
Philips
Semiconductors PHILIPS

INTEGRATED CIRCUITS

P89LPC900

 Microcontroller

Family

Flash

Programming
Specifications

June 15, 2007 10:56 am 2

Philips Semiconductors Programming Specification

P89LPC900 Family

PIN CONFIGURATION

28-Pin TSSOP & DIP Pinout

28-Pin TSSOP Package

P89LPC920/
921/922/9221FDH

P0.0/CMP2/KBI0 P0.1/CIN2B/KBI1

P1.7 P0.2/CIN2A/KBI2

P1.6 P0.3/CIN1B/KBI3

P1.5/RST P0.4/CIN1A/KBI4

VSS P0.5/CMPREF/KBI5

P3.1/XTAL1 VDD

P3.0/XTAL2/CLKOUT P0.6/CMP1/KBI6

P1.4/INT1 P0.7/T1/KBI7

P1.3/INT0/SDA P1.0/TXD

P1.2/T0/SCL P1.1/RXD

002aaa408

1

2

3

4

5

6

7

8

9

10

12

11

14

13

16

15

18

17

20

19

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

SCL/T0/P1.2

SDA/INT0/P1.3

ICB/P2.0

OCD/P2.1

INT1/P1.4

RST/P1.5

VDD

VSS

XTAL1/P3.1

CLKOUT/XTAL2/P3.0

MOSI/P2.2

MISO/P2.3

OCB/P1.6

OCC/P1.7

P1.1/RXD

P1.0/TXD

P2.7/ICA

P2.6/OCA

P0.7/T1/KBI7

P0.6/CMP1/KBI6

P0.5/CMPREF/KBI5

P0.4/CIN1A/KBI4

P0.3/CIN1B/KBI3

P0.2/CIN2A/KBI2

P2.5/SPICLK

P2.4/SS

P0.1/CIN2B/KBI1KBI0/CMP2/P0.0

June 15, 2007 10:56 am 3

Philips Semiconductors Programming Specification

P89LPC900 Family

44-Pin PLCC Package

P89LPC952FA
P89LPC954FA

P1.3/INT0/SDA P0.4/CIN1A/KBI4/AD03

P1.2/T0/SCL P0.5/CMPREF/KBI5

P1.1/RXD0 P0.6/CMP1/KBI6

P1.0/TXD0 VDD

P3.1/XTAL1 P0.7/T1/KBI7

P3.0/XTAL2/CLKOUT P2.2/MOSI

VDD P2.3/MISO

P5.7 P2.4/SS

P5.6 P2.5/SPICLK

P5.5 P4.0

P5.4 P4.1/TRIG

P
5.

3
P

1.
4/

IN
T

1

P
5.

2
P

1.
5/

R
S

T

P
5.

1
P

1.
6

P
5.

0
V

S
S

V
S

S
P

1.
7/

A
D

04

P
4.

7/
T

C
LK

P
2.

0/
A

D
07

P
4.

6
P

2.
1/

A
D

06

P
4.

5/
T

D
I

P
0.

0/
C

M
P

2/
K

B
I0

/A
D

05

P
4.

4
P

0.
1/

C
IN

2B
/K

B
I1

/A
D

00

P
4.

3/
R

X
D

1
P

0.
2/

C
IN

2A
/K

B
I2

/A
D

01

P
4.

2/
T

X
D

1
P

0.
3/

C
IN

1B
/K

B
I3

/A
D

02

002aab307

7

8

9

10

11

12

13

14

15

16

17

39

38

37

36

35

34

33

32

31

30

29

18 19 20 21 22 23 24 25 26 27 28

6 5 4 3 2 1 44 43 42 41 40

June 15, 2007 10:56 am 4

Philips Semiconductors Programming Specification

P89LPC900 Family

44-Pin TQFP Package

P89LPC952FBD
P89LPC954FBD

P4.1/TRIG

002aab306

1

2

3

4

5

6

7

8

9

10

11

33

32

31

30

29

28

27

26

25

24

23

12 13 14 15 16 17 18 19 20 21 22

44 43 42 41 40 39 38 37 36 35 34

P1.3/INT0/SDA

P1.2/T0/SCL

P1.1/RXD0

P1.0/TXD0

P3.1/XTAL1

P3.0/XTAL2/CLKOUT

VDD

P5.7

P5.6

P5.5

P5.4

P
1.

4/
IN

T
1

P
1.

5/
R

S
T

P
1.

6

V
S

S

P
1.

7/
A

D
04

P
2.

0/
A

D
07

P
2.

1/
A

D
06

P
0.

0/
C

M
P

2/
K

B
I0

/A
D

05

P
0.

1/
C

IN
2B

/K
B

I1
/A

D
00

P
0.

2/
C

IN
2A

/K
B

I2
/A

D
01

P
0.

3/
C

IN
1B

/K
B

I3
/A

D
02

P0.4/CIN1A/KBI4/AD03

P0.5/CMPREF/KBI5

P0.6/CMP1/KBI6

VDD

P0.7/T1/KBI7

P2.2/MOSI

P2.3/MISO

P2.4/SS

P2.5/SPICLK

P4.0

P
5.

3

P
5.

2

P
5.

