR.LSPACT == 0), either because lazy state
preservation was not enabled (FPCCR.LSPEN == 0) or because a floating-point instruction caused the
Secure floating-point register contents to be stored to memory, this instruction loads the stored Secure
floating-point register contents back into the floating-point registers. If Secure floating-point is not in use
(CONTROL_S.SFPA == 0), this instruction behaves as a NOP. This instruction is only available in Secure
state, and is UNDEFINED in Non-secure state. If the Floating-point Extension is not implemented, this
instruction is available in Secure state, but behaves as a NOP.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-199

Non-Confidential

3.11.15 VLSTM

Floating-point Lazy Store Multiple stores the contents of Secure floating-point registers to a prepared
stack frame, and clears the Secure floating-point registers.

Syntax

VLSTM {cond}<Rn>

Where:

cond Is an optional condition code.
Rn Is the base register.

Operation
If floating-point lazy preservation is enabled (FPCCR.LSPEN == 1), then the next time a floating-point
instruction other than VLSTM or VLLDM is executed:
• The contents of Secure floating-point registers are stored to memory.
• The Secure floating-point registers are cleared.

If Secure floating-point is not in use (CONTROL_S.SFPA == 0), this instruction behaves as a NOP.

This instruction is only available in Secure state, and is UNDEFINED in Non-secure state.

If the Floating-point Extension is not implemented, this instruction is available in Secure state, but
behaves as a NOP.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-200

Non-Confidential

3.11.16 VMLA and VMLS

Multiplies two floating-point values, and accumulates or subtracts the result.

Syntax

VMLA{cond}.F32 Sd, Sn, Sm

VMLS{cond}.F32 Sd, Sn, Sm

Where:

cond Is an optional condition code.
Sd Is the destination floating-point value.
Sn, Sm Are the operand floating-point values.

Operation

The floating-point Multiply Accumulate instruction:

1. Multiplies two floating-point values.
2. Adds the results to the destination floating-point value.
The floating-point Multiply Subtract instruction:
1. Multiplies two floating-point values.
2. Subtracts the products from the destination floating-point value.
3. Places the results in the destination register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-201

Non-Confidential

3.11.17 VMOV Immediate

Move floating-point Immediate.

Syntax

VMOV{cond}.F32 Sd, #imm

Where:

cond Is an optional condition code.
Sd Is the destination register.
imm Is a floating-point constant.

Operation

This instruction copies a constant value to a floating-point register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-202

Non-Confidential

3.11.18 VMOV Register

Copies the contents of one register to another.

Syntax

VMOV{cond}.F<32> Sd, Sm Dm

Where:

cond Is an optional condition code.
Dd Is the destination register, for a doubleword operation.
Dm Is the source register, for a doubleword operation.
Sd Is the destination register, for a singleword operation.
Sm Is the source register, for a singleword operation.

Operation

This instruction copies the contents of one floating-point register to another.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-203

Non-Confidential

3.11.19 VMOV scalar to core register

Transfers one word of a doubleword floating-point register to an Arm core register.

Syntax

VMOV{cond} Rt, Dn[x]

Where:

cond Is an optional condition code.
Rt Is the destination Arm core register.
Dn Is the 64-bit doubleword register.
x Specifies which half of the doubleword register to use:

• If x is 0, use lower half of doubleword register.
• If x is 1, use upper half of doubleword register.

Operation

This instruction transfers one word from the upper or lower half of a doubleword floating-point register
to an Arm core register.

Restrictions

Rt cannot be PC or SP.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-204

Non-Confidential

3.11.20 VMOV core register to single-precision

Transfers a single-precision register to and from an Arm core register.

Syntax

VMOV{cond} Sn, Rt

VMOV{cond} Rt, Sn

Where:

cond Is an optional condition code.
<Sn> Is the single-precision floating-point register.
Rt Is the Arm core register.

Operation
This instruction transfers:
• The contents of a single-precision register to an Arm core register.
• The contents of an Arm core register to a single-precision register.

Restrictions

Rt cannot be PC or SP.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-205

Non-Confidential

3.11.21 VMOV two core registers to two single-precision registers

Transfers two consecutively numbered single-precision registers to and from two Arm core registers.

Syntax

VMOV{cond} Sm, Sm1, Rt, Rt2

VMOV{cond} Rt, Rt2, Sm, Sm1

Where:

cond Is an optional condition code.
Sm Is the first single-precision register.
Sm1 Is the second single-precision register. This is the next

single-precision register after Sm.
Rt Is the Arm core register that Sm is transferred to or from.
Rt2 Is the Arm core register that Sm1 is transferred to or from.

Operation
This instruction transfers:
• The contents of two consecutively numbered single-precision registers to two Arm core registers.
• The contents of two Arm core registers to a pair of single-precision registers.

Restrictions
The restrictions are:
• The floating-point registers must be contiguous, one after the other.
• The Arm core registers do not have to be contiguous.
• Rt cannot be PC or SP.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-206

Non-Confidential

3.11.22 VMOV two core registers and a double-precision register

Transfers two words from two Arm core registers to a doubleword register, or from a doubleword
register to two Arm core registers.

Syntax

VMOV{cond} Dm, Rt, Rt2

VMOV{cond} Rt, Rt2, Dm

Where:

cond Is an optional condition code.
Dm Is the double-precision register.
Rt, Rt2 Are the two Arm core registers.

Operation
This instruction:
• Transfers two words from two Arm core registers to a doubleword register.
• Transfers a doubleword register to two Arm core registers.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-207

Non-Confidential

3.11.23 VMOV core register to scalar

Transfers one word to a floating-point register from an Arm core register.

Syntax

VMOV{cond}{.32} Dd[x], Rt

Where:

cond Is an optional condition code.
32 Is an optional data size specifier.
Dd[x] Is the destination, where [x] defines which half of the

doubleword is transferred, as follows:
• If x is 0, the lower half is extracted.
• If x is 1, the upper half is extracted.

Rt Is the source Arm core register.

Operation

This instruction transfers one word to the upper or lower half of a doubleword floating-point register
from an Arm core register.

Restrictions

Rt cannot be PC or SP.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-208

Non-Confidential

3.11.24 VMRS

Move to Arm Core register from floating-point System Register.

Syntax

VMRS{cond} Rt, FPSCR

VMRS{cond} APSR_nzcv, FPSCR

Where:

cond Is an optional condition code.
Rt Is the destination Arm core register. This register can be R0-

R14.
APSR_nzcv Transfer floating-point flags to the APSR flags.

Operation
This instruction performs one of the following actions:
• Copies the value of the FPSCR to a general-purpose register.
• Copies the value of the FPSCR flag bits to the APSR N, Z, C, and V flags.

Restrictions

Rt cannot be PC or SP.

Condition flags

These instructions optionally change the N, Z, C, and V flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-209

Non-Confidential

3.11.25 VMSR

Move to floating-point System Register from Arm Core register.

Syntax

VMSR{cond} FPSCR, Rt

Where:

cond Is an optional condition code.
Rt Is the general-purpose register to be transferred to the

FPSCR.

Operation

This instruction moves the value of a general-purpose register to the FPSCR.

Restrictions

Rt cannot be PC or SP.

Condition flags

This instruction updates the FPSCR.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-210

Non-Confidential

3.11.26 VMUL

Floating-point Multiply.

Syntax

VMUL{cond}.F32 {Sd,} Sn, Sm

Where:

cond Is an optional condition code.
Sd Is the destination floating-point value.
Sn, Sm Are the operand floating-point values.

Operation
This instruction:
1. Multiplies two floating-point values.
2. Places the results in the destination register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-211

Non-Confidential

3.11.27 VNEG

Floating-point Negate.

Syntax

VNEG{cond}.F32 Sd, Sm

Where:

cond Is an optional condition code.
Sd Is the destination floating-point value.
Sm Is the operand floating-point value.

Operation
This instruction:
1. Negates a floating-point value.
2. Places the results in a second floating-point register.

The floating-point instruction inverts the sign bit.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-212

Non-Confidential

3.11.28 VNMLA, VNMLS and VNMUL

Floating-point multiply with negation followed by add or subtract.

Syntax

VNMLA{cond}.F32 Sd, Sn, Sm

VNMLS{cond}.F32 Sd, Sn, Sm

VNMUL{cond}.F32 {Sd,} Sn, Sm

Where:

cond Is an optional condition code.
Sd Is the destination floating-point register.
Sn, Sm Are the operand floating-point registers.

Operation

The VNMLA instruction:

1. Multiplies two floating-point register values.
2. Adds the negation of the floating-point value in the destination register to the negation of the product.
3. Writes the result back to the destination register.

The VNMLS instruction:

1. Multiplies two floating-point register values.
2. Adds the negation of the floating-point value in the destination register to the product.
3. Writes the result back to the destination register.
The VNMUL instruction:
1. Multiplies together two floating-point register values.
2. Writes the negation of the result to the destination register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-213

Non-Confidential

3.11.29 VPOP

Floating-point extension register Pop.

Syntax

VPOP{cond}{.size} list

Where:

cond Is an optional condition code.
size Is an optional data size specifier. If present, it must be equal

to the size in bits, 32 or 64, of the registers in list.
list Is a list of extension registers to be loaded, as a list of

consecutively numbered doubleword or singleword registers,
separated by commas and surrounded by brackets.

Operation

This instruction loads multiple consecutive extension registers from the stack.

Restrictions

list must contain at least one register, and not more than sixteen registers.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-214

Non-Confidential

3.11.30 VPUSH

Floating-point extension register Push.

Syntax

VPUSH{cond}{.size} list

Where:

cond Is an optional condition code.
size Is an optional data size specifier. If present, it must be equal

to the size in bits, 32 or 64, of the registers in list.
list Is a list of the extension registers to be stored, as a list of

consecutively numbered doubleword or singleword registers,
separated by commas and surrounded by brackets.

Operation

This instruction stores multiple consecutive extension registers to the stack.

Restrictions

list must contain at least one register, and not more than sixteen.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-215

Non-Confidential

3.11.31 VSQRT

Floating-point Square Root.

Syntax

VSQRT{cond}.F32 Sd, Sm

Where:

cond Is an optional condition code.
Sd Is the destination floating-point value.
Sm Is the operand floating-point value.

Operation
This instruction:
• Calculates the square root of the value in a floating-point register.
• Writes the result to another floating-point register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-216

Non-Confidential

3.11.32 VSTM

Floating-point Store Multiple.

Syntax

VSTM{mode}{cond}{.size} Rn{!}, list

Where:

mode Is the addressing mode:
• IA Increment After. The consecutive addresses start at the

address specified in Rn. This is the default and can be
omitted.

• DB Decrement Before. The consecutive addresses end
just before the address specified in Rn.

cond Is an optional condition code.

size Is an optional data size specifier. If present, it must be equal
to the size in bits, 32 or 64, of the registers in list.

Rn Is the base register. The SP can be used.
! Is the function that causes the instruction to write a modified

value back to Rn. Required if mode == DB.
list Is a list of the extension registers to be stored, as a list of

consecutively numbered doubleword or singleword registers,
separated by commas and surrounded by brackets.

Operation

This instruction stores multiple extension registers to consecutive memory locations using a base address
from an Arm core register.

Restrictions
The restrictions are:
• list must contain at least one register. If it contains doubleword registers it must not contain more

than 16 registers.
• Use of the PC as Rn is deprecated.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-217

Non-Confidential

3.11.33 VSTR

Floating-point Store.

Syntax

VSTR{cond}{.32} Sd, [Rn{, #imm}]

VSTR{cond}{.64} Dd, [Rn{, #imm}]

Where:

cond Is an optional condition code.
32, 64 Are the optional data size specifiers.
Sd Is the source register for a singleword store.
Dd Is the source register for a doubleword store.
Rn Is the base register. The SP can be used.
imm Is the + or - immediate offset used to form the address.

Values are multiples of 4 in the range 0-1020. imm can be
omitted, meaning an offset of +0.

Operation

This instruction stores a single extension register to memory, using an address from an Arm core register,
with an optional offset, defined in imm:

Restrictions

The use of PC for Rn is deprecated.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-218

Non-Confidential

3.11.34 VSUB

Floating-point Subtract.

Syntax

VSUB{cond}.F32 {Sd,} Sn, Sm

Where:

cond Is an optional condition code.
Sd Is the destination floating-point value.
Sn, Sm Are the operand floating-point values.

Operation
This instruction:
1. Subtracts one floating-point value from another floating-point value.
2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-219

Non-Confidential

3.11.35 VSEL

Floating-point Conditional Select allows the destination register to take the value from either one or the
other of two source registers according to the condition codes in the APSR.

Syntax

VSEL{cond}.F32 Sd, Sn, Sm

Where:

cond Is an optional condition code. VSEL has a subset of the
condition codes. The condition codes for VSEL are limited to
GE, GT, EQ and VS, with the effect that LT, LE, NE and VC is
achievable by exchanging the source operands.

Sd Is the destination single-precision floating-point value.
Sn, Sm Are the operand single-precision floating-point values.

Operation
Depending on the result of the condition code, this instruction moves either:
• Sn source register to the destination register.
• Sm source register to the destination register.

The behavior is:

EncodingSpecificOperations();
ExecuteFPCheck();

if dp_operation then
S[d] = if ConditionHolds(cond) then S[n] else S[m];

Restrictions

The VSEL instruction must not occur inside an IT block.

Condition flags

This instruction does not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-220

Non-Confidential

3.11.36 VCVTA, VCVTM VCVTN, and VCVTP

Floating-point to integer conversion with directed rounding.

Syntax

VCVT<rmode>.S32.F32 Sd, Sm

VCVT<rmode>.U32.F32 Sd, Sm

Where:

Sd Is the destination single-precision or double-precision
floating-point value.

Sm, Are the operand single-precision or double-precision
floating-point values.

<rmode> Is one of:

A Round to nearest ties away.
M Round to nearest even.
N Round towards plus infinity.
P Round towards minus infinity.

Operation
These instructions:
1. Read the source register.
2. Convert to integer with directed rounding.
3. Write to the destination register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-221

Non-Confidential

3.11.37 VCVTB and VCVTT

Converts between half-precision and single-precision without intermediate rounding.

Syntax

VCVT{y}{cond}.F32.F16 Sd, Sm

VCVT{y}{cond}.F16.F32 Sd, Sm

Where:

y Specifies which half of the operand register Sm or destination
register Sd is used for the operand or destination:
• If y is B, then the bottom half, bits [15:0], of Sm or Sd is

used.
• If y is T, then the top half, bits [31:16], of Sm or Sd is

used.

cond Is an optional condition code.

Sd Is the destination register.
Sm Is the operand register.

Operation

This instruction with the .F16.F32 suffix:

1. Converts the half-precision value in the top or bottom half of a single-precision register to single-
precision value.

2. Writes the result to a single-precision register.
This instruction with the .F32.F16 suffix:
1. Converts the value in a single-precision register to half-precision value.
2. Writes the result into the top or bottom half of a single-precision register, preserving the other half of

the target register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-222

Non-Confidential

3.11.38 VMAXNM and VMINNM

Return the minimum or the maximum of two floating-point numbers with NaN handling as specified by
IEEE754-2008.

Syntax

VMAXNM.F32 Sd, Sn, Sm

VMINNM.F32 Sd, Sn, Sm

Where:

Sd Is the destination single-precision floating-point value.
Sn, Sm Are the operand single-precision floating-point values.

Operation

The VMAXNM instruction compares two source registers, and moves the largest to the destination register.

The VMINNM instruction compares two source registers, and moves the smallest to the destination register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-223

Non-Confidential

3.11.39 VRINTR and VRINTX

Round a floating-point value to an integer in floating-point format.

Syntax

VRINT{R,X}{cond}.F32 Sd, Sm

Where:

cond Is an optional condition code.
Sd Is the destination floating-point value.
Sm Are the operand floating-point values.

Operation
These instructions:
1. Read the source register.
2. Round to the nearest integer value in floating-point format using the rounding mode specified by the

FPSCR. A zero input gives a zero result with the same sign, an infinite input gives an infinite result
with the same sign, and a NaN is propagated as for normal arithmetic.

3. Write the result to the destination register.
4. For the VRINTX instruction only. Generate a floating-point exception if the result is not numerically

equal to the input value.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-224

Non-Confidential

3.11.40 VRINTA, VRINTN, VRINTP, VRINTM, and VRINTZ

Round a floating-point value to an integer in floating-point format using directed rounding.

Syntax

VRINT<rmode>.F32 Sd, Sm

Where:

Sd Is the destination single-precision floating-point value.
Sm Are the operand single-precision floating-point values.

<rmode> Is one of:

A Round to nearest ties away.
N Round to Nearest Even.
P Round towards Plus Infinity.
M Round towards Minus Infinity.
Z Round towards Zero.

Operation
These instructions:
1. Read the source register.
2. Round to the nearest integer value with a directed rounding mode specified by the instruction.
3. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the

same sign, and a NaN is propagated as for normal arithmetic.
4. Write the result to the destination register.

Restrictions

VRINTA, VRINTN, VRINTP and VRINTM cannot be conditional. VRINTZ can be conditional.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.11 Floating-point instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-225

Non-Confidential

3.12 Miscellaneous instructions
Reference material for the Cortex‑M33 processor miscellaneous instructions.

3.12.1 List of miscellaneous instructions

An alphabetically ordered list of the miscellaneous instructions, with a brief description and link to the
syntax definition, operations, restrictions, and example usage for each instruction.

Table 3-15 Miscellaneous instructions

Mnemonic Brief description See

BKPT Breakpoint 3.12.2 BKPT on page 3-227

CPSID Change Processor State, Disable Interrupts 3.12.3 CPS on page 3-228

CPSIE Change Processor State, Enable Interrupts 3.12.3 CPS on page 3-228

DMB Data Memory Barrier 3.12.5 DMB on page 3-229

DSB Data Synchronization Barrier 3.12.6 DSB on page 3-230

ISB Instruction Synchronization Barrier 3.12.7 ISB on page 3-231

MRS Move from special register to register 3.12.8 MRS on page 3-232

MSR Move from register to special register 3.12.9 MSR on page 3-233

NOP No Operation 3.12.10 NOP on page 3-234

SEV Send Event 3.12.11 SEV on page 3-235

SG Secure Gateway 3.12.12 SG on page 3-236

SVC Supervisor Call 3.12.13 SVC on page 3-237

TT Test Target 3.12.14 TT, TTT, TTA, and TTAT on page 3-238

TTT Test Target Unprivileged 3.12.14 TT, TTT, TTA, and TTAT on page 3-238

TTA Test Target Alternate Domain 3.12.14 TT, TTT, TTA, and TTAT on page 3-238

TTAT Test Target Alternate Domain Unprivileged 3.12.14 TT, TTT, TTA, and TTAT on page 3-238

WFE Wait For Event 3.12.16 WFE on page 3-241

WFI Wait For Interrupt 3.12.17 WFI on page 3-242

YIELD Yield 3.12.18 YIELD on page 3-242

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-226

Non-Confidential

3.12.2 BKPT

Breakpoint.

Syntax

BKPT #imm

Where:

imm Is an expression evaluating to an integer in the range 0-255
(8-bit value).

Operation

The BKPT instruction causes the processor to enter Debug state if invasive debug is enabled. Debug tools
can use this to investigate system state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information about
the breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by the
condition specified by the IT instruction.

Condition flags

This instruction does not change the flags.

Example 3-55 Examples

BKPT #0x3 ; Breakpoint with immediate value set to 0x3 (debugger can
 ; extract the immediate value by locating it using the PC)

 Note

Arm does not recommend the use of the BKPT instruction with an immediate value set to 0xAB for any
purpose other than Semi-hosting.

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-227

Non-Confidential

3.12.3 CPS

Change Processor State.

Syntax

CPSeffect iflags

Where:

effect Is one of:

IE Clears the special purpose register.
ID Sets the special purpose register.

iflags Is a sequence of one or more flags:

i Set or clear PRIMASK.
f Set or clear FAULTMASK.

Operation

CPS changes the PRIMASK and FAULTMASK special register values.

Restrictions
The restrictions are:
• Use CPS only from privileged software. It has no effect if used in unprivileged software.
• CPS cannot be conditional and so must not be used inside an IT block.

Condition flags

This instruction does not change the condition flags.

Example 3-56 Examples

CPSID i ; Disable interrupts and configurable fault handlers (set PRIMASK)
CPSID f ; Disable interrupts and all fault handlers (set FAULTMASK)
CPSIE i ; Enable interrupts and configurable fault handlers (clear PRIMASK)
CPSIE f ; Enable interrupts and fault handlers (clear FAULTMASK)

3.12.4 CPY

Copy is a pre-Unified Assembler Language (UAL) synonym for MOV (register).

Syntax

CPY Rd, Rn

This is equivalent to:

MOV Rd, Rn

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-228

Non-Confidential

3.12.5 DMB

Data Memory Barrier.

Syntax

DMB{cond} {opt}

Where:

cond Is an optional condition code.
opt Specifies an optional limitation on the DMB operation.

Values are:

SY

DMB operation ensures ordering of all accesses,
encoded as opt == '1111'. Can be omitted.

All other encodings of opt are RESERVED. The corresponding
instructions execute as system (SY) DMB operations, but
software must not rely on this behavior.

Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in program
order, before the DMB instruction are completed before any explicit memory accesses that appear, in
program order, after the DMB instruction. DMB does not affect the ordering or execution of instructions that
do not access memory.

Condition flags

This instruction does not change the flags.

Example 3-57 Examples

DMB ; Data Memory Barrier

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-229

Non-Confidential

3.12.6 DSB

Data Synchronization Barrier.

Syntax

DSB{cond} {opt}

Where:

cond Is an optional condition code.
opt Specifies an optional limitation on the DSB operation.

Values are:

SY

DSB operation ensures completion of all accesses,
encoded as opt == '1111'. Can be omitted.

All other encodings of opt are RESERVED. The corresponding
instructions execute as system (SY) DSB operations, but
software must not rely on this behavior.

Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in
program order, do not execute until the DSB instruction completes. The DSB instruction completes when
all explicit memory accesses before it complete.

Condition flags

This instruction does not change the flags.

Example 3-58 Examples

DSB ; Data Synchronisation Barrier

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-230

Non-Confidential

3.12.7 ISB

Instruction Synchronization Barrier.

Syntax

ISB{cond} {opt}

Where:

cond Is an optional condition code.
opt Specifies an optional limitation on the ISB operation. Values

are:

SY

Fully system ISB operation, encoded as opt ==
'1111'. Can be omitted.

All other encodings of opt are RESERVED. The corresponding
instructions execute as full system ISB operations, but
software must not rely on this behavior.

Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all
instructions following the ISB are fetched from cache or memory again, after the ISB instruction has
been completed.

Condition flags

This instruction does not change the flags.

Example 3-59 Examples

ISB ; Instruction Synchronisation Barrier

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-231

Non-Confidential

3.12.8 MRS

Move the contents of a special register to a general-purpose register.

Syntax

MRS{cond} Rd, spec_reg

Where:

cond Is an optional condition code.
Rd Is the destination register.
spec_reg Can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR,

MSP, PSP, PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK,
CONTROL,MSP_NS, PSP_NS, MSPLIM, PSPLIM, MSPLIM_NS,
PSPLIM_NS, PRIMASK_NS, FAULTMASK_NS, and CONTROL_NS.

 Note

All the EPSR and IPSR fields are zero when read by the MRS
instruction.

An access to a register not ending in _NS returns the register
associated with the current Security state. Access to a
register ending in _NS in Secure state returns the Non-secure
register. Access to a register ending in _NS in Non-secure
state is RAZ/WI.

Operation

Use MRS in combination with MSR as part of a read‑modify‑write sequence for updating a PSR, for
example to clear the Q flag.

In process swap code, the programmers model state of the process being swapped out must be saved,
including relevant PSR contents. Similarly, the state of the process being swapped in must also be
restored. These operations use MRS in the state-saving instruction sequence and MSR in the state-restoring
instruction sequence.

 Note

BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.

Restrictions

Rd must not be SP and must not be PC.

Condition flags

This instruction does not change the flags.

Example 3-60 Examples

MRS R0, PRIMASK ; Read PRIMASK value and write it to R0

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-232

Non-Confidential

3.12.9 MSR

Move the contents of a general‑purpose register into the specified special register.

