
MCUXpresso IDE User Guide
Rev. 10.0 — 22 February, 2017 User guide

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

ii

22 February, 2017

Copyright © 2017 NXP Semiconductors

All rights reserved.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

iii

1. Introduction to MCUXpresso IDE .. 1
1.1. MCUXpresso IDE Overview of Features ... 1

1.1.1. Summary of Features ... 1
1.1.2. Supported Debug Probes ... 3
1.1.3. Development Boards .. 3

2. IDE Overview .. 6
2.1. Documentation and Help ... 6
2.2. Workspaces .. 6
2.3. Perspectives and Views .. 7
2.4. Major Components of the Develop Perspective ... 8

3. Debug Solutions Overview ... 10
3.1. A note about Launch Configuration files ... 11
3.2. LinkServer Debug Connections .. 13
3.3. LinkServer Debug Operation .. 14
3.4. LinkServer Global and Live Global Variables .. 15
3.5. LinkServer Troubleshooting ... 18

3.5.1. Debug Log ... 18
3.5.2. Flash Programming issues .. 19
3.5.3. LinkServer executables ... 20

3.6. P&E Debug Connections ... 20
3.7. P&E Debug Operation ... 20

3.7.1. P&E Differences from LinkServer Debug .. 21
3.7.2. P&E Micro Software Updates .. 21

3.8. SEGGER Debug Connections ... 21
3.9. SEGGER Debug Operation ... 22

3.9.1. SEGGER Differences from LinkServer Debug 23
3.10. SEGGER Troubleshooting ... 23

4. SDKs and Pre-Installed Part Support Overview ... 25
4.1. Pre-installed Part Support .. 25
4.2. SDK Part Support ... 25

4.2.1. Important notes for SDK users .. 26
4.2.2. Differences in Pre-installed and SDK part handling 26

4.3. Viewing Pre-installed Part Support ... 27
4.4. Installing an SDK .. 27

4.4.1. “Power User” SDK Importing and Configuration 30
5. Creating New Projects using SDKs ... 32

5.1. New Project Wizard .. 32
5.1.1. SDK New Project Wizard: Basic Project Creation and Settings 34
5.1.2. SDK New Project Wizard: Advanced Project Settings 36

5.2. SDK Build Project ... 39
6. Importing Example Projects (from SDKs) .. 40

6.1. SDK Example Import Wizard ... 41
6.1.1. SDK Example Import Wizard: Basic Selection 41
6.1.2. SDK Example Import Wizard: Advanced options 44
6.1.3. SDK Example Import Wizard: Import from XML fragment 45

7. Creating New Projects using Pre-Installed Part Support 47
7.1. New Project Wizard .. 47
7.2. Creating a Project using a Wizard .. 48

7.2.1. Selecting the Wizard Type .. 49
7.2.2. Configuring the Project ... 50

7.3. Wizard Options ... 50
7.3.1. LPCOpen Library Project Selection .. 50
7.3.2. CMSIS-CORE Selection ... 51
7.3.3. CMSIS DSP Library Selection ... 52
7.3.4. Peripheral Driver Selection .. 52
7.3.5. Code Read Protect ... 52
7.3.6. Enable use of Floating Point Hardware .. 52

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

iv

7.3.7. Enable use of Romdivide Library .. 52
7.3.8. Disable Watchdog .. 53
7.3.9. LPC1102 ISP Pin ... 53
7.3.10. Redlib Printf Options ... 53
7.3.11. Project Created .. 53

8. Importing Example Projects (from the filesytem) .. 54
8.1. Code Bundles for LPC800 Family devices .. 54
8.2. LPCOpen Software Drivers and Examples .. 54
8.3. Importing an Example Project .. 55

8.3.1. Importing Examples for the LPCXpresso4337 Development Board
.. 56

8.4. Building Projects ... 57
8.4.1. Build Configurations ... 57

9. Debugging a Project .. 59
9.1. Debugging overview .. 59

9.1.1. Debug Probe Selection Dialog .. 60
9.1.2. Controlling Execution .. 61

10. C/C++ Library Support ... 63
10.1. Overview of Redlib, Newlib and NewlibNano ... 63

10.1.1. Redlib extensions to C90 .. 63
10.1.2. Newlib vs NewlibNano .. 63

10.2. Library variants ... 64
10.3. Switching the selected C library ... 65

10.3.1. Manually switching ... 65
10.4. What is Semihosting? .. 66

10.4.1. Background to Semihosting ... 66
10.4.2. Semihosting implementation .. 66
10.4.3. Semihosting Performance ... 66
10.4.4. Important notes about using semihosting 66
10.4.5. Semihosting Specification ... 67

10.5. Use of printf .. 67
10.5.1. Redlib printf variants ... 67
10.5.2. NewlibNano printf variants .. 67
10.5.3. Newlib printf variants .. 68
10.5.4. Printf when using LPCOpen .. 68
10.5.5. Printf when using SDK .. 68
10.5.6. Retargeting printf/scanf ... 68
10.5.7. How to use ITM Printf ... 69

10.6. itoa() and uitoa() in Redlib ... 70
10.6.1. ... 71
10.6.2. Newlib/NewlibNano ... 71

10.7. Libraries and linker scripts ... 71
11. Memory Configuration and Linker Scripts .. 73

11.1. Introduction ... 73
11.2. Managed Linker Script Overview .. 74
11.3. How are managed linker scripts generated? .. 75
11.4. Default image layout ... 75
11.5. Examining the layout of the generated image .. 77

11.5.1. Linker --print-memory-usage .. 77
11.5.2. arm-none-eabi-size ... 77
11.5.3. Linker map files .. 78
11.5.4. Symbol Viewer ... 78

11.6. Other options affecting the generated image ... 80
11.6.1. LPC MCUs – Code Read Protection .. 80
11.6.2. Kinetis MCUs – Flash Config blocks .. 81
11.6.3. Placement of USB data .. 82

11.7. Modifying the generated linker script / memory layout 82

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

v

11.8. Using the Memory Configuration Editor ... 83
11.8.1. Editing a Memory Configuration ... 83
11.8.2. Device specific vs Default Flash Drivers 86
11.8.3. Restoring a Memory Configuration ... 87
11.8.4. Copying Memory Configurations .. 87

11.9. More advanced heap/stack placement .. 87
11.9.1. MCUXpresso style heap and stack .. 88
11.9.2. LPCXpresso style heap and stack ... 89
11.9.3. Reserving RAM for IAP Flash Programming 89
11.9.4. Stack checking ... 90
11.9.5. Heap Checking ... 91
11.9.6. Placement of specific code/data items ... 91

11.10. Freemarker Linker Script Templates ... 96
11.10.1. Basics .. 96
11.10.2. Reference .. 96

11.11. Freemarker Linker Script Template Examples 100
11.11.1. Relocating code from FLASH to RAM 100
11.11.2. Configuring projects to span multiple flash devices 102

11.12. Disabling managed linker scripts .. 103
12. Multicore Projects .. 105

12.1. LPC43xx Multicore Projects ... 105
12.2. LPC541xx Multicore Projects ... 105

A. Glossary ... 106

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

1

1. Introduction to MCUXpresso IDE
MCUXpresso IDE is a low-cost microcontroller (MCU) development platform ecosystem
from NXP, which provides an end-to-end solution enabling engineers to develop embedded
applications from initial evaluation to final production.

The MCUXpresso platform ecosystem includes:

• The MCUXpresso IDE, a software development environment for creating applications for
NXP’s ARM-based “LPC” and “Kinetis” range of MCUs.

• MCUXpresso SDKs, each offering a package of device support and example software
extending the capability and park knowledge of MCUXpresso IDE.

• The range of LPCXpresso development boards, each of which includes a built-in
“LPC-Link”, “LPC-Link2”, or CMSIS-DAP debug probe. These boards are developed in
collaboration with Embedded Artists.

• The range of Tower and Freedom Development boards, most of which include an Open
SDA debug circuit supporting a range of firmware options.

• The standalone “LPC-Link2” debug probe.

This guide is intended as an introduction to using MCUXpresso IDE. It assumes that you
have some knowledge of MCUs and software development for embedded systems.

1.1 MCUXpresso IDE Overview of Features

The MCUXpresso IDE is a fully featured software development environment for NXP’s
ARM-based MCUs, and includes all the tools necessary to develop high-quality embedded
software applications in a timely and cost effective fashion.

MCUXpresso IDE is based on the Eclipse IDE and includes the industry standard ARM
GNU toolchain. It brings developers an easy-to-use and unlimited code size development
environment for NXP MCUs based on Cortex-M cores (LPC and Kinetis). This new IDE
combines the best of the widely popular LPCXpresso and Kinetis Design Studio IDEs,
providing a common platform for all NXP Cortex-M microcontrollers. With full-featured free
(code size unlimited) and affordable professional editions, MCUXpresso IDE provides an
intuitive and powerful interface with profiling, power measurement on supported boards,
GNU tool integration and library, multicore capable debugger, trace functionality and more.
MCUXpresso IDE debug connections support Freedom, Tower®, LPCXpresso and your
custom development boards with industry- leading open-source and commercial debug
probes including LPC-Link2, P&E and SEGGER.

The fully featured debugger supports both SWD and JTAG debugging, and features direct
download to on-chip flash.

For the latest details on new features and functionality, visit http://www.nxp.com/
mcuxpresso/ide

1.1.1 Summary of Features

• Complete C/C++ integrated development environment
• Latest Eclipse-based IDE with many ease-of-use enhancements

• Eclipse Neon (v4.6) and CDT (9.2)
• The IDE installs with Eclipse Plugins offering

• Git, FreeRTOS and support for P&E Micro debug probes
• The IDE can be further enhanced with many other Eclipse plugins

http:/www.nxp.com/mcuxpresso/ide
http:/www.nxp.com/mcuxpresso/ide

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

2

• Command-line tools included for integration into build, test, and manufacturing
systems

• Industry standard GNU toolchain (v5 update 3) including:

• C and C++ compilers, assembler, and linker

• Converters for SREC, HEX, and binary

• Advanced project wizards

• Simple creation of preconfigured applications for specific MCUs

• Extendable with MCUXpresso SDKs

• Device-specific support for NXP’s ARM-based MCUs (LPC and Kinetis)

• Automatic generation of linker scripts for correct placement of code and data into flash
and RAM

• Extended support for flexible placement of heap and stack

• Automatic generation of MCU-specific startup and device initialization code

• No assembler required with Cortex-M MCUs

• Advanced multicore support

• Provision for creating linked projects for each core in multicore MCUs

• Debugging of multicore projects within a single IDE instance, with the ability to link
various debug views to specific cores

• Fully featured native debugger supporting JTAG and SWD connection via LinkServer

• Built-in optimized flash programming for internal and SPI flash

• High-level and instruction-level debug

• Views of CPU registers and on-chip peripherals

• Support for multiple devices on the JTAG scan-chain

• Full install and integration of 3rd party debug solutions from:

• P&E Micro support

• SEGGER J-Link support

• Library support

• Redlib: a small-footprint embedded C library

• RedLib-nf: a smaller footpring library offering reduced fprintf support

• Newlib: a complete C and C++ library

• NewlibNano: a new small-footprint C and C++ library, based on Newlib

• LPCOpen MCU software libraries

• Cortex Microcontroller Software Interface Standard (CMSIS) libraries and source code

• Extendable support per device via MCUXpresso SDKs

• LinkServer Trace functionality

• Instruction trace via Embedded Trace Buffer (ETB) on certain Cortex-M3/M4 based
MCUs or via Micro Trace Buffer (MTB) on Cortex-M0+ based MCUs

• Providing a snapshot of application execution with linkage back to source,
disassembly and profile

• SWO Trace on Cortex-M3/M4 based MCUs when debugging via LPC-Link2, providing
functionality including:

• Profile tracing

• Interrupt tracing

• Datawatch tracing

• Printf over ITM

• LinkServer Power Measurement

• On enabled boards, sample power usage at adjustable rates of up to 200 ksps; average
power usage display option

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

3

• Explore detailed plots of collected data in the IDE

• Export data for analysis with other tools

1.1.2 Supported Debug Probes

MCUXpresso IDE installs with built in support for 3 debug solutions:

• Native LinkServer (CMSIS-DAP) as also used in LPCXpresso IDE

• this supports a variety of debug probes including OpenSDA programmed with CMSIS-
DAP firmware, LPC-Link2 etc.

• https://community.nxp.com/message/630896

• P&E Micro

• this supports a variety of debug probes including OpenSDA programmed with P&E
compatible firmware and MultiLink and Cyclone probes

• http://www.pemicro.com/

• SEGGER J-Link

• this supports a variety of debug probes including OpenSDA programmed with J-Link
compatible firmware and J-Link debug probes

• https://www.segger.com/

This support includes the installation of all necessary drivers and supporting software.

Please see Debug Solutions Overview Chapter [10] for more details.

Note: Kinetis Freedom and Tower boards typically provide an onboard OpenSDA debug
circuit. This can be programmed with a range of debug firmware including:

• mBed CMSIS-DAP – supported by LinkServer connections

• DAP-Link – supported by LinkServer connections (DAP-Link is preferred when available)

• J-Link – supported by SEGGER J-Link connections

• P&E – supported by P&E connections

• the default firmware can be changed if required, for details of the procedure and
range of supported firmware options please information visit: http://www.nxp.com/
pages/:OPENSDA

1.1.3 Development Boards

NXP Development board come in 3 families:

 LPCXpresso Boards for LPC

A major part of the LPCXpresso platform is the range of LPCXpresso boards that work
seamlessly with the MCUXpresso IDE. These boards provide practical and easy-to-use
development hardware to use as a starting point for your LPC Cortex-M MCU based
projects.

https://community.nxp.com/message/630896
http://www.pemicro.com/
https://www.segger.com/
http://www.nxp.com/pages/:OPENSDA
http://www.nxp.com/pages/:OPENSDA

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

4

Figure 1.1. LPCXpresso V2 Board (LPCXpresso11U68)

Figure 1.2. LPCXpresso V3 Board (LPCXpresso54102)

For more information, visit: http://www.nxp.com/pages/:LPCXPRESSO-BOARDS

 Freedom and Tower Boards for Kinetis

Similarly, for Kinetis MCUs there many development boards available including the popular
Freedom and Tower range of boards.

http://www.nxp.com/pages/:LPCXPRESSO-BOARDS

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

5

Figure 1.3. Tower (TWR-KV58F220M)

For more information, visit: http://www.nxp.com/pages/:TOWER_HOME

Figure 1.4. Freedom (FRDM-K64F)

For more information, visit: http://www.nxp.com/pages/:FREDEVPLA

http://www.nxp.com/pages/:TOWER_HOME
http://www.nxp.com/pages/:FREDEVPLA

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

6

2. IDE Overview
The following chapter provides a high level overview of the features offered by the IDE itself.

2.1 Documentation and Help

The MCUXpresso IDE is based on the Eclipse IDE framework, and many of the core
features are described well in generic Eclipse documentation and in the help files to be
found on the MCUXpresso IDE’s Help -> Help Contents menu. That also provides access
to the MCUXpresso IDE User Guide (this document), as well as the documentation for the
compiler, linker, and other underlying tools.

MCUXpresso IDE documentation comprises a suite of documents including:

• MCUXpresso IDE Installation and Licensing Guide
• MCUXpresso IDE User Guide
• MCUXpresso IDE LinkServer SWO Trace Guide
• MCUXpresso IDE LinkServer Instruction Trace Guide
• MCUXpresso IDE LinkServer Power Measurement Guide
• MCUXpresso_IDE_FreeRTOS Debug Guide

To obtain assistance on using MCUXpresso IDE, visit: http://www.nxp.com/mcuxpresso/ide

Commonly used

2.2 Workspaces

When you first launch MCUXpresso IDE, you will be asked to select a Workspace, as
shown in Figure 2.1.

Figure 2.1. Workspace selection

A Workspace is simply a directory used to store projects. MCUXpresso IDE can only access
a single Workspace at a time, although it is possible to run multiple instances in parallel —
with each instance accessing a different Workspace.

If you tick the Use this as the default and do not ask again option, then MCUXpresso
IDE will always start up with the chosen Workspace opened; otherwise, you will always be
prompted to choose a Workspace.

http://www.nxp.com/mcuxpresso/ide

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

7

You may change the Workspace that MCUXpresso IDE is using, via the File -> Switch
Workspace option.

2.3 Perspectives and Views

The overall layout of the main MCUXpresso IDE window is known as a Perspective. Within
each Perspective are many sub-windows, called Views. A View displays a set of data in the
IDE environment. For example, this data might be source code, hex dumps, disassembly,
or memory contents. Views can be opened, moved, docked, and closed, and the layout of
the currently displayed Views can be saved and restored.

Typically, the MCUXpresso IDE operates using the single Develop Perspective, under
which both code development and debug sessions operate as shown in Figure 2.3. This
single perspective simplifies the Eclipse environment, but at the cost of slightly reducing
the amount of information displayed on screen.

Alternatively, the MCUXpresso IDE can operate in a “dual Perspective” mode such that
the C/C++ Perspective is used for developing and navigating around your code and the
Debug Perspective is used when debugging your application.

You can manually switch between Perspectives using the Perspective icons in the top right
of the MCUXpresso IDE window, as shown in Figure 2.2.

Figure 2.2. Perspective selection

All Views in a Perspective can also be rearranged to match your specific requirements by
dragging and dropping. If a View is accidentally closed, it can be restored by selecting it
from the Window -> Show View dialog. The default layout for a perspective can be restored
at any time via Window -> Reset Perspective.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

8

2.4 Major Components of the Develop Perspective

Figure 2.3. Develop Perspective (whilst debugging)

1. Project Explorer / Peripherals / Registers Views

• The Project Explorer gives you a view of all the projects in your current Workspace.

• When debugging, the Peripherals view allows you to display the registers within
Peripherals.

• When debugging, the Registers view allows you to display the registers within the
CPU of your MCU.

• Not visible here is the Symbol Viewer; this view displays symbolic information from
a referenced .axf file.

2. Editor

• On the upper right is the Editor, which allows modification and saving of source code.
When debugging, this is where you can see the code you are executing and can
step from line to line. By pressing the 'i->' icon at the top of the Debug view, you
can switch to stepping by assembly instruction. Clicking in the left margin will set and
delete breakpoints.

3. Console / Install SDK/ Problems / Trace Views / Power Measurement

• On the lower right are the Console, Installed SDK and Problems Views etc. The
Console View displays status information on compiling and debugging, as well as
semihosted program output.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

9

• The Installed SDK view enabled the management of installed SDKs. New SDKs can
be added using drag and drop. Other SDK management features are also provided
from this view including unzip, explore and delete.

• The Problems View (available by changing tabs) shows all compiler errors and will
allow easy navigation to the error location in the Editor View.

• Sitting in parallel with the Console View are the various Views that make up the Trace
functionality of MCUXpresso IDE. For more information on Trace functionality, please
see the MCUXpresso IDE SWO Trace Guide and/or the MCUXpresso IDE Instruction
Trace Guide.
• The SWO trace Views allow you to gather and display runtime information using the

SWV technology that is part of Cortex-M3/M4 based parts.
• On some MCUs, you can also view instruction trace data downloaded from the

MCU’s Embedded Trace Buffer (ETB) or Micro Trace Buffer (MTB).
• Sitting in parallel with the Console View is the Power Measurement View, a dedicated

trace View capable of displaying real-time target power usage. For more information
please see the MCUXpresso IDE Power Measurement Guide.

4. Quickstart / Variables / Breakpoints / Outlines / Expressions Views
• On the lower left of the window, the Quickstart Panel View has fast links to commonly

used features. From here you can find various wizards including New Prokect, Import
from SDK and Import from File System plus options such as Build, Debug, and Import.

• Sitting in parallel to the Quickstart Panel, the Global Variables View allows you to see
and edit the values of Global variables. Variables can be monitored while the target
is running using the LinkServer Live Variables feature.

• Sitting in parallel to the Quickstart Panel, the Variables View allows you to see and
edit the values of local variables.

• Sitting in parallel to the Quickstart Panel, the Breakpoints View allows you to see and
modify currently set breakpoints.

• Sitting in parallel to the Quickstart Panel, the Outlines View allows you to quickly find
components of the source file with input focus within the editor.

5. Debug View
• The Debug View appears when you are debugging your application. This shows you

the stack trace. In the “stopped” state, you can click on any function and inspect its
local variables in the Variables tab (which is located parallel to the Quickstart Panel
View).

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

10

3. Debug Solutions Overview

MCUXpresso IDE installs with built-in support for 3 debug solutions; comprising the Native
LinkServer (CMSIS-DAP) [13] as used in LPCXpresso IDE. Plus support for both P&E
Micro [20] and SEGGER J-Link. [21]

This support includes the installation of all necessary drivers and supporting software.

The rest of this chapter discusses these differenct Debug solutions. For general information
on debugging please see the chapter Debugging a Project [59]

Note: Within MCUXpresso IDE, the debug solution used has no impact on project setting
or build configuration. Debug operations for basic debug are also identical.

To perform a debug operation:

1. The user selects a project within the MCUXpresso IDE Project View

2. The user clicks Debug from within the MCUXpresso IDE QuickStart View

• A probe discovery operation is automatically performed to display the available debug
connections, including native, P&E and J-Link compatible probes.

3. The user selects the required debug probe and clicks OK

• A project launch configuration is automatically created containing debug chain specific
configurations

• Launch configurations [11] are stored within a project and are different for each
of the supported debug solutions

From this point onwards, the low level debug operations are controlled by one of the above
debug solutions.

