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Executive Summary  

Our final design project is a system that consists of a disk with 256 LEDs that displays 

different patterns based on frequency and amplitude characteristics of the inputted audio signal. 

The project has three different displays and the user is able to switch between these displays by 

clicking the desired image on the LCD. The board that is used for this project is the NXP 

OM13092 and the micro controller we were using is the LPCXpresso54608. The audio comes 

from a user device and then runs into the onboard audio input jack. The data is sampled and 

then a fast Fourier transform (FFT) is taken to get the frequency and amplitude characteristics of 

the audio signal. From there we are able to look through the frequency domain data to find the 

highest peak in desired frequency ranges. We split the data into three frequency ranges, low 

(0-200 Hz), mid (200-1500 Hz) and high (1500-5000 Hz). The peaks found in these three 

ranges were then either compared to the previous peak value or compared to the average 

power in that range to determine if certain LEDs were to be turned on or off. The method that 

was used depends on the display that is being played. Snippings of code will be shown through 

this document but the full code will be able to be seen on gitHub. You can get there by clicking 

the link attached at the end of this document 

Background and Purpose 

Lights that sync with music are used in many real world applications to capture the 

audience’s interest. Concerts, christmas lights, firework shows and parties are just a few 

examples of when audio controlled lighting can yield spectacular results. Our project was to 

design an audio controlled LED disk that displayed patterns and designs in response to an 

audio input. We wished to provide the user with multiple different design options as well as allow 

them to choose between them via the touchscreen LCD without interrupting their listening and 



viewing experience. The driving force behind this project is simply to provide enjoyment and 

entertainment for the user.  

 

Implementation  

Compiler and Design Tools 

For this project we were writing C code in Keil uVision (microVision). The software 

development kit (SDK) and setup instructions can be found in the link posted at the end of the 

document.  

 

Power 

The LED disk (APA102C) requires a 5V 10A power supply. The VDD and ground wires 

from the disk are soldered to a power jack on a perfboard. Additionally, a 1000 µF bypass 

capacitor was included to minimize any noise. The 50 watt power supply was recommended 

because for each LED on the disk, it requires three leds (red, green and blue) to be able to 

create a large number of colors. Each one of these three internal LEDs uses up about 20mW of 

power so from that you get 60mW per LED when all colors are maxed out. With 256 LEDs the 

power is up around 10+ Watts when all of them are turned on and bright white.  

Software Architecture 

Initializing Peripherals and Pins for SPI 

The first part of our code consists of setup and initialization. The Flexcomm Interface is 

enabled and a 4 MHz clock source is selected. Specifically, Flexcomm 9 is chosen because it 

supports the SPI pins we use. As mentioned, SPI is chosen and set as the Flexcomm Interface 

function (Note: SPI 9 must also be chosen in correspondence to Flexcomm 9 Interface). SPI is 



configured to operate in master mode so that the clock and data are outputs because the 

primary goal is to simply write data to the disk. The FIFO is then configured for operation by 

enabling transfer data. Receive data for the FIFO is also ignored later with each write command 

to the disk. The Flexcomm Interface pin functions are configured through IOCON. The two pins 

that are configured are SCK and MOSI. SCK is set to J9 pin 9 (port 3_20) and MOSI is set to J9 

pin 13 (port 3_21). 

 

Creating Functions to Store and Transmit LED Characteristic Data 

Code had to be made so that there is an easy way to change and update the brightness 

and color of a specific LED or range of LEDs. Our group accomplished this by creating a 

function called setLeds. The function allows the user to call it and then enter the LED number 

they want to write to, set the overall brightness and set the amount of the RGB values. At the 

beginning of the code an array, named Array was initialized with a length of 1100. The 1100 

was more than we needed considering that we had 256 LEDs and each LED had 4 specific 

characteristics to be stored (brightness, blue, green, red). Therefor you would be fine with 

initializing this array to a length of 1024.Then a pointer was created to point to the data in the 

array, and called ledArray. Since the number of LEDs goes up to 256 we used a 16 bit integer to 

have some room for overflow and the color data for RGB were each 8 bits so we used an 

unsigned 8 bit integer for blue, green and red. Brightness is only a 5 bit word but still set as an 

unsigned 8 bit integer. The data sheet says that the order of the data words go blue,green,red 

and therefore have to be transmitted in that order. By storing them is this order you can use a 

simple for loop to transmit in the correct order. As you can see in figure 1 values are written to 

the array using pointer notation. By setting ledArray = Array in the main it makes *(ledArray) 

equal to Array[0], *(ledArray + 1) equal to Array[1] and so on. In the setLeds function we need to 



multiply the LED number by 4 and increase by one for each of the characteristics to store the 

data correctly. As you can see if you went to set LED 2 to have a full brightness and be all blue 

you would type “setLeds(2,31,255,0,0)”. The data in the parenthesis is passed to the function 

and then stored in slots [8,9,10,11] of Array[ ] in this example. So now Array[8] = 31, Array[9] = 

255, Array[10] = 0, Array[11] = 0. All the other slots stay without a value until they are called and 

set. Notice that since there has to be a “111” at the beginning of the first word we add 0xE0 to 

the 5 bit brightness data since 0xE0 in hex equals 1110 in binary.  