Syntax

MSR{cond} spec_reg, Rn

Where:

cond Is an optional condition code.
Rn Is the source register.
spec_reg Can be any of: APSR_nzcvq, APSR_g, APSR_nzcvqg, MSP,

PSP, PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, CONTROL,
MSP_NS, PSP_NS -MSPLIM, PSPLIM, MSPLIM_NS, PSPLIM_NS,
PRIMASK_NS, FAULTMASK_NS, and CONTROL_NS.

 Note

You can use APSR to refer to APSR_nzcvq.

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can only
access the APSR, see the APSR bit assignments. Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.
 Note

When you write to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
• Rn is non-zero and the current BASEPRI value is 0.
• Rn is non-zero and less than the current BASEPRI value.

 Note

An access to a register not ending in _NS writes the register associated with the current Security state.
Access to a register ending in _NS in Secure state writes the Non-secure register. Access to a register
ending in _NS in Non-secure state is RAZ/WI.

Restrictions

Rn must not be SP and must not be PC.

Condition flags

This instruction updates the flags explicitly based on the value in Rn.

Example 3-61 Examples

MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register.

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-233

Non-Confidential

3.12.10 NOP

No Operation.

Syntax

NOP{cond}

Where:

cond Is an optional condition code.

Operation

NOP does nothing. NOP is not necessarily a time‑consuming NOP. The processor might remove it from the
pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64‑bit boundary.

Condition flags

This instruction does not change the flags.

Example 3-62 Examples

NOP ; No operation

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-234

Non-Confidential

3.12.11 SEV

Send Event.

Syntax

SEV{cond}

Where:

cond Is an optional condition code.

Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor
system. It also sets the local event register to 1.

Condition flags

This instruction does not change the flags.

Example 3-63 Examples

SEV ; Send Event

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-235

Non-Confidential

3.12.12 SG

Secure Gateway.

Syntax

SG

Operation

Secure Gateway marks a valid branch target for branches from Non-secure code that wants to call Secure
code.

A linker is expected to generate a Secure Gateway operation as a part of the branch table for the Non-
secure Callable (NSC) region.

There is no C intrinsic function for SG. Secure Gateways are expected to be generated by linker or by
assembly programming. Arm does not expect software developers to insert a Secure Gateway instruction
inside C or C++ program code.

 Note

For information about how to build a Secure image that uses a previously generated import library, see
the Arm® Compiler Software Development Guide.

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-236

Non-Confidential

3.12.13 SVC

Supervisor Call.

Syntax

SVC{cond} #imm

Where:

cond Is an optional condition code.
imm Is an expression evaluating to an integer in the range 0‑255

(8‑bit value).

Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine
what service is being requested.

Condition flags

This instruction does not change the flags.

Example 3-64 Examples

SVC #0x32 ; Supervisor Call (SVCall handler can extract the immediate value
 ; by locating it through the stacked PC)

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-237

Non-Confidential

3.12.14 TT, TTT, TTA, and TTAT

Test Target (Alternate Domain, Unprivileged).

Syntax

{op}{cond} Rd, Rn

Where:

op Is one of:

TT Test Target (TT) queries the Security state and access permissions of a memory location.
TTT Test Target Unprivileged (TTT) queries the Security state and access permissions of a

memory location for an unprivileged access to that location.
TTA In an implementation with the Security Extension, Test Target Alternate Domain (TTA)

queries the Security state and access permissions of a memory location for a Non-secure
access to that location. These instructions are only valid when executing in Secure state,
and are UNDEFINED if used from Non-secure state.

TTAT In an implementation with the Security Extension, Test Target Alternate Domain
Unprivileged (TTAT) queries the Security state and access permissions of a memory
location for a Non-secure and unprivileged access to that location. These instructions are
only valid when executing in Secure state, and are UNDEFINED if used from Non-secure
state.

cond Is an optional condition code.
Rd Is the destination general-purpose register into which the status result of the target test is written.

Rn Is the base register.

Operation

The instruction returns the Security state and access permissions in the destination register, the contents
of which are as follows:

Table 3-16 Security state and access permissions in the destination register

Bits Name Description

[7:0] MREGION The MPU region that the address maps to. This field is 0 if MRVALID is 0.

[15:8] SREGION In an implementation without the Security Extension, this field is RAZ/WI. The SAU region that the address
maps to. This field is only valid if the instruction is executed from Secure state. This field is 0 if SRVALID is 0.

[16] MRVALID Set to 1 if the MREGION content is valid. Set to 0 if the MREGION content is invalid.

[17] SRVALID In an implementation without the Security Extension, this field is RAZ/WI. Set to 1 if the SREGION content is
valid. Set to 0 if the SREGION content is invalid.

[18] R Read accessibility. Set to 1 if the memory location can be read according to the permissions of the selected
MPU when operating in the current mode. For TTT and TTAT, this bit returns the permissions for unprivileged
access, regardless of whether the current mode is privileged or unprivileged.

[19] RW Read/write accessibility. Set to 1 if the memory location can be read and written according to the permissions of
the selected MPU when operating in the current mode.

[31:20] - RAZ/WI

[20] NSR Equal to R AND NOT S. Can be used with the LSLS (immediate) instruction to check both the MPU and SAU
or IDAU permissions. This bit is only valid if the instruction is executed from Secure state and the R field is
valid.

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-238

Non-Confidential

Table 3-16 Security state and access permissions in the destination register (continued)

Bits Name Description

[21] NSRW Equal to RW AND NOT S. Can be used with the LSLS (immediate) instruction to check both the MPU and
SAU or IDAU permissions. This bit is only valid if the instruction is executed from Secure state and the RW
field is valid.

[22] S Security. A value of 1 indicates that the memory location is Secure, and a value of 0 indicates that the memory
location is Non-secure. This bit is only valid if the instruction is executed from Secure state.

[23] IRVALID IREGION valid flag. For a Secure request, indicates the validity of the IREGION field. Set to 1 if the IREGION
content is valid. Set to 0 if the IREGION content is invalid.

This bit is always 0 if the IDAU cannot provide a region number, the address is exempt from security
attribution, or if the requesting TT instruction is executed from the Non-secure state.

[31:24] IREGION IDAU region number. Indicates the IDAU region number containing the target address. This field is 0 if
IRVALID is 0.

Invalid fields are 0.

The MREGION field is invalid and 0 if any of the following conditions are true:

• The MPU is not present or MPU_CTRL.ENABLE is 0.
• The address did not match any enabled MPU regions.
• The address matched multiple MPU regions.
• TT was executed from an unprivileged mode, or TTA is executed and Non-secure state is

unprivileged.

The R, RW, NSR, and NSRW bits are invalid and 0 if any of the following conditions are true:
• The address matched multiple MPU regions.
• TT is executed from an unprivileged mode, or TTA is executed and Non-secure state is unprivileged.

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-239

Non-Confidential

3.12.15 UDF

Permanently Undefined.

Syntax

UDF{cond}.W {#}imm

Where:

imm Is a:
• 8-bit unsigned immediate, in the range 0 to 255. The PE ignores the value of this constant.
• 16-bit unsigned immediate, in the range 0 to 65535. The PE ignores the value of this constant.

cond Arm deprecates using any c value other than AL.

Operation

Permanently Undefined generates an Undefined Instruction UsageFault exception.

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-240

Non-Confidential

3.12.16 WFE

Wait For Event.

Syntax

WFE{cond}

Where:

cond Is an optional condition code.

Operation

WFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:
• An exception, unless masked by the exception mask registers or the current priority level.
• An exception enters the Pending state, if SEVONPEND in the System Control Register is set.
• A Debug Entry request, if Debug is enabled.
• An event signaled by a peripheral or another processor in a multiprocessor system using the SEV

instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.

Condition flags

This instruction does not change the flags.

Example 3-65 Examples

WFE ; Wait for event

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-241

Non-Confidential

3.12.17 WFI

Wait for Interrupt.

Syntax

WFI{cond}

Where:

cond Is an optional condition code.

Operation
WFI is a hint instruction that suspends execution until one of the following events occurs:
• A non-masked interrupt occurs and is taken.
• An interrupt masked by PRIMASK becomes pending.
• A Debug Entry request, if Debug is enabled.

Condition flags

This instruction does not change the flags.

Example 3-66 Examples

WFI ; Wait for interrupt

3.12.18 YIELD

Yield

Syntax

YIELD{cond}

Where:

cond Is an optional condition code.

Operation

YIELD is a hint instruction that enables software with a multithreading capability to indicate to the
hardware that a task is being performed, which could be swapped out to improve overall system
performance. Hardware can use this hint to suspend and resume multiple code threads if it supports the
capability.

Condition flags

This instruction does not change the flags.

Example 3-67 Examples

YIELD; Suspend task

3 The Cortex®-M33 Instruction Set
3.12 Miscellaneous instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-242

Non-Confidential

3.13 Memory access instructions
Reference material for the Cortex‑M33 processor memory access instruction set.

3.13.1 List of memory access instructions

An alphabetically ordered list of the memory access instructions, with a brief description and link to the
syntax definition, operations, restrictions, and example usage for each instruction.

Table 3-17 Memory access instructions

Mnemonic Brief description See

ADR Generate PC-relative address 3.13.2 ADR on page 3-244

CLREX Clear Exclusive 3.13.13 CLREX on page 3-264

LDM{mode} Load Multiple registers 3.13.7 LDM and STM on page 3-254

LDA{type} Load-Acquire 3.13.10 LDA and STL on page 3-259

LDAEX Load-Acquire Exclusive 3.13.12 LDAEX and STLEX on page 3-262

LDR{type} Load Register using immediate offset 3.13.3 LDR and STR, immediate offset on page 3-245

LDR{type} Load Register using register offset 3.13.4 LDR and STR, register offset on page 3-248

LDR{type}T Load Register with unprivileged access 3.13.5 LDR and STR, unprivileged on page 3-250

LDR Load Register using PC-relative address 3.13.6 LDR, PC‑relative on page 3-252

LDRD Load Register Dual 3.13.3 LDR and STR, immediate offset on page 3-245

LDREX{type} Load Register Exclusive 3.13.11 LDREX and STREX on page 3-260

PLD Preload Data. 3.13.8 PLD on page 3-256

POP Pop registers from stack 3.13.9 PUSH and POP on page 3-257

PUSH Push registers onto stack 3.13.9 PUSH and POP on page 3-257

STL{mode} Store-Release 3.13.10 LDA and STL on page 3-259

STLEX Store Release Exclusive 3.13.12 LDAEX and STLEX on page 3-262

STM{mode} Store Multiple registers 3.13.7 LDM and STM on page 3-254

STR{type} Store Register using immediate offset 3.13.3 LDR and STR, immediate offset on page 3-245

STR{type} Store Register using register offset 3.13.4 LDR and STR, register offset on page 3-248

STR{type}T Store Register with unprivileged access 3.13.5 LDR and STR, unprivileged on page 3-250

STREX{type} Store Register Exclusive 3.13.11 LDREX and STREX on page 3-260

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-243

Non-Confidential

3.13.2 ADR

Generate PC-relative address.

Syntax

ADR{cond} Rd, label

Where:

cond Is an optional condition code.
Rd Is the destination register.
label Is a PC‑relative expression.

Operation

ADR generates an address by adding an immediate value to the PC, and writes the result to the destination
register.

ADR provides the means by which position‑independent code can be generated, because the address is
PC‑relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure that bit[0] of the
address you generate is set to1 for correct execution.

Values of label must be within the range of −4095 to +4095 from the address in the PC.
 Note

You might have to use the .W suffix to get the maximum offset range or to generate addresses that are not
word-aligned.

Restrictions

Rd must not be SP and must not be PC.

Condition flags

This instruction does not change the flags.

Example 3-68 Examples

ADR R1, TextMessage ; Write address value of a location labelled as
 ; TextMessage to R1.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-244

Non-Confidential

3.13.3 LDR and STR, immediate offset

Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax

op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset

op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed

op{type}{cond} Rt, [Rn], #offset ; post-indexed

opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, two words

opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words

opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words

Where:

op Is one of:

LDR

Load Register.

STR
Store Register.

type Is one of:

B Unsigned byte, zero extend to 32
bits on loads.

SB Signed byte, sign extend to 32 bits
(LDR only).

H Unsigned halfword, zero extend to
32 bits on loads.

SH Signed halfword, sign extend to
32 bits (LDR only).

- Omit, for word.

cond Is an optional condition code.
Rt Is the register to load or store.
Rn Is the register on which the memory address is based.
offset Is an offset from Rn. If offset is omitted, the address is the

contents of Rn.
Rt2 Is the additional register to load or store for two-word

operations.

Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

Offset addressing The offset value is added to or subtracted from the address obtained
from the register Rn. The result is used as the address for the memory
access. The register Rn is unaltered. The assembly language syntax for
this mode is:

[Rn, #offset]

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-245

Non-Confidential

Pre-indexed addressing The offset value is added to or subtracted from the address obtained
from the register Rn. The result is used as the address for the memory
access and written back into the register Rn. The assembly language
syntax for this mode is:

[Rn, #offset]!

Post-indexed addressing The address obtained from the register Rn is used as the address for the
memory access. The offset value is added to or subtracted from the
address, and written back into the register Rn. The assembly language
syntax for this mode is:

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either
be signed or unsigned.

The following table shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 3-18 Offset ranges

Instruction type Immediate offset Pre-indexed Post-indexed

Word, halfword, signed
halfword, byte, or signed byte

−255 to 4095 −255 to 255 −255 to 255

Two words multiple of 4 in the range −1020
to 1020

multiple of 4 in the range
−1020 to 1020

multiple of 4 in the range
−1020 to 1020

Restrictions

For load instructions:

• Rt can be SP or PC for word loads only.
• Rt must be different from Rt2 for two-word loads.
• Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

When Rt is PC in a word load instruction:

• Bit[0] of the loaded value must be 1 for correct execution.
• A branch occurs to the address created by changing bit[0] of the loaded value to 0.
• If the instruction is conditional, it must be the last instruction in the IT block.

For store instructions:
• Rt can be SP for word stores only.
• Rt must not be PC.
• Rn must not be PC.
• Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

Condition flags

These instructions do not change the flags.

Example 3-69 Examples

LDR R8, [R10] ; Loads R8 from the address in R10.
LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word
 ; 960 bytes above the address in R5, and
 ; increments R5 by 960.
STR R2, [R9,#const-struc] ; const-struc is an expression evaluating
 ; to a constant in the range 0-4095.
STRH R3, [R4], #4 ; Store R3 as halfword data into address in
 ; R4, then increment R4 by 4.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-246

Non-Confidential

LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 32 bytes above the
 ; address in R3, and load R9 from a word 36
 ; bytes above the address in R3.
STRD R0, R1, [R8], #-16 ; Store R0 to address in R8, and store R1 to
 ; a word 4 bytes above the address in R8,
 ; and then decrement R8 by 16.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-247

Non-Confidential

3.13.4 LDR and STR, register offset

Load and Store with register offset.

Syntax

op{type}{cond} Rt, [Rn, Rm {, LSL #n}]

Where:

op Is one of:

LDR

Load Register.

STR
Store Register.

type Is one of:

B Unsigned byte, zero extend to 32
bits on loads.

SB Signed byte, sign extend to 32 bits
(LDR only).

H Unsigned halfword, zero extend to
32 bits on loads.

SH Signed halfword, sign extend to
32 bits (LDR only).

- omit, for word.

cond Is an optional condition code.
Rt Is the register to load or store.
Rn Is the register on which the memory address is based.
Rm Is a register containing a value to be used as the offset.
LSL #n Is an optional shift, with n in the range 0-3.

Operation

LDR instructions load a register with a value from memory.

STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by
the register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords
can either be signed or unsigned.

Restrictions

In these instructions:

• Rn must not be PC.
• Rm must not be SP and must not be PC.
• Rt can be SP only for word loads and word stores.
• Rt can be PC only for word loads.

When Rt is PC in a word load instruction:
• Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-

aligned address.
• If the instruction is conditional, it must be the last instruction in the IT block.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-248

Non-Confidential

Condition flags

These instructions do not change the flags.

Example 3-70 Examples

STR R0, [R5, R1] ; Store value of R0 into an address equal to
 ; sum of R5 and R1.
LDRSB R0, [R5, R1, LSL #1] ; Read byte value from an address equal to
 ; sum of R5 and two times R1, sign extended it
 ; to a word value and put it in R0.
STR R0, [R1, R2, LSL #2] ; Stores R0 to an address equal to sum of R1
 ; and four times R2.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-249

Non-Confidential

3.13.5 LDR and STR, unprivileged

Load and Store with unprivileged access.

Syntax

op{type}T{cond} Rt, [Rn {, #offset}]

Where:

op Is one of:

LDR

Load Register.

STR
Store Register.

type Is one of:

B Unsigned byte, zero extend to 32
bits on loads.

SB Signed byte, sign extend to 32 bits
(LDR only).

H Unsigned halfword, zero extend to
32 bits on loads.

SH Signed halfword, sign extend to
32 bits (LDR only).

- Omit, for word.

cond Is an optional condition code.
Rt Is the register to load or store.
Rn Is the register on which the memory address is based.
offset Is an immediate offset from Rn and can be 0 to 255. If

offset is omitted, the address is the value in Rn.

Operation

These load and store instructions perform the same function as the memory access instructions with
immediate offset. The difference is that these instructions have only unprivileged access even when used
in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal
memory access instructions with immediate offset.

Restrictions
In these instructions:
• Rn must not be PC.
• Rt must not be SP and must not be PC.

Condition flags

These instructions do not change the flags.

Example 3-71 Examples

STRBTEQ R4, [R7] ; Conditionally store least significant byte in
 ; R4 to an address in R7, with unprivileged access.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-250

Non-Confidential

LDRHT R2, [R2, #8] ; Load halfword value from an address equal to
 ; sum of R2 and 8 into R2, with unprivileged access.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-251

Non-Confidential

3.13.6 LDR, PC-relative

Load register from memory.

Syntax

LDR{type}{cond} Rt, label

LDRD{cond} Rt, Rt2, label ; Load two words

Where:

type Is one of:

B

Unsigned byte, zero extend to 32 bits.

SB
Signed byte, sign extend to 32 bits.

H
Unsigned halfword, zero extend to 32 bits.

SH
Signed halfword, sign extend to 32 bits.

-
Omit, for word.

cond Is an optional condition code.
Rt Is the register to load or store.
Rt2 Is the second register to load or store.
label Is a PC‑relative expression.

Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is specified
by a label or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords
can either be signed or unsigned.

label must be within a limited range of the current instruction. The following table shows the possible
offsets between label and the PC.

Table 3-19 Offset ranges

Instruction type Offset range

Word, halfword, signed halfword, byte, signed byte −4095 to 4095

Two words −1020 to 1020

 Note

You might have to use the .W suffix to get the maximum offset range.

Restrictions

In these instructions:

• Rt can be SP or PC only for word loads.
• Rt2 must not be SP and must not be PC.
• Rt must be different from Rt2.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-252

Non-Confidential

When Rt is PC in a word load instruction:
• Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-

aligned address.
• If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags

These instructions do not change the flags.

Example 3-72 Examples

LDR R0, LookUpTable ; Load R0 with a word of data from an address
 ; labelled as LookUpTable.
LDRSB R7, localdata ; Load a byte value from an address labelled
 ; as localdata, sign extend it to a word
 ; value, and put it in R7.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-253

Non-Confidential

3.13.7 LDM and STM

Load and Store Multiple registers.

Syntax

op{addr_mode}{cond} Rn{!}, reglist

Where:

op Is one of:

LDM

Load Multiple registers.

STM
Store Multiple registers.

addr_mode Is any one of the following:

IA Increment address After each
access. This is the default.

DB Decrement address Before each
access.

cond Is an optional condition code.
Rn Is the register on which the memory addresses are based.
! Is an optional write-back suffix. If ! is present the final

address, that is loaded from or stored to, is written back into
Rn.

reglist Is a list of one or more registers to be loaded or stored,
enclosed in braces. It can contain register ranges. It must be
comma separated if it contains more than one register or
register range.

LDMIA and LDMFD are synonyms for LDM. LDMFD refers to its use for popping data from Full Descending
stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STMIA and STMEA are synonyms for STM. STMEA refers to its use for pushing data onto Empty Ascending
stacks.

STMFD is a synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks.

Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses
happens in order of increasing register numbers, with the lowest numbered register using the lowest
memory address and the highest number register using the highest memory address. If the write-back
suffix is specified, the value of Rn + 4 * (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals
ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in
order of decreasing register numbers, with the highest numbered register using the highest memory
address and the lowest number register using the lowest memory address. If the write-back suffix is
specified, the value of Rn - 4 * (n-1) is written back to Rn.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-254

Non-Confidential

The PUSH and POP instructions can be expressed in this form.

Restrictions

In these instructions:

• Rn must not be PC.
• reglist must not contain SP.
• In any STM instruction, reglist must not contain PC.
• In any LDM instruction, reglist must not contain PC if it contains LR.
• reglist must not contain Rn if you specify the write-back suffix.

When PC is in reglist in an LDM instruction:
• Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this

halfword-aligned address
• If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags

These instructions do not change the flags.

Example 3-73 Examples

LDM R8,{R0,R2,R9} ; LDMIA is a synonym for LDM.
STMDB R1!,{R3-R6,R11,R12}

Incorrect examples
STM R5!,{R5,R4,R9} ; Value stored for R5 is unpredictable.
LDM R2, {} ; There must be at least one register in the list.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-255

Non-Confidential

3.13.8 PLD

Preload Data.

Syntax

PLD{cond} [Rn {, #imm}] ; Immediate

PLD{cond} [Rn, Rm {, LSL #shift}] ; Register

PLD{cond} label ; Literal

Where:

cond Is an optional condition code.
Rn Is the base register.
imm Is the + or - immediate offset used to form the address. This

offset can be omitted, meaning an offset of 0.
Rm Is the optionally shifted offset register.
shift Specifies the shift to apply to the value read from <Rm>, in

the range 0-3. If this option is omitted, a shift by 0 is
assumed.

label The label of the literal item that is likely to be accessed in
the near future.

Operation

PLD signals the memory system that data memory accesses from a specified address are likely in the near
future. If the address is cacheable then the memory system responds by pre-loading the cache line
containing the specified address into the data cache. If the address is not cacheable, or the data cache is
disabled, this instruction behaves as no operation.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-256

Non-Confidential

3.13.9 PUSH and POP

Push registers onto, and pop registers off a full-descending stack.

Syntax

PUSH{cond} reglist

POP{cond} reglist

Where:

cond Is an optional condition code.
reglist Is a non-empty list of registers, enclosed in braces. It can

contain register ranges. It must be comma separated if it
contains more than one register or register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access
based on SP, and with the final address for the access written back to the SP. PUSH and POP are the
preferred mnemonics in these cases.

Operation

PUSH stores registers on the stack, with the lowest numbered register using the lowest memory address
and the highest numbered register using the highest memory address.

POP loads registers from the stack, with the lowest numbered register using the lowest memory address
and the highest numbered register using the highest memory address.

PUSH uses the value in the SP register minus four as the highest memory address, POP uses the value in
the SP register as the lowest memory address, implementing a full-descending stack. On completion,
PUSH updates the SP register to point to the location of the lowest store value, POP updates the SP register
to point to the location above the highest location loaded.

If a POP instruction includes PC in its reglist, a branch to this location is performed when the POP
instruction has completed. Bit[0] of the value read for the PC is used to update the APSR T-bit. This bit
must be 1 to ensure correct operation.

Restrictions

In these instructions:

• reglist must not contain SP.
• For the PUSH instruction, reglist must not contain PC.
• For the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:
• Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this

halfword-aligned address.
• If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-257

Non-Confidential

Example 3-74 Examples

PUSH {R0,R4-R7} ; Push R0,R4,R5,R6,R7 onto the stack

PUSH {R2,LR} ; Push R2 and the link-register onto the stack

POP {R0,R6,PC} ; Pop r0,r6 and PC from the stack, then branch to the new PC.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-258

Non-Confidential

3.13.10 LDA and STL

Load-Acquire and Store-Release.

Syntax

op{type}{cond} Rt, [Rn]

Where:

op Is one of:

LDA

Load-Acquire Register.

STL
Store-Release Register.

type Is one of:

B Unsigned byte, zero extend to 32
bits on loads.

H Unsigned halfword, zero extend to
32 bits on loads..

cond Is an optional condition code.
Rt Is the register to load or store.
Rn Is the register on which the memory address is based.

