An Instruction Level Energy Characterization
of ARM Processors

Fvangelos Vasilakis

Computer Architecture and VLSI Systems (CARV) Laboratory,
Institute of Computer Science (ICS), Foundation of Research and Technology
Hellas (FORTH)

Technical Report FORTH-ICS/TR-450, March
2015

Work performed as a Master Thesis at the Department of Computer Science,
University of Crete, under the supervision of Prof. Manolis G.H Katevenis, with
the financial support of FORTH-ICS under the GreenVM project

Abstract

As mobile devices and data-centers expand to cover global needs for services
and personal computing, power consumption of systems and devices has become
the most prevalent concern for hardware designers and software developers. ARM
processors already dominate the mobile world and are taking leaps into the server
market due to their inherent energy efficiency. In this work we study the energy
characteristics of modern ARM processors at the instruction level.

To characterize the energy consumption of ARM processors we measure the
energy consumption of special purpose benchmarks. Our measurements are made
using actual voltage/current sensors provided by the Odroid-XU+FE development
board which contains an ARM big. LITTLE processor consisting of two clusters of
four Cortex-A7 and four Cortex-A15 cores.

Our characterization benchmarks are designed specifically to stress specific
units of the datapath. With two different benchmarks for each instruction type,
we study both the latency and the energy of instructions as well as the maximum
throughput of the processor for that instruction.

Our findings for Cortex-A7 cores show that integer instructions cost from 50 to
80 pJ each, float /double instructions from 80 pJ to 350 pJ each, and more complex
instructions like divisions cost from 150 pJ to 1200 pJ per instruction. Load and
store instructions cost 150 pJ to 200 pJ each when hitting in the L1 cache whereas
the cost increases up to 270 pJ when accessing the L2 cache. On the Cortex-Al5,
instructions cost three to five times more than on Cortex-A7 for the same clock
frequency, even when the two cores show the same throughput for an instruction.

For benchmarks that fit mostly in the L1 cache, we observed that at a same
clock frequency, their execution time is 20% to four times faster on Cortex-A15,
while energy to completion is increased by 2 to 4 times, relative to Cortex-A7.
When comparing Cortex-A7 at the lowest frequency of 500 MHz to Cortex-A15
at the highest frequency of 1.5 GHz, we see that the execution time is 4 to 10
times faster on Cortex-A15, while energy to completion is increased by 5 to 9 times
relative to Cortex-A7

Through these measurements, we developed a thorough characterization of the
ARM instruction set with energy and latency metrics for every instruction type.
We validated the correctness of our characterization by developing an instruction
level energy model and testing it on a variety of real programs. Our evaluation
shows average mispredictions of 8.5% for Cortex-A7 and 14% for Cortex-A15.

Furthermore, we utilize our characterization and energy model to quantify the
energy characteristics of heterogeneous multiprocessing, like ARM big. LITTLE,
and show how this can help optimal workload placement in such systems. We
highlight the different factors that contribute to the energy expenditure of such
systems and show how these differ from one processor to the other.

Hepirngm

Ko ou gopntéc cuoxevéc xon T data-centers emextelvovton yio va xohOpouy Tic
TOYXOOUIES AVAYXES YO ATOMXES UTOANOYLIOTIXEG UTNRECTES, 1) EVERYELUXT] XATAVAAWOY) TOUG
€xet yiver évol and Tol MO OMUAVTIXG VEUATA YLoL TOUG OYEBLIGTEC UTOAOYLOTWV Xl TOUG
npoypoppatiotés. Ou emelepyactéc ARM %01 xuptapyoly oty ayopd QopntedyY GUGKEL-
OV %o emEXTEVOVTAL X0 GTNV oyopd EEUTNEETNTAOY AOYW TNC EUQUTNG TOUS EVERYELOXNG
AnOBOTIXOTNTAS. XE AUTH TN epYaolol UEAETAUE TOL EVEQYELUXE YOPOXTNELO T HOVTEQVLV
eneepyactadv ARM og eninedo eviohdv.

I vo peletricoupe Ty evepyelaxt] xatoavdhwor twy enelepyactedy ARM petpdue vy
EVEQYELOXY] XUTAVIAWOT| TEOYEAUUUATWY €ix0U oxomol. Ot UETPNOEIC UAC TEOYUATOTOLOUV-
oL HE YO TEoYUaTIXGY oo INTARmVY THoNG/EEVUOTOC TTOU TUREYOVTOL OO TNV TAATPSpUA
avéntuéne Odroid-XU+E 7 onola nepiéyet éva encéepyacti ARM big, LITTLE o onolog
anoteheltan and téooeplc nuphvee Cortex-A7 xou téooepic Cortex-Al5.

To TEOYEGUUATA TOU YENCULOTOCOHE Yol TNV UEAETN Hog elvon oyedlaouéva eldixd Lo
Vo THECOUY GUYXEXPLIEVES Hovddee tou datapath twv eneepyactdv. Me Suo Swpope-
XA TpoYedupaTa Yiot xdde TOTO EVTOMAC, WEAETHUE TNV XaduoTERNOT o TNV EVERYELUXY
XATAVIAWOT) TV EVIOAGY XS Xou TNV PEYIO TN amodocT Tou enelepydoTh yio Ty xdle
plot.

Ou petprioeig pog v toug Cortex-A7 Belyvouv ot integer evtohéc xootilouv and
50 pJ éwc 80 pJ 1 xadepia, evtoréc float/double xootilouv and 80 pJ éwc 350 pJ 1
xadeplo, xou o TOAUTAOXEG EVIONEG OTwe dlangéaele xootilouy and 150 pJ éwc 1200 pJ
avd evtohy. Ot evtokég load xau store xootilouv 150 pJ éwg 200 pJ 1 xadepio dtov
1 mpdoPact yivetow oto medTo eninedo xpupnc UVAUNG, eve To xdoTog audvetal péypl To
270 pJ o6tav n npdofao yiveton oto Bedtepo eninedo xpughc uvAune. Xtov Cortex-Ald ot
evtohéc xootilouy Tpelg He TEVTE Qopéc TEplocdTERD amd 6Tl otov Cortex-A7 yio v Bl
ouy VTN POAOYLOD, axdua xou dtav oL U0 emelepYaoTéS EMTUYYAVOLY TNV (Bla ambdoon
Yio Lol EVIOAY.

I npoypdupata Tou YweoLY xUplte O0To TEWTO ENINEDO XPUPHEC UVAUNG, TOEATNEOVUE
OTL oty (Bl suyvdTTa pohoYoU 0 Ypdvoc exteheotc touc elvan 20% éwe TéooEplc Popéc
yvenyopdtepoc otov Cortex-Ald, evd 1 evepyelaxt] xatavdAwon Péyel TNV ohoxiipwon
auEdvetan 2 pe 4 gopéc, oe oyéon e tov Cortex-A7. ‘Otav ouvyxpivouye tov Cortex-A7
otV younhoteen cuyvotnta v 500 MHz pe tov Cortex-Al5 otnv udmidtepn cuyvdtnta
twv 1500 MHz, BAémoupe oti 0 ypdvoc extéleonc evan 4 pe 10 gopég ypnyopdtepog ooV
Cortex-A15, v 1) evepyelox) xatoavdAwon uéypel Ty ohoxhipwor avgdveton 5 ue 9 popéc
oe oyéon ue tov Cortex-AT.

Méoa ano Tic petpoelc poc avantOEape €vay TAHeN YapaxXTnELoWd Yol TO OET EVIOAGDY

ARM ye yetpiéc yloo TNV EVERYELAXT XoTAVEAwoT ot TNV xaduotépnon xdde eviohfc.
Enoknieboaye tov yopoxmnelond Uag PEow TNg avantuéng evog eVepyelaxol JovTéAoU Emi-
TEBOU EVTOA®Y Xou TNV doxiun Tou oe éva TAdog TeayUaTiXGY TeoYpapudtwy. O Soxyég
o detyvouv péoco opdhpa tedfredne 8.5% yio toug enelepyootée Cortex-A7 xan 14.5%
yio Toug Cortex-Al15.

Emniéov, YeNnolLOTOLOUUE TOV YOPUXTNELOUO XUl TO EVEPYELOXO HAC HOVTEAO Yidl VO TTO-
COTIXOTIOICOUKE TA EVERYELOXE YUPOXTNELO TIXE CUCTNUATWY ETEpOYEVOUS TohuenEEEpYaGiag
onwg 10 ARM big. LITTLE xou delyvouue nwg autéd pnopel va Bondrioel tnyv anoteheoud-
TUUSTERT] XATOVOUT ETEEERYAO TIXDY TOpwYV ot TéTola cuoThuata. Toviloupe Toug BlapopeTi-
%00¢ TMUPAYOVTEC TTOU GUVELGHPEPOLY GTNV EVEQYELNXT| XATAVIAWGOT] TETOWY CUCTNUATLY X0l
delyvouue we ouTo Umopel vor dlaépel avdpeco 6Toug dUo enelepyaoTéC.

Contents

1 Introduction
1.1 Contributions

2 Motivation - Related Work
2.1 Related Work
2.2 Motivation

3 Background
3.1 Processor Energy Consumption
3.2 Processor Performance and Energy Efficiency Metrics

4 Methodology
4.1 Special Purpose Benchmark Design

5 Experimental Setup
51 ARM big.LITTLE
5.2 ARM Cortex-A7 and Cortex-Al5 cores
5.3 Power Sensors
5.4 Migration Policies and Frequencies

6 ARM Instruction Set
6.1 ARM Instruction Categories,
6.1.1 Branch Instructions
6.1.2 Integer Arithmetic and Logic Instructions
6.1.3 Floating Point Arithmetic Instructions
6.1.4 Register Movement Instructions
6.1.5 Compare and Test Instructions
6.1.6 Load and Store Instructions
6.2 Other Instructions and Assembler Mnemonics

7 Measurement Results - Energy per Instruction
7.1 Results Summary
7.2 Integer Arithmetic and Logic Instructions
7.3 Float Arithmetic Instructions

W

10
10
11

13
13

15
15
16
17
18

19
22
22
22
23
23
24
25
26

7.4 Double Arithmetic Instructions 36
7.5 Integer Move Instructions 38
7.6 Float Move Instructions 40
7.7 Double Move Instructions 42
7.8 Integer Compare and Test Instructions 44
7.9 Float Compare Instructions 46
7.10 Double Compare Instructions 47
7.11 Integer Load and Store Instructions 48
7.12 Float and Double Load and Store Instructions 50
7.13 Energy per Cycle 51

8 ARM versus x86 53
9 Evaluation 55
9.1 Evaluation Benchmarks 55
9.2 Energy Model 63
9.3 Evaluation Results 68
9.3.1 Discussion 74

10 big.LITTLE Comparison 77
11 Conclusions and Future Work 82

A Using Architectural Counters to Evaluate the Cost of Instructions

in x86 Architectures 84
Al Introduction 84
A.2 Methodology 84

A.2.1 Benchmark Specification 85

A.2.2 Experimental Setup oL, 86
A.3 Benchmark Description and Results 86
A4 Conclusion. e 98

II

Chapter 1

Introduction

Energy consumption has always been a major concern for computer architects.
At first heat dissipation and therefore maximum power was the limiting factor.
High temperatures and overall heat generation is the reason that high power chips
require expensive packaging and massive heatsinks with active cooling. Even if
heat dissipation and power demands can be satisfied, overall energy consumption
has become one of the most important design problems of the last decade. Its
importance is mainly attributed to two different reasons:

First, as data-centers and super-computers are becoming more and more preva-
lent, energy consumption contributes greatly to the total cost of ownership (TCO)
and to their environmental impact both for running the actual servers and for cool-
ing them. Studies suggest that servers consume approximately 1.5% of the global
power consumption [1]. In addition, cooling and power costs may soon rise to more
than the cost of the actual servers [2]. The role of processor energy consumption
is important as it can be up to 30% of a server’s power demand |[3].

Second, The ubiquity of mobile devices such as smart phones laptops and
tablets, has made battery life a big marketing point. Mobile devices have increased
in numbers globally from 6.9 in 2013 to 7.4 billion in 2014 [4]. Furthermore, as
more and more processing power is required from devices with limited battery ca-
pacity and no practical heat dissipation mechanisms, energy efficiency and peak
power have become critical design concerns.

Energy consumption has been at the forefront of optimization efforts for the
biggest part of the last decade. In the early 2000’s performance scaling by increasing
the frequency hit the power wall not only because of design constraints and heat
dissipation issues, but also due to the sheer power demand of complex processors.
Computer architect’s efforts to push the limits of Instruction Level Parallelism
demanded out-of-order processors with huge speculation mechanisms that were
for the most part underutilized due to the serial nature of code and instruction
dependencies. These factors have led to a plateau in single thread performance
that cannot be overcome without huge losses in energy efficiency and chip area.

There are a number of techniques for reducing energy consumption in proces-

sors. The most significant was the advent of multi-core processors. Multi-cores
have been a great success, not only because they have pushed the performance
limits further by exploiting parallelism, but also because they can induce huge en-
ergy benefits. Multi cores offer better performance per Watt because they utilize
smaller, more energy efficient cores that are inherently more energy efficient, and
additionally, with more cores fine-grain power state control can be applied more
easily.

Furthermore, there have been a plethora of techniques for energy optimizations
at the circuit and architecture level, these include DVFS [5] loop caches [6, 7],
and energy optimizing data encoding schemes [8, 9]. Even lower level techniques
include clock and power gating, low threshold voltage transistor technology and
more.

In this work we characterize the energy consumption of two modern ARM
processors by designing special purpose benchmarks that stress specific data-path
units every time. These measurements are done in a wide range of frequencies that
reveal how energy consumption scales with frequency. From our measurements of
these benchmarks we produce a static energy estimation model for each instruction
type based on the Energy per Instruction (EPI) and latency that we observe. We
then proceed with evaluating our model with real benchmarks completely separate
from the ones used to develop the energy model. Our model has an average error
of 8.5% for Cortex-A7 cores and 14% for Cortex-A15 cores. Our energy model
can be used at compile time to optimize code for energy consumption and also for
characterizing existing workload energy-wise given a run-time and an instruction
breakdown. In addition to the above, we use some earlier work from the authors
the energy cost of instructions at X86 processors to compare the ARM and X86
architectures energy wise at the instruction level.

The rest of this thesis is structured as follows:

In Chapter 2 we present some related work and the motivation for this work
In Chapter 3 we offer some background on processor energy consumption and
performance. In Chapter 4 and 5 we describe our methodology and experimental
setup. In Chapter 6 we give an overview of the ARM instruction set. Chapter
7 presents the results of our characterization. Chapter 8 Compares the energy of
X86 and ARM processors based on our characterization from chapter 7 and some
eralier work on X86 instruction characterization. Chapter 9 presents our energy
model and the evaluation results. Chapter 10 offers some insight on the use of our
characterization and energy model for optimal compute resource allocation, and
chapter 11 concludes this work with some remarks and future work plans. Our
earlier work on X86 Intel processors can be found in appendix A

1.1. Contributions

1.1 Contributions

The contributions of this work are:

e A thorough characterization of the ARM instruction set for the energy and
performance characteristics of two different ARM processors at the instruc-
tion level using real energy measurements and characterization benchmarks
designed specifically for that purpose.

e An accurate instruction level energy model based on the instruction level
characterization.

e An evaluation of our energy model using a variety of real world benchmarks
like whetstone, linpack, matmul, and fibonacci. Our model achieves average
energy misestimations of 8.5% for Cortex-A7 and 14% for Cortex-A15 cores.

e A significant insight on the energy efficiency and performance trade-offs for
heterogeneous multiprocessing architectures like ARM big. LITTLE.

e A quantitative comparison between ARM and Intel X86 architectures based
on some earlier work on X86 architectures.

Technical Report FORTH-ICS/TR-450 3

Chapter 2

Motivation - Related Work

2.1 Related Work

There has been great interest in the power efficiency of processors and systems
in the last 20 years. There are many ways one could use to study the energy
consumption of processors and trade-offs between performance and energy con-
sumption. One way towards that is a series of simulators and energy models have
been proposed to help limit the design-space and point out design inefficiencies
early in the design process.

At the Cache and Memory level, the most well-known tools used are Dramsim?2
and Cacti which can be used for timing and energy analysis of DRAMS and caches
respectively [10, 11]. Orion2 is a model used to estimate the energy of Networks
on Chip (NOCs) that are the de-facto interconnects used for chip multiprocessors
[12]. Wattch is a processor energy simulation tool that can provide architects with
pre-silicon energy estimation [13]. For a wider system approach McPat can be
used to estimate the Energy, Delay and Area metrics for a design with quantitative
properties and activity factors as inputs for the simulation [14]. Gemb5 is a simula-
tor that is widely used and although it does not support power estimation, it has
proven very usefull in research, including this work, where it was used to obtain
the instruction traces for the evaluation benchmarks [15].

The goal of most, if not all, works regarding processor energy consumption
is to correlate the energy of the processor with some other measurable quantity,
since actual measurements are not always possible or desired. Once a correlation
of energy with some other metric has been established, the results can be used for
software or hardware design optimization.

The metric with which energy will be correlated can vary depending on ap-
proach, it can be either the runtime, the IPC/CPI metric, the instruction mix,
runtime events like branch mis-predictions or cache misses, parallelism or active
threads, and many more.

Depending on the metric used and its temporal availability, the emerging model

4

2.1. Related Work

can be used either statically by the hardware designer or software/compiler devel-
oper to ensure a good performance/energy trade-off, and dynamically at runtime,
for techniques like auto-tuning or power capping.