However, from the users point of view, most common debug operations within the IDE will
appear the same (or broadly similar), for example:

• Automatic inheritance of part knowledge

• Automatic downloading of generated image to target flash memory

• Setting breakpoints and watchpoints

• Stepping (single, step in step out etc.)

• Viewing and editing local variables, registers, peripherals, memory

• Viewing disassembly

• Semihosted IO

It is important to note that advanced operations such as the handling of launch configuration
features will be very different for each debug solution.

Furthermore, advanced debug features and capabilities may vary between solutions and
even similar features may appear quite different within the IDE.

MCUXpresso IDE documentation will only describe the advanced features provided by
native LinkServer debug connection. These include:

• Flash programming TBD: Link

• Instruction Trace

• Please see LinkServer Instruction Trace Guide

• Live Global Variable display

• described later in this chapter

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

11

• Power Measurement

• Please see LinkServer Power Measurement Guide

• FreeRTOS Debug

• Please see LinkServer FreeRTOS Debug Guide

• SWO Trace (Profiling, Interrupts, Data Watch) - LPC-Link2 Only

• Please see LinkServer SWO Trace Guide

P&E Micro and SEGGER debug solutions also provide a number of advanced features,
details can be found at their respective web sites.

3.1 A note about Launch Configuration files

The debug properties of a project in MCUXpresso IDE are held locally within each project
in .launch files (known as launch configuration files).

Launch configuration files are different for each debug solution (LinkServer, SEGGER,
P&E) and contain the properties of the debug connection (SWD/JTAG, and various other
configurations etc.) and can also include a debug probe identifier for automatic debug probe
matching.

If a project has not yet been debugged, for example a newly imported or created project,
then the project will not have a launch configuration associated with it.

When the user first tries to debug a project, MCUXpresso IDE will perform a Debug Probe
Discovery operation and present the user with a list of debug probes found. Note: The
Debug Solutions searched can be filtered from this dialogue as highlighted, removing
options that are not required will speed up this process.

Figure 3.1. Debug Probe Discovery

Once the debug probe is selected and the user clicks ‘OK’, the IDE will automatically create
a default launch configuration file for that debug probe (as shown below).

http://www.pemicro.com/
https://www.segger.com/

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

12

Figure 3.2. Launch Configuration Files

Note: a launch configuration will be created for each project build configuration.

For most debug operations, these files will not require any attention and can essentially
be ignored. However, if changes are required, these files should not be edited manually,
rather their properties should be explored within the IDE.

One way to do this is as follows:

Select the Project (with a launch configuration file) within the ‘Project Explorer’ pane, then
Right click on the Project and select: Launch Configurations -> Edit Current

To view the configuration items, be sure to select the Debugger tab as shown below:

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

13

Figure 3.3. Launch Configuration

Some debug solutions support advanced operations (such as recovering of badly
programmed parts) from this view.

Note: Once a launch configuration file has been created, it will be used for the projects
future debug operations. If you wish to use the project with a different debug probe, then
simply delete the existing launch configuration and allow a new one to be automatically
used on the next debug operation.

Note: When exporting project to share with others, launch configurations should usually be
deleted before export (along with other IDE generated folders such as build configuration
folders (Debug/Release if present)).

Further information regarding Launch Configuration files can be found in the LPCXpresso
IDE FAQ ‘Launch Configuration Menu’: https://community.nxp.com/message/630714

3.2 LinkServer Debug Connections

MCUXpresso IDE’s native debug connection (known as LinkServer) supports debug
operation through the following debug probes:

• LPC-Link2 with CMSIS-DAP firmware

https://community.nxp.com/message/630714

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

14

• LPCXpresso V2/V3 Boards incorporating LPC-Link2 with CMSIS-DAP firmware

• CMSIS-DAP firmware installed onto onboard debug probe hardware (as shipped by
default on LPCXpresso MAX and CD boards)

• For more information on LPCXpresso boards see: http://www.nxp.com/
pages/:LPCXPRESSO-BOARDS

• CMSIS-DAP firmware installed onto onboard OpenSDA debug probe hardware (as
shipped by default on certain Kinetis FRDM and TWR boards)

• Known as DAP-Link and mBed CMSIS-DAP: http://www.nxp.com/pages/:OPENSDA

• Additional driver may be required:

• https://developer.mbed.org/handbook/Windows-serial-configuration

• Keil uLINK with CMSIS-DAP formware: http://www2.keil.com/mdk5/ulink

• Legacy RedProbe+ and LPC-Link

• RDB1768 development board built-in debug connector (RDB-Link)

• RDB4078 development board built-in debug connector

Note: MCUXpresso IDE will automatically try to softload the latest CMSIS-DAP firmware
onto LPC-Link2 or LPCXpresso V2/V3 boards. For this to occur, the DFU link on these
boards must be set correctly. Please refer to the boards documentation for details.

3.3 LinkServer Debug Operation

When the user first tries to debug a project, MCUXpresso IDE will perform a Debug Probe
Discovery operation and present the user with a list of debug probes found.

Note: To perform a debug operation within MCUXpresso IDE, select the project to debug
within the ‘Project Explorer’ view and the click Debug from the QuickStart View.

For LinkServer compatible debug probes, you can select from Non-Stop (the default) or
All-Stop IDE debug mode.

Figure 3.4. Debug Probe Discovery Non-Stop

Note: If ‘Remember My Selection’ is left ticked, then the probe details will be stored within
the launch configuration file, and this probe will be automatically selected on subsequent
debug operations for this project.

http://www.nxp.com/pages/:LPCXPRESSO-BOARDS
http://www.nxp.com/pages/:LPCXPRESSO-BOARDS
http://www.nxp.com/pages/:OPENSDA
https://developer.mbed.org/handbook/Windows-serial-configuration
http://www2.keil.com/mdk5/ulink

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

15

Non-Stop uses GDB’s “non-stop mode” and allows data to be read from the target while
an application is running. Currently this mechanism is used to support the Live Variables
feature within the New Global Variables view.

3.4 LinkServer Global and Live Global Variables

MCUXpresso IDE provides a new Global Variables view for displaying the values of global
variables! This replaces the use of the “Expressions” view for displaying such variables, as
used in LPCXpresso IDE (and KDS). This view defaults to be located within the QuickStart
panel.

This view can be populated from a selection of a projects global variables. Simply click the
“Add global” button to launch a dialogue:

Figure 3.5. LinkServer Populate Globals

This will then display a list of the global variables available in the image being debugged.
Select the ones of interest via their checkboxes and click OK :

Figure 3.6. LinkServer Global Selector

Note: to simplify the selection of a variable, this dialogue supports the option to filter
(highlighted) and sorts on each column.

Once selected, the chosen variables will be remembered for that occurrence of the
dialogue.

For “All-Stop” debug connections, the Global Variables view will be updated whenever the
target is paused.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

16

For “Non-Stop” debug connections, variables can be selected to be updated while the target
is running. These are known as “*Live Variables*”.

For variables to be “Live”:

• the target must be running

• the enable/disable (run) button clicked.

Once done, the display will update at the frequency selected (selectable from 500 ms to
10 s).

Figure 3.7. LinkServer Globals Display

Live Variables like normal Globals can also be edited in place. Simply click on the variable
value and edit the contents. During the edit operation, the display will not update. This
mechanism provides a powerful way of interacting with a running target without impacting
on any other aspect of system performance.

MCUXpresso IDE defaults to the selection of “Non-Stop” mode when a probe discovery
operation is performed.

Note: If you wish to have some global variables ‘Live’ and others not, then this can be
achieved by spawning a second Globals display and populating this without enabling the
‘run’ feature for that view.

The usefulness of Live Variables reduces as the number monitored increases, and
ultimately there will be a limit as to how many variables can be updated at the selected
frequency. However, complex list of variables can be monitored if required. For example:

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

17

Figure 3.8. LinkServer Globals Display Many

MCUXpresso IDE defaults to the selection of “Non-Stop” mode when a probe discovery
operation is performed. This can be disabled from an MCUXpresso IDE Preference via:

Preferences -> Debug Options (Misc)

Figure 3.9. LinkServer Non Stop Preference

For a given project, the Non-Stop mode option is stored within the project’s launch
configuration. For projects that already have launch configurations, these will need to
be deleted before proceeding. For more details of launch configurations, see https://
community.nxp.com/message/630714.

https://community.nxp.com/message/630714
https://community.nxp.com/message/630714

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

18

3.5 LinkServer Troubleshooting

3.5.1 Debug Log

On occasion, it can be useful to explore the operations of a debug session in more detail.
The steps are logged into a file known as the Debug log. This log will be displayed with a
Debug operation begins, but by default, will be replaced by another view when execution
starts. The debug log is a standard log within the IDE’s Console view. To display this log,
select the Console and then click to view the various options (as below):

The debug log displays a large amount of information which can be useful in tracking down
issues.

In the example debug log below, you can see that an initial Script file has been run. These
Connect scripts are required for debugging certain parts and are automatically added to
launch configuration files by the IDE if required.

Further down in this file you will see the selection of flash driver (FTFE_4K), the
identification of the part being debugged K64, and also the speed of flash programming
(81.97 KB/sec).

MCUXpresso RedlinkMulti Driver v10.0 (Feb 16 2017 18:37:08 - crt_emu_cm_redlink

build 175)

Reconnected to existing redlink server (PID -1)

Connecting to core 0 (probe handle 1, PID -1) gave 'OK'

============= SCRIPT: kinetisconnect.scp =============

Kinetis Connect Script

DpID = 2BA01477

Assert NRESET

Reset pin state: 00

Power up Debug

MDM-AP APID: 0x001C0000

MDM-AP System Reset/Hold Reset/Debug Request

MDM-AP Control: 0x0000001C

MDM-AP Status (Flash Ready) : 0x00000032

Part is not secured

MDM-AP Control: 0x00000014

Release NRESET

Reset pin state: 01

MDM-AP Control (Debug Request): 0x00000004

MDM-AP Status: 0x0001003A

MDM-AP Core Halted

============= END SCRIPT =============================

Probe Firmware: LPC-LINK2 CMSIS-DAP V5.181 (NXP Semiconductors)

Serial Number: IWFUA1EW

VID:PID: 1FC9:0090

USB Path: USB_1fc9_0090_14131100_ff00

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

19

Probe(0): Connected&Reset. DpID: 2BA01477. CpuID: 410FC240. Info: <None>

Debug protocol: SWD. RTCK: Disabled. Vector catch: Disabled.

Inspected v.2 On chip Kinetis Flash memory module FTFE_4K.cfx

Image 'Kinetis SemiGeneric Jan 13 2017 16:14:07'

Opening flash driver FTFE_4K.cfx

flash variant 'K 64 FTFE Generic 4K' detected (1MB = 256*4K at 0x0)

Closing flash driver FTFE_4K.cfx

NXP: MK64FN1M0xxx12

(65) Chip Setup Complete

Connected: was_reset=true. was_stopped=true

MCUXpressoPro Full License - Unlimited

Awaiting telnet connection on port 3330 ...

GDB nonstop mode enabled

Opening flash driver FTFE_4K.cfx (already resident)

Writing 10744 bytes to address 0x00000000 in Flash

Erased/Wrote page 0-2 with 10744 bytes in 128msec

Closing flash driver FTFE_4K.cfx

Flash Write Done

Flash Program Summary: 10744 bytes in 0.13 seconds (81.97 KB/sec)

Stopped: Breakpoint #1

3.5.2 Flash Programming issues

Most debug operation begin with a flash programming operation, if this should fail, then the
debug operation will be aborted.

Flash programming common programming operations.

1. Mass Erase: a mass erase will reset all the bytes in flash (usually to 0xff). Such an
operation may clear any internal low level structuring such as protection of flash areas
(from programming).

1. Sector Erase: internally flash devices are divided into a number of sectors, where a
sector is the smallest size of flash that can be erased in a single operation. A sector will
be larger than a page (see below). Sectors are usually the same size for the whole flash
device, however this is not always the case. A sector base address will be aligned on
a boundary that is a multiple of its size.

1. Page Program: internally flash devices are divided into a number of pages, where a page
is the smallest size of flash that can be programmed in a single operation. A page will
be smaller than a sector. A page base addresses will be aligned on a boundary that is
a multiple of itssize.

A programming operation comprises repeated operations of sector erase followed by a set
of program page operations; until the sector is fully programmed or there is no more data
to program.

One of the common problems when programming Kinetis parts related to their use of
flash configuration block at offset 0x400. For more information please see: Kinetis MCUs
Flash Configuration Block [81] . Sector sizes on Kinetis MCUs range from 1KB to
8KB, therefore the first Sector Erase perfromed will clear the value of this block to
0xFFFFFFFFFFFFFFFF, if this is not followed by a sucessful program operation and the
part is reset, then it will likely report as ‘Secured’ and programming will not be possible
unless the part is recovered.

Such an event can occur if a debug operation is accidently performed to the ‘wrong board’.
Where the wrong flash programmer has been invoked.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

20

TBD: The Kinetis Mass Erase Script can be used as a connect script to deal with locked
parts. This is harmless but does have the consequence of erasing the entire flash when
a connection is made.

TBD: The GUI flash programmer running the Kinetis Recover Operaiton

3.5.3 LinkServer executables

LinkServer debug operations rely on 3 main debug executables.

arm-none-eabi-gdb – this is a version of GDB built to target ARM based CPUs
crt_emu_cm_redlink – this executable (known as the debug stub) communicates with
GDB and passes low level commands to the LinkServer executable (also known as redlink
server) redlinkserv – this is the LinkServer executable and takes stub operations and
communicates directly with the ARM Cortex debug hardware via the debug probe.

If a debug operation fails, or a crash occurs, it is possible that one or more of these
processes will fail to shut down. Therefore, if the IDE has no active debug connection but is
experiencing problems making a debug connection, ensure that none of these executables
is running.

3.6 P&E Debug Connections

P&E Micro software and drivers are automatically installed when MCUXpresso IDE installs.

There is no need to perform any additional setup to use P&E Micro debug connections.

Currently we have tested using:

• Multilink Universal (FX)

• Cyclone Universal (FX) (USB and Ethernet)

• P&E firmware installed into onboard OpenSDA debug probe hardware (as shipped by
default on certain Kinetis FRDM and TWR boards)

3.7 P&E Debug Operation

The process to debug via a P&E compatible debug probe is exactly the same as for a
native Linkserver (CMSIS-DAP) compatible debug probe. Simply select the project via the
‘Project Explorer’ view then click Debug from the QuickStart panel and select the P&E
debug probe from the Probe Discovery Dialogue.

If more than one debug probe is presented, select the required probe and then click ‘OK’ to
start the debug session. At this point, the projects launch configuration files will be created.

MCUXpresso IDE stores the probe information, along with its serial number in the projects
launch configuration. This mechanism is used to match any attached probe when an
existing launcher configuration already exits.

Note: If the project already had a launch configuration, this will be selected and used. If
they are no longer appropriate for the intended connection, simply delete the files and allow
new launch configuration files to be created.

Important Note: Low level debug operations via P&E debug probes are supported by
P&E software. This includes, Part Support handling, Flash Programming, and many other
features. If problems are encountered, it may be difficult for the user to determine whether
the problem relates to the IDE or to P&E lower level code.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

21

See TBD: CUSTOMER SUPPORT HANDLING

3.7.1 P&E Differences from LinkServer Debug

MCUXpresso IDE core technology is intended to provide a seamless environment for code
development and debug.

When used with P&E debug probes, the debug environment is provided by the P&E debug
server. This debug server does not 100% match the features provided by native LinkServer
connections. However basic debug operations will be very similar to LinkServer debug.

Note: LinkServer features such as Instruction Trace, SWO Trace, Power Measurement,
Live Global Variables etc. will not be available via a P&E debug connection.

3.7.2 P&E Micro Software Updates

P&E Micro support within MCUXpresso IDE is via an Eclipse Plugin. The P&E update site
is automatically added to the list of Available Software Update sites.

To check whether an update is available, please select:

Help -> Check for Updates

Any available updates from P&E will then be listed for selection and installation.

TBD: Do we want to do any more for P&E

3.8 SEGGER Debug Connections

SEGGER J-Link software and documentation pack is installed automatically with the
MCUXpresso IDE Installation for each host platform. Unlike other debug solutions, this in
not integrated into the IDE installation, rather a separate SEGGER J-Link installation will
be installed onto your host.

MCUXpressoIDE automatically locates the required executables and so no further setup
is required to debug with SEGGER J-Link.

Currently we have tested using:

• J-Link debug probes (USB and Ethernet)
• J-Link firmware installed into onboard OpenSDA debug probe hardware (as shipped by

default on certain Kinetis FRDM and TWR boards)

From time to time, SEGGER may release later versions of their software. For MCUXpresso
to use a different version of software from that originally installed, the user can update the
internal linkage.

The installation location will be similar to:

On Windows: ‘C:/Program Files (x86)/SEGGER/JLink_V612c’/jLinkGDBServerCL.exe’ On
Mac: ‘/Applications/SEGGER/JLink_V612c/JLinkGDBServer’

Updating this path allows the SEGGER tools to perform a probe discovery operation
i.e. check whether a SEGGER compatible debug probe is connected with an updated
installation.

Once this has been set, it will be remembered as a Workspace preference. This can be
viewed or edited within the MCUXpresso IDE preferences as below.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

22

Figure 3.10. Segger Preferences

Note: this preference also provides the option to enable scanning for SEGGER IP probes
(when a probe discovery operation is performed). By default, this option is disabled.

To avoid having to reselect this new path every time a new workspace is chosen, the
location of the SEGGER GDB Server can be stored in an environment variable.

For example, under Windows you could set:

MCUX_SEGGER_SERVER="C:/Program Files (x86)/SEGGER/JLink_V612c/
jLinkGDBServerCL.exe"

This value will then automatically populate the workspace settings for each new workspace
overriding the installation default.

3.9 SEGGER Debug Operation

The process to debug via a J-Link debug probe is exactly the same as for a native
Linkserver (CMSIS-DAP) compatible debug probe. Simply select the project via the ‘Project
Explorer’ view then click Debug from the QuickStart Panel and select the Segger Probe
from the Probe Discovery Dialogue.

Note: MCUXpresso IDE can only discover a single J-Link probe connected over USB. TBD:
is this still true?

If more than one debug probe is presented, select the required probe and then click ‘OK’ to
start the debug session. At this point, the projects launch configuration files will be created.

Note: If the project already had a launch configuration, this will be selected and used. If
an existing launch configuration file is no longer appropriate for the intended connection,
simply delete the files and allow new launch configuration files to be created.

Important Note: Low level debug operations via SEGGER debug probes are supported by
SEGGER software. This includes, Part Support handling, Flash Programming, and many
other features. If problems are encountered, it may be difficult for the user to determine
whether the problem relates to the IDE or to SEGGER lower level code.

See TBD: CUSTOMER SUPPORT HANDLING

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

23

3.9.1 SEGGER Differences from LinkServer Debug

MCUXpresso IDE core technology is intended to provide a seamless environment for code
development and debug. When used with SEGGER debug probes, the debug environment
is provided by the SEGGER debug server. This debug server does not 100% match the
features provided by native LinkServer connections. However basic debug operations will
be very similar to LinkServer debug.

Note: LinkServer features such as Instruction Trace, SWO Trace, Power Measurement,
Live Global Variables etc. will not be available via a SEGGER debug connection.

3.10 SEGGER Troubleshooting

When a debug operation to a SEGGER debug probe is performed, the SEGGER GDB
server is called with a set of arguments provided by the launch configuration file. The
command and resulting output is logged within the IDE Segger Debug Console. The
console can be viewed as below:

Figure 3.11. Segger Server

The command can be copied and called independently of the IDE to start a debug session
and explore connection issues.

Below is the output of a successful debug session to a Kinetis KL43 Freedom Board.

Executing Server: /Applications/SEGGER/JLink_V612c/JLinkGDBServer -nosilent

-swoport 2332 -select USB -telnetport 2333 -endian little -noir -speed auto

-port 2331 -vd -device MKL43Z256xxx4 -if SWD -nohalt -reportuseraction

SEGGER J-Link GDB Server V6.12c Command Line Version

JLinkARM.dll V6.12c (DLL compiled Dec 16 2016 17:26:51)

-----GDB Server start settings-----

GDBInit file: none

GDB Server Listening port: 2331

SWO raw output listening port: 2332

Terminal I/O port: 2333

Accept remote connection: yes

Generate logfile: off

Verify download: on

Init regs on start: off

Silent mode: off

Single run mode: off

Target connection timeout: 0 ms

------J-Link related settings------

J-Link Host interface: USB

J-Link script: none

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

24

J-Link settings file: none

------Target related settings------

Target device: MKL43Z256xxx4

Target interface: SWD

Target interface speed: auto

Target endian: little

Connecting to J-Link...

J-Link is connected.

Firmware: J-Link OpenSDA compiled Nov 16 2016 09:42:59

Hardware: V1.00

S/N: 621000000

Checking target voltage...