1

P
5.

0

V
S

S

P
4.

7/
T

C
LK

P
4.

6

P
4.

5/
T

D
I

P
4.

4

P
4.

3/
R

X
D

1

P
4.

2/
T

X
D

1

June 15, 2007 10:56 am 5

Philips Semiconductors Programming Specification

P89LPC900 Family

 PIN DESCRIPTION:

PIN NAME
NAME

DURING
PROG.

I/O FUNCTION DURING
PROGRAMMING

P1.7 WRITE/READ I Write input
P1.0 SEL0 I Register select 0
P1.1 SEL1 I Register select 1
P3.1 CLK I External clock input
P1.5 RST P Reset
P0.7 D7 I/O Data 7
P0.6 D6 I/O Data 6
P0.5 D5 I/O Data 5
P0.4 D4 I/O Data 4
P0.3 D3 I/O Data 3
P0.2 D2 I/O Data 2
P0.1 D1 I/O Data 1
P0.0 D0 I/O Data 0
VDD VDD P VDD

VSS VSS P GROUND

P89LPC9xx

P1.1

P1.0

P1.7

SEL1

SEL0

pulse sequence RST

VDD

P0

P3.1

+3V

Clock Input
Vss

Figure 1: Programming / Verify Pin Connections

D0:D7

WRITE/READ P2
Data

EEPROM
D7:0

June 15, 2007 10:56 am 6

Philips Semiconductors Programming Specification

P89LPC900 Family

 PRODUCT SELECTION

Revision to previous document
Added devices type P89LPC954. Added package pinouts for 20-pin and 44-pin packages.

Recommended Programmer Features
In order for your customers to obtain the most fexibility in using this device, we recommend that your programmer
offer specific features. These include:

• ISP code protection - The upper 512 bytes of last sector of the device (see PRODUCT SELECTION, above)
contains factory provided ISP code which will be erased by erasing this sector. We recommend that the user
be warned that performing a sector erase on this sector will erase the ISP code. The lower 512 bytes can be
erased using the page erase function. A programmer manufacturer might wish to offer an option to "erase all
user code except for the ISP code" and "erase all user code including the ISP code"

• User configuration support - Support user erase/programming and reading of Status bit, Boot Vector, UCFG1
(WDT, osc, etc) independent of the user code array. A configuration screen works best.

• Page erase - Erases a single 64-byte page.
• Sector erase - Erases a single sector of 1KB.
• Sector CRC - Provides CRC on a single sector. Compare device CRC with your memory buffer’s CRC.

PRODUCT FLASH
SIZE

END

ADDR

SIGNATURE BYTES

 MFG ID1 ID2
SECTOR

SIZE
PAGE
SIZE

PRE-PROGRAMMED

SERIAL LOADER

DEFAULT
BOOT

VECTOR
DATAEE

P89LPC954 16K x 8 3FFF 15H DDH 7AH 1Kx8 64x8 3E00H-3FFFH 3FH N
P89LPC952 8K x 8 1FFF 15H DDH 28H 1Kx8 64x8 1E00H-1FFFH 1FH N
P89LPC938 8K x 8 1FFF 15H DDH 25H 1Kx8 64x8 1E00H-1FFFH 1FH Y

P89LPC9381 4K x 8 0FFF 15H DDH 2AH 1Kx8 64x8 0E00H-0FFFH 0FH Y
P89LPC936 16K x 8 3FFF 15H DDH 24H 2Kx8 64x8 3E00H-3FFFH 3FH Y
P89LPC935 8K x 8 1FFF 15H DDH 1EH 1Kx8 64x8 1E00H-1FFFH 1FH Y
P89LPC934 8K x 8 1FFF 15H DDH 1DH 1Kx8 64x8 1E00H-1FFFH 1FH N
P89LPC933 4K x 8 0FFF 15H DDH 0AH 1Kx8 64x8 0E00H-0FFFH 0FH N

P89LPC932A1 8K x 8 1FFF 15H DDH 1FH 1Kx8 64x8 1E00H-1FFFH 1FH Y
P89LPC932/

CP323X
8K x 8 1FFF 15H DDH 05H 1Kx8 64x8 1E00H-1FFFH 1FH Y

P89LPC932 8K x 8 1FFF 15H DDH 05H 1Kx8 64x8 1E00H-1FFFH 1EH Y
P89LPC931 8K x 8 1FFF 15H DDH 09H

or 15H DDH 05H
1Kx8 64x8 1E00H-1FFFH 1FH N

P89LPC930 4K x 8 0FFF 15H DDH 19H
or 15H DDH 05H

1Kx8 64x8 0E00H-0FFFH 0FH N

P89LPC925 8K x 8 1FFF 15H DDH 1CH 1Kx8 64x8 1E00H-1FFFH 1FH N
P89LPC924 4K x 8 0FFF 15H DDH 1BH 1Kx8 64x8 0E00H-0FFFH 0FH N
P89LPC922 8K x 8 1FFF 15H DDH 0CH

or 15H DDH 05H
1Kx8 64x8 1E00H-1FFFH 1FH N

P89LPC921 4K x 8 0FFF 15H DDH 0BH
or 15H DDH 05H

1Kx8 64x8 0E00H-0FFFH 0FH N

P89LPC920 2K x 8 07FF 15H DDH 1AH 1Kx8 64x8 0600H-07FFH 07H N

June 15, 2007 10:56 am 7

Philips Semiconductors Programming Specification

P89LPC900 Family

• Global CRC - Provides CRC on entire user code memory. Compare device CRC with your memory buffer’s CRC.
• Status Bit- After programming the code memory, the programmer should program the Status bit to a zero. A user

option should be available to override this feature.

