

AN11008
Flash based non-volatile storage

Rev. 1 — 5 January 2011 Application note

Document information
Info Content
Keywords Flash, EEPROM, Non-Volatile Storage

Abstract This application note describes the implementation and use of a library
that allows on-chip flash memory to be used for non-volatile storage, in a
similar manner to EEPROM.

NXP Semiconductors AN11008
 Flash based non-volatile storage

 AN11008 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 5 January 2011 2 of 12

Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
1 20110105 Initial version.

NXP Semiconductors AN11008
 Flash based non-volatile storage

1. Introduction
The NXP LPC1100, LPC1300, LPC1700 and LPC2000 family of ARM7 and ARM Cortex
microcontrollers provide on-chip flash memory for storage of firmware. A frequent
requirement for embedded systems is the storage of variables whose values need to
persist through resets of the system. For microcontrollers without on-chip EEPROM there
are two basic options. One is to attach an external EEPROM device, perhaps using I2C
or SPI. The second is to use the on-chip flash memory for variable storage.

Attaching an external device requires additional integration work as well as increasing
hardware production costs and board space. Using flash memory is problematic as flash
memory is not arranged in an optimal way for storage of small pieces of changing data.

There are three key issues with using flash memory for storage of variables:

• Erasing memory is on a per-sector basis

• Flash memory lifespan

• Reprogramming locations

This application note describes a simple solution to the problem of using flash memory
for variable storage, which takes into account erasing flash memory in a way that avoids
data loss and minimizes the effect of flash memory lifespan.

2. Storing variables in flash memory
When a flash memory location is erased its value becomes 0xFF. Each bit can then be
programmed to logic 0 but it cannot be returned to logic 1 without erasing the entire
sector. Subject to some limitations this allows multiple writes to a single flash sector to
add data to it, without needing to erase the entire sector each time.
Each location in flash has a finite lifespan, rated in terms of the number of programming
and erase cycles. For the Microcontrollers covered by this application note it is a
minimum of 10,000 programming and erase cycles.

To continually erase a sector and program the same location each time a variable
changed would result in continual use of the same location until the point of failure, while
leaving thousands of other locations in the same sector unused.

The solution presented in this application note is to make use of all the locations in a
single sector until it is full, then reorganize the memory usage so the process can start
again.

2.1 Basic mechanism
Initially flash sector A is empty (i.e., erased). When a variable needs to be stored a
variable record is programmed into sector A. Later when the variable needs to be
updated a new record is programmed into sector A and the old record is ignored.

Eventually sector A will become full, mostly with old records that are no longer used. On
the next variable write when there isn't space in sector A, a second sector, sector B is
employed.

All the current records in sector A are copied to sector B and sector A is then erased.

When a variable needs to be updated, the update goes into sector B, which is the sector
currently in use. Once sector B has been filled the current records are copied to sector A
and the process repeats.

 AN11008 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 5 January 2011 3 of 12

NXP Semiconductors AN11008
 Flash based non-volatile storage

By swapping between two sectors of the same size it can be ensured that current
variable values are always stored somewhere in flash memory while erasing takes place.
This helps to ensure that if a reset or power failure occurs; the risk of data loss is
minimized.

019aab322

Fig 1. Basic mechanism

2.2 Variable records
The following table describes the structure of a variable record.

Table 1. Variable record structure
Field Size in Bytes Description

Flags 1 0xFF = no entry, 0xAA = valid data

ID 2 A unique identifier for the variable

Data N The data stored in native-endianess, maximum of 12 bytes

Padding 12 – N Always set to 0x00

Checksum 1 A 2's compliment checksum of the ID, data and padding

Each record is always a multiple of 16 bytes due to a system called Error Correction
Code (ECC) which can be found on some NXP microcontrollers. ECC allows one write
per 16 consecutive bytes of flash memory.
If needed the record size could be increased, which would allow larger variables to be
used at the expense of the number of variables that can be stored, however it must
always be a multiple of 16 bytes. It is also possible to store more complex data types,
such as structures, in a variable record.

 AN11008 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 5 January 2011 4 of 12

NXP Semiconductors AN11008
 Flash based non-volatile storage

The flags field indicates the status of the record. Erased memory has the effect of setting
the flags to 0xFF which indicates no entry. This field takes advantage of the fact that it is
possible to continually reprogram a location in flash memory without erasing, providing
that each successive write only changes bits from logic 1 to logic 0. Therefore the
lifecycle of a record is: no entry to valid data.

