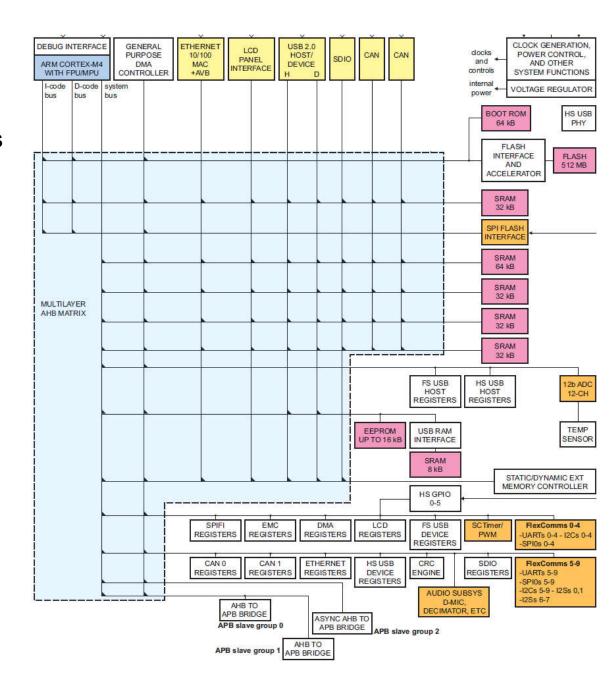
SYSTEM CONTROL

LPC546XX TRAINING SERIES

Agenda

- Clocking
- Clock generators
- Other system control features

LPC546xx key highlights


- High performance
 - 180MHz Cortex-M4F.
 - Large AHB matrix with many masters and slaves
- Large memory
 - 512kB Flash, 200kB RAM, 16kB EEPROM
 - SPI Flash interface (SPIFI) for QSPI XIP flash
 - External Memory Controller (EMC), for SRAM, SDRAM, NOR Flash, etc.
- Broad connectivity
 - 10 flexcomms (UART/I2C/SPI, and two muxed with I2S)
 - 2 additional smartcard UARTs
 - ADC 12 bit at 5Msps/s

- Rich advanced peripherals
 - Ethernet100+1588+AVB,
 - USB-HS H/D w/ HS PHY, USB-FS H/D w/ FS PHY
 - SD/MMC/SDIO,
 - CANFD x2
 - Audio sub-system for DMIC based voice triggering
- Close consistency with LPC54xxx, LPC8xx
 - Similar system control
 - Especially, downward compatible with LPC5411x whenever applicable
 - Most basic peripherals are the same (Flexcomm, ADC, timers, GPIO, power control, etc)

LPC546xx blocks overview

- CPU, DMA and advanced modules are bus masters
 - Take advantage of bus matrix, better throughput
- RAM has several blocks but most are adjacent in address
 - SRAMX for CPU, USB RAM are exceptions
- Faster modules are on AHB bus
 - Flexcomms
 - Register files for some faster peripherals
- 3 APB buses, one has dedicated clock selector.

LPC546xx part numbers

Part Number	Basic Type	Δ	Flash (KB)	RAM (KB)	Security Features	Voice Detectio n	Graphic LCD	Ethernet AVB	CAN FD	USBH/D	Package
LPC54608	LPC54608J512ET180	1	512	200	Optional	Yes	1	1	2	HS+FS	180 BGA
	LPC54608J512BD208	1	512	200	Optional	Yes	1	1	2	HS+FS	208 LQFP
LPC54607	LPC54607J512ET180	1	512	200	Optional	Yes	1	1	0	HS+FS	180 BGA
LF C34007	LPC54607J512BD208	1	512	200	Optional	Yes	1	1	0	HS+FS	208 LQFP
LPC54606	LPC54606J512BD208	1	512	200	Optional	Yes	0	1	2	HS+FS	208 LQFP
LPC34606	LPC54606J512ET180	1	512	200	Optional	Yes	0	1	2	HS+FS	180 BGA
LPC54605	LPC54605J512ET180	1	512	200	Optional	Yes	0	1	0	HS+FS	180 BGA
	LPC54605J256ET180	1	256	200	Optional	Yes	0	1	0	HS+FS	180 BGA
	LPC54604J512BD100	1	512	200	Optional	Yes	0	1	2	FS	100 LQFP
LPC54604	LPC54604J512BD64	1	512	200	Optional	Yes	0	1	2	FS	64 LQFP
	LPC54604J256BD100	1	256	200	Optional	Yes	0	1	2	FS	100 LQFP
10054600	LPC54603J512BD100	1	512	200	Optional	Yes	0	1	0	FS	100 LQFP
LPC54603	LPC54603J256BD100	1	256	200	Optional	Yes	0	1	0	FS	100 LQFP
	LPC54602J512BD100	1	512	200	Optional	Yes	0	0	2	FS	100 LQFP
LPC54602	LPC54602J512BD64	1	512	200	Optional	Yes	0	0	2	FS	64 LQFP
	LPC54602J256BD64	1	256	200	Optional	Yes	0	1	2	FS	64 LQFP
LDCE4604	LPC54601J512BD64	1	512	200	Optional	Yes	0	0	0	FS	64 LQFP
LPC54601	LPC54601J256BD64	1	256	200	Optional	Yes	0	0	0	FS	64 LQFP