Target voltage: 3.30 V

Listening on TCP/IP port 2331

Connecting to target...Connected to target

Waiting for GDB connection...Connected to 127.0.0.1

Reading all registers

Read 4 bytes @ address 0x00002DCC (Data = 0xB004BEAB)

Read 2 bytes @ address 0x00002DCC (Data = 0xBEAB)

Read 2 bytes @ address 0x00002DC6 (Data = 0xB40F)

Read 2 bytes @ address 0x00002DC8 (Data = 0x4669)

Read 2 bytes @ address 0x00002DCA (Data = 0x2005)

Resetting target

Semi-hosting enabled (Handle on BKPT)

Downloading 14792 bytes @ address 0x00000000 - Verified OK

Downloading 4 bytes @ address 0x000039C8 - Verified OK

Writing register (PC = 0x14010000)

Read 4 bytes @ address 0x00000114 (Data = 0xB672B510)

Read 2 bytes @ address 0x0000064E (Data = 0x1D3B)

Read 2 bytes @ address 0x0000064E (Data = 0x1D3B)

Read 2 bytes @ address 0x0000064E (Data = 0x1D3B)

Setting breakpoint @ address 0x0000064E, Size = 2, BPHandle = 0x0001

Starting target CPU...

...Breakpoint reached @ address 0x0000064E

Reading all registers

Read 4 bytes @ address 0x0000064E (Data = 0x22011D3B)

Removing breakpoint @ address 0x0000064E, Size = 2

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

25

4. SDKs and Pre-Installed Part Support Overview

To support a particular MCU (or family of MCUs), a number of elements are required. These
break down into:

• Startup code

• This code will handle specific features required by the MCU

• Memory Map knowledge

• The addresses and sizes of all memory regions

• Peripheral knowledge

• Detailed information allowing the MCUs peripherals registers to be viewed and edited

• Flash Drivers

• Routines to program the MCUs on and off chip flash devices as efficiently as possible

• Debug capabilities

• Knowledge of the MCU debug interfaces and features (e.g. SWO, ETB)

• Example Code

• Code to demonstrate the features of the particular MCU and supporting drivers

MCUXpresso IDE uses these data elements for populating its wizards, and for built in
intelligence features, such as the automatic generation of linker scripts etc.

MCUXpresso IDE delivers its part support through an extensible scheme.

4.1 Pre-installed Part Support

Firstly the IDE installs with an enhanced version of the part support as provided with
LPCXpresso IDE v 8.2.2. This provides support for the majority of LPC parts ‘out of the
box’. This is known as pre-installed part support.

Example code for these pre-installed parts is provided by sophisticated LPCOpen packages
(and Code Bundles). Each of these contains code libraries to support the MCU features,
LPCXpresso boards (and some other popular ones), plus a large number of code examples
and drivers. The latest version of these are installed by default at:

<install dir>/ide/Examples/LPCOpen

<install dir>/ide/Examples/CodeBundles

4.2 SDK Part Support

Secondly, MCUXpresso IDE’s part support can be extended using freely available
MCUXpresso SDK2.x packages. These can be installed via a simple ‘drag and drop’ and
automatically extend the IDE with new part knowledge and examples.

SDKs for MCUXpresso IDE can be generated and downloaded as required using the SDK
Builder on the MCUXpresso Config Tools website at:

http://mcuxpresso.nxp.com/

Support for all Kinetis parts is delivered by SDK2.x packages, in addition this mechanism
will be used to offer support for new LPC MCUs from NXP such as the LPC5640x.

Once an SDK has been installed, the included part support becomes available through the
New Project Wizard and also the SDK example import Wizard.

http://mcuxpresso.nxp.com/

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

26

4.2.1 Important notes for SDK users

 Only SDKs created for MCUXpresso IDE can be used

Only SDKs built specifically for MCUXpresso IDE are compatible with MCUXpresso IDE.
SDKs created for any other toolchain will not work! Therefore, when requesting an SDK be
sure that MCUXpresso IDE is specified as the build target.

 Shared Part Support handling

Due to the nature of SDK packages, it is possible to have different packages containing
identical part support. For example, a user might request a Tower K64 SDK and later a
Freedom K64 SDK that both target the same MK64FN1M0xxx12 MCU. If both SDKs are
installed into the IDE, both sets of examples and board drivers will be available, but the
IDE will only select the most up to date version of part support specified within these SDKs.
This means the various wizards and dialogues will present a single MCU, but offer a variety
of compatible boards and examples.

 Building a ‘Fat’ SDK

An SDK can be generated for a selected part or a board. If just a part is selected, then the
generated SDK will contain both part support and also board support data for the closest
matching development board.

Therefore, to obtain an SDK with both Freedom and Tower board support for say the Kinetis
MK64... part, simply select the part and the board support will be added automatically.

If a part is chosen that has no directly matching board, say the Kinetis MK63… then the
generated SDK will contain:

• part support for the requested part i.e. MK63...
• part support for the recommended closest matching part that has an associated board

i.e. MK64...
• board support packages for the above part i.e. Freedom and Tower MK64...

 Uninstallation Considerations

MCUXpresso IDE allows SDKs to be installed and uninstalled as required (although for
most users there is little benefit in uninstalling an SDK). However, since the SDK provides
part support to the IDE, if an SDK is uninstalled, part support will also be removed. Any
existing project built using part support from an uninstalled SDK will no longer build or
debug. Such a situation can be remedied by re-installing the missing SDK.

 Sharing Projects

If a project built using part support from an SDK and is then exported – for example to share
the project with a colleague who also uses MCUXpresso IDE, then the colleague must also
install an SDK providing part support for the projects MCU.

4.2.2 Differences in Pre-installed and SDK part handling

Since SDKs bundle part and board support into a single package, MCUXpresso IDE is able
to provide graphical linkage between SDK MCUs and their related boards when creating or
importing projects. For pre-installed parts, the board support libraries are provided within
LPCOpen packages and Code Bundles. It is the responsibility of user to match an MCU with
its related LPCOpen board and chip library when creating or importing projects. Creating
and importing project using Pre-Installed and SDK part support is described in the following
chapters.

B45511
高亮

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

27

4.3 Viewing Pre-installed Part Support

When MCUXpresso IDE is installed, it will contain pre-installed part support for most LPC
based MCUs.

To explore the range of pre-installed MCUs simply click ‘New project’ in the QuickStart
panel. This will open a page similar to the image below:

Figure 4.1. New Project Wizard

The list of pre-installed parts is presented on the bottom left of this window.

You will also see a range of related development boards indicating whether a matching
LPCOpen Library is available.

For creating project with Pre-Installed part support please see: Creating Projects with Pre-
Installed part support) [47]

If you intend to work on an MCU that is not available from the range of Pre-Installed parts
for example a Kinetis MCU then you must first extend the part support with MCUXpresso
IDE with the required SDK.

4.4 Installing an SDK

The process to follow is simple, first download the SDK package, then install this into
MCUXpresso IDE.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

28

The easiest way to do this is to switch to the “Installed SDKs” view within the MCUXpresso
IDE console view (highlighted below).

Figure 4.2. SDK Import

SDKs are free to download; MCUXpresso IDE offers a link to the SDK portal from the
Installed SDK Console view (as indicated above). If required, the necessary SDK can be
downloaded onto the host machine.

To install the SDK, simply open a Windows Explorer / filer onto the directory containing the
SDK package(s), then select the ZIP file(s) and drag them into the “Installed SDKs” view.

You will then be prompted with a dialog asking you to confirm the import – click OK. The
SDK will then be automatically installed into MCUXpresso IDE part support repository.

Notes:

• MCUXpresso IDE can import an SDK as a zipped package or unzipped folder. Typically
importing as a zipped package is expected

• The main consequence of leaving SDKs zipped is that you will not be able to create (or
import projects) into a workspace with linked references back to the SDK source files.

• When an SDK is imported via drag and drop, required files are copied and the original
file/folder is unaffected.

• By using the Drag & Drop mechanism for installing the SDK into the default location, you
make a copy of that SDK that can be shared among different IDE instances/installations
and workspaces.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

29

Once complete the “Installed SDKs” view will update to show you the package(s) that you
have just installed.

Figure 4.3. SDK Import View

The display will show whether the SDKs are stored as zipped folders or not. MCUXpresso
IDE offers the option to unzip an archive in place via a right click option onto the selected
SDK (as below).

Note: Unzipping an SDK may take some time and is generally not needed unless you
wish to make use of reference files or perform many example imports (where some speed
improvement will be seen). See

Once an SDK has been unzipped, its icon will be updated to reflect that it is now stored
internally as a folder.

Figure 4.4. SDK Unzipped

You can explore each of the SDKs within the “Installed SDKs” view to examine its contents
as below:

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

30

Figure 4.5. SDK Explore

4.4.1 “Power User” SDK Importing and Configuration

Although using the “Installed SDKs” view offers the most straight forward way of importing
SDKs, MCUXpresso IDE also provides additional capabilities for importing and configuring
its SDK usage.

If you go to Preferences->MCUXpresso IDE->SDK Location or click on the shortcut “Use
existing SDK…” in the QuickStart view then the following window will appear:

Figure 4.6. SDK Preferences

From here you can add paths to other folders where you have stored or plan to store SDK
folders/zips. Those SDKs will appear in the Installed SDKs View along with those from the
default location.

The main differences between having SDKs in the default location or leaving them in other
folders are (folders are scanned recursively):

• “Delete SDK” function is disabled when using non-default locations
• to avoid accidentally deleting an original file

• The knowledge of the SDKs and their part support is per-workspace

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

31

The order of the SDKs in the SDK location list may be important on occasion: if you
have more SDKs for the same part in various locations, you can choose which to load by
reordering. If multiple SDK are found, a warning is displayed into the Installed SDK view.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

32

5. Creating New Projects using SDKs

For creating project with Pre-Installed part support please see: Creating Projects with Pre-
Installed part support [47]

From the QuickStart Panel in the bottom left of the MCUXpresso IDE window there are
two options:

Figure 5.1. SDK Projects

The first will invoke the New Project Wizard, that guides the user in creating new projects
from the installed SDKs (and also from pre-installed part support – which will be discussed
in a later chapter).

The second option invokes the SDK Import Wizard that guides the user to import SDK
example projects from installed SDKs

TDB: this option will be explored in the next chapter).

Click New project to launch the New Project Wizard.

5.1 New Project Wizard

The New Project Wizard will begin by opening the “Board and/or device selection” page,
this page is populated with a range of features described below:

1. A display of all parts (MCUs) installed via SDK. Click to select the MCU and filter the
available matching boards. SDK part support can be hidden by clicking on the triangle
(highlighted in blue)

2. A display of all pre-installed parts (these are all LPC or Generic M parts). Click to select
the MCU and filter the available matching boards (if any). Pre-Installed part support can
be hidden by clicking on the triangle (highlighted in blue)

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

33

3. A display of all boards from both SDK or matching LPCOpen packages. Click to select
the board and its associated MCU.

• Boards from SDK packages will have ‘SDK’ superimposed onto their image.

4. Some description relating to the users selection

5. A display to show the matching SDK for a choses MCU or Board. If more than one
matching SDK is installed, the user can select the SDK to use from this list

6. Any Warning or Error related to the current selection

7. An input field to filter the available boards e.g. enter ‘64’ to see matching MK64…
Freedom or Tower boards available

8. 3 options: to Sort boards from A-Z, Z-A or clear any filter made through the input field or a
select click. Note: once a project has been created, the filter settings will be remembered
the next time the Wizard is entered (unless cleared by an external event such as the
installation of a new SDK).

Figure 5.2. New Project Wizard first page

This page provides a number of ways of quickly selecting the target for the project that
you want to create.

In this description, we are going to create a project for a Freedom MK64…. board (The
required SDK has already been imported).

First, to reduce the number of boards displayed, we can simply type ‘64’ into the filter (7).
Now only boards with MCUs matching ‘64’ will be displayed.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

34

Figure 5.3. New Project Wizard selection

When the (SDK) board is selected, you can see highlighted in the above figure that the
matching MCU (part) and SDK are also selected automatically.

With a chosen board selected, now click ‘Next’...

5.1.1 SDK New Project Wizard: Basic Project Creation and Settings

The SDK New Project Wizard consists of two pages offering basic and advanced
configuration options. Each of these pages is preconfigured with sensible default options
(the default options offered on the advanced page may be set based on user settings from
the basic page).

Therefore, to create a simple ‘Hello World’ C project for the Freedom MK64… board we
selected, all that is required is simply click ‘Finish’.

Note: The project will be given a default name based on the MCU name. If this name
matches a project within the workspace e.g. the wizard has previously been use to generate
a project with the default name, then the error field will show a name clash and the ‘next’
and ‘finish’ buttons will be greyed out. To change the new project name, the blank ‘Project
Name Suffix’ field can be used to quickly create a unique name but retain the original prefix.

This will create a project in the chosen workspace taking all the default Wizard options for
our board.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

35

MCUXpresso IDE will create a project with common default settings for your chosen MCU
and board. However the wizard offers the flexibility to select/change many build, library
and source code options. These options and the components of this first Wizard page are
described below.

Figure 5.4. New Project Wizard basic SDK settings

1. Project Name: The default project name prefix is automatically selected based on the
part selected on the previous screen

2. Project Suffix:An optional suffix to append to a project name can be entered here
3. Error and Warnings: Any error or warning such as will be displayed here. The ‘Next’

option will not be available until any warning or error is handled – for example, a project
name has been selected that matches an existing project name in your workspace. The
suffix field (2) allows a convenient way of updating a project name

4. MCU Package: The device package can be selected from the range contained with the
SDK. The package relates to the actual device packaging and typically has no meaning
for project creation

5. Board files: This field allows the automatic selection of a default set of board support
files, else empty files will be created. If a part rather than a board had been selected on
the previous screen, these options will be ‘Greyed’ out.

6. Project Type: C or C++ projects or libraries can be selected. Selecting ‘C’ will
automatically select RedLib libraries, selecting C++ will select Newlib-Nano libraries.
TDB: link to later

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

36

7. Project Options:

• Enable Semihost: will cause the Semihosted variant of the chosen library to be
selected. For C projects this will default to be Redlib Semihost-nf. Semihosting allows
IO operations such as printf and scanf to be emulated by the debug environment.

• CMSIS-Core: will cause a CMSIS folder containing a variety of support code such as
Clock Setup, header files to be created. It is recommended to leave this options ticked

• Copy Sources: For zipped SDKs, this option will be ticked and greyed out. For
unzipped SDKs, projects can be created that use linked references back to the original
SDK folder. This feature is recommended for ‘Power Users’ only

8. Each set of components support a filter and check boxes for selection. These icons allow
filters to be cleared, all check boxes to be set, all check boxes to be cleared

9. OS: This provides the option to pull in and link against Operating System sources such
as FreeRTOS. TDB: better description

10. driver: enables the selection of supporting driver software components to support the
MCU peripheral set

11. utilities: a range of optional supporting utilities. For example select the debug console
to direct program output via a UART.

• the debug console option relies on the OpenSDA debug probe communicating to the
host via VCOM over USB. TBD: can we do something better here….

Finally, if there is no error condition displayed, ‘Finish’ can be selected to finish the wizard,
alternatively, select ‘Next’ to proceed to the Advanced options page (described next).

5.1.2 SDK New Project Wizard: Advanced Project Settings

The advanced configuration page will take certain default options based on settings from
the first configure project page, for example a C project will pre-select Redlib, where as a
C++ project will pre-select Newlib.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

37

Figure 5.5. New Project Wizard advanced SDK settings

1. This panel allows options to be set related to Input/Output. Note if a C++ project was
selected on the previous page, then the Redlib options will be Greyed out. See C/C+
+ Library Support [63]

• Redlib Floating Point printf: If this option is ticked, floating point support for printf will
automatically be linked in. This will allow printf to support printing out of floating point
variables at the expense of larger library support code.

• Redlib use Character printf: selecting this option will avoid heap usage and reduce
code size but make printf operations slower

• Redirect SDK “PRINTF”: many SDK examples use a PRINTF macro, selecting this
option select C library IO rather than options provided by the SDK debug console

• Redirect printf/scanf to ITM: causes a C file ‘retarget_itm.c to be pulled into your
project. This then enables printf/scanf I/O to be sent over the SWO channel. The
benefit of this is that I/O operations can be performed with little performance penalty.
Furthermore, these routines do not require debugger support and for example could
be used to generate logging that would effectively go to Null unless debug tools were
attached. TBD: link to more info

• Redirect printf/scanf to UART: Sets the define SDK_DEBUGCONSOLE_UART
causing the SDK debug console routines to output via a real UART rather than over
VCOM.

2. This panel allows the selection of various library variants. See C/C++ Library
Support [63]

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

38

•

3. Memory Configuration: This panel shows the Flash and RAM memory layout for the MCU
project being created. The pre-selected LinkServer flash driver is also shown. Note: this
flash driver will only be used for LinkServer (CMSIS-DAP) debug connections.

• Clicking Edit invokes the IDE’s memory configuration editor. From this dialogue, the
project’s default memory setting and hence automatically generated linker settings
can be changed. See Memory Configuration and Linker Scripts [73]

•

4. Hardware Settings: from this drop down you can set options such as the type of floating
point support available/required. This will default to an appropriate value for your MCU.

•

5. MCU C Compiler: from this drop down you can set various compiler options that can be
set for the GNU C/C++ compiler.

•

Notes:

• It is recommended that you always select the “CMSIS-Core” project option. Without this
being included in your generated project, other SDK components that you select may
not successfully build.

• Copy sources is selected by default; this ensures that the newly created project will be
standalone i.e. there will be no linked references to the original files within the SDK.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

39

5.2 SDK Build Project

To build a project created by the SDK New Project Wizard, simply select the project in the
‘Project Explorer’ view, then go to the ‘*QuickStart*’ Panel and click on the build button to
build the project. This will build the project for the default projects ‘Debug’ configuration.

Note: MCUXpresso IDE projects are created with two build configurations, Debug and
Release (more can be added if required). These differ in the default level of compiler
optimisation. Debug projects default to None (-O0), and Release projects default to (-Os).

For more information on switching between build configurations, see the FAQ at

https://community.nxp.com/message/630628

The build log will be displayed in the console view as below.

Figure 5.6. New Project Wizard Build

The projects memory usage as highlighted above is shown below:

Memory region Used Size Region Size %age Used

 PROGRAM_FLASH: 8216 B 1 MB 0.78%

 SRAM_UPPER: 8392 B 192 KB 4.27%

 SRAM_LOWER: 0 GB 64 KB 0.00%

 FLEX_RAM: 0 GB 4 KB 0.00%

Finished building target: MK64FN1M0xxx12_Project.axf

By default, the application will build and link against the first flash memory found within the
devices memory configuration. For most MCUs there will only be 1 flash device available. In
this case our project requires 8216 bytes of Flash memory storage, 0.78% of the available
Flash storage.

RAM will be used for global variable, the heap and the stack. MCUXpresso IDE provides
a flexible scheme to reserve memory for Stack and Heap. The default for this build has
reserved 4KB each for the stack and the heap. Please See Memory Configuration and
Linker Scripts [73] for detailed information.

https://community.nxp.com/message/630628

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

40

6. Importing Example Projects (from SDKs)

In addition to drivers and part support, SDKs also deliver many example project for the
target MCU.

To import examples from an installed SDK, go to the QuickStart panel and select Import
SDK example(s).

Figure 6.1. SDK Example

This option invokes the SDK Import Wizard that guides the user to import SDK example
projects from installed SDKs.

Like the New Project wizard, this will initially launch a page allowing MCU/board selection.
However now, only SDK supported parts and boards will be presented.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

41

Figure 6.2. SDK Example Board

6.1 SDK Example Import Wizard

Selection and filtering work in the same way as for the “New Project
Wizard:”#newprojectwizard but note, examples are created for particilar development
boards boards, therefore a board must be selected to move to the ‘Next’ page of the wizard.

6.1.1 SDK Example Import Wizard: Basic Selection

The SDK Example Import Wizard consists of two pages offering basic and advanced
configuration and selection options. The second configuration page is only available when
a single example is selected for import. This is because examples may set specific options,
and therefore changing setting globally is not sensible.

The first page offers all the available examples in various categories. These can be
expanded to view the underlying hierarchical structure. The various setting and options are
explained below:
Note: The project will be given a default name based on the MCU name, Board name and
Example name. If this name matches a project within the workspace e.g. the wizard has
previously been use to generate an example with the default name, then the error field will
show a name clash and the ‘next’ and ‘finish’ buttons will be greyed out. To change the
new example name, the blank ‘Project Name Suffix’ field can be used to quickly create a
unique name but retain the original prefix e.g. add ‘1’.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

42

MCUXpresso IDE will create a project with common default settings for your chosen MCU
and board. However, the wizard offers the flexibility to select/change many build, library
and source code options. These options and the components of this first Wizard page are
described below.

Figure 6.3. SDK Example Selection

1. Project Name: A project name is automatically created with a name of the form: \prefix_
\SDK example path_\example name_\suffix. The ability to add a suffix allows an import
to be repeated but project names easily made unique.

2. Project Suffix: An optional suffix to append to a project name can be entered here. This
is particularly useful if you are repeating an import of one or more projects since an entry
here can make all auto generated names unique for the current workspace...

3. Project Type: These will be set by the pre-set type of the example being imported. If
more than one example is imported, then these options will appear greyed out.

4. Project Options: For unzipped SDKs, you can untick this option to create project
containing links to the original SDK files. This option should only be unticked with care,
since editing linked example source will overwrite the original files.

5. Examples Filter: Enter text into this field to select matches for example ‘LED’, ‘bubble’
will select common examples from the set. This filter is case insensitive.

6. Examples: The example list broken into categories. Note for some parts there will be
many potential examples to import

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

43

7. Various options:

• Opens a filer window to allow an example to be imported from an XML description.
This is intended as a developer feature and is described in more detail below.

• Clear any existing filter

• Select (tick) all Examples

• Clear all ticked examples

• Open the example structure

• Close the example structure

Finally, if there is no error condition displayed, ‘Finish’ can be selected to finish the wizard,
alternatively if only example has been selected the option to select ‘Next’ to proceed to the
Advanced options page is available (described in the next section).

