
Music Controlled LED Disk
Team Lit Technologies

Written By: Hunter Boock & Matthew Clemons

Class: EE 403W Section 5

Published: May 5, 2017

Executive Summary

Our final design project is a system that consists of a disk with 256 LEDs that displays

different patterns based on frequency and amplitude characteristics of the inputted audio signal.

The project has three different displays and the user is able to switch between these displays by

clicking the desired image on the LCD. The board that is used for this project is the NXP

OM13092 and the micro controller we were using is the LPCXpresso54608. The audio comes

from a user device and then runs into the onboard audio input jack. The data is sampled and

then a fast Fourier transform (FFT) is taken to get the frequency and amplitude characteristics of

the audio signal. From there we are able to look through the frequency domain data to find the

highest peak in desired frequency ranges. We split the data into three frequency ranges, low

(0-200 Hz), mid (200-1500 Hz) and high (1500-5000 Hz). The peaks found in these three

ranges were then either compared to the previous peak value or compared to the average

power in that range to determine if certain LEDs were to be turned on or off. The method that

was used depends on the display that is being played. Snippings of code will be shown through

this document but the full code will be able to be seen on gitHub. You can get there by clicking

the link attached at the end of this document

Background and Purpose

Lights that sync with music are used in many real world applications to capture the

audience’s interest. Concerts, christmas lights, firework shows and parties are just a few

examples of when audio controlled lighting can yield spectacular results. Our project was to

design an audio controlled LED disk that displayed patterns and designs in response to an

audio input. We wished to provide the user with multiple different design options as well as allow

them to choose between them via the touchscreen LCD without interrupting their listening and

viewing experience. The driving force behind this project is simply to provide enjoyment and

entertainment for the user.

Implementation

Compiler and Design Tools

For this project we were writing C code in Keil uVision (microVision). The software

development kit (SDK) and setup instructions can be found in the link posted at the end of the

document.

Power

The LED disk (APA102C) requires a 5V 10A power supply. The VDD and ground wires

from the disk are soldered to a power jack on a perfboard. Additionally, a 1000 µF bypass

capacitor was included to minimize any noise. The 50 watt power supply was recommended

because for each LED on the disk, it requires three leds (red, green and blue) to be able to

create a large number of colors. Each one of these three internal LEDs uses up about 20mW of

power so from that you get 60mW per LED when all colors are maxed out. With 256 LEDs the

power is up around 10+ Watts when all of them are turned on and bright white.

Software Architecture

Initializing Peripherals and Pins for SPI

The first part of our code consists of setup and initialization. The Flexcomm Interface is

enabled and a 4 MHz clock source is selected. Specifically, Flexcomm 9 is chosen because it

supports the SPI pins we use. As mentioned, SPI is chosen and set as the Flexcomm Interface

function (Note: SPI 9 must also be chosen in correspondence to Flexcomm 9 Interface). SPI is

configured to operate in master mode so that the clock and data are outputs because the

primary goal is to simply write data to the disk. The FIFO is then configured for operation by

enabling transfer data. Receive data for the FIFO is also ignored later with each write command

to the disk. The Flexcomm Interface pin functions are configured through IOCON. The two pins

that are configured are SCK and MOSI. SCK is set to J9 pin 9 (port 3_20) and MOSI is set to J9

pin 13 (port 3_21).

Creating Functions to Store and Transmit LED Characteristic Data

Code had to be made so that there is an easy way to change and update the brightness

and color of a specific LED or range of LEDs. Our group accomplished this by creating a

function called setLeds. The function allows the user to call it and then enter the LED number

they want to write to, set the overall brightness and set the amount of the RGB values. At the

beginning of the code an array, named Array was initialized with a length of 1100. The 1100

was more than we needed considering that we had 256 LEDs and each LED had 4 specific

characteristics to be stored (brightness, blue, green, red). Therefor you would be fine with

initializing this array to a length of 1024.Then a pointer was created to point to the data in the

array, and called ledArray. Since the number of LEDs goes up to 256 we used a 16 bit integer to

have some room for overflow and the color data for RGB were each 8 bits so we used an

unsigned 8 bit integer for blue, green and red. Brightness is only a 5 bit word but still set as an

unsigned 8 bit integer. The data sheet says that the order of the data words go blue,green,red

and therefore have to be transmitted in that order. By storing them is this order you can use a

simple for loop to transmit in the correct order. As you can see in figure 1 values are written to

the array using pointer notation. By setting ledArray = Array in the main it makes *(ledArray)

equal to Array[0], *(ledArray + 1) equal to Array[1] and so on. In the setLeds function we need to

multiply the LED number by 4 and increase by one for each of the characteristics to store the

data correctly. As you can see if you went to set LED 2 to have a full brightness and be all blue

you would type “setLeds(2,31,255,0,0)”. The data in the parenthesis is passed to the function

and then stored in slots [8,9,10,11] of Array[] in this example. So now Array[8] = 31, Array[9] =

255, Array[10] = 0, Array[11] = 0. All the other slots stay without a value until they are called and

set. Notice that since there has to be a “111” at the beginning of the first word we add 0xE0 to

the 5 bit brightness data since 0xE0 in hex equals 1110 in binary.