CLOCKING

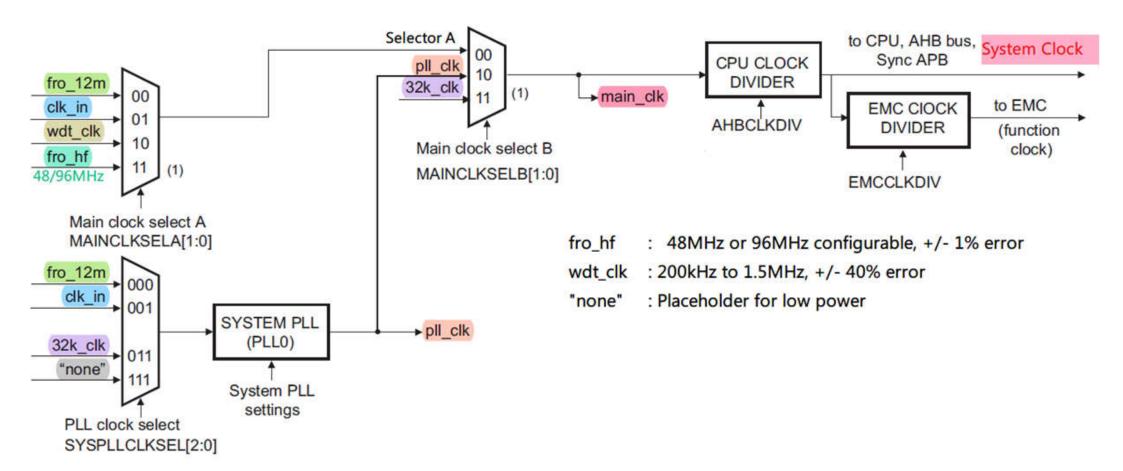
Overview of clock tree

- Clock sources
 - FRO improved internal RC with 2 outputs: 12M, and 48/96M.
 - Watchdog Oscillator (WDTOsc)
 - 1MHz-25MHz XTAL
 - (no external clock waveform input)
 - 32kHz RTC XTAL
 - PLLs System PLL, Audio PLL, USB PLL
- Main clock domain
 - CPU, RAM, Flash, EEPROM, EMC
 - Most APB peripherals

- CPU and some peripherals has clock dividers.
 - All integer dividers can divide input clock by 1,2,3,...,255
 - A special fraction divider mainly for UART
- Some peripherals have fixed clock source
 - RTC: uses 32kHz input
 - WDT and uTick: uses WDTOsc.
- Some Peripherals such as flexcomm have clock selectors, making them immune to CPU clock change.
- Some peripherals such as PININT can function w/o clock, enable them to wake up MCU from low power modes.

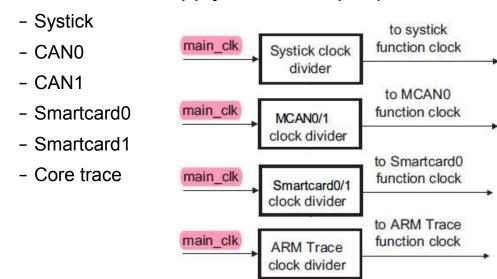
Clock Generation Unit – clock sources

Clock Sources	Characteristics
FRO	 System clock by default Stable. Quick power up and power down 12/48/96 MHz (±1% over specified temperature and voltage)
Crystal Oscillator	XTAL: 1 MHz – 20MHz or 15MHz – 25MHz,
32 KHz RTC Oscillator	32.768 KHz
Watchdog Oscillator	 Low power operation and Low frequency oscillator 6 kHz – 1.5 MHz (+/- 40%) Clock source to Watchdog Timer and Micro-tick Timer