 

 

Figure 1 : Function that stores LED data 

 

Once we had a function that allowed the user to set certain LEDs and store those settings, we 

needed a function that actually sent all the data out that the user set. The function we created is 

called showleds. The showleds function takes the data that is stored and iterates through all 

1024 values of Array[ ]. Additional lines of code are added to make sure that there is a start and 

end frame in the transmitted data. The data sheet for the APA102 LED disk calls for 32 ‘0’s to 

be sent as the start frame and 32 ‘1’s to be sent in the end frame. Notice in line 218 of figure 2 

0x00 is sent 4 times to make for a total of 32 0’s. The FIFO buffer was set to have a 

transmission length of 8 bits, that’s the reason that we send 8 0’s at a time. Then each of the 

array values are written to the buffer. This for loop uses i += 4 from 0 to 1023 and then the array 

value is just shown from *(ledArray+ (i+0))...*(ledArray+ (i+3)). This is one way of doing it, we 

could’ve kept it similar to the setLeds function and just multiplied by 4 and use i++ with a range 



of 0 to 255. In the SPI9 FIFO write lines of code we also set the RXIGNORE bit and make the 

FIFO buffer send words that are 8 bits in length. The RXIGNORE is set to tell the buffer that it 

doesn’t need to look from data coming from the slave machine since we only need to send data 

to the LED disk. Setting this bit in the FIFO eliminates receive delays in the buffer. The last part 

of this function is the end frame. Even though the data sheet calls for 32 ‘1’s to be sent the 

correct end frame requires at least N/2 ‘1’s or ‘0’s (N = number of LEDs). A major problem 

occurred when we ran this code. It took our group a long time to figure out that we just needed a 

really small delay between the transmissions for the data to be sent and received correctly, that 

is the reason for the delay(150) call after each 8 bit transmission. The delay does not serve as 

an exact measurement of time, we just pass an integer into delay() which sets the number of 

times an empty for loop should execute. This wastes a very very small amount of time. 

 

 

Figure 2 : Function that transmits LED data to disk 



 

Fast Fourier Transform (FFT) Data Handling  

To be able to look at the audio signals frequency and amplitude characteristics we 

needed to take an FFT of the signal. This is first done by initializing a buffer for the number of 

data points you plan on collecting from the transform. With this project we didn’t need to be 

exact or close to exact on different frequency ranges. Since this wasn’t important to the design 

we went with a 256 point FFT so it would execute faster than a higher point FTT and that’s why 

in line 89 we set the buffer size to 256 and in line 1135 we use 256 inside the FFT function. In 

the audio.c file you can see that we our sampling the data at 32kHz. With that sampling rate 

each data bin of our FFT only has a frequency resolution of 32000/256/2 = 62.5Hz. For most 

audio processing this would probably be too low of a resolution but since we define our own 

ranges of what low, mid, and high frequencies are, it doesn’t really matter.  

 

Setting Thresholds by Sorting Through FFT Data 

All three of the LED disk patterns have certain amplitude thresholds that the signal has 

to go over for a specific number of LEDs to light up. The first thing we did was separate the 

audio data into three distinct frequency ranges. The low frequency or bass we considered to be 

from about 0-200Hz. With our frequency resolution this meant we needed to look at bins 0-2 in 

the FFT data. We chose the middle frequencies to be from 200-1500Hz (bins 3-25) and the high 

range to be 1500-5000Hz (bins 26-79). We first tested only setting thresholds to fixed values. 

We pulled the highest amplitude/power peak out of each of the three frequency ranges by doing 

a sort on the data. We created a few lines of code (lines 1263, 1266-1270) that compared the 

past ‘maxAmpL’ value with the new FFT value and then ‘maxAmpL’ was replaced if the value 

was larger. This same method was used for the other two frequency ranges. Our group noticed 



that even the  songs in the same genre had very different amplitude characteristics. Some 

songs might have way larger bass hits while others have very soft bass hits, etc. We knew that 

we were going to have to find a way to have thresholds that change as the music changes. We 

created two different ways to deal with this problem. The first method was to store the 

amplitude/power of each of the separated ranges and then make a calculation of the average 

amplitude every 50 iterations of some counter value (‘sumIt’). The newest, largest peak value 

(maxAmp_) is then compared to the ‘powerAvg_’ variable in each frequency range to see how 

much smaller or larger the present value is too the last calculated power average. The code for 

this method can be seen in lines 1305-1315 in the main.c file. If the present peak exceeds the 

power average by a certain amount it tells specific LEDs to light up. The other method was to 

just compare the present peak value with the peak value right before it, if the value was greater 

than the last value by a fixed amount it would light up certain lights. For example, if the first low 

frequency peak (maxAmpL) was read and it showed a value of 10, it would then be stored in 

oldValL. Then a second new value of maxAmpL was read and it was 100. Since the new value 

is much larger it would tell specific lights to turn on. Both of these methods allow the code to set 

thresholds based on the values of different songs and these automated thresholds make for a 

better and more fluent display on the LED disk. 

