
EXTERNAL USE

NOVEMBER, 2018

TRUSTZONE TECHNOLOGY

EXTERNAL USE1

Content

• TrustZone Technology Overview

• Memory Configuration

• Switching between Secure and Non-secure

• Exceptions

EXTERNAL USE2

TRUSTZONE

TECHNOLOGY

OVERVIEW

EXTERNAL USE3

IoT Will Be Everywhere

• In recent years, the Internet of Things (IoT) has become a hot topic for embedded system
developers.

• Iot system products have become more complex, and better solutions are needed to
ensure system security.

• Traditional solution: By dividing software into privileged and non-privileged parts,
privileged software uses MPU to prevent unprivileged applications from accessing critical
system resources, including security-sensitive information.

EXTERNAL USE4

ARM TrustZone technology

• TrustZone technology for ARMv8-M is an optional Security Extension that is designed to provide a

foundation for improved system security in a wide range of embedded applications.

• TrustZone technology divides the system into two states, safe and non-secure, and can switch

between the two states through corresponding commands.

EXTERNAL USE5

Switching between Secure and Non-secure

Non-secure

Secure

Veneer

Veneer

Veneer

veneer

entry function

entry function

entry function

entry function

Non-secure

function call

NSC

• The Secure memory space is further divided into two types:

▪ Secure and Non-secure Callable(NSC)

EXTERNAL USE6

Cortex-M and Cortex-A TrustZone technology comparison

• In both designs, the processor has Secure and Non-secure states.

• There are several differences in the implementation:

▪ TrustZone technology for ARMv8-M supports multiple Secure function entry points, whereas

in TrustZone technology for Cortex-A processors, the Secure Monitor handler is the sole entry

point.

▪ Non-secure interrupts can still be serviced when executing a Secure function.

Cortex-A

EXTERNAL USE7

• Allows user to divide memory map into Secure and Non-Secure regions

• Allows debug to be blocked for Secure code/data when not authenticated

• CPU includes Security Attribution Unit (SAU) as well as a duplication of NVIC, MPU,

SYSTICK, core control registers etc. such that Secure/Non-Secure codes can have

access to their own allocated resources

• Stack management expands from two stack pointers in original Cortex-M (Main

Stack Pointer (MSP) and Process Stack Pointer (PSP)) to four, providing the above

pair individually to both Secure and Non-Secure

• Introduces the concept of Secure Gateway opcode to allow secure code to define a

strict set of entry points into it from Non-secure code.

Features of TrustZone technology

EXTERNAL USE8

Stack limit checking

• As part of ARM TrustZone technology for ARMv8-M, there is also a stack limit

checking feature. For ARMv8-M Mainline, all stack pointers have

corresponding stack limit registers.

The address at the

bottom of the stack

is stored in the

MSPLIM register

EXTERNAL USE9

General-purpose register banking

• Most general-purpose registers are common to both
security states

▪ Registers R0-R7

− Accessible to all instructions

▪ Registers R8-R12

− Accessible to a few 16-bit instructions

− Accessible to all 32-bit instructions

▪ R14 is the link register(LR)

▪ R15 is the program counter(PC)

• R13 is the stack pointer(SP)

▪ Banked by security state

• Floating-point register D0-D15 are not banked

• CONTROL and some other special-purpose registers
are also banked by security…

9

EXTERNAL USE10

Special-purpose register banking

• Special-purpose registers are accessed using special

instructions

▪ MSR/MRS/CPS

• Some registers are security banked

• Non-secure code can only access Non-secure registers

• Secure code can access Secure and Non-secure instances

10

EXTERNAL USE11

Security requirements addressed by TrustZone technology

• Data protection

• Firmware protection

• Operation protection

• Secure boot

Communication protection

is not addressed

EXTERNAL USE12

MEMORY

CONFIGURATION

EXTERNAL USE13

Memory system and memory partitioning

• If the Security Extension is implemented the 4GB memory space is partitioned

into Secure and Non-secure memory regions.

• The Secure memory space is further divided into two types:

▪ Secure and Non-secure Callable(NSC)

NSC

SecureNon-Secure

EXTERNAL USE14

• Secure (S) - For Secure code/data

− Secure data can only be read by secure code

− Secure code can only be executed by CPU in secure mode

• Non-Secure (NS) – For non-Secure code/data

− NS Data can be accessed by both secure state and non-secure state CPU

− Cannot be executed by Secure code

• Non-Secure Callable (NSC)

− This is a special region for NS code to branch into and execute a Secure Gateway (SG) opcode.

Trustzone Memory Regions : Secure/Non-Secure/Non-Secure

Callable

EXTERNAL USE15

Non-Secure Callable (NSC) Memory

• Certain portion of Secure
memory should be marked
as Non-Secure Callable
(NSC) memory for cross-
domain calls.