Clock Generation Unit - PLLs

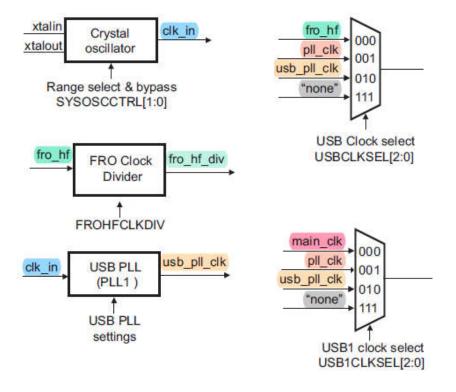
Clock Sources	Characteristics
SYS PLL	Multiplies the clock source (FRO, Main Osc, CLKIN) Input Frequency: 32.768 kHz to 25 MHz
USB PLL	Multiplies the clock source (Main Osc) Input Frequency: 1 MHz to 25 MHz
Audio PLL	Multiplies the clock source (FRO, Main Osc) Input Frequency: 1MHz to 25 MHz

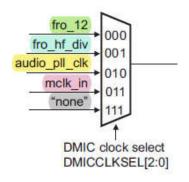

Main clock and system clock generation

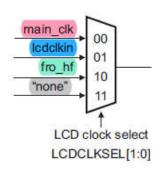
Main clock domain

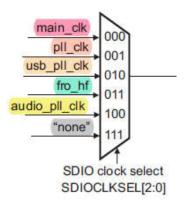
- After divider, supply system clock to a vast range
 After divider, supply additional peripherals: of modules
 - CPU (Cortex-M4)
 - EMC w/ divider
 - AHB bus
 - AHB Peripheral registers: all USB ports, SPIFI, EMC, DMA, LCD, CANs, Ethernet, SDIO
 - AHB Peripheral function: ADC, EEPROM, GPIO, SCT, Flexcomms, CRC, DMIC
 - APB0 bus
 - SysCon, IOCon, PinINT, GroupINT, InMux, MRT, EEPROM registers, OTP, WDT & uTick registers,
 - APB1 bus
 - Timer2, PMU registers, RIT, Flash registers, Smartcards, RNG

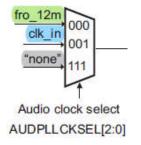
Clock option of peripherals with clock selectors.

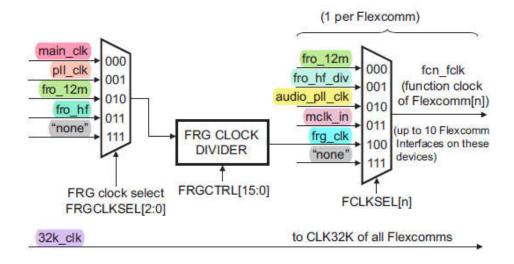

Peripherals with dedicated clock selector

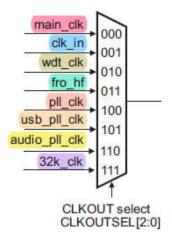

- Peripherals
 - ADC.
 - USB0, USB1PHY
 - DMIC
 - SDIO
 - Audio PLL
 - Fractional clock (mainly for USART)
 - Flexcomm USART/I2C/SPI/I2S
 - SCT State Configurable Timer
 - LCD
 - SPIFI SPI Flash Interface
 - CLKOUT
 - Timer 3 and 4 (Async APB)
- Selectors except flexcomm have their output clock dividers
 - Flexcomm: use FRG clock divider

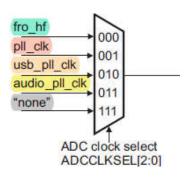

- Benefits
 - Changing CPU clock does not affect operation rate,
 - especially useful for connectivity peripherals such as USART.
 - Less constraint for CPU clock settings. E.g., for 44100Hz, available clock inputs are very limited.
 - Simplifies main clock selectors, no need to cover all clock sources. E.g., "Icdclkin" only presents on LCD clock selector.