Note: SDKs may contain many examples, 185 is indicated for the FRDM MK64 SDK
example shown below. Importing many examples will take time ... Consider that each
example may consist of 20 files and associated description XML. A single example import
may only take a few seconds, but this time is repeated for each additional example.
Furthermore, Eclipse workspaces do not cope well with 100+ projects, therefore it is
suggested that example imports are limited to sensible numbers.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

44

Figure 6.4. SDK Example Selection Many

6.1.2 SDK Example Import Wizard: Advanced options

The advanced configuration page (shown below) will take certain default options based on
the example’s selected, for example a C project will pre-select Redlib libraries, where as
a C++ project will pre-select Newlib.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

45

Figure 6.5. New Project Wizard advanced SDK settings

These settings closely match those in SDK New Project Wizard description. Therefore See
SDK New Project Wizard:Advanced Options [36] for a description of these options. Note:
Changing these advanced options may prevent an example from building or executing.

6.1.3 SDK Example Import Wizard: Import from XML fragment

This option works in conjunction with the ‘Project Explorer’ -> Tools -> Generate Example
XML

The functionality here is to merge existing sources within a selectable board package
framework.

To create an XML “fragment” for an existing project in your workspace, right click on the
project in the ‘Project Explorer’ (or just in the ‘Project Explorer’ view with no project selected)
and choose Tools->Generate examples.xml file

The selected project or all the projects in the workspace (if no projects are selected) will be
converted into a fragment within a new folder created in the workspace itself:

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

46

To create a project from a fragment, click on “Import SDK examples…” in the QuickStart
Panel view:

Then select a board and then click on the button “Import from XML…” (highlighted below
and described in the previous section). You will see the examples definitions from the
external fragment in list of examples as shown and selected below.

Select the external examples you want to re-create and click on “Finish”. The project(s) will
be created in the workspace.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

47

7. Creating New Projects using Pre-Installed Part Support
For Creating project using SDKs please see Creating Projects with SDKs) [32]

To explore the range of pre-installed parts/MCUs simply click ‘New project’ in the
QuickStart panel. This will open a page similar to the image below:

Figure 7.1. New Project Wizard 1

The list of pre-installed parts is presented on the bottom left of this window.

You will also see a range of related development boards indicating whether a matching
LPCOpen Library is available.

For details of this page see: New Project Wizard details [32]

7.1 New Project Wizard

This page provides a number of ways of quickly selecting the target for the project that
you want to create.

In this description, we are going to create a project for an LPC4337 MCU (for this MCU an
LPCOpen project exists), so we can locate the MCU using the board filter.

To reduce the number of boards displayed, we can simply type ‘4337’ into the filter. Now
only boards with MCUs matching ‘4337’ will be displayed.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

48

Figure 7.2. New Project Wizard selection for Pre-Installed MCUs

When the board is selected, you can see highlighted in the above figure that the matching
MCU (part) and SDK are also selected automatically.

Note: if no matching board is available, the required MCU can be selected from the list of
Pre-Installed MCUs.

Note: Boards added to MCUXpresso IDE from SDKs will have an ‘SDK’ graphic
superimposed on the board image. Boards without the SDK graphic indicate that a
matching LPCOpen package is available for that board and associated MCU.

LPCOpenis described in section LPCOpen Software Drivers and Examples [54]

With a chosen board selected, now click ‘Next’...

The wizards for Pre-Installed MCUs are very similar to those featured in LPCXpresso IDE.

7.2 Creating a Project using a Wizard

The MCUXpresso IDE includes many project templates to allow the rapid creation of
correctly configured projects for specific MCUs.

This New Project wizard supports 2 types of projects:

• Those targeting LPCOpen libraries
• Standalone projects

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

49

In addition, certain MCUs like the LPC4337 support multiple core internally, for these
MCUs, Multicore options will also be presented (as below):

Figure 7.3. New project: wizard selection

You can now select the type of project that you wish to create (see below for details of
Wizard types).

In this case, we will show the steps in creating a simple C ‘Hello World’ example project.

7.2.1 Selecting the Wizard Type

For most MCU families the MCUXpresso IDE provides wizards for two forms of project:
LPCOpen and non-LPCOpen. For more details on LPCOpen, see Software drivers and
examples [54] . For both kinds, the main wizards available are:

C Project

• Creates a simple C project, with the main() routine consisting of an infinite while(1) loop
that increments a counter.

• For LPCOpen projects, code will also be included to initialize the board and enable a LED.

C++ Project

• Creates a simple C++ project, with the main() routine consisting of an infinite while(1)
loop that increments a counter.

• For LPCOpen projects, code will also be included to initialize the board and enable a LED.

C Static Library Project

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

50

• Creates a simple static library project, containing a source directory and, optionally, a
directory to contain include files. The project will also contain a “liblinks.xml” file, which
can be used by the smart update wizard on the context-sensitive menu to create links
from application projects to this library project. For more details, please see the FAQ at

https://community.nxp.com/message/630594

C++ Static Library Project

• Creates a simple (C++) static library project, like that produced by the C Static Library
Project wizard, but with the tools set up to build C++ rather than C code.

The non-LPCOpen wizard families also include a further wizard:

Semihosting C Project

• Creates a simple “Hello World” project, with the main() routine containing a printf() call,
which will cause the text to be displayed within the Console View of the MCUXpresso
IDE. This is implemented using “semihosting” functionality. For more details, please see
the FAQ at

https://community.nxp.com/message/630846

7.2.2 Configuring the Project

Once you have selected the appropriate project wizard, you will be able to enter the name
of your new project, this must be unique for the current workspace.

Finally you will be presented with one or more “Options” pages that provide the ability to
set a number of project-specific options. The choices presented will depend upon which
MCU you are targeting and the specific wizard you selected, and may also change between
versions of the MCUXpresso IDE. Note that if you have any doubts over any of the options,
then we would normally recommend leaving them set to their default values.

The following sections detail some of the options that you may see when running through
a wizard.

7.3 Wizard Options

7.3.1 LPCOpen Library Project Selection

When creating an LPCOpen-based project, the first option page that you will see is the
LPCOpen library selection page.

https://community.nxp.com/message/630594
https://community.nxp.com/message/630846

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

51

Figure 7.4. LPCOpen library selection

This page allows you to run the “Import wizard” to download the LPCOpen bundle for your
target MCU/board from http://www.nxp.com/pages/:LPC-OPEN-LIBRARIES and import it
into your Workspace, if you have not already done so.

You will then need to select the LPCOpen Chip library for your MCU using the Workspace
browser (and for some MCUs an appropriate value will also be available from the dropdown
next to the Browse button). Note that the wizard will not allow you to continue until you
have selected a library project that exists within the Workspace.

Finally, you can optionally select the LPCOpen Board library for the board that your MCU
is fitted to, using the Workspace browser (and again, in some cases an appropriate value
may also be available from the dropdown next to the Browse button). Although selection
of a board library is optional, it is recommended that you do this in most cases.

7.3.2 CMSIS-CORE Selection

For backwards compatibility reasons, the non-LPCOpen wizards for many parts provide the
ability to link a new project with a CMSIS-CORE library project. The CMSIS-CORE portion
of ARM’s Cortex Microcontroller Software Interface Standard (or CMSIS) provides a
defined way of accessing MCU peripheral registers, as well as code for initializing an MCU
and accessing various aspects of functionality of the Cortex CPU itself. The MCUXpresso
IDE typically provides support for CMSIS through the provision of CMSIS library projects.
CMSIS-CORE library projects can be found in the Examples directory of your MCUXpresso
IDE installation.

Generally, if you wish to use CMSIS-CORE library projects, you should use
CMSIS_CORE_<partfamily> (these projects use components from ARM’s CMSIS v3.20
specification). The MCUXpresso IDE does in some cases provide libraries based on early
versions of the CMSIS specification with names such as CMSISv1p30_<partfamily>, but
these are not recommended for use in new projects.

http://www.nxp.com/pages/:LPC-OPEN-LIBRARIES

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

52

The CMSIS library option within the MCUXpresso IDE allows you to select which (if any)
CMSIS-CORE library you want to link to from the project you are creating. Note that you
will need to import the appropriate CMSIS-CORE library project into the workspace before
the wizard will allow you to continue.

For more information on CMSIS and its support in the MCUXpresso IDE, please see the
FAQ at

https://community.nxp.com/message/630589

Note: The use of LPCOpen instead of CMSIS-CORE library projects is recommended in
most cases for new projects. (In fact LPCOpen actually builds on top of many aspects of
CMSIS-CORE.) For more details see Software drivers and examples [54]

7.3.3 CMSIS DSP Library Selection

ARM’s Cortex Microcontroller Software Interface Standard (or CMSIS) specification
also provides a definition and implementation of a DSP library. The MCUXpresso IDE
provides prebuilt library projects for the CMSIS DSP library for Cortex-M0/M0+, Cortex-
M3 and Cortex-M4 parts, although a source version of it is also provided within the
MCUXpresso IDE Examples.

Note: The CMSIS DSP library can be used with both LPCOpen and non-LPCOpen projects.

7.3.4 Peripheral Driver Selection

For some parts, one or more peripheral driver library projects may be available for the
target MCU from within the Examples area of your MCUXpresso IDE installation. The
non-LPCOpen wizards allow you to create appropriate links to such library projects when
creating a new project. You will need to ensure that you have imported such libraries from
the Examples before selecting them in the wizard.

Note: The use of LPCOpen rather than these peripheral driver projects is recommended
in most cases for new projects.

7.3.5 Code Read Protect

NXP’s Cortex and ARM7 based MCUs provide a “Code Read Protect” (CRP) mechanism
to prevent certain types of access to internal flash memory by external tools when a specific
memory location in the internal flash contains a specific value. The MCUXpresso IDE
provides support for setting this memory location. For more details see the FAQ at

https://community.nxp.com/message/630586

7.3.6 Enable use of Floating Point Hardware

Certain MCUs may include a hardware floating point unit (for example NXP LPC32xx,
LPC407x_8x, and LPC43xx parts). This option will set appropriate build options so that
code is built to use the hardware floating point unit and will also cause startup code to
enable the unit to be included.

7.3.7 Enable use of Romdivide Library

Certain NXP Cortex-M0 based MCUs, such as LPC11Axx, LPC11Exx, LPC11Uxx, and
LPC12xx, include optimized code in ROM to carry out divide operations. This option
enables the use of these Romdivide library functions. For more details see the FAQ at

https://community.nxp.com/message/630743

https://community.nxp.com/message/630589
https://community.nxp.com/message/630586
https://community.nxp.com/message/630743

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

53

7.3.8 Disable Watchdog

Unlike most MCUs, NXP’s LPC12xx MCUs enable the watchdog timer by default at reset.
This option disables that default behavior. For more details, please see the FAQ at

https://community.nxp.com/message/630654

7.3.9 LPC1102 ISP Pin

The provision of a pin to trigger entry to NXP’s ISP bootloader at reset is not hardwired on
the LPC1102, unlike other NXP MCUs. This option allows the generation of default code for
providing an ISP pin. For more information, please see NXP’s application note, AN11015,
“Adding ISP to LPC1102 systems”.

7.3.10 Redlib Printf Options

The “Semihosting C Project” wizard for some parts provides two options for configuring the
implementation of printf family functions that will get pulled in from the Redlib C library:

• Use non-floating-point version of printf
• If your application does not pass floating point numbers to printf() family functions,

you can select a non-floating-point variant of printf. This will help to reduce the code
size of your application.

• For MCUs where the wizard does not provide this option, you can cause the same
effect by adding the symbol CR_INTEGER_PRINTF to the project properties.

• Use character- rather than string-based printf
• By default printf() and puts() make use of malloc() to provide a temporary buffer on

the heap in order to generate the string to be displayed. Enable this option to switch
to using “character-by-character” versions of these functions (which do not require
additional heap space). This can be useful, for example, if you are retargeting printf()
to write out over a UART – since in this case it is pointless creating a temporary buffer
to store the whole string, only to print it out over the UART one character at a time.

• For MCUs where the wizard does not provide this option, you can cause the same
effect by adding the symbol CR_PRINTF_CHAR to the project properties.

Note: if you only require the display of fixed strings, then using puts() rather than printf()
will noticeably reduce the code size of your application.

For more information see C/C++ Library Support [63]

7.3.11 Project Created

Having selected the appropriate options, you can then click on the Finish button, and the
wizard will create your project for you, together with appropriate startup code and a simple
main.c file. Build options for the project will be configured appropriately for the MCU that
you selected in the project wizard.

You should then be able to build and debug your project, as described in Section 8.4 and
???.

https://community.nxp.com/message/630654

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

54

8. Importing Example Projects (from the filesytem)

MCUXpresso IDE supports two schemes for importing examples:

• From SDKs – see the QuickStart Panel -> Import SDK example(s) See Importing
Examples Projects (from SDK) [40]

• From the filing system – see the QuickStart Panel -> Import project(s)

• this option is discussed below:

MCUXpresso IDE installs with a large number of example projects, that can be imported
directly into a workspace: These are located at:

<install_dir>\ide\Examples

and consist of:

• CMSIS-DSPLIB

• a suite of common signal processing functions for use on Cortex-M processor based
devices.

• CodeBundles for LPC800 family

• which consist of software examples to teach users how to program the peripherals at
a basic level.

• FlashDrivers

• example projects use to create flash driver used by LinkServer

• Legacy

• a range if historic examples and drivers including CMSIS / Peripheral Driver Library

• LPCOpen

• High quality board and chip support libraries for LPC MCUs, plus example projects

8.1 Code Bundles for LPC800 Family devices

The LPC800 Family of MCUs are ideal for customers who want to make the transition from
8 and 16-bit MCUs to the Cortex M0/M0+. For this purpose, we’ve created Code Bundles
which consist of software examples to teach users how to program the peripherals at a basic
level. The examples provide register level peripheral access, and direct correspondence
to the memory map in the MCU User Manual. Examples are concise and accurate
explanations are provided within the readmes and comments in source files. Code Bundles
for LPC800 family devices are made available at the time of the series product launch,
ready for use with a range of tools including MCUXpresso IDE.

More information on code bundles together with latest downloads can be found at:

https://www.nxp.com/LPC800-Code-Bundles

8.2 LPCOpen Software Drivers and Examples

LPCOpen is an extensive collection of free software libraries (drivers and middleware) and
example programs that enable developers to create multifunctional products based on LPC
microcontrollers. Access to LPCOpen is free to all LPC developers.

Amongst the features of LPCOpen are:

• MCU peripheral device drivers with meaningful examples

https://www.nxp.com/LPC800-Code-Bundles

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

55

• Common APIs across device families

• Commonly needed third party and open source software ports

• Support for Keil, IAR and LPCXpresso/MCUXpresso IDE toolchains

LPCOpen is thoroughly tested and maintained. The latest LPCOpen software now available
provides:

• MCU family-specific download package

• Support for USB ROM drivers

• Improved code organization and drivers (efficiency, features)

• Improved support for the MCUXpresso IDE

CMSIS / Peripheral Driver Library / code bundle software packages are still available, from
within your MCUXpresso IDE install directory in \ide\Examples\NXP . But generally, these
should only be used for existing development work. When starting a new evaluation or
product development, we would recommend the use of LPCOpen.

More information on LPCOpen together with package downloads can be found at:

http://www.nxp.com/pages/:LPC-OPEN-LIBRARIES

8.3 Importing an Example Project

To import an example project from the filing system, locate the QuickStart panel and select
‘Import projects from Filesystem’

Figure 8.1. Importing project(s)

From here you can browse the filing system.

http://www.nxp.com/pages/:LPC-OPEN-LIBRARIES

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

56

Figure 8.2. Importing examples

• Browse to locate Examples stored in zip archive files on your local system. These could
be archives that you have previously downloaded (for example LPCOpen packages from
http://www.nxp.com/pages/:LPC-OPEN-LIBRARIES or the supplied, but deprecated,
sample code bundles located within the Examples subdirectory of your MCUXpresso
IDE installation).

• Browse to locate projects stored in directory form on your local system (for example, you
can use this to import projects from a different Workspace into the current Workspace).

• Browse LPCOpen packages to visit http://www.nxp.com/pages/:LPC-OPEN-
LIBRARIES and download an appropriate LPCOpen package for your target MCU. This
option will automatically open a web browser onto a suitable links page.

To demonstrate how to use the Import Project(s) functionality, we will now import the
LPCOpen examples for the LPCXpresso4337 development board.

8.3.1 Importing Examples for the LPCXpresso4337 Development Board

First of all, assuming that you have not previously downloaded the appropriate LPCOpen
package, click on Browse LPCOpen Packages, which will open a web browser window.
Click on Download LPCOpen Packages, and then the link to LPCOpen v2.xx for
LPC43xx family devices, and then choose the download for the LPCXpresso4337 board.

Note: LPCOpen Packages for the LPC4337 are pre-installed and located at:

<install_dir>\ide\Examples\LPCOpen\...

Once the package has downloaded, return to the Import Project(s) dialog and click on the
Browse button next to Project archive (zip); then locate the LPCOpen LPCXpresso4337
package archive previously downloaded. Select the archive, click Open and then click

http://www.nxp.com/pages/:LPC-OPEN-LIBRARIES
http://www.nxp.com/pages/:LPC-OPEN-LIBRARIES
http://www.nxp.com/pages/:LPC-OPEN-LIBRARIES

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

57

Next. You will then be presented with a list of projects within the archive, as shown in
Figure 8.3.

Figure 8.3. Selecting projects to import

Select the projects you want to import and then click Finish. The examples will be imported
into your Workspace.

Note: generally, it is a good idea to leave all projects selected when doing an import from a
zip archive file of examples. This is certainly true the first time you import an example set,
when you will not necessarily be aware of any dependencies between projects. In most
cases, an archive of projects will contain one or more library projects, which are used by the
actual application projects within the examples. If you do not import these library projects,
then the application projects will fail to build.

8.4 Building Projects

Building the projects in a workspace is a simple case of using the Quickstart Panel to
“Build all projects”. Alternatively, a single project can be selected in the ‘Project Explorer’
View and built. Note that building a single project may also trigger a build of any associated
library projects.

8.4.1 Build Configurations

By default, each project will be created with two different “build configurations”: Debug
and Release. Each build configuration will contain a distinct set of build options. Thus a

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

58

Debug build will typically compile its code with optimizations disabled (-O0) and Release
will compile its code optimizing for minimum code size (-Os). The currently selected build
configuration for a project will be displayed after its name in the QuickStart Panel’s Build/
Clean/Debug options.

For more information on switching between build configurations, see the FAQ at

https://community.nxp.com/message/630628

https://community.nxp.com/message/630628

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

59

9. Debugging a Project
This chapter shows how a simple debug session should be performed on an example
application/project. The details below are common to all supported debug solutions. Refer
to the chapter Debug Solutions Overview [10] for more details of supported debug solutions
and management of debug operations.

9.1 Debugging overview

The debug chain usually starts with a debug probe USB connection to the host computer
(although IP probes from P&E and SEGGER are also supported). Some debug probes
such as LPC-Link2 or SEGGER J-Link Plus are separate physical devices, however many
LPCXpresso, Freedom and Tower boards also incorporate a built in debug probe.

Note: If a separate debug probe is used, you must ensure that the appropriate cables are
used to connect the probe to the target, and that the target is powered.

Note: Some LPCXpresso development boards have two USB connectors fitted. Make sure
that you have connected the lower connector marked DFU-Link.

Note: Many Freedom and Tower boards also have two USB connectors fitted. Make sure
that you have connected to the one marked ‘OpenSDA’ - this is usually (but not always)
marked on the board. If in doubt, the debug processor used on these designs is a Kinetis
K20 MCU, it is aproximately 6mm square. The USB nearest this MCU will be the OpenSDA
connection.

To start debugging a project on your target, simply highlight the project in the ‘Project
Explorer’, and then in the Quickstart Panel click on Debug 'Project Name', as in
Figure 9.1. By default, this operation will first build the project and (assuming there is no
build error), launch a debug probe discovery operation (see next section).

Figure 9.1. Launching a debug session

Note: Previously debugged projects will contain launch configuration files. Please see the
section A note about Launch Configuration files [11] for more information.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

60

Once a debug probe has been selected (and ‘OK’ clicked) the binary contents of the .axf file
will automatically be downloaded to the target via the debug probe connection. Typically,
projects are built to target MCU flash memory, and in these cases, a suitable flash driver
will automatically be selected to perform the flash programming operation. Next a default
breakpoint will be set on the first instruction in main(), the application will be started (by
simulating a processor reset), and code will be executed until the default breakpoint is hit.

9.1.1 Debug Probe Selection Dialog

The first time you debug a project, the Debug Probe Discovery Dialogue will be displayed.
This will show all supported probes that are attached to your computer. In the example
shown in Figure 9.2, a LinkServer (LPC-Link2), a P&E Micro Multilink and also a J-Link
(OpenSDA) probe have been found.

Figure 9.2. Attached probes: debug emulator selection

MCUXpresso IDE supports unique debug probe association.

Debug probes can return an ID (Serial number) that is used to associate a particular debug
probe with a particular project. Some debug probes will always return the same ID, however
debug probes such as the LPC-Link2 will return a unique ID for each probe – in our example
IWFUA1EW.

For any future debug sessions, the stored probe selection will be automatically used to
match the project being debugged with the previously used debug probe. This greatly
simplies the case where multiple debug probes are being used.