Operation

LDA, LDAB, and LDAH loads word, byte, and halfword data respectively from a memory address. If any
loads or stores appear after a load-acquire in program order, then all observers are guaranteed to observe
the load-acquire before observing the loads and stores. Loads and stores appearing before a load-acquire
are unaffected.

STL, STLB, and STLH stores word, byte, and halfword data respectively to a memory address. If any loads
or stores appear before a store-release in program order, then all observers are guaranteed to observe the
loads and stores before observing the store-release. Loads and stores appearing after a store-release are
unaffected.

In addition, if a store-release is followed by a load-acquire, each observer is guaranteed to observe them
in program order.

There is no requirement that a load-acquire and store-release be paired.

All store-release operations are multi-copy atomic, meaning that in a multiprocessing system, if one
observer observes a write to memory because of a store-release operation, then all observers observe it.
Also, all observers observe all such writes to the same location in the same order.

Restrictions

The address specified must be naturally aligned, or an alignment fault is generated.

The PC must not use SP for Rt.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-259

Non-Confidential

3.13.11 LDREX and STREX

Load and Store Register Exclusive.

Syntax

LDREX{cond} Rt, [Rn {, #offset}]

STREX{cond} Rd, Rt, [Rn {, #offset}]

LDREXB{cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]

LDREXH{cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

Where:

cond Is an optional condition code.
Rd Is the destination register for the returned status.
Rt Is the register to load or store.
Rn Is the register on which the memory address is based.
offset Is an optional offset applied to the value in Rn. If offset is

omitted, the address is the value in Rn.

Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory
address. The address used in any Store-Exclusive instruction must be the same as the address in the most
recently executed Load-exclusive instruction. The value stored by the Store-Exclusive instruction must
also have the same data size as the value loaded by the preceding Load-exclusive instruction. This means
software must always use a Load-exclusive instruction and a matching Store-Exclusive instruction to
perform a synchronization operation.

If a Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not
perform the store, it writes 1 to its destination register. If the Store-Exclusive instruction writes 0 to the
destination register, it is guaranteed that no other process in the system has accessed the memory location
between the Load-exclusive and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and
Store-Exclusive instruction to a minimum.

 Note

The result of executing a Store-Exclusive instruction to an address that is different from that used in the
preceding Load-Exclusive instruction is unpredictable.

Restrictions
In these instructions:
• Do not use PC.
• Do not use SP for Rd and Rt.
• For STREX, Rd must be different from both Rt and Rn.
• The value of offset must be a multiple of four in the range 0-1020.

Condition flags

These instructions do not change the flags.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-260

Non-Confidential

Example 3-75 Examples

 MOV R1, #0x1 ; Initialize the ‘lock taken’ value
try
 LDREX R0, [LockAddr] ; Load the lock value
 CMP R0, #0 ; Is the lock free?
 ITT EQ ; IT instruction for STREXEQ and CMPEQ
 STREXEQ R0, R1, [LockAddr] ; Try and claim the lock
 CMPEQ R0, #0 ; Did this succeed?
 BNE try ; No – try again
 ; Yes – we have the lock.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-261

Non-Confidential

3.13.12 LDAEX and STLEX

Load-Acquire and Store Release Exclusive.

Syntax

op{type} Rt, [Rn]

Where:

op Is one of:

LDAEX

Load Register.

STLEX
Store Register.

type Is one of:

B Unsigned byte, zero extend to 32 bits on loads.

H Unsigned halfword, zero extend to 32 bits on loads..

cond is an optional condition code.
Rd is the destination register for the returned status.
Rt is the register to load or store.
Rn is the register on which the memory address is based.

Operation

Load Register Exclusive calculates an address from a base register value and an immediate offset, loads a
word from memory, writes it to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing core in a global monitor.

• Causes the core that executes to indicate an active exclusive access in the local monitor.
• If any loads or stores appear after LDAEX in program order, then all observers are guaranteed to

observe the LDAEX before observing the loads and stores. Loads and stores appearing before LDAEX
are unaffected.

Store Register Exclusive calculates an address from a base register value and an immediate offset, and
stores a word from a register to memory If the executing core has exclusive access to the memory
addressed:
• Rd is the destination general-purpose register into which the status result of the store exclusive is

written, encoded in the Rd field. The value returned is:

0 If the operation updates memory.
1 If the operation fails to update memory.

• If any loads or stores appear before STLEX in program order, then all observers are guaranteed to
observe the loads and stores before observing the store-release. Loads and stores appearing after
STLEX are unaffected.

 Note

All store-release operations are multi-copy atomic.

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-262

Non-Confidential

Restrictions
In these instructions:
• Do not use PC.
• Do not use SP for Rd and Rt.
• For STLEX, Rd must be different from both Rt and Rn.

Condition flags

These instructions do not change the flags.

Example 3-76 Examples

 lock
 MOV R1, #0x1 ; Initialize the ‘lock taken’ value try
 LDAEX R0, [LockAddr] ; Load the lock value
 CMP R0, #0 ; Is the lock free?
 BNE try ; No – try again
 STREX R0, R1, [LockAddr] ; Try and claim the lock
 CMP R0, #0 ; Did this succeed?
 BNE try ; No – try again
 ; Yes – we have the lock.
 unlock

 MOV r1, #0
 STL r1, [r0]

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-263

Non-Confidential

3.13.13 CLREX

Clear Exclusive.

Syntax

CLREX{cond}

Where:

cond Is an optional condition code.

Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination register and
fail to perform the store. CLREX enables compatibility with other Arm Cortex processors that have to
force the failure of the store exclusive if the exception occurs between a load-exclusive instruction and
the matching store-exclusive instruction in a synchronization operation. In Cortex‑M processors, the
local exclusive access monitor clears automatically on an exception boundary, so exception handlers
using CLREX are optional.

Condition flags

This instruction does not change the flags.

Example 3-77 Examples

CLREX

3 The Cortex®-M33 Instruction Set
3.13 Memory access instructions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

3-264

Non-Confidential

Chapter 4
The Cortex®-M33 Peripherals

This chapter describes the Cortex‑M33 peripherals.

It contains the following sections:
• 4.1 About the Cortex®‑M33 peripherals on page 4-266.
• 4.2 System Control Block on page 4-267.
• 4.3 System timer, SysTick on page 4-300.
• 4.4 Nested Vectored Interrupt Controller on page 4-304.
• 4.5 Security Attribution and Memory Protection on page 4-312.
• 4.6 Floating-Point Unit on page 4-327.

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-265

Non-Confidential

4.1 About the Cortex®-M33 peripherals
The address map of the Private peripheral bus (PPB).

Table 4-1 Core peripheral register regions

Address Core peripheral Description

0xE000E000-0xE000E00F System control and ID registers Includes the Interrupt Controller Type and Auxiliary Control
registers

0xE000ED00-0xE000ED8F 4.2.1 System control block registers summary on page 4-267

0xE000EDF0-0xE000EEFF Debug registers in the SCS

0xE000EF00-0xE000EF8F Includes the SW Trigger Interrupt Register

0xE000E010-0xE000E0FF System timer 4.3 System timer, SysTick on page 4-300

0xE000E100-0xE000ECFF Nested Vectored Interrupt Controller
registers

4.4 Nested Vectored Interrupt Controller on page 4-304

0xE000ED00-0xE000EDEF Security Attribution Unit 4.5.1 Security Attribution Unit on page 4-312

-

0xE000ED90-0xE000EDB8 Memory Protection Unit 4.5.9 Memory Protection Unit on page 4-317m

0xE000EF30-0xE000EF44 Floating-Point Unit 4.6.1 Floating-Point Unit on page 4-327

In register descriptions:
• The register type is described as follows:

RW Read and write.
RO Read-only.
WO Write-only.
RAZ Read As Zero.
WI Write Ignored.

• The required privilege gives the privilege level that is required to access the register, as follows:

Privileged Only privileged software can access the register.
Unprivileged Both unprivileged and privileged software can access the register.

• In an implementation with the Security Extension, the peripheral registers are banked in Secure and
Non-secure state. The Non-secure registers can be accessed in Secure state by using an aliased
address at offset 0x00020000 from the normal register address. The alias locations are always
RAZ/WI if accessed from Non-secure state.

 Note

Attempting to access a privileged register from unprivileged software results in a BusFault.

m Software can read the MPU Type Register at 0xE000ED90 to test for the presence of a Memory Protection Unit (MPU).

4 The Cortex®-M33 Peripherals
4.1 About the Cortex®-M33 peripherals

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-266

Non-Confidential

4.2 System Control Block
The System Control Block (SCB) provides system implementation information and system control that
includes configuration, control, and reporting of system exceptions.

4.2.1 System control block registers summary

Reference information for the SCB registers.

Table 4-2 Summary of the system control block registers

Address Name Type Required

privilege

Reset

value

Description

0xE000E008 ACTLR RW Privileged 0x00000000 4.2.2 Auxiliary Control Register on page 4-268

0xE000ED00 CPUID RO Privileged 0x410FD214 4.2.3 CPUID Base Register on page 4-269

0xE000ED04 ICSR RWn Privileged 0x00000000 4.2.4 Interrupt Control and State Register on page 4-270

0xE000ED08 VTOR RW Privileged UNKNOWN 4.2.5 Vector Table Offset Register on page 4-276

0xE000ED0C AIRCR RWn Privileged 0xFA050000 4.2.6 Application Interrupt and Reset Control Register
on page 4-276

0xE000ED10 SCR RW Privileged 0x00000000 4.2.7 System Control Register on page 4-279

0xE000ED14 CCR RW Privileged 0x00000201 4.2.8 Configuration and Control Register on page 4-281

0xE000ED18 SHPR1 RW Privileged 0x00000000 System Handler Priority Register 1 on page 4-284

0xE000ED1C SHPR2 RW Privileged 0x00000000 System Handler Priority Register 2 on page 4-284

0xE000ED20 SHPR3 RW Privileged 0x00000000 System Handler Priority Register 3 on page 4-284

0xE000ED24 SHCSR RW Privileged 0x00000000 4.2.10 System Handler Control and State Register on page 4-286

0xE000ED28 CFSR RW Privileged 0x00000000 4.2.11 Configurable Fault Status Register on page 4-289

0xE000ED28 MMFSRo RW Privileged 0x00 MemManage Fault Status Register on page 4-289

0xE000ED29 BFSRo RW Privileged 0x00 BusFault Status Register on page 4-291

0xE000ED2A UFSRo RW Privileged 0x0000 UsageFault Status Register on page 4-292

0xE000ED2C HFSR RW Privileged 0x00000000 4.2.12 HardFault Status Register on page 4-295

0xE000ED34 MMFAR RW Privileged UNKNOWN 4.2.13 MemManage Fault Address Register on page 4-296

0xE000ED38 BFAR RW Privileged UNKNOWN 4.2.14 BusFault Address Register on page 4-296

0xE000ED3C AFSR RAZ/WI Privileged - Auxiliary Fault Status Register not implemented

0xE000ED88 CPACR RW Privileged 0x00000000 4.2.15 Coprocessor Access Control Register on page 4-296

0xE000ED8C NSACR RW Privileged UNKNOWN 4.2.16 Non-secure Access Control Register on page 4-297

n See the register description for more information.
o A subregister of the CFSR.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-267

Non-Confidential

4.2.2 Auxiliary Control Register

The ACTLR provides disable bits for the FPU exception outputs, dual-issue functionality, flushing of the
trace output from the ITM and DWT, Exclusive instruction control, out-of-order floating point
instructions, and handling interruptible instructions.

By default, this register is set to provide optimum performance from the Cortex‑M33 processor and does
not normally require modification.

See 4.2.1 System control block registers summary on page 4-267 for the ACTLR attributes.

In an implementation with the Security Extension, this register is banked between Security states.

The ACTLR bit assignments are:

31 30 29

UNK/SBZP

28 13 12 11 10 9

UNK/SBZP

8 3 2 1 0

UNK/SBZP
EXTEXCLALL

DISITMATBFLUSH
UNK/SBZP

FPEXCODIS
DISOOFP

DISFOLD
UNK/SBZP
DISMCYCINT

Table 4-3 ACTLR bit assignments

Bits Name Function

[31:30] - Reserved, UNK/SBZP

[29] EXTEXCLALL 0 Normal operation. Memory requests on Code region AHB (C-AHB)
or System AHB (S-AHB) interfaces associated with LDREX and
STREX instructions only assert HEXCL and respond to HEXOKAY
if the address is shareable.

1 All memory requests on C-AHB or S-AHB interfaces associated with
LDREX and STREX instructions assert HEXCL and respond to
HEXOKAY irrespective of the shareable attribute associated with the
address.

Setting EXTEXCLALL allows external exclusive operations to be used in a configuration with no
MPU. This is because the default memory map does not include any shareable Normal memory.

[28:13] - Reserved. UNK/SBZP

[12] DISITMATBFLUSH Disables ITM and DWT ATB flush:

0 Normal operation.

1 ITM and DWT ATB flush disabled. AFVALID is ignored and
AFREADY is held HIGH.

[11] - Reserved. UNK/SBZP

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-268

Non-Confidential

Table 4-3 ACTLR bit assignments (continued)

Bits Name Function

[10] FPEXCODIS Disables FPU exception outputs:

0 Normal operation.

1 FPU exception outputs are disabled.

[9] DISOOFP Disables floating-point instructions completing out of order with respect to the non-floating point
instructions:

0 Normal operation.

1 Floating-point instructions completing out of order are disabled.

[8:3] - Reserved. UNK/SBZP

[2] DISFOLD Disables dual-issue functionality:

0 Normal operation.

1 Dual-issue functionality is disabled. Setting this bit reduces
performance.

[1] - Reserved. UNK/SBZP

[0] DISMCYCINT Disables interruption of multi-cycle instructions:

0 Normal operation.

1 Disables interruption of multi-cycle instructions. This increases the
interrupt latency of the processor because load, store, multiply, and
divide operations complete before interrupt stacking occurs.

4.2.3 CPUID Base Register

The CPUID Base Register contains the processor part number, version, and implementation information.

See 4.2.1 System control block registers summary on page 4-267 for the CPUID attributes.

In an implementation with the Security Extension, this register is not banked between Security states.

The bit assignments are:

31 16 15 4 3 0

Implementer RevisionPartNo

24 23 20 19

Variant Constant

Table 4-4 CPUID bit assignments

Bits Name Function

[31:24] Implementer Implementer code:

0x41 Arm

[23:20] Variant Variant number, the n value in the rnpm product revision identifier:

0x0 Revision 0

[19:16] Constant Reads as 0xF

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-269

Non-Confidential

Table 4-4 CPUID bit assignments (continued)

Bits Name Function

[15:4] PartNo Part number of the processor:

0xD21 Cortex‑M33

[3:0] Revision Revision number, the m value in the rnpm product revision identifier:

0x4 Patch 4.

4.2.4 Interrupt Control and State Register

The ICSR provides a set-pending bit for the non-maskable interrupt exception, and set-pending and
clear-pending bits for the PendSV and SysTick exceptions.

The ICSR indicates:

• The exception number of the exception being processed.
• Whether there are pre-empted active exceptions.
• The exception number of the highest priority pending exception
• Whether any interrupts are pending.

See 4.2.1 System control block registers summary on page 4-267 for the ICSR attributes.

In an implementation with the Security Extension, this register is banked between Security states on a bit
by bit basis.

The ICSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 8 0

VECTPENDING VECTACTIVE

RES0
RETTOBASE

RES0
ISRPENDING
Reserved for Debug use
STTNS
PENDSTCLR

PENDSTSET
PENDSVCLR
PENDSVSET

RES0

PENDNMISET
PENDNMICLR

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-270

Non-Confidential

Table 4-5 ICSR bit assignments without the Security Extension

Bits Name Type Function

[31] PENDNMISET RW NMI set-pending bit.

Write:

0 No effect.

1 Changes NMI exception state to pending.

Read:

0 NMI exception is not pending.

1 NMI exception is pending.

[30] PENDNMICLR WO Pend NMI clear bit.

Write:

0 No effect.

1 Clear pending status.

This bit is write-one-to-clear. Writes of zero are ignored.

[29] - - Reserved, RES0.

[28] PENDSVSET RW PendSV set-pending bit.

Write:

0 No effect.

1 Changes PendSV exception state to pending.

Read:

0 PendSV exception is not pending.

1 PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to pending.

[27] PENDSVCLR WO PendSV clear-pending bit.

Write:

0 No effect.

1 Removes the pending state from the PendSV exception.

[26] PENDSTSET RW SysTick exception set-pending bit.

Write:

0 No effect.

1 Changes SysTick exception state to pending.

Read:

0 SysTick exception is not pending.

1 SysTick exception is pending.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-271

Non-Confidential

Table 4-5 ICSR bit assignments without the Security Extension (continued)

Bits Name Type Function

[25] PENDSTCLR WO SysTick exception clear-pending bit.

Write:

0 No effect.

1 Removes the pending state from the SysTick exception.

This bit is WO. On a register read, its value is UNKNOWN.

[24] STTNS RO RES0.

[23] Reserved for Debug
use

RO This bit is reserved for Debug use and reads-as-zero when the processor is not in Debug.

[22] ISRPENDING RO Interrupt pending flag, excluding NMI and Faults:

0 Interrupt not pending.

1 Interrupt pending.

[21] - - Reserved, RES0.

[20:12] VECTPENDING RO Indicates the exception number of the highest priority pending enabled exception:

0 No pending exceptions.

Nonzero The exception number of the highest priority pending enabled
exception.

The value that this field indicates includes the effect of the BASEPRI and FAULTMASK
registers, but not any effect of the PRIMASK register.

[11] RETTOBASE RO Indicates whether there are pre-empted active exceptions:

0 There are pre-empted active exceptions to execute.

1 There are no active exceptions, or the currently executing
exception is the only active exception.

[10:9] - - Reserved, RES0.

[8:0] VECTACTIVEp RO Contains the active exception number:

0 Thread mode.

1 The exception numberp of the currently active exception.

 Note

Subtract 16 from this value to obtain the CMSIS IRQ number required to index into the
Interrupt Clear-Enable, Set-Enable, Clear-Pending, Set-Pending, or Priority Registers, see
Interrupt Program Status Register on page 2-25.

p This is the same value as IPSR bits[8:0], see Interrupt Program Status Register on page 2-25.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-272

Non-Confidential

Table 4-6 ICSR bit assignments with the Security Extension

Bits Name Type Function

[31] PENDNMISET RW NMI set-pending bit.

Write:

0 No effect.

1 Changes NMI exception state to pending.

Read:

0 NMI exception is not pending.

1 NMI exception is pending.

A read of this bit by the NMI exception handler returns 1 only if the NMI signal is reasserted
while the processor is executing that handler.

[30] PENDNMICLR WO Pend NMI clear bit.

Write:

0 No effect.

1 Clear pending status.

This bit is write-one-to-clear. Writes of zero are ignored.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

[29] - - Reserved, RES0.

[28] PENDSVSET RW PendSV set-pending bit.

Write:

0 No effect.

1 Changes PendSV exception state to pending.

Read:

0 PendSV exception is not pending.

1 PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to pending.

This bit is banked between Security states.

[27] PENDSVCLR WO PendSV clear-pending bit.

Write:

0 No effect.

1 Removes the pending state from the PendSV exception.

This bit is banked between Security states.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-273

Non-Confidential

Table 4-6 ICSR bit assignments with the Security Extension (continued)

Bits Name Type Function

[26] PENDSTSET RW SysTick exception set-pending bit.

Write:

0 No effect.

1 Changes SysTick exception state to pending.

Read:

0 SysTick exception is not pending.

1 SysTick exception is pending.

This bit is banked between Security states.

[25] PENDSTCLR WO SysTick exception clear-pending bit.

Write:

0 No effect.

1 Removes the pending state from the SysTick exception.

This bit is WO. On a register read, its value is UNKNOWN.

This bit is not banked between Security states.

[24] STTNS RO Reserved, RES0.

[23] Reserved for Debug
use

RO This bit is reserved for Debug use and reads-as-zero when the processor is not in Debug.

[22] ISRPENDING RO Interrupt pending flag, excluding NMI and Faults:

0 Interrupt not pending.

1 Interrupt pending.

This bit is not banked between Security states.

[21] - - Reserved, RES0.

[20:12] VECTPENDING RO Indicates the exception number of the highest priority pending enabled exception:

0 No pending exceptions.

Nonzero The exception number of the highest priority pending enabled
exception.

The value that this field indicates includes the effect of the BASEPRI and FAULTMASK
registers, but not any effect of the PRIMASK register.

This field is not banked between Security states.

[11] RETTOBASE RO Indicates whether there are pre-empted active exceptions:

0 There are pre-empted active exceptions to execute.

1 There are no active exceptions, or the currently executing
exception is the only active exception.

This bit is not banked between Security states.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-274

Non-Confidential

Table 4-6 ICSR bit assignments with the Security Extension (continued)

Bits Name Type Function

[10:9] - - Reserved, RES0.

[8:0] VECTACTIVEq RO Contains the active exception number:

0 Thread mode.

1 The exception numberq of the currently active exception.

 Note

Subtract 16 from this value to obtain the CMSIS IRQ number required to index into the
Interrupt Clear-Enable, Set-Enable, Clear-Pending, Set-Pending, or Priority Registers, see
Interrupt Program Status Register on page 2-25.

This field is not banked between Security states.

When you write to the ICSR, the effect is UNPREDICTABLE if you:
• Write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit.
• Write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

q This is the same value as IPSR bits[8:0], see Interrupt Program Status Register on page 2-25.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-275

Non-Confidential

4.2.5 Vector Table Offset Register

The VTOR indicates the offset of the vector table base address from memory address 0x00000000.

See 4.2.1 System control block registers summary on page 4-267 for the VTOR attributes.

In an implementation with the Security Extension, this register is not banked between Security states.

The VTOR bit assignments are:

31 7 6 0

RES0TBLOFF

Table 4-7 VTOR bit assignments

Bits Name Function

[31:7] TBLOFF Vector table base offset field. It contains bits[29:7] of the offset of the table base from the bottom of the memory
map.

[6:0] - Reserved, RES0.

When setting TBLOFF, you must align the offset to the number of exception entries in the vector table.
 Note

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

4.2.6 Application Interrupt and Reset Control Register

The AIRCR provides sets or returns interrupt control and reset configuration.

See 4.2.1 System control block registers summary on page 4-267 for the AIRCR attributes.

To write to this register, you must write 0x5FA to the VECTKEY field, otherwise the processor ignores
the write.

In an implementation with the Security Extension, this register is banked between Security states on a bit
by bit basis.

The AIRCR bit assignments are:

Read: VECTKEYSTAT
Write: VECTKEY

31 16 15 14 13

RES0

12 11 10 8

RES0

7 4 3 2 1 0

ENDIANNESS
PRIS

BFHFNMINS
PRIGROUP

SYSRESETREQS
SYSRESETREQ

VECTCLRACTIVE
RES0

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-276

Non-Confidential

Table 4-8 AIRCR bit assignments without the Security Extension

Bits Name Type Function

[31:16] Read: VECTKEYSTAT

Write: VECTKEY

RW Register key:

Reads as 0xFA05.

On writes, write 0x5FA to VECTKEY, otherwise the write is ignored.

[15] ENDIANNESS RO Data endianness bit:

0 Little-endian.

1 Big-endian.

[14] PRIS RAZ/WI -

[13] BFHFNMINS RAO/WI -

[12:11] - - Reserved, RES0.

[10:8] PRIGROUP RW Interrupt priority grouping field. This field determines the split of group priority from
subpriority, see Binary point on page 4-278.

[7:4] - - Reserved, RES0.

[3] SYSRESETREQS RAZ/WI -

[2] SYSRESETREQ RAZ/WI -

[1] VECTCLRACTIVE WO Reserved for Debug use. This bit reads as 0. When writing to the register you must write
0 to this bit, otherwise behavior is UNPREDICTABLE.

[0] - - Reserved, RES0.

Table 4-9 AIRCR bit assignments with the Security Extension

Bits Name Type Function

[31:16] Read: VECTKEYSTAT

Write: VECTKEY

RW Register key:

Reads as 0xFA05.

On writes, write 0x5FA to VECTKEY, otherwise the write is
ignored.

This Field is not banked between Security states.

[15] ENDIANNESS RO Data endianness bit:

0 Little-endian.

1 Big-endian.

This bit is not banked between Security states.

[14] PRIS RW from Secure state and
RAZ/WI from Non-secure
state.