• NSC memory regions
contain tables of small
branch veneers (entry
points).

− The first instruction in API
must be SG instruction

− NSC memory is to prevent
hackers to use binary data
matching SG opcode value

EXTERNAL USE16

Secure gateway veneers

EXTERNAL USE17

Secure CPU State

M33

S-state

Program

Flash

Program

Flash

Data RAM

Data RAM

Instruction

fetches

S-state

S-state

NS-state

NS-state

✓

Instruction

fetches

Data

access✓

✓

• CPU in secure state can

only execute from Secure

Program memory.

• CPU in secure state can

access data from both

secure and NS memory.

EXTERNAL USE18

Non-Secure CPU State

M33

NS-state

Program

Flash

Program

Flash

Data RAM

Data RAM

Instruction

fetches

S-state

S-state

NS-state

NS-state

✓

Instruction

fetches

Data

access

✓

• CPU in non-secure state can

only execute from non-secure

program memory.

• CPU in non-secure state can

access data from NS memory

only.

EXTERNAL USE19

Memory security determination

• The security state of a memory region is controlled by a combination of the

internal Secure Attribution Unit (SAU) or an external Implementation Defined

Attribution Unit (IDAU).
SAU

Secure

IDAU

Secure

End result

Secure

NS Secure Secure

Secure
NS Secure

NS NS NS

NSC Secure

NS

Secure

NSC NSC

EXTERNAL USE20

IDAU

• The IDAU is used to indicate to the processor if a particular memory address is

Secure, Non-secure Callable (NSC), or Non-secure, and provides the region

number within which the memory address resides. It can also mark a memory

region to be exempted from security checking, for example, a ROM table.

EXTERNAL USE21

IDAU

• For example, a designer could use bit [28] of the address to define if a memory is

Secure or Non-secure, resulting in the following example memory map.

EXTERNAL USE22

LPC55Sxx IDAU

0x1000_0000
256MB

256MBNon Secure

0x3000_0000
256MB

256MBSecure

Non Secure

0x5000_0000
256MB

256MB

0x7000_0000

0x9000_0000

0x2000_0000

0x4000_0000

0x6000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x0000_0000

256MB

256MB

256MB

256MB

256MB

256MB

256MB

256MB

0xB000_0000

0xD000_0000

Program

Data

Peripherals

Ext Memory (unused)

Secure

Non Secure

Secure

Non Secure

Secure

Non Secure

Secure

Non Secure

Secure

Non Secure

0xFFFF_FFFF

256MB

256MB

0xF000_0000 PPB
Secure

Non Secure

• Simple IDAU, without creating a critical timing

path. (CM33 does allows little for IDAU function)

− Addresses 0x0000_0000 to 0x1FFF_FFFF are NS

− Addresses 0x2000_0000 to 0xFFFF_FFFF

▪ If Address Bit_28 = 0 Non-Secure

▪ If Address Bit_28 = 1 Secure

• All peripherals and memories are aliased at two

locations.

EXTERNAL USE23

SAU

• The SAU define region numbers for each of the memory regions. The region

numbers are 8-bit, and are used by the Test Target(TT) instruction to allow

software to determine access permissions and security attribute of objects in

memory.

• The number of regions that are included in the SAU can be configured to be either

0, 4 or 8.

Note

When programming the SAU Non-secure regions, you must ensure that Secure

data and code is not exposed to Non-secure applications.

EXTERNAL USE24

Security Attribution Unit

• 8 regions are supported

• Used to override IDAU’s fixed

map

• Used to define NSC regions

• By default all memory is

set to secure

− At least one SAU descriptor

should be used to make IDAU

effective. Or set ALLNS bit in

SAU control.
0x1000_0000

256MB

256MBNon Secure

0x3000_0000
256MB

256MBSecure

Non Secure

0x5000_0000
256MB

256MB

0x7000_0000

0x9000_0000

0x2000_0000

0x4000_0000

0x6000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x0000_0000

256MB

256MB

256MB

256MB

256MB

256MB

256MB

256MB

0xB000_0000

0xD000_0000

Program

Data

Peripherals

Ext Memory

Secure

Non Secure

Secure

Non Secure

Secure

Non Secure

Secure

Non Secure

Secure

Non Secure

0xFFFF_FFFF

256MB

256MB

0xF000_0000 PPB
Secure

Non Secure

SAU

default

IDAU

default
End result

EXTERNAL USE25

Security Attribution Unit Violation

• An attribution unit (AU) violation is raised by either the SAU or the IDAU.

− All boundaries between address ranges with different security attributes must be aligned to 32-byte

boundaries.

− The behavior of the following address ranges is fixed, so SAU and IDAU can’t change:

▪ 0xF0000000 - 0xFFFFFFFF

• On LPC55Sxx it is always marked as Secure and not Non-secure callable for instruction fetches.