Because multiple variables are supported, it must be possible to identify the variable that
a record contains. Therefore a unique identifier is used. For example if a variable called
Counter is used, the ID might be defined using the C preprocessor:

1 #define COUNTERID 1

The same identifier must be used for a specific variable throughout the operation of the
firmware.

The checksum is calculated by adding together the ID, data and padding using an eight
byte variable, then subtracting from 0x100.

2.3 Sector organization
The start of both sectors used contains a single 48 byte sector record:

Table 2. Sector record
Field Size in Bytes Description

Flags 1 1 0xFF = sector empty, 0xAA = sector not empty

Padding 15 Reserved. Always set to 0x00

Flags 2 1 0xFF = sector empty or initializing, 0xAA = sector valid or invalid

Padding 15 Reserved. Always set to 0x00

Flags 3 1 0xFF = sector empty, initializing or valid, 0xAA = sector invalid

Padding 15 Reserved. Always set to 0x00

The three flags fields indicate the status of the sector. An erased sector will have the
effect of setting all the flags to 0xFF, which indicates the sector is empty. These fields
take advantage of the fact that it is possible to continually reprogram a location in flash
memory without erasing, providing that each successive write only changes bits from
logic 1 to logic 0. The lifecycle of a sector is: empty to initializing to valid to invalid.

The flags are spaced 16 bytes apart. This is due to the ECC functionality previously
mentioned, that is featured on some microcontrollers. By spacing the flags apart, any
update to the flags results in a single write per 16 consecutive bytes.
The initializing state for a sector indicates that the sector is in the process of being filled
with current variable records from the old sector. Once the copying has finished the
sector will be marked as valid. When the sector has been filled and the current variable
records have been copied to the new sector, it will be marked as invalid.

In the following diagram the flags for a sector have been grouped into 24-bit values with
Flags 1 occupying the most significant byte, and Flags 3 the least significant byte.

 AN11008 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 5 January 2011 5 of 12

NXP Semiconductors AN11008
 Flash based non-volatile storage

019aab323

Fig 2. Sector flags

2.4 Data access
To find the current value of a variable it is necessary to search through the current flash
sector to find the last written valid record for the variable. If the value of the variable has
changed then there will be several old records for the variable, which will need to be
skipped. In the worst case the sector will be almost full and the variable record will be
located at the end of the sector.

To speed up variable access a RAM-based lookup table is used. Every time a variable
record is written an offset into the flash sector is stored in a table along with the variable's
ID. To read the value of a variable the lookup table is consulted and then a direct access
to the variable record is made.

Similarly the next free location in the current sector is also stored in RAM, increasing the
speed at which new variable records can be written.

Each entry in the RAM-based lookup table occupies eight bytes. As supplied the library
supports a maximum of 100 variables (see #define MAX_VARIABLES), resulting in a

 AN11008 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 5 January 2011 6 of 12

NXP Semiconductors AN11008
 Flash based non-volatile storage

lookup table size of 800 bytes. If RAM usage is critical the RAM-based lookup table could
be easily removed at the expense of slower non-volatile variable access.

2.5 Recovery after reset
The most important aspect of storing variables in flash memory is the ability to retain
values even if the microcontroller is reset or power is interrupted. Even if power is
interrupted while variables are being copied from one sector to another the system must
be able to recover without data loss.

There is protection for this on two levels – variables level and sector level.

2.5.1 Variable protection
When the value for a new variable is stored in flash, the variable record has a flags field
and a checksum field that ensure only complete and correctly written variable records are
used. When reading the current value of a variable the flags must be set to 0xAA and the
checksum must be correct.

After writing the variable record flash memory is read back to compare the contents and
make sure the write was successful. If the write failed for some reason then the
application layer is informed.

If the microcontroller is reset during the write of a variable record then after the next reset
when the RAM-based lookup table is reconstructed, partially written or invalid records will
be ignored. This will have the effect of using the last successfully written value for the
variable.

2.5.2 Sector protection
During the switch between sectors the microcontroller could be interrupted at any point.
After the following reset the microcontroller needs to continue where it left off switching
sectors. To achieve this, a decision table is used. The flags of both sectors are examined
to determine the current state of the system and what to do next. This takes place
automatically during initialization. Note that not all states are possible during normal
operation, however there has to be an action for every combination of sector flags.

In Table 3, the flags for a sector have been grouped into 24-bit values with Flags 1
occupying the most significant byte, and Flags 3 the least significant byte.