If, however a debug operation is performed and the previously remembered debug probe
cannot be found, then a debug probe discovery operation will be performed for within the
same family e.g. LinkServer, P&E or SEGGER.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

61

Figure 9.3. LPC-Link2 no longer connected

This might have been because you had forgotten to connect the probe, in which case simply
connect it to your computer and select Search again. If you are using a different debug
probe from the same family of debug probes, simply select the new probe and this will
replace the previously selected probe.

Notes:

• The “Remember my selection” option is enabled by default in the Debug Emulator
Selection Dialog, and will cause the selected probe to be stored in the launch
configuration for the current configuration (typically Debug or Release) of the current
project. You can thus remove the probe selection at any time by simply deleting the
launch configuration.

• You will need to select a probe for each project that you debug within a Workspace (as
well as for each configuration within a project).

• If you wish to debug a project using a different family of debug probe, then the simplest
option is to delete the launch configuration files associated with the project and start a
debug operation. Please see the section A note about Launch Configuration files [11]
for more information.

9.1.2 Controlling Execution

When you have started a debug session a default breakpoint is set on the first instruction
in main(), the application is started (by simulating a processor reset), and code is executed
until the default breakpoint is hit.

Program execution can now be controlled using the common debug control buttons, as
listed in Table 9.1, which are displayed on the global toolbar. The call stack is shown in
the Debug View, as in Figure 9.4.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

62

Figure 9.4. Debug controls

Table 9.1. Program execution controls

Button Description Keyboard Shortcut
Restart program execution (from reset)

Run/Resume the program F8

Pause Execution of the running program

Stop the debugger Ctrl + F2

Run, Pause, Stop all debug sessions

Step over a C/C++ line F6

Step into a function F5

Return from a function F7

Step in, over, out all debug sessions

Show disassembled instructions

Setting a breakpoint

To set a breakpoint, simply double-click on the margin area of the line on which you wish
to set the breakpoint (before the line number).

Restarting the application

If you hit a breakpoint or pause execution and want to start execution of the application
from the beginning again, you can do this using the Restart button.

Stopping debugging

To stop debugging just press the Stop button.

If you are debugging using the Debug Perspective, then to switch back to the C/C++
Perspective when you stop your debug session, just click on the C/C++ tab in the upper
right area of the MCUXpresso IDE (as shown in Figure 2.2).

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

63

10. C/C++ Library Support
See C/C++ Library Support [63]

MCUXpresso IDE ships with three different C/C++ library families. This provides the
maximum possible flexibility in balancing code size and library functionality.

10.1 Overview of Redlib, Newlib and NewlibNano

• Redlib Our own (non-GNU) ISO C90 standard C library, with some C99 extensions.
• Newlib GNU C/C++ library
• NewlibNano a version of the GNU C/C++ library optimized for embedded.

By default, MUCXpresso IDE will use Redlib for C projects, NewlibNano for SDK C++
projects, and Newlib for C++ projects for preinstalled MCUs.

Newlib provides complete C99 and C++ library support at the expense of a larger (in some
cases, much larger) code size in your application.

NewlibNano was produced as part of ARM’s “GNU Tools for ARM Embedded Processors”
initiative in order to provide a version of Newlib focused on code size. Using NewlibNano
can help dramatically reduce the size of your application compared to using the standard
version of Newlib – for both C and C++ projects.

If you need a smaller application size and don’t need the additional functionality of the C99
or C++ libraries, we recommend the use Redlib, which can often produce much smaller
applications.

10.1.1 Redlib extensions to C90

Although Redlib is basically a C90 standard C library, it does implement a number of
extensions, including some from the C99 specification. These include:

• Single precision math functions
• Single precision implementations of some of the math.h functions such as sinf() and

cosf() are provided.
• stdbool.h

• An implementation of the C99 stdbool.h header is provided.
• itoa

• itoa() is non-standard library function which is provided in many other toolchains to
convert an integer to a string. To ease porting, an implementation of this function is
provided, accessible via stdlib.h. More details can be found later in this chapter.

10.1.2 Newlib vs NewlibNano

Differences between Newlib and Newlib-Nano include:

• Newlib-Nano is optimized for size.
• The printf and scanf family of routines have been re-implemented in NewlibNano to

remove a direct dependency on the floating-point input/output handling code. Projects
that need to handle floating-point values using these functions must now explicitly request
the feature during linking, as described above. TBD: Where is it described?

• The printf and scanf family of routines in NewlibNano support only conversion specifiers
defined in C89 standard. This provides a good balance between small memory footprint
and full feature formatted input/output.

• NewlibNano removes the now redundant integer-only implementations of the printf/scanf
family of routines (iprintf/iscanf, etc). These functions now alias the standard routines.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

64

• In NewlibNano, only unwritten buffered data is flushed on exit. Open streams are not
closed.

• In NewlibNano, the dynamic memory allocator has been re-implemented

10.2 Library variants

Each C library family is provided in a number of different variants : None, Nohost, Semihost
and Semihost-nf (Redlib only). These variants each provide a different set of ‘stubs’ that
form the very bottom of the C library and include certain low-level functions used by other
functions in the library.

Each variant has a differing set of these stubs, and hence provides differing levels of
functionality:

• Semihost
• This library variant provides implementation of all functions, including file I/O. The file

I/O will be directed through the debugger and will be performed on the host system
(semihosting). For example, printf/scanf will use the debugger console window and
fread/fwrite will operate on files on the host system. Note that this emulated I/O is
relatively slow and can only be used when debugging.

• Semihost-nf (no files)
• Redlib only. Similar to Semhost, but only provides support for the 3 standard built-in

streams – stdin, stdout, stderr. This reduces the memory overhead required for the
data structures used by streams, but means that the user application cannot open and
use files, though generally this is not a problem for embedded applications.

• Nohost
• This library variant provides the string and memory handling functions and some file-

based I/O functions. However, it assumes that you have no debugging host system,
thus any file I/O will do nothing. However, it is possible for the user to provide their
own implementations of some of these I/O functions, for example to redirect output
to the UART.

• None
• This has literally no stub and has the smallest memory footprint. It excludes low-level

functions for all file-based I/O and some string and memory handling functions.

In many embedded microcontroller applications it is possible to use the None variant by
careful use of the C library, for instance avoiding calls to printf().

If you are using the wrong library variant, then you will see build errors of the form:

• Linker error "Undefined reference to ‘xxx’ "

For example for a project linking against Redlib(None) but using printf() :

… libcr_c.a(fpprintf.o): In function `printf':

fpprintf.c:(.text.printf+0x38): undefined reference to `__sys_write'

fpprintf.c:(.text.printf+0x4c): undefined reference to `__Ciob'

… libcr_c.a(_deferredlazyseek.o): In function `__flsbuf':

_deferredlazyseek.c:(.text.__flsbuf+0x88): undefined reference to `__sys_istty'

… libcr_c.a(_writebuf.o): In function `_Cwritebuf':

_writebuf.c:(.text._Cwritebuf+0x16): undefined reference to `__sys_flen'

_writebuf.c:(.text._Cwritebuf+0x26): undefined reference to `__sys_seek'

_writebuf.c:(.text._Cwritebuf+0x3c): undefined reference to `__sys_write'

… libcr_c.a(alloc.o): In function `_Csys_alloc':

alloc.c:(.text._Csys_alloc+0xe): undefined reference to `__sys_write'

alloc.c:(.text._Csys_alloc+0x12): undefined reference to `__sys_appexit'

… libcr_c.a(fseek.o): In function `fseek':

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

65

fseek.c:(.text.fseek+0x16): undefined reference to `__sys_istty'

fseek.c:(.text.fseek+0x3a): undefined reference to `__sys_flen'

Or if linking against NewlibNano(None):

… libc_nano.a(lib_a-writer.o): In function `_write_r':

writer.c:(.text._write_r+0x10): undefined reference to `_write'

… libc_nano.a(lib_a-closer.o): In function `_close_r':

closer.c:(.text._close_r+0xc): undefined reference to `_close'

… libc_nano.a(lib_a-lseekr.o): In function `_lseek_r':

lseekr.c:(.text._lseek_r+0x10): undefined reference to `_lseek'

… libc_nano.a(lib_a-readr.o): In function `_read_r':

readr.c:(.text._read_r+0x10): undefined reference to `_read'

… libc_nano.a(lib_a-fstatr.o): In function `_fstat_r':

fstatr.c:(.text._fstat_r+0xe): undefined reference to `_fstat'

… libc_nano.a(lib_a-isattyr.o): In function `_isatty_r':

isattyr.c:(.text._isatty_r+0xc): undefined reference to `_isatty'

In such cases, simply change the library hosting being used (as described below), or
remove the call to the triggering C library function

10.3 Switching the selected C library

Normally the library variant used by a project is set up when the project is first created by
the New Project Wizard. However it is quite simple to switch the selected C library between
Redlib, Newlib and NewlibNano, as well as switching the library variant in use.

To switch, highlight the project in the Project Explorer view and go to:

Quickstart -> Quick Settings -> Set library/header type

and select the required library and variant.

10.3.1 Manually switching

Alternatively, you can make the required changes to your project properties manually as
follows...

When switching between Newlib(Nano) and Redlib libraries you must also switch the
headers (since the 2 libraries use different header files). To do this:

1. Select the project in Project Explorer
2. Right-click and select Properties
3. Expand C/C++ Build and select Settings
4. In the Tools settings tab, select Miscellaneous under MCU C Compiler. Note that Redlib

is not available for C++ projects
5. In Use Library headers, select Newlib or Redlib
6. In the Tools setting tab, select Architecture & Headers under MCU Assembler
7. In Library headers, select Newlib or Redlib

Repeat the above sequence for all Build Configurations (typically Debug and Release).

To then change the libraries actually being linked with (assuming you are using Managed
linker scripts):

1. Select the project in Project Explorer
2. Right-click and select Properties
3. Expand C/C++ Build and select Settings

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

66

4. In the Tools settings tab, select Managed Linker Script under MCU Linker
5. In the Library drop-down, select the Newlib, NewlibNano or Redlib library variant that

you require (None, Nohost, Semihost, Semihost-nf).

Again repeat the above sequence for all Build Configurations (typically Debug and
Release). Note that Redlib is not available for C++ projects.

10.4 What is Semihosting?

Semihosting is a term to describe application IO via the debug probe. For this to operate,
library code and debug support are required.

10.4.1 Background to Semihosting

When creating a new embedded application, it can sometimes be useful during the early
stages of development to be able to output debug status messages to indicate what is
happening as your application executes.

Traditionally, this might be done by piping the messages over, a serial cable connected to
a terminal program running on your PC. The MCUXpresso IDE offers an alternative to this
scheme, called semihosting. Semihosting provides a mechanism for code running on the
target board to use the facilities of the PC running the IDE. The most common example of
this is for the strings passed to a printf being displayed in the IDE’s console view.

The term “semihosting” was originally termed by ARM in the early 1990s, and basically
indicates that part of the functionality is carried out by the host (the PC with the debug tools
running on it), and partly by the target (your board). The original intention was to provide i/
o in a target environment where no real peripheral-based i/o was available at all.

10.4.2 Semihosting implementation

The way it is actually implemented by the tools depends upon which target CPU you are
running on. With Cortex-M based MCUs, the bottom level of the C library contains a special
BKPT instruction. The execution of this is trapped by the debug tools which determine what
operation is being requested – in the case of a printf, for example, this will effectively be a
“write character to stdout”. The debug tools will then read the character from the memory
of the target board – and display it in the console window within the IDE.

Semihosting also provides support for a number of other I/O operations (though this relies
upon your debug probe also supporting them).. For example it provides the ability for scanf
to read its input from the IDE console. It also allows file operations, such that fopen can
open a file on your PC’s hard drive, and fscanf can then be used to read from that file.

10.4.3 Semihosting Performance

It is fair to say that the semihosting mechanism does not provide a high performance i/o
system. Each time a semihosting operation takes place, the processor is basically stopped
whilst the data transfer takes place. The time this takes depends somewhat on the target
CPU, the debug probe being used, the PC hardware and the PC operating system. But it
takes a definite period of time, which may make your code appear to run more slowly.

10.4.4 Important notes about using semihosting

When you have linked with the semihosting library, your application will no longer work
standalone – it will only work when connected to the debugger.

Semihosting operations cause the CPU to drop into “debug state”, which means that for
the duration of the data transfer between the target and the host PC no code (including

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

67

interrupts) will get executed on the target. Thus if you application uses interrupts, then it
is normally advisable to avoid the use of semihosting whilst interrupts are active – and
certainly within interrupt handlers themselves. If you still need to use printf, then you can
retarget the bottom level of the C library to use an alternative communication channel, such
as a UART or the Cortex-M CPU’s ITM channel.

10.4.5 Semihosting Specification

The semihosting mechanism used within MCUXpresso IDE is based on the specification
contained in the following document available from ARM’s website... => ARM Developer
Suite (ADS) v1.2 Debug Target Guide, Chapter 5. Semihosting

10.5 Use of printf

By default, the output from printf() (and puts()) will be displayed in the debugger console
via the semihosting mechanism. This provides a very easy way of getting basic status
information out from your application running on your target.

For printf() to work like this, you must ensure that you are linking with a “semihost” or
“semihost-nf” library variant.

Note that if you only require the display of fixed strings, then using puts() rather than printf()
will noticeably reduce the code size of your application.

10.5.1 Redlib printf variants

Redlib provides the following two variants of printf. Many of the MCUXpresso New project
wizards provide options to select which of these to use when you create a new project.

 Character vs String output

By default printf() and puts() functions will output the generated string at once, so that a
single semihosted operation can output the string to the console of the debugger. Note that
these versions of printf() /puts() make use of malloc() to provide a temporary buffer on the
heap in order to generate the string to be displayed.

It is possible to switch to using “character-by-character” versions of these functions
(which do not require additional heap space) by specifying the build define
“CR_PRINTF_CHAR” (which should be set at the project level). This can be useful, for
example, if you are retargeting printf() to write out over a UART (as detailed below)- as in
this case it is pointless creating a temporary buffer to store the whole string, only to then
print it out over the UART one character at a time

 “Integer only” vs “full” printf (including floating point)

The printf() routine incorporated into Redlib is much smaller than that in Newlib. Thus if
code size is an issue, then always try to use Redlib if possible. In addition if your application
does not pass floating point numbers to printf, you can also select a “integer only” (non-
floating point compatible) variant of printf. This will reduce code size further.

To enable the “integer only” printf from Redlib, define the symbol
“CR_INTEGER_PRINTF” (at the project level). This is done by default for projects created
from the SDK new project wizard.

10.5.2 NewlibNano printf variants

By default, Newlib-Nano uses non-floating point variants of the printf and scanf family of
functions, which can help to dramatically reduce the size of your image if only integer values
are used by such functions.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

68

If your codebase does require floating point variants of printf/scanf, then these can be
enabled by going to:

Project -> Properties -> C/C++ Build -> Settings -> MCU Linker -> Managed Linker Script
and selecting the " Enable printf/scanf float" tick box.

10.5.3 Newlib printf variants

Newlib provides an “iprintf” function which implements integer only printf

10.5.4 Printf when using LPCOpen

If you are building your application against LPCOpen, you may find that printf output does
not get displayed in the MCUXpresso IDE’s debug console by default. This is due to many
LPCOpen board library projects by default redirecting printf to a UART output.

If you want to direct printf output to the debug console instead, then you will need to modify
your projects so that:

1. Your main application project is linked against the “semihost” variant of the C library, and
2. You disable the LPCOpen board library’s redirection of printf output by either:

• locating the source file board.c within the LPCOpen board library and comment out
the line: #include "retarget.h, or

• locating the file board.h and enable the line: #define DEBUG_SEMIHOSTING

10.5.5 Printf when using SDK

The MCUXpresso SDK codebase provides its own printf style functionality through the
macro PRINTF. This is set up in the header file fsl_debug_console.h such that it can either
point to the printf function provided by the C library itself, or can be directly to the SDK
function pseudo-printf function : DbgConsole_Printf() . This will typically cause the output
to be sent out via a UART (which may be connected to an onboard debug probe which
will sent it back to the host over a USB VCOM channel). This is controlled by the macro
SDK_DEBUGCONSOLE thus:

• If SDK_DEBUGCONSOLE == 0
• PRINTF is directed to C library printf()

• If SDK_DEBUGCONSOLE == 1
• PRINTF is directed to SDK DbgConsole_Printf()

The Advanced page of the SDK new project wizard and Import SDK examples wizard offer
the option to configure a project so that PRINTF is directed to C library printf() by setting
SDK_DEBUGCONSOLE appropriately.

In addition if PRINTF is being directed to the C library printf(), then if
SDK_DEBUGCONSOLE_UART is also defined, then printf output will still be directed to
the UART. Again the Advanced page of the SDK new project wizard and Import SDK
examples wizard offer an option to control this.

10.5.6 Retargeting printf/scanf

By default, the printf function outputs text to the debug console using the “semihosting”
mechanism.

In some circumstances, this output mechanism may not be suitable for your application.
Instead, you may want printf to output via an alternative communication channel such as
a UART or – on Cortex-M3/M4 – the ITM channel of SWO Trace. In such cases you can
retarget the appropriate portion of the bottom level of the library.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

69

TBD: Link The section “How to use ITM Printf” below provides an example of how this can
be done.

Note: when retargeting these functions, you can typically link against the “nohost” variant
of the C Library, rather than the “semihost” one.

 Redlib

To retarget Redlib’s printf(), you need to provide your own implementations of the function
__sys_write():

int __sys_write(int iFileHandle, char *pcBuffer, int iLength)

Function returns number of unwritten bytes if error, otherwise 0 for success

Similarly if you want to retarget scanf(), you need to provide your own implementations of
the function __sys_readc():

int __sys_readc(void)

Function returns character read

Note: these two functions effectively map directly onto the underlying “semihosting”
operations.

 Newlib / NewlibNano

To retarget printf(), you will need to provide your own implementation of the Newlib system
function _write():

int _write(int iFileHandle, char *pcBuffer, int iLength)

Function returns number of unwritten bytes if error, otherwise 0 for success

To retarget scanf, you will need to provide your own implementation of the Newlib system
function _read():

int _read(int iFileHandle, char *pcBuffer, int iLength)

Function returns number of characters read, stored in pcBuffer

More information on the Newlib system calls can be found at: http://sourceware.org/newlib/
libc.html#Syscalls

10.5.7 How to use ITM Printf

ITM Printf is a scheme to achieve application IO via a debug probe without the usual
semihosting penalties.

 ITM Overview

As part of the Cortex-M3/M4 SWO Trace functionality available when using an LPC-Link2
(with NXP’s CMSIS-DAP firmware), MCUXpresso IDE provides the ability to make use
of the ITM : The Instrumentation Trace Macrocell (ITM) block provides a mechanism
for sending data from your target to the debugger via the SWO trade stream. This

http://sourceware.org/newlib/libc.html#Syscalls
http://sourceware.org/newlib/libc.html#Syscalls

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

70

communication is achieved though a memory-mapped register interface. Data written
to any of 32 stimulus registers is forwarded to the SWO stream. Unlike other SWO
functionality, using the ITM stimulus ports requires changes to your code and so should
not be considered non-intrusive.

Printf operations can be carried out directly by writing to the ITM stimulus port. However
the stimulus port is output only. And therefore scanf functionality is achieved via a special
global variable, which allows the debugger to send characters from the console to the
target (using the trace interface). The debugger writes data to the global variable named
ITM_RxBuffer to be picked up by scanf.

Note: MCUXpresso IDE currently only supports ITM via stimulus port 0.

Note: For more information on SWO Trace, please see the MCUXpresso IDE LinkServer
SWO Trace Guide.

 ITM printf with SDK

The Advanced page of the SDK new project wizard and Import SDK examples wizard offer
the option to configure a project so as to redirect printf/scanf to ITM. Selecting this option
will cause the file retarget_itm.c to be generated in your project to carry out the redirection.

 ITM printf with LPCOpen

To use this functionality with an LPCOpen project you need to: Include the file retarget_itm.c
in your project – available from the Examples subdirectory of your IDE installation Ensure
you are using a semihost, semihost-nf, or nohost C library variant. Then simply add calls
to printf and scanf to your code.

If you just linking against the LPCOpen Chip library, then this is all you need to do. However
if you are also linking against an LPCOpen board library then you will likely see build errors
of the form:

../src/retarget.h:224: multiple definition of `__sys_write'

../src/retarget.h:240: multiple definition of `__sys_readc'

locating the file board.h and enable the line: #define DEBUG_SEMIHOSTING, or locating
the source file board.c within the LPCOpen board library and comment out the line: #include
"retarget.h

10.6 itoa() and uitoa() in Redlib

itoa() is non-standard library function which is provided in many other toolchains to convert
an integer to a string. To ease porting, the MCUXpresso IDE provides two variants of this
function in the Redlib C library....

char * itoa(int value, char *vstring, unsigned int base);

char * uitoa(unsigned int value, char *vstring, unsigned int base);

which can be accessed via the system header....

#include <stdlib.h>

itoa() converts an integer value to a null-terminated string using the specified base and
stores the result in the array pointed to by the vstring parameter. base can take any value
between 2 and 16; where 2 = binary, 8 = octal, 10 = decimal and 16 = hexadecimal.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

71

If base is 10 and the value is negative, then the resulting string is preceded with a minus
sign (-). With any other base, value is always considered unsigned. The return value to the
function is a pointer to the resulting null-terminated string, the same as parameter vstring.

uitoa() is similar but treats the input value as unsigned in all cases.