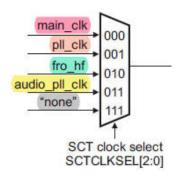


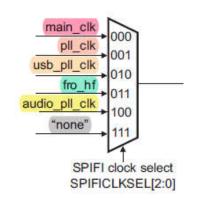

Clock selectors

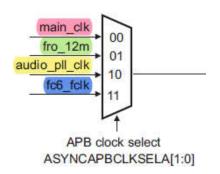


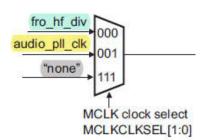







Clock selectors (continued)





Clock dividers

- Integer dividers (except FRG)
 - All are the same
 - Divider range: 1,2,3,...,256 (0 means no clock)
 - Can manually halt and reset internal 8 bit prescaler.
 - For glitch free clock change: update divider with it halt and reset
- Fractional clock divider
 - Mainly for convenient USART baudrate settings
 - Fractional clock = FRGClkSel / (1 + Mult[7:0]/256)
 - Divisor range: 1+0/256, 1+1/256, 1+2/256, ..., 1+255/256

0	Div:
1	
_	0/1/2/255
2	
• •	! 0=DisableClock!
7	
8	>0
••	
28	
29	ResetCntr <u>N</u> /y UseNewValAtOnce
30	HaltCntr n/ <u>Y</u>
	ForGlitchFreeUpdt
31	<reqflag SetOnChangeReq ClrOnChanged</reqflag

CLOCK GENERATORS

Introduction to the Free Running Oscillator (FRO)

- Low power internal Free-Running Oscillator (~100 uA, replaces former "IRC")
- Provides two selectable outputs:
 - a) 48 MHz or 96 MHz (choose only one as the high frequency output)
 - b) 12 MHz output.
- Factory Trimmed for 48 MHz and 96 MHz
- +/- 1% accuracy over the full spec
- Some peripherals allow asynchronous operation from FRO while CPU operates from main clock
- FRO can be used as Main clock or PLL clock source
- Reduces dependency on System PLL
 - Benefit: fast restart after halting the CPU by sleep modes
 - Benefit: low power!
- Main Clock selects the 12 MHz FRO as the clock source on power-up or after reset

FRO for crystal-less Full Speed USB Device

- LPC546xx has an on-chip USB full-speed device.
- 48 MHz input clock should be provided to the Full Speed USB device controller
 - -96MHz FRO with divider, or 48MHz FRO direct
- Automatic USB clock adjustment mode:
 - USB host sends "SOF" packets at 1ms interval, USB FS device automatically trim the FRO based on SOF timing base.
 - No need of external crystal or PLL
- Supports remote wake-up and wake-up from deep-sleep mode on USB activity

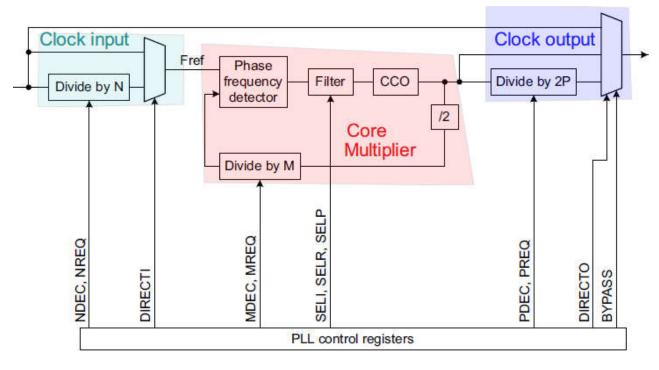
On-chip Watchdog oscillator

- Usage
 - Always supplies Watchdog timer (WDT) and micro tick timer (uTick)
 - Clock candidate of main clock.
- Features
 - Lower power than FRO and XTAL
 - -Low accuracy: +/- 40% error
 - Use "frequency measurement" to calibrate
 - 32 programmable outputs ranging from 0.4MHz to 3.05MHz
 - Clock output divider by 2,4,6,...,64

```
SYSCON | WDTOSC
WDTOscCtrl +0x508₽
0 DivSel [4:0]
 1. Div by (n+1)*2
   2/4/6/.../64
5 FreqSel [4:0]
6-res/0.4/0.6/0.75/~
7.0.9/1.0/1.2/1.3/
 8 1.4/1.5/1.6/1.7/
q 1.8/1.9/2.0/2.05/
  2.1/2.2/2.25/2.3/
  2.4/2.45/2.5/2.6/
  2.65/2.7/2.8/2.85/
  2.9/2.95/3.0/3.05
10
....
31.0
```