Prioritize Secure exceptions. The value of this bit defines whether
Secure exception priority boosting is enabled.

0 Priority ranges of Secure and Non-secure exceptions are
identical.

1 Non-secure exceptions are de-prioritized.

This bit is not banked between Security states.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-277

Non-Confidential

Table 4-9 AIRCR bit assignments with the Security Extension (continued)

Bits Name Type Function

[13] BFHFNMINS RW from Secure-state and
RO from Non-secure state.

BusFault, HardFault, and NMI Non-secure enable. The value of this
bit defines whether BusFault and NMI exceptions are Non-secure,
and whether exceptions target the Non-secure HardFault exception.

The possible values are:

0 BusFault, HardFault, and NMI are Secure.

1 BusFault and NMI are Non-secure and exceptions can target
Non-secure HardFault.

This bit resets to 0.

This bit is not banked between Security states.

[12:11] - - Reserved, RES0.

[10:8] PRIGROUP RW Interrupt priority grouping field. This field determines the split of
group priority from subpriority, see Binary point on page 4-278.

This bit is banked between Security states.

[7:4] - - Reserved, RES0.

[3] SYSRESETREQS RW from Secure State and
RAZ/WI from Non-secure
state.

System reset request, Secure state only. The value of this bit defines
whether the SYSRESETREQ bit is functional for Non-secure use:

0 SYSRESETREQ functionality is available to both Security
states.

1 SYSRESETREQ functionality is only available to Secure state.

This bit resets to zero on a Warm reset.

This bit is not banked between Security states.

[2] SYSRESETREQ RW if SYSRESETREQS is
0.

When SYSRESETREQS is
set to 1, from Non-secure
state this bit acts as RAZ/WI.

System reset request. This bit allows software or a debugger to
request a system reset:

0 Do not request a system reset.

1 Request a system reset.

This bit is not banked between Security states.

-

[1] VECTCLRACTIVE WO Reserved for Debug use. This bit reads as 0. When writing to the
register you must write 0 to this bit, otherwise behavior is
UNPREDICTABLE.

This bit is not banked between Security states.

[0] - - Reserved, RES0.

Binary point

The PRIGROUP field indicates the position of the binary point that splits the PRI_n fields in the
Interrupt Priority Registers into separate group priority and subpriority fields.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-278

Non-Confidential

The following table shows how the PRIGROUP value controls this split.

Table 4-10 Priority grouping

Interrupt priority level value, PRI_n[7:0] Number of

PRIGROUP Binary pointr Group priority bits Subpriority bits Group priorities Subpriorities

0b000 bxxxxxxx.y [7:1] [0] 128 2

0b001 bxxxxxx.yy [7:2] [1:0] 64 4

0b010 bxxxxx.yyy [7:3] [2:0] 32 8

0b011 bxxxx.yyyy [7:4] [3:0] 16 16

0b100 bxxx.yyyyy [7:5] [4:0] 8 32

0b101 bxx.yyyyyy [7:6] [5:0] 4 64

0b110 bx.yyyyyyy [7] [6:0] 2 128

0b111 b.yyyyyyyy None [7:0] 1 256

 Note

Determining pre-emption of an exception uses only the group priority field.

4.2.7 System Control Register

The SCR controls features of entry to and exit from low-power state.

See 4.2.1 System control block registers summary on page 4-267 for the SCR attributes.

In an implementation with the Security Extension, this register is banked between Security states on a bit
by bit basis.

The bit assignments are:

RES0

31 5 4 3 2 1 0

SEVONPEND
SLEEPDEEPS

SLEEPDEEP
SLEEPONEXIT

RES0

r PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field bit.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-279

Non-Confidential

Table 4-11 SCR bit assignments without the Security Extension

Bits Name Function

[31:5] - Reserved, RES0.

[4] SEVONPEND Send Event on Pending bit:

0 Only enabled interrupts or events can wakeup the processor, disabled interrupts are excluded.

1 Enabled events and all interrupts, including disabled interrupts, can wakeup the processor.

When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the
processor is not waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.

[3] SLEEPDEEPS RAZ/WI.

[2] SLEEPDEEP Controls whether the processor uses sleep or deep sleep as its low-power mode:

0 Sleep.

1 Deep sleep.

[1] SLEEPONEXIT Indicates sleep-on-exit when returning from Handler mode to Thread mode:

0 Do not sleep when returning to Thread mode.

1 Enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.

[0] - Reserved, RES0.

Table 4-12 SCR bit assignments with the Security Extension

Bits Name Function

[31:5] - Reserved, RES0.

[4] SEVONPEND Send Event on Pending bit:

0 Only enabled interrupts or events can wakeup the processor, disabled interrupts are excluded.

1 Enabled events and all interrupts, including disabled interrupts, can wakeup the processor.

When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the
processor is not waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.

This bit is banked between Security states.

[3] SLEEPDEEPS Controls whether the SLEEPDEEP bit is only accessible from the Secure state:

0 The SLEEPDEEP bit accessible from both Security states.

1 The SLEEPDEEP bit behaves as RAZ/WI when accessed from the Non-secure state.

This bit in only accessible from the Secure state, and behaves as RAZ/WI when accessed from the Non-
secure state.

This bit is not banked between Security states.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-280

Non-Confidential

Table 4-12 SCR bit assignments with the Security Extension (continued)

Bits Name Function

[2] SLEEPDEEP Controls whether the processor uses sleep or deep sleep as its low-power mode:

0 Sleep.

1 Deep sleep.

This bit is not banked between Security states.

[1] SLEEPONEXIT Indicates sleep-on-exit when returning from Handler mode to Thread mode:

0 Do not sleep when returning to Thread mode.

1 Enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.

This bit is banked between Security states.

[0] - Reserved, RES0.

4.2.8 Configuration and Control Register

The CCR is a read-only register and indicates some aspects of the behavior of the processor.

See 4.2.1 System control block registers summary on page 4-267 for the CCR attributes.

In an implementation with the Security Extension, this register is banked between Security states on a bit
by bit basis.

The bit assignments for CCR are:

RES0

31 19 18 17 16

RES0

15 11 10 9 8

RES0

7 5 4 3 2 1 0

BP
IC

DC
STKOFHFNMIGN

RES1

DIV_0_TRP
UNALIGN_TRP

RES0
USERSETMPEND

BFHFNMIGN

RES1

Table 4-13 CCR bit assignments without the Security Extension

Bits Name Function

[31:19] - Reserved, RES0

[18] BP RAZ/WI.

[17] IC RAZ/WI.

[16] DC RAZ/WI.

[15:11] - Reserved, RES0

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-281

Non-Confidential

Table 4-13 CCR bit assignments without the Security Extension (continued)

Bits Name Function

[10] STKOFHFNMIGN Controls the effect of a stack limit violation while executing at a requested priority less than 0.

0 Stack limit faults not ignored.

1 Stack limit faults at requested priorities of less than 0 ignored.

[9] - Reserved, RES1.

[8] BFHFNMIGN Determines the effect of precise bus faults on handlers running at a requested priority less than 0.

0 Precise bus faults are not ignored.

1 Precise bus faults at requested priorities of less than 0 are ignored.

[7:5] - Reserved, RES0.

[4] DIV_0_TRP Divide by zero trap. Controls the generation of a DIVBYZERO UsageFault when attempting to perform
integer division by zero.

0 DIVBYZERO UsageFault generation disabled.

1 DIVBYZERO UsageFault generation enabled.

[3] UNALIGN_TRP Controls the trapping of unaligned word or halfword accesses.

0 Unaligned trapping disabled.

1 Unaligned trapping enabled.

[2] - Reserved, RES0.

[1] USERSETMPEND User set main pending. Determines whether unprivileged accesses are permitted to pend interrupts from
the STIR.

0 Unprivileged accesses to the STIR generate a fault.

1 Unprivileged accesses to the STIR are permitted.

[0] - Reserved, RES1.

Table 4-14 CCR bit assignments with the Security Extension

Bits Name Function

[31:19] - Reserved, RES0

[18] BP RAZ/WI.

[17] IC RAZ/WI.

[16] DC RAZ/WI.

[15:11] - Reserved, RES0

[10] STKOFHFNMIGN Controls the effect of a stack limit violation while executing at a requested priority less than 0.

0 Stack limit faults not ignored.

1 Stack limit faults at requested priorities of less than 0 ignored.

This bit is banked between Security states.

[9] - Reserved, RES1.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-282

Non-Confidential

Table 4-14 CCR bit assignments with the Security Extension (continued)

Bits Name Function

[8] BFHFNMIGN Determines the effect of precise bus faults on handlers running at a requested priority less than 0.

0 Precise bus faults are not ignored.

1 Precise bus faults at requested priorities of less than 0 are ignored.

This bit is not banked between Security states.

[7:5] - Reserved, RES0.

[4] DIV_0_TRP Divide by zero trap. Controls the generation of a DIVBYZERO UsageFault when attempting to perform
integer division by zero.

0 DIVBYZERO UsageFault generation disabled.

1 DIVBYZERO UsageFault generation enabled.

This bit is banked between Security states.

[3] UNALIGN_TRP Controls the trapping of unaligned word or halfword accesses.

0 Unaligned trapping disabled.

1 Unaligned trapping enabled.

This bit is banked between Security states.

[2] - Reserved, RES0.

[1] USERSETMPEND User set main pending. Determines whether unprivileged accesses are permitted to pend interrupts from
the STIR.

0 Unprivileged accesses to the STIR generate a fault.

1 Unprivileged accesses to the STIR are permitted.

This bit is banked between Security states.

[0] - Reserved, RES1.

4.2.9 System Handler Priority Registers

The SHPR1-SHPR3 registers set the priority level, 0 to 255 of the exception handlers that have
configurable priority. SHPR1-SHPR3 are byte accessible.

See 4.2.1 System control block registers summary on page 4-267 for the SHPR1-SHPR3 attributes.

In an implementation with the Security Extension, These registers are banked between Security states on
a bit field by bit field basis.

The system fault handlers and the priority field and register for each handler are:

Table 4-15 System fault handler priority fields

Handler Field Register description

MemManage PRI_4 System Handler Priority Register 1 on page 4-284

BusFault PRI_5

UsageFault PRI_6

SecureFault PRI_7

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-283

Non-Confidential

Table 4-15 System fault handler priority fields (continued)

Handler Field Register description

SVCall PRI_11 System Handler Priority Register 2 on page 4-284

PendSV PRI_14 System Handler Priority Register 3 on page 4-284

SysTick PRI_15

Each PRI_n field is 8 bits wide, but the processor implements only bits[7:M] of each field, and
bits[M-1:0] read as zero and ignore writes.

System Handler Priority Register 1

Bit assignments for the SHPR1 register.

PRI_7

31 24

PRI_6

23 16

PRI_5

15 8

PRI_4

7 0

Table 4-16 SHPR1 register bit assignments

Bits Name Function Security state

[31:24] PRI_7 Priority of system handler 7,
SecureFault

Always RAZ/WI

PRI_7 is RAZ/WI from Non-
secure state.

[23:16] PRI_6 Priority of system handler 6,
UsageFault

PRI_6 is banked between
Security states.

[15:8] PRI_5 Priority of system handler 5,
BusFault

PRI_5 is RAZ/WI from Non-
secure state if
AIRCR.BFHFNMINS is 0.

[7:0] PRI_4 Priority of system handler 4,
MemManage

PRI_4 is banked between
Security states.

System Handler Priority Register 2

Bit assignments for the SHPR2 register.

31 24 23 0

PRI_11 Reserved

Table 4-17 SHPR2 register bit assignments

Bits Name Function Security state

[31:24] PRI_11 Priority of system handler 11,
SVCall

PRI_11 is banked between
Security states.

[23:0] - Reserved -

System Handler Priority Register 3

Bit assignments for the SHPR3 register.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-284

Non-Confidential

PRI_15

31 15 01624 23

PRI_14 Reserved

Table 4-18 SHPR3 register bit assignments

Bits Name Function Security state

[31:24] PRI_15 Priority of system handler 15,
SysTick exception

PRI_15 is banked between
Security states.

[23:16] PRI_14 Priority of system handler 14,
PendSV

PRI_14 is is banked between
Security states.

[15:0] - Reserved -

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-285

Non-Confidential

4.2.10 System Handler Control and State Register

The SHCSR enables the system handlers. It indicates the pending status of the BusFault, MemManage
fault, and SVC exceptions, and indicates the active status of the system handlers.

See 4.2.1 System control block registers summary on page 4-267 for the SHCSR attributes.

In an implementation with the Security Extension, this register is between Security states on a bit by bit
basis.

The SHCSR bit assignments are:

0123456

(0)

789

(0)

1011121314151617181920212231

RES0

HARDFAULTPENDED
SECUREFAULTPENDED

SECUREFAULTENA
USGFAULTENA
BUSFAULTENA
MEMFAULTENA

SVCALLPENDED
BUSFAULTPENDED
MEMFAULTPENDED
USGFAULTPENDED

MEMFAULTACT
BUSFAULTACT
HARDFAULTACT
USGFAULTACT

SECUREFAULTACT
NMIACT
SVCALLACT

MONITORACT
PENDSVACT
SYSTICKACT

Table 4-19 SHCSR bit assignments without the Security Extension

Bits Name Function

[31:22] - Reserved, RES0.

[21] HARDFAULTPENDED HardFault exception pended state bit, set to 1 to allow exception modification

[20] SECUREFAULTPENDED RES0

[19] SECUREFAULTENA RES0

[18] USGFAULTENA UsageFault enable bit, set to 1 to enable.s

[17] BUSFAULTENA BusFault enable bit, set to 1 to enable.s

[16] MEMFAULTENA MemManage enable bit, set to 1 to enable. s

[15] SVCALLPENDED SVCall pending bit, reads as 1 if exception is pending. t

[14] BUSFAULTPENDED BusFault exception pending bit, reads as 1 if exception is pending. t

[13] MEMFAULTPENDED MemManage exception pending bit, reads as 1 if exception is pending.t

[12] USGFAULTPENDED UsageFault exception pending bit, reads as 1 if exception is pending.t

[11] SYSTICKACT SysTick exception active bit, reads as 1 if exception is active.u

[10] PENDSVACT PendSV exception active bit, reads as 1 if exception is active

[9] - Reserved, RES0.

[8] MONITORACT Debug monitor active bit, reads as 1 if Debug monitor is active

[7] SVCALLACT SVCall active bit, reads as 1 if SVC call is active

[6] - Reserved, RES0.

[5] NMIACT NMI exception active state bit, reads as 1 if exception is active.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-286

Non-Confidential

Table 4-19 SHCSR bit assignments without the Security Extension (continued)

Bits Name Function

[4] SECUREFAULTACT RES0

[3] USGFAULTACT UsageFault exception active bit, reads as 1 if exception is active

[2] HARDFAULTACT HardFault exception active bit, reads as 1 if exception is active

[1] BUSFAULTACT BusFault exception active bit, reads as 1 if exception is active

[0] MEMFAULTACT MemManage exception active bit, reads as 1 if exception is active

Table 4-20 SHCSR bit assignments with the Security Extension

Bits Name Function

[31:22] - Reserved, RES0.

[21] HARDFAULTPENDED HardFault exception pended state bit, set to 1 to allow exception modification.

This bit is banked between Security states.
 Note

The Non-secure HardFault exception does not preempt if AIRCR.BFHFNMINS is set to zero.

[20] SECUREFAULTPENDED SecureFault exception pended state bit, set to 1 to allow exception modification.

This bit is not banked between Security states.

[19] SECUREFAULTENA SecureFault exception enable bit, set to 1 to enable.

This bit is not banked between Security states.

[18] USGFAULTENA UsageFault enable bit, set to 1 to enable.s

This bit is banked between Security states.

[17] BUSFAULTENA BusFault enable bit, set to 1 to enable.s

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit is not banked between Security states.

[16] MEMFAULTENA MemManage enable bit, set to 1 to enable. s

This bit is banked between Security states.

[15] SVCALLPENDED SVCall pending bit, reads as 1 if exception is pending. t

This bit is banked between Security states.

[14] BUSFAULTPENDED BusFault exception pending bit, reads as 1 if exception is pending. t

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit is not banked between Security states.

[13] MEMFAULTPENDED MemManage exception pending bit, reads as 1 if exception is pending.t

This bit is banked between Security states.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-287

Non-Confidential

Table 4-20 SHCSR bit assignments with the Security Extension (continued)

Bits Name Function

[12] USGFAULTPENDED UsageFault exception pending bit, reads as 1 if exception is pending.t

This bit is banked between Security states.

[11] SYSTICKACT SysTick exception active bit, reads as 1 if exception is active.u

This bit is banked between Security states.

[10] PENDSVACT PendSV exception active bit, reads as 1 if exception is active.

This bit is banked between Security states.

[9] - Reserved, RES0.

[8] MONITORACT Debug monitor active bit, reads as 1 if Debug monitor is active.

This bit is not banked between Security states.

[7] SVCALLACT SVCall active bit, reads as 1 if SVC call is active.

This bit is banked between Security states.

[6] - Reserved, RES0.

[5] NMIACT NMI exception active state bit, reads as 1 if exception is active.

This bit is not banked between Security states.

[4] SECUREFAULTACT SecureFault exception active state bit, reads as 1 if exception is active.

This bit is not banked between Security states.

[3] USGFAULTACT UsageFault exception active bit, reads as 1 if exception is active.

This bit is banked between Security states.

[2] HARDFAULTACT HardFault exception active bit, reads as 1 if exception is active.

This bit is banked between Security states.

[1] BUSFAULTACT BusFault exception active bit, reads as 1 if exception is active.

If AIRCR.BFHFNMINS is zero this bit is RAZ/WI from Non-secure state.

This bit is not banked between Security states.

[0] MEMFAULTACT MemManage exception active bit, reads as 1 if exception is active.

This bit is banked between Security states.

If you disable a system handler and the corresponding fault occurs, the processor treats the fault as a hard
fault.

s Enable bits, set to 1 to enable the exception, or set to 0 to disable the exception.
t Pending bits, read as 1 if the exception is pending, or as 0 if it is not pending. You can write to these bits to change the pending status of the exceptions.
u Active bits, read as 1 if the exception is active, or as 0 if it is not active. You can write to these bits to change the active status of the exceptions, but see the Caution

in this section.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-288

Non-Confidential

You can write to this register to change the pending or active status of system exceptions. An OS kernel
can write to the active bits to perform a context switch that changes the current exception type.

 Caution

• Software that changes the value of an active bit in this register without correct adjustment to the
stacked content can cause the processor to generate a fault exception. Ensure software that writes to
this register retains and t restores the current active status.

• After you have enabled the system handlers, if you have to change the value of a bit in this register
you must use a read-modify-write procedure. Using a read-modify-write procedure ensures that you
change only the required bit.

4.2.11 Configurable Fault Status Register

The CFSR indicates the cause of a MemManage fault, BusFault, or UsageFault.

See 4.2.1 System control block registers summary on page 4-267 for the CFSR attributes.

In an implementation with the Security Extension, this register is banked between Security states on a bit
by bit basis.

The CFSR bit assignments are:

Memory Management
Fault Status Register

31 16 15 8 7 0

Usage Fault Status Register Bus Fault Status
Register

UFSR BFSR MMFSR

The CFSR is byte accessible. You can access the CFSR or its subregisters as follows:
• Access the complete CFSR with a word access to 0xE000ED28.
• Access the MMFSR with a byte access to 0xE000ED28.
• Access the MMFSR and BFSR with a halfword access to 0xE000ED28.
• Access the BFSR with a byte access to 0xE000ED29.
• Access the UFSR with a halfword access to 0xE000ED2A.

MemManage Fault Status Register

The MMFSR is a subregister of the CFSR. The flags in the MMFSR indicate the cause of memory
access faults.

In an implementation with the Security Extension, this field is banked between Security states.

The bit assignments are:

MMARVALID
RES0

MSTKERR MUNSTKERR

7 6 5 4 3 2 1 0

IACCVIOL
DACCVIOL
RES0MLSPERR

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-289

Non-Confidential

Table 4-21 MMFSR bit assignments

Bits Name Function

[7] MMARVALID MemManage Fault Address Register (MMFAR) valid flag:

0 Value in MMFAR is not a valid fault address.

1 MMFAR holds a valid fault address.

If a MemManage fault occurs and is escalated to a HardFault because of priority, the HardFault handler must
set this bit to 0. This prevents problems on return to a stacked active MemManage fault handler whose
MMFAR value has been overwritten.

[6] - Reserved, RES0.

[5] MLSPERR 0 No MemManage fault occurred during floating-point lazy state
preservation.

1 A MemManage fault occurred during floating-point lazy state preservation.

[4] MSTKERR MemManage fault on stacking for exception entry:

0 No stacking fault.

1 Stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The
processor has not written a fault address to the MMFAR.

[3] MUNSTKERR MemManage fault on unstacking for a return from exception:

0 No unstacking fault.

1 Unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present.
The processor has not adjusted the SP from the failing return, and has not performed a new save. The processor
has not written a fault address to the MMFAR.

[2] - Reserved, RES0.

[1] DACCVIOL Data access violation flag:

0 No data access violation fault.

1 The processor attempted a load or store at a location that does not permit
the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The
processor has loaded the MMFAR with the address of the attempted access.

[0] IACCVIOL Instruction access violation flag:

0 No instruction access violation fault.

1 The processor attempted an instruction fetch from a location that does not
permit execution.

This fault occurs on any access to an XN region, even when the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The
processor has not written a fault address to the MMFAR.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-290

Non-Confidential

 Note

The MMFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit
that is set to 1 is cleared to 0 only by writing 1 to that bit, or by a reset.

BusFault Status Register

The BFSR is a subregister of the CFSR. The flags in the BFSR indicate the cause of a bus access fault.

In an implementation with the Security Extension:

• This field is not banked between Security states.
• If AIRCR.BFHFNMINS is zero this field is RAZ/WI from Non-secure state.

The bit assignments are:

BFARVALID

LSPERR
STKERR UNSTKERR

7 6 5 4 3 2 1 0

IBUSERR
PRECISERR
RES0

RES0

Table 4-22 BFSR bit assignments

Bits Name Function

[7] BFARVALID BusFault Address Register (BFAR) valid flag:

0 Value in BFAR is not a valid fault address.

1 BFAR holds a valid fault address.

The processor sets this bit to 1 after a BusFault where the address is known. Other faults can set this bit to 0,
such as a MemManage fault occurring later.

If a BusFault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to
0. This prevents problems if returning to a stacked active BusFault handler whose BFAR value has been
overwritten.

[6] - Reserved, RES0.

[5] LSPERR 0 No bus fault occurred during floating-point lazy state preservation.

1 A bus fault occurred during floating-point lazy state preservation.

[4] STKERR BusFault on stacking for exception entry:

0 No stacking fault.

1 Stacking for an exception entry has caused one or more BusFaults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might
be incorrect. The processor does not write a fault address to the BFAR.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-291

Non-Confidential

Table 4-22 BFSR bit assignments (continued)

Bits Name Function

[3] UNSTKERR BusFault on unstacking for a return from exception:

0 No unstacking fault.

1 Unstack for an exception return has caused one or more BusFaults.

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack
is still present. The processor does not adjust the SP from the failing return, does not performed a new save, and
does not write a fault address to the BFAR.

[2] - Reserved, RES0

[1] PRECISERR Precise data bus error:

0 No precise data bus error.

1 A data bus error has occurred, and the PC value stacked for the exception
return points to the instruction that caused the fault.

When the processor sets this bit to 1, it writes the faulting address to the BFAR.

[0] IBUSERR Instruction bus error:

0 No instruction bus error.

1 Instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1
only if it attempts to issue the faulting instruction.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

 Note

The BFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit
that is set to 1 is cleared to 0 only by writing 1 to that bit, or by a reset.

UsageFault Status Register

The UFSR is a subregister of the CFSR. The UFSR indicates the cause of a UsageFault.

In an implementation with the Security Extension, this field is banked between Security states.

The bit assignments are:
15 10 9 8 7 5 4 3 2 1 0

DIVBYZERO
UNALIGNED

STKOF
NOCP

INVPC
INVST A TE

UNDEFINSTR

RES 0 RES 0

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-292

Non-Confidential

Table 4-23 UFSR bit assignments

Bits Name Function

[15:10] - Reserved, RES0.

[9] DIVBYZERO Divide by zero flag. Sticky flag indicating whether an integer division by zero error has occurred. The
possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero.