Programming Interface Architecture

Prior to performing any programmer operations it is necessary to activate the code programming mode of the device.
Once in code programming mode, programming operations for this device are accomplished through the use of four
registers: FMCON, FMADRH, FMADRL, and FMDATA.

FMCON (flash memory control register) is used to specifiy operation modes and to read status. FMADRH (flash
memory address high) and FMADRL (flash memory address low) are used to specifiy the address of the memory
location, page, sector, or other resource to be accessed in the flash microcontroller. FMDATA (flash memory data)
contains data to be written to or read from the flash memory or other resource.

Once in code programming mode, these four registers can be read or written by using the WRITE/, SEL1, and SEL0
signals in addition to the databus (Port 0) and the clock. The register selected by the binary combinations for the
select inputs, SEL1 and SEL0, are shown below:

00 read/write FMADRL

01 read/write FMADRH

10 read/write FMDATA

11 read/write FMCON

FMCON commands (write) include:

LOAD (00h) Clear and then load the page register.

PROG (48h) Program page with the contents of the page register.

ERS_G (72h) Erase global (all sectors and security)

ERS_S (71h) Erase sector and security

ERS_P (70h) Erase page.

CONF (6Ch) Accesses user configuration information addressed by FMADRL.

CRC_G(1Ah) Calculate a CRC on the entire user code space.

CRC_S (19h) Calculate a CRC on the sector addressed by FMADRH.

FMCON contains status information (read) and is updated by the last operation performed. FMCON

June 15, 2007 10:56 am 8

Philips Semiconductors Programming Specification

P89LPC900 Family

contains the following bits :

Code memory programming uses a 64-byte page register. From 1 to 64 bytes may be loaded into the page register.
This may be followed by a PROG command causing the new page register contents to be programmed into the flash
memory. The page register may not be read. Only page register locations that have been written will be programmed
into the flash array, thus it is not necessary to write to all 64 locations in the page register.

Activating Code Memory Programming Mode (see Figure 2)
The microcontroller is placed into code programming mode by performing the following sequence (see Figure 2).
(Note that powering the device from Vdd =0V to Vdd = operating voltage is required as indicated in steps 2 & 3)

1.Drive RST pin and P3.1 to the logic zero level.
2.Apply 0V to the VDD pin.
3.Apply VDD to the VDD pin.
4.Wait tVR.
5.Drive the Write pin to the logic high level.
6.Drive RST pin to the logic high level, observing the timing specification, tRH.
7.Drive RST pin to a logic low observing the timing specification, tRL.
8.Repeat steps 6 through 7 four more times for a total of five low-going pulses.
9.Drive RST pin to the logic high level.
10.Wait tRP.
11.The device should now be in programming mode. Note: Any additional low-going pulses on the RST pin will remove

the device from the code programming mode.
12.Drive the SEL1 and SEL0 pins high. (The combination of SEL1, SEL0, and Write pins high is a read of the FMCON register

with the contents of FMCON appearing on Port 0).
13.Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1 low.
14.Continue to pulse P3.1 and read FMCON until the BUSY bit (P0.7) is a zero.

Bit Flag Description

0 OI
Operation Interrupted.Only used in IAP or ISP modes Should never be set in parallel
programming mode. (If observed in parallel programming mode it is likely that status is not
being read correctly).

1 SV Security Violation. Set if operation fails due to security settings. Cycle is
aborted.Memory contents are unchanged. CRC output is invalid.

2 HVE High Voltage Error. Set if error detected in high voltage generation circuits. Cycle
is aborted. Memory contents may be corrupted.

3 HVA High Voltage Abort.Set if high voltage cycle is aborted due to a Vdd brownout
condition.Memory contents may be corrupted.

4 - unused; reads as a ’1’

5 - unused; reads as a ’1’

6 - unused; reads as a ’1’

7 BUSY Set while a program, erase, CRC calculation, or other operation is in progress.

Table 0.1

June 15, 2007 10:56 am 9

Philips Semiconductors Programming Specification

P89LPC900 Family

Figure 2: Activation of Code or Data EEPROM Programming Modes

Table 2: AC CHARACTERISTICS, ACTIVATION OF PROGRAMMING MODES, TA = 25 oC, VDD = 3V + 5%
PARAMETER SYMBOL MIN MAX Unit

RST delay from Vdd active tVR 150 uSec
RST high time tRH 1 32 uSec
RST low time tRL 1 uSec
RST high to programming mode active tRP 150 uSec

VDD

P3.1

RST

P0.0

SEL1

SEL0

WRITE

BUSY/NOT BUSY

CLK AS NEEDED

tVR

tRL

tRH

tRP

Note Code memory uses 5 pulses, DataEEPROM uses 7 or 9 pulses (see text)

June 15, 2007 10:56 am 10

Philips Semiconductors Programming Specification

P89LPC900 Family

Reading Flash Memory Registers (see Figure 3)
Thoughout this document references will be made to reading a value from the flash memory registers (FMCON,
FMADRH,FMADRL, FMDATA). To read one of these registers perform the following sequence. (See Figure 3).