Table 3. Sector decision table
Sector A Flags Sector B Flags Action

Invalid X (don't care) Erase sector A

X (don't care) Invalid Erase sector B

0xFFFFFF 0xFFFFFF Mark sector A as valid (flags = 0xAAAAFF)

0xFFFFFF 0xAAFFFF Mark sector B as valid (flags = 0xAAAAFF)

0xFFFFFF 0xAAAAFF No action

0xFFFFFF 0xAAAAAA Treat sector B as full and swap to sector A

0xAAFFFF 0xFFFFFF Mark sector A as valid (flags = 0xAAAAFF)

0xAAFFFF 0xAAFFFF Erase sector B. Mark sector A as valid (flags = 0xAAAAFF)

 AN11008 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 5 January 2011 7 of 12

NXP Semiconductors AN11008
 Flash based non-volatile storage

Sector A Flags Sector B Flags Action

0xAAFFFF 0xAAAAFF Erase sector A. Treat sector B as full and swap to sector A

0xAAFFFF 0xAAAAAA Mark sector A as valid (flags = 0xAAAAFF). Erase sector B

0xAAAAFF 0xFFFFFF No action

0xAAAAFF 0xAAFFFF Erase sector B. Treat sector A as full and swap to sector B

0xAAAAFF 0xAAAAFF Erase sector B

0xAAAAFF 0xAAAAAA Erase sector B

0xAAAAAA 0xFFFFFF Treat sector A as full and swap to sector B

0xAAAAAA 0xAAFFFF Mark sector B as valid (flags = 0xAAAAFF). Erase sector A

0xAAAAAA 0xAAAAFF Erase sector A

0xAAAAAA 0xAAAAAA Erase sectors A and B. Mark sector A as valid (flags =
0xAAAAFF)

2.5.3 Code Read Protection
All ARM-based microcontrollers from NXP feature Code Read Protection (CRP), which is
a method of securing the device by programming special values into a predefined
memory location.
The flash-based system described in this application note can function when the CRP is
disabled or when it is set to CRP level one. However it will not function if the CRP is set
to level two or three.

3. Application Programmer Interface
This section describes the interface to the library implementing the system of storing
variables in flash memory.

3.1 Functions
3.1.1 NVOL_Init

Initializes the non-volatile library. This function must be called before any other functions.
Returns TRUE for success and FALSE for an error. An error can occur if the flash
memory cannot be placed into a known state.

3.1.2 NVOL_SetVariable
Stores a value for a variable in flash memory. Passed is an ID unique to that variable
along with a pointer to the variable and the size of the variable in bytes. This generic
prototype allows for variables of any size and type to be stored. Returns TRUE for
success and FALSE for an error.

3.1.3 NVOL_GetVariable
Gets the value of a variable previously stored in flash memory. Passed is an ID unique to
that variable along with a location for the value to be stored and the size of the variable.
This generic prototype allows for variables of any size and type to be read. Returns
TRUE for success and FALSE for an error.

 AN11008 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 5 January 2011 8 of 12

NXP Semiconductors AN11008
 Flash based non-volatile storage

3.2 Configuration
Configuration options are set using the #define statements in flash_nvol.c.

3.2.1 Sector descriptions
The sector start addresses, numbers and sizes are set using SECTOR1_STARTADDR,
SECTOR2_STARTADDR, SECTOR1_NUM, SECTOR2_NUM and SECTOR_SIZE. The
sector number must match the numbering scheme given in the flash memory section of
the NXP User Manual for the device.

3.2.2 CPU clock
The frequency of the CPU clock in kHz is set using CPU_CLK. This is needed by the IAP
routines for timing.

3.2.3 Interrupts
Different compilers use different non-standard ways of enabling and disabling interrupts.
The macros ENABLEIRQ and DISABLEIRQ must be set to the appropriate statements or
function calls for the compiler you are using.

3.2.4 IAP access point
The value of IAP_LOCATION must be set to the memory location for IAP routines. This
address can be found in the NXP User Manual of the device.

3.2.5 Number of variables and size
The maximum size of a variable in bytes is set using MAX_VARIABLE_SIZE. This must
always be a multiple of 16 minus four (e.g., 12, 28, 44). A larger size results in less
efficient usage of flash memory.
The maximum number of variables is set using MAX_VARIABLES. This has to be small
enough to ensure that all variables can fit into a single flash sector. Note that 48 bytes
are always allocated at the start of each sector for sector management. Also four bytes
are needed per variable record. The smaller this number is, the less RAM is needed for
the lookup table.