EXTERNAL USE26

SAU Register

• The SAU can only be programmed in Secure state.

Address Name Description

0xE000EDD0 SAU_CTRL SAU Control register

0xE000EDD4 SAU_TYPE SAU Type register

0xE000EDD8 SAU_RNR SAU Region Number Register

0xE000EDDC SAU_RBAR SAU Region Base Address Register

0xE000EDE0 SAU_RLAR SAU Region Limit Address Register

EXTERNAL USE27

SAU region configuration

• Regions are enabled individually using SAU_RLAR.

• The region is Non-secure when SAU_RLAR.ENABLE = 1 and SUA_RLAR.NSC=0.

• The region is Secure and Non-secure callable when SAU_RLAR.ENABLE = 1 and

SUA_RLAR.NSC=1.

EXTERNAL USE28

Configuring the SAU with CMSIS

• CMSIS-CORE now provide partition_<device>.h

▪ TZ_SAU_Setup() used to configure SAU regions

• Some software tools provide SAU configuration wizards

EXTERNAL USE29

SAU Configuration example

EXTERNAL USE30

SAU Configuration example

EXTERNAL USE31

Security Defined by Address

• All address are either Secure or Non-
secure.

• Security Attribution Unit (SAU)

− SAU inside ARMv8M is similar to MPU

− By default all memories are secure

− LPC55S supports 8 SAU regions to define

• NXP’s Device Attribution Unit

− connects through Implementation Defined
Attribution Unit (IDAU) interface

• Independent memory protection unit (MPU)
per security state

− Secure OS can be completely decoupled from

Security

Attribution

Unit (SAU)

Device

Attribution

Unit

Secure

MPU

Non-Secure

MPU

Security

Attribution

Address

Address to System bus

HPRIV
(Privilege level)

HNONSEC

(security level)

IDAU

Interface

Address

Attribution

EXTERNAL USE32

SWITCHING BETWEEN SECURE AND

NON-SECURE STATES

EXTERNAL USE33

Switching between Secure and Non-secure states

• The ARMv8-M Security Extensions allow direct calling between Secure and Non-

secure software. Several instructions are available for state transition handling in

ARMv8-M processors:

SG Secure gateway.

Used for switching from Non-secure to Secure
state at the first instruction of Secure entry point.

BXNS Branch with exchange to Non-secure state.

Used by Secure software to branch or return to

Non-secure program.

BLXNS Branch with link and exchange to Non-

secure state.

Used by Secure software to call Non-secure

functions.

EXTERNAL USE34

Entry function

• An entry function can be called from non-secure state or secure state.

• __attribute__((cmse_nonsecure_entry))

/* Non-secure callable (entry) function */

int func1(int x) __attribute__((cmse_nonsecure_entry)) {

return x+3;

}

/* Call non-secure callable function func1 */

val1 = func1 (1);

func1() is defined at secure

project

func1() is executed in

non-secure projects

EXTERNAL USE35

Non-secure function call

• A call to a function that switches state from secure to non-secure is called a non-

secure function call.

• Define a Non-secure function pointer using:

__attribute_((cmse_nonsecure_call))

For example

Typedef void __attribute_((cmse_nonsecure_call)) nsfunc(void);

Nsfunc *FunctionPointer;

FunctionPointer=cmse_nsfptr_create((nsfunc *)(0x21000248u));

If(cmse_is_nsfptr(FunctionPointer))

FunctionPointer();

EXTERNAL USE36

Calling secure code from non-secure code

• A direct API function call from Non-secure to Secure software entry points is

allowed if the first instruction of the entry point is SG, and it is in a Non-secure

callable memory location.

EXTERNAL USE37

Calling secure code from non-secure code

• Non-secure code can branch into secure code

▪ This allows secure libraries to be used by non-secure applications

• The branch target address:

▪ Must be mapped as Secure and Non-secure Callable by the SAU/IDAU

▪ Must contain a Secure Gateway(SG) instruction

• When executed from Secure, NSC memory, the SG instruction

▪ Changes the security state to Secure

▪ Sets lr[0] to 0 to allow the secure code to return using a BXNS instruction

Non-secure

ns_foo

MOV r0, #10

…

BL entry

CMP r1, #result

Secure, Non-

secure Callable(NSC)

entry

SG

B.W __acle_se_entry

…

Secure

__acle_se_entry

…

…

BXNS lr

EXTERNAL USE38

Calling non-secure code from secure code

EXTERNAL USE39

Calling non-secure code from secure code

• Before executing a BXNS or BLXNS instruction

1. Save all active non-banked registers by copying

them to secure memory

2. The branch target address must have the LSB set

to 0 and reside in non-secure memory

3. Clear all non-banked registers except:

Link register(BLXNS only)

Register that hold arguments for the call

Register that do not hold secret information

PUSH {r0-r12}

MOVW r0, #0x0

MOVT r0, #0x2100

MOV r1, r0

MOV r2, r0

MOV r3, r0

MOV r4, r0

MOV r5, r0

MOV r6, r0

MOV r7, r0

MOV r8, r0

MOV r9, r0

MOV r10, r0

MOV r11, r0

MOV r12, r0

MSR APSR_nzcvq, r0

BLXNS r0 Non-secure branch

Move address into r0(LSB=0)

Clear registers(overwrite with

Non-secure branch address)

Push r0-r12 onto secure stack

EXTERNAL USE40

TT Instruction – Test Target

• SAU/IDAU generate a Region Number for each region.