To develop each model, some measurement of energy consumption of the pro-
cessor is needed to form a correlation with some other metric(s) that will be proxies
for energy consumption. The way of measuring the energy varies in the literature,
from direct processor measurements to system wide measurements to architectural
simulation with tools like wattch and gate level or register transfer level hardware
simulations.

Bellow we present the most prevalent works from the literature covering all
options for measurement method, correlating metric and energy model types (static
or dynamic).

In [16] and [17] the authors have introduced an method including empirical
measurements and linear regression for deriving a detailed instruction level energy
model for a 3-stage pipelined ARM7TDMI 32 bit processor. Their findings include
differences in energy consumption among instructions based on opcodes, fetch ad-
dress, register number and hamming distances between instructions, instruction
addresses, and their operands. For their experiments the use a fine grain energy
sensor and statistical analysis. Their method requires a cycle accurate power mea-
suring technique which is not feasible for todays clock speeds. Additionally, they
have not included the effects of stalls in the data-path due to inter-instruction de-
pendencies and the same is true for load and store instructions, however they do
mention these limitations in their conclusions as future work. A similar work to the
above is [18] where the authors use gate level netlist with annotated capacitance
information to evaluate their energy model for the ARM7TDMI processor through
gate level simulation.

In [19] an instruction-level power model for a single core, in-order RISC pro-
cessor architecture is presented. The authors do not analyze each instruction indi-
vidually, but study the average power and running time instead. Their results find
that the power in a processor is nearly constant, no matter what instructions are
executed, but the I/O port power is related to the behavior of the program. This
however does not apply to the processors in our study and the reason is that in
[19] they implemented an OpenRISC processor in which nearly all of the instruc-
tions need 5 pipeline stages and no matter what the instruction is, the ALU always
performs all the different operations and only chooses a specific one as an output.

Another work where the authors do not consider each arithmetic and logic
instruction individually is [20]. Their analysis is done on an ARM1176JZF-S pro-
cessor. The authors show that the power is related to both the distribution of
instruction types and the operations per clock cycle (OPC) of the program. They
also prove that energy per operation (EPO) decreases with increasing operations
per clock cycle, which is a point we also confirm through this work. Their results
distinguish the energy per instruction for load, store and arithmetic and logic in-
structions, they also distinguish between the operands types of instructions like in
our work, but find no significant differences. Their model can have errors in power

Technical Report FORTH-ICS/TR-450 5

Chapter 2. Motivation - Related Work

prediction ranging from -7% to +8%.

In [21], Wang and Ranganathan develop an instruction-level prediction mecha-
nism to estimate the energy consumption of a given program under different num-
bers of cores in a GPU. They build a mathematical model of energy consumption
where the independent variable is the number of active stream multiprocessors in
the GPU which takes the profile of PTX instructions as input With the predicted
energy-optimal number of active cores from their model, there can be energy saving
from 7.31% to 11.76% on average, with a worst case of performance lost 4.92% for
the benchmarks they studied.

Another paper for GPU energy characterization is [22]. In that work, the
authors have created a execution time prediction model and an energy consump-
tion prediction model that take instruction-level and thread-level parallelism into
consideration. The energy model works with the time prediction from the time
prediction model and complemented with empirical data for each specific GPU
device.

in [23] the authors have characterized the energy consumption of data trans-
fers and arithmetic operations in X86-64 micro-architectures from Intel and AMD.
Their approach is to isolate the energy consumption characteristics of certain basic
operations like data transfers and arithmetic operations and they also investigate
how expensive data transfers from different cache levels or main memory are.

Another energy model for x86-64 is [24] where the authors construct a model by
identifying how energy per instruction scales with the number of cores, the number
of active threads per core, and instruction types in the Intel Xeon Phi processor.
They use a set of specialized micro-benchmarks exercising different categories of
instructions with varying memory behavior, number of active cores, and number of
active threads per core to characterize the Energy per Instruction of the core. The
energy model utilized the energy per instruction results along with performance
counter statistics and achieves an accuracy between 1% and 5% for real world
benchmarks.

[25] presents a methodology to solve the problem of run-time power optimiza-
tion by designing a processor based on the SimpleScalar/PISA instruction set ar-
chitecture that estimates its own power/energy consumption. Estimation is per-
formed by the addition of small counters that tally events which consume power.
This methodology results in an average power error of 2% and energy estimation
error of 1.5%.

In [26] Jordan et al. propose a rapid method to estimate the energy consump-
tion of candidate architectures for VLIW ASIP processors. The proposed method
avoids the time-consuming simulation of the candidate prototypes, without any
loss of accuracy in the predicted energy consumption. In this work they find that
we can accurately predict the energy consumption of proposed architectures while
avoiding simulation of the complete system.

In [27], an instruction-level energy model is proposed for the data-path of very
long instruction word (VLIW) pipelined processor that can be used to provide ac-
curate power consumption information during either an instruction-level simulation

6 Technical Report FORTH-ICS/TR-450

2.1. Related Work

or power-oriented scheduling at compile time. The analytical model takes into ac-
count several software-level parameters (such as instruction ordering, pipeline stall
probability, and instruction cache miss probability) as well as micro-architecture
level ones (such as pipeline stage power consumption per instruction) providing
an efficient pipeline-aware instruction-level power estimation whose accuracy is
very close to those given by register transfer or gate-level simulations. They have
demonstrated an average error in accuracy of 4.8% of the instruction-level estima-
tion engine with respect to the gate-level engine simulation.

Another power estimation model based on hardware performance counters is
presented in [28]. The authors use linear regression and rely on already available,
high-level benchmarks for training instead of self-written or hand-tuned micro-
kernels. That way, they develop an energy consumption model for the IBM POWER7
processor with errors less than 5% across various multi-threading usage scenarios.

In [29] Martonosi and Cotreras have used performance counters to model the
energy consumption of an Intel Xscale processor with quite good accuracy, the
average estimated power consumption is within 4% of the measured average CPU
power consumption.

Martonosi and Joseph also examine the use of hardware performance counters
as proxies for power meters in [30]. They simulate an Alpha 21264 core with Wattch
and also use real power measurements with an Intel Pentium Pro based system to
develop end evaluate their model.

Isci and Martonosi employ a similar methodology with performance counters
in [31], this time they provide power breakdowns for 22 of the major subunits of
the Intel Pentium 4 processor over minutes of SPEC2000 and desktop workload
execution.

In [32] the authors categorize the AMD Phenom performance counters into
four buckets: FP Units, Memory, Stalls, and Instructions Retired and develop
microbenchmarks specifically to stress those four counters and explore the space
of their cross product. They achieve median errors in their modeling of less than
8%. Just like in our study, their evaluation benchmarks are separate from the ones
they used to derive the energy model.

In [33] the authors use and extend the Embedded StrongARM Energy Sim-
ulator (EMSIM) to dynamically calculate the source-code level program energy
consumption between breakpoints set by GDB. For the processor energy model
they use the StrongArm SA-1100 instruction-level energy model.

In [34] the authors present a general methodology to implement a processor
energy model based on instruction-level characterization of a SPARC-based Leon3
processor. The model is developed by simulating back-annotated gate-level netlist
and has two levels of accuracy: a coarse-grain estimation based on characteriz-
ing each single instruction and a fine-grain estimation accounting for the impact
of instructions interdependency on energy and based on characterizing pairs of
instructions together.

Natarajan et al in [35] have calculated the effect of mis-speculation and over-
provisioning in an Alpha 21264 core simulated by Wattch. They have found that

Technical Report FORTH-ICS/TR-450 7

Chapter 2. Motivation - Related Work

flushed instructions account for approximately 6% of total energy, while over-
provisioning imposes a tax of 17% on average.

Blem et al analyze measurements on the ARM Cortex-A8 and Cortex-A9 and
Intel Atom and Sandybridge i7 microprocessors over workloads spanning mobile,
desktop, and server computing to investigate the role of ISA in modern micropro-
cessors performance and energy efficiency in[36]. They find that ARM and x86
processors are simply engineering design points optimized for different levels of
performance, and there is nothing fundamentally more energy efficient in one ISA
class or the other.

2.2 Motivation

From the related work described above we can see a plethora of energy models,
characterization and measurement methods and use scenarios for the findings of
each work. Although our methodology is similar to some of the works above and it
combines some techniques seen in these, it differs from these in a few fundamental
ways:

e Measurement granularity: Our method does not require too fine grain
measurements like in [16, 17, 18] or gate level simulation like in [19] in order
to get the energy per cycle or energy per instruction.

e Correlating metric: Our energy model is static, this means that the cor-
relating metrics are not extracted at runtime like cache misses or branch
mis-predictions like in [29, 32, 33]. Our model uses instruction breakdown
and run cycles that can be known at compile time based on the latency of
each instruction that we also extrapolate through our measurements. This
makes our model best suited for compile time optimizations.

e Width and depth of characterization: In our approach we characterize
most of the ARM instruction set, showing the (not so) subtle differences
between instructions. Additionally, we characterize each instruction not only
for energy but also for latency, this can tell us not only the cost of each
instruction but also the cost of each instruction relative to its latency which
is one of the most important factors of our energy model. Furthermore,
by examining two different processors with the same instruction set at a
wide range of frequencies gives us a better understanding of how energy
consumption scales with frequency, as well as, what is the relation between
different implementations of the same instruction set.

e Target architecture: Our work focuses on the latest generation of ARM
processors which are significantly more complex than those studied in [16,
17, 18, 19, 20, 25].

e Usability: Our model can be exploited for optimizations at compile time
and also for the energy estimation of existing workloads based on run cycles
and instruction breakdown. These metrics are available both at compile time

8 Technical Report FORTH-ICS/TR-450

2.2. Motivation

and via runtime profiling and do not require any in-depth understanding of
the processor at hand.

For the reasons stated above we believe our work augments and complements
the current effort to understand the energy consumption of processors in a novel
and complete way.

Additionally, this work sheds some light on the idea of heterogeneous multi-
processing [37] as an energy saving technique, as well as the relation of energy
consumption with operating frequency for two different processor types and a wide
range of frequencies.

Technical Report FORTH-ICS/TR-450 9

Chapter 3

Background

Understanding the energy consumption of processors has been an interesting re-
search subject for a long time. The same is true for research on architectural
and circuit-level optimizations to reduce energy consumption and improve energy
efficiency. In this chapter we give a brief introduction on processor energy con-
sumption and introduce a number of metrics has been used for quantifying energy
consumption and performance.

3.1 Processor Energy Consumption

Processors are complex circuits made of transistors. A transistor can have two
states, either ON or OFF, meaning that current can and cannot run through it
respectively. Logic gates with one or more inputs and outputs are composed by
connecting transistors together, the way one transistor’s output is connected to
the input of one or more other transistors signifies the logic function that logic
gate implements. Each transistor is characterized by its inherent capacitance (C'),
when the transistor changes state, that capacitance is either charged or discharged
according to the state transition. There are two ways in which transistors consume
energy.

The first is static energy that is consumed regardless of activity due to leakage
currents. Static energy depends on the supply voltage and the characteristics of
the transistors such as gate length and the materials that it is composed of. This
means that static energy consumption is mostly an inherent characteristic of the
circuit.

The second type of transistor energy consumption is dynamic energy. Dynamic
energy is consumed when a transistor changes state meaning that the transistor
capacitance is either charged or discharged. Dynamic energy is also dependent
on the transistor characteristics that determine the capacitance but also on the
state change frequency and the voltage. The equation that describes the energy
expenditure F of a transistor operating on voltage V at frequency f and has
capacitance equal to C' with activity a is:

10

3.2. Processor Performance and Energy Efficiency Metrics

E:%xCszxfxa

From this equation we see that dynamic energy is linear to capacitance and
frequency while quadratic in respect to voltage. The activity factor describes the
percentage of state changes for a transistor, this is due to the fact that when the
state does not change between cycles there is no dynamic energy consumption.
Furthermore, at higher frequencies the voltage has to be higher to ensure correct
operation, that is because in order for the transistor to achieve one of its two stable
states, the capacitance has to have enough time to charge or discharge, because of
this, if the frequency is increased so must the voltage.

The equation above is used to describe the dynamic energy in circuits with more
that one transistor such as processors. However, the capacitance of an entire chip
is not always known and the activity factor cannot be determined easily without
painfully detailed simulations at the transistor level for every possible state of the
circuit. Due to these limitations, it is not easy to utilize this equation directly
with processors. Nonetheless, its usefulness mainly consists of the relation -linear
or quadratic- that energy consumption has with frequency, voltage, and activity
factor.

3.2 Processor Performance and Energy Efficiency Met-
rics

There are a number of metrics to characterize the performance and energy efficiency
of processors. The most trivial energy/power metric is Thermal Design Power
(TDP). TDP is a characteristic of the processor chip provided by the manufacturer
for heat dissipation issues, it is a quantity measured in Watts and, to put it simply,
it is the maximum power and heat production for which there must be adequate
cooling. This characteristic of processors is pretty useless for any other than its
intended purpose because the processor chip will not always reach that level of
power drain and most of the time it will work well bellow that limit even at full
utilization.

To study the performance of a processor a series of metrics has been proposed.
The simplest are metrics that quantify the raw computing power of a chip, these are
metrics like Gflops or Gops and can give an upper limit to the computing capacity
of a processor. For more meaningful measurements of a processor performance and
comparative measurements with others, the rates of a range of standardized bench-
marks are used, these benchmarks utilize common microkernels from mathematic
and scientific problems and give a rating of the processor depending on the time it
took to complete them [38, 39, 40].

The most interesting category of metrics is that of correlating metrics. These
correlate performance and energy consumption in order to give a more holistic
view of the efficiency of a processor. Some examples of such metrics are Energy

Technical Report FORTH-ICS/TR-450 11

Chapter 3. Background

Delay Product (EDP) and some of it’s derivatives like ED?P. EDP is simply the
product of the energy consumed and the time it took to perform a computation,
this metric is valuable in that it evens out differences between architectures with
vastly different performance and energy characteristics and when no common point
of comparison can be found.

ED?P is the same as EDP with emphasis on the time it took to run a compu-
tation. One can choose between variations of such metrics based on the purpose
of the processor under study. Some simpler and more general correlating metrics,
utilized mostly in large scale systems like data centers and supercomputers, are
Gflops/Watt or Jobs/Watt but these metrics usually concern the power consump-
tion of an entire system and not only the processors, nonetheless, they are worth
mentioning for a wider insight.

In these last few paragraphs the main performance, energy and energy efficiency
metrics were summarized, the range of these metrics and different use-scenarios
were highlighted to showcase the fact that energy efficiency is mostly a relative
concept that depends on many different factors and metrics.

12 Technical Report FORTH-ICS/TR-450

Chapter 4

Methodology

Processors consume energy when executing instructions but also when stalling,
whether stalling is caused by dependencies between instructions or while waiting
for the memory system to respond to a load instruction. Determining the exact
contribution of each component of a processor to the total energy consumption is
not feasible for two reasons.

First, the low level architecture of most processors, including those in our study,
is not disclosed apart from a wide architecture view, so it is not possible to know the
exact constitution of a processor and thus a circuit level approach is not feasible.

Second, even if the low level architecture of the processor is known, the sheer
complexity of the system is prohibiting. To have a low level component based
energy model of a processor would require, apart from full knowledge of the archi-
tecture, painstakingly long simulations with circuit analysis tools like Spice [41].

Additionally, these simulations would have to account for all possible inter-
actions between instructions, instruction orderings, and their arguments. Such a
methodology would provide a very detailed model, however, such a model would be
mostly unusable to a compiler developer or a programmer trying to achieve energy
efficiency at the instruction lever due to its size and complexity.

For the reasons stated above we approach the problem from a higher level. We
view the processor as a closed system and try to determine its energy characteristics
based on observations and measurements of benchmarks design specifically to tar-
get specific instructions or instruction types. This way, we build an energy model
that is usable for energy optimizations without trading off too much accuracy.

4.1 Special Purpose Benchmark Design

In order to isolate the net effect of each instruction type on the energy consumption
of the processor, we have to isolate each instruction. To do that, we have designed
a benchmark for each instruction, we run our benchmarks for a sustained amount
of time to achieve statistically important measurements and mitigate the effects of

13

Chapter 4. Methodology

initializations and operating system overheads.

Each benchmark is a highly unrolled loop that executes one thousand instruc-
tions of the same type in every iteration. This level of unrolling is done to diminish
the effect of branches. The instructions are written directly in assembly to avoid
any compiler optimizations and the dependencies between them are controlled.

Due to the fact that all our processors can issue more than one instruction
per cycle (two for Cortex-A7 and three for Cortex-A1l5) and also to study the
energy and performance of instructions with different datapath utilization, we have
designed two kinds of benchmarks for each instruction.

The first benchmark type executes instructions that have no dependencies be-
tween them, this means that every instruction has no Read-After-Write (RAW)
dependencies with the previous instruction in program order, this allows us to see
the maximum throughput of the processor for every instruction type. An example
can be seen in listing 4.1.

The second type of benchmark intentionally introduces RAW hazards between
every instruction and the one before it in program order. This allows us to study
the latency of each instruction, that is, how many cycles a single instruction must
occupy a functional unit of the data-path until it has completed and its result can
be used by a subsequent instruction.