1.This sequence assumes that code programming mode is currently activated.
2.Drive the Write pin with a logical one.
3.Drive the SEL1 and SEL0 pins with the binary combination for the desired register.
4.Wait a delay.
5.Read the register data from the data pins (Port 0).

Writing Flash Memory Registers (see Figure 3)
Throughout this document references will be made to writing a value to the flash memory registers (FMCON,
FMADRH,FMADRL, FMDATA). To write to one of these registers perform the following sequence. (See Figure 3)

1.This sequence assumes that code programming mode is currently activated.
2.Drive the SEL1 and SEL0 pins with the binary combination for the desired register.
3.Drive the Write pin with a logical zero.
4.Place the data to be written on the databus (Port0).
5.Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1 low.
6.Drive the Write pin with a logical one.

Figure 3. Flash Memory Register Read/Write Cycles

tAD

tDS

tAS

tWS

SEL1, SEL0

D0-D7

tRDWRITE/READ

CLOCK

tDH

tAH

D0-D7 Data Output

tWH

tCD

tCH
tCL

June 15, 2007 10:56 am 11

Philips Semiconductors Programming Specification

P89LPC900 Family

Table 3: AC CHARACTERISTICS, TA = 25 oC, VDD = 3V + 5%1

Loading the Page Register
The page register is loaded by performing the following sequence:

1.Activate the Code Programming Mode, as previously described, if not already performed.
2.Write the "LOAD" command to FMCON. (Note that this clears the page register of any previously loaded data)
3.Write the lower byte of the first address to be loaded into the page register to FMADRL.
4.Write the data to be loaded to the FMDATA register.
5.Provide three clock pulses to P3.1.
6.The address in FMADRL will auto-increment for the next byte. (Since the page is 64 bytes in length, incrementing past the

end of the page will wrap around to the beginning of the same page).
7.Continue writing additional bytes to the page register as desired. You may change to a different address within the page by

repeating this process starting with step 3.

Programming User Code Memory
Code memory may only be programmed by using the page register. This may be performed using the following
sequence:

1.Load the page register with the data to be programmed as previously described.
2.Write the lower 8-bits of the page address to FMADRL.
3.Write the upper 8-bits of the page address to FMADRH. Note: writing the upper two bits of FMADRL and the upper address

byte to FMADRH may be included in step 2 of loading the page register, if desired, since the auto-increment of the page
register does not carry beyond the lower 6 bits of FMADRL.

4.Write the PROG command to the FMCON register.
5.Provide a clock pulse to P3.1
6.Read the FMCON register to obtain status.
7.Continue reading, and providing a clock pulse to P3.1, until the interface is either not BUSY or until an error has occured.

PARAMETER SYMBOL MIN MAX Unit
Address setup to clock tAS 100 nSec
Address hold to clock tAH 100 nSec
Write setup to clock tWS 100 nSec
Write hold to clock tWH 100 nSec
Data input setup to clock high tDS 100 nSec
Data input hold to clock high tDH 100 nSec
Address to data valid tAD 100 nSec
Read to data valid tRD 100 nSec
Read to Port 0 Low Z 0 nSec
Write to Port 0 High Z 20 nSec
Clock high to next data out valid tCD 100 nSec
Clock low time tCL 1 uSec
Clock high time tCH 1 uSec

June 15, 2007 10:56 am 12

Philips Semiconductors Programming Specification

P89LPC900 Family

Erasing all sectors (global erase)
Sectors and their sector security bits may be erased using the following sequence:

1.Write the ERS_G command to the FMCON register.
2.Read the FMCON register to obtain status. Continue reading until the interface is either not BUSY or until an error has

occured.

Erasing a single sector
A single sector and it’s sector security bits may be erased using the following sequence:

1.Write the upper 8-bits of the sector address to FMADRH. (Note that only FMADRH[4:2] are used here)
2.Write the ERS_S command to the FMCON register.
3.Read the FMCON register to obtain status. Continue reading until the interface is either not BUSY or until an error has

occured.
Erasing a single page
A single page may be erased using the following sequence:

1.Write the lower 8-bits of the page register address to FMADRL. (only FMADRL[7:6] are used)
2.Write the upper 8-bits of the page register address to FMADRH.(only FMADRH[4:0] are used)
3.Write the ERS_P command to the FMCON register.
4.Read the FMCON register to obtain status. Continue reading until the interface is either not BUSY or until an error has

occured.

CRC Calculation
A 32-bit CRC may be performed on either an individual sector (Sector CRC) or the entire user code memory (Global
CRC). Both use the same method for calculating the 32-bit CRC result which is stored in four 8-bit registers. Initially
these four 8-bit registers are cleared when the CRC command (CRC_G or CRC_S) is written to FMCON. For each
byte of code memory in the intended memory range, the following calculation is performed.