System PLL

Key principles

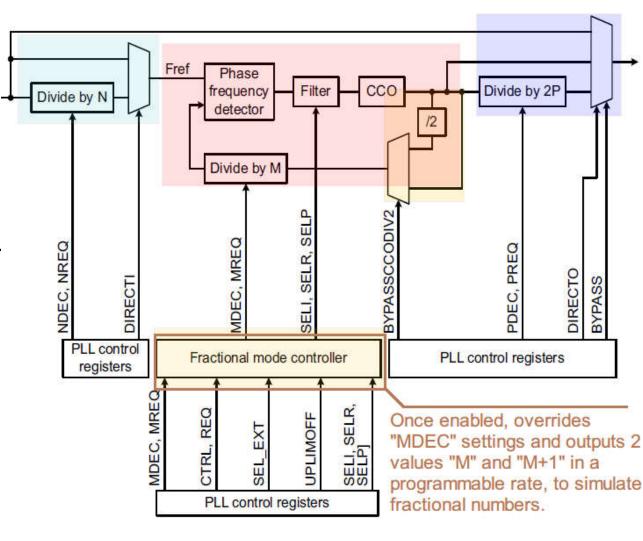

- The core multiplier of PLL is a Current Controlled Oscillator (CCO), whose output frequency is controlled by input current.
- The Phase Frequency Detector with a post filter controls CCO input.

Key features

- Input :RTCClk, FRO 12MHz, 4-25MHz XTAL
- Can output a vast range from 4.3MHz to 550MHz (LPC546xx max freq. = 180MHz)
- Power down mode and auto re-lock on exit.

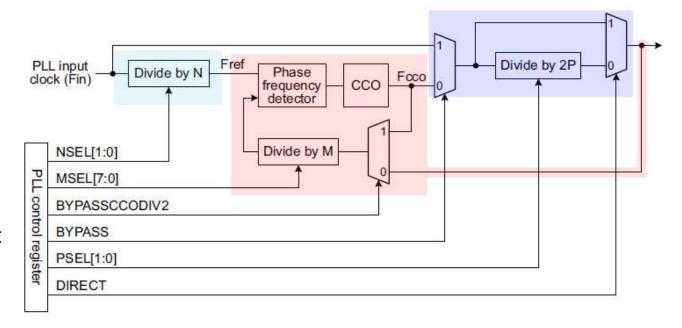
Key programmable parameters

- Pre divider for input clock source of PLL
- Filter and feedback divider for PLL core part
- Post divider for output clock, does not affect PLL internal state.


Remarks

- N, M, and P are not plain binary, but encoded, makes PLL not straightforward to configure manually, recommended to use SDK API to determine them.
- If Fref < 100kHz or Fref > 20MHz, lock indicator is not reliable
- 4kHz <= Fref <= 20MHz

Audio PLL


- Based on system PLL but enhanced in
 - Optional fractional mode for popular audio sample rates (such as 44100).
 - Feedback clock can bypass "/2" divider.
- Optional fractional mode
 - An add-on facility, does not affect original PLL structure.
 - Adjust feedback divider parameter "M", by using values of M and M+1 in a proper rate to simulate fraction.
 - E.g., "3,3,4,3,3,4" simulates 3.33
 - Once enabled, overrides the settings in feedback divider.

USB PLL

- Mainly for generating 48MHz clock to USB for both full speed and high speed
- Simpler than System PLL and Audio PLL, and no encoded parameters, use binary presentation.
 - Derived from the PLL used in LPC18xx/43xx
- Key features
 - Input range 1MHz 25MHz
 - Output range 9.75MHz 320MHz
 - dividers
 - Pre-divider from 1 to 256
 - Feedback divider from 1 to 32768
 - Post-divider 2,4,6,...,64
 - Feedback clock can choose final output
 - Save power if <=Fcco (internal output)

OTHER SYSTEM CONTROL FEATURES

Brown out detector

- Monitors VDD supply to MCU
- Can generate IRQ when VDD drops below a programmable threshold
 - 2.05V/2.45V/2.75V/3.1V
 - A dedicated enable bit
- Can reset MCU when VDD drops below another programmable threshold
 - 1.5V/1.85V/2.0V/2.3V
 - A dedicated enable bit
- Provide flag bits of BoD IRQ and reset
- Note:
 - Avoid Vdd drops to a level that can't restore MCU operation but above Power on reset trigger level.