 

Touch Screen 

The touch screen was the last part of the code that we added to our main.c file. This part 

of the code uses functions from the eGFX library files. We first tried creating the touchscreen 

using the Touch GFX designer program. We got the display how we originally wanted it but 

realized that we didn’t have enough time to learn the operating system it used, freeRtos. We 

scrapped that method and started making our own code instead of Touch GFX generating code 



for us based off of our display. In lines 1142 to 1187 is where we are clearing the screen and 

dumping the screen buffer as well as placing the images and text on the screen. Make sure the 

clear plane and buffer lines are in that order, we had trouble with the screen when it was turned 

off and then back on without that code being there. Before you can can the eGFX_blit function 

to place an image on the screen you need to first convert the .png file into data that the screen 

can handle. To do this, go into the eGFX folder in your project file then click into the Sprites 

folder. Drop the .png files you want into the Sprites folder. Once you have done that go back to 

the eGFX folder and click the GenSprites.bat file. This will convert all of your .png files into the 

correct file for the eGFX structure. We placed an image of the LED disk for each of the three 

designs with the name of the design above the images. Then inside the infinite while loop we 

added if statements to react to a touch on one of the images, which causes the design on the 

LED disk to change to whatever the user clicked on the screen.  

 

Display Patterns on LED Disk 

This project has three set display patterns. The display patterns were given the names 

pieChunks, stopLight and lightning based off of what they look like. The pieChunks display is 

one of the three displays and this is what the program defaults to when the board is powered 

up. The pieChunks display/function turns on the LEDs that form a cross on the disk whenever 

the bass or low frequency range has a peak amplitude that is greater than the previous peak 

amplitude plus 400. The four symmetric quadrants of the disk fluctuate with the mid frequency 

peak amplitudes by comparing the present amplitude with the last computed power average. 

The greater the present value is than the previous power average, the more LEDs will light up. 

This makes the disk look like it is fluctuating from the inner to the outer ring of LEDs the louder 

these frequencies get. The second design is the stopLight function. The inner three rings light 



up green when the low frequencies are larger than the previous value. The next three rings do 

the same thing but light up yellow for the mid frequencies and the outer three light up red based 

on the high frequency amplitudes. The third and last display is lightning. This display has a set 

background to resemble a stormy sky and therefore no LEDs are ever off. The larger the 

amplitude of the low frequencies gets compared to the power average the more LEDs light up 

red towards the center and then a group of LEDs that look like lightning are lit up on the disk for 

the highest bass hits. All of these functions use variable thresholds for turning LEDs on and off. 

This makes the displays go well with the music no matter how different one song is from 

another. 

 

Results 

Overall, our project performed as intended. The main goals of our project were to output 

designs on the LED disk in response to an audio input, have multiple designs, and allow the 

user to select from those designs through use of the touchscreen LCD. All of these were 

accomplished. The showleds function created to write to the disk worked particularly well in 

simplifying and speeding up the process of making new designs. The disk itself, while requiring 

a lot of power, also displayed bright, clear colors for each design. Some of our other goals did 

change slightly over the course of this project. We had originally planned to enable audio input 

through the board’s digital microphone but as we progressed, we decided that this goal was 

supplemental at best and so we excluded it from our scope. One goal that we fell short on was 

the FFT display on the LCD. We had hoped to be able to, in addition to the design selection, 

display the real-time FFT power spectrum on the LCD. This was not accomplished because of a 



setback when designing the touchscreen LCD. We ran out of time but given a few more days 

we would have accomplished this as well.  

 

Conclusion 

Completing this project was a satisfying experience. We hit a lot of road bumps but 

always made progress and eventually met our end goal. Going back though, there would be a 

few things we could do differently given a second go at it. Most of the changes we could have 

made would be a result of inexperience and knowledge gained with this kind of a project. For 

instance, we could set up our peripheral function using drivers instead of doing it all manually, 

but even with just the knowledge we gained about setting up peripherals we could save a good 

bit of time. We spent a lot of time too on a software for the touchscreen that turned out to be 

less useful than we originally thought, so we would skip that and save more time. Future 

improvements to our project would obviously include displaying the FFT power spectrum on the 

LCD as mentioned earlier. We would also like to develop more designs and more ambitiously, 

we could even pursue a Bluetooth option. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
Links 

 
[1]  Setup Instruction: https://community.nxp.com/docs/DOC-333654 
 
[2]  Code Files: https://github.com/Clemons11/Music-Controlled-LED-Disk 
 
[3] Youtube Video: https://www.youtube.com/watch?v=3DTKbYZYn9U 
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