Define a 32-bit CRC result register (CRC)and set its contents = 0.

Define a 32-bit temporary variable (TAP) and set it contents = 0.

Define a single-bit variable (CRC_FLAG).

Starting with the first byte in code memory, and for each byte in the memory, perform the following CRC calculation:

1. Shift the CRC result (CRC) to the left one bit and save the MSB in the CRC_FLAG.
2. Read the byte from code memory and distribute the eight bits of the code-byte into the 32 bits of the TAP variable as shown

June 15, 2007 10:56 am 13

Philips Semiconductors Programming Specification

P89LPC900 Family

in the table, below. Unused bits of the TAP variable must be filled with zeros.

If the saved MSB =1, the byte from the code memory is XOR with 00400007H. This result is XOR with the 32-bit CRC result. The
result of this operation is stored as the CRC result.

If the saved MSB =0, the byte from the code memory is XOR with the 32-bit CRC result. The result of this operation is stored as
the CRC result.

Calculate Global CRC
A 32-bit global CRC of the entire user code memory may be calculated using the following sequence:

1.Write the CRC_G command to the FMCON register.
2.Read the FMCON register to obtain status. Continue reading until the interface is either not BUSY or until an error has

occured.
3.Select FMDATA, read mode, then provide a clock pulse to P3.1.
4.Read FMDATA to obtain CRC bits 7:0 (no clock)
5.Provide a clock pulse to P3.1.
6.Read FMDATA again to obtain CRC bits 15:8 (no clock)
7.Provide a clock pulse to P3.1.
8.Read FMDATA again to obtain CRC bits 23:16 (no clock)
9.Provide a clock pulse to P3.1.
10.Read FMDATA again to obtain CRC bits 31:24 (no clock)
11.Read FMCON and provide one clock pulse to P3.1.

Calculate Sector CRC
A 32-bit global CRC of a single sector of user code memory may be calculated using the following sequence:

Code-byte bit position is copied into TAP
variable bit position

0 0

1 3

2 5

3 8

4 10

5 13

6 16

7 18

3. XOR the 32-bit TAP variable with the 32-bit CRC variable and save the result in the CRC variable.
4. If the CRC_FLAG (saved in step 1) was a zero, proceed to step 5, else, XOR the CRC variable with 00400007H. Store the

result in the CRC variable.
5. The CRC calculation for THIS byte is finished. and the CRC variable holds the current CRC result. Repeat, starting with

step 1, for each additional byte of code memory.

June 15, 2007 10:56 am 14

Philips Semiconductors Programming Specification

P89LPC900 Family

1.Write the "LOAD" command to FMCON. (Note that this clears the page register of any previously loaded data)
2.Write the upper 8-bits of the sector address to FMADRH.
3.Write the CRC_S command to the FMCON register.
4.Read the FMCON register to obtain status. Continue reading until the interface is either not BUSY or until an error has

occured.
5.Select FMDATA, with WRITE\ pin low, then provide a clock pulse to P3.1.
6.Read FMDATA to obtain CRC bits 7:0 (no clock)
7.Provide a clock pulse to P3.1.
8.Read FMDATA again to obtain CRC bits 15:8 (no clock)
9.Provide a clock pulse to P3.1.
10.Read FMDATA again to obtain CRC bits 23:16 (no clock)
11.Provide a clock pulse to P3.1.
12.Read FMDATA again to obtain CRC bits 31:24(no clock)
13.Read FMCON and provide one clock pulse to P3.1

Reading Configuration , Boot Vector, Status Byte, Security Bits, Signature Bytes
Devices parameters such as configuration bytes, status byte, boot vector, security bits , and signature bytes may
be read by writing an address of FMADRL and a command to FMCON. These registers have the following
addresses:

00h UCFG1 User Configuration Register 1

01h UCFG2 User Configuration Register 2

02h Boot Vector

03h Status Byte

08h SEC0 Security byte, sector 0

09h SEC1 Security byte, sector 1

0Ah SEC2 Security byte, sector 2

0Bh SEC3 Security byte, sector 3

0Ch SEC4 Security byte, sector 4

0Dh SEC5 Security byte, sector 5

0Eh SEC6 Security byte, sector 6

0Fh SEC7 Security byte, sector 7

10h MFGid Manufacturer id

11h ID1 Device id 1

12h ID2 device id 2

18h SEC8 Security byte, sector 8 (89LPC954)

19h SEC9 Security byte, sector 9 (89LPC954)

1Ah SEC10 Security byte, sector 10 (89LPC954)

1Bh SEC11 Security byte, sector 11 (89LPC954)

1Ch SEC12 Security byte, sector 12 (89LPC954)

June 15, 2007 10:56 am 15

Philips Semiconductors Programming Specification

P89LPC900 Family

1Dh SEC13 Security byte, sector 13 (89LPC954)

1Eh SEC14 Security byte, sector 14 (89LPC954)

1Fh SEC15 Security byte, sector 15 (89LPC954)

These bytes may be read using the following sequence:

1.Write the CONF command to the FMCON register.
2.Write the address of the register to be read to the FMADRL register.
3.Read the FMDATA register to obtain the desired data. (no clock)
4.An auto-increment mode is provided and may be used if desired. After reading the first byte, provide TWO clock pulses to