Note: the caller is responsible for reserving space for the output character array – the
recommended length is 33, which is long enough to contain any possible value regardless
of the base used.

 Example invocations

 char vstring [33];

 itoa (value,vstring,10); // convert to decimal

 itoa (value,vstring,16); // convert to hexadecimal

 itoa (value,vstring,8);; // convert to octal

 Standards compliance

As noted above, itoa() / uito() are not standard C library functions. A standard-compliant
alternative for some cases may be to use sprintf() - though this is likely to cause an increase
in the size of your application image:

 sprintf(vstring,"%d",value); // convert to decimal

 sprintf(vstring,"%x",value); // convert to hexadecimal

 sprintf(vstring,"%o",value); // convert to octal

10.6.2 Newlib/NewlibNano

Newlib and NewlibNano now also provide similar functionality though with slightly different
naming - itoa() and utoa().

10.7 Libraries and linker scripts

When using the managed linker script mechanism, as described in the chapter “Memory
configuration and Linker Script Generation”, then the appropriate settings to link against
the required library family and variant will be handled automatically.

However if you are not using the managed linker script mechanism, then you will need to
define which library files to use in your linker script. To do this, add one of the following
entries before the SECTION line in your linker script:

• Redlib (None), add
• [C project only]: GROUP

• Redlib (Nohost), add
• [C projects only]: GROUP

• Redlib (Semihost-nf), add
• [C projects only]: GROUP

• Redlib (Semihost), add
• [C projects only]: GROUP

• NewlibNano (None), add
• [C projects]: GROUP
• [C++ projects]: GROUP

• NewlibNano (Nohost), add
• [C projects]: GROUP

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

72

• [C++ projects]: GROUP
• NewlibNano (Semihost), add

• [C projects]: GROUP
• [C++ projects]: GROUP

• Newlib (None), add
• [C projects]: GROUP
• [C++ projects]: GROUP

• Newlib (Nohost), add
• [C projects]: GROUP
• [C++ projects]: GROUP

• Newlib (Semihost), add
• [C projects]: GROUP
• [C++ projects]: GROUP

In addition, if using NewlibNano, then tick box method of enabling printf/scanf floating point
support in the Linker pages of Project Properties will also not be available. In such cases,
you can enabling floating point support manually by going to:

Project -> Properties -> C/C++ Build -> Settings -> MCU Linker -> Miscellaneous

and entering -u _printf_float and/or -u _scanf_float into the “Linker flags” box.

A further alternative is to put an explicit reference to the required support function into your
project codebase itself. One way to do this is to add a statement such as:

asm (“.global _printf_float”);

to one (or more) of the C source files in your project.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

73

11. Memory Configuration and Linker Scripts

See Memory Configuration and Linker Scripts [73]

See Creating Projects with SDKs) [32] See Creating Projects with Pre-Installed part
support [47] See New Project Wizard details [32]

See Importing Projects from SDKs [40] See Importing Projects from the fileystems [54] See
Debug Solutions Overview [10] Figure 2.1

11.1 Introduction

A key part of the core technology within MCUXpresso IDE is the principle of a default,
defined memory map for each MCU. For devices with internal flash, this will also specify
a flash driver to be used to program that flash memory (for use with LinkServer “native”
debug probes – typically CMSIS-DAP / LPC-Link2).

For pre-installed MCUs, the definition of the memory map is contained within the MCU part
knowledge that is built into the product. For MCUs installed into MCUXpresso IDE from an
SDK, the definition of the memory map is loaded from manifest file within the SDK structure.

But in both cases, the defined memory map is used by the MCUXpresso IDE to drive the
“managed linker script” mechanism. This auto-generates a linker script to place the code
and data from your project appropriately in memory, as well as being made available to
the debugger.

A projects memory map can be viewed and modified by the user to add, remove (split/
join) or reorder blocks using the Memory Configuration Editor. For example, if a project
targets an MCU that supports external flash (e.g. SPIFI), then its memory map can be easily
extended to define the SPIFI memory region (base and size). In addition, an appropriate
flash driver can associated with the newly defined region.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

74

Figure 11.1. Memory Configuration

11.2 Managed Linker Script Overview

By default, the use of “managed linker scripts” is enabled for projects. This mechanism
allows the MCUXpresso IDE to automatically create a script for each build configuration that
is suitable for the MCU selected for the project, and the C libraries being used. It will create
(and at times modify) three linker script files for each build configuration of your project:

<projname>_<buildconfig>_lib.ld

<projname>_<buildconfig>_mem.ld

<projname>_<buildconfig>.ld

This set of hierarchical files are used to define the C libraries being used, the memory map
of the system and the way your code and data is placed into the memory map. These files
will be located in the build configuration subdirectories of your project (typically – Debug
and Release).

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

75

Figure 11.2. Project Explorer Debug folder Linker Scripts

The managed linkers script mechanism also automatically takes into account memory map
changes made in Memory Configuration Editor as well as other configuration changes,
such as C/C++ library setting.

11.3 How are managed linker scripts generated?

The MCUXpresso IDE passes a set of parameters into the linker script generator (based on
the “Freemarker” scripting engine) to create an appropriate linker script for your project This
generator uses a set of conditionally parsed template file, each of which control different
aspects of the generated linker script.

It is possible to modify certain aspects of the generated linker script by providing one
or more modified template files locally within \linkscripts subdirectory of project directory
structure. Any such templates that you provide locally will then override the default ones
built into MCUXpresso. A full full set of the default linker templates (.ldt) files are provided
inside \Wizards\linker subdirectory of your IDE install.

TBD: More details and examples

11.4 Default image layout

Code and initial values of initialised data items are placed into first bank of flash (as show in
memory configuration editor). During startup, the MCUXpresso IDE startup code copies the
data into the first bank of RAM (as show in memory configuration editor), and zero initializes

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

76

the BSS data directly after this in memory. This process uses a data table generated into
the image from the linker script.

Other RAM blocks can also have data items placed into them under user control, and the
startup code will also initialize these automatically. See later in this chapter for more details.

TBD: In order to initialize additional RAM banks, the managed linker script mechanism will
create a “Global Section Table” in your image, directly after the vector table. This contains
the addresses and lengths of each of the data and bss sections, so that the startup code
can then initialize them.

The MCUXpresso IDE generated startup code will then initialize memory region(s) by
entering a loop reading this global section table, and calling a subroutine to carry out the
initialization of each region it finds in the Global Section Table.

Figure 11.3. Default Memory Layout

Note: The above memory layout is simply the default used by the IDE’s managed linker
script mechanism. There are a number of mechanisms that can be used to modify the
layout according to the requirements of your actual project – such as simply editing the
order of the RAM banks in the Memory Configuration Editor. These various methods are
described later in this chapter.

The default memory layout will also locate the heap and stack in the first RAM bank, such
that:

• the heap is located directly after the BSS data, growing upwards through memory
• the stack located at the end of the first RAM bank, growing down towards the heap

Again this heap and stack placement is a default and it is very easy to modify the locations
for a particular project, as will be described later in this chapter.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

77

Note: When you import a project, you may find that the defaults have already been modified.
Check the Project Properties to confirm the exact details.

11.5 Examining the layout of the generated image

Looking at the size of the AXF file generated by building your project on disk does not
provide any information as to how much Flash/RAM space your application will occupy
when downloaded to your MCU. The AXF file contains a lot more information than just the
binary code of your application, for example the debug data used to provide source level
information when debugging, that is never downloaded to your MCU.

Looking at the size of the AXF file generated by building your project on disk does not
provide any information as to how much Flash/RAM space your application will occupy
when downloaded to your MCU. The AXF file contains a lot more information than just the
binary code of your application, for example the debug data used to provide source level
information when debugging, that is never downloaded to your MCU.

11.5.1 Linker --print-memory-usage

MCUXpresso IDE projects use the -print-memory-usage option on the link step of a build
to display memory usage information in the build console of the following form:

Memory region Used Size Region Size %age Used

PROGRAM_FLASH: 26764 B 1 MB 2.55%

SRAM_UPPER: 8532 B 192 KB 4.34%

SRAM_LOWER: 0 GB 64 KB 0.00%

FLEX_RAM: 0 GB 4 KB 0.00%

Finished building target: frdmk64f_demo_apps_bubble.axf

TBD: Links to styles of memory layout and usage – below is the text from earlier when
build is mentioned.

The memory regions displayed here will match up to the memory banks displayed in the
memory configuration editor when the managed linker script mechanism is being used.

By default, the application will build and link against the first flash memory found within the
devices memory configuration. For most MCUs there will only be 1 flash device available. In
this case our project requires 8216 bytes of Flash memory storage, 0.78% of the available
Flash storage.

RAM will be used for global variable, the heap and the stack. MCUXpresso IDE provides
a flexible scheme to reserve memory for Stack and Heap. The default for this build has
reserved 4KB each for the stack and the heap.

TBD: sort out Please See Memory Configuration and Linker Scripts [73] for detailed
information.

If using the LPCXpresso style of heap and stack placement (described later in this chapter),
the RAM consumption provided by this is only that of your global data. It will not include any
memory consumed by your stack and heap when your application is actually executing.

11.5.2 arm-none-eabi-size

In addition, a post-build step will normally invoke the arm-none-eabi-size utility to provide
this information in a slightly different form....

 text data bss dec hex filename

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

78

 2624 524 32 3180 c6c LPCXpresso1768_systick_twinkle.axf

• text - shows the code and read-only data in your application (in decimal)
• data - shows the read-write data in your application (in decimal)
• bss - show the zero initialized (‘bss’ and ‘common’) data in your application (in decimal)
• dec - total of ‘text’ + ‘data’ + ‘bss’ (in decimal)
• hex - hexadecimal equivalent of 'dec'

Typically:

• the flash consumption of your application will then be text + data
• the RAM consumption of your application will then be data + bss

Again if using the LPCXpresso style of heap and stack placement (described later in this
chapter), the RAM consumption will not include any memory consumed by your stack and
heap when your application is actually executing.

You can also manually run the arm-none-eabi-size utility on both your final application
image, or on individual object files within your build directory by right clicking on the file in
Project Explorer and selecting the Binary Utilities -> Size option.

11.5.3 Linker map files

The linker option “-map” option, which is enabled by default by the project wizard when a
new project is created, allows you to analyse in more detail the contents of your application
image. When you do a build, this will cause a file called \<application\>.map to be created
in the Debug (or Release) subdirectory, which can be loaded into the editor view. This
contains a large amount of information, including:

• A list of archive members (library objects) included and why
• A list of discarded input sections (because they are unused and the linker option --gc-

sections is enabled).
• The location, size and type of all code, data and bss items that have been placed in the

image.

11.5.4 Symbol Viewer

The Symbol Viewer provides a simple way of displaying the symbols in an object, library
archive or executable. By default, this is located in the top left of the MCUXpresso IDE
window, in parallel with the Project Explorer view.

 Viewing Symbols in the Viewer

To open an image in the Symbol Viewer, either highlight it in the Project Explorer Views and
use the context sensitive menu ‘Tools->View Symbols’ menu, or use the Browse button on
the Toolbar within the Symbol Viewer windows itself

The Symbol Viewer can display object files (.o), libraries (.lib) and executables (.axf or .elf)

TBD: LPCXpressoViewSymbolsMenu.preview.jpg

The image will be processed and displayed in the Symbol Viewer as seen below:

TBD: LPCXpressoSymbolsViewer.jpg

It is possible to open multiple Symbol Viewers by pressing the ‘Green +’ icon in the toolbar.
The symbols for different images can then be displayed simultaneously.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

79

 Using the Symbol Viewer

When first opening a file, the viewer will display the sections found in the file (e.g. .text, .bss
etc). Expanding a section will show the symbols within that section. Clicking on the symbol
name will open the source file in an editor window. at the symbol definition (if appropriate).

The columns of the symbol viewer show information about the symbols:

Symbol Name Address: The address (or value) of the Symbol Size: The size of the
symbol, in bytes. For functions this would be the size of the function. For variables, this
would be the size occupied by the variable Flags: The type of the Symbol. Typically this
would be Local or Global and Function or Object (data variable)

Figure 11.4. Symbol Viewer

Note: The symbols displayed are a snapshot of the symbols for a particular build, therefore
these should be refreshed when a new build is performed. This can easily be done using
the Reload icon in the Symbol Viewer window.

 Other utilities

The arm-none-eabi-nm utility is effectively a command line version of the Symbol Browser.
But it can sometime be useful when looking at the size of your application, as it can produce
some of the information provided in the linker map file but in a more concise form. For
example:

arm-none-eabi-nm -S --size-sort -s project.axf

produces a list of all the symbols in an image, their sizes and their addresses, listed in size
order. For more information on this utility, please see the GNU binutils documentation.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

80

Note: you can run arm-none-eabi-nm as a post-build step, or else open a command shell
using the status bar shortcuts.

11.6 Other options affecting the generated image

11.6.1 LPC MCUs – Code Read Protection

Most of NXP’s LPC Cortex-M based MCUs which contain internal flash memory contain
“Code Read Protection” (CRP) support. This mechanism uses one of a number of known
values being placed in a specific location in flash memory to provide a number of levels
of protection. When the MCU boots, this specific location in flash memory is read and
depending upon its value, the MCU may prevent access to the flash memory by external
devices. This location is typically at 0x2FC though for LPC18xx/43xx parts with internal
flash, the CRP location is at an offset of 0x2FC from the start of the flash bank being used.

 CRP : Preinstalled MCUs

Support for setting up the CRP memory location is provided via a combination of the Project
Wizard, a header file and a number of macros. This support allows specific values to be
easily placed into the CRP memory location, based on the user’s requirements.

The New Project wizard contains an option to allow linker support for placing a CRP word
to be enabled when you create a new project. This is typically enabled by default. This
wizard option actually then controls the “Enable CRP” checkbox of the Project Properties
linker Target tab.

TBD : Screenshot of linker properties with CRP box

In addition the wizard will create a file, ‘crp.c’ which defines the ‘CRP_WORD’ variable
which will contain the required CRP value. A set of possible values are provided by the
NXP/crp.h header file that this then includes. Thus for example ‘crp.c’ will typically contain:

#include <NXP/crp.h>

__CRP const unsigned int CRP_WORD = CRP_NO_CRP ;

which is then placed at the correct location in Flash by the linker script generated by the
managed linker script mechanism:

. = 0x000002FC ;

KEEP(*(.crp))

Note: the value CRP_NO_CRP ensures that the flash memory is fully accessible. When
you reach the stage of your project where you want to protect your image, you will need to
modify the CRP word to contain an appropriate value.

Important Note: You should take particular care when modifying the value placed in the
CRP word, as some CRP settings can disable some or all means of access to your MCU
(including debug). Before making use of CRP, you are strongly advised to refer to the User
Manual for the LPC MCU that you are using.

 CRP : MCUs installed by Importing an SDK

The support for CRP in LPC parts imported into MCUXpresso IDE from an SDK, is generally
similar to the Preinstalled MCUs. However rather than having a separate crp.c file, the
CRP_WORD variable definition is generally found within the startup code.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

81

11.6.2 Kinetis MCUs – Flash Config blocks

Kinetis MCUs provides an alternative means of protecting the user’s image in Flash
using the Flash Configuration Block. The Flash Configuration Field is generally located
at addresses 0x400-0x40F and unlike the LPC CRP mechanism only specific values give
access, whereas any other values are likely to lock the part.

The value of the Flash Configuration block for a project is provided by the following structure
which will be found in the startup code:

__attribute__ ((used,section(".FlashConfig"))) const struct {

 unsigned int word1;

 unsigned int word2;

 unsigned int word3;

 unsigned int word4;

} Flash_Config = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE};

which is then placed appropriately by the linker script generated by the managed linker
script mechanism.

/* Kinetis Flash Configuration data */

. = 0x400 ;

PROVIDE(__FLASH_CONFIG_START__ = .) ;

KEEP(*(.FlashConfig))

PROVIDE(__FLASH_CONFIG_END__ = .) ;

ASSERT(!(__FLASH_CONFIG_START__ == __FLASH_CONFIG_END__),

 "Linker Flash Config Support Enabled, but no .FlashConfig

 section provided within application");

/* End of Kinetis Flash Configuration data */

Important Note: The support for placing the Flash Configuration Block can be disabled by
unticking a checkbox of the Project Properties linker Target tab. However this is generally
not advisable as it is very likely to result in a locked MCU.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

82

Figure 11.5. Linker Settings

11.6.3 Placement of USB data

For MCUs where part support is imported from an SDK, the managed linker script
mechanism supports the automatic placement of USB global data, including for parts with
dedicated USB_RAM (small or large variants).

TBD: Need to say more here

11.7 Modifying the generated linker script / memory layout

The linker script generated by the managed linker script mechanism will be suitable for
use, as is, for many applications. However in some circumstances you may need to make
changes. MCUXpresso IDE provides a number of mechanisms to allow you to do this whilst
still being able to use the managed linker script mechanism. These include…

• Changing the layout and order of memory using the Memory Configuration Editor
• Changing the size and location of the stack and heap using the Heap and Stack Editor
• Decorating the definitions of variables and functions in your source code with macros

from the cr_section_macros.h to cause them to be placed into different memory blocks
• Providing project specific versions of Freemarker linker script templates to change

particular aspects of how the managed linker script mechanism creates the final linker
script

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

83

The following sections describe these in more detail.

11.8 Using the Memory Configuration Editor

The Memory Editor is accessed via the MCU settings dialog, which can be found at

Project Properties -> C/C++ Build -> MCU settings

This lists the memory details for the selected MCU, and will, by default, display the memory
regions that have been defined by the MCUXpresso IDE itself.

Figure 11.6. MK64... default memory regions

11.8.1 Editing a Memory Configuration

In the example below, we will show how the default memory configuration for an LPC4337...
can be changed. Selecting the Edit... button will launch the Memory configuration editor
dialog — see Figure 11.7.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

84

Figure 11.7. Memory configuration editor

Known blocks of memory, with their type, base location, and size are displayed. Entries
can be created, deleted, etc by using the provided buttons — see ???.

For simplicity, the additional memory regions are given sequential aliases, starting from
2, so RAM2, RAM3 etc (as well as using their “formal” region name – for example
RamAHB32).

Table 11.1. Memory editor controls

Button Details
Add Flash Add a new memory block of the appropriate type.
Add RAM Add a new memory block of the appropriate type.
Split Split the selected memory block into two equal halves.
Join Join the selected memory block with the following block (if the two are contiguous).
Delete Delete the selected memory block.
Import Import a memory configuration that has been exported from another project,

overwriting the existing configuration.
Merge Import a partial memory configuration from a file, merging it with the existing memory

configuration. This allows you, for example, to add an external flash bank definition
to an existing project.

Export Export a memory configuration for use in another project.
Up / Down Reorder memory blocks. This is important: if there is no flash block, then code will be

placed in the first RAM block, and data will be placed in the block following the one
used for the code (regardless of whether the code block was RAM or Flash).

Generate Generates local part support for the selected MCU. TBD: more?
Driver Highlighted in blue, shows the selection of a per-flash region flash driver. Click this

field to see a drop down of all available drivers. TBD: more?
Browse(Flash driver) Select the appropriate driver for programming the flash memory specified in the

memory configuration. This is only required when the flash memory is external to the
MCU. Flash drivers for external flash must have a “.cfx” file extension and must be
located in the \bin\flash subdirectory of the MCUXpresso IDE installation. For more
details see User loadable flash drivers TBD: two mechanisms .

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

85

The name, location, and size of this new region can be edited in place. Note that when
entering the size of the region, you can enter full values in decimal or in hex (by prefixing
with 0x), or by specifying the size in kilobytes or megabytes. For example:

• To enter a region size of 32KB, enter 32768, 0x8000 or 32k.

• To enter a region size of 1MB, enter 0x100000 or 1m.

Note: memory regions must be located on four-byte boundaries, and be a multiple of four
bytes in size.

The screenshot in ??? shows the dialog after the “Add Flash” button has been clicked.

Figure 11.8. Effect of Add Flash

After updating the memory configuration, click OK to return to the MCU settings dialog,
which will be updated to reflect the new configuration — see ???.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

86

Figure 11.9. Updated MCU settings

Here you can see that the region has been named SPIFI_1MB, and the default flash driver
has been deleted and the Generic SPIFI driver selected for the newly created SPIFI_1MB
region.

MCUXpresso IDE provides extended support for the creation and programming of projects
that span multiple flash devices. In addition to a single default flash driver, per region flash
drivers can also be specified (as above). Using this scheme projects can be created that
span flash regions and can be programmed in a single ‘debug’ operation.

Note: that once the memory details have been modified, the selected MCU as displayed
on the “Status Bar” (at the bottom of the IDE window) will be displayed with an asterisk (*)
next to it. This provides an indication that the MCU memory configuration settings for the
selected project have been modified.

11.8.2 Device specific vs Default Flash Drivers

When a project is configured to use additional flash devices via the Memory
Configuration Editor, the flash driver to be used for programming that flash
device has to be specified in the Driver column. Typically for a SPIFI device,
this should be LPC18_43_SPIFI_GENERIC.cfx (for LPC18/LPC43 family MCUs) or
LPC40xx_SPIFI_GENERIC.cfx (for LPC407x/8x MCUs, LPCXpresso IDE v8.2 onwards
only) .

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

87

11.8.3 Restoring a Memory Configuration

To restore the memory configuration of a project back to the default settings, simply reselect
the MCU type, or use the “Restore Defaults” button, on the MCU Settings properties page.