[8] UNALIGNED Unaligned access flag. Sticky flag indicating whether an unaligned access error has occurred. The possible
values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero.

[7:5] - Reserved, RES0.

[4] STKOF Stack overflow flag. Sticky flag indicating whether a stack overflow error has occurred. The possible values
of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero.

[3] NOCP No coprocessor flag. Sticky flag indicating whether a coprocessor disabled or not present error has occurred.
The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero.

[2] INVPC Invalid PC flag. Sticky flag indicating whether an integrity check error has occurred. The possible values of
this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-293

Non-Confidential

Table 4-23 UFSR bit assignments (continued)

Bits Name Function

[1] INVSTATE Invalid state flag. Sticky flag indicating whether an EPSR.T or EPSR.IT validity error has occurred. The
possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero.

[0] UNDEFINSTR Undefined instruction flag. Sticky flag indicating whether an undefined instruction error has occurred. The
possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

This bit resets to zero.

 Note

All the bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that
is set to 1 is cleared to 0 only by writing 1 to that bit, or by a reset.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-294

Non-Confidential

4.2.12 HardFault Status Register

The HFSR gives information about events that activate the HardFault handler. The HFSR register is read,
write to clear. This means that bits in the register read normally, but writing 1 to any bit clears that bit to
0.

See 4.2.1 System control block registers summary on page 4-267 for the HFSR attributes.

In an implementation with the Security Extension:

• This field is not banked between Security states.
• If AIRCR.BFHFNMINS is zero this field is RAZ/WI from Non-secure state.

The HFSR bit assignments are:

31 30 2 1 0

RES0

29

DEBUGEVT
FORCED VECTTBL

RES0

Table 4-24 HFSR bit assignments

Bits Name Function

[31] DEBUGEVT Reserved for Debug use. When writing to the register you must write 1 to this bit, otherwise behavior is
UNPREDICTABLE.

[30] FORCED Indicates a forced HardFault, generated by escalation of a fault with configurable priority that cannot be
handled, either because of priority or because it is disabled:

0 No forced HardFault.

1 Forced HardFault.

When this bit is set to 1, the HardFault handler must read the other fault status registers to find the cause of the
fault.

[29:2] - Reserved, RES0.

[1] VECTTBL Indicates a HardFault on a vector table read during exception processing:

0 No HardFault on vector table read.

1 HardFault on vector table read.

This error is always handled by the HardFault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was pre-
empted by the exception.

[0] - Reserved, RES0.

 Note

The HFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit
that is set to 1 is cleared to 0 only by writing 1 to that bit, or by a reset.

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-295

Non-Confidential

4.2.13 MemManage Fault Address Register

The MMFAR contains the address of the location that generated a MemManage fault.

See 4.2.1 System control block registers summary on page 4-267 for the MMFAR attributes.

In an implementation with the Security Extension, this register is banked between Security states.

The MMFAR bit assignments are:

Table 4-25 MMFAR bit assignments

Bits Name Function

[31:0] ADDRESS When the MMARVALID bit of the MMFSR is set to 1, this field holds the address of the location that generated
the MemManage fault

When an unaligned access faults, the address is the actual address that faulted. Because a single read or
write instruction can be split into multiple aligned accesses, the fault address can be any address in the
range of the requested access size.

Flags in the MMFSR indicate the cause of the fault, and whether the value in the MMFAR is valid.

4.2.14 BusFault Address Register

The BFAR contains the address of the location that generated a BusFault.

See 4.2.1 System control block registers summary on page 4-267 for the BFAR attributes.

In an implementation with the Security Extension, this field is not banked between Security states.

The BFAR bit assignments are:

Table 4-26 BFAR bit assignments

Bits Name Function

[31:0] ADDRESS When the BFARVALID bit of the BFSR is set to 1, this field holds the address of the location that generated the
BusFault

When an unaligned access faults the address in the BFAR is the one requested by the instruction, even if
it is not the address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the BFAR is valid.

4.2.15 Coprocessor Access Control Register

The CPACR register specifies the access privileges for coprocessors.

See 4.2.1 System control block registers summary on page 4-267 for the CPACR attributes.

In an implementation with the Security Extension, this field is banked between Security states.

The CPACR bit assignments are:

RES0

31 24

CP11

23 22

CP10

21 20

RES0

19 16

CP7

15 14

CP6

13 12

CP5

11 10

CP4

9 8

CP3

7 6

CP2

5 4

CP1

3 2

CP0

1 0

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-296

Non-Confidential

Table 4-27 CPACR bit assignments

Bits Name Function

[31:24] - Reserved, RES0

[23:22] CP11 CP11 Privilege. The value in this field is ignored.

If the implementation does not include the FP Extension, this field is RAZ/WI.

If the value of this bit is not programmed to the same value as the CP10 field, then the value is UNKNOWN.

[21:20] CP10 CP10 Privilege. Defines the access rights for the floating-point functionality.

The possible values of this bit are:

0b00 All accesses to the FP Extension result in NOCP UsageFault.

0b01 Unprivileged accesses to the FP Extension result in NOCP UsageFault.

0b11 Full access to the FP Extension.

All other values are reserved.

The features controlled by this field are the execution of any floating-point instruction and access to any
floating-point registers D0-D16.

If the implementation does not include the FP Extension, this field is RAZ/WI.

[19:16] - Reserved, RES0

CPm, bits[2m
+1:2m], for m
= 0-7

CPm Coprocessor m privilege. Controls access privileges for coprocessor m.

The possible values of this bit are:

0b00 Access denied. Any attempted access generates a NOCP UsageFault.

0b01 Privileged access only. An unprivileged access generates a NOCP UsageFault.

0b10 Reserved.

0b11 Full access.

If coprocessor m is not implemented, this field is RAZ/WI.

4.2.16 Non-secure Access Control Register

In an implementation with the Security Extension, tThe NSACR register defines the Non-secure access
permissions for both the FPU and coprocessors CP m, bit[m], for m = 0-7.

See the 4.2.1 System control block registers summary on page 4-267 for the NSACR attributes.

In an implementation with the Security Extension, this field is not banked between Security states.

The NSACR bit assignments are:

RES 0
31 12 11 10

RES 0
9 8

CP0-7 configurable

7 0

CP11
CP10

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-297

Non-Confidential

Table 4-28 NSACR bit assignments

Bits Name Function

[31:12] - Reserved, RES0.

[11] CP11 CP11 access. Enables Non-secure access to
the Floating-point Extension.

Programming with a different value other
than that used for CP10 is UNPREDICTABLE.

If the Floating-point Extension is not
implemented, this bit is RAZ/WI.

[10] CP10 CP10 access. Enables Non-secure access to
the Floating-point Extension.

0 Non-secure accesses to the Floating-
point Extension generate a NOCP
UsageFault.

1 Non-secure access to the Floating-
point Extension permitted.

If the Floating-point Extension is not
implemented, this bit is RAZ/WI.

[9:8] - Reserved, RES0

CPm, bit[m], for m = 0-7 CPm for m = 0-7 Access to CPm. Enables Non-secure access
to coprocessor CPm:

0 Non-secure accesses to this
coprocessor generate a NOCP
UsageFault.

1 Non-secure access to this coprocessor
permitted.

If the CPm is not implemented, this bit is
RAZ/WI.

4.2.17 System control block design hints and tips

Ensure software uses aligned accesses of the correct size to access the system control block registers:

• Except for the CFSR and SHPR1-SHPR3, it must use aligned word accesses.
• For the CFSR and SHPR1-SHPR3 it can use byte or aligned halfword or word accesses.

In a fault handler, to determine the true faulting address:
1. Read and save the MMFAR or BFAR value.
2. Read the MMARVALID bit in the MMFSR, or the BFARVALID bit in the BFSR. The MMFAR or

BFAR address is valid only if this bit is 1.

Software must follow this sequence because another higher priority exception might change the MMFAR
or BFAR value. For example, if a higher priority handler pre-empts the current fault handler, the other
fault might change the MMFAR or BFAR value.

In addition, the CMSIS provides a number of functions for system control, including:

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-298

Non-Confidential

Table 4-29 CMSIS function for system control

CMSIS system control function Description

void NVIC_SystemReset (void) Reset the system

4 The Cortex®-M33 Peripherals
4.2 System Control Block

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-299

Non-Confidential

4.3 System timer, SysTick
In a implementation with Security Extension, there are two 24-bit system timers, a Non-secure SysTick
timer and a Secure SysTick timer. In an implementation without the Security Extension, only a single a
24-bit system timer, SysTick is used.

When enabled, each timer counts down from the reload value to zero, reloads (wraps to) the value in the
SYST_RVR on the next clock cycle, then decrements on subsequent clock cycles. Writing a value of
zero to the SYST_RVR disables the counter on the next wrap. When the counter transitions to zero, the
COUNTFLAG status bit is set to 1. Reading SYST_CSR clears the COUNTFLAG bit to 0. Writing to
the SYST_CVR clears the register and the COUNTFLAG status bit to 0. The write does not trigger the
SysTick exception logic. Reading the register returns its value at the time it is accessed.

 Note

When the processor is halted for debugging, the counter does not decrement.

The system timer registers are:

Table 4-30 System timer registers summary

Address Name Type Reset value Description

0xE000E010 SYST_CSR RW 0x00000000 4.3.1 SysTick Control and Status Register on page 4-300.

0xE000E014 SYST_RVR RW UNKNOWN 4.3.2 SysTick Reload Value Register on page 4-301.

0xE000E018 SYST_CVR RW UNKNOWN 4.3.3 SysTick Current Value Register on page 4-301.

0xE000E01C SYST_CALIB RO 0xC0000000

(SysTick calibration value) 

4.3.4 SysTick Calibration Value Register on page 4-302.

4.3.1 SysTick Control and Status Register

The SYST_CSR controls and provides status date for the SysTick timer.

See 4.3 System timer, SysTick on page 4-300 for the SYST_CSR attributes.

In an implementation with the Security Extension, this register is banked between Security states.

The bit assignments for SYST_CSR are:

31 17 16 15 3 2 1 0

COUNTFLAG CLKSOURCE
TICKINT
ENABLE

RES0 RES0

Table 4-31 SYST_CSR bit assignments

Bits Name Function

[31:17] - Reserved, RES0.

[16] COUNTFLAG Returns 1 if timer counted to 0 since the last read of this register.

[15:3] - Reserved, RES0.

4 The Cortex®-M33 Peripherals
4.3 System timer, SysTick

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-300

Non-Confidential

Table 4-31 SYST_CSR bit assignments (continued)

Bits Name Function

[2] CLKSOURCE Selects the SysTick timer clock source:

0 External reference clock.

1 Processor clock.

[1] TICKINT Enables SysTick exception request:

0 Counting down to zero does not assert the SysTick exception request.

1 Counting down to zero asserts the SysTick exception request.

[0] ENABLE Enables the counter:

0 Counter disabled.

1 Counter enabled.

4.3.2 SysTick Reload Value Register

The SYST_RVR specifies the SysTick timer counter reload value.

See 4.3 System timer, SysTick on page 4-300 for the SYST_RVR attributes.

In an implementation with the Security Extension, this register is banked between Security states.

The bit assignments for SYST_RVR are:

31 0

RELOAD

2324

RES 0

Table 4-32 SYST_RVR bit assignments

Bits Name Function

[31:24] - Reserved, RES0.

[23:0] RELOAD Value to load into the SYST_CVR when the counter is enabled and when it reaches 0, see Calculating the
RELOAD value on page 4-301.

Calculating the RELOAD value

The SYST_RVR specifies the SysTick timer counter reload value.

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. You can program a value
of 0, but this has no effect because the SysTick exception request and COUNTFLAG are activated when
counting from 1 to 0.

To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value of N-1.
For example, if the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

4.3.3 SysTick Current Value Register

The SYST_CVR contains the current value of the SysTick counter.

See 4.3 System timer, SysTick on page 4-300 for the SYST_CVR attributes.

In an implementation with the Security Extension, this register is banked between Security states.

The bit assignments for SYST_CVR:

4 The Cortex®-M33 Peripherals
4.3 System timer, SysTick

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-301

Non-Confidential

31 0

CURRENT

2324

RES0

Table 4-33 SYST_CVR bit assignments

Bits Name Function

[31:24] - Reserved, RES0.

[23:0] CURRENT Reads the current value of the SysTick counter.

A write of any value clears the field to 0, and also clears the SYST_CSR.COUNTFLAG bit to 0.

4.3.4 SysTick Calibration Value Register

The SYST_CALIB register indicates the SysTick calibration value and parameters for the selected
Security state.

See 4.3 System timer, SysTick on page 4-300 for the SYST_CALIB attributes.

In an implementation with the Security Extension, this register is banked between Security states.

The bit assignments for SYST_CALIB are:

31 0

TENMS

232430

SKEW
NOREF

29

RES0

Table 4-34 SYST_CALIB bit assignments

Bits Name Function

[31] NOREF Indicates whether the device provides a reference clock to the processor:

0 Reference clock provided.

1 No reference clock provided.

If your device does not provide a reference clock, the SYST_CSR.CLKSOURCE bit reads-as-one and ignores
writes.

[30] SKEW Indicates whether the TENMS value is exact:

0 TENMS value is exact.

1 TENMS value is inexact, or not given.

An inexact TENMS value can affect the suitability of SysTick as a software real time clock.

[29:24] - Reserved.

[23:0] TENMS Reload value for 10ms (100Hz) timing, subject to system clock skew errors. If the value reads as zero, the
calibration value is not known.

If calibration information is not known, calculate the calibration value required from the frequency of the
core clock or external clock.

4 The Cortex®-M33 Peripherals
4.3 System timer, SysTick

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-302

Non-Confidential

4.3.5 SysTick usage hints and tips

The interrupt controller clock updates the SysTick counter. If this clock signal is stopped for low-power
mode, the SysTick counter stops.

Ensure software uses word accesses to access the SysTick registers.

If the SysTick counter reload and current value are undefined at reset, the correct initialization sequence
for the SysTick counter is:
1. Program reload value.
2. Clear current value.
3. Program Control and Status register.

4 The Cortex®-M33 Peripherals
4.3 System timer, SysTick

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-303

Non-Confidential

4.4 Nested Vectored Interrupt Controller
This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses.

The NVIC supports:
• 1-480 interrupts.
• A programmable priority level of 0-255. A higher level corresponds to a lower priority, so level 0 is

the highest interrupt priority. In an implementation with the Security Extension, in Non-secure state,
the priority also depends on the value of AIRCR.PRIS.

• Level and pulse detection of interrupt signals.
• Interrupt tail-chaining.
• An external Non-Maskable Interrupt (NMI).
• An optional Wake-up Interrupt Controller (WIC).
• Late arriving interrupts.

The processor automatically stacks its state on exception entry and unstacks this state on exception exit,
with no instruction overhead. This provides low latency exception handling.

The following table shows the hardware implementation of NVIC registers. In an implementation with
the Security Extension, register fields that are associated with interrupts designated as Secure in the
ITNS register are always RAZ/WI if accessed from Non-secure state.

Table 4-35 NVIC registers summary

Address Name Type Required
privilege

Reset value Description

0xE000E100-0xE000E13C NVIC_ISER0-
NVIC_ISER15

RW Privileged 0x00000000 4.4.2 Interrupt Set Enable Registers
on page 4-305

0XE000E180- 0xE000E1BC NVIC_ICER0-
NVIC_ICER15

RW Privileged 0x00000000 4.4.3 Interrupt Clear Enable
Registers on page 4-306

0XE000E200- 0xE000E23C NVIC_ISPR0-
NVIC_ISPR15

RW Privileged 0x00000000 4.4.4 Interrupt Set Pending
Registers on page 4-307

0XE000E280- 0xE000E2BC NVIC_ICPR0-
NVIC_ICPR15

RW Privileged 0x00000000 4.4.5 Interrupt Clear Pending
Registers on page 4-307

0xE000E300-0xE000E33C NVIC_IABR0-
NVIC_IABR15

RW Privileged 0x00000000 4.4.6 Interrupt Active Bit Registers
on page 4-308

0xE000E380-0xE000E3BC NVIC_ITNS0-
NVIC_ITNS15

RWv Privileged 0x00000000 4.4.7 Interrupt Target Non-secure
Registers on page 4-308.

0xE000E400-0xE000E5DC NVIC_IPR0-
NVIC_IPR119

RW Privileged 0x00000000 4.4.8 Interrupt Priority Registers
on page 4-309

0xE000EF00 STIR WO Configurablew 0x00000000 4.4.9 Software Trigger Interrupt
Register on page 4-310

4.4.1 Accessing the NVIC registers using CMSIS

CMSIS functions enable software portability between different Cortex‑M profile processors.

v ITNS is RAZ/WI from the Non-Secure state.
w See the register description for more information.

4 The Cortex®-M33 Peripherals
4.4 Nested Vectored Interrupt Controller

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-304

Non-Confidential

To access the NVIC registers when using CMSIS, use the following functions:

Table 4-36 CMSIS access NVIC functions

CMSIS function Description

void NVIC_SetPriorityGrouping (uint32_t PriorityGroup) Set priority grouping

uint32_t NVIC_GetPriorityGrouping (void) Read the priority grouping

void NVIC_EnableIRQ (IRQn_Type IRQn) Enable a device-specific interrupt

uint32_t NVIC_GetEnableIRQ (IRQn_Type IRQn) Get a device-specific interrupt enable status.

void NVIC_DisableIRQ (IRQn_Type IRQn) Disable a device-specific interrupt

uint32_t NVIC_GetPendingIRQ (IRQn_Type IRQn) Get the pending device-specific interrupt

void NVIC_SetPendingIRQ (IRQn_Type IRQn) Set a device-specific interrupt to pending

void NVIC_ClearPendingIRQ (IRQn_Type IRQn) Clear a device-specific interrupt from pending

uint32_t NVIC_GetActive (IRQn_Type IRQn) Get the device-specific interrupt active

void NVIC_SetPriority (IRQn_Type IRQn, uint32_t priority) Set the priority for an interrupt

uint32_t NVIC_GetPriority (IRQn_Type IRQn) Get the priority of an interrupt

uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t
PreemptPriority, uint32_t SubPriority)

Encodes priority

void NVIC_DecodePriority (uint32_t Priority, uint32_t
PriorityGroup, uint32_t *pPreemptPriority, uint32_t
*pSubPriority)

Decode the interrupt priority

uint32_t NVIC_GetVector (IRQn_Type IRQn) Read interrupt vector

void NVIC_SetVector (IRQn_Type IRQn, uint32_t vector) Modify interrupt vector

void NVIC_SystemReset (void) Reset the system

uint32_t NVIC_GetTargetState (IRQn_Type IRQn) Get interrupt target state

uint32_t NVIC_SetTargetState (IRQn_Type IRQn Set interrupt target state

uint32_t NVIC_ClearTargetState (IRQn_Type IRQn) Clear interrupt target state

 Note

The input parameter IRQn is the IRQ number. For more information on CMSIS NVIC functions, see
http://arm-software.github.io/CMSIS_5/Core/html/group__NVIC__gr.html

4.4.2 Interrupt Set Enable Registers

The NVIC_ISER0-NVIC_ISER15 registers enable interrupts, and show which interrupts are enabled.

See the register summary in 4.4 Nested Vectored Interrupt Controller on page 4-304 for the register
attributes.

In an implementation with the Security Extension:
• The register bits can be RAZ/WI depending on the value of NVIC_ITNS.
• These registers are not banked between Security states.

In an implementation with the Security Extension, these registers are not banked between Security states.

The bit assignments are:

4 The Cortex®-M33 Peripherals
4.4 Nested Vectored Interrupt Controller

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-305

Non-Confidential

http://arm-software.github.io/CMSIS_5/Core/html/group__NVIC__gr.html

SETENA

31 0

Table 4-37 NVIC_ISERn bit assignments

Bits Name Function

[31:0] SETENA. Interrupt set-enable bits. For SETENA[m] in NVIC_ISERn, allows interrupt 32n + m to be accessed.

Write:

0 No effect.

1 Enable interrupt 32n+m.

Read:

0 Interrupt 32n+m disabled.

1 Interrupt 32n+m enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is
not enabled, asserting its interrupt signal changes the interrupt state to pending, but the NVIC never
activates the interrupt, regardless of its priority.

4.4.3 Interrupt Clear Enable Registers

The NVIC_ICER0-NVIC_ICER15 registers disable interrupts, and show which interrupts are enabled.

See the register summary in 4.4 Nested Vectored Interrupt Controller on page 4-304 for the register
attributes.

In an implementation with the Security Extension:
• The register bits can be RAZ/WI from Non-secure state depending on the value of NVIC_ITNS.
• These registers are not banked between Security states.

The bit assignments are:

CLRENA

31 0

Table 4-38 NVIC_ICERn bit assignments

Bits Name Function

[31:0] CLRENA Interrupt clear-enable bits. For SETENA[m] in NVIC_ICERn, allows interrupt 32n + m to be accessed.

Write:

0 No effect.

1 Disable interrupt 32n+m.

Read:

0 Interrupt 32n+m disabled.

1 Interrupt 32n+m enabled.

4 The Cortex®-M33 Peripherals
4.4 Nested Vectored Interrupt Controller

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-306

Non-Confidential

4.4.4 Interrupt Set Pending Registers

The NVIC_ISPR0-NVIC_ISPR15 registers force interrupts into the pending state, and shows which
interrupts are pending.

See the register summary in 4.4 Nested Vectored Interrupt Controller on page 4-304 for the register
attributes.

In an implementation with the Security Extension:
• The register bits can be RAZ/WI from Non-secure state depending on the value of NVIC_ITNS.
• These registers are not banked between Security states.

The bit assignments are:

SETPEND

31 0

Table 4-39 NVIC_ISPRn bit assignments

Bits Name Function

[31:0] SETPEND Interrupt set-pending bits. For SETPEND[m] in NVIC_ISPRn, allows interrupt 32n + m to be accessed.

Write:

0 No effect.

1 Pend interrupt 32n + m.

Read:

0 Interrupt 32n + m is not pending.

1 Interrupt 32n + m pending.

 Note

Writing 1 to the NVIC_ISPR bit corresponding to:
• An interrupt that is pending has no effect.
• A disabled interrupt sets the state of that interrupt to pending.

4.4.5 Interrupt Clear Pending Registers

The NVIC_ICPR0-NVIC_ICPR15 registers remove the pending state from interrupts, and shows which
interrupts are pending.

See the register summary in 4.4 Nested Vectored Interrupt Controller on page 4-304 for the register
attributes.

In an implementation with the Security Extension:
• The register bits can be RAZ/WI depending on the value of NVIC_ITNS.
• These registers are not banked between Security states.

The bit assignments are:

CLRPEND

31 0

4 The Cortex®-M33 Peripherals
4.4 Nested Vectored Interrupt Controller

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-307

Non-Confidential

Table 4-40 NVIC_ICPRn bit assignments

Bits Name Function

[31:0] CLRPEND Interrupt clear-pending bits.

Write:

0 No effect.

1 Clear pending state of interrupt 32n + m.

Read:

0 Interrupt 32n + m is not pending.

1 Interrupt 32n + m is pending.

 Note

Writing 1 to an NVIC_ICPR bit does not affect the active state of the corresponding interrupt.

4.4.6 Interrupt Active Bit Registers

The NVIC_IABR0-NVIC_IABR15 registers indicate the active state of each interrupt.

See the register summary in 4.4 Nested Vectored Interrupt Controller on page 4-304 for the register
attributes.

In an implementation with the Security Extension:
• The register bits can be RAZ/WI from Non-secure state depending on the value of NVIC_ITNS.
• These registers are not banked between Security states.

The bit assignments are:

31 0

ACTIVE

Table 4-41 NVIC_IABRn bit assignments

Bits Name Function

[31:0] ACTIVE Active state bits. For ACTIVE[m] in NVIC_IABRn, indicates the active state for interrupt 32n+m.

0 The interrupt is not active.

1 The interrupt is active.

4.4.7 Interrupt Target Non-secure Registers
In an implementation with the Security Extension, the NVIC_ITNS0-NVIC_ITNS15 registers determine,
for each group of 32 interrupts, whether each interrupt targets Non-secure or Secure state. Otherwise,
This register is RAZ/WI.

See the register summary in 4.4 Nested Vectored Interrupt Controller on page 4-304 for the register
attributes.