This type of measurement is very important to our energy model development
as it can show how much of the total instruction energy (EPI) can be attributed to
each instruction and what part of that energy is part of the datapath cost regard-
less of the instruction being executed. This type of benchmark is not possible for
every instruction as not all instructions have a result that can be used by a subse-
quent instruction of the same type. For example mov instructions with immediate
operand as described in 6.1.4. An example of code with RAW dependencies is
shown in listing 4.2.

add rl, r2, r3
add rd, r5, ré6
add r7, r8, r9

Listing 4.1: Instructions with no RAW hazards

add rl, r2, r3
add rd, rl, ré6
add r5, r4, r7

Listing 4.2: Instructions with RAW hazards

For our study we have created more than 100 benchmarks to target all the
configurations described above.

14 Technical Report FORTH-ICS/TR-450

Chapter 5

Experimental Setup

Our work on ARM processors was carried out on a odroid XU+E board [42]. This
board includes a Samsung Exynos 5410 (or Exynos 5 octa) System on Chip (SoC),
a PowerVR SGX544MP3 GPU and 2 GB of LPDDR3 for main memory attached as
a Package on Package (PoP) through a DFT protocol along with various peripherals
[43, 44, 45].

The SoC includes 8 ARM processor cores, four Cortex-A7 and four Cortex-
A15 on a heterogeneous multiprocessing configuration [46, 47|. Although there
are 8 cores in total, only 4 can operate at a time and there is a way to quickly
migrate running processes from one cluster to another mostly for power saving.
This configuration is known as single ISA heterogeneous processing in the literature
and developed by ARM under the name big. LITTLE [37, 48]. The processor is
manufactured at a 28 nm HKMG process by Samsung [49].

5.1 ARM big.LITTLE

ARM big. LITTLE is the commercial name for ARM’s heterogeneous multiprocess-
ing architecture based on the idea of single ISA heterogeneous multiprocessing for
energy efficiency first proposed in [37]. The main idea behind this is that a system
can have two different core types with the same instruction set and the capacity to
transfer state and migrate processes at runtime from one core type to the other.

The different core types are optimized for energy efficiency and performance re-
spectively, when the cores are underutilized the low power cores work while the high
performance ones are powered down. When there is need for more performance, the
high performance cores are powered on and the running tasks are migrated there
until there is no longer need for high performance, i.e the cores are underutilized,
so the running processes are once again handed over to the low power cores.

15

Chapter 5. Experimental Setup

Figure 5.1: Odroid XU-+E Board

5.2 ARM Cortex-A7 and Cortex-A1l5 cores

In ARMSs big. LITTLE implementation of single ISA heterogeneous multiprocessing,
the big (high performance) are Cortex-A15 cores while the little (low power) cores
are Cortex-AT.

Cortex-A7 cores are dual issue in-order cores with 32 KB of L1 Data, 32 KB
of L1 Instruction Cache and 512 KB of shared L2 cache. Their pipeline is 8 to 10
stages long and consists of one load/store, one multiply, one floating point, and
two integer units as seen in 5.2.

Cortex-A15 cores are triple issue out-of-order cores with a data-path length
between 15 and 24 stages. The L1 caches remain the same in size with the Cortex
A7 at 32 KB for both data and instructions, however the also shared L2 cache is
significantly bigger at 2 MB. The Cortex-A15 datapath has a separate load and
store unit, two integer units, two floating point units as well as a separate branch
unit and a single multiply unit as seen in 5.3.

Both core types have identical architecture register sets, these are 16 32-bit
general purpose registers and 16 64-bit floating point registers that can also be
seen as 32 32-bit floating point registers.

In terms of frequency scaling, the little Cortex-A7 cores can operate from 500
MHz to 1.2 GHz and the big Cortex-A15 cores from 800 MHz to 1.5 GHz. The
architectural differences, different datapath lengths and frequency ranges reveal
that the little cores are designed to trade off performance for energy efficiency
while the big cores for the opposite.

The two different clusters of big and little cores are connected with an ARM
CCI-400 cache coherent interconnect [50], this makes migration of processes from
one cluster to the other easy and fast, ARM reports a migration time of a few
microseconds. Although it is possible to utilize some of the little cores and some
of the big cores or all of them at once as stated in [51] under the term Global Task
Scheduling, for this study we have not considered this scenario as our interests lie

16 Technical Report FORTH-ICS/TR-450

5.3. Power Sensors

Writeback

Integer

Multiply
Lowest Decode Issue Floating-Point / NEON
Operati Dual Issue

PointF Load/Store

Figure 5.2: ARM Cortex-A7 Pipeline

Queue Issue oot Writeback
N - :
e Dew%?é:eig me & | || o Floating Point | NEON
(IITTPITITITTH)
N Branch
11 1 Load
Loop Cache L N

Figure 5.3: ARM Cortex-A15 Pipeline

in the energy characteristics of cores and not the entire system.

Both Cortex-A7 and Cortex-A15 cores implement the ARM7a Instruction set
and have floating point hardware units as well as hardware division but do not
implement the SIMD extensions [52, 53].

5.3 Power Sensors

The odroid XU+ E board that we used is equipped with four different power /current
sensors. The sensors are ina231 chips and one is used for each cluster of big and
little cores, one is used for the on package DRAM and one for the GPU. These
sensors are connected to the processor via an 12C bus and provide registers for
configuration and reading their values.

The ina231 sensors measure two types of voltage, bus and shunt voltage in an
interleaved manner. The bus voltage indicates the voltage of the load and the shunt
shows the current drawn when converted accordingly either in the sensor chip itself
or through the driver in the OS kernel. It is also possible for the ina231 chips to
calculate the voltage-current product in the chip but the default driver chooses to
do so in kernel space to avoid I12C transactions.

The ina231 uses eight 16-bit registers, all accessible through i2c¢ interface. The
measured bus-voltage and shunt-voltage reside inside the two read-only ina231
registers. The calculated current and power similarly reside inside the other two
read-only registers. The rest of the 4 registers are read /write and they are used for
configuration purposes.

Technical Report FORTH-ICS/TR-450 17

Chapter 5. Experimental Setup

The configuration registers can be used to set the conversion intervals for con-
verting bus and shunt voltages into voltage and current an to set the number of
samples that will be averaged and stored into the read-only registers. The available
conversion times for either bus-voltage or shunt voltage are: 140us, 204us, 332us,
588us, 1100us, 2116us, 4156us, and 8244us. The available configuration number of
samples are: 1, 4, 16, 64, 128, 256, 512, and 1024 samples.

The ina231 chip follows the following routine to update its registers:

1. Makes a shunt voltage measurement.

2. Makes a bus voltage measurement.

3. Updates its measurement registers by the average of the bus-voltage when
the set number of samples has been taken.

For example, if bus-voltage conversion time is set to 1100us, shunt-voltage
conversion time is set to 140us and number of averaging samples is set to 4, each
pair of shunt-bus voltage value lasts for 1240us and each register update lasts for
4x1240us=4960us or 4.96 ms. Thus, each measurement is updated every 4.96 ms.

The measurement registers are read from the driver and mapped onto a set
of files available for reading in user-space. For our study we have chosen, after
careful examination and experimentation, 140us for the bus and shunt voltage
conversion times and to average every 2048 measurements. That configuration
gives our measurements a granularity of 280ms that we have found to be detailed
enough without imposing big overheads for the system software.

5.4 Migration Policies and Frequencies

There are a number of settings regarding big. LITTLE migration, active core clus-
ters and frequencies available in our platform. The migration policy determines
when and how computing can migrate from the Cortex A7 to the Cortex A15 cores
and reversely, this can be set to either disabled, only A7, only A15 and either A7
or A15 which is the dynamic setting that allows migration from one cluster to the
other depending on core utilization.

Frequency can be set for both cores clusters within a preset range from 500
MHz to 1.2 GHz for the Cortex-A7 little cores and from 800 MHz to 1.5 GHz for
the Cortex-A15 big cores, the step for both core types being 100 MHz leaving a
total of eight different frequency settings for the little cores and also eight for the
big cores.

All the above settings are available at user-space through read/write system
files that can also be read to get the current values. Available in the system
are also temperature sensors for each core, these can be used to get the current
temperature of each core separately. We use these sensors to make sure that the
core temperatures in our experiments behave in a similar way. That way we do
not account for the effect of temperature in energy consumption as shown in [54].

18 Technical Report FORTH-ICS/TR-450

Chapter 6

ARM Instruction Set

In this section we introduce the ARM instruction set and its general philosophy,
we then present a categorization of the instructions based on functionality as well
as operands and type.

The processors we used for this study implement the ARMv7 instruction set
[52]. ARMv7 contains two instruction sets, the ARM and THUMB instruction sets.
These are almost identical in functionality and differ in the way the instructions
are encoded.

In the THUMB instruction set, the instructions can be encoded in either 16
or 32 bits. This has the advantage of smaller executable size for systems with
little available memory, but also presents some drawbacks. The most important
drawback is that most 16 bit instructions can only access 8 of the 16 general
purpose registers available in the processor. Additionally, some operations require
more that one 16-bit instruction and so are more efficiently implemented with a
single 32-bit instruction.

These limitations of the THUMB instruction set have shifted our focus away
from it. So we study only the ARM instruction set which offers full function-
ality and uniformity, we achieved this by setting the right compiler flags in our
experiments.

The ARM instruction set is a RISC type instruction set, all instructions are
encoded in 32 bits and can perform operations between registers, as well as load
and store operation between registers and memory.

However, operations between memory and registers like the x86 CISC instruc-
tion set [55] are not supported. There are some major features that characterize
the ARM instruction set and differentiate it from the standard RISC instruction
set as described in the literature [56, 57.

The most prevalent difference is the conditional execution of instructions. Most
ARM and THUMB instructions can be conditionally executed by setting a flag
in their assembly mnemonic. The instruction will be fetched normally and go
through some stages of the pipeline but the operation will not be performed, or
more accurately, the instruction will not have any effects on the programmers

19

Chapter 6. ARM Instruction Set

Mmemonic Meaning Meaning Condition
cond. extesion (integer) (floating-point) flags
0 EQ Equal Equal l7==
Not equal, or -
1 NE Not equal unordered 7==
Greater than, -
10 S Carry set equal, or unordered ==
11 CC Carry clear Less than C==0
100 MI Minus negative Less than
Plus,
101 PL positive or Greater than, N==0
equal, or unordered
ZEeTro
110 VS Overflow Unordered V==1
111 VC No overflow Not unordered V==
Unsigned Greater than or C==1 and
1000 HI higher unordered ==0
Unsigned
1001 LS lower or Less than or equal | C==0 or Z==1
same
Signed
1010 GE ereater than | Creater than, or N=—=V
equal
or equal
1011 LT Signed less Less than, or NIV
than unordered
Signed Z==0 and
1100 GT ereater than Greater than N__V
Signed less Less than, equal, o
1101 LE than or > S (/RS R \ B
unordered
equal
Always (un- Always
1110 | None (AL) conditional) (unconditional) Any

Table 6.1: Conditional execution codes

model, memory or co-processor. Effectively, if a conditional flag is set and the
corresponding bit in the Current Program Status Register (CPSR) is not, it is as
if the instruction does not exist. The flags can be set by an instruction if the s flag
is set in the instruction mnemonic.

The purpose of this feature is to reduce the number of branches for small if-else
clauses, and thus speed up computation and improve code density. However, there
are significant arguments against the support for conditional instructions. Each
instruction has to provide 4 bits of its encoding for the condition flags, which is a
valuable resource in a tight 32 or 16 bit encoding for ARM and THUMB instruction

20 Technical Report FORTH-ICS/TR-450

Mnemonic Description
LSL Logical shift left
LSR Logical shift right
ASR Arithmetic shift right
ROR Rotate Right
RRX Rotate right one with extend

Table 6.2: Shift operations

sets respectively.

Arguments have been made that the extra four bits made available by elimi-
nating conditional execution can be used to double the number of general purpose
registers accessible by instructions from 16 to 32 in [58], and a hybrid solution for
the same goal is proposed in [59]. Furthermore, ARM has removed the support
for conditional execution in its 64 bit ARMvS8 instruction set [60]. The reasons
for this is the substantial performance of branch predictors which has made the
implementation cost of conditional execution disproportionate to its benefits. The
suffixes for conditional execution are seen in table 6.1.

Another feature of the ARM architecture and instruction set is the presence
of a barrel shifter before the ALU. This barrel shifter allows one argument of an
instruction to be optionally shifted by a constant value or by a value provided by
a register. This feature makes some operations like multiplications with powers of
2 easier and faster. There are four possible ways a value can be shifted, these are
shown in table 6.2 along with a short description.

ARM instructions can have a range of different arguments, these arguments can
be either one, two, three or even a set of registers and an immediate value. The
way immediate values are encoded is not straightforward in the ARM instruction
set. There are a total of 12 bits available for encoding immediate values in 32-bit
ARM instructions, which have a limited range of 2'2 = 4096 values.

The way this limited range is used to describe immediate values is that the
8 bits are used to describe an 8 bit integer and the remaining 4 bits describe a
rotation of that value into a 32 bit word. The 16 different ways to rotate the 8 bit
value allow a left rotation of any even number from 0 to 30. This means that an
immediate can be any 8 bit value starting at any even bit within a 32 bit word.
This way of dealing with immediate values has some limitations, but given the
limited 12 bits space for immediate values in the instruction encoding, this method
can encode a wide range of numbers. When the number that must be used cannot
be encoded with that method, the value will have to be either loaded from memory,
or constructed using arithmetic instructions.

Technical Report FORTH-ICS/TR-450 21

Chapter 6. ARM Instruction Set

] Mnemonic ‘ Arguments ‘ Description
b immediate Branch to target address
bl, blx immediate Function call V.Vith or Without changing
the instruction set
blx register Function call and change instruction set
bx register Branch to target address

Table 6.3: Branch instructions

6.1 ARM Instruction Categories

The main instruction categories are presented bellow along with a short description
of their functionality.

6.1.1 Branch Instructions

There are various branch instructions which can be executed conditionally based on
a flag set by previous instruction execution,. There are dedicated branch-and-link
instructions to call functions and branch instructions can also be used to change to,
and from, ARM and THUMB instruction sets. Branch instructions can branch to
an address specified either by a register or by and offset from the current program
counter value given by an immediate value. The different branch instructions along
with their argument types, a short description, and their assembler mnemonic are
presented in table 6.3.

6.1.2 Integer Arithmetic and Logic Instructions

The ARM instruction set offers a range of arithmetic and logic instructions for
integers. The most common arithmetic operations are addition, subtraction, mul-
tiplication, and diviston and the most common logic instructions are logic and, or,
and zor.

These instructions have three operands which can be either three registers or
two registers and an immediate value, with the exception of division and multipli-
cation which can only have three registers as operands.

The arithmetic instructions perform an arithmetic operation on two operands
and store the result in the third register operand. When all three operands of an
arithmetic instruction are registers one of the two source registers can be shifted
by an immediate value or by a value given by a fourth register, this option however
is not available for multiplication and division instructions. A summary of these
instructions can be seen in table 6.4.

22 Technical Report FORTH-ICS/TR-450

6.1. ARM Instruction Categories

Mnemonic ‘ Arguments ‘ Description
add Registers or immediate Addition
sub Registers or immediate Subtraction
rsb Registers or immediate Reverse subtraction
mul Registers Multiplication
div Registers Division
and Registers or immediate Logical AND
orr Registers or immediate Logical OR
eor Registers or immediate Logical XOR

Table 6.4: Integer arithmetic and logic instructions

6.1.3 Floating Point Arithmetic Instructions

Similar to the corresponding integer instructions, there are arithmetic instructions
for floating point values with 32 or 64 bits precision. These instructions do not
accept immediate arguments and operate on the floating point register banks of
the processor. In our case-study there are 32 32-bit floating point registers named
s0 to s31 which can be aliased to 16 double precision 64-bit registers named d0 to
d1b.

These instructions perform an arithmetic operation on the values of two operands
and store the result to the third register operand. The most common instructions
of this type are, addition, subtraction, multiplication and division. A summary of
these instructions can be seen in table 6.5.

Mnemonic Arguments Description
fadd Registers Addition
fsub Registers Subtraction
fmul Registers Multiplication
fdiv Registers Division

Table 6.5: Floating point arithmetic and logic instructions

6.1.4 Register Movement Instructions

There are instructions that can move data between registers and likewise move an
immediate value to a register for both integer and floating point registers. These
instructions have two operands, they operate by copying the value of the second
operand to the first, the first operand must always be a register and the second
can be either a register or an immediate value encoded in the instruction.

The data from the second operand can be copied to the first operand either
verbatim or bitwise inverted, depending on the instruction. A summary of these
instructions for both integer and floating point operands can be seen in table 6.6

Technical Report FORTH-ICS/TR-450 23

Chapter 6. ARM Instruction Set

] Mnemonic ‘ Arguments Description
mov Registers or immediate Move
mvn Registers or immediate Move bitwise inverse
fepy Registers Move
fneg Registers Move bitwise inverse

Table 6.6: Move instructions

6.1.5 Compare and Test Instructions

There are four main comparison instructions, two compare and two test instruc-
tions. These instructions take two operands, one of which is always a register and
the other can either be an immediate value or a register. The second operand can
be optionally be shifted by either a constant value encoded in the instruction or a
value provided by a register.

