

Table 18. Static characteristics: Power consumption in deep power-down mode

 T_{amb} = -40 °C to +105 °C, unless otherwise specified, 2.7 V \leq V_{DD} \leq 3.6 V.

Symbol	Parameter	Conditions	Min	Typ[1][2]	Max	Unit
I _{BAT}	battery supply current	deep power-down mode;				
		RTC oscillator running with external crystal				
		VDD = VDDA= VREFP = 3.3 V, VBAT = 3.0 V	-	0	-	nΑ
		\lor DD = \lor DDA= \lor REFP = 0 \lor or tied to ground, \lor BAT = 3.0 \lor	-	340[3]	-	nA

- [1] Typical ratings are not guaranteed. Typical values listed are at room temperature (25 °C).
- [2] Characterized through bench measurements using typical samples.
- [3] If VBAT> VDD, the external reset pin must be floating to prevent high VBAT leakage. How can I left RESET pin floating ?!?!

Test Conditions:

- No power supply (VDD=VDDA=VREFP=0V
- Battery fully charged
- Battery type: Rechargeable Panasonic VL-1220 7mA/h

Start Test:

30 April 2020 - hour 17:00 VBAT = 3,334V

End Test

04 May 2020 - hour 07:30 VBAT = 2,981 V

Days calculated in these conditions: 13

With datasheet conditions @ 340nA consumption, days would be more than 800. I tried to disconnect R33, leaving RESET pin floating, but without differences.