Sys	Con RW
ВоС	OCtrl = 0
0	BodRstLev
1	BoD reset level (V) <u>1.5</u> /1.85/2.0/2.3
2	BoDRstEna Enable BoD reset: N/y
3	BodIntLev
4	BoD interrupt level (V) <u>2.05</u> /2.45/2.75/3.1
5	BodIntEna Enable BoD IRQ: N/y
6	BodRstStat BoD reset status, write 1 to clear
7	BodIntStat w1c BoD IRQ status, write 1 to clear
 31	

Improved boot ROM support

- Flexible boot modes determined by 3 boot pins (Detailed in next slide)
 - On-chip Flash
 - Improved ISP from UART@Flexcomm0, I2C@Flexcomm1, SPI@Flexcomm3
 - First "PROBE" command determines which one to use. SPI pins have conflict with EMC
 - MSC or DFU on either USB0 or USB1
- More image types for robust firmware upgrade
 - Legacy (0 at 0x24)
 - Single-Enhanced for better protection (0xEDDC9494 at 0x24)
 - Dual-enhanced for "OTA" style firmware upgrade and backup image scheme (0x0FFEB6B6 at 0x24)
 - Note: Enhanced images use image headers to mark meta data
- Enhanced CRP and optional OTP bits to prevent cracking
 - Disable ISP, IAP, debug, and lock flash sectors
 - OTP: Store some global enhanced CRP constraints.

ISP Entry from bootloader (via Pins)

ISP Modes						
Boot Source	ISP-2 PIO0_4	ISP-1 PIO0_5	ISP-0 PIO0_6	Description		
FLASH, no ISP	1	1	1	ISP is bypassed. The device boots from flash if valid user code is detected		
UART/ I2C / SPI (Auto Detect)	1	1	0	The first valid probe message on USART, I2C, or SPI locks in that interface		
USB 0 MSC	1	0	1	Allow programming flash as USB 0 MSC		
Reserved	1	0	0	Reserved		
USB 1 MSC	0	1	1	Allow programming flash as USB 1 MSC		
USB 0 DFU	0	1	0	Allow programming flash as USB 0 DFU		
USB 1 DFU	0	0	1	Allow programming flash as USB 1 DFU		

Misc system configurations

- Vector table remap
 - Boot loader, RAM, Flash
- AHB Matrix Priority (4 levels)
 - CPU: Icode, Dcode, Sys
 - Masters: DMA, Eth, USB0, USB1, SDIO, CAN0, CAN1
- NMI source selection
 - Can select one IRQ as NMI
- Async APB enable/disable

- System reset flags
 - POR, Pin, WDT, BoD, System
- Bits to to control reset state of each peripheral, laid in some registers
 - PResetCtrl[3], reset status and r-m-w
 - PResetCtrlSet[3], write 1 only to set reset
 - PResetCtrlClr[3], write 1 only to clear reset
- Capture PIO state upon PoR and other reset

Frequency measurement

- Measure relative rate of one target clock to a reference clock
 - Watchdog Oscillator has +/- 40% error rate,
 use this to calibrate with
- Use "INMUX" (Input mux) to select:
 - Reference clock (FreqMeas_Ref)
 - Target clock to measure (FreqMeas_Tgt)
- Measures how many target clocks elapsed during 16384 reference clocks

Target clock should be **SLOWER** than ref clock

InMux	R/W
FreqN	leas_Ref (Reference clock)
	leas_Tgt (Target clock)
0	ClkIn [4:0] (Clock select)
1	0:XTAL
2	1:FRO_12 (12MHz)
3	2:FRO_HF (48MHz/96MHz)
4	3:Watchdog oscillator
	4:RTC (32768Hz)
	5:Main clock
	6:FreqMe_Gpio_Clk_A pin
	at P1.4/P0.11
	7:FreqMe_Gpio_Clk_B pin
	at P2.7/P0.12
5	-
• •	
31	

Flash controller settings: wait states and buffer (cache) usage

- !ATTENTION! Flash wait states
 - must be programmed properly to avoid occasional wired / hard-to-reproduce issues.
 - Insufficient wait states may still work OK in most conditions or in some batches of chips.