11.8.4 Copying Memory Configurations

Memory configurations can be exported for import into another project. Use the Export and
Import buttons for this purpose.

MCUXpresso IDE provides a standard memory layout for each known MCUs. TIn addition,
the MCUXpresso IDE supports the editing of the target memory layout used for a project.
This allows for the details of external flash to be defined or for the layout of internal RAM
to be reconfigured. In addition, it allows a flash driver to be allocated for use with parts with
no internal flash, but where an external flash part is connected.

11.9 More advanced heap/stack placement

TBD: Link here from build

MCUXpresso IDE provides two models of heap/stack placement. The first of these is
the “LPCXpresso Style”, which is the mechanism provided by the previous generation
LPCXpresso IDE. This is the default model used for projects created for Preinstalled MCUs.
The second model is the “MCUXpresso style”. This is the default model used for projects
created for MCUs imported from SDKs.

The heap/stack placement model being used for a particular project/build configuration can
be modified using the option...

Project -> Properties -> C/C++ Build -> Settings -> MCU Linker

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

88

Figure 11.10. MCUXpresso IDE Linker Settings

In the dialogue above, highlights show the managed linker script option along with the
selection of the MCUXpresso Style scheme.

11.9.1 MCUXpresso style heap and stack

By default the heap and stack are placed in the “default” memory region (i.e. the first
RAM block displayed in the memory configuration area), with the heap placed after the
application’s data and the stack rooted at the top of this block.

However, using the Heap and Stack editor in Project Properties, it is very simple to
individually change the stack and heap locations (both the memory block used, and the
location within that block), and also the size of the memory to be used by each of them.

Region

• Default : Place into first RAM bank as shown in Memory Configuration Editor
• List of memory regions, and aliases, as show in Memory Configuration Editor

Location

• Start : Place at start of specified RAM bank.
• Post Data : Place after any data in specified RAM bank. Default for heap.
• End : Place at end of specified RAM bank. Default for stack.

Size

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

89

• Default: 1/16th of the memory region size, up to a maximum of 4KB (and a minimum of
128bytes). Hovering the cursor over the field will show the current value that will be used.

• Value : Specify exact required size. Must be a multiple of 4. Note that when entering the
size of the region, you can enter full values in decimal or in hex (by prefixing with 0x), or
by specifying the size in Kilobytes (or Megabytes). For example:
• To enter a size of 32KB, enter 32768, 0x8000 or 32k.

Note: The MCUXpresso style of setting heap and stack has the advantage over the
LPCXpresso style described below in that the memory allocated for heap/stack usage is
also taken into account in the image size information displayed in the Build console when
your project is built.

11.9.2 LPCXpresso style heap and stack

By default the heap and stack are still placed in the “default” memory region (i.e. the first
RAM block displayed in the memory configuration area), with the heap placed after the
application’s data and the stack rooted at the top of this block.

To relocate the stack or heap, or provide a maximum extent of the heap, then the linker “--
defsym” option can be used to define one or more of the following symbols:

__user_stack_top

__user_heap_base

_pvHeapLimit

To do this, use the __MCU Linker – Miscellaneous – Other Options_ box in Project
Properties.

For example:

--defsym=__user_stack_top=__top_RAM2

• Locate the stack at the top of the second RAM bank (as listed in the memory configuration
editor)

• Note : The symbol __top_RAM2 is defined in the project by the managed linker script
mechanism at:

<projname>_<buildconfig>_mem.ld

--defsym=__user_heap_base=__end_bss_RAM2

• Locate the start of the heap in the second RAM bank, after any data that has been placed
there

--defsym=_pvHeapLimit=__end_bss_RAM2+0x8000

• Locate the end of the heap in the second RAM bank, offset by 32KB from the end of any
data that has been placed there

--defsym=_pvHeapLimit=0x10004000

• Locate the end of the heap at the absolute address 0x10004000

11.9.3 Reserving RAM for IAP Flash Programming

The IAP flash programming routines available in NXP’s LPC MCUs generally make use of
some of the onchip RAM when executed. For example on the LPC1343 the top 32 bytes of
onchip RAM are used. Thus if you are calling the IAP routines from your own application,

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

90

you need to ensure that this memory is not used by your main application – which typically
means by the stack.

However, with the managed linker script mechanism, it is easy to modify the start position
of the stack (remember that stacks grow down) to avoid this clash with the IAP routines.
To do this go to:

Project Properties -> C/C++ Build -> Settings -> MCU Linker -> Target

and modify the value in the “Stack Offset” field from 0 to 32. This will work whether you are
using LPCXpresso style or MCUXpresso style of heap/stack placement.

Figure 11.11. MCUXpresso IDE Linker Reserve Stack Space

The value you enter in this field must be a multiple of 4.

You are also advised to check the documentation for the actual MCU that you are using to
confirm the amount of memory required by the IAP routines.

11.9.4 Stack checking

Although,as described above, it is possible to defined a size of memory to be used for the
stack, Cortex-M cpus have no support for hardware stack checking. Thus if you want to
automatically detect if the stack exceeds the memory set aside for it – other mechanisms
must be used. For example:

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

91

• Locate stack to fall off start of memory block and trigger fault
• Include code that sets the stack to a known value, and periodically checks whether the

lowest address has been overwritten.
• When debugging, set a watchpoint on the lowest address the stack is allowed to reach
• Use the Memory Protection Unit (MPU) to detect overflow, on parts which implement one

11.9.5 Heap Checking

By default, the heap used by the malloc() family of routines grows upwards from the end
of the user data in RAM up towards the stack – a “one region memory model”.

When a new block of memory is requested, the memory allocation function _sbrk() will
make a call to the following function to check for heap overflow:

unsigned __check_heap_overflow (void * new_end_of_heap)

This should return:

• 1 – If heap will overflow
• 0 – If heap still OK

If 1 is returned, Redlib’s malloc() will set errno to ENOMEM and return a null pointer to
the caller

The default version of __check_heap_overflow() built into the MUCXpresso IDE supplied
C libraries carry out no checking unless the symbol “_pvHeapLimit” has been created in
your image, to mark the end location of the heap.

This symbol will have been created automatically if you are using the MCUXpresso style
of heap and stack placement described earlier in this chapter. Or alternatively if using the
LPCXpresso style of heap and stack placements, you can use the --defsym option to set
this.

If you wish to use a different means of heap overflow checking, then you can find a reference
implementation of __check_heap_overflow() in the file _cr_check_heap.c that can be
found in the Examples subdirectory of your IDE installation.

This file also provides functionality to allow simple heap overflow checking to be done by
looking to see if the heap has reached the current location of the stack point, which of
course assumes that the heap and stack are in the same region. This check is not enabled
by default implementation within the C library as it can break in some circumstances – for
example when the heap is being managed by an RTOS.

11.9.6 Placement of specific code/data items

It is possible to make small changes to the placement of specific code/data items within
the final image without modifying the Freemarker linker script templates. Such placement
can be controlled via macros provided in an MCUXpresso IDE supplied header file which
can be pulled into your project using:

#include <cr_section_macros.h>

 Placing data into different RAM blocks

Many MCUs provide more than one bank of RAM. By default the managed linker script
mechanism will place all of the application data and bss (as well as the heap and stack)
into the first bank of RAM.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

92

However it is also possible to place specific data or bss items into any of the defined banks
for the target MCU, as displayed in the Memory Configuration Editor, by decorating their
definitions in your source code with macros from the cr_section_macros.h MCUXpresso
IDE supplied header file

For simplicity, the additional memory regions are named sequentially, starting from 2, so
RAM2, RAM3 etc (as well as using their “formal” region name – for example RamAHB32).

For example, the LPC1768 has a second bank of RAM at address 0x2007c000. The
managed linker script mechanism creates a data (and equivalent bss) load section for this
region thus:

.data_RAM2 : ALIGN(4)

{

 FILL(0xff)

 (.data.$RAM2)

 (.data.$RamAHB32)

} > RamAHB32 AT>MFlash512

To place data into this section, you can use the __DATA macro, thus:

// create an initialised 1k buffer in RAM2

__DATA(RAM2) char data_buffer[1024];

Or the __BSS macro:

// create a zero-init buffer in RAM2

__BSS(RAM2) char bss_buffer[128];

In some cases you might need a finer level of granularity than just placing a variable into
a specific memory bank, and rather need to place it at a specific address. In such a case
you could then edit the predefined memory layout for your particular project using the
“Memory Configuration Editor” to divide up (and rename) the existing banks of RAM. This
then allows you to provide a specific named block of RAM into which to place the variable
that you need at a specific address, again by using the attribute macros provided by the
“cr_section_macros.h” header file.

 ‘Noinit’ Memory Sections

Normally global variables in an application will end up in either a “.data” (initialized)
or “.bss” (zero-initialized) data section within your linked application. Then when your
application starts executing, the startup code will automatically copy the initial values of
“.data” sections from Flash to RAM, and zero-initialize “.bss” data sections directly in RAM.

MUCXpresso IDE’s managed linker script mechanism also supports the use of “.noinit”
data within your application. Such data is similar to “.bss” except that it will not get zero-
initialized during startup.

Note: Great care must be taken when using “.noinit” data such that your application code
makes no assumptions about the initial value of such data. This normally means that your
application code will need to explicitly set up such data before using it – otherwise the initial
value of such a global variable will basically be random (i.e. it will depend upon the value
that happens to be in RAM when your system powers up).

One common example of using such .noinit data items is in defining the frame buffer stored
in SDRAM in applications which use an onchip LCD controller (for example NXP LPC178x
and LPC408x parts).

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

93

 Making global variables noinit

The linker script generated by the MCUXpresso IDE managed linker script mechanism will
contain a section for each RAM memory block to contain “.noinit” items, as well as the
“.data” and “.bss” items. Note that for a particular RAM memory block, all “.data” items will
be placed first, followed by “.bss” items, and then “.noinit” items.

However, normally for a particular RAM memory block where you are going to be put
“.noinit” items, you would actually be making all of the data placed into that RAM “.noinit”.

The “cr_section_macros.h” header file then defines macros which can be used to place
global variables into the appropriate “.noinit” section. First of all include this header file:

#include <cr_section_macros.h>

The __NOINIT macro can then be used thus:

// create a 128 byte noinit buffer in RAM2

__NOINIT(RAM2) char noinit_buffer[128];

And if you want “.noinit” items placed into the default RAM bank, then you can use the
__NOINIT_DEF macro thus:

// create a noinit integer variable in the main block of RAM

__NOINIT_DEF int noinit_var ;

 Placing code/rodata into different FLASH blocks

TBD: https://community.nxp.com/thread/389102

Most MCUs only have one bank of Flash memory. But with some parts more than one bank
may be available – and in such cases, by default, the managed linker script mechanism
will still place all of the application code and rodata (consts) into the first bank of flash (as
displayed in the Memory Configuration Editor)..

For example:

• most of the LPC18 and LPC43xx parts containing internal flash (such as LPC1857 and
LPC4357) actually provide dual banks of flash.

• some MCUs have the ability to access external flash (typically SPIFI) as well as their
built-in internal flash (e.g. LPC18xx, LPC40xx, LPC43xx, LPC546xx).

However it is also possible to place specific functions or rodata items into the second
(or even third) bank of Flash. This placement is controlled via macros provided in the
"cr_section_macros.h" header file.

For simplicity, the additional Flash region can be referenced as Flash2 (as well as using
its “formal” region name – for example MFlashB512 – which will vary depending upon part).

First of all include this header file:

#include <cr_section_macros.h>

Then, for example, to place a rodata item into this section, you can use the __RODATA
macro, thus:

__RODATA(Flash2) const int roarray[] = {10,20,30,40,50};

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

94

Or to place a function into it you can use __TEXT macro:

__TEXT(Flash2) void systick_delay(uint32_t delayTicks) {

 :

 :

}

In addition the __RODATA_EXT and __TEXT_EXT macros can be used to place functions/
rodata into a more specifically named section, for example:

__TEXT_EXT(Flash2,systick_delay) void systick_delay(uint32_t delayTicks) {

 :

 :

}

will be placed into the section “.text.$Flash2.systick_delay” rather than “.text.$Flash2”.

 Placing specific functions into RAM blocks

TBD: https://community.nxp.com/thread/389099

In most modern MCUs with built-in flash memory, code is normally executed directly from
flash memory. Various techniques, such as prefetch buffering are used to ensure that code
will execute with minimal or zero wait states, even a higher clock frequencies. Please see
the documentation for the MCU that you are using for more details.

However it is also possible to place specific functions into any of the defined banks of RAM
for the target MCU, as displayed in:

Project -> Properties -> C/C++ Build -> MCU settings

and sometimes there can be advantages in relocating small, time critical functions so that
they run out of RAM instead of flash.

For simplicity, the additional memory regions are named sequentially, starting from 2, (as
well as using their “formal” region name – for example RamAHB32). So for a device with 3
RAM regions, alias names RAM, RAM2 and RAM3 will be available.

This placement is controlled via macros provided in an header file which can be pulled into
you project using:

#include <cr_section_macros.h>

The macro __RAMFUNC can be used to locate a function into a specific RAM region.

For example, to place a function into the main RAM region, use:

__RAMFUNC(RAM) void fooRAM(void) {...

To place a function into the RAM2 region, use:

__RAMFUNC(RAM2) void fooRAM2(void) {...

Alternatively, RAM can be selected by formal name (as listed in the memory configuration
editor), for example:

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

95

__RAMFUNC(RamAHB32) void HandlerRAM(void) {...

In order to initialize RAM based code (and data) into specified RAM banks, the managed
linker script mechanism will create a “Global Section Table” in your image, directly after
the vector table. This contains the addresses and lengths of each of the data (and bss)
sections, so that the startup code can then perform the necessary initialization (copy code/
data from Flash to RAM) .

 Long branch veneers and debugging

Due to the distance in the memory map between flash memory and RAM, you will typically
require a “long branch veneer” between the function in RAM and the calling function in
flash. The linker can automatically generate such a veneer for direct function calls, or you
can effectively generate your own by using a call via a function pointer.

One point to note is that debugging code with a linker generated veneer can sometimes
cause problems. This veneer will not have any source level debug information associated
with it, so that if you try to step in to a call to your code in RAM, typically the debugger
will step over it instead.

You can work around this by single stepping at the instruction level, setting a breakpoint in
your RAM code, or by changing the function call from a direct one to a call via a function
pointer.

 Reducing Code Size when support for LPC CRP or Kinetis Flash Config Block is
enabled

One of the consequences of the way that LPC CRP and Kinetis Flash Configuration Blocks
work is that the memory between the CPU’s vector table and the CRP word/ Flash Config
Block is often left largely unused. This can typically increases the size of the application
image by several hundred bytes (depending upon the MCU being used).

However this unused space can easily be reclaimed by choosing one or more functions to
be placed into this unused memory. To do this, you simply need to decorate their definitions
with the macro __AFTER_VECTORS which is supplied in the “cr_section_macros.h”
header file

Obviously in order to do this effectively, you need to identify functions which will occupy as
much of this unused memory as possible. The best way to do this is to look at the linker
map file.

MCUXpresso IDE startup code already uses this macro to place the various initialization
functions and default exception handlers that it contains into this space, thus reducing the
‘default’ unused space. But you can also place additional functions there by decorating
their definitions with the macro, for example

__AFTER_VECTORS void myStartupFunction(void);

Note you will get a link error if the __AFTER_VECTORS space grows beyond the CRP/
Flash Configuration Block (when this support is enabled):

myproj_Debug.ld:98 cannot move location counter backwards (from 00000334 to 000002fc)

collect2: ld returned 1 exit status

make: *** [myproj.axf] Error 1

In this case, you will need to remove the __AFTER_VECTORS macro from the definition
of one or more of your functions.

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

96

11.10 Freemarker Linker Script Templates

By default, MCUXpresso IDE projects use a managed linker script mechanism which
automatically generates a linker script file without user intervention – allowing the project
code and data to be laid out in memory based on the IDE’s knowledge of the memory
layout of the target MCU.

However sometimes the linker script generated in this way may not provide exactly the
memory layout required. MCUXpresso IDE therefore provides a highly flexible and powerful
linker script template mechanism to allow the user to change the content of the linker script
generated by the managed linker script mechanism

11.10.1 Basics

FreeMarker is a template engine: a generic tool to generate text output (HTML web pages,
e-mails, configuration files, source code, etc.) based on templates and changing data.
Built into MCUXpresso IDE are a set of templates that are processed by the Freemarker
template engine to create the linker script. Templates are written in the FreeMarker
Template Language (FTL), which is a simple, specialized language, not a full-blown
programming language like PHP. Full documentation for Freemarker can be found at http://
freemarker.org/docs/index.html.

MCUXpresso IDE automatically invokes Freemarker, passing it a data model that describes
the memory layout of the target together with a ‘root’ template that is processed to create
the linker script. This root template, #include’s further ‘component’ templates. This structure
allows a linker script to be broken down into various components, and allows a user to
provide their own templates for a component, instead of having to (re-)write the whole
template. For example, component templates are provided for text, data and bss sections,
allowing the user to provide a different implementations as necessary, but leaving the other
parts of the linker script untouched.

TBD : Diagram from https://community.nxp.com/message/630611

TBD: Some example Freemarker linker script templates can be found later in this chapter

11.10.2 Reference

Freemarker reads input files, copying text and processing Freemarker directives and
‘variables’, and writes an output file. As used by the MCUXpresso IDE managed linker
script mechanism, the input files describe the various components of a linker script which,
together with variables defined by the IDE, are used to generate a complete linker script.
Any of the component template input files may be overridden by providing a local version
in the project.

The component template input files are provided as a hierarchy, shown below, where each
file #include’s those files nested below. This allows for individual components of the linker
script to be overridden without having to supply the entire linker script, increasing flexibility,
while maintaining the benefits of Managed Linker Scripts.

 Linker script template hierarchy

linkscript.ldt (top level)

• user.ldt (an empty file designed to be overridden by users that is included in linkscript,
memory and library templates)

• user_linkscript.ldt (an empty file designed to be overridden by users that is included in
linkscript only)

• linkscript_common.ldt (root for main content)
• header.ldt (the header for scripts)

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

97

• listvars.ldt (a script to output a list of all predefined variables available to the
template)

• includes.ldt (includes the memory and library scripts)
• section_top.ldt (top of the linker script SECTION directive)
• text_section.ldt (text sections for each secondary flash)

• text_section_multicore.ldt (text sections for multicore targets)
• text.ldt (for inserting *text)
• rodata.ldt (for inserting rodata)

• main_text_section.ldt (the primary text section)
• global_section_table.ldt (the global section table)
• crp.ldt (the CRP information)
• main_text.ldt (for inserting *text)
• main_rodata.ldt (read-only data)
• cpp_info.ldt (additional C++ requirements)

• exdata.ldt (the exdata sections)
• end_text.ldt (end of text marker)
• usb_ram_section.ldt (placement of SDK USB data structures)
• stack_heap_sdk_start.ldt (placement of MCUXpresso style heap/stack)
• data_section.ldt (data sections for secondary ram)

• data_section_multicore.ldt (data sections for multicore targets)
• data.ldt (for inserting *data)

• mtb_default_section.ldt (special section for MTB (cortex-m0+ targets)
• uninit_reserved_section.ldt (uninitialised data)
• main_data_section.ldt primary data section)

• main_data.ldt (for inserting *data)
• bss_section.ldt (secondary bss sections)

• bss.ldt (for inserting *bss)
• main_bss_section.ldt primary bss section)

• main_bss.ldt (for inserting *bss)
• noinit_section.ldt (no-init data)
• noinit_noload_section.ldt (no-load data)
• stack_heap_sdk_postdata.ldt (placement of MCUXpresso style heap/stack)
• stack_heap_sdk_end.ldt (placement of MCUXpresso style heap/stack)
• stack_heap.ldt (define the stack and heap)
• checksum.ldt (create the LPC checksum)
• section_tail.ldt (immediately before the send of linker SECTION directive)

library.ldt (the standard libraries used in the application)

• user.ldt (an empty file designed to be overridden by users that is included in linkscript,
memory and library templates)

• user_library.ldt (an empty file designed to be overridden by users that is included in
library only)

memory.ldt (the memory map)

• user.ldt (an empty file designed to be overridden by users that is included in linkscript,
memory and library templates)

• user_memory.ldt (an empty file designed to be overridden by users that is included in
memory only)

 Linker script search paths

Whenever a linker script template is used, LPCXpresso will search in the following
locations, in the order shown:

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

98

• project/linkscripts
• the searchPath global variable

• The searchPath can be set in a script by using the syntax <#global searchPath=“c:/
windows/path;d:/another/windows/path”>

each directory to search is separated by a semicolon ';'

• mcuxpresso_install_dir/ide/Data/Linkscripts
• linker templates can be placed in this directory to override the default templates for

an entire installation
• MCUXpresso IDE internally provided templates (not directly visible to users)

Thus, a project can simply override any template by simply creating a linkscript directory
within the project and placing the appropriate template in there. Using the special syntax
“super@” an overridden template can reference a file from the next level of the search path

e.g. <#include “super@user.ldt”>

 Linker script templates

Copies of the default linker script templates used within MCUXpresso IDE can be found in
the Wizards/linker directory within the MCUXpresso IDE install.