Figure 1 : Function that stores LED data

Once we had a function that allowed the user to set certain LEDs and store those settings, we

needed a function that actually sent all the data out that the user set. The function we created is

called showleds. The showleds function takes the data that is stored and iterates through all

1024 values of Array[]. Additional lines of code are added to make sure that there is a start and

end frame in the transmitted data. The data sheet for the APA102 LED disk calls for 32 ‘0’s to

be sent as the start frame and 32 ‘1’s to be sent in the end frame. Notice in line 218 of figure 2

0x00 is sent 4 times to make for a total of 32 0’s. The FIFO buffer was set to have a

transmission length of 8 bits, that’s the reason that we send 8 0’s at a time. Then each of the

array values are written to the buffer. This for loop uses i += 4 from 0 to 1023 and then the array

value is just shown from *(ledArray+ (i+0))...*(ledArray+ (i+3)). This is one way of doing it, we

could’ve kept it similar to the setLeds function and just multiplied by 4 and use i++ with a range

of 0 to 255. In the SPI9 FIFO write lines of code we also set the RXIGNORE bit and make the

FIFO buffer send words that are 8 bits in length. The RXIGNORE is set to tell the buffer that it

doesn’t need to look from data coming from the slave machine since we only need to send data

to the LED disk. Setting this bit in the FIFO eliminates receive delays in the buffer. The last part

of this function is the end frame. Even though the data sheet calls for 32 ‘1’s to be sent the

correct end frame requires at least N/2 ‘1’s or ‘0’s (N = number of LEDs). A major problem

occurred when we ran this code. It took our group a long time to figure out that we just needed a

really small delay between the transmissions for the data to be sent and received correctly, that

is the reason for the delay(150) call after each 8 bit transmission. The delay does not serve as

an exact measurement of time, we just pass an integer into delay() which sets the number of

times an empty for loop should execute. This wastes a very very small amount of time.

Figure 2 : Function that transmits LED data to disk

Fast Fourier Transform (FFT) Data Handling

To be able to look at the audio signals frequency and amplitude characteristics we

needed to take an FFT of the signal. This is first done by initializing a buffer for the number of

data points you plan on collecting from the transform. With this project we didn’t need to be

exact or close to exact on different frequency ranges. Since this wasn’t important to the design

we went with a 256 point FFT so it would execute faster than a higher point FTT and that’s why

in line 89 we set the buffer size to 256 and in line 1135 we use 256 inside the FFT function. In

the audio.c file you can see that we our sampling the data at 32kHz. With that sampling rate

each data bin of our FFT only has a frequency resolution of 32000/256/2 = 62.5Hz. For most

audio processing this would probably be too low of a resolution but since we define our own

ranges of what low, mid, and high frequencies are, it doesn’t really matter.

Setting Thresholds by Sorting Through FFT Data

All three of the LED disk patterns have certain amplitude thresholds that the signal has

to go over for a specific number of LEDs to light up. The first thing we did was separate the

audio data into three distinct frequency ranges. The low frequency or bass we considered to be

from about 0-200Hz. With our frequency resolution this meant we needed to look at bins 0-2 in

the FFT data. We chose the middle frequencies to be from 200-1500Hz (bins 3-25) and the high

range to be 1500-5000Hz (bins 26-79). We first tested only setting thresholds to fixed values.

We pulled the highest amplitude/power peak out of each of the three frequency ranges by doing

a sort on the data. We created a few lines of code (lines 1263, 1266-1270) that compared the

past ‘maxAmpL’ value with the new FFT value and then ‘maxAmpL’ was replaced if the value

was larger. This same method was used for the other two frequency ranges. Our group noticed

that even the songs in the same genre had very different amplitude characteristics. Some

songs might have way larger bass hits while others have very soft bass hits, etc. We knew that

we were going to have to find a way to have thresholds that change as the music changes. We

created two different ways to deal with this problem. The first method was to store the

amplitude/power of each of the separated ranges and then make a calculation of the average

amplitude every 50 iterations of some counter value (‘sumIt’). The newest, largest peak value

(maxAmp_) is then compared to the ‘powerAvg_’ variable in each frequency range to see how

much smaller or larger the present value is too the last calculated power average. The code for

this method can be seen in lines 1305-1315 in the main.c file. If the present peak exceeds the

power average by a certain amount it tells specific LEDs to light up. The other method was to

just compare the present peak value with the peak value right before it, if the value was greater

than the last value by a fixed amount it would light up certain lights. For example, if the first low

frequency peak (maxAmpL) was read and it showed a value of 10, it would then be stored in

oldValL. Then a second new value of maxAmpL was read and it was 100. Since the new value

is much larger it would tell specific lights to turn on. Both of these methods allow the code to set

thresholds based on the values of different songs and these automated thresholds make for a

better and more fluent display on the LED disk.