Max CPU MHz	Wait states (FLASHTIM)
12	0
24	1
36	2
60	3
96	4
120	5
144	6
168	7
180	8

- Flash buffer usage settings :
 - Improve performance and lower power consumption by flash access
 - Configures buffer allocation for both code fetch and data access: None/one buffer/all buffer
 - code prefetch control: Allows auto read of next flash line following current execution address
 - Code prefetch priority: Allows code prefetch to preempt current ongoing fetch operations.
 - Balance between determinism and performance: can apply wait state setting regardless of buffer hit

System control for peripherals

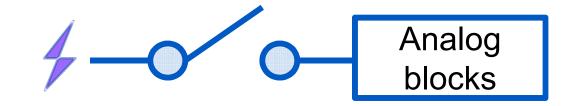
- EMC system control
 - Address right shift for 16/32 bit bus
 - Prevent EMC from being reset except when POR, BOD happens
 - Disable burst to avoid unwanted access when accessing memory mapped I/O
- EMC feedback clock select
- EMC command delay and delay time calibration, mainly for SDRAM

Ethernet

- PHY interface select: MII or RMII
- Sideband flow control

SD/MMC

- Phase shift controls for card driving clock and sampling clock
- Micro-tune of delays of card driving clock and sampling clock


Clock gating for peripherals

- Modules, peripherals
- Clock to on-chip modules and peripherals clock can be stopped (gated) to fine tune power consumption
 - Memories (ROM, RAM, Flash, EEPROM)
 - Peripherals with bus masters (DMA, USB, Ethernet, SDIO, CAN)
 - AHB peripherals
 - APB peripherals
 - Async APB peripherals
- For digital part, stopping clock means power consumption is almost 0.

- One bit per target, bits are organized in control registers
 - Most modules and peripherals
 - AHBClkCtrl[3]
 - AHBClkCtrlSet[3]
 - AHBClkCtrlClr[3]
 - Async registers (Timer 3 and 4)
 - ASyncAPBClkCtrl
 - ASyncAPBClkCtrlSet
 - ASyncAPBClkCtrlClr

Power gating for analog blocks

- Power can be shut down for analog blocks
 - Clock generators: FRO, XTAL, WDT Osc, PLLs
 - VDDA, ADC, temperature sensor
 - Memories: SRAM blocks (4), EEPROM, Flash, ROM
 - USB PHY 0 and 1
 - -RNG

- One bit per switch, bits are organized in control registers
 - PDRunCfg[2]
 - PDRunCfgSet[2]
 - PDRunCfgClr[2]

Wake up settings

- Controls what peripherals can wake up MCU from reduced power modes
 - Sleep: CPU clock stopped
 - Deep sleep: Sleep + clock source and flash shutdown, except WDT and RTC along with selected analog blocks can be programmed to on.
 - Deep power down: deep sleep + RAM shutdown, wakeup will reset the MCU.
- One bit per peripheral, bits are organized in control registers and their set/clear only companions
 - StarterP[2], StarterPSet[2], StarterPClr[2]
- Some peripherals need clock to wake in deep sleep and deep power down modes.

- Wake up sources :
 - Deep power down
 - RESET pin, RTC
 - Deep sleep
 - PinINT 0-7 and group INT 0-1
 - WDT and micro-tick timer (uTick)
 - BoD
 - All flexcomms: I2C/SPI slave mode, USART sync mode
 - RTC
 - USB need clock 0-1
 - (When clocked): DMA, timers, DMIC, USB 0-1
 - Sleep
 - All enabled interrupts

Hardware wake control for low power data batching by DMA

- Enables low power data batching by DMA from flexcomm or DMIC with CPU still in deep sleep mode, wakes up non-CPU part and go back to sleep after data transfer.
 - 1. Can prevent MCU except CPU core from entering deep sleep. (ForceWake)
 - Can wake up MCU except the ARM core when a flexcomm has its FIFO reach threshold, then return to sleep when DMA consumes FIFO to below threshold.
 - 3. Like item2, but for DMIC
 - 4. (Use together with item 2 or 3) Even if FIFO is consumed to below threshold, return to deep sleep can be delayed until DMA completely exhausts the FIFO.

Remarks:

- To allow flexcomm or DMIC to work under deep sleep mode, must manually keep their clock source on when entering deep sleep.
 - Can use WDTOsc or RTC as their clock source.
- HWWAKE is completely a normal wakeup, but CPU remains "SLEEPDEEP".
- Once the situation that triggered HWWAKE goes away, MCU goes back to deep sleep again, unless CPU also meets its wake up condition.
 - HWWAKE is independent from CPU wake

SECURE CONNECTIONS FOR A SMARTER WORLD