The compare and test instructions are very similar to the arithmetic and log-
ical instructions in that they too perform an arithmetic or logic operation on the
operands. They differ only in the fact that they always update the status fags in
the CPSR register and in that the result of the operation is discarded afterwards.
The main integer compare and test instructions are seen in table 6.7

In addition to compare and test instructions for integers which are widely used
for loops, there are also compare instructions for floating point values. These
instructions can only compare two floating point registers which can be either 32
or 64 bits wide or a floating point register with zero. Contrary to their integer
counterparts, the second operand cannot be an immediate value and cannot be
shifted. These instructions are fcmpes and femped for comparing two registers of
32 and 64 bits respectively and fempzs and fempzd for comparing a 32 or 64 bit
floating point register with zero.

Mnemonic ‘ Arguments ‘ Description

cmp Registers or Subtracts the two operands and updates the
immediate flags

cmn P.{eglste%"s o Adds the two operands and updates the flags
immediate

teq Registers or Logical AND between the operands and
immediate updates the flags

tst Registers or Logical OR between the operands and
immediate updates the flags

Table 6.7: Compare and test instructions

24 Technical Report FORTH-ICS/TR-450

6.1. ARM Instruction Categories

Mnemonic Type ‘ Description
1dr Load Loads a 32 bit word %nto a general
purpose register
Stores a 32 bit word from a general
str Store .
purpose register
. Loads multiple general purpose registers,
ldmfd Load multiple .
decreases base register after
stmfd Store multiple St(?res from multiple genera.l purpose
registers, decreases base register after
fds Load float Loads a 32 bit ﬂoa.t to a floating point
register
fidd Load double Loads a 64 bit double to a double register
futs Store float Stores a 32 bit float .from a floating point
register
fstd Store double Stores a 64 bit d'ouble to a double
register
L Itiple 32 bit floati i
fidmfds | Load float multiple oads multiple 32 bit floating point
registers
Load doubl . . .
fldmfdd oad doubie Loads multiple 64 bit double registers
multiple
fstimss Store float multiple Stores from multlpl.e 32 bit floating point
registers
Store double Stores from multiple 64 bit double
fstmsd . .
multiple registers

Table 6.8: Load and store instructions

6.1.6 Load and Store Instructions

There is a great variety of load and store instructions available in the ARM in-
struction set. All operations to and from the memory system must be performed
through these instructions as it is in the RISC philosophy. Load and store instruc-
tions can be grouped in categories based on the size of the data loaded or stored
and the addressing mode.

Regarding the length of the data to be loaded or stored, there are instructions
that can load one, two, four or eight bytes into a single register. There are also
load and store instructions that can load data into or store from multiple registers.
Regarding the addressing modes, there is a wide variety as well, with the most
common and widely used being the register addressing mode, this uses a register
value as a base address and an optional immediate offset. One variation of these
instructions can use the program counter register with an offset.

Furthermore, there are options for load and store instructions that can alter
the base register after the memory operation has been completed, the base register

Technical Report FORTH-ICS/TR-450 25

Chapter 6. ARM Instruction Set

can either be incremented or decremented by the number of words loaded or stored
and the change in the base register can be done before or after the memory access.
The most common load and store instructions that were studied in this work are
presented in table 6.8

6.2 Other Instructions and Assembler Mnemonics

In this work we studied the most characteristic and important instructions as re-
vealed by intuition and more importantly by the instruction breakdowns of various
real life benchmarks. While there are more instructions than those presented above,
our work has focused on the most prevalent in real benchmarks. The same applies
for the variations of these instructions. In order to make our study more robust
and compact we chose to leave aside instructions that are rarely used and either
group them into instruction categories that are more common or into a separate
category of other instructions. Our runtime instruction breakdown shows these
uncategorized instructions to be less that 7% of the total of executed instructions.
This compromise is accepted in order to improve the robustness of our models as
well as usefulness and intuitive understanding of the results.

There are also some instruction flavors that were not suited for characterizations
with our methodology.

Branches are not suited as the effects of branches cannot be studied on their
own but only in a wider context of other instructions, this is not compatible with
our characterization methodology.

Load and store multiple instructions do not allow for immediate offsets,
this means that we cannot study them the same way we did for load and store
single instructions. For the purposes of this study, these instructions were omitted
from characterization and grouped with single load and store instructions at our
evaluation.

Register shifted arithmetic instructions were also absent from our character-
ization as preliminary measurements showed little to no difference in energy and
latency between them and not-shifted-operand arithmetic instructions. Further-
more, excluding these instructions from our characterization and grouping them
with non-shifted variants has drastically reduced the already wide variations of
integer arithmetic and logic instructions, this has made our study more robust
without sacrificing too much accuracy.

Assembler Mnemonics: ARM has recently introduced new assembler mnemon
ics for its instructions. Although the ARM architecture manual follows these new
mnemonics, in this work we present the previous version so as to be compatible
with the disassemblers, simulators and other various tools we used as these have
not yet adopted the new standard. In most cases the mnemonics remain the same
and when they differ the difference is easy to spot.

26 Technical Report FORTH-ICS/TR-450

Chapter 7

Measurement Results - Energy
per Instruction

In this chapter We show the results of our measurements for both core types
(Cortex-A7 and Cortex-A15) across all 16 frequency configurations as well as our
remarks and insights from the results.

Metrics and Categorization:

Through measuring the runtime and energy of each benchmark that we designed
for each instruction as described in section 4.1 we can extrapolate the cost of each
instruction in terms of total energy, latency, and power. These being presented in
terms of Energy Per Instruction (EPI), Cycles Per Instruction (CPI), and Energy
Per Cycle (EPC) respectively.

We have categorized the ARM instruction set in a logical way that differentiates
instructions based on their functionality and what part of the processor data-path
they utilize. Furthermore we differentiate internally in each category based on
operands type and instruction flavor for each case. Our instruction categorization
consists of four categories that are:

Arithmetic and Logic
Data Movement
Compare and test
Load and Store

In the following sections we present our findings for each instruction type. First
we present the latency and CPI of each instruction. These two differ in that latency
is the number of cycles it takes a RAW dependency to be satisfied whereas CPI
is the maximum throughput of the processor for each instruction type when there
are no dependencies. To determine these two values we used two different types of
benchmarks as described above in section 4.1. For each instruction type we present
the Energy Per Instruction (EPI) and Cycles per Instruction (CPI) both for when
RAW dependencies are present and not.

27

Chapter 7. Measurement Results - Energy per Instruction

After each instruction type analysis, we present some insights and general con-
clusions regarding the cost of each instruction.

7.1

Results Summary

Before proceeding with the details of all instruction variations and our measure-

ments across all frequency ranges, we present a short outline of our results by

grouping the myriads of instructions in categories based on their minimum and

maximum energy consumption. The energy consumption is the lowest when there

are no RAW dependencies between instructions and the highest when there are.
The groups we have created for this purpose are:

Simple Integer: Simple integer instructions are integer arithmetic and logic
instructions besides multiplications and divisions and also all register move-
ment, and compare and test instructions for integers.

Simple float /double: These are all float and double additions and subtrac-
tions along with register movement and compare.

Multiplication: Multiplications for integer, float and double operands.
Division: Divisions for integer, float and double operands.

Load: Loads for integer, float and double operands for different cache level
access.

Store: Stores for integer, float and double operands for different cache level
access.

The minimum and maximum energy per instruction for all the groups described
above are presented in table 7.1.

Instruction Cortex-AT7 Cortex-A15
min EPI | max EPI | min EPI | max EPI

Simple Integer 50 80 200 450
Simple Float/Double 90 200 250 1500
Multiplication 80 340 360 1730
Division 150 1200 1270 1960
Load (L1 hit) 150 195 450 450
Store (L1 hit) 185 195 680 750
Store (L1 miss) 200 700

Load (L1 miss) 270 1000

Table 7.1: Minimum (w/o RAW) and maximum (w/ RAW) Energy per Instruction

(pJ) at 1GHz

28

Technical Report FORTH-ICS/TR-450

7.2. Integer Arithmetic and Logic Instructions

7.2 Integer Arithmetic and Logic Instructions

Integer logic and arithmetic instructions are described in section 6.1.2. 'We have
categorized these instructions based on operands. The first category is instructions
that have three registers as operands and the second has two registers and an
immediate value. Add, sub, and, orr, eor and rsb instructions can have 3 registers
or 2 registers and an immediate as operand while mul and div instructions can
only accept 3 registers.

Latency: All instructions have a latency of one cycle, except for mul and div
that have 3 and 5 cycles of latency respectively. These are the same for both core
types.

CPI:. Add, sub, and, eor and orr instructions with an immediate operand
achieve a CPI of 0.5 at both cores. Rsb instructions with an immediate operand
have a CPI of 1 at Cortex-A7 cores and 0.5 at the Cortex-A15 cores.

With all operands being registers, add, sub, orr, eor and rsb instructions have
different CPIs at different cores, that is 1 for Cortex-A7 and 0.5 for Cortex-Al5.
Mul instructions have a CPI of 1 at the Cortex-A15 cores and 1.2 at Cortex-
A7. The differences between the two cores in terms of throughput (CPI) can be
explained by the Cortex-A7 having less ports at their register file.

A Counterintuitive result is that, div instructions have a better CPI of 3 at
Cortex-A7 Cores than 5 at Cortex-A15. The CPI and latencies described above
can be seen in table 7.2 for instructions with three register operands, and table for
instructions with two register and an immediate operand.

Instruction Cortex-A7 Cortex-A15
Latency ‘ CPI Latency ‘ CPI

add 1 1 1 0.5
and 1 1 1 0.5
eor 1 1 1 0.5
mul 3 1.2 3 1

orr 1 1 1 0.5
rsb 1 1 1 0.5
sub 1 1 1 0.5
div 5 3 5 5

Table 7.2: Integer logic and arithmetic instructions with register operands: Latency
and CPI

Energy: Table 7.4 and 7.5 show the energy per instruction for arithmetic
and logic instructions with 3 register operands when there are RAW dependencies
between the instructions. It is obvious that not all instructions have the same
cost even when they have the same latency. For example add instructions have
a smaller energy demand than add instructions across both core types and all
frequencies. Additionally we can see that the energy is not analogous to the CPI

Technical Report FORTH-ICS/TR-450 29

Chapter 7. Measurement Results - Energy per Instruction

Instruction Cortex-A7 Cortex-A15

Latency | CPI Latency | CPI
add 1 0.5 1 0.5
and 1 0.5 1 05
eor 1 0.5 1 05
orr 1 0.5 1 05
rsb 1 1 1 0F
sub 1 0.5 1 0.5

Table 7.3: Integer logic and arithmetic instructions with register and immediate
operands: Latency and CPI

of each instruction. For example, although div instructions take five cycles to
complete and add instructions only one, their energy is only three times greater.

The same results for EPI are shown in tables 7.6 and 7.7 for instructions with
immediate operands when there are RAW dependencies. Again in this case we
see the same general relationship between different instruction, that is, although
they have the same CPI and operands they differ in the energy consumption.
Furthermore, Instructions with an immediate operand steadily consume less energy
per instruction than their three register operands counterparts.

Tables 7.8, 7.9, 7.10 and 7.11 show the results for Energy Per Instruction when
there are no dependencies between instructions and thus, they are allowed to reach
their maximum CPI. From the results it is obvious that when instructions do not
have RAW dependencies to limit their CPI, they cost less per instruction when the
throughput is greater (i.e CPI is smaller). For example, with Cortex-A15 at 800
MHz, add instructions cost 375 pJ per instruction when executed one per cycle
and only 226 pJ per instruction when two instructions are executed per cycles.
This however means that the Energy per Cycle of the processor is bigger when

Cortex-A7 Energy Per Instruction (pJ)

eq. MHz

Instr. 500 600 700 800 900 1000 1100 1200
add 63 62 61 64 72 82 94 105

and 54 53 52 54 61 69 79 89

eor 59 55 54 56 63 72 81 92

mul 116 114 112 116 128 146 166 189

orr 55 55 54 o6 63 72 81 92

rsb 63 62 62 65 72 83 93 105

sub 64 63 62 65 73 83 94 105

div 178 174 170 177 195 221 251 286

Table 7.4: Integer logic and arithmetic instructions with 3 register operands with RAW
dependencies

30 Technical Report FORTH-ICS/TR-450

7.2. Integer Arithmetic and Logic Instructions

Cortex-A15 Energy Per Instruction (pJ)

Instr. o4. MHe 800 900 1000 1100 1200 1300 1400 1500
add 386 396 432 467 499 545 600 666
and 348 354 386 415 444 482 529 585
eor 351 360 394 425 453 496 546 598
mul 764 804 846 919 975 1062 1161 1276
orr 360 369 400 436 466 509 557 612
rsb 386 392 432 467 496 546 597 667
sub 386 395 429 467 497 548 602 667
div 1148 1170 1272 1380 1468 1603 1738 1920

Table 7.5: Integer logic and arithmetic instructions with 3 register operands with RAW
dependencies

Cortex-A7 Energy Per Instruction (pJ)

eq. MHz

Instr. 500 600 700 800 900 1000 1100 1200
add 61 60 59 62 69 79 90 100

and 58 57 56 59 65 75 84 95

eor 60 59 58 61 68 78 89 99

orr 59 58 57 59 66 76 86 97

rsb 66 65 64 67 75 86 96 109

sub 61 60 60 62 69 80 90 101

Table 7.6: Integer logic and arithmetic instructions with an immediate operand with
RAW dependencies

more instructions are executed per cycle. Additionally, the cost of executing 1
instruction per cycle is more than half of that of executing two instructions per

cycle.
Cortex-A7 Energy Per Instruction (pJ)
- ME= | 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200
Instr.

add 43 42 42 45 49 56 63 71
and 37 36 36 38 42 48 54 61
eor 42 42 42 44 49 55 62 70
orT 38 37 37 39 44 50 55 63
rsb 63 61 61 64 71 82 92 103
sub 43 42 43 45 49 57 62 71

Table 7.10: Integer logic and arithmetic instructions with an immediate operand
without RAW dependencies

Technical Report FORTH-ICS/TR-450 31

Chapter 7. Measurement Results - Energy per Instruction

Cortex-A15 Energy Per Instruction (pJ)

eq. MHz
Instr. 800 900 1000 1100 1200 1300 1400 1500
add 375 384 419 455 485 532 583 646
and 354 363 397 435 459 506 547 603
eor 372 382 415 455 481 530 576 642
orr 363 372 406 441 472 514 565 619
rsb 383 393 430 466 497 546 596 663
sub 374 386 421 478 486 532 580 646

Table 7.7: Integer logic and arithmetic instructions with an immediate operand with
RAW dependencies

Cortex-A7 Energy Per Instruction (pJ)

eq. MHz
Instr. 500 600 700 800 900 1000 1100 1200
add 62 61 61 64 71 81 92 103
and 54 53 52 55 61 70 79 90
eor 55 54 53 55 62 71 80 91
mul 61 60 59 61 68 78 89 100
orr 55 54 54 56 63 71 82 92
rsb 59 58 58 60 68 7 87 99
sub 59 58 58 60 68 77 88 98
div 121 119 117 121 134 152 174 197

Table 7.8: Integer logic and arithmetic instructions with 3 register operands without
RAW dependencies

Cortex-A15 Energy Per Instruction (pJ)

Instr. o4. MHe 800 900 1000 1100 1200 1300 1400 1500
add 226 232 255 277 295 323 353 390
and 191 197 214 233 249 269 294 324
eor 194 200 217 236 251 271 297 329
mul 321 329 357 391 412 449 490 939
orr 200 206 225 247 259 282 309 341
rsb 212 219 239 260 278 300 328 364
sub 211 217 236 260 275 300 327 362
div 1149 1169 1270 1384 1469 1604 1738 1914

Table 7.9: Integer logic and arithmetic instructions with 3 register operands without
RAW dependencies

32 Technical Report FORTH-ICS/TR-450

7.2. Integer Arithmetic and Logic Instructions

Cortex-A15 Energy Per Instruction (pJ)

°q. Mie 800 900 1000 1100 1200 1300 1400 1500
Instr.

add 227 232 252 280 295 321 353 394
and 201 207 225 233 258 284 308 343
eor 226 232 253 277 293 319 352 390
orr 209 214 233 256 270 295 325 359
rsb 231 240 259 288 301 331 359 402
sub 227 233 253 278 296 321 351 395

Table 7.11: Integer logic and arithmetic instructions with an immediate operand
without RAW dependencies

The general insight from these measurements is that at higher throughputs,
processors are more energy efficient. Furthermore, instructions that have an imme-
diate operand are less energy hungry than their all register operands counterparts.
Additionally, logic instructions are cheaper than arithmetic instructions and mul-
tiplications and divisions are the most expensive of all.

When comparing the energy consumption of the two core types we see that
Cortex-A1lb cores have a greater EPI that Cortex-A7. Even when the two cores
operate at the same frequency and achieve the same CPI for the same instruction
the big cores consume three to five times more energy per instruction than the little
ones. For example, at 1200 MHz add instructions with CPI equal to 1 consume 105
pJ at Cortex-A7 and 499 pJ at Cortex-A15 cores. At the same time and instructions
are only three times more expensive at 1000MHz when the CPI is equal to 0.5 at
both cores. The general remark is that at Cortex-A15 cores resolving dependencies
between instructions is relatively more expensive energy-wise than Cortex-A7 cores.

As far as scaling of energy consumption with frequency is concerned, Cortex-A7
cores seem to have a flat energy consumption for frequencies up to 800 MHz and
increase linearly from there to their maximum frequency of 1200 MHz. On Cortex-
A15 cores, on the other hand, EPI scales linearly across their entire frequency range
from 800 MHz to 1500 MHz.