P3.1 to increment the address to the next location. Thereafter, provide ONE clock pulse to P3.1 to increment to the next
location. The auto-increment function will not bypass the unspecified locations 04H through 07H. Thus it will be necessary
to provide clock pulses to increment through these locations. To terminate the auto-increment function read FMCON and
provide one clock pulse to P3.1

Writing Configuration , Boot Vector, Status Byte, and Security Bits
Device parameters such as configuration bytes, status byte, boot vector, and security bits, made be written by
writing a command to FMCON, an address to FMADRL, and then the data to FMDATA. These registers have the
following addresses:

00h UCFG1 User Configuration Register 1

01h UCFG2 User Configuration Register 2

02h Boot Vector Upper byte of PC upon reset, if Status Byte bit 0 = 1.

03h Status Byte Use Boot vector as upper byte of reset address

08h SEC0 Security byte, sector 0

09h SEC1 Security byte, sector 1

0Ah SEC2 Security byte, sector 2

0Bh SEC3 Security byte, sector 3

0Ch SEC4 Security byte, sector 4

0Dh SEC5 Security byte, sector 5

0Eh SEC6 Security byte, sector 6

0Fh SEC7 Security byte, sector 7

18h SEC8 Security byte, sector 8 (89LPC954)

19h SEC9 Security byte, sector 9 (89LPC954)

1Ah SEC10 Security byte, sector 10 (89LPC954)

1Bh SEC11 Security byte, sector 11 (89LPC954)

1Ch SEC12 Security byte, sector 12 (89LPC954)

1Dh SEC13 Security byte, sector 13 (89LPC954)

1Eh SEC14 Security byte, sector 14 (89LPC954)

1Fh SEC15 Security byte, sector 15 (89LPC954)

June 15, 2007 10:56 am 16

Philips Semiconductors Programming Specification

P89LPC900 Family

The first 4 registers are self-erasing when being updated. The security bytes can only be erased by erasing the
associated sector using an ERS_S or ERS_G command. These registers may be written using the following
sequence:

1.Write the CONF command to the FMCON register.
2.Write the address of the register to be written to the FMADRL register.
3.Write the desired data to the FMDATA register.
4.Read the FMCON register to obtain status. Continue reading until the interface is either not BUSY or until

an error has occured.
Note: Some registers, such as signature bytes, may not be erased and reprogrammed by the user. Security bits that
are programmed will need to be erased by performing a sector or global erase operation prior to re-programming.
(See sector or global erase commands).

June 15, 2007 10:56 am 17

Philips Semiconductors Programming Specification

P89LPC900 Family

Security Bits defintions
This device has three security bits associated with each of its eight sectors, as shown in Figure 3.

Figure 3: User sector Security Bytes (SEC0, ..., SEC7)

Activating Data EEPROM Programming Mode (see Figure 2 - applies to P89LPC932, P89LPC932A1,
P89LPC932/CP323x, P89LPC935, P89LPC936, and P89LPC938 devices).

The microcontroller is placed into Data EEPROM programming mode by performing the following sequence (see
Figure 2). (Note that powering the device from Vdd =0V to Vdd = operating voltage is required as indicated in steps
2 & 3)

EDISx SPEDISx MOVCDISx Effects on Parallel Programming

0 0 0 None.

0 0 1

Security violation flag set for sector CRC calculation for the specific sector. Security
violation flag set for global CRC calculation if any MOVCDISx bit is set. Cycle aborted.
Memory contents unchanged. CRC invalid. Program/erase commands will not result
in a security violation.

0 1 0 Security violation flag set for program commands or an erase page command. Cycle
aborted. Memory contents unchanged. Sector erase and global erase are allowed.0 1 1

1 0 0
Security violation flag set for program or erase commands. Cycle aborted. Memory
contents unchanged. Global erase is allowed.

1 0 1

1 1 0

1 1 1

Table 0.4 Effects of Security Bits

SECx
Address: xxxxh

Unprogrammed value: 00h

BIT SYMBOL FUNCTION
SECx.7-3 - Reserved (should remain unprogrammed at zero).

SECx.2 EDISx Erase Disable ISPx. Disables the ability to perform an erase of sector "x" in ISP or IAP
mode.. When programmed, this bit and sector x can only be erased by a 'global' erase
command using a commercial programmer . This bit and sector x CANNOT be erased in
ISP or IAP modes.

SECx.1 SPEDISx Sector Program Erase Disable x. Disables program or erase of all or part of sector x.
This bit and sector x are erased by a 'global' erase command(either ISP, IAP, or from
commercial programmer.

SECx.0 MOVCDISx MOVC Disable. Disables the MOVC command for sector x. Any MOVC that attempts to
read a byte in a MOVC protected sector will return invalid data. This bit can only be erased
when sector x is erased.