In an implementation with the Security Extension, this register is accessible from Secure state only.

The bit assignments are:

4 The Cortex®-M33 Peripherals
4.4 Nested Vectored Interrupt Controller

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-308

Non-Confidential

31 0

ITNS

Table 4-42 NVIC_ITNSn bit assignments

Bits Name Function

[31:0] ITNS Interrupt Targets Non-secure bits. For ITNS[m] in NVIC_ITNSn, this field indicates and allows modification of the
target Security state for interrupt 32n+m.

0 The interrupt targets Secure state.

1 The interrupt targets Non-secure state.

4.4.8 Interrupt Priority Registers

The NVIC_IPR0-NVIC_IPR119 registers provide an 8-bit priority field for each interrupt. These
registers are word, halfword, and byte accessible.

See the register summary in 4.4 Nested Vectored Interrupt Controller on page 4-304 for their attributes.

Each register holds four priority fields as shown:

PRI_479

31 24 23 16 15 8 7 0

PRI_478 PRI_477 PRI_476NVIC_IPR119

PRI_(4n+3) PRI_(4n+2) PRI_(4n+1) PRI_(4n)NVIC_IPRn

PRI_3 PRI_2 PRI_1 PRI_0NVIC_IPR0

.
.
.

.
.
.

. .
 .

. .
 .

Table 4-43 NVIC_IPRn bit assignments

Bits Name Function

[31:24] Priority, byte
offset 3

Each priority field holds a priority value. The priority depends on the value of PRIS for exceptions
targeting the Non-secure state. If the processor implements fewer than 8 bits of priority, then the least
significant bits of this field are RES0.[23:16] Priority, byte

offset 2

[15:8] Priority, byte
offset 1

[7:0] Priority, byte
offset 0

See 4.4.1 Accessing the NVIC registers using CMSIS on page 4-304 for more information about the
access to the interrupt priority array, which provides the software view of the interrupt priorities.

4 The Cortex®-M33 Peripherals
4.4 Nested Vectored Interrupt Controller

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-309

Non-Confidential

Find the NVIC_IPR number and byte offset for interrupt M as follows:
• The corresponding NVIC_IPR number, N, is given by N = N DIV 4.
• The byte offset of the required Priority field in this register is M MOD 4, where:

— Byte offset 0 refers to register bits[7:0].
— Byte offset 1 refers to register bits[15:8].
— Byte offset 2 refers to register bits[23:16].
— Byte offset 3 refers to register bits[31:24].

In an implementation with the Security Extension:
• Priority values depend on the value of PRIS.
• The register bits can be RAZ/WI depending on the value of NVIC_ITNS.
• These registers are not banked between Security states.

4.4.9 Software Trigger Interrupt Register

Write to the STIR to generate an interrupt from software.

When the USERSETMPEND bit in the CCR is set to 1, unprivileged software can access the STIR.
 Note

Only privileged software can enable unprivileged access to the STIR.

See 4.4 Nested Vectored Interrupt Controller on page 4-304 for the register attributes.

In an implementation with the Security Extension, this register is not banked between Security states.

The bit assignments are:

INTID

31 9 8 0

RES0

Table 4-44 STIR bit assignments

Bits Field Function

[31:9] - Reserved, RES0.

[8:0] INTID Interrupt ID of the interrupt to trigger, in the range 0-479. For example, a value of 0x03 specifies interrupt IRQ3.

4.4.10 Level-sensitive and pulse interrupts

The processor supports both level-sensitive and pulse interrupts. Pulse interrupts are also described as
edge-triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. Typically
this happens because the ISR accesses the peripheral, causing it to clear the interrupt request. A pulse
interrupt is an interrupt signal sampled synchronously on the rising edge of the processor clock. To
ensure that the NVIC detects the interrupt, the peripheral must assert the interrupt signal for at least one
clock cycle, during which the NVIC detects the pulse and latches the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the interrupt.

For a level-sensitive interrupt, if the signal is not deasserted before the processor returns from the ISR,
the interrupt becomes pending again, and the processor must execute its ISR again. This means that the
peripheral can hold the interrupt signal asserted until it no longer requires servicing.

4 The Cortex®-M33 Peripherals
4.4 Nested Vectored Interrupt Controller

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-310

Non-Confidential

Hardware and software control of interrupts

The processor latches all interrupts. A peripheral interrupt becomes pending for one of the following
reasons:

• The NVIC detects that the interrupt signal is active and the corresponding interrupt is not active.
• The NVIC detects a rising edge on the interrupt signal.
• Software writes to the corresponding Interrupt Set Enable Register bit.

A pending interrupt remains pending until one of the following occurs:
• The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to

active. Then:
— For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the

interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which might
cause the processor to immediately reenter the ISR. Otherwise, the state of the interrupt changes
to inactive.

— For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this is pulsed the
state of the interrupt changes to pending and active. In this case, when the processor returns from
the ISR the state of the interrupt changes to pending, which might cause the processor to
immediately reenter the ISR.

If the interrupt signal is not pulsed while the processor is in the ISR, when the processor returns
from the ISR the state of the interrupt changes to inactive.

• Software writes to the corresponding Interrupt Clear Pending Register bit.

For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not
change. Otherwise, the state of the interrupt changes to inactive.

For a pulse interrupt, state of the interrupt changes to:
— Inactive, if the state was pending.
— Active, if the state was active and pending.

4.4.11 NVIC usage hints and tips

Ensure that software uses correctly aligned register accesses. The processor does not support unaligned
accesses to NVIC registers.

An interrupt can enter pending state even if it is disabled. Disabling an interrupt only prevents the
processor from taking that interrupt.

Before programming VTOR to relocate the vector table, ensure that the vector table entries of the new
vector table are set up for fault handlers, NMI, and all enabled exceptions like interrupts.

NVIC programming hints

Software uses the CPSIE i and CPSID i instructions to enable and disable interrupts.

The CMSIS provides the following intrinsic functions for these instructions:

void __disable_irq(void) // Disable Interrupts
void __enable_irq(void) // Enable Interrupts

In addition, the CMSIS provides functions for NVIC control, listed in 4.4.1 Accessing the NVIC registers
using CMSIS on page 4-304.

The input parameter IRQn is the IRQ number, see 2.3.2 Exception types on page 2-42 for more
information. For more information about these functions, see the CMSIS documentation.

4 The Cortex®-M33 Peripherals
4.4 Nested Vectored Interrupt Controller

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-311

Non-Confidential

4.5 Security Attribution and Memory Protection
If the Security Extension is implemented, the processor can use security attribution and memory
protection to manage sensitive data.

The processor can have an Security Attribution Unit (SAU) and a Memory Protection Unit (MPU) that
provide fine grain memory control, enabling applications to use multiple privilege levels, separating and
protecting code, data, and stack on a task-by-task basis. Such requirements are becoming critical in many
embedded applications such as automotive systems.

Some implementations might only have one MPU.

4.5.1 Security Attribution Unit

The SAU determines the security of an address.

For instructions, the SAU returns the security attribute (Secure or Non-secure) and identifies whether the
instruction address is in a Non-secure callable region.

For data, the SAU returns the security attribute (Secure or Non-secure).

When a memory access is performed, the security of the address is verified by the SAU. Any address that
matches multiple SAU regions will be marked with the most secure attribute of the matching regions.

The following table shows a summary of the SAU registers.

Table 4-45 SAU registers summary

Address Name Type Reset value Description

0xE000EDD0 SAU_CTRL RW 0x00000000 See 4.5.2 Security Attribution Unit Control Register on page 4-313. This
is the reset value in Secure state. In Non-secure state, this register is
RAZ/WI.

0xE000EDD4 SAU_TYPE RO 0x00000000 See 4.5.3 Security Attribution Unit Type Register on page 4-313. This is
the reset value in Secure state. In Non-secure state, this register is
RAZ/WI. SAU_TYPE [7:0] reflects the number of SAU regions.

0xE000EDD8 SAU_RNR RW UNKNOWN See 4.5.4 Security Attribution Unit Region Number Register
on page 4-314. In Non-secure state, this register is RAZ/WI.

0xE000EDDC SAU_RBAR RW UNKNOWN See 4.5.5 Security Attribution Unit Region Base Address Register
on page 4-314. In Non-secure state, this register is RAZ/WI.

0xE000EDE0 SAU_RLAR RW Bit[0] resets to 0.

Other bits reset to an
UNKNOWN value.

See 4.5.6 Security Attribution Unit Region Limit Address Register
on page 4-315. This is the reset value in Secure state. In Non-secure
state, this register is RAZ/WI.

0xE000EDE4 SFSR RW 0x00000000 See 4.5.7 Secure Fault Status Register on page 4-315. In Non-secure
state, this register is RAZ/WI.

0xE000EDE8 SFAR RW UNKNOWN See 4.5.8 Secure Fault Address Register on page 4-317. In Non-secure
state, this register is RAZ/WI.

 Note

• Only Privileged accesses to the SAU registers are permitted. Unprivileged accesses generate a fault.
• The SAU registers are word accessible only. Halfword and byte accesses are UNPREDICTABLE.

• The SAU registers are RAZ/WI when accessed from Non-secure state.
• The SAU registers are not banked between Security states.

4 The Cortex®-M33 Peripherals
4.5 Security Attribution and Memory Protection

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-312

Non-Confidential

4.5.2 Security Attribution Unit Control Register

The SAU_CTRL allows enabling of the Security Attribution Unit.

In an implementation with the Security Extension, this register is:
• RAZ/WI when accessed as Non-secure.
• Not banked between Security states.

The SAU_CTRL bit assignments are:

31 2 1 0

RES0

ALLNS

ENABLE

Table 4-46 SAU_CTRL bit assignments

Bits Name Function

[31:2] - Reserved, RES0.

[1] ALLNS All Non-secure. When SAU_CTRL.ENABLE is 0 this bit controls if the memory is marked as Non-secure or
Secure.

The possible values of this bit are:

0 Memory is marked as Secure and is not Non-secure callable.

1 Memory is marked as Non-secure.

This bit has no effect when SAU_ENABLE is 1.

Setting SAU_CTRL.ALLNS to 1 allows the security attribution of all addresses to be set by the IDAU in the
system.

[0] ENABLE Enable. Enables the SAU.

The possible values of this bit are:

0 The SAU is disabled.

1 The SAU is enabled.

This bit is RAZ/WI when the Security Extension is implemented without an SAU region.

4.5.3 Security Attribution Unit Type Register

The SAU_TYPE indicates the number of regions implemented by the Security Attribution Unit.

In an implementation with the Security Extension, this register is:
• RAZ/WI when accessed as Non-secure.
• Not banked between Security states.

The SAU_TYPE bit assignments are:

31 7 08

SREGIONRES0

4 The Cortex®-M33 Peripherals
4.5 Security Attribution and Memory Protection

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-313

Non-Confidential

Table 4-47 SAU_TYPE bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] SREGION SAU regions. The number of implemented SAU regions.

4.5.4 Security Attribution Unit Region Number Register

The SAU_RNR selects the region currently accessed by SAU_RBAR and SAU_RLAR.

In an implementation with the Security Extension, this register is:
• RAZ/WI when accessed as Non-secure.
• Not banked between Security states.

The SAU_RNR bit assignments are:

31 0

RES0

78

REGION

Table 4-48 SAU_RNR bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] REGION Region number. Indicates the SAU region accessed by SAU_RBAR and SAU_RLAR.

If no SAU regions are implemented, this field is reserved. Writing a value corresponding to an unimplemented
region is CONSTRAINED UNPREDICTABLE.

This field resets to an UNKNOWN value on a Warm reset.

4.5.5 Security Attribution Unit Region Base Address Register

The SAU_RBAR provides indirect read and write access to the base address of the currently selected
SAU region.

In an implementation with the Security Extension, this register is:
• RAZ/WI when accessed as Non-secure.
• Not banked between Security states.

The SAU_RBAR bit assignments are:

31 045

ReservedBADDR

4 The Cortex®-M33 Peripherals
4.5 Security Attribution and Memory Protection

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-314

Non-Confidential

Table 4-49 SAU_RBAR bit assignments

Bits Name Function

[31:5] BADDR Base address. Holds bits[31:5] of the base address for the selected SAU region.

Bits[4:0] of the base address are defined as 0x00.

[4:0] - Reserved, RES0.

4.5.6 Security Attribution Unit Region Limit Address Register

The SAU_RLAR provides indirect read and write access to the limit address of the currently selected
SAU region.

In an implementation with the Security Extension, this register is:
• RAZ/WI when accessed as Non-secure.
• Not banked between Security states.

The SAU_RLAR bit assignments are:

31 4 2 1 0

LADDR

RES0

ENABLE

5

NSC

Table 4-50 SAU_RLAR bit assignments

Bits Name Function

[31:5] LADDR Limit address. Holds bits[31:5] of the limit address for the selected SAU region.

Bits[4:0] of the limit address are defined as 0x1F.

[4:2] - Reserved, RES0.

[1] NSC Non-secure callable. Controls whether Non-secure state is permitted to execute an SG instruction from this region.

The possible values of this bit are:

0 Region is not Non-secure callable.

1 Region is Non-secure callable.

[0] ENABLE Enable. SAU region enable.

The possible values of this bit are:

0 SAU region is enabled.

1 SAU region is disabled.

This bit reset to 0 on a Warm reset.

4.5.7 Secure Fault Status Register

The SFSR provides information about any security related faults.

4 The Cortex®-M33 Peripherals
4.5 Security Attribution and Memory Protection

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-315

Non-Confidential

In an implementation with the Security Extension, this register is:
• RAZ/WI when accessed as Non-secure.
• Not banked between Security states.

See 4.2.1 System control block registers summary on page 4-267for the SFSR attributes.

The SFSR bit assignments are:

RES0

31 8 7 6 5 4 3 2 1 0

LSERR
SFARVALID

LSPERR
INVTRAN

AUVIOL
INVER

INVIS
INVEP

Table 4-51 SFSR bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7] LSERR Lazy state error flag. Sticky flag indicating that an error occurred during lazy state activation or deactivation.
The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

[6] SFARVALID Secure fault address valid. This bit is set when the SFAR register contains a valid value. As with similar fields,
such as BFSR.BFARVALID and MMFSR.MMARVALID, this bit can be cleared by other exceptions, such as
BusFault. The possible values of this bit are:

0 SFAR content not valid.

1 SFAR content valid.

[5] LSPERR Lazy state preservation error flag. Stick flag indicating that an SAU or IDAU violation occurred during the lazy
preservation of floating-point state. The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

[4] INVTRAN Invalid transition flag. Sticky flag indicating that an exception was raised due to a branch that was not flagged
as being domain crossing causing a transition from Secure to Non-secure memory. The possible values of this
bit are:

0 Error has not occurred.

1 Error has occurred.

4 The Cortex®-M33 Peripherals
4.5 Security Attribution and Memory Protection

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-316

Non-Confidential

Table 4-51 SFSR bit assignments (continued)

Bits Name Function

[3] AUVIOL Attribution unit violation flag. Sticky flag indicating that an attempt was made to access parts of the address
space that are marked as Secure with NS-Req for the transaction set to Non-secure. This bit is not set if the
violation occurred during:
• Lazy state preservation, see LSPERR.
• Vector fetches.

The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

[2] INVER Invalid exception return flag. This can be caused by EXC_RETURN.DCRS being set to 0 when returning from
an exception in the Non-secure state, or by EXC_RETURN.ES being set to 1 when returning from an exception
in the Non-secure state. The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

[1] INVIS Invalid integrity signature flag. This bit is set if the integrity signature in an exception stack frame is found to
be invalid during the unstacking operation. The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

[0] INVEP Invalid entry point. This bit is set if a function call from the Non-secure state or exception targets a non-SG
instruction in the Secure state. This bit is also set if the target address is an SG instruction, but there is no
matching SAU/IDAU region with the NSC flag set. The possible values of this bit are:

0 Error has not occurred.

1 Error has occurred.

4.5.8 Secure Fault Address Register

The SFSR shows the address of the memory location that caused a security violation.

In an implementation with the Security Extension, this register is:
• RAZ/WI when accessed as Non-secure.
• Not banked between Security states.

The SFAR bit assignments are:

ADDRESS

31 0

Table 4-52 SFAR bit assignments

Bits Name Function

[31:0] ADDRESS When the SFARVALID bit of the SFSR is set to 1, this field holds the address of an access that caused an SAU
violation.

4.5.9 Memory Protection Unit

The MPU is divided into eight regions and defines the location, size, access permissions, and memory
attributes of each region.

4 The Cortex®-M33 Peripherals
4.5 Security Attribution and Memory Protection

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-317

Non-Confidential

The MPU supports:

• Independent attribute settings for each region.
• Export of memory attributes to the system.

If the processor implements the Security Extension, it contains:
• One optional Secure MPU.
• One optional Non-secure MPU.

When memory regions overlap, the processor generates a fault if a core access hits the overlapping
regions.

The MPU memory map is unified. This means instruction accesses and data accesses have the same
region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a
MemManage exception.

In an OS environment, the kernel can update the MPU region setting dynamically based on the process to
be executed. Typically, an embedded OS uses the MPU for memory protection.

Configuration of MPU regions is based on memory types, see 2.2.2 Memory regions, types, and
attributes on page 2-33.

The following table shows the possible MPU region attributes. These include Shareability and cache
behavior attributes that are not relevant to most microcontroller implementations.

See MPU configuration for a microcontroller on page 4-325 for guidelines for programming such an
implementation.

Table 4-53 Memory attributes summary

Memory type Shareability Other attributes Description

Device-nGnRnE Shareable - Used to access memory mapped peripherals.All accesses to Device-
nGnRnE memory occur in program order. All regions are assumed
to be shared.

Device-nGnRE Shareable - Used to access memory mapped peripherals.Weaker ordering than
Device-nGnRnE.

Device-nGRE Shareable - Used to access memory mapped peripherals.Weaker ordering than
Device-nGnRE.

Device-GRE Shareable - Used to access memory mapped peripherals.Weaker ordering than
Device-nGRE.

Normal Shareable Non-cacheable Write-
Through Cacheable Write-
Back Cacheable

Normal memory that is shared between several processors.

Normal Non-Shareable Non-cacheable Write-
Through Cacheable Write-
Back Cacheable

Normal memory that only a single processor uses.

Use the MPU registers to define the MPU regions and their attributes.

The following table shows a summary of the MPU registers.

4 The Cortex®-M33 Peripherals
4.5 Security Attribution and Memory Protection

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-318

Non-Confidential

Table 4-54 MPU registers summary

Address Name Type Reset Value Description

0xE000ED90 MPU_TYPE RO The reset value is fixed and
depends on the value of
bits[15:8] and
implementation options.

See 4.5.10 MPU Type Register on page 4-319.

0xE000ED94 MPU_CTRL RW 0x00000000 See 4.5.11 MPU Control Register on page 4-320.

0xE000ED98 MPU_RNR RW UNKNOWN See 4.5.12 MPU Region Number Register on page 4-321.

0xE000ED9C MPU_RBAR RW UNKNOWN See 4.5.13 MPU Region Base Address Register
on page 4-321.

0xE000EDA0 MPU_RLAR RW UNKNOWN See 4.5.16 MPU Region Limit Address Register
on page 4-322.

0xE000EDA4 MPU_RBAR_A<n> RW UNKNOWN See 4.5.14 MPU Region Base Address Register Alias,
n=1-3 on page 4-322

0xE000EDA8 MPU_RLAR_A<n> RW UNKNOWN See 4.5.15 MPU Region Limit Address Register Alias,
n=1-3 on page 4-322.

0xE000EDC0 MPU_MAIR0 RW UNKNOWN See 4.5.17 MPU Memory Attribute Indirection Registers 0
and 1 on page 4-323.

0xE000EDC4 MPU_MAIR1 RW UNKNOWN

4.5.10 MPU Type Register

The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it supports.

In an implementation with the Security Extension, this register is banked between Security states.

The MPU_TYPE bit assignments are:

RES0

31 16 15 8 7 1 0

DREGION RES0

SEPARATE

Table 4-55 MPU_TYPE bit assignments

Bits Name Function

[31:16] - Reserved, RES0.

[15:8] DREGION Data regions. Number of regions supported by the MPU.

0x00 Zero regions if your device does not include the MPU.

0x08 Eight regions if your device includes the MPU. This value is implementation defined.

[7:1] - Reserved, RES0.

[0] SEPARATE Indicates support for unified or separate instructions and data address regions.

Armv8‑M only supports unified MPU regions.

0 Unified.

4 The Cortex®-M33 Peripherals
4.5 Security Attribution and Memory Protection

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-319

Non-Confidential

4.5.11 MPU Control Register

The MPU_CTRL register enables the MPU.

When the MPU is enabled, it controls whether the default memory map is enabled as a background
region for privileged accesses and whether the MPU is enabled for HardFaults, and NMIs.

In an implementation with the Security Extension, this register is banked between Security states.

The MPU_CTRL bit assignments are:

31 1 0

RES0

HFNMIENA
ENABLE

2

PRIVDEFENA

3

Table 4-56 MPU_CTRL bit assignments

Bits Name Function

[31:3] - Reserved, RES0.

[2] PRIVDEFENA Enables privileged software access to the default memory map.

When the MPU is enabled:

0 Disables use of the default memory map. Any memory access to a location that is not covered
by any enabled region causes a fault.

1 Enables use of the default memory map as a background region for privileged software
accesses.

When enabled, the background region acts as if it has the lowest priority. Any region that is defined and
enabled has priority over this default map. If the MPU is disabled, the processor ignores this bit.

[1] HFNMIENA Enables the operation of MPU during HardFault and NMI handlers.

When the MPU is enabled:

0 MPU is disabled during HardFault and NMI handlers, regardless of the value of the ENABLE
bit.

1 The MPU is enabled during HardFault and NMI handlers.

When the MPU is disabled, if this bit is set to 1 the behavior is UNPREDICTABLE.

[0] ENABLE Enables the MPU:

0 MPU is disabled.

1 MPU is enabled.

XN and Device-nGnRnE rules always apply to the System Control Space regardless of the value of the
ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system
to function unless the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions
are enabled, then only privileged software can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same behavior
as if the MPU is not implemented.

4 The Cortex®-M33 Peripherals
4.5 Security Attribution and Memory Protection

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-320

Non-Confidential

The default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted.
Other areas are accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for
an exception with priority –1, –2, or –3. These priorities are only possible when handling a HardFault or
NMI exception. Setting the HFNMIENA bit to 1 enables the MPU when operating with these priorities.

4.5.12 MPU Region Number Register

The MPU_RNR selects the region currently accessed by MPU_RBAR and MPU_RLAR.

In an implementation with the Security Extension, this register is banked between Security states.

The MPU_RNR bit assignments are:

RES0

31 8 7 0

REGION

Table 4-57 MPU_RNR bit assignments

Bits Name Function

[31:8] - Reserved, RES0.

[7:0] REGION Regions. Indicates the memory region accessed by MPU_RBAR and PMU_RLAR.

If no MPU region is implemented, this field is reserved. Writing a value corresponding to an unimplemented region
is CONSTRAINED UNPREDICTABLE.

You must write the required region number to this register before accessing the MPU_RBAR or
MPU_RLAR.

4.5.13 MPU Region Base Address Register

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR.

In an implementation with the Security Extension, this register is banked between Security states.

The MPU_RBAR bit assignments are:

BASE

31 5 04

AP[2:1]
SH

3 2 1

XN

4 The Cortex®-M33 Peripherals
4.5 Security Attribution and Memory Protection

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-321

Non-Confidential

Table 4-58 MPU_RBAR bit assignments

Bits Name Function

[31:5] BASE Contains bits[31:5] of the lower inclusive limit of the selected MPU memory region. This value is zero extended to
provide the base address to be checked against.

[4:3] SH Shareability. Defines the shareability domain of this region for Normal memory.

0b00 Non-shareable.

0b01 UNPREDICTABLE.

0b10 Outer shareable.

0b11 Inner Shareable.

All other values are reserved.

For any type of Device memory, the value of this field is ignored.

[2:1] AP[2:1] Access permissions.

0b00 Read/write by privileged code only.

0b01 Read/write by any privilege level.

0b10 Read-only by privileged code only.

0b11 Read-only by any privilege level.

[0] XN Execute Never. Defines whether code can be executed from this region.