Technical Report FORTH-ICS/TR-450 33

Chapter 7. Measurement Results - Energy per Instruction

7.3 Float Arithmetic Instructions

Floating point arithmetic instructions are described in detail in section 6.1.3. There
are four main instructions for addition, subtraction, multiplication and division.
These instructions only operate on floating point 32-bit register operands and do
not accept immediate values.

CPI and Latency: Table 7.12 shows the latency and CPI of these instructions.
It is interesting to see that all of these instructions have a latency of four or more
cycles, with divisions having a latency of 15 cycles at Cortex-A7 and 7 cycles at
Cortex-A15 cores.

At the same time, additions, subtractions and multiplications have a greater
latency at the big Cortex-A15 cores than the little Cortex-A7.

In terms of CPI, or instruction throughput when there are no RAW depen-
dencies between instructions, it is worth noticing that Cortex-A7 cores achieve a
CPI of 1 for additions, subtractions and multiplications while at Cortex-A7 cores,
these instructions have a CPI slightly greater than 1. Furthermore, divisions are 3
cycles faster at Cortex-A7 core when there are no dependencies between them. At
Cortex-A15, divisions are faster by two cycles when there are no dependencies.

Energy: Tables 7.13, 7.14, 7.15, and 7.16 show the energy consumption of
float arithmetic instructions with and without RAW dependencies. When there are
dependencies float arithmetic instructions cost two to three times more than their
integer counterparts at Cortex-A7 processors, The same is not true for Cortex-
A15 cores where multiplications cost twice as much when the operands are floats,
divisions cost about 50% more for floats, and additions, subtractions cost four times
more. In general the same relationship for the cost between these instructions holds
at floating point arithmetic instructions, with additions and subtractions being
cheaper than multiplications, and divisions being the most expensive operations of
all. When there are no RAW dependencies, the energy per instruction cost drops
substantially, from two to four times depending on instruction type and core type.
For example, at Cortex-A7 at 1000 MHz additions cost 199 pJ when the CPI is 4
cycles and half as much at 93 pJ when the CPI is 1 cycle. However at Cortex-A15
at the same frequency additions can cost more than three times less from 1471 pJ
to 458 pJ with a CPI of 5 and 1 respectively.

Comparing between core types we find that at full throughput (no dependen-

Instruction Cortex-A7 Cortex-A15
Latency \ CPI Latency \ CPI
fadds 4 1.15 5 1
fdivs 18 15 7 5
fmuls 4 1.15 6 1
fsubs 4 1.15 5 1

Table 7.12: Float Arithmetic instructions: Latency and CPI

34 Technical Report FORTH-ICS/TR-450

7.3. Float Arithmetic Instructions

cies between instructions) and at the same corresponding frequencies, the same
instructions cost from three to five times more energy at the big Cortex-A15 cores.

Cortex-A7 Energy Per Instruction (pJ)

Instr. od. MHe 500 600 700 800 900 1000 1100 1200
fadds 157 153 151 157 174 199 227 258
fdivs 566 546 534 556 616 702 794 903
fmuls 161 157 154 161 178 203 233 265
fsubs 158 154 152 158 175 200 227 259

Table 7.13: Floating point arithmetic instructions with RAW dependencies

Cortex-A15 Energy Per Instruction (pJ)

eq. MHz
800 900 1000 1100 1200 1300 1400 1500
Instr.
fadds 1318 1347 1471 1606 1704 1842 2003 2212
fdivs 1744 1781 1944 2117 2255 2446 2656 2917
fmuls 1536 1574 1714 1869 1988 2152 2345 2575
fsubs 1318 1347 1474 1605 1701 1842 2012 2208

Table 7.14: Floating point arithmetic instructions with RAW dependencies

Cortex-A7 Energy Per Instruction (pJ)

Instr. e4. MHe 500 600 700 800 900 1000 1100 1200
fadds 71 69 68 72 81 93 105 118
fdivs 476 462 452 470 522 593 670 763
fmuls 71 70 69 72 81 93 106 118
fsubs 71 70 69 72 82 93 106 118

Table 7.15: Floating point arithmetic instructions without RAW dependencies

Cortex-A15 Energy Per Instruction (pJ)

eq. MHz
800 900 1000 1100 1200 1300 1400 1500
Instr.
fadds 379 391 424 458 496 533 586 642
fdivs 1317 1344 1468 1599 1699 1837 2009 2207
fmuls 382 389 429 468 495 545 579 647
fsubs 380 386 427 467 492 535 585 646

Table 7.16: Floating point arithmetic instructions without RAW dependencies

Technical Report FORTH-ICS/TR-450 35

Chapter 7. Measurement Results - Energy per Instruction

7.4 Double Arithmetic Instructions

Double arithmetic instructions are described in detail in section 6.1.3. There are
four main instructions for addition, subtraction, multiplication and division. These
instructions only operate on floating point 64-bit register operands and do not
accept immediate values.

CPI and Latency: Table 7.17 shows the latency and CPI of these instructions.
At Cortex-A15 cores the latency of these instructions remains the same with their
32 bit precision counterparts (table 7.12) while the CPI is slightly worse for all
instructions except divisions.

For Cortex-A7, additions and subtractions retain the same latency of four cycles
as the 32 bit version, while multiplication and divisions almost double at 7 from 4
and 32 from 18 cycles respectively. All CPI characteristics also get worse at Cortex-
A7 cores with additions and subtractions having a CPI of 1.28 and multiplications
at 4 from 1.15, divisions get a CPI of 29.5 cycles from 15 at 32-bit precision.

Instruction Cortex-A7 Cortex-A15
Latency ‘ CPI Latency ‘ CPI
faddd 4 128 : o
fdivd 39 295 - =
fmuld 7 4 5 15
fsubd 4 1.98 5 L 08

Table 7.17: Double Arithmetic instructions: Latency and CPI

Energy: Tables 7.18, 7.19, 7.20, and 7.21 show the energy consumption of
double arithmetic instructions with and without RAW dependencies. At cortex-A7
cores, additions and subtractions consume almost the same, if not slightly more
energy, than their 32 bits flavors, while multiplications and divisions consume ap-
proximately two times more whether there are RAW dependencies or not. At
Cortex-A15 cores all instructions consume slightly more energy than the corre-
sponding instructions with 32 bit operands.

In general, double instructions are more expensive and slower than float ones,
this is most noticeable at the little Cortex-A7 cores. With regards to scaling with
frequency, the same patterns are observed as with all other instructions for both
types of cores.

36 Technical Report FORTH-ICS/TR-450

7.4. Double Arithmetic Instructions

Cortex-A7 Energy Per Instruction (pJ)

2. Mu= 500 600 700 800 900 1000 1100 1200
Instr.
faddd 157 153 150 156 173 197 224 256
fdivd 963 931 908 943 1040 1190 1347 1531
fmuld 269 263 257 268 296 339 386 440
fsubd 157 153 150 157 173 198 226 257
Table 7.18: Double arithmetic instructions with RAW dependencies
Cortex-A15 Energy Per Instruction (pJ)
29 Mie 800 900 1000 1100 1200 1300 1400 1500
Instr.
faddd 1338 1365 1483 1617 1713 1863 2044 | 2238
fdivd 1767 1801 1958 | 2142 2274 | 2464 | 2688 | 2942
fmuld 1555 1588 1730 1888 2004 | 2170 2378 | 2601
fsubd 1334 1362 1486 1620 1722 1859 2044 | 2232
Table 7.19: Double arithmetic instructions with RAW dependencies
Cortex-A7 Energy Per Instruction (pJ)
eq. e 500 600 700 800 900 1000 1100 1200
Instr.
faddd 72 70 69 72 81 93 106 120
fdivd 874 846 826 858 949 1083 1226 1393
fmuld 182 177 174 186 202 231 264 300
fsubd 72 70 70 73 82 93 106 120
Table 7.20: Double arithmetic instructions without RAW dependencies
Cortex-A15 Energy Per Instruction (pJ)
O MH= 1 800 | 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500
Instr.
faddd 406 416 458 501 529 572 622 689
fdivd 1331 1363 1485 1614 1721 1864 2039 | 2235
fmuld 427 439 479 522 559 610 664 730
fsubd 407 417 457 497 532 569 622 695
Table 7.21: Double arithmetic instructions without RAW dependencies
Technical Report FORTH-ICS/TR-450 37

Chapter 7. Measurement Results - Energy per Instruction

7.5 Integer Move Instructions

Integer move instructions are described in detail in section 6.1.4. There are two
flavors of move instructions mov and muvn that copy the second argument to the first
either verbatim or bitwise inverted, the second argument can be either a register
or an immediate.

CPI and Latency: All move instructions have a latency of 1 cycle, regardless
of flavor and operands type. Also, all instructions achieve a CPI of 0.5 at both
core types except mun instructions with both register operands that have a CPI of
1 for the little Cortex-A7 cores.

Energy: Tables 7.22, 7.23, 7.24 and 7.25 show the energy consumption of
move instructions for Cortex-A7 and Cortex-A15 cores respectively. Generally
mun instructions are more costly than mov instructions, even when they achieve
the same CPI. Surprisingly, instructions with an immediate operand when com-
pared with the same instructions with two register operands consume less energy
at Cortex-A7 cores and more at Cortex-Al15.

In general these instructions consume roughly the same and slightly less energy
per instruction as integer arithmetic and logic instructions of the same CPI and
latency.

Cortex-A7 Energy Per Instruction (pJ)

eq. MHz
500 600 700 800 900 1000 1100 1200
Instr.
mov 55 54 53 55 62 71 81 91
mvn 65 63 63 66 74 84 95 107
Table 7.22: Integer move instructions with RAW dependencies
Cortex-A15 Energy Per Instruction (pJ)
eq. MHz
800 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500
Instr.
mov 333 342 371 402 427 471 511 553
mvn 356 365 397 432 459 501 546 599

Table 7.23: Integer move instructions with RAW dependencies

38 Technical Report FORTH-ICS/TR-450

7.5. Integer Move Instructions

Cortex-A7 Energy Per Instruction (pJ)

o4. MHe 500 600 700 800 900 1000 1100 1200
Instr.
mov 35 34 34 35 40 45 50 57
mvn 60 58 58 61 68 78 88 99
mov (imm) 38 37 37 39 44 49 55 63
mvn (imm) 38 38 37 39 44 50 56 64
Table 7.24: Integer move instructions without RAW dependencies
Cortex-A15 Energy Per Instruction (pJ)
°q. e 800 900 1000 1100 1200 1300 1400 1500
Instr.
mov 179 184 200 221 237 257 274 295
mvn 211 216 234 253 277 301 319 351
mov (imm) 196 203 221 240 257 275 301 325
mvn (imm) 201 204 221 246 261 281 303 336
Table 7.25: Integer move instructions without RAW dependencies
Technical Report FORTH-ICS/TR-450 39

Chapter 7. Measurement Results - Energy per Instruction

7.6 Float Move Instructions

Float move instructions are described in detail in section 6.1.4. There are two
flavors of move instructions fcpys and frnegs that copy the second register operand
to the first either verbatim or bitwise inverted.

CPI and Latency: At Cortex-A7 cores these instructions have a latency of
four cycles and can achieve a CPI of 1 cycle per instruction. At Cortex-A15 cores
they have a latency of three cycles and achieve a CPI of 0.5, that is two instructions
per cycle as seen in table 7.26

Instruction Cortex-A7 Cortex-A15
Latency ‘ CPI Latency ‘ CPI
fcpys 4 1 3 05
fnegs 4 1 3 05

Table 7.26: Float move instructions: Latency and CPI

Energy: Tables 7.27, 7.28, 7.29 and 7.30 show the energy consumption of
move instructions for Cortex-A7 and Cortex-A15 cores respectively. Generally
fnegs instructions are more costly than fepys instructions, even when they achieve
the same CPI. The energy footprint of float move instructions is in par with the
addition and subtraction arithmetic float instructions for Cortex-A7 cores. At
Cortex-A15 cores, these instructions consume approximately 2/3 of the energy of
arithmetic float instructions.

Cortex-A7 Energy Per Instruction (pJ)

eq. MHz
500 600 700 800 900 1000 1100 1200
Instr.
fepys 155 154 151 157 174 198 227 258
fnegs 157 154 152 159 175 199 228 260
Table 7.27: Float move instructions with RAW dependencies
Cortex-A15 Energy Per Instruction (pJ)
eq. MHz
800 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500
Instr.
fcpys 859 869 950 | 1032 | 1098 | 1192 | 1308 | 1431
fnegs 850 867 952 | 1038 | 1100 | 1192 | 1308 | 1432

Table 7.28: Float move instructions with RAW dependencies

40 Technical Report FORTH-ICS/TR-450

7.6. Float Move Instructions

Cortex-A7 Energy Per Instruction (pJ)

°q- M 500 600 700 800 900 1000 1100 1200

Instr.
fepys 70 69 69 72 81 93 | 105 | 118
fnegs 71 70 69 73 82 93 106 118

Table 7.29: Float move instructions without RAW dependencies
Cortex-A15 Energy Per Instruction (pJ)

€. MH= | 900 | 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500

Instr.
fcpys 219 222 242 267 286 311 339 373
fnegs 219 227 248 267 285 313 341 378

Table 7.30: Float move instructions without RAW dependencies

Technical Report FORTH-ICS/TR-450 41

Chapter 7. Measurement Results - Energy per Instruction

7.7 Double Move Instructions

Double move instructions are described in detail in section 6.1.4. There are two
flavors of move instructions fepyd and frnegd that copy the second register operand
to the first either verbatim or bitwise inverted.

CPI and Latency: At Cortex-A7 cores these instructions have a latency of
four cycles and achieve a CPI of 1.18 cycles per instruction.

At Cortex-A15 cores they have a latency of three cycles and achieve a CPI of
0.5, that is two instructions per cycle as seen in table 7.31. When compared with
float move instructions they have the same latency in all cases. However, the max
CPI they can achieve at Cortex-A7 cores is 1.18 versus 1 for float moves.

Instruction Cortex-A7 Cortex-A15
Latency \ CPI Latency \ CPI
fepyd 4 1.18 3 0.5
fnegd 4 1.18 3 0.5

Table 7.31: Double move instructions: Latency and CPI

Energy: Tables 7.32, 7.33, 7.34 and 7.35 show the energy consumption of
move instructions for Cortex-A7 and Cortex-A15 cores respectively. Generally
fnegd instructions are more costly than fcpyd instructions, even when they achieve
the same CPI. The energy footprint of double move instructions is in par with
the addition and subtraction arithmetic double instructions for Cortex-A7 cores.
At Cortex-A15 cores, these instructions consume approximately 2/3 of the energy
of arithmetic double instructions. When compared with float move instructions,
double move instructions generally consume more energy at the Cortex-A15 cores,
while, at Cortex-A7 cores, they consume slightly less energy when running without
RAW dependencies and slightly more when running with RAW dependencies.

Cortex-A7 Energy Per Instruction (pJ)

eq. MHz
500 600 700 800 900 1000 1100 1200
Instr.
fcpyd 161 159 156 163 180 206 235 268
fnegd 163 160 157 164 181 206 236 270

Table 7.32: Double move instructions with RAW dependencies

42 Technical Report FORTH-ICS/TR-450

7.7. Double Move Instructions

Cortex-A15 Energy Per Instruction (pJ)

°q. MH= 800 900 1000 1100 1200 1300 1400 1500
Instr.
fcpyd 888 900 983 1068 1135 1236 1352 1485
fnegd 881 899 984 1075 1135 1235 1356 1484
Table 7.33: Double move instructions with RAW dependencies
Cortex-A7 Energy Per Instruction (pJ)
O M= 1 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200
Instr.
fepyd 67 65 65 68 76 86 98 111
fnegd 67 66 65 68 76 87 99 111
Table 7.34: Double move instructions without RAW dependencies
Cortex-A15 Energy Per Instruction (pJ)
eq. MHz
800 900 1000 1100 1200 1300 1400 1500
Instr.
fcpyd 222 230 252 277 290 315 346 385
fnegd 223 230 250 276 292 318 349 392

Table 7.35: Double move instructions without RAW dependencies

Technical Report FORTH-ICS/TR-450 43

Chapter 7. Measurement Results - Energy per Instruction

7.8 Integer Compare and Test Instructions

Integer compare and test instructions are described in detail in section 6.1.5. There
are two compare and two test instructions, cmp, cmn, tst and teq. These instruc-
tions can compare either two registers or a register and an immediate and update
the status flags according to the result.

CPI and Latency: All integer compare and test instructions have a latency
of 1 cycle for all core types. When both operands are registers these instructions
achieve a CPI of 1 at Cortex-A7 cores and 0.5 at Cortex-A15 cores. When com-
paring a register and an immediate, cmp and c¢mn achieve a CPI of 0.5 at all core
types. Tst and teq can execute two at each cycle at Cortex-A7 and only one at
each cycle at Cortex-Al15.

Energy: Tables 7.36, 7.37, 7.38 and 7.39 show the energy per instruction of
these instructions for both core types and both types of operands. In general, the
energy of compare and test instructions is comparable and a little lower than the
energy of integer arithmetic instructions with the same latency.