7 6 5 4 3 2 1 0

- - - - - EDISx SPEDISxMOVCDISx

June 15, 2007 10:56 am 18

Philips Semiconductors Programming Specification

P89LPC900 Family

1.Drive RST pin and P3.1 to the logic zero level.
2.Apply 0V to the VDD pin.
3.Apply VDD to the VDD pin.
4.Wait tVR
5.Drive the Write pin to the logic high level.
6.Drive RST pin to the logic high level, observing the timing specification, tRH.
7.Drive RST pin to a logic low observing the timing specification, tRL.
8.Drive RST pin to the logic high level, observing the timing specification, tRH.
9.If using the P89LPC932, repeat steps 7 through 8 six more times for a total of seven low-going pulses. If using either the

P89LPC932/CP323x, P89LPC932A1, P89LPC935, P89LPC936, or P89LPC938 device, repeat steps 7 through 8 eight
more times for a total of nine low-going pulses

10.Wait tRP
11.Steps 12 through 15 will be used to clock a 48-bit number into the device, MSB first using P0.7 as the clock pin and P0.0

as the data-in pin. The 48-bit number is : (MSB) 0000 0000 0000 0000 0000 1001 0000 0000 0000 0000 0000 1100.
12.Place the data-bit value on P0.0.
13.Drive P0.7 (clock) high for a minimum of 1 us.
14.Drive P0.7 (clock) low for a minimum of 1 us.
15.Repeat steps 12 through 13 until all 48 bits have been clocked into the device.
16.If using the P89LPC932, repeat steps 13 through 14 one more time (data-bit value is a ’don’t care’). If using either the

P89LPC932/CP323x, P89LPC932A1, P89LPC935, P89LPC936, or P89LPC938 device, do not perform this step.
17.Drive RST low resetting the device.
18.Drive RST high.
19.Drive the databus (P0) low.
20.Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1 low for 1 uS min.
21.Repeat step 20 until P1.0 goes low.
22.Drive P0 with 75H.
23.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

24.Drive P0 with A5H.
25.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

26.Drive P0 with FFH.
27.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

28.Drive P0 with 75H.
29.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

30.Drive P0 with A4H.
31.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

32.Drive P0 with 00H.
33.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock

June 15, 2007 10:56 am 19

Philips Semiconductors Programming Specification

P89LPC900 Family

pulses to P3.1 until P1.0 changes state.
34.The device should be in Data EEPROM programming mode ready to for reading or writing of data.

Writing to the Data EEPROM Memory (applies to P89LPC932, P89LPC932A1, P89LPC932/CP323x,
P89LPC935, P89LPC936, and P89LPC938 devices)
Writing data to the Data EEPROM may be performed using the following sequence:

1.This sequence assumes that Data EEPROM programming mode is currently active. If not, activate the Data EEPROM
programming mode as described, above.

2.Steps 3 through 8 store the A8 address bit of the 512 byte EEPROM array. This bit does not need to be programmed for
each byte that is written into the EEPROM array.

3.Drive P0 with 75H.
4.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

5.Drive P0 with F1H.
6.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

7.Drive P0 with 00H if the address bit ,A8, for the location to be programmed, is a zero. Drive P0 with 01H if the address bit ,
A8, for the location to be programmed, is a one.

8.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1
low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

9.Drive P0 with 75H.
10.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

11.Drive P0 with F2H.
12.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

13.Drive P0 with the data to be programmed.
14.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

15.Drive P0 with 75H.
16.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

17.Drive P0 with F3H.
18.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

19.Drive P0 with the lower bits of the address (A7:0) of the location to be programmed.
20.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

21.Drive P0 with E5H.
22.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

June 15, 2007 10:56 am 20

Philips Semiconductors Programming Specification

P89LPC900 Family

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

23.Drive P0 with F1H.
24.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

25.Drive P0 with F5H.
26.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

27.Drive P0 with A0H.
28.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

29.Drive P0 with 00H.
30.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

31.Drive P0 with 00H.
32.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

33. Read P2. If P2.7 is low, repeat steps 21through 33 until P2.7 is high. This completes programming of a single byte.
34.Repeat steps 2 through 33 to write additional bytes to the Data EEPROM. If the address bit, A8, does not need to change

from its previously stored value, steps 3 through 8 may be omitted.

Reading the Data EEPROM Memory (applies to P89LPC932, P89LPC932A1, P89LPC932/CP323x,
P89LPC935, P89LPC936, and P89LPC938 devices))
Reading the Data EEPROM may be performed using the following sequence:

1.This sequence assumes that Data EEPROM programming mode is currently active. If not, activate the Data EEPROM
programming mode as described, above.

2.Steps 3 through 8 store the A8 address bit of the 512 byte EEPROM array. This bit does not need to be programmed for
each byte that is read from the EEPROM array.

3.Drive P0 with 75H.
4.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

5.Drive P0 with F1H.
6.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

7.Drive P0 with 00H if the address bit ,A8, for the location to be programmed, is a zero. Drive P0 with 01H if the address bit ,
A8, for the location to be programmed, is a one.