− Software can check a region to determine security

• TT returns RN and Attribute (NS or secure) on an address

− Use TT on start and end address

− Can determine whether memory has required security attributes.

• LPC55xxx IDAU returns region number as below

− IDAU_RN[7:0] = ({4'h0, idau_addr_a[31:28]})

• Usage examples

− When setting secure DMA for data transfers, secure code can check attributes of

buffer pointer passed by NS code

EXTERNAL USE41

TT instruction

• New Test Target(TT) instruction returns the

MPU and SAU configuration for an address

• TT {cond} {q} Rd, Rn

▪ Rn contains the address to be tested

▪ Rd returns the attributes of the address

• Secure functions may be passed pointers

when called from Non-secure code

▪ TT can validate that the calling function has

the rights to access the memory

▪ TT can validate that the address is Non-secure

[7:0] MREGION MPU region

[15:8] SREGION SAU region

[16] MRVALID Is MREGION valid?

[17] SRVALID Is SREGION valid?

[18] R Is address readable?

[19] RW Is address RW?

[20] NSR Is Non-secure &&
readable?

[21] NSRW Is Non-secure && RW?

[22] S Is address Secure?

[23] IRVALID Is IREGION valid?

[31:24] IREGION IDAU region

EXTERNAL USE42

How TT works

Note
The MPU, SAU and IDAU in ARMv8-M do not allow regions to overlap.

EXTERNAL USE43

TT instruction example

• PRINTF_NSE("Welcome in normal world!\r\n");

• /* Check whether string is located in non-secure memory */

if (cmse_check_address_range((void *)s, string_length, CMSE_NONSECURE |

CMSE_MPU_READ) == NULL)

{

PRINTF("String is not located in normal world!\r\n");

abort();

}

call

cmse_check_address_range() TT instruction

Non-secure

world

EXTERNAL USE44

EXCEPTIONS

EXTERNAL USE45

Interrupts and exceptions

• Interrupt can be programmed as secure or non-secure interrupts

• Some system exceptions are banked(e.g. Systick)

• New SecureFault exception

• Banked System Control Block(SCB) registers

▪ Two VTOR- Separate vector tables for Secure exceptions and Non-Secure exceptions

▪ Non-Secure SCB registers can be accessed from Secure side via alias address

• Priority of Secure exceptions/interrupts can share same levels as Non-

secure’s, or can be higher priority(programmable)

EXTERNAL USE46

Exception priorities overview

• The lower the priority number, the higher the priority level

• NMI, HardFault and BusFault default to be Secure, but can be set to NS

Name Exception # Exception Priority # Security

Interrupts #0-N 16 to 16+N 0-255(programmable) Configurable

SysTick 15 0-255(programmable) Banked

PendSV 14 0-255(programmable) Banked

DebugMonitor 12 0-255(programmable) Configurable

SVCall 11 0-255(programmable) Banked

SecureFault 7 0-255(programmable) Secure

UsageFault 6 0-255(programmable) Banked

BusFault 5 0-255(programmable) Configurable

MemManage 4 0-255(programmable) Banked

Non-secure HardFault 3 -1 Non-secure

Secure HardFault 3 -3 or -1(programmable) Secure

Non Maskable Interrupt (NMI) 2 -2 Configurable

Reset 1 -4 Secure

EXTERNAL USE47

Secure exception prioritization

0X0 0X0 0X0

0XFE 0XFE 0XFE

0X7F

0X80

Increasing

priority

Non-secure view

Of exception priority

NVIC or effective

of exception priority

Secure view of

exception priority

• Non-secure exception can be forced into the lower half of the priority range

▪ Using AIRCR_S.PRIS

EXTERNAL USE48

Interrupts and exceptions

• State transitions can also happen due to exceptions and interrupts.

EXTERNAL USE49

TrustZone interrupt security

• The processor automatically pushes all Secure information onto the Secure stack

and erases the contents from the register banks, therefore avoiding an

information leak.

EXTERNAL USE50

恩智浦MCU加油站微信公众号

• 恩智浦工程师原创技术分享

• 欢迎关注，欢迎投稿