Cortex-A7 Energy Per Instruction (pJ)

°q. Mie 500 600 700 800 900 1000 1100 1200
Instr.
cmn 58 57 57 59 66 76 86 97
cmp 59 58 58 60 67 78 88 98
teq 57 56 56 59 65 75 85 96
tst 57 56 55 58 65 74 84 95

Table 7.36: Integer Compare and Test instructions with two register operands

Cortex-A15 Energy Per Instruction (pJ)

e M= 800 | 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500
Instr.
cmn 183 | 188 | 204 | 221 | 234| 261 284 309
cmp 184 | 189 | 206 | 223 | 236| 261 282 311
teq 185 | 188 | 205 | 222| 235| 259 | 283 | 306
tst 182 | 186 | 202 | 222| 234| 257 | 283| 304

Table 7.37: Integer Compare and Test instructions with two register operands

44 Technical Report FORTH-ICS/TR-450

7.8. Integer Compare and Test Instructions

Cortex-A7 Energy Per Instruction (pJ)

°q. Mie 500 600 700 800 900 1000 1100 1200
Instr.
cmn 40 40 40 42 47 52 60 67
cmp 40 40 40 42 47 53 59 68
teq 39 40 39 41 46 53 58 67
tst 37 37 37 39 43 49 55 62

Table 7.38: Integer Compare and Test instructions with a register and an immediate

operand

Cortex-A15 Energy Per Instruction (pJ)

eq. MHz
800 900 1000 1100 1200 1300 1400 1500
Instr.
cmn 191 195 213 231 241 267 293 319
cmp 191 193 211 231 242 268 292 321
teq 343 346 379 410 435 472 522 570
tst 338 345 376 407 433 475 520 570

Table 7.39: Integer Compare and Test instructions with a register and an immediate

operand

Technical Report FORTH-ICS/TR-450

45

Chapter 7. Measurement Results - Energy per Instruction

7.9 Float Compare Instructions

Float compare instructions are described in detail in section 6.1.5. There are two
float compare instructions, fempzs and femps, the first compares a float register
with zero and the second compares two float registers, they both update the status
flags according to the result.

CPI and Latency: All float compare instructions have a latency of 1 cycle
for all core types and a maximum throughput of 1 instruction per cycle at both
core types.

Energy: Tables 7.40 and 7.41 show the energy per instruction of these in-
structions for both instruction types and both core types. In general, the energy
of float compare instructions is comparable and a little lower than the energy of
float arithmetic instructions with the same CPI.

Cortex-A7 Energy Per Instruction (pJ)

eq. MHz
500 600 700 800 900 1000 1100 1200
Instr.
fcmpzs 63 63 62 66 73 84 95 107
fcmps 72 71 71 75 83 95 108 120
Table 7.40: Float Compare instructions
Cortex-A15 Energy Per Instruction (pJ)
°q. MH= 800 900 1000 1100 1200 1300 1400 1500
Instr.
fcmpzs 326 330 360 394 414 454 497 545
fcmps 347 353 388 424 445 488 533 592

Table 7.41: Float Compare instructions

46 Technical Report FORTH-ICS/TR-450

7.10. Double Compare Instructions

7.10 Double Compare Instructions

Double compare instructions are described in detail in section 6.1.5. There are
two double compare instructions, fempzd and fempd, the first compares a double
register with zero and the second compares two double registers, they both update
the status flags according to the result.

CPI and Latency: All double compare instructions have a latency of 1 cycle
for all core types and a maximum throughput of 1 instruction per cycle at both
core types.

Energy: Tables 7.42 and 7.43 show the energy per instruction of these in-
structions for both instruction types and both core types. In general, the energy
of double compare instructions is comparable and a little lower than the energy of
double arithmetic instructions with the same CPI.

Cortex-A7 Energy Per Instruction (pJ)

eq. MHz
500 600 700 800 900 1000 1100 1200
Instr.
fempzd 67 67 66 70 78 89 101 114
femped 77 76 77 80 90 103 115 130
Table 7.42: Double Compare instructions
Cortex-A15 Energy Per Instruction (pJ)
°q. MH= 800 900 1000 1100 1200 1300 1400 1500
Instr.
fempzd 337 343 374 407 429 468 511 565
femped 362 369 405 439 462 510 556 613

Table 7.43: Double Compare instructions

Technical Report FORTH-ICS/TR-450 47

Chapter 7. Measurement Results - Energy per Instruction

7.11 Integer Load and Store Instructions

Integer load and store instructions are described in detail in section 6.1.6.

CPI and Latency: Load instructions take a single cycle to complete when
they hit in the L1 cache. Store instructions show latencies closer to two cycles.
Specifically, in our measurements we saw 1.8 cycles per instruction at Cortex-A17
and two cycles per instruction at Cortex-A15. However for both loads and stores,
when the access pattern varies so does the achieved CPI and processor frequency.

Energy: Load and store instructions can have a varying energy footprint
depending on the memory footprint. Even when achieving the same CPI, load
and store instructions consume more energy the bigger the part of the caches
they access. Tables 7.44, 7.45, 7.46 and 7.47 show the energy consumption per
instruction of load and store instructions according to memory footprint.

It is obvious from the results that stores are typically 50% more energy con-
suming than loads across all configurations. It can also be seen that energy per
instruction increases as the footprint of the memory does.

Cortex-A7 Energy Per Instruction (pJ)

eq. MHz
Mem 500 600 700 800 900 1000 1100 1200
4K 114 114 112 118 132 149 167 189

8K 114 112 112 118 131 150 166 190

16K 110 111 111 115 128 145 162 186

32K 109 108 109 112 125 142 161 180

64K 109 108 108 113 125 142 160 179

128K 109 109 110 115 128 145 164 184
256K 115 116 116 123 139 157 178 201
512K 126 128 129 137 154 177 201 230
1024K 145 146 147 157 178 206 237 273

Table 7.44: Integer Load instructions

48 Technical Report FORTH-ICS/TR-450

7.11.

Integer Load and Store Instructions

Cortex-A15 Energy Per Instruction (pJ)

O MH= 1 800 | 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500
Mem
4K 410 421 463 500 526 582 636 702
8K 409 418 459 500 530 580 631 704
16K 407 419 459 496 527 578 630 702
32K 408 420 458 497 525 576 634 704
64K 409 421 461 498 527 573 634 703
128K 415 429 469 507 539 591 647 710
256K 428 441 482 521 552 606 667 739
512K 468 483 531 574 610 673 748 825
1024K 608 636 702 774 833 930 1041 1184
Table 7.45: Integer Load instructions
Cortex-A7 Energy Per Instruction (pJ)
eq. MHz
500 600 700 800 900 1000 1100 1200
Mem
4K 149 146 147 155 172 194 220 248
8K 147 147 147 154 172 195 220 248
16K 148 146 146 154 171 194 219 247
32K 147 146 146 154 171 192 219 246
64K 148 147 147 155 172 195 220 246
128K 151 149 150 158 176 199 223 252
256K 155 157 157 166 185 210 238 268
512K 168 170 171 181 203 232 263 299
1024K 190 191 192 205 232 267 307 350
Table 7.46: Integer Store instructions
Cortex-A15 Energy Per Instruction (pJ)
€. MH= | 900 | 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500
Mem
4K 671 687 756 820 869 940 1034 1134
8K 686 694 760 826 869 948 1039 1137
16K 675 694 760 829 870 948 1039 1144
32K 680 697 761 826 871 953 1040 1150
64K 679 698 765 832 875 957 1047 1149
128K 686 705 771 838 883 962 1055 1164
256K 698 718 781 846 896 980 1071 1187
512K 730 751 823 890 940 1032 1127 1258
1024K 886 922 1025 1138 1238 1385 1560 1785
Table 7.47: Integer Store instructions
Technical Report FORTH-ICS/TR-450 49

Chapter 7. Measurement Results - Energy per Instruction

7.12 Float and Double Load and Store Instructions

Float load and store instructions are described in detail in section 6.1.6.

CPI and Latency: Float load instructions take a single cycle to complete
when they hit in the L1 cache at both Cortex-A7 and Cortex-A15 cores. Double
load instructions achieve 10% less instructions per cycle at Cortex-A7 cores with
a CPI of 1.1 versus 1 for Cortex-A15 cores with a CPI of 1. Store instructions
achieve a CPI from 1.6 to 1.8 depending on core type and precision. Float stores
achieve a CPI of 1.75 at both core types while double stores 1.6 at Cortex-A7 and
1.8 at Cortex-A15.

However, when the access pattern varies so does the achieved CPI and processor
frequency.

Energy: Since load and store instruction energy depends mostly on memory
footprint, we have studied float and double load and store instructions only for the
smallest memory footprint.

The energy of these instructions scales with memory footprint the same as
integer variants. Nonetheless, it is interesting to see if there is any difference in
energy due to the different register files they access for reading or writing.

The results of these measurements are shown in tables7.48, 7.49, 7.50 and 7.50.

We observe that he relationship between loads and stores still holds with stores
being more energy consuming than loads, additionally, float load and store instruc-
tions cost slightly less than double loads and stores.

Cortex-A7 Energy Per Instruction (pJ)

°q- M 500 600 700 800 900 1000 1100 1200
Instr.
fids 117 114 113 120 133 150 169 187
fldd 145 144 141 147 160 196 207 240
Table 7.48: Float and Double Load instructions
Cortex-A15 Energy Per Instruction (pJ)
eq. MHz
800 900 1000 1100 1200 1300 1400 1500
Instr.
flds 418 415 452 504 540 593 633 709
fidd 427 429 448 494 562 590 646 735

Table 7.49: Float and Double Load instructions

50 Technical Report FORTH-ICS/TR-450

7.13. Energy per Cycle

Cortex-A7 Energy Per Instruction (pJ)

°q- M 500 600 700 800 900 1000 1100 1200
Instr.
fsts 143 140 139 146 165 186 209 234
fstd 153 152 155 156 173 195 219 250
Table 7.50: Float and Double Store instructions
Cortex-A15 Energy Per Instruction (pJ)
eq. MHz
800 900 1000 1100 1200 1300 1400 1500
Instr.
fsts 615 631 683 746 794 865 942 1030
fstd 661 677 734 791 832 922 1005 1099

Table 7.51: Float and Double Store instructions

7.13 Enmergy per Cycle

The previous sections described our measurements for each instruction type CPI
and latency. From these two metrics it is easy to calculate the energy per cycle
(EPC) of a processor for each type of instructions. Although different instructions
consume different amounts of energy, they have differences in execution time as
well.

To make clear that different instructions have a different impact on processor
energy consumption, we have plotted the minimum and maximun EPC that we
observed from our measurements of each instruction.

Tables 7.52, 7.53 and figures 7.1 and 7.2 show how energy per cycle can vary
for each processor at each frequency setting.

It is visible that at Cortex-A7 cores maximum EPC can be up to five greater
than minimum EPC, for Cortex-A15, maximum EPC can be as much as three
times the minimum EPC.

Cortex-A7 Min and Max Energy Per Cycle (pJ)

eq. MHz
500 600 700 800 900 1000 1100 1200
Mem
Min 30 29 28 29 33 37 42 48
Max 132 131 128 134 145 178 188 218

Table 7.52: Cortex-A7: Minimum and Maximum Energy per Cycle

Technical Report FORTH-ICS/TR-450 51

Chapter 7. Measurement Results - Energy per Instruction

Cortex-A15 Min and Max Energy Per Cycle (pJ)

€. MHz

1500

384
1140

1400

348
1044

1300

321
950

1200

294
870

1100

276
820

1000

254
758

900

234
692

800

230
686

Mem

Min

Max

Minimum and Maximum Energy per Cycle

: Cortex-Al5:

Table 7.53

OOy eSS Su oSt o SuTeSatoTetoTedote |

s

s
RS

s

.“.x.v“.n.".".".n.n.N.V//z..n.n.n.n.".".".n.n.n.n.".".".n.“....x

3
%
R SIS
s
s
B R

S

B
]

L
o o o o o
o

(cd) 81949 Jad ABiaug

600 700 800 900 1000 1100 1200
Frequency

500

Minimum and Maximum Energy per Cycle

Cortex-AT:

Figure 7.1

eSOl
S
RIS

ISl s
R KRS Oo oo e resateseteresatesate

R
s
RS

LI IS
SRR
R LR

XXX

B RIS
oot
e tosonss
RIS

Rl
s
s
A et

L L L L
o O O o 9
o O O O o
me 0 © < «

(cd) 894D J1ad ABlaug

900 1000 1100 1200 1300 1400 1500
Frequency

800

Cortex-A15: Minimum and Maximum Energy per Cycle

Figure 7.2

Technical Report FORTH-ICS/TR-450

52

Chapter 8

ARM versus x86

In appendix A we present some earlier work on the energy consumption of Intel
x86 processors. The methodology we used in the two different achitectures is very
similar except for the fact that at our X86 experimental platform we relied on
processor counters to measure the energy of instructions while for ARM processors
we used actual energy readings from dedicated sensors.

While the two processor architectures differ greatly in terms of architecture,
instructions set, frequency range and fabrication technology we can have some
rought quantitave comparison between the two. The ARM processors in our study
were fabricated at 28nm while the Intel processor at 32 nm, The ARM processors
can reach a top frequency of 1.5 GHz while Intel can reach 3.3 GHz. The ARM
processors we study are 32-bit wide while the Intel processors have 64-bit datapaths.

Instruction set differencies: ARM processors implement the ARM instruc-
tion set while Intel processors the X86 instructions set. The main difference be-
tween these two is that all arithmetic operations in ARM must be done between
registers while for X86 a memory location can also be an operand. The second
great difference is the format of arithmetic instructions, while at the ARM instruc-
tion set these instructions have a three register format with one destination register
and two source registers, at X86 they have only two and the destination register is
the same as one of the source registers.

In this section we will compare similar instructions for both architectures at their
maximum frequency.

Integer arithmetic instructions: Simple arithmetic instructions can be exe-
cuted one at a cycle when there are dependencies at both cores. When there are
no dependencies the best CPI of ARM is 0.5 while Intel’s is better at 0.33. The
energy cost of simpe arithmetic instructions is two times higher at Intel at around
1100 pJ per instruction against 600 for Cortex-A15.

Multiplications achieve similar CPIs at both ARM and Intel processors. The
energy cost however differs greatly with ARM multiplications costing 1300 and 550
pJ when there are dependencies and when there are not, while the same energy

93

Chapter 8. ARM versus x86

cost at our Intel case study is 7600 pJ and 2800 pJ, almost five times the energy
for an instruction.

Divisions have greater CPIs at the X86 processor,close to 30 cycles per instruc-
tion when there are dependencies while the CPI at Cortex-A15 is just 5 cycles.
Energy is also much greater than ARM at 100000 pJ compared to just 2000 pJ at
Cortex-A15, that is almost 50 times more energy.

Float /double arithmetic instructions: = While the floating point operations
at Intel were executed by a vector unit 128 bits wide, it is possible to see the differ-
ence for float and double since we studied all variations of instructions, including
using only one 32 bit lane or a single 64 bit lane.

Performance wise, at ARM float and double instructions can achieve CPIs of 5-
6 cycles per instructions when there are dependencies, while the X86 processor had
a CPI of 3-5 for the same case. When there are no dependencies both processors
achieved similar CPIs a little over 1.

Comparing the Energy per instruction for both processors, we find that intel
has roughly the same energy for both float and double at 7900 pJ to 12750 pJ when
there are dependencies and 3200 pJ to 4500 pJ when there are no dependencies
between instructions. ARM cores consume 1/3 of x86 when there are dependencies
and 1/5 of x86 when there are not.

Load/store instructions: At the minimum memory footprint at the x86 core,
loads consume 2000 pJ and stores 3000 pJ, while at ARM the same instructions
consume 700 pJ and 1100 pJ respectively. This means that L1 cache loads and
stores cost three times as much at Intel than in ARM. At the maximum memory
footprint of 2 MB loads and stores at the x86 core cost 20 nJ and 30 nJ respectively
while at Cortex-A15 they cost 1800 pJ and 3000 pJ, this is 10 times less. This means
that when accessing higher levels of the cache at Intel processors costs much more
than at ARM.

Conclusions: In this short comparison we see great energy and performance
differencies between Intel and ARM processors, Intel processors seem to consis-
tently consume more energy per instruction than ARM. However keep in ming the
following limitations when considering this comparison.

e The ARM processors are fabricated at 28 nm while Intel’s at 32 nm.

e ARM processors are 32 bit wide while Intel offer 64 bit datapaths.

e The instructions are from two different instruction sets not compatible with
each-other.

e Our ARM measurements we done with actual sensors while the Intel mea-
surements are provided by architectural registers inside the processor itself,
making them less reliable and accurate.

e The Intel processor operates at 3.3 GHz while the ARM processor we com-
pared it with can only reach 1.5 GHz.

54 Technical Report FORTH-ICS/TR-450

Chapter 9

Evaluation

In this chapter we describe the evaluation of our instruction characterization. To
evaluate our measurements and characterization, we have derived a simple energy
model and tested it on a set of real benchmarks separate from the ones used to
develop our characterization.

In the following sections we describe our evaluation benchmarks and the criteria
behind our choices. Aftewards, we describe the energy model mathematical formula
and the relevant coefficients for its variables, and finally, we show the results of our
evaluation for both core types and all frequencies.

9.1 Evaluation Benchmarks

The evaluation benchmarks include some trigonometric functions from the C math
library, 2D matrix multiplication, some array sorting algorithms, a fibonacci func-
tion, a nqueens solver program, and some whetstone and linpack benchmarks.

We have run all these benchmarks on all cores, with each core running an
identical thread. We have measured the energy and execution time of these bench-
marks on the same platform and the same methodology as the benchmarks we used
to derive our energy model. To get the instruction breakdown of the evaluation
benchmarks we have used the gem5 simulator [15].