0 Execution only permitted if read permitted.

1 Execution not permitted.

4.5.14 MPU Region Base Address Register Alias, n=1-3

The MPU_RBAR_A<n> provides indirect read and write access to the MPU base address register.
Accessing MPU_RBAR_A<n> is equivalent to setting MPU_RNR[7:2]:n[1:0] and then accessing
MPU_RBAR for the Security state.

4.5.15 MPU Region Limit Address Register Alias, n=1-3

The MPU_RLAR_A<n> provides indirect read and write access to the MPU limit address register.
Accessing MPU_RLAR_A<n> is equivalent to setting MPU_RNR[7:2]:n[1:0] and then accessing
MPU_RLAR for the Security state

4.5.16 MPU Region Limit Address Register

The MPU_RLAR defines the limit address of the MPU region selected by the MPU_RNR.

In an implementation with the Security Extension, this register is banked between Security states.

The MPU_RLAR bit assignments are:

31 4 3 1 0

LIMIT

5

AttrIndx EN

RES0

4 The Cortex®-M33 Peripherals
4.5 Security Attribution and Memory Protection

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-322

Non-Confidential

Table 4-59 MPU_RLAR bit assignments

Bits Name Function

[31:5] LIMIT Limit address. Contains bits[31:5] of the upper inclusive limit of the selected MPU memory region.

This value is postfixed with 0x1F to provide the limit address to be checked against.

[4] - Reserved, RES0.

[3:1] AttrIndx Attribute index. Associates a set of attributes in the MPU_MAIR0 and MPU_MAIR1 fields.

[0] EN Enable. Region enable.

The possible values of this bit are:

0 Region disabled.

1 Region enabled.

4.5.17 MPU Memory Attribute Indirection Registers 0 and 1

The MPU_MAIR0 and MPU_MAIR1 provide the memory attribute encodings corresponding to the
AttrIndex values.

In an implementation with the Security Extension, these registers are is banked between Security states.

The MPU_MAIR0 bit assignments are:

31 0

Attr3 Attr2 Attr1 Attr0

7815162324

Attr<n>, bits [8n+7:8n], for n= 0 to 3.
Memory attribute encoding for MPU regions with an AttrIndex of n.

The MPU_MAIR1 bit assignments are:

31 0

Attr7 Attr6 Attr5 Attr4

7815162324

Attr<n>, bits [8(n-4)+7:8(n-4)], for n = 4 to 7
Memory attribute encoding for MPU regions with an AttrIndex of n.

MAIR_ATTR defines the memory attribute encoding used in MPU_MAIR0 and MPU_MAIR1, and the
bit assignments are:

When MAIR_ATTR[7:4] is 0000:

0

0000

7 4 3 2 1

Device

00

4 The Cortex®-M33 Peripherals
4.5 Security Attribution and Memory Protection

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-323

Non-Confidential

Table 4-60 MAIR_ATTR values for bits[3:2] when MAIR_ATTR[7:4] is 0000

Bits Name Function

[3:2] Device Device attributes. Specifies the memory attributes for Device.The possible values of this field are:

0b00 Device-nGnRnE.

0b01 Device-nGnRE.

0b10 Device-nGRE.

0b11 Device-GRE.

When MAIR_ATTR[7:4] is not 0000:

0

Outer

7 4 3

Inner

Table 4-61 MAIR_ATTR bit assignments when MAIR_ATTR[7:4] is not 0000

Bits Name Function

[7:4] Outer Outer attributes. Specifies the Outer memory attributes. The possible values of this field are:

0b0000 Device memory. In this case, refer to 4.5.17 MPU Memory Attribute Indirection Registers 0 and 1
on page 4-323.

00RW Normal memory, Outer write-through transient (RW is not 00).

0b0100 Normal memory, Outer non-cacheable.

01RW Normal memory, Outer write-back transient (RW is not 00).

10RW Normal memory, Outer write-through non-transient.

11RW Normal memory, Outer write-back non-transient.

R and W specify the outer read and write allocation policy: 0 = do not allocate, 1 = allocate.

[3:0] Inner Inner attributes. Specifies the Inner memory attributes. The possible values of this field are:

0b0000 UNPREDICTABLE.

00RW Normal memory, Inner write-through transient (RW is not 00).

0b0100 Normal memory, Inner non-cacheable.

01RW Normal memory, Inner write-back transient (RW is not 00).

10RW Normal memory, Inner write-through non-transient.

11RW Normal memory, Inner write-back non-transient.

R and W specify the outer read and write allocation policy: 0 = do not allocate, 1 = allocate.

4.5.18 MPU mismatch

When access violates the MPU permissions, the processor generates a MemManage fault.

4 The Cortex®-M33 Peripherals
4.5 Security Attribution and Memory Protection

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-324

Non-Confidential

4.5.19 Updating protected memory regions

To update an MPU region, update the attributes in the MPU_RNR, MPU_RBAR and MPU_RLAR
registers. To update an SAU region, update the attributes in the SAU_RNR, SAU_RBAR and
SAU_RLAR registers.

Updating an MPU region

Simple code to configure one region:

; R1 = MPU region number
; R2 = base address, permissions and shareability
; R3 = limit address, attributes index and enable
LDR R0,=MPU_RNR
STR R1, [R0, #0x0] ; MPU_RNR
STR R2, [R0, #0x4] ; MPU_RBAR
STR R3, [R0, #0x8] ; MPU_RLAR

Software must use memory barrier instructions:
• Before MPU setup if there might be outstanding memory transfers, such as buffered writes,

that might be affected by the change in MPU settings.
• After MPU setup if it includes memory transfers that must use the new MPU settings.

If you want all the MPU memory access behavior to take effect immediately after the
programming sequence, use a DSB instruction and an ISB instruction.

Updating an SAU region

Simple code to configure one region:

; R1 = SAU region number
; R2 = base address
; R3 = limit address, Non-secure callable attribute and enable
LDR R0,=SAU_RNR
STR R1, [R0, #0x0] ; SAU_RNR
STR R2, [R0, #0x4] ; SAU_RBAR
STR R3, [R0, #0x8] ; SAU_RLAR

Software must use memory barrier instructions:
• Before SAU setup if there might be outstanding memory transfers, such as buffered writes,

that might be affected by the change in SAU settings.
• After SAU setup if it includes memory transfers that must use the new SAU settings.

If you want all the SAU memory access behavior to take effect immediately after the
programming sequence, use a DSB instruction and an ISB instruction.

4.5.20 MPU design hints and tips

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR, and MPU_RLAR
registers.

To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the
interrupt handlers might access. When setting up the MPU, and if the MPU has previously been
programmed, disable unused regions to prevent any previous region settings from affecting the new
MPU setup.

MPU configuration for a microcontroller

Usually, a microcontroller system has only a single processor and no caches.

In such a system, program the MPU as follows:

4 The Cortex®-M33 Peripherals
4.5 Security Attribution and Memory Protection

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-325

Non-Confidential

Table 4-62 Memory region attributes for a microcontroller

Memory region MAIR_ATTR.Outer

MAIR_ATTRInner

Shareability Memory type and attributes

Flash memory 0b1010 0 Normal memory, Non-shareable, Write-Through.

Internal SRAM 0b1010 1 Normal memory, Shareable, Write-Through.

External SRAM 0b1111 1 Normal memory, Shareable, Write-Back, write-allocate.

Peripherals 0b0000 - Always Shareable.

In most microcontroller implementations, the cache policy attributes do not affect the system behavior.
However, using these settings for the MPU regions makes the application code more portable. The values
given are for typical situations. In special systems, such as multiprocessor designs or designs with a
separate DMA engine, the shareability attribute might be important. In these cases, refer to the
recommendations of the memory device manufacturer.

Shareability attributes define whether the global monitor is used, or only the local monitor is used.

4 The Cortex®-M33 Peripherals
4.5 Security Attribution and Memory Protection

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-326

Non-Confidential

4.6 Floating-Point Unit
The Cortex‑M33 Floating-Point Unit (FPU) implements the FPv5 floating-point extensions.The FPU
fully supports single-precision add, subtract, multiply, divide, multiply and accumulate, and square root
operations. It also provides conversions between fixed-point and floating-point data formats, and
floating-point constant instructions.

The FPU provides floating-point computation functionality that is compliant with the ANSI/IEEE Std
754-2008, IEEE Standard for Binary Floating-Point Arithmetic, referred to as the IEEE 754 standard.

The FPU contains 32 single-precision extension registers, which you can also access as 16 doubleword
registers for load, store, and move operations.

4.6.1 Floating-Point Unit

The Cortex‑M33 Floating-Point Unit (FPU) implements the FPv5 floating-point extensions.The FPU
fully supports single-precision add, subtract, multiply, divide, multiply and accumulate, and square root
operations. It also provides conversions between fixed-point and floating-point data formats, and
floating-point constant instructions.

The FPU provides floating-point computation functionality that is compliant with the ANSI/IEEE Std
754-2008, IEEE Standard for Binary Floating-Point Arithmetic, referred to as the IEEE 754 standard.

The FPU contains 32 single-precision extension registers, which you can also access as 16 doubleword
registers for load, store, and move operations.

4.6.2 Floating-point Context Control Register

The FPCCR register sets or returns FPU control data.

See 4.6.1 Floating-Point Unit on page 4-327 for the FPCCR attributes.

In an implementation with the Security Extension, this register is banked between Security states on a bit
by bit basis.

The FPCCR bit assignments are:

31 30 29 28 27 26

RES0

25 11 10 9 8 7 6 5 4 3

S

2 1 0

ASPEN
LSPEN

LSPENS
CLRONRET

CLRONRETS
TS

UFRDY
SPLIMVIOL

MONRDY
SFRDY

BFRDY
MMRDY

HFRDY
THREAD

USER
LSPACT

4 The Cortex®-M33 Peripherals
4.6 Floating-Point Unit

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-327

Non-Confidential

Table 4-63 FPCCR bit assignments without the Security Extension

Bits Name Function

[31] ASPEN Automatic state preservation enable. Enables CONTROL.FPCA setting on execution of a floating-point
instruction. This results in automatic hardware state preservation and restoration, for floating-point context,
on exception entry and exit. The possible values of this bit are:

0 Disable CONTROL.FPCA setting on execution of a floating-point instruction.

1 Enable CONTROL.FPCA setting on execution of a floating-point instruction.

[30] LSPEN Automatic state preservation enable. Enables lazy context save of floating-point state. The possible values of
this bit are:

0 Disable automatic lazy context save.

1 Enable automatic lazy state preservation for floating-point context.

Writes to this bit from Non-secure state are ignored if LSPENS is set to one.

[29] LSPENS RAZ/WI.

[28] CLRONRET Clear on return. Clear floating-point caller saved registers on exception return.

The possible values of this bit are:

0 Disabled.

1 Enabled.

When set to 1 the caller saved floating-point registers S0 to S15, and FPSCR are cleared on exception return
(including tail chaining) if CONTROL.FPCA is set to 1 and FPCCR_S.LSPACT is set to 0.

[27] CLRONRETS RAZ/WI.

[26] TS RAZ/WI.

[25:11] - Reserved, RES0

[10] UFRDY UsageFault ready. Indicates whether the software executing when the processor allocated the floating-point
stack frame was able to set the UsageFault exception to pending.

The possible values of this bit are:

0 Not able to set the UsageFault exception to pending.

1 Able to set the UsageFault exception to pending.

[9] SPLIMVIOL Stack pointer limit violation. This bit indicates whether the floating-point context violates the stack pointer
limit that was active when lazy state preservation was activated. SPLIMVIOL modifies the lazy floating-
point state preservation behavior.

This bit is banked between Security states.

The possible values of this bit are:

0 The existing behavior is retained.

1 The memory accesses associated with the floating-point state preservation are not performed.

4 The Cortex®-M33 Peripherals
4.6 Floating-Point Unit

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-328

Non-Confidential

Table 4-63 FPCCR bit assignments without the Security Extension (continued)

Bits Name Function

[8] MONRDY DebugMonitor ready. Indicates whether the software executing when the processor allocated the floating-
point stack frame was able to set the DebugMonitor exception to pending.

The possible values of this bit are:

0 Not able to set the DebugMonitor exception to pending.

1 Able to set the DebugMonitor exception to pending.

If DEMCR.SDME is 1 in Non-secure state this bit is RAZ/WI.

[7] SFRDY RAZ/WI.

[6] BFRDY BusFault ready. Indicates whether the software executing when the processor allocated the floating-point
stack frame was able to set the BusFault exception to pending.

The possible values of this bit are:

0 Not able to set the BusFault exception to pending.

1 Able to set the BusFault exception to pending.

[5] MMRDY MemManage ready. Indicates whether the software executing when the processor allocated the floating-point
stack frame was able to set the MemManage exception to pending.

The possible values of this bit are:

0 Not able to set the MemManage exception to pending.

1 Able to set the MemManage exception to pending.

[4] HFRDY HardFault ready. Indicates whether the software executing when the processor allocated the floating-point
stack frame was able to set the HardFault exception to pending.

This bit is not banked between Security states.

The possible values of this bit are:

0 Not able to set the HardFault exception to pending.

1 Able to set the HardFault exception to pending.

[3] THREAD Thread mode. Indicates the processor mode when it allocated the floating-point stack frame.

This bit is banked between Security states.

The possible values of this bit are:

0 Handler mode.

1 Thread mode.

This bit is for fault handler information only and does not interact with the exception model.

[2] S RAZ/WI.

4 The Cortex®-M33 Peripherals
4.6 Floating-Point Unit

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-329

Non-Confidential

Table 4-63 FPCCR bit assignments without the Security Extension (continued)

Bits Name Function

[1] USER Indicates the privilege level of the software executing, when the processor allocated the floating point stack.

The possible values of this bit are:

0 Privileged level.

1 Unprivileged level.

[0] LSPACT Lazy state preservation active. Indicates whether lazy preservation of the floating-point state is active.

The possible values of this bit are:

0 Lazy state preservation is not active.

1 Lazy state preservation is active.

Table 4-64 FPCCR bit assignments with the Security Extension

Bits Name Function

[31] ASPEN Automatic state preservation enable. Enables CONTROL.FPCA setting on execution of a floating-point
instruction. This results in automatic hardware state preservation and restoration, for floating-point context,
on exception entry and exit. The possible values of this bit are:

0 Disable CONTROL.FPCA setting on execution of a floating-point instruction.

1 Enable CONTROL.FPCA setting on execution of a floating-point instruction.

This bit is banked between Security states.

[30] LSPEN Automatic state preservation enable. Enables lazy context save of floating-point state. The possible values of
this bit are:

0 Disable automatic lazy context save.

1 Enable automatic lazy state preservation for floating-point context.

Writes to this bit from Non-secure state are ignored if LSPENS is set to one.

This bit is not banked between Security states.

[29] LSPENS Lazy state preservation enable Secure only. This bit controls whether the LSPEN bit is writeable from the
Non-secure state.

The possible values of this bit are:

0 LSPEN is readable and writeable from both Security states.

1 LSPEN is readable from both Security states. Writes to LSPEN are ignored from the Non-
secure state.

This bit is not banked between Security states.

4 The Cortex®-M33 Peripherals
4.6 Floating-Point Unit

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-330

Non-Confidential

Table 4-64 FPCCR bit assignments with the Security Extension (continued)

Bits Name Function

[28] CLRONRET Clear on return. Clear floating-point caller saved registers on exception return.

The possible values of this bit are:

0 Disabled.

1 Enabled.

When set to 1 the caller saved floating-point registers S0 to S15, and FPSCR are cleared on exception return
(including tail chaining) if CONTROL.FPCA is set to 1 and FPCCR_S.LSPACT is set to 0.

This bit is not banked between Security states.

[27] CLRONRETS Clear on return Secure only. This bit controls whether the CLRONRET bit is writeable from the Non-secure
state.

The possible values of this bit are:

0 The CLRONRET field is accessibly from both Security states.

1 The Non-secure view of the CLRONRET field is read-only.

This bit is RAZ/WI for a Non-secure state.

This bit is not banked between Security states.

[26] TS Treat as Secure. Treat floating-point registers as Secure enable.

The possible values of this bit are:

0 Disabled.

1 Enabled.

When set to 0 the floating-point registers are treated as Non-secure even when the core is in the Secure state
and, therefore, the callee saved registers are never pushed to the stack. If the floating-point registers never
contain data that needs to be protected, clearing this flag can reduce interrupt latency.

This bit is not banked between Security states.

[25:11] - Reserved, RES0

[10] UFRDY UsageFault ready. Indicates whether the software executing when the processor allocated the floating-point
stack frame was able to set the UsageFault exception to pending.

The possible values of this bit are:

0 Not able to set the UsageFault exception to pending.

1 Able to set the UsageFault exception to pending.

This bit is banked between Security states.

4 The Cortex®-M33 Peripherals
4.6 Floating-Point Unit

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-331

Non-Confidential

Table 4-64 FPCCR bit assignments with the Security Extension (continued)

Bits Name Function

[9] SPLIMVIOL Stack pointer limit violation. This bit indicates whether the floating-point context violates the stack pointer
limit that was active when lazy state preservation was activated. SPLIMVIOL modifies the lazy floating-
point state preservation behavior.

The possible values of this bit are:

0 The existing behavior is retained.

1 The memory accesses associated with the floating-point state preservation are not performed. If
the floating-point is in Secure state and FPCCR.TS is set to 1 the registers are still zeroed and
the floating-point state is lost.

This bit is banked between Security states.

[8] MONRDY DebugMonitor ready. Indicates whether the software executing when the processor allocated the floating-
point stack frame was able to set the DebugMonitor exception to pending.

The possible values of this bit are:

0 Not able to set the DebugMonitor exception to pending.

1 Able to set the DebugMonitor exception to pending.

If DEMCR.SDME is 1 in Non-secure state this bit is RAZ/WI.

This bit is not banked between Security states.

[7] SFRDY SecureFault ready.

If accessed from the Non-secure state, this bit behaves as RAZ/WI.

If accessed from the Secure state, this bit indicates whether the software executing (when the processor
allocated the floating-point stack frame) was able to set the SecureFault exception to pending.

This bit is not banked between Security states.

[6] BFRDY BusFault ready. Indicates whether the software executing when the processor allocated the floating-point
stack frame was able to set the BusFault exception to pending.

The possible values of this bit are:

0 Not able to set the BusFault exception to pending.

1 Able to set the BusFault exception to pending.

If in Non-secure state and AIRCR.BFHFNMINS is zero, this bit is RAZ/WI.

This bit is not banked between Security states.

[5] MMRDY MemManage ready. Indicates whether the software executing when the processor allocated the floating-point
stack frame was able to set the MemManage exception to pending.

The possible values of this bit are:

0 Not able to set the MemManage exception to pending.

1 Able to set the MemManage exception to pending.

This bit is banked between Security states.

4 The Cortex®-M33 Peripherals
4.6 Floating-Point Unit

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-332

Non-Confidential

Table 4-64 FPCCR bit assignments with the Security Extension (continued)

Bits Name Function

[4] HFRDY HardFault ready. Indicates whether the software executing when the processor allocated the floating-point
stack frame was able to set the HardFault exception to pending.

The possible values of this bit are:

0 Not able to set the HardFault exception to pending.

1 Able to set the HardFault exception to pending.

If in Non-secure state and AIRCR.BFHFNMINS is zero, this bit is RAZ/WI.

This bit is not banked between Security states.

[3] THREAD Thread mode. Indicates the processor mode when it allocated the floating-point stack frame.

The possible values of this bit are:

0 Handler mode.

1 Thread mode.

This bit is for fault handler information only and does not interact with the exception model.

This bit is banked between Security states.

[2] S Security status of the floating point context.

If accessed from the Non-secure state, this bit behaves as RAZ/WI.

This bit is updated whenever lazy state preservation is activated, or when a floating-point instruction is
executed.

The possible values of this bit are:

0 Indicates that the floating-point context belongs to the Non-secure state.

1 Indicates that the floating-point context belongs to the Secure state.

[1] USER Indicates the privilege level of the software executing, when the processor allocated the floating point stack.

The possible values of this bit are:

0 Privileged level.

1 Unprivileged level.

This bit is banked between Security states.

[0] LSPACT Lazy state preservation active. Indicates whether lazy preservation of the floating-point state is active.

The possible values of this bit are:

0 Lazy state preservation is not active.

1 Lazy state preservation is active.

This bit is banked between Security states.

4.6.3 Floating-point Context Address Register

The FPCAR register holds the location of the unpopulated floating-point register space that is allocated
on an exception stack frame.

See 4.6.1 Floating-Point Unit on page 4-327 for the FPCAR attributes.

In an implementation with the Security Extension, this register is banked between Security states.

4 The Cortex®-M33 Peripherals
4.6 Floating-Point Unit

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-333

Non-Confidential

The FPCAR bit assignments are:

31 2 0

ADDRESS

3

RES0

Table 4-65 FPCAR bit assignments

Bits Name Function

[31:3] ADDRESS The location of the unpopulated floating-point register space that is allocated on an exception stack frame.

[2:0] - Reserved, RES0

4.6.4 Floating-point Status Control Register

The FPSCR register provides all necessary User level control of the floating-point system.

See 4.6.1 Floating-Point Unit on page 4-327 for the FPSCR attributes.

In an implementation with the Security Extension, this register is not banked between Security states.

The FPSCR bit assignments are:

RES0

DN
FZ
RMode IOC

DZC
OFC

RES0

UFC
IXC

IDC

N

31 30 29 28 27 26 25 24 23 22 21 8 7 6 5 4 3 2 1 0

Z C RES0

AHP

V

Table 4-66 FPSCR bit assignments

Bits Name Function

[31] N Condition code flags. Floating-point comparison operations update these flags:

N Negative condition code flag.

Z Zero condition code flag.

C Carry condition code flag.

V Overflow condition code flag.

[30] Z

[29] C

[28] V

[27] - Reserved, RES0.

[26] AHP Alternative half-precision control bit:

0 IEEE half-precision format selected.

1 Alternative half-precision format selected.

[25] DN Default NaN mode control bit:

0 NaN operands propagate through to the output of a floating-point operation.

1 Any operation involving one or more NaNs returns the Default NaN.

4 The Cortex®-M33 Peripherals
4.6 Floating-Point Unit

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-334

Non-Confidential

Table 4-66 FPSCR bit assignments (continued)

Bits Name Function

[24] FZ Flush-to-zero mode control bit:

0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully compliant with the
IEEE 754 standard.

1 Flush-to-zero mode enabled.

[23:22] RMode Rounding Mode control field. The encoding of this field is:

0b00 Round to Nearest (RN) mode.

0b01 Round towards Plus Infinity (RP) mode.

0b10 Round towards Minus Infinity (RM) mode.

0b11 Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all floating-point instructions.

[21:8] - Reserved, RES0.

[7] IDC Input Denormal cumulative exception bit, see bits [4:0].

[6:5] - Reserved, RES0.

[4] IXC Cumulative exception bits for floating-point exceptions, see also bit[7]. Each of these bits is set to 1 to indicate that
the corresponding exception has occurred since 0 was last written to it.

IDC, bit[7] Input Denormal cumulative exception bit.

IXC Inexact cumulative exception bit.

UFC Underflow cumulative exception bit.

OFC Overflow cumulative exception bit.

DZC Division by Zero cumulative exception bit.

IOC Invalid Operation cumulative exception bit.

[3] UFC

[2] OFC

[1] DZC

[0] IOC

4.6.5 Floating-point Default Status Control Register

The FPDSCR register holds the default values for the floating-point status control data. The processor
assigns the floating-point status control data to the FPSCR when it creates a new floating-point context.

See 4.6.1 Floating-Point Unit on page 4-327 for the FPDSCR attributes.

In an implementation with the Security Extension, this register is banked between Security states.

The FPDSCR bit assignments are:

0RES0

31 27 26 25 24 23 22 21 0

0 0 0 0 RES0

AHP RMode
DN FZ

4 The Cortex®-M33 Peripherals
4.6 Floating-Point Unit

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-335

Non-Confidential

Table 4-67 FPDSCR bit assignments

Bits Name Function

[31:27] - Reserved, RES0

[26] AHP Default value for FPSCR.AHP

[25] DN Default value for FPSCR.DN

[24] FZ Default value for FPSCR.FZ

[23:22] RMode Default value for FPSCR.RMode

[21:0] - Reserved, RES0

4.6.6 Code sequence for enabling the FPU

The FPU is disabled from reset. You must enable it before you can use any floating-point instructions.
The code sequence shows how to a enable the FPU in privileged mode. The core must be in privileged
mode to read from and write to the CPACR.