4. Limitations
There are two key limitations with the system. Firstly the flash lifespan limits the number
of times that a variable can be written. Secondly there will be a delay in writing variables
to flash memory.

4.1 Flash lifespan
The flash memory in the microcontrollers covered by this application note is rated at a
minimum of 10,000 program and erase cycles.

If there is a single 12-byte variable and the flash sectors are 4096 bytes in size, then the
variable can be written (4096 – 16) / 12 = 340 times before the sector is full. At that point
the variable will move to the other sector where it can be written an additional 340 times.

The result is that the variable can be written 680 times for a single erase in each sector.

The lifespan is therefore a minimum of 10,000 x 680 = 6.8 million variable writes.

Now consider the worst case for sectors 4096 bytes in size. It would be 340 variables of
12-bytes in size. Every write of a value would cause the flash sectors to be swapped,

 AN11008 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 5 January 2011 9 of 12

NXP Semiconductors AN11008
 Flash based non-volatile storage

AN11008 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 5 January 2011 10 of 12

resulting in one erase cycle of a specific sector every two variable writes. The lifespan
would therefore be a minimum of 20,000 variable writes.

Note that the library only writes a variable if the value has changed. Consecutive writes
with the same value will have no effect.

4.2 Write delays
Each time a new value for a variable is written it has to be programmed into flash
memory. The speed of this operation is limited by the flash programming and erase
speed.

The worst case write time for a single variable when the current sector is not full is
approximately 1.05ms.

If the sector is full then the write will cause a swap of the two sectors used in the system.
The worst case time for the entire operation will be approximately 105ms + 1.05ms per
variable + 1.05ms for the current variable. For example if there are 20 variables then the
approximate worst case time will be 105 + (1.05 x 20) + 1.05 = 127.05ms.

A possible optimization that could be implemented is to add a function that allows the
application layer to determine how close the current sector is to being full and then
manually perform a swap of the sectors. This would avoid unexpectedly long write delays
at undesirable moments by ensuring that the sector swapping always takes place during
idle periods.

4.3 IAP RAM usage
Calls to erase and program the flash memory using IAP require RAM. The location and
amount of RAM used is defined in the NXP User Manual for the device, but is typically
32 bytes at the top of the RAM space and a maximum of 128 bytes on the user stack.

NXP Semiconductors AN11008
 Flash based non-volatile storage

 AN11008 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved.

Application note Rev. 1 — 5 January 2011 11 of 12

5. Legal information

5.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

5.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned

application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

5.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN11008
 Flash based non-volatile storage

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2011. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 5 January 2011
Document identifier: AN11008

6. Contents

1. Introduction ...3
2. Storing variables in flash memory.....................3
2.1 Basic mechanism ...3
2.2 Variable records ...4
2.3 Sector organization ..5
2.4 Data access ...6
2.5 Recovery after reset ...7
2.5.1 Variable protection ...7
2.5.2 Sector protection ..7
2.5.3 Code Read Protection..8
3. Application Programmer Interface.....................8
3.1 Functions..8
3.1.1 NVOL_Init...8
3.1.2 NVOL_SetVariable...8
3.1.3 NVOL_GetVariable ..8
3.2 Configuration..9
3.2.1 Sector descriptions...9
3.2.2 CPU clock ..9
3.2.3 Interrupts ..9
3.2.4 IAP access point ..9
3.2.5 Number of variables and size.............................9
4. Limitations ...9
4.1 Flash lifespan ...9
4.2 Write delays ...10
4.3 IAP RAM usage..10
5. Legal information ..11
5.1 Definitions ..11
5.2 Disclaimers...11
5.3 Trademarks ..11
6. Contents...12

	1. Introduction
	2. Storing variables in flash memory
	2.1 Basic mechanism
	2.2 Variable records
	2.3 Sector organization
	2.4 Data access
	2.5 Recovery after reset
	2.5.1 Variable protection
	2.5.2 Sector protection
	2.5.3 Code Read Protection

	3. Application Programmer Interface
	3.1 Functions
	3.1.1 NVOL_Init
	3.1.2 NVOL_SetVariable
	3.1.3 NVOL_GetVariable

	3.2 Configuration
	3.2.1 Sector descriptions
	3.2.2 CPU clock
	3.2.3 Interrupts
	3.2.4 IAP access point
	3.2.5 Number of variables and size

	4. Limitations
	4.1 Flash lifespan
	4.2 Write delays
	4.3 IAP RAM usage

	5. Legal information
	5.1 Definitions
	5.2 Disclaimers
	5.3 Trademarks

	6. Contents