We have selected these benchmarks with three basic criteria:

e Diversity: The benchmarks must be diverse to cover all basic instruction
categories with different mixtures Additionally, the benchmarks must have
diverse power requirements. As seen in figures 9.1 and 9.2, the energy per
cycle of these benchmarks varies around 25% for Cortex-A7 and 45% for
Cortex-Al5.

¢ Runtime behavior: The benchmarks must present the same time and en-
ergy characteristics across runs, randomness is avoided in all benchmarks.

e Gemb5 friendly: The benchmarks must avoid system calls and must be
compiled with the -static compiler flag.

95

Chapter 9. Evaluation

e
oot e sa e osateasesosatesosasesonsss |
BEERREE R
SRR
16%6%% %% 6% e%%e%!

1200

1100

1000

P
%% %%t te

0 800 900

70

600

500

140 | Min EPC &=t

160

(cd) 81949 J1ad ABlaug

Frequency

Benchmark Min and Max EPC

Cortex-AT:

Figure 9.1

1500

.x&#?ﬁ&ﬁ&%ﬁ
RS
AR O Dol

1400

1300

]
SRR
R SRSRAIES
alatatalalatelalololololololole

1200

]
PR
e erereced

RS

1100

B
S
S

s
B

1000

B sssss]
RS

900

800

600 |

400 r

200 |
0

1200 + Min EPC ==z
800 r

1000 + Max EPC

(cd) 81949 Jad ABioug

Frequency

Cortex-A15: Benchmark Min and Max EPC

Figure 9.2

Mathematical functions

We have used acos, atan log, log10 and sqrt as mathematical functions from the
standard C math library. These benchmarks vary in terms of energy consumption

as well as

1011 MmMix.

struct

in in

Integer X3

Float
Double

Load-store
Branches =zz222
Others Y

S;b?

100

L
o O
©0 ©

abejuaniad

Benchmark

Executed Instructions Breakdown for math benchmarks %

Figure 9.3

Technical Report FORTH-ICS/TR-450

56

9.1. Evaluation Benchmarks

,’_?
S 140 F 1 acos =3
g 120+ . atan
(_>)~ 100] 1 log
t 80 o § {4 logl0 ——
Q 60 | ::: ::1 | sqrt zzzzz2
5 407 ol]]
5 20 r K k3 1
c 0 K L] 3
w 500 600 700 800 900 1000 1100 1200

Frequency

Figure 9.4: Cortex-A7: Measured EPC for math benchmarks

,’_?
g 1200 acos oo
% 1000 | 1 atan EEEE
> 800 r i 1 log
O 600l] B logl0 —=
o = B & sqrt
S 400 t M K | K
o 0 (] k]
w 1100 1300 1400

Frequency

Figure 9.5: Cortex-Al5: Measured EPC for math benchmarks

We can see from figure 9.3 that the instruction breakdown of these benchmarks
differs in all groups of instructions.

As far as energy in concerned, from figures 9.4 and 9.5 we can see that acos
steadily consumes more energy per cycle (EPC) that atan in both core types and
all frequencies. Log and log10 consume almost the same energy per cycle across
all configurations, while log and log10 consume noticeably more than sqrt.

Sorts:

We have examined the Bubblesort and Selectionsort argorithms on arrays of in-
tegers, doubles, and floats. The different instruction breakdowns are visible in
figure 9.6 The energy differences are visible at figures 9.7 and 9.8 where double
precision sorts require more energy than float sorts and these in turn require more
energy than integer sorts. Generally, insertionsort requires less energy per cycle
than bubblesort for the same precision.

Technical Report FORTH-ICS/TR-450 57

Chapter 9. Evaluation

100 Integer oo
o 80 1 Float ===
=2 Double
£ 60 1 Load-store
8 40| -] Branches ===
5 " Others &Y
& 20p |]
%
0 %
Sy
Hop, Yo
O, o, o
% D So
Benchmark
Figure 9.6: Executed Instructions Breakdown for sort benchmarks %
"ﬂ\
S 140 F bubble-dp
S 120} 0 bubble-int
> 100 f ; N N bubble-sp
° 80y ! g ﬁ ﬁ a% insert-dp
S 60} B 1o N N A N insert-int |
2 an A |
>~ 40t RN # N AN N insert-sp SN
5 A g N RN RN
© 20} i I\ AN N AR N
c o L] KE % (4 | @\ 4& d& ¢§
w 500 600 700 800 900 1000 1100 1200
Frequency
Figure 9.7: Cortex-A7: Measured EPC for sort benchmarks
%\
& 1200 , bubble-dp ===
o 1000 r T L N bubble-int mzzE
S 800t ann A G bubble-sp m—
8 . iy el RN LA i dp ——
> 600 | W Y Y L e
g iR I\l N BN N insert-int ==
S 400 ¢ 8 §§ §§ a% i §§ a% a% insert-sp (Y
= 200 + AN RN G 7 N
w 800 1100 1200 1300 1400 1500
Frequency
Figure 9.8: Cortex-A15: Measured EPC for sort benchmarks
Matmul:

We have examined a simple matrix multiplication argorithm on arrays of doubles,
floats and integers, and we have examined matrix sizes of 16 by 16 and 32 by 32.
These give a total of six different cases for matmul benchmarks.

The different instruction breakdowns are visible in figure 9.9. It is obvious that
in the double benchamarks float instructions are replaced by double instructions
and as the array size get bigger the percentage of branches lowers.

58 Technical Report FORTH-ICS/TR-450

9.1. Evaluation Benchmarks

The energy differences are visible at figures 9.10 and 9.11. The general trend
is that as the array gets bigger, the energy per cycle demand lowers, this is more
visible at Cortex-A15 and less in Cortes-A7. Additionally, the type of the array also
seems to have some influence on the energy demand of the benchmark with integer
arrays beeing cheaper that float and double at Cortex-A15 cores. At Cortex-A7
cores however this is not the case.

100 Integer XA
o 80 Float Ez===3
2 Double
% 60 E— Load-store
L R] (58] i Branches 2
:’3’ 40 e e Others YN
a 20| K K i
B s
0 [R5 (55
/)761,77 076{ Q”’) Qz,b Qz,b /)7<9/<
l//\; Y Uy "/\99 (//\76‘ (//\99
L. o7 S, Sy) k)
Benchmark
Figure 9.9: Executed Instructions Breakdown for matmul benchmarks %
,’_?
S 140 F 1 matmul16-dp ==
g 120¢ R matmul32-dp D
> 100 N ?& matmul16-sp
O &0 m i matmul32-sp ———
g 60 ﬁ ¢§ g§ matmul16-int £z
> 40 A HEN TN matmul32-int [
e % : A R HEA
w 500 600 700 800 900 1000 1100 1200
Frequency
Figure 9.10: Cortex-A7: Measured EPC for matmul benchmarks
’,_',\
£ 1200 1 matmull16-dp
Q
L g L no matmul32-dp ¢
S o0 L N LD matmul16-sp mm—
800 T N LA P
© N N i% N N matmul32-sp ——
g 600 / A I ﬁ§ £§ matmul16-int ===
400 | g # N A N matmul32-int SN
8 200 | N BN R
g o LAY IR | A Y R R
w 800 900 1000 1100 1200 1300 1400 1500

Frequency

Figure 9.11: Cortex-A15: Measured EPC for matmul benchmarks

Technical Report FORTH-ICS/TR-450 59

Chapter 9. Evaluation

Fibonacci, Nqueens:

For integer instruction dominated benchmarks, we have tried a fibonacci function
and a nqueens that we group together in our description for brevity. For the
Nqueens benchmarks we have three different board sizes of 8, 9, and 10. For the
fibonacci we have arguments of 10 and 12.

The different instruction breakdowns are visible in figure 9.12. It is visible
that all these benchmarks are dominated by integer and load/store instructions.
Furthermore, the fibonacci benchmark appears to use a lot more load/store and
branch instructions, this is easlily attributed to the recursive function calls of the
benchmark.

All variations of nqueens seem to have the same instruction breakdown. The
energy differences are visible at figures 9.13 and 9.14. An interesting observation
is that fibonacci consumes more energy per cycle than the nqueens benchmarks at
Cortex-A7 cores while, at Cortex-A15 the have roughly the same energy per cycle.
All Nqueens variations consume roughly the same energy on both core types.

100 Integer
® 80 1 Float
g 60 + J Double
[
) Load-store
© 40r 1 Branches zzzzz
nq_) 20 r 1 Others SV

0

Y. 7)))
6\;0 b\’é 99 9.9 970
Benchmark

Figure 9.12: Executed Instructions Breakdown for Fibonacci and Nqueens benchmarks

%

’,_',\
S 5)18 F] fib1l0 3
S 120} il fib12
g K ng-8
& 100 , 8 q
= 80 r b K ng-9 C—
g 60°f] i] ng-10
5 4 | 1
5 20 r k g A
[0 P 4
w 800 900
Frequency

Figure 9.13: Cortex-A7: Measured EPC for Fibonacci and Nqueens benchmarks

60 Technical Report FORTH-ICS/TR-450

9.1. Evaluation Benchmarks

fibl0 ===
fibl2 ==
ng-8 m—

ng-9 C—J
ng-10

1500

TRXRIRAKKK

R

00 1100 1200 1300 1400

10

900

s
RERRREX

800

1200

(cd) 81949 J1ad ABlaug

Frequency

Cortex-A15: Measured EPC for Fibonacci and Nqueens benchmarks

Figure 9.14

Linpack

In our evaluation we also examined Linpack [61] benchmarks for float and double

precision The different instruction breakdowns are visible in figure 9.15.

The energy differences are visible at figures 9.16 and 9.17. Double precicison
benchmarks seem to consume slightly more energy per cycle than float benchmarks.

Integer

Float ===

Double

Load-store
Branches
Others SV

100

L L L L
o O O ©O o
0 © < N

abejuaoiad

Benchmark

Executed Instructions Breakdown for Linpack benchmarks %

Figure 9.15

o
A
-

]

©

o
£

linpack-sp E=

B e
R EREEIEE LIS

R
SRR R
BRI
BRI

By
SRR
[RRRRIRRII

900 1000 1100 120

00

8

]
2z 22
o 324

e

700

600

500

(cd) 81949 Jad ABioug

Frequency

Cortex-A7: Measured EPC for Linpack benchmarks

Figure 9.16

61

Technical Report FORTH-ICS/TR-450

Chapter 9. Evaluation

0% 535

o

2

“
o

2
3
22

XXX A

5%

%

%

vv
%
=

B

53
3
i

KR
gg% SRR

s
SRS
X5

2

%
3

2

3
22

X

o3

%
oerese

SRR

K
0%}

X

aVaVava
L

—

b
'a%
[

%%
5%

R
B3

5

R

%%
So%e%e%
R

o

TR
XX

e

SIS

v,v
%%
o

a9
fetetete

,,,,,,,
otetetetes

X
!
5

]
g5
R

[

900 1000

Frequency

500

linpack-dp ===
linpack-sp E==z

Figure 9.17: Cortex-Alh: Measured EPC for Linpack benchmarks

2 1200

@ 1000 |

S 800 |

O

5 600 |

S 400 f

>

S 200

c 0 L
w 800
Whetstone:

Finally, for our evaluation we used the whetstone benchmarks with float and double
precision. The different instruction breakdowns are visible in figure 9.18. Although
there is a clear difference in the executed instructions between the two precision
variants with double precision benchmarks using more double instructions and
single precision benchmarks using more float instructions, these two are not exact
opposites, this can be either attributed to the code of the benchmarks itself, or,
probably to inefficiencies in our trace generation with the gemd simulator.

The energy differences are visible at figures 9.19 and 9.20. While double pre-

cision whetstone consumes more energy per cycle at Cortex-A7 cores, the same is
not true for Cortex-A15. The difference, though subtle has to be noted.

100 Integer o
o 80 Float E=z=:
2 Double
€ 60 r Load-store
8 40 | Branches zzzzz2
o) i Others Y
o 207 BRI
0 R
%
810/7
N
D
Benchmark
Figure 9.18: Executed Instructions Breakdown for Whetstone benchmarks %
62 Technical Report FORTH-ICS/TR-450

9.2. Energy Model

whetstone-sp ==
whetstone-dp Ezz=3

<
s
2

o

5
2]
e

2
2
etetet

X
55

,v,v
NAVAY.
e

<
oo
25

%5

-
X5

55
%

X2

T
22
5
5

[e]
o
T
<1
<

%
%%

3

9

<

=

]
e

2R3
o
s

X

B

B

XX
2K)
A
RSy
eI
a5
9.9.9
2
R

-
3R
g

2
2
3

3

%
%

R

X
s

.

X

o

logt

25

2
3
3

5

5
o

<4

I
»
I

o

£

500 600 700 800 90 100 1200
Frequency

Energy per Cycle (pJ)
[2=Y
o
o

Figure 9.19: Cortex-A7: Measured EPC for Whetstone benchmarks

~—~

5
o 1200

= whetstone-sp XA
2 1000 r whetstone-dp EE
> 800 r]

O %, K

L 600 r o K

o o

> 400 | %% ?&3 1 sg?g

S 200 BB

3 0 B B

L

800 900 1000 1100 1200
Frequency

Figure 9.20: Cortex-A15: Measured EPC for Whetstone benchmarks

9.2 Energy Model

The simple model we have derived to test our instruction characterization relies on
two factors. The first is an energy cost per cycle and the second is an additional
energy cost for every instruction executed. Thus, our energy model has the form:

Energy = Cycles x EPC i, + Z Icount X IEnergy

Instructions

Where

e Energy: The total energy of the program

Cycles: The runtime of the programm in cycles

e EPC,,jn: The minimum EPC for that processor and frequency

Icount: The number of instructions executed for each type

Ifnergy: The energy contribution of each instruction type

To put it simply, we include a base energy cost that is equal to the minimum
EPC times the number of cycles a program executes and then we add an extra cost
for every instruction executed.

Technical Report FORTH-ICS/TR-450 63

Chapter 9. Evaluation

To calculate the energy contribution of each instruction we have simply sub-
tracted the EPC;, times the Instruction latency from the total energy of the
instruction:

IEnergy = Igp1 — EPCmin X ILatency
Where

® Ipatency: The latency of each instruction as measured in chapter 7
e Igpr: The Energy of each instruction as measured in chapter 7

e EPC,,in The minimum EPC for that processor and frequency

® Ignergy: The energy contribution of each instruction type

Example: Lets say that we want to calculate the energy contribution for add
instructions with register operands for Cortex-A7 cores at 1000MHz. From table
7.52 we see that the minimum EPC for that core and frequency is 37 pJ. From
tables 7.2 and 7.4 we see that these instructions have a latency of 1 cycle and an
EPI of 82 pJ. so: Ignergy = Iepr — EPCriin X ILatency = 82 — 1 x 37 = 45pJ.

With the same process we calculated all the instruction energy contributions
for all cores and all frequencies, these are shown in tables 9.1 to 9.4

Energy contribution analysis

From the results of our extensive characterization in chapter 7 we see that different
instructions have different energy and latency characteristics. The bottom line is
that energy of each instruction is not always directly proportional to the number
of cycles it needs, and since our energy model takes into account the energy per
instruction as well as the latency, an instruction with higher EPI will not always
have an energy contribution higher than that of an instruction with lower EPI as
the instruction latency also plays an important role.

The gist of this approach is that the energy of an instruction with high latency
will be amortized into the many cycles it takes to execute, and since instruction
with high latencies have lower energy per cycle metrics it is expected that these
will also have lower contributions in energy.

Still, instructions with the same latencies will have energy model contributions
proportionate to their EPIs, but as we stated before, this is not the case for all
instructions. For example integer additions have a bigger EPI and a correspond-
ingly bigger model energy contribution than logical and instructions. At the same
time, float additions have a lower EPI and lower energy contribution than float
multiplications at Cortex-A7 cores, while at Cortex-A15 float multiplications have
a lower energy contribution than additions although their EPI is higher. This is
due to the fact that float additions and multiplications have the same latency at
Cortex-A7 while at Cortex-A15 multiplications are slower.