If the Security Extension is implemented, when the system boots up, the secure software should setup
NSACR to determine if the FPU (coprocessor 10 and 11) is accessible from Non-secure side. The Secure
software should also configure FPCCR to determine if the FPU is used by Secure software. After that,
the FPU can be enabled.

Enabling the FPU

CPACR EQU 0xE000ED88
LDR R0, =CPACR ; Read CPACR
LDR r1, [R0] ; Set bits 20-23 to enable CP10 and CP11 coprocessors
ORR R1, R1, #(0xF << 20)
STR R1, [R0] ; Write back the modified value to the CPACR
DSB
ISB ; Reset pipeline now the FPU is enabled.

4 The Cortex®-M33 Peripherals
4.6 Floating-Point Unit

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

4-336

Non-Confidential

Appendix A
Cortex®-M33 Options

This appendix describes what the configuration options are and the affect these have on this book. The
configuration options for a Cortex‑M33 processor implementation are determined by the device
manufacturer.

It contains the following section:
• A.1 Processor implementation options on page Appx-A-338.

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-337

Non-Confidential

A.1 Processor implementation options
The following table shows the processor implementation options.

Table A-1 Effects of the processor implementation options

Option Description and affected documentation

RTL version This affects the availability of some features. This affects:
• Variant and Revision field values in 4.2.3 CPUID Base Register on page 4-269.
• The CPUID Register reset value in 4.2 System Control Block on page 4-267.

Inclusion of DSP Extension The SoC designer decides whether to implement the processor with or without the DSP
Extension. This affects references to the DSP Extension in:
• 1.1 About the Cortex®‑M33 processor and core peripherals on page 1-12
• 3.4 General data processing instructions on page 3-92
• 3.6 Multiply and divide instructions on page 3-134
• 3.7 Saturating instructions on page 3-155
• 3.8 Packing and unpacking instructions on page 3-165

Inclusion of coprocessor The SoC designer decides whether to implement the processor with or without a
coprocessor. This affects references to the coprocessor in:
• 3.5 Coprocessor instructions on page 3-128

This also affects the:
• 4.2.15 Coprocessor Access Control Register on page 4-296
• 4.2.16 Non-secure Access Control Register on page 4-297
• 2.5.1 Fault types reference table on page 2-58
• UsageFault Status Register on page 4-292

Inclusion of debug The SoC designer decides whether to implement the processor with or without debug. The
number of breakpoints and watchpoints is configurable to 0, 4 or 8. This affects references
to the coprocessor in:
• 1.1 About the Cortex®‑M33 processor and core peripherals on page 1-12.
• 1.1.3 Integrated configurable debug on page 1-15.
• 1.1.4 Processor features and benefits summary on page 1-16.
• 2.1.3 Core registers on page 2-19.
• 2.5.4 Lockup on page 2-61.

Inclusion of MPU The SoC designer decides whether to implement the processor with or without a Memory
Protection Unit (MPU). The number of MPU regions is configurable to 0, 4, 8, 12, or 16.
This affects references to the MPU or MPU registers in:
• 1.1 About the Cortex®‑M33 processor and core peripherals on page 1-12
• 2.2.2 Memory regions, types, and attributes on page 2-33.
• 2.2.5 Behavior of memory accesses on page 2-36
• 2.3.2 Exception types on page 2-42 in the description of MemManage.
• 2.5 Fault handling on page 2-58.
• 4.1 About the Cortex®‑M33 peripherals on page 4-266. Include either:

— The row for 0xE000ED90-0xE000ED93, MPU Type Register, reads as zero.
— The row for 0xE000ED90-0xE000EDB8, Memory Protection Unit.

If you have cache in your memory system, this affects bit field information in Table 4-60
 MAIR_ATTR values for bits[3:2] when MAIR_ATTR[7:4] is 0000 on page 4-324

A Cortex®-M33 Options
A.1 Processor implementation options

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-338

Non-Confidential

Table A-1 Effects of the processor implementation options (continued)

Option Description and affected documentation

Inclusion of FPU The SoC designer decides whether to implement the processor with or without a single-
precision Floating-Point Unit (FPU). This affects:
• 3.11 Floating-point instructions on page 3-184.
• The inclusion of VLDM/VSTM/VPUSH/VPOP in the list of interruptible instructions

Interruptible-continuable instructions on page 2-27.
• The FPCA bit in CONTROL register on page 2-30.
• The MLSPERR bit in the MemManage Fault Status Register (MMFSR).
• The LSPERR and LSERR bits in the SecureFault Status Register (SFSR) if the

Security Extension is included.

Number of interrupts The SoC designer decides how many interrupts your processor implementation supports, in
the range 1-480. This affects:
• The maximum value of ISR_NUMBER in Interrupt Program Status Register

on page 2-25.
• Exception number values (16 and above) in 2.3.2 Exception types on page 2-42,

particularly if you implement only one.
• The maximum interrupt number, and associated information where appropriate, in:

— 2.3.3 Exception handlers on page 2-47.
— 2.3.4 Vector table on page 2-48
— 4.4 Nested Vectored Interrupt Controller on page 4-304

• The number of implemented Nested Vectored Interrupt Controller (NVIC) registers in:
— NVIC register summary
— The appropriate register descriptions in sections 4.4.2 Interrupt Set Enable

Registers on page 4-305 to 4.4.8 Interrupt Priority Registers on page 4-309
• 4.2.5 Vector Table Offset Register on page 4-276.

Number of priority bits The SoC designer decides how many priority bits are in priority value fields, in the range
3-8. Register priority value fields are 8 bits wide, and unimplemented low-order bits read as
zero and ignore writes. This affects:
• The note in 2.3.5 Exception priorities on page 2-50
• The notes in CONTROL register on page 2-30
• The maximum priority level value in the introduction to 4.4 Nested Vectored Interrupt

Controller on page 4-304
• In 4.4.8 Interrupt Priority Registers on page 4-309

— The maximum priority level value, in the introductory sentence.
— The priority field description, in 4.4.7 Interrupt Target Non-secure Registers

on page 4-308
• In 4.2.9 System Handler Priority Registers on page 4-283:

— The field width, in the introductory sentence.
— The priority fields description in System Handler Priority Register 3 on page 4-284
— The description of the effect of the binary point, in Binary point on page 4-278.

Inclusion of the WIC The SoC designer decides whether to implement the processor with or without a Wakeup
Interrupt Controller (WIC). This affects references to the WIC in:
• 1.1 About the Cortex®‑M33 processor and core peripherals on page 1-12.

• 2.6 Power management on page 2-62.
• 2.6.3 The Wakeup Interrupt Controller on page 2-63.

A Cortex®-M33 Options
A.1 Processor implementation options

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-339

Non-Confidential

Table A-1 Effects of the processor implementation options (continued)

Option Description and affected documentation

Sleep mode power-saving The SoC designer decides the power-saving options available in the sleep modes. This
affects 2.6 Power management on page 2-62.

Sleep mode power saving might also affect SysTick behavior, and you might have to revise
the description inwhich affects 4.3.5 SysTick usage hints and tips on page 4-303.

Endianness The implementer decides whether the memory system is little-endian or big-endian. This
affects:
• Descriptions of endianness in:

— 2.1.5 Data types and data memory accesses on page 2-31.
— The introductory paragraph in 2.2.7 Memory endianness on page 2-38. Include

either Byte-invariant big-endian format on page 2-38 or Little-endian format
on page 2-38. but not both.

Memory features Some features of the memory system are implementation-specific. This affects details of
vendor-specific memory in 2.2 Memory model on page 2-33, including:
• Implementation in 1.1 About the Cortex®‑M33 processor and core peripherals

on page 1-12
• 2.2.5 Behavior of memory accesses on page 2-36

VTOR.TBLOFF[31:7] vector base
address

The SoC Designer decides the initial value in the Vector Table Offset Register (VTOR),
which controls the vector base address. This affects the address from where the processor
loads:
• The MSP value in Stack Pointer on page 2-22.
• The PC value in Program Counter on page 2-24.

Inclusion of Armv8‑M Security
Extension

The SoC designer decides whether to implement the processor with or without the Security
Extension. This affects:
• Figure 1-1 Cortex‑M33 processor implementation in Processor implementation

on page 1-12
• Security Extension:

— 1.1.2 Security Extension on page 1-15.
— 2.1.2 Security states on page 2-19.
— 2.2.4 Secure memory system and memory partitioning on page 2-34.

• Exception types, Secure HardFault and SecureFault in:
— IPSR bit assignments in Interrupt Program Status Register on page 2-25.
— Properties of the different exception types Reset, NMI, HardFault, Secure

HardFault, and SecureFault in 2.3 Exception model on page 2-42.
• Stack pointer. Stack Pointer on page 2-22.
• Vector table offset. 2.3.4 Vector table on page 2-48.
• System timer. 4.3 System timer, SysTick on page 4-300.
• PRIMASK, FAULTMASK, and BASEPRI registers, in Exception mask registers

on page 2-28
• MPU:

— There can be two MPUs, one Secure and one Non-secure. Each MPU can define
memory attributes independently.' 1.1.5 Processor core peripherals on page 1-16.

— Include or omit 4.5 Security Attribution and Memory Protection on page 4-312
• SAU:

— 4.5 Security Attribution and Memory Protection on page 4-312.

A Cortex®-M33 Options
A.1 Processor implementation options

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-A-340

Non-Confidential

Appendix B
Revisions

This appendix describes the technical changes between released issues of this book.

It contains the following section:
• B.1 Revisions on page Appx-B-342.

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-B-341

Non-Confidential

B.1 Revisions
This section describes the technical changes between released issues of this document.

Table B-1 Issue 0002-00

Change Location Affects

First release for r0p2 - -

Table B-2 Differences between issue 0002-00 and issue 0003-00

Change Location Affects

Updated CPUID reset value
4.2.1 System control block registers summary on page 4-267

4.2.3 CPUID Base Register on page 4-269

r0p3

Replaced Updating MPU regions with Updating protected
memory regions, which includes updating SAU and MPU
descriptions

4.5.19 Updating protected memory regions on page 4-325 All

Table B-3 Differences between issue 0003-00 and issue 0004-00

Change Location Affects

Clarified function of the interrupt clear-enable bits. 4.4.3 Interrupt Clear Enable Registers on page 4-306 All

Updated CPUID reset value. 4.2.1 System control block registers summary on page 4-267

4.2.3 CPUID Base Register on page 4-269

r0p4

Changed 'INITSVTOR pin' and 'INITNSVTOR pin' to
'INITSVTOR bus' and 'INITNSVTOR bus' where applicable.

2.3.4 Vector table on page 2-48 All

B Revisions
B.1 Revisions

100235_0004_00_en Copyright © 2017, 2018 Arm Limited or its affiliates. All rights
reserved.

Appx-B-342

Non-Confidential

	Arm® Cortex®‑M33 Devices Generic User Guide
	Table of Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions
	Timing diagrams
	Signals

	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1 : Introduction
	1.1 : About the Cortex®‑M33 processor and core peripherals
	1.1.1 : System-level interface
	1.1.2 : Security Extension
	1.1.3 : Integrated configurable debug
	1.1.4 : Processor features and benefits summary
	1.1.5 : Processor core peripherals

	1.2 : Arm®v8‑M enablement

	2 : The Cortex®‑M33 Processor
	2.1 : Programmer's model
	2.1.1 : Processor modes and privilege levels for software execution
	2.1.2 : Security states
	2.1.3 : Core registers
	General-purpose registers
	Stack Pointer
	Stack limit registers
	Link Register
	Program Counter
	Combined Program Status Register
	Application Program Status Register
	Interrupt Program Status Register
	Execution Program Status Register
	Interruptible-continuable instructions
	If-Then block
	Thumb state

	Exception mask registers
	Priority Mask Register
	Fault Mask Register
	Base Priority Mask Register

	CONTROL register

	2.1.4 : Exceptions and interrupts
	2.1.5 : Data types and data memory accesses
	2.1.6 : The Cortex Microcontroller Software Interface Standard

	2.2 : Memory model
	2.2.1 : Processor memory map
	2.2.2 : Memory regions, types, and attributes
	2.2.3 : Device memory
	2.2.4 : Secure memory system and memory partitioning
	2.2.5 : Behavior of memory accesses
	Additional memory access constraints for caches and shared memory

	2.2.6 : Software ordering of memory accesses
	2.2.7 : Memory endianness
	Byte-invariant big-endian format
	Little-endian format

	2.2.8 : Synchronization primitives
	2.2.9 : Programming hints for the synchronization primitives

	2.3 : Exception model
	2.3.1 : Exception states
	2.3.2 : Exception types
	2.3.3 : Exception handlers
	2.3.4 : Vector table
	2.3.5 : Exception priorities
	2.3.6 : Interrupt priority grouping
	2.3.7 : Exception entry and return
	Exception entry
	Exception return

	2.4 : Security state switches
	2.5 : Fault handling
	2.5.1 : Fault types reference table
	2.5.2 : Fault escalation to HardFault
	2.5.3 : Fault status registers and fault address registers
	2.5.4 : Lockup

	2.6 : Power management
	2.6.1 : Entering sleep mode
	Wait for interrupt
	Wait for event
	Sleep-on-exit

	2.6.2 : Wakeup from sleep mode
	Wakeup from WFI or sleep-on-exit
	Wakeup from WFE

	2.6.3 : The Wakeup Interrupt Controller
	2.6.4 : The external event input
	2.6.5 : Power management programming hints

	3 : The Cortex®‑M33 Instruction Set
	3.1 : Cortex®‑M33 instructions
	3.1.1 : Binary compatibility with other Cortex processors

	3.2 : CMSIS functions
	3.2.1 : List of CMSIS functions to generate some processor instructions
	3.2.2 : CMSE
	3.2.3 : CMSIS functions to access the special registers
	3.2.4 : CMSIS functions to access the Non-secure special registers

	3.3 : About the instruction descriptions
	3.3.1 : Operands
	3.3.2 : Restrictions when using PC or SP
	3.3.3 : Flexible second operand
	Constant
	Instruction substitution

	Register with optional shift

	3.3.4 : Shift Operations
	ASR
	LSR
	LSL
	ROR
	RRX

	3.3.5 : Address alignment
	3.3.6 : PC‑relative expressions
	3.3.7 : Conditional execution
	The condition flags
	Condition code suffixes

	3.3.8 : Instruction width selection

	3.4 : General data processing instructions
	3.4.1 : List of data processing instructions
	3.4.2 : ADD, ADC, SUB, SBC, and RSB
	3.4.3 : AND, ORR, EOR, BIC, and ORN
	3.4.4 : ASR, LSL, LSR, ROR, and RRX
	3.4.5 : CLZ
	3.4.6 : CMP and CMN
	3.4.7 : MOV and MVN
	3.4.8 : MOVT
	3.4.9 : REV, REV16, REVSH, and RBIT
	3.4.10 : SADD16 and SADD8
	3.4.11 : SASX and SSAX
	3.4.12 : SEL
	3.4.13 : SHADD16 and SHADD8
	3.4.14 : SHASX and SHSAX
	3.4.15 : SHSUB16 and SHSUB8
	3.4.16 : SSUB16 and SSUB8
	3.4.17 : TST and TEQ
	3.4.18 : UADD16 and UADD8
	3.4.19 : UASX and USAX
	3.4.20 : UHADD16 and UHADD8
	3.4.21 : UHASX and UHSAX
	3.4.22 : UHSUB16 and UHSUB8
	3.4.23 : USAD8
	3.4.24 : USADA8
	3.4.25 : USUB16 and USUB8

	3.5 : Coprocessor instructions
	3.5.1 : List of coprocessor instructions
	3.5.2 : Coprocessor intrinsics
	3.5.3 : CDP and CDP2
	3.5.4 : MCR and MCR2
	3.5.5 : MCRR and MCRR2
	3.5.6 : MRC and MRC2
	3.5.7 : MRRC and MRRC2

	3.6 : Multiply and divide instructions
	3.6.1 : List of multiply and divide instructions
	3.6.2 : MUL, MLA, and MLS
	3.6.3 : SDIV and UDIV
	3.6.4 : SMLAWB, SMLAWT, SMLABB, SMLABT, SMLATB, and SMLATT
	3.6.5 : SMLAD and SMLADX
	3.6.6 : SMLALD, SMLALDX, SMLALBB, SMLALBT, SMLALTB, and SMLALTT
	3.6.7 : SMLSD and SMLSLD
	3.6.8 : SMMLA and SMMLS
	3.6.9 : SMMUL
	3.6.10 : SMUAD and SMUSD
	3.6.11 : SMUL and SMULW
	3.6.12 : UMULL, UMAAL, UMLAL, SMULL, and SMLAL

	3.7 : Saturating instructions
	3.7.1 : List of saturating instructions
	3.7.2 : SSAT and USAT
	3.7.3 : SSAT16 and USAT16
	3.7.4 : QADD and QSUB
	3.7.5 : QASX and QSAX
	3.7.6 : QDADD and QDSUB
	3.7.7 : UQASX and UQSAX
	3.7.8 : UQADD and UQSUB

	3.8 : Packing and unpacking instructions
	3.8.1 : List of packing and unpacking instructions
	3.8.2 : PKHBT and PKHTB
	3.8.3 : SXTA and UXTA
	3.8.4 : SXT and UXT

	3.9 : Bit field instructions
	3.9.1 : List of bit field instructions
	3.9.2 : BFC and BFI
	3.9.3 : SBFX and UBFX

	3.10 : Branch and control instructions
	3.10.1 : List of branch and control instructions
	3.10.2 : B, BL, BX, and BLX
	3.10.3 : BXNS and BLXNS
	3.10.4 : CBZ and CBNZ
	3.10.5 : IT
	3.10.6 : TBB and TBH

	3.11 : Floating-point instructions
	3.11.1 : List of floating-point instructions
	3.11.2 : FLDMDBX, FLDMIAX
	3.11.3 : FSTMDBX, FSTMIAX
	3.11.4 : VABS
	3.11.5 : VADD
	3.11.6 : VCMP and VCMPE
	3.11.7 : VCVT and VCVTR between floating-point and integer
	3.11.8 : VCVT between floating-point and fixed-point
	3.11.9 : VDIV
	3.11.10 : VFMA and VFMS
	3.11.11 : VFNMA and VFNMS
	3.11.12 : VLDM
	3.11.13 : VLDR
	3.11.14 : VLLDM
	3.11.15 : VLSTM
	3.11.16 : VMLA and VMLS
	3.11.17 : VMOV Immediate
	3.11.18 : VMOV Register
	3.11.19 : VMOV scalar to core register
	3.11.20 : VMOV core register to single-precision
	3.11.21 : VMOV two core registers to two single-precision registers
	3.11.22 : VMOV two core registers and a double-precision register
	3.11.23 : VMOV core register to scalar
	3.11.24 : VMRS
	3.11.25 : VMSR
	3.11.26 : VMUL
	3.11.27 : VNEG
	3.11.28 : VNMLA, VNMLS and VNMUL
	3.11.29 : VPOP
	3.11.30 : VPUSH
	3.11.31 : VSQRT
	3.11.32 : VSTM
	3.11.33 : VSTR
	3.11.34 : VSUB
	3.11.35 : VSEL
	3.11.36 : VCVTA, VCVTM VCVTN, and VCVTP
	3.11.37 : VCVTB and VCVTT
	3.11.38 : VMAXNM and VMINNM
	3.11.39 : VRINTR and VRINTX
	3.11.40 : VRINTA, VRINTN, VRINTP, VRINTM, and VRINTZ

	3.12 : Miscellaneous instructions
	3.12.1 : List of miscellaneous instructions
	3.12.2 : BKPT
	3.12.3 : CPS
	3.12.4 : CPY
	3.12.5 : DMB
	3.12.6 : DSB
	3.12.7 : ISB
	3.12.8 : MRS
	3.12.9 : MSR
	3.12.10 : NOP
	3.12.11 : SEV
	3.12.12 : SG
	3.12.13 : SVC
	3.12.14 : TT, TTT, TTA, and TTAT
	3.12.15 : UDF
	3.12.16 : WFE
	3.12.17 : WFI
	3.12.18 : YIELD

	3.13 : Memory access instructions
	3.13.1 : List of memory access instructions
	3.13.2 : ADR
	3.13.3 : LDR and STR, immediate offset
	3.13.4 : LDR and STR, register offset
	3.13.5 : LDR and STR, unprivileged
	3.13.6 : LDR, PC‑relative
	3.13.7 : LDM and STM
	3.13.8 : PLD
	3.13.9 : PUSH and POP
	3.13.10 : LDA and STL
	3.13.11 : LDREX and STREX
	3.13.12 : LDAEX and STLEX
	3.13.13 : CLREX

	4 : The Cortex®‑M33 Peripherals
	4.1 : About the Cortex®‑M33 peripherals
	4.2 : System Control Block
	4.2.1 : System control block registers summary
	4.2.2 : Auxiliary Control Register
	4.2.3 : CPUID Base Register
	4.2.4 : Interrupt Control and State Register
	4.2.5 : Vector Table Offset Register
	4.2.6 : Application Interrupt and Reset Control Register
	Binary point

	4.2.7 : System Control Register
	4.2.8 : Configuration and Control Register
	4.2.9 : System Handler Priority Registers
	System Handler Priority Register 1
	System Handler Priority Register 2
	System Handler Priority Register 3

	4.2.10 : System Handler Control and State Register
	4.2.11 : Configurable Fault Status Register
	MemManage Fault Status Register
	BusFault Status Register
	UsageFault Status Register

	4.2.12 : HardFault Status Register
	4.2.13 : MemManage Fault Address Register
	4.2.14 : BusFault Address Register
	4.2.15 : Coprocessor Access Control Register
	4.2.16 : Non-secure Access Control Register
	4.2.17 : System control block design hints and tips

	4.3 : System timer, SysTick
	4.3.1 : SysTick Control and Status Register
	4.3.2 : SysTick Reload Value Register
	Calculating the RELOAD value

	4.3.3 : SysTick Current Value Register
	4.3.4 : SysTick Calibration Value Register
	4.3.5 : SysTick usage hints and tips

	4.4 : Nested Vectored Interrupt Controller
	4.4.1 : Accessing the NVIC registers using CMSIS
	4.4.2 : Interrupt Set Enable Registers
	4.4.3 : Interrupt Clear Enable Registers
	4.4.4 : Interrupt Set Pending Registers
	4.4.5 : Interrupt Clear Pending Registers
	4.4.6 : Interrupt Active Bit Registers
	4.4.7 : Interrupt Target Non-secure Registers
	4.4.8 : Interrupt Priority Registers
	4.4.9 : Software Trigger Interrupt Register
	4.4.10 : Level-sensitive and pulse interrupts
	Hardware and software control of interrupts

	4.4.11 : NVIC usage hints and tips
	NVIC programming hints

	4.5 : Security Attribution and Memory Protection
	4.5.1 : Security Attribution Unit
	4.5.2 : Security Attribution Unit Control Register
	4.5.3 : Security Attribution Unit Type Register
	4.5.4 : Security Attribution Unit Region Number Register
	4.5.5 : Security Attribution Unit Region Base Address Register
	4.5.6 : Security Attribution Unit Region Limit Address Register
	4.5.7 : Secure Fault Status Register
	4.5.8 : Secure Fault Address Register
	4.5.9 : Memory Protection Unit
	4.5.10 : MPU Type Register
	4.5.11 : MPU Control Register
	4.5.12 : MPU Region Number Register
	4.5.13 : MPU Region Base Address Register
	4.5.14 : MPU Region Base Address Register Alias, n=1-3
	4.5.15 : MPU Region Limit Address Register Alias, n=1-3
	4.5.16 : MPU Region Limit Address Register
	4.5.17 : MPU Memory Attribute Indirection Registers 0 and 1
	4.5.18 : MPU mismatch
	4.5.19 : Updating protected memory regions
	4.5.20 : MPU design hints and tips
	MPU configuration for a microcontroller

	4.6 : Floating-Point Unit
	4.6.1 : Floating-Point Unit
	4.6.2 : Floating-point Context Control Register
	4.6.3 : Floating-point Context Address Register
	4.6.4 : Floating-point Status Control Register
	4.6.5 : Floating-point Default Status Control Register
	4.6.6 : Code sequence for enabling the FPU

	A : Cortex®‑M33 Options
	A.1 : Processor implementation options

	B : Revisions
	B.1 : Revisions