Touch Screen

The touch screen was the last part of the code that we added to our main.c file. This part

of the code uses functions from the eGFX library files. We first tried creating the touchscreen

using the Touch GFX designer program. We got the display how we originally wanted it but

realized that we didn’t have enough time to learn the operating system it used, freeRtos. We

scrapped that method and started making our own code instead of Touch GFX generating code

for us based off of our display. In lines 1142 to 1187 is where we are clearing the screen and

dumping the screen buffer as well as placing the images and text on the screen. Make sure the

clear plane and buffer lines are in that order, we had trouble with the screen when it was turned

off and then back on without that code being there. Before you can can the eGFX_blit function

to place an image on the screen you need to first convert the .png file into data that the screen

can handle. To do this, go into the eGFX folder in your project file then click into the Sprites

folder. Drop the .png files you want into the Sprites folder. Once you have done that go back to

the eGFX folder and click the GenSprites.bat file. This will convert all of your .png files into the

correct file for the eGFX structure. We placed an image of the LED disk for each of the three

designs with the name of the design above the images. Then inside the infinite while loop we

added if statements to react to a touch on one of the images, which causes the design on the

LED disk to change to whatever the user clicked on the screen.

Display Patterns on LED Disk

This project has three set display patterns. The display patterns were given the names

pieChunks, stopLight and lightning based off of what they look like. The pieChunks display is

one of the three displays and this is what the program defaults to when the board is powered

up. The pieChunks display/function turns on the LEDs that form a cross on the disk whenever

the bass or low frequency range has a peak amplitude that is greater than the previous peak

amplitude plus 400. The four symmetric quadrants of the disk fluctuate with the mid frequency

peak amplitudes by comparing the present amplitude with the last computed power average.

The greater the present value is than the previous power average, the more LEDs will light up.

This makes the disk look like it is fluctuating from the inner to the outer ring of LEDs the louder

these frequencies get. The second design is the stopLight function. The inner three rings light

up green when the low frequencies are larger than the previous value. The next three rings do

the same thing but light up yellow for the mid frequencies and the outer three light up red based

on the high frequency amplitudes. The third and last display is lightning. This display has a set

background to resemble a stormy sky and therefore no LEDs are ever off. The larger the

amplitude of the low frequencies gets compared to the power average the more LEDs light up

red towards the center and then a group of LEDs that look like lightning are lit up on the disk for

the highest bass hits. All of these functions use variable thresholds for turning LEDs on and off.

This makes the displays go well with the music no matter how different one song is from

another.

Results

Overall, our project performed as intended. The main goals of our project were to output

designs on the LED disk in response to an audio input, have multiple designs, and allow the

user to select from those designs through use of the touchscreen LCD. All of these were

accomplished. The showleds function created to write to the disk worked particularly well in

simplifying and speeding up the process of making new designs. The disk itself, while requiring

a lot of power, also displayed bright, clear colors for each design. Some of our other goals did

change slightly over the course of this project. We had originally planned to enable audio input

through the board’s digital microphone but as we progressed, we decided that this goal was

supplemental at best and so we excluded it from our scope. One goal that we fell short on was

the FFT display on the LCD. We had hoped to be able to, in addition to the design selection,

display the real-time FFT power spectrum on the LCD. This was not accomplished because of a

setback when designing the touchscreen LCD. We ran out of time but given a few more days

we would have accomplished this as well.

Conclusion

Completing this project was a satisfying experience. We hit a lot of road bumps but

always made progress and eventually met our end goal. Going back though, there would be a

few things we could do differently given a second go at it. Most of the changes we could have

made would be a result of inexperience and knowledge gained with this kind of a project. For

instance, we could set up our peripheral function using drivers instead of doing it all manually,

but even with just the knowledge we gained about setting up peripherals we could save a good

bit of time. We spent a lot of time too on a software for the touchscreen that turned out to be

less useful than we originally thought, so we would skip that and save more time. Future

improvements to our project would obviously include displaying the FFT power spectrum on the

LCD as mentioned earlier. We would also like to develop more designs and more ambitiously,

we could even pursue a Bluetooth option.

Links

[1] Setup Instruction: https://community.nxp.com/docs/DOC-333654

[2] Code Files: https://github.com/Clemons11/Music-Controlled-LED-Disk

[3] Youtube Video: https://www.youtube.com/watch?v=3DTKbYZYn9U

https://github.com/Clemons11/Music-Controlled-LED-Disk
https://community.nxp.com/docs/DOC-333654
https://www.youtube.com/watch?v=3DTKbYZYn9U