8.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1
low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

9.Drive P0 with 75H.
10.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

June 15, 2007 10:56 am 21

Philips Semiconductors Programming Specification

P89LPC900 Family

11.Drive P0 with F3H.
12.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

13.Drive P0 with the lower bits of the address (A7:0) of the location to be programmed.
14.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

15.Drive P0 with 00H.
16.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

17.Drive P0 with 00H.
18.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

19.Drive P0 with 00H.
20.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

21.Drive P0 with E5H.
22.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

23.Drive P0 with F2H.
24.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

25.Drive P0 with F5H.
26.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

27.Drive P0 with A0H.
28.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

29.Drive P0 with 00H.
30.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

31.Drive P0 with 00H.
32.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

33. Read P2 to obtain the DataEEPROM data
34.Repeat steps 2 through 33 to read additional bytes from the Data EEPROM. If the address bit , A8, does not need to change

from its previously stored value, steps 3 through 8 may be omitted.

Block or Row Fill of the Data EEPROM Memory (applies to P89LPC932, P89LPC932A1, P89LPC932/CP323x,
P89LPC935, P89LPC936, and P89LPC938 devices))
Filling a row (64 bytes) or a block (512 bytes) of the Data EEPROM may be performed using the following sequence:

June 15, 2007 10:56 am 22

Philips Semiconductors Programming Specification

P89LPC900 Family

1.This sequence assumes that Data EEPROM programming mode is currently active. If not, activate the Data EEPROM
programming mode as described, above.

2.Steps 3 through 8 store the A8 address bit of the 512 byte EEPROM array. This bit must be set for the Block Fill. For the
Row Fill, it should reflect the A8 bit of the respective Row.

3.Drive P0 with 75H.
4.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

5.Drive P0 with F1H.
6.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

7.Drive P0 with 31H for the Block Fill operation. For a Row Fill operation where the address bit , A8, for the Row to be filled is
a zero, drive P0 with 20H. For a Row Fill operation where the address bit , A8, for the Row to be filled is a one, drive P0
with 21H.

8.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1
low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

9.Drive P0 with 75H.
10.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

11.Drive P0 with F2H.
12.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

13.Drive P0 with the data value to be filled into the Block or Row.
14.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

15.Drive P0 with 75H.
16.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

17.Drive P0 with F3H.
18.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

19.For a Row Fill operation, drive P0 with the lower bits of the address (A7:0) of the Row to be programmed. For the Block
Fill operation drive P0 with any value.

20.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1
low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

21.Drive P0 with E5H.
22.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

23.Drive P0 with F1H.
24.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

June 15, 2007 10:56 am 23

Philips Semiconductors Programming Specification

P89LPC900 Family

25.Drive P0 with F5H.
26.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

27.Drive P0 with A0H.
28.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

29.Drive P0 with 00H.
30.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

31.Drive P0 with 00H.
32.Observe the state of P1.0. Provide a clock pulse to P3.1 by driving P3.1 to a logic high for 1 uS min, and then driving P3.1

low for 1 uS min. If P1.0 has changed state, proceed to the next step. If P1.0 is in the same state, continue to provide clock
pulses to P3.1 until P1.0 changes state.

33. Read P2. If P2.7 is low, repeat steps 21through 33 until P2.7 is high. This completes the Block Fill or Row Fill operation..

Unless noted elsewhere, datasheet specification of this device are applicable during programming operations.

Revisions

June 15, 2007

Added device type P89LPC954. Added pinouts for 20-pin and 44-pin packages.

May 26, 2004

Added notation to DataEEPROM sections (Reading the Data EEPROM Memory, Activating Data EEPROM
Programming Mode, and Writing to the Data EEPROM Memory, Block Fill, Row Fill) indicating that the
information applies to additional devices.

Added devices types P89LPC924, P89LPC925, P89LPC936, and P89LPC938.

Changed device type P89LPC932/01 to P89LPC932A1 to reflect device name change.

Dec 03, 2003

Fixed bugs in DataEEPROM sections (Reading the Data EEPROM Memory,
Activating Data EEPROM Programming Mode, and Writing to the Data EEPROM Memory).
Added Block Fill and Row Fill operations to DataEEPROM sections.

Changed tVR spec from 50us to 150us.

Nov 12, 2003

Removed the READ command from the FMCON command list.

Nov 7, 2003

June 15, 2007 10:56 am 24

Philips Semiconductors Programming Specification

P89LPC900 Family

Expanded Product Selection table to include new devices (89LPC932/01 and P89LPC932/CP323x).
Corrected default boot vector for P89LPC932.

Aug 29, 2003

Added new devices (89LPC920, 89LPC933, 89LPC934, 89LPC935) to Product Selection table.
Added default boot vector to Product Selection table.
Suggested programmers program the Status bit to zero after programming code memory.

June 26, 2003

Expanded the product selection table. Changed the ISP sector erase warning to cover 4KB and 8KB devices.

Removed references to a READ mode.

Added comment for read/write of DataEEPROM such that it applies only to the P89LPC932.

May 28, 2003

Changed the order of events in performing a CRC_S (sector CRC), specifically changed the sequence from

write CRC_S to FMCON , write FMADRH to: write LOAD to FMCON, write FMADRH, write CRC_S

to FMCON.

May 27, 2003

Fixed bugs in read of DataEEPROM (Reading the Data EEPROM Memory).

May 14, 2003

Fixed bugs in read/write of DataEEPROM (Activating Data EEPROM Programming Mode).
Noted that unused bits of FMCON during status read return a logic ’1’.

May 5, 2003

Added support for read/write of DataEEPROM.