 Predefined variables (macros)

List (sequence) variables (used in #list)

• libraries[]
• list of the libraries to be included in the “lib” script
• for example (Redlib nohost)

• <notextile> libraries 0 =libcr_c.a </notextile>
• <notextile> libraries 1 =libcr_eabihelpers.a </notextile>

• configMemory[]
• list of each memory region defined in the memory map for the project. Each entry has

the following fields defined
• name – the name of the memory region
• alias – the alias of the memory region
• location – the base address of the memory
• size – the size of the memory region
• sizek – the printable size of the memory region in k or M
• mcuPattern
• defaultRAM – boolean indicating if this is the default RAM region
• defaultFlash – boolean indication if this is the default Flash region
• RAM – boolean indicating if this is RAM
• flash – boolean indicating if this is Flash

• for example
• <notextile> configMemory 0 = name=MFlashA512 alias=Flash location=0x1a000000

size=0x80000 sizek=512K bytes mcuPattern=Flash flash=true RAM=false
defaultFlash=true defaultRAM=false</notextile>

• • <notextile> configMemory 2 = name=RamLoc32 alias=RAM location=0x10000000
size=0x8000 sizek=32K bytes mcuPattern=RAM flash=false RAM=true
defaultFlash=false defaultRAM=true</notextile>

• slaves[]
• list of the slaves in a Multicore project. This variable is only defined in Multicore

projects. Each entry has the following fields defined

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

99

• name – name of the slave

• enabled – boolean indicating if this slave is enabled

• objPath – path to the object file for the slave image

• linkSection – name of the section this slave is to be linked in

• runtimeSection

• textSection – name of the text section

• textSectionNormalized – normalized name of the text section

• dataStartSymbol – name of the Symbol defining the start of the data

• dataEndSymbol – name of the Symbol defining the end of the data

• for example

• <notextile>slaves 0 = name=M0APP objectPath=${workspace_loc:/
MCB4357_Blinky_DualM0/Debug/MCB4357_Blinky_DualM0.axf.o}
linkSection=Flash2 runtimeSection= textSection=.core_m0app
textSectionNormalized=_core_m0app dataStartSymbol=__start_data
dataEndSymbol=__end_data enabled=true;</notextile>

Simple variables:

• CODE – name of the memory region to place the default code (text) section

• CRP_ADDRESS – location of the Code Read Protect value

• DATA – name of the memory region to place the default data section

• LINK_TO_RAM – value of the “Link to RAM” linker option

• STACK_OFFSET – value of the Stack Offset linker option

• FLASHn – defined for each FLASH memory

• RAMn – defined for each RAM memory

• basename – internal name of the process

• bss_align – alignment for .bss sections

• buildConfig – the name of the configuration being built

• chipFamily – the chip family

• chipName – name of the target chip

• data_align – alignment for .data section

• date – date string

• heap_symbol – name of the symbol used to define the heap

• isCppProject – boolean indicating if this is a C++ project

• isSlave – boolean indicating if this target is a slave – true iff is a slave core in a multicore
system

• library_include – name of the library include file

• libtype – C library type

• memory_include – name of the memory include file

• mtb_supported – boolean indicating if mtb is supported for this target

• numCores – number of cores in this target

• procName – the name of the target processor

• project – the name of the project

• script – name of the script file

• slaveName – is the name of the slave (only present for slaves)

• stack_section – the name of the section where the stack is to be placed

• start_symbol – the name of the start symbol (entry point)

• scriptType – the type of script being generated (one of “script”, “memory”, or “library”)

• text_align – alignment for .text section

• version – product version string

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

100

• workspace_loc – workspace directory
• year – the year (extracted from the date)

 Extended variables

Two ‘extended’ variables are available:

environment

• The environment variable makes the host Operating System environment variables
available. For example, the Path variable is available as ${environment[“Path”]}. Note
that environment variables are case sensitive.\

systemProperties

• • The Java system properties are available through the systemProperties
variable. For example the “os.name” system property is available as
${systemProperties[“os.name”]}. Note that the system properties are case sensitive.

Outputting variables

 Outputting variables

A list of all predefined variables and their values can be output to the generated linker
script by setting the Preference: MCUXpresso IDE -> Default Tool settings -> … and list
predefined variables in the script

A list of extended variables and their values can be output to the generated linker script by
creating a linkscripts/user.ldt file in the project with the content

<#assign listvarsext=true>

(This is likely to be used less often, hence the slightly longer winded method of specifying
the option)

11.11 Freemarker Linker Script Template Examples

The use of Freemarker linker script templates allows more wide ranging changes to be
made to the generated link script than is possible using the cr_section_macros.h macros.
The following examples provide some examples of this.

11.11.1 Relocating code from FLASH to RAM

If you have specific functions in your code base that you wish to place into a particular
block of RAM, then the simplest way to do this is to decorate the function definition using
the macro __RAMFUNC described earlier in this chapter.

TBD: Link

However once you want to relocate more than a few functions, or when you don’t have direct
access to the source code, this becomes impractical. In such case the use of Freemarker
linker script templates will be a better approach. The following sections provide a number
of such examples.

 Relocating particular objects into RAM

In some cases, it may be required to relocate all of the functions (and rodata) from a given
object file in your project into RAM. This can be achieved by providing three linker script

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

101

template files into a linkscripts folder within your project. For example if it was required that
all code/rodata from the files foo.c and bar.c were relocated into RAM, then this could be
achieved using the following linker script templates:

main_text.ldt

 (EXCLUDE_FILE(*foo.o *bar.o) .text*)

main_rodata.ldt

 *(EXCLUDE_FILE(*foo.o *bar.o) .rodata)

 *(EXCLUDE_FILE(*foo.o *bar.o) .rodata.*)

 *(EXCLUDE_FILE(*foo.o *bar.o) .constdata)

 *(EXCLUDE_FILE(*foo.o *bar.o) .constdata.*)

 . = ALIGN(${text_align});

main_data.ldt

 foo.o(.text)

 foo.o(.rodata .rodata. .constdata .constdata.*)

 bar.o(.text)

 bar.o(.rodata .rodata. .constdata .constdata.*)

 . = ALIGN(${text_align});

 (.data)

What each of these EXCLUDE_FILE lines (in main_text.ldt and main_rodata.ldt) is doing
in pulling in all of the sections of a particular type (for example .text), except for the ones
from the named object files. Then in main_data.ldt, we specify explicitly that the text and
rodata sections should be pulled in from the named object files. Note that with the GNU
linker, LD, the first match found in the final generated linker script is always used, which is
why the EXCLUDE_FILE keyword is used in the first two template files.

Note: EXCLUDE_FILE only acts on the closest input section specified, which is why we
have 4 separate EXCLUDE_FILE lines in the main_rodata.ldt file rather than just a single
combined EXCLUDE_LINE.

Once you have built your project using the above linker script template files, then you can
check the generated .ld file to see the actual linker script produced, together with the linker
map file to confirm where the code and rodata have been placed.

 Relocating particular libraries into RAM

In some cases, it may be required to relocate all of the functions (and rodata) from a given
library in your project into RAM. One example of this might be if you are using a flashless
LPC43xx MCU with an external SPIFI flash device being used to store and execute your
main code from, but you need to actually update some data that you are also storing in the
SPIFI flash. In this case, the code used to update the SPIFI flash cannot run from SPIFI
flash.

This can be achieved by providing three linker script template files into a linkscripts
folder within your project. For example if it was required that all code/rodata from the
library MYLIBRARYPROJ were relocated into RAM, then this could be achieved using the
following linker script templates:

main_text.ldt

 *(EXCLUDE_FILE(*libMYLIBRARYPROJ.a:) .text*)

main_rodata.ldt

 *(EXCLUDE_FILE(*libMYLIBRARYPROJ.a:) .rodata)

 *(EXCLUDE_FILE(*libMYLIBRARYPROJ.a:) .rodata.*)

 *(EXCLUDE_FILE(*libMYLIBRARYPROJ.a:) .constdata)

 *(EXCLUDE_FILE(*libMYLIBRARYPROJ.a:) .constdata.*)

 . = ALIGN(${text_align});

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

102

main_data.ldt

 libMYLIBRARYPROJ.a:(.text)

 libMYLIBRARYPROJ.a:(.rodata .rodata. .constdata .constdata.*)

 . = ALIGN(${text_align});

 (.data)

 Relocating majority of application into RAM

In some situations, you may wish to run the bulk of your application code from RAM –
typically just leaving startup code and the vector table in Flash. This can be achieved by
providing three linker script template files into a linkscripts folder within your project:

main_text.ldt

 startup_.o (.text.*)

 *(.text.main)

 *(.text.__main)

main_rodata.ldt

 startup_.o (.rodata .rodata.* .constdata .constdata.*)

 . = ALIGN(${text_align});

main_data.ldt

 (.text)

 (.rodata .rodata. .constdata .constdata.*)

 . = ALIGN(${text_align});

 (.data)

The above linker template scripts will cause the main body of the code to be relocated into
the main (first) RAM bank of the target MCU, which by default will also contain data/bss,
as well as the stack and heap.

If the MCU being targeted has more than one RAM bank, then the main body of the code
could be relocated into another RAM bank instead. For example, if you wanted to relocate
the code into the second RAM bank, then this could be done by providing the following
data.ldt file instead of the main_data.ldt above:

data.ldt

 <#if memory.alias=="RAM2">

 (.text)

 (.rodata .rodata. .constdata .constdata.*)

 . = ALIGN(${text_align});

 </#if>

 (.data.$${memory.alias})

 (.data.$${memory.name})

Note: memory.alias value is taken from the Alias column of the Memory Configuration
Editor.

11.11.2 Configuring projects to span multiple flash devices

TBD: https://community.nxp.com/message/630582

Most MCUs only have one bank of Flash memory. But with some parts more than one bank
may be available – and in such cases, by default, the managed linker script mechanism
will still place all of the application code and rodata (consts) into the first bank of flash (as
displayed in the Memory Configuration Editor)..

For example

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

103

• most of the LPC18 and LPC43xx parts containing internal flash (such as LPC1857 and
LPC4357) actually provide dual banks of flash.

• some MCUs have the ability to access external flash (typically SPIFI) as well as their
built-in internal flash (e.g. LPC18xx, LPC40xx, LPC43xx, LPC546xx).

The macros provided in the “cr_section_macros.h” header file provide some ability to
control the placement of specific functions or rodata items into the second (or even third)
bank of Flash. However the use of Freemarker linkers script templates allow this to be done
in a much more powerful and flexible way.

One typical use case for this is a project which stores its main code and data in internal
flash, but additional rodata (for example graphics data for displaying on an LCD) in the
external SPIFI flash.

For instance, consider an example project where such rodata is all contained is a set of
specific files, which we therefore want to place into the external flash device. One very
simple way to do this is to place such source files into a separate source folder within your
project. You can then supply linker script templates to place the code and rodata from these
files into the appropriate flash.

For example, for a project using the LPC4337 with two internal flash banks, plus external
SPIFI flash, if the source folder used for this purpose were called ‘spifidata’, then placing the
following files into a ‘linkscripts’ directory within your project would have the desired effect:

text.ldt

 <#if memory.alias=="Flash3">

 spifidata/(.text*)

 </#if>

 (.text_${memory.alias}) /* for compatibility with previous releases */

 (.text_${memory.name}) /* for compatibility with previous releases */

 (.text.$${memory.alias})

 (.text.$${memory.name})

rodata.ldt

 <#if memory.alias=="Flash3">

 spifidata/(.rodata*)

 </#if>

 (rodata.$${memory.alias})

 (rodata.$${memory.name})

Note: the check of the memory.alias being Flash3 is to prevent the code/rodata items from
ending up in the BankB flash bank (which is Flash2 by default).

11.12 Disabling managed linker scripts

It is possible to disable the managed linker script mechanism if required and provide your
own linker scripts, but this is not recommended for most users. In most circumstance, the
facilities provided by the managed linker script mechanism, and its underlying Freemarker
template mechanism should allow you to avoid the need for writing your own linker scripts.
But if you do wish to do this, then untick the appropriate option at:

Properties -> C/C++ Build -> Settings -> MCU Linker -> Managed Linker Script

And then provide the name and path (relative to the current build directory) of your own,
manually maintained, linker script.

In such cases you can either create your own linker script from scratch, or you can use
the managed linker scripts as a starting point. One very important point though is that you

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

104

are advised not to simply modify the managed linker scripts in place, but instead to copy
them to another location and modify them there. This will prevent any chance of the tools
accidentally overwriting them if at some point in the future you turn the managed make
script mechanism back on.

Note: if your linker script includes additional files (as the managed linker scripts do), then
you will also need to include the relative path information in the include inside the top level
script file.

For more details of writing your own linker scripts, please see the GNU Llinker (ld)
documentation:

Help -> Help Contents -> Tools (Compilers, Debugger, Utilities) -> GNU Linker

There is also a good introduction to linker scripts available in Building Bare-Metal ARM
Systems with GNU: Part 3 at:

http://www.embedded.com/design/mcus-processors-and-socs/4026080/Building-Bare-
Metal-ARM-Systems-with-GNU-Part-3

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

105

12. Multicore Projects

12.1 LPC43xx Multicore Projects

The LPC43xx family of MCUs contain a Cortex-M4 “master” core and one or more Cortex-
M0 “slave” cores. After a power-on or Reset, the master core boots and is then responsible
for booting the slave core(s). However, this relationship only applies to the booting process;
after boot, your application may treat any of the cores as the master or a slave.

The MCUXpresso IDE allows for the easy creation of “linked” projects that support the
targeting of LPC43xx Multicore MCUs. For more information on creating and using such
multicore projects, please see the FAQ at

https://community.nxp.com/message/637967

12.2 LPC541xx Multicore Projects

Some members of the LPC541xx family of MCUs contain a Cortex-M4 core and a Cortex-
M0+ core (with the Cortex-M4 being the master, and the M0+ the slave). After a power-on or
Reset, the master core boots and is then responsible for booting the slave core. However,
this relationship only applies to the booting process; after boot, your application may treat
either of the cores as the master or the slave.

The MCUXpresso IDE allows for the easy creation of “linked” projects that support the
targeting of LPC541xx Multicore MCUs. For more information on creating and using such
multicore projects, please see the FAQ at

https://community.nxp.com/message/630715

https://community.nxp.com/message/637967
https://community.nxp.com/message/630715

NXP Semiconductors MCUXpresso IDE User Guide

MCUXpresso IDE User Guide -

User Guide
All information provided in this document is subject to legal disclaimers

Rev. 10.0 — 22 February, 2017
© 2017 NXP Semiconductors. All rights reserved.

106

Appendix A. Glossary
GROUP libgcc.a libc_nano.a libstdc++_nano.a libm.a

libcr_newlib_semihost.a

SDK s

	MCUXpresso IDE User Guide
	Table of Contents
	1. Introduction to MCUXpresso IDE
	1.1 MCUXpresso IDE Overview of Features
	1.1.1 Summary of Features
	1.1.2 Supported Debug Probes
	1.1.3 Development Boards
	 LPCXpresso Boards for LPC
	 Freedom and Tower Boards for Kinetis

	2. IDE Overview
	2.1 Documentation and Help
	2.2 Workspaces
	2.3 Perspectives and Views
	2.4 Major Components of the Develop Perspective

	3. Debug Solutions Overview
	3.1 A note about Launch Configuration files
	3.2 LinkServer Debug Connections
	3.3 LinkServer Debug Operation
	3.4 LinkServer Global and Live Global Variables
	3.5 LinkServer Troubleshooting
	3.5.1 Debug Log
	3.5.2 Flash Programming issues
	3.5.3 LinkServer executables

	3.6 P&E Debug Connections
	3.7 P&E Debug Operation
	3.7.1 P&E Differences from LinkServer Debug
	3.7.2 P&E Micro Software Updates

	3.8 SEGGER Debug Connections
	3.9 SEGGER Debug Operation
	3.9.1 SEGGER Differences from LinkServer Debug

	3.10 SEGGER Troubleshooting

	4. SDKs and Pre-Installed Part Support Overview
	4.1 Pre-installed Part Support
	4.2 SDK Part Support
	4.2.1 Important notes for SDK users
	 Only SDKs created for MCUXpresso IDE can be used
	 Shared Part Support handling
	 Building a ‘Fat’ SDK
	 Uninstallation Considerations
	 Sharing Projects

	4.2.2 Differences in Pre-installed and SDK part handling

	4.3 Viewing Pre-installed Part Support
	4.4 Installing an SDK
	4.4.1 “Power User” SDK Importing and Configuration

	5. Creating New Projects using SDKs
	5.1 New Project Wizard
	5.1.1 SDK New Project Wizard: Basic Project Creation and Settings
	5.1.2 SDK New Project Wizard: Advanced Project Settings

	5.2 SDK Build Project

	6. Importing Example Projects (from SDKs)
	6.1 SDK Example Import Wizard
	6.1.1 SDK Example Import Wizard: Basic Selection
	6.1.2 SDK Example Import Wizard: Advanced options
	6.1.3 SDK Example Import Wizard: Import from XML fragment

	7. Creating New Projects using Pre-Installed Part Support
	7.1 New Project Wizard
	7.2 Creating a Project using a Wizard
	7.2.1 Selecting the Wizard Type
	7.2.2 Configuring the Project

	7.3 Wizard Options
	7.3.1 LPCOpen Library Project Selection
	7.3.2 CMSIS-CORE Selection
	7.3.3 CMSIS DSP Library Selection
	7.3.4 Peripheral Driver Selection
	7.3.5 Code Read Protect
	7.3.6 Enable use of Floating Point Hardware
	7.3.7 Enable use of Romdivide Library
	7.3.8 Disable Watchdog
	7.3.9 LPC1102 ISP Pin
	7.3.10 Redlib Printf Options
	7.3.11 Project Created

	8. Importing Example Projects (from the filesytem)
	8.1 Code Bundles for LPC800 Family devices
	8.2 LPCOpen Software Drivers and Examples
	8.3 Importing an Example Project
	8.3.1 Importing Examples for the LPCXpresso4337 Development Board

	8.4 Building Projects
	8.4.1 Build Configurations

	9. Debugging a Project
	9.1 Debugging overview
	9.1.1 Debug Probe Selection Dialog
	9.1.2 Controlling Execution

	10. C/C++ Library Support
	10.1 Overview of Redlib, Newlib and NewlibNano
	10.1.1 Redlib extensions to C90
	10.1.2 Newlib vs NewlibNano

	10.2 Library variants
	10.3 Switching the selected C library
	10.3.1 Manually switching

	10.4 What is Semihosting?
	10.4.1 Background to Semihosting
	10.4.2 Semihosting implementation
	10.4.3 Semihosting Performance
	10.4.4 Important notes about using semihosting
	10.4.5 Semihosting Specification

	10.5 Use of printf
	10.5.1 Redlib printf variants
	 Character vs String output
	 “Integer only” vs “full” printf (including floating point)

	10.5.2 NewlibNano printf variants
	10.5.3 Newlib printf variants
	10.5.4 Printf when using LPCOpen
	10.5.5 Printf when using SDK
	10.5.6 Retargeting printf/scanf
	 Redlib
	 Newlib / NewlibNano

	10.5.7 How to use ITM Printf
	 ITM Overview
	 ITM printf with SDK
	 ITM printf with LPCOpen

	10.6 itoa() and uitoa() in Redlib
	10.6.1
	 Example invocations
	 Standards compliance

	10.6.2 Newlib/NewlibNano

	10.7 Libraries and linker scripts

	11. Memory Configuration and Linker Scripts
	11.1 Introduction
	11.2 Managed Linker Script Overview
	11.3 How are managed linker scripts generated?
	11.4 Default image layout
	11.5 Examining the layout of the generated image
	11.5.1 Linker --print-memory-usage
	11.5.2 arm-none-eabi-size
	11.5.3 Linker map files
	11.5.4 Symbol Viewer
	 Viewing Symbols in the Viewer
	 Using the Symbol Viewer
	 Other utilities

	11.6 Other options affecting the generated image
	11.6.1 LPC MCUs – Code Read Protection
	 CRP : Preinstalled MCUs
	 CRP : MCUs installed by Importing an SDK

	11.6.2 Kinetis MCUs – Flash Config blocks
	11.6.3 Placement of USB data

	11.7 Modifying the generated linker script / memory layout
	11.8 Using the Memory Configuration Editor
	11.8.1 Editing a Memory Configuration
	11.8.2 Device specific vs Default Flash Drivers
	11.8.3 Restoring a Memory Configuration
	11.8.4 Copying Memory Configurations

	11.9 More advanced heap/stack placement
	11.9.1 MCUXpresso style heap and stack
	11.9.2 LPCXpresso style heap and stack
	11.9.3 Reserving RAM for IAP Flash Programming
	11.9.4 Stack checking
	11.9.5 Heap Checking
	11.9.6 Placement of specific code/data items
	 Placing data into different RAM blocks
	 ‘Noinit’ Memory Sections
	 Making global variables noinit
	 Placing code/rodata into different FLASH blocks
	 Placing specific functions into RAM blocks
	 Long branch veneers and debugging
	 Reducing Code Size when support for LPC CRP or Kinetis Flash Config Block is enabled

	11.10 Freemarker Linker Script Templates
	11.10.1 Basics
	11.10.2 Reference
	 Linker script template hierarchy
	 Linker script search paths
	 Linker script templates
	 Predefined variables (macros)
	 Extended variables
	 Outputting variables

	11.11 Freemarker Linker Script Template Examples
	11.11.1 Relocating code from FLASH to RAM
	 Relocating particular objects into RAM
	 Relocating particular libraries into RAM
	 Relocating majority of application into RAM

	11.11.2 Configuring projects to span multiple flash devices

	11.12 Disabling managed linker scripts

	12. Multicore Projects
	12.1 LPC43xx Multicore Projects
	12.2 LPC541xx Multicore Projects

	Appendix A. Glossary