64 Technical Report FORTH-ICS/TR-450

9.2. Energy Model

Cortex-A7 instruction energy contribution (pJ)

o4. MHe 500 600 700 800 900 1000 1100 1200
Instr.
add 33 33 33 35 39 45 52 o7
and 24 24 24 25 28 32 37 41
eor 25 26 26 27 30 35 39 44
mul 26 27 28 29 29 35 40 45
orr 25 26 26 27 30 35 39 44
rsb 33 33 34 36 39 46 51 o7
sub 34 34 34 36 40 46 52 57
div 28 29 30 32 30 36 41 46
add (imm) 31 31 31 33| 36| 42| 48| 52
and (imm) 28 28 28 30 32 38 42 47
eor (imm) 30 30 30 32 35 41 47 o1
orr (imm) 29 29 29 30 33 39 44 49
rsb (imm) 36 36 36 | 38 2 49 54| 61
sub (imm) 31 31 32| 33| 36| 43| 48| 53
fadds 37 37 39 41 42 o1 99 66
fdivs 26 24 30 34 22 36 38 39
fmuls 41 41 42 45 46 55 65 73
fsubs 38 38 40 42 43 52 59 67
faddd 37 37 38 40 41 49 56 64
fdivd 3 3 12 15 0 6 3 0
fmuld 59 60 61 65 65 80 92 104
fsubd 37 37 38 41 41 50 58 65
mov 25 25 25 26 29 34 39 43
mvn 35 34 35 37 41 47 53 59
mov (imm) 23| 225 23| 245 | 275 | 305 34 39
mvn (imm) 23| 235 23| 245 | 275 | 315 35 40
fepys 35 38 39 41 42 50 99 66
fnegs 37 38 40 43 43 51 60 68
fepyd 41 43 44 47 48 58 67 76
fnegd 43 44 45 48 49 o8 68 78
cmn 28 28 29 30 33 39 44 49
cmp 29 29 30 31 34 41 46 50
teq 27 27 28 30 32 38 43 48
tst 27 27 27 29 32 37 42 47
cmn (imm) 25 25.5 26 27.5 30.5 33.5 39 43
cmp (imm) 25| 255 26 | 275 | 305 | 345 38 44
teq (imm) 24 | 255 95 | 265 | 295 | 345 37 13
tst (imm) 22 | 225 23 | 245 | 265| 305 34 38

Table 9.1: Cortex-A7: Instruction energy contribution

Technical Report FORTH-ICS/TR-450 65

Chapter 9. Evaluation

4 MR om0 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200
Instr.
fempzs 33 34 34 37 40 47 53 59
femps 42 42 43 46 50 58 66 72
fempzd 37 38 38 41 45 52 59 66
femped 47 47 49 ol o7 66 73 82
ldr 84 85 84 89 99 112 125 141
str 95 93.8 96.6 | 102.8 | 112.6 | 127.4 | 1444 | 161.6
fids 87 85 85 91 100 113 127 139
fsts 90.5 89.2 90 95.2 | 107.2 | 121.2 | 1355 150
fidd 112 | 112.1 | 110.2 | 115.1 | 123.7 | 155.3 | 160.8 | 187.2
fstd 105 | 105.6 | 110.2 | 109.6 | 120.2 | 135.8 | 151.8 | 173.2
Table 9.2: Cortex-AT7: Instruction energy contribution
Cortex-A15 instruction energy contribution (pJ)
ed- MH= | 900 | 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500
Instr.
add 156 162 178 191 205 224 252 282
and 118 120 132 139 150 161 181 201
eor 121 126 140 149 159 175 198 214
mul 74 102 84 91 93 99 117 124
orr 130 135 146 160 172 188 209 228
rsb 156 158 178 191 202 225 249 283
sub 156 161 175 191 203 227 254 283
div 0 0 2 0 0 0 0 0
add (imm) 145 150 165 179 191 211 235 262
and (imm) 124 129 143 159 165 185 199 219
eor (imm) 142 148 161 179 187 209 228 258
orr (imm) 133 138 152 165 178 193 217 235
rsb (imm) 153 159 176 190 203 225 248 279
sub (imm) 144 152 167 202 192 211 232 262

Table 9.3: Cortex-A15: Instruction energy contribution

66 Technical Report FORTH-ICS/TR-450

9.2. Energy Model

o4 e 800 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500
Instr.
fadds 168 177 201 226 234 237 263 292
fdivs 134 143 166 185 197 199 220 229
fmuls 156 170 190 213 224 226 257 271
fsubs 168 177 204 225 231 237 272 288
faddd 188 195 213 237 243 258 304 318
fdivd 157 163 180 210 216 217 252 254
fmuld 175 184 206 232 240 244 290 297
fsubd 184 192 216 240 252 254 304 312
mov 103 108 117 126 133 150 163 169
mvn 126 131 143 156 165 180 198 215
mov (imm) 81 86 94 102 110 | 114.5 127 133
mvn (imm) 86 87 94 108 114 | 120.5 129 144
fepys 169 167 188 204 216 229 264 279
fnegs 160 165 190 210 218 229 264 280
fepyd 198 198 221 240 253 273 308 333
fnegd 191 197 222 247 253 272 312 332
cmn 68 71 7 83 87 | 100.5 110 117
cmp 69 72 79 85 89 | 100.5 108 119
teq 70 71 78 84 88 | 985 109 114
tst 67 69 75 84 87 | 96.5 109 112
cmn (imm) 76 78 86 93 94 | 106.5 119 127
cmp (imm) 76 76 84 93 95 | 107.5 118 129
teq (imm) 228 229 252 272 288 | 311.5 348 378
tst (imm) 223 228 249 269 286 | 314.5 346 378
fempzs 96 96 106 118 120 133 149 161
femps 117 119 134 148 151 167 185 208
fempzd 107 109 120 131 135 147 163 181
femped 132 135 151 163 168 189 208 229
ldr 180 187 209 224 232 261 288 318
str 211 219 248 268 281 298 338 366
fids 188 181 198 228 246 272 285 325
fsts 212.5 | 221.5 | 238.5 263 | 279.5 | 303.2 333 358
fldd 197 195 194 218 268 269 298 351
fstd 247 | 255.8 | 276.8 | 294.2 | 302.8 | 344.2 | 378.6 | 407.8

Table 9.4: Cortex-A15: Instruction energy contribution

Technical Report FORTH-ICS/TR-450 67

Chapter 9. Evaluation

9.3 Evaluation Results

In this section we present the predictions of our model alongside the actual energy

consumption of the evaluation benchmarks. To normalize the results we do not

ic for both the real and

shown for all frequency

present the total energy consumption but the EPC metr

at both

settings

are

sults

the re

9y

S

predicted energy value

core types at figures 9.21 to 9.36

R

YaTavavaY raTave"

5899

5727
Q.

y
o
)

6

% "% S

IS

2% 22
SOOI

p, oy
ISOYRK
Cf qgfoos

R

R

B

ERARRRRRARRIINRAR]

R

R
AU A AAAUVLY,

£

S 3e

02020202020202020202020-0:0:0:0

DeDe DD TS

ﬁla ko] XXX XXX RXXXX]
OB 00,.
g ®
5 <&
(a0} Dy
= I3
P COTO OO OO T OO OO TOTO T TOTTe | o
EXX XXX XXX XXX XXX o
R R
O 0 9 © o o
g ® © ¥ «

(cd) 894D 1ad ABiaug

Benchmark

Cortex-A7 at 500MHz: Real VS Model Prediction EPC

Figure 9.21

o o o
0 O <

100

(cd) 894D 1ad ABiaug

———)
e 00,
oo eeeeeeseses £
N
‘
R) 8
/
Lok
O
L&y
N
SO
SR
s NN
S 0&. /rwa %
1 <OV
N Y
: /0@@. S
S
S
e
A
S
XX %
RXXXRXX S Oﬁ/\ &
Faavaaava e NG % N
A SOV
R R %9. > O.VO/O
s SRR B
oo eeeseesees % IS
SR
sl Q O D
RRRRIRIRAA] N 00 %
s I S Q
CESOENNENNINENN @ OO 2
] P& NS
DERSERIAITATITH, 9 & SO./ﬁ/
B
[Saaraaaaaavaaararaata zmuO 80 IS
N4
Y, so?
X
>
o
] OO.v
oe:eeoveeeeeeeeei
(e
— 9
ge &
[Tl SN
x¥ o ERRIETIRRA] D
5 &
[} Vo
= ()
2 $

Benchmark

Cortex-A7 at 600MHz: Real VS Model Prediction EPC

Figure 9.22

Technical Report FORTH-ICS/TR-450

68

9.3. Evaluation Results

R S R

(V2 00:0:0.0:0:0:0:0:0:0:0:0:0:¢

4

R R

HRRRRIIIIRA

rere

(67676767676767670767676767676 |

TN

RN

/09
O
7 errrtmes Q
<D S
02 £
xS 3
o) e eanre
@ R W@
o
1 L L L .
g 8 8 2 g ©
n1U_ 0 © < «

(pd) 81949 1ad ABiau3g

Benchmark

Cortex-A7 at 700MHz: Real VS Model Prediction EPC

Figure 9.23

e =
(Ceb 00 e eeeees OWV
&0
&
Lok
R R TTR 2 24
e SO &
N
@ O Q
VS
RN 7%
NS
FR
SOV
N o0
S7N
SR
@ /WJ\\U
R
R Ry 6
[eoesesssseees %f%ﬁ(W.
] LG
[Sv ... %f%ﬁ(%
L
] QOGP
e S&2K
N Y
e LSS
s S EPY
| TSR
= (P
'S EEEEEETEEETEE /Q\. OO \S
R R R S@ mw./ % g
[$:0:0:0:0:0:0:0:0:0:0:0:0:0 &5 ~/ﬁ/
avavavararavava] /% SO S
QEE
IDSYS
N
BRI N
N)
o
/09
O
L R o
<D S
o] X
xS S
=}
@ == G,
a &
g
| | | | |
o

o O O O o
w8642

(cd) 894D 1ad ABiaug

Benchmark

Cortex-A7 at 800MHz: Real VS Model Prediction EPC

Figure 9.24

B3

ST

L
zof;
%%

Wy, %%

[&?@@1
(o)

0.7
o

9

K
0 %
D

RS $
Ceaaesed A

/

20T T AT T T T T | @ % 0 g

Co o] 9 0 OLS
ON.

s i A
I 90

R 3 /00 Q¥
929.9.9.9.9.9.9.9.9.9.9.9.9.9

Real
Predicted =3

120 |
100
80
60
40
20
0

(cd) 894D 1ad ABiaug

Benchmark

Cortex-A7 at 900MHz: Real VS Model Prediction EPC

Figure 9.25

69

Technical Report FORTH-ICS/TR-450

Chapter 9. Evaluation

rrrrrr OO

T s

(SO SSSSSSS

TI0Y

02020 0:0:0:0:0:0:0:0:0:0:

R

1020202020202020202020.0¢

2T
ERRRIIIRIIIIIA]

B

OO X

I
AR AANNINAANANNNNN]

2T

[):6707070707020:0202626262620202¢|

TO
o) IR
x o RRERRERERRERA
e} — TS
[e
O oo
0:6:0:0:6:0:0:6:0:0:0:0:0:0:0:4
P S S S S N
o O O O O O O
< N O 0O © F N
-

(pd) 81949 1ad ABiau3g

4,

,&/7
0.
%

Benchmark

Cortex-A7 at 1000MHz: Real VS Model Prediction EPC

Figure 9.26

%7
@[:S\Jo
07,20y,
NN
%% 50

)

/f’@é

oo
5%

K
C,

£

T,
YaYaYa

I

£

Real
Predicted

(cd) 894D 1ad ABiaug

Benchmark

Real VS Model Prediction EPC

Cortex-A7 at 1100MHz:

Figure 9.27

I

076707676707070707070 0702020 ¢

()
@)
% %

%y
o,
.

5%
25705,
(O

So

7
Qc/7
0%
So %

4

I

S,

R

el

[670:0%07070:0.0:020:0:0:0%0:

Real
Predicted =3

160
140
120
100
80
60
40
20

(cd) 894D 1ad ABiaug

Benchmark

Cortex-A7 at 1200MHz: Real VS Model Prediction EPC

Figure 9.28

Technical Report FORTH-ICS/TR-450

70

9.3. Evaluation Results

% S

<
NSO
,,,,, O 5
R S
TR
PR
) o,p.a@
@A
SN
o8
O
S
| &R

IR (2%
R I

R

p:0:020200:0:0:0:02020:0:0:0¢

R
XXX KKK KX

Real

(pd) 81949 1ad ABiau3g

Benchmark

Cortex-A15 at SO0MHz: Real VS Model Prediction EPC

Figure 9.29

—— >
 OTATOTOTATAT O TNTOTOTOTOTITTOTIOTOTOTOTT OO/
[0707070767076707 0767070670 WV
<
¢
Lok
NG
e SP &,
R
SR
R % nJTQ
v DQ W %
—— SO
BRI S FaVs
NS
SR
%W&U
1 &,
SR
©
DOSN
A
R 8| 6
ARKARRARIARNA %f%ﬁ(%
IS R
S
], QRSSO N
s A e %/@c S
— | OX
e I & OOS%
) SRS S
BRI & /@o %n.//m/f
T F e
e %&o N
EEOEEOINNNN % s
N
Q
5
i
S
TS
© 5 &
2 crrmTmET S
x o 90
e]
3] e
= S
= &
[cNeoNoNoNolNoNolNoNel
[eNeoNoNoNolNolNolNe]
OO OMAN A

(cd) 894D 1ad ABiaug

Benchmark

Cortex-A15 at 900MHz: Real VS Model Prediction EPC

Figure 9.30

%
6’6&/ Jy
-S‘/O \S‘/O
0. % e,
%% o

f7

K
C,
D

BT

RARXERRIRIIRIAIR]

£
i

T

| V0.V V. V. V.9.9.9.9.9.9.9.

DTN

RS
RRARRRARA

(cd) 894D 1ad ABiaug

Benchmark

Cortex-A15 at 1000MHz: Real VS Model Prediction EPC

Figure 9.31

71

Technical Report FORTH-ICS/TR-450

9‘?3‘3‘7@

5’)
<')
% So

22T

PV V. V.V.V.V.V.V.V.V.V.9.9.9

L2

[soesssssssssse

o4

R]
CRRRRRRIRRRRRX]

P
()
%,

N,

.
G(/}G[éj
Ao, Sl
0. 70a
o

ke
5%

7
C

20,

o

R

SRR

X,
0P
%
P %

(%
>
55

T

e,;')’;e
7%
6

]
BERAINNNNNINNNNN,

%
o

R R R

KT LR

7
i
[N
S,

7z,
2,

iz
o
\90

EETARARRAIRRRRAIIIRIIITA

G/G/}}

S

6\ 0
O,

e
NARNNNNNINNNNEN

8,50, 50, S
%) b(/é é@/‘9 G/@
%o e Ol o
S07307
P o

Ye)
%,
OS/G
7

R R

[sovoosssssssse

1006

. %
% %,

Real
S
6‘49/7 U

°
Q
o
2
°
(3]
s
o

%2

1000

Chapter 9. Evaluation

L L
o o o o
o o o o
[°3] © < N

(pd) 81949 1ad ABiau3g

”
%
%
%

0

3,

&
0,
24

3,
%
ZE?
%

Benchmark
Cortex-A15 at 1100MHz: Real VS Model Prediction EPC

R e e
EXXXRRRRRRXRXXXXY
R

SO

R
v

OSSR

e IR

CERARRRIRRIRIIIA

TN
e

[0767676767676767676767676767674 |

020202000020

PR R IREIZTIA

]
SEEREREN

R R o]

ERARARRRIRAARR]

So

N

4

\S‘?‘GQ‘/

066
o~

%

,

(S

04, >
D

S5
j"’?z

7
¥/,

N, //'7[N, \,

Qz/b
3
o

7
7
%

2%

Y,
g

05
52

NP5
SOSISY
0,4
09
D

<

S

”

Sa, S
S %
S, %

IITNINANNNANNNNNA

Benchmark

O,
2
7z

Qi
C'[/OO

S,
2 So

LSey,

22

7
%

)
0,

4
7%6¢%

4
o

%,
Cortex-A15 at 1200MHz: Real VS Model Prediction EPC

9/7/00 /09
Real
Predicted ===

Figure 9.32

i
£
£
£
&
R
TO SOOI,
]
Q= 2
xo BRRERRRIEA
©
[
=
L
o
o
o
—

(cd) 894D 1ad ABiaug

%

OO

Y

N,

%%

s
ERPEIIEEA] RQ

s
e,
So

Yy, by
G4
70 o
%

%
~%0‘

Il
(i
D %

LD
v

237
Qz;b@z,)]

46755
o

iy

R

o
Y
s
%
D2

2
7

R

SR ORRXK

ST
s
%
4

S, S0,
AL
ol s
0 250,250,25
2 So /Ko,gv

%

7o

7
0

Q

"62
S,
@

4,
6, %
-So/?:

R T
RRRRRARRIRAAR]

4,
éb%

2T

4
10(/

4
% %,

Vs

g

R R
A AV AV A AAVAA

S
L2

R
XXXXXA

o

Figure 9.33

1200
1000 r

400
200

(cd) 894D 1ad ABiaug

Technical Report FORTH-ICS/TR-450

Benchmark
Cortex-A15 at 1300MHz: Real VS Model Prediction EPC

Figure 9.34

72

9.3. Evaluation Results

T T OMU
®
...... OOM
SRR (4
T ﬁ/o.@oo%
QST
| Sr s
N
..... SR
T SHPPRQ
QU P
S
NEH
SEHR
FD
S SEBBEEEEEN S %u %
/
e ENVSGIS
SN
s SQ0Q
IIXIIIRIINA S Q S Q
L4
FIOE
NI
SO
OSSR
NEDISI
NI
(DN}
ISR
XY
S
900
O o, N
QY Q
9 % SO W
NS
ASROY)
O 9
g
]
ST :000
VAVAVAVAVAVAVAVAA J
1S
SESEESESA N
T
TO rvsSSaaeaaaaae I &
xo eaasaaaas i Q>
g SRR af\.q
@ vevvsvivvoes IS OS
o O
v
L P L L L
o O O O O ©O O
o O O O O O
N O 0 © <
—

(pd) 81949 1ad ABiau3g

Benchmark

Cortex-A15 at 1400MHz: Real VS Model Prediction EPC

Figure 9.35

Bdo

098 R
S &
DCES
NS
SESR
)
e O
G

B RREA

920:0:020:0:0:0:0.020:0:0:0:0¢

,

)

LTIl

SRR

b 10674
66/&26/8
%

p
% \% 4

%

I

2T

=O resavavass IS

x o CRTIIRA D
5 . &
O R o
a &

v

P S S T S S

O O 0O OO0 OO o o

O O O O O O O

< NO o T AN

— - -

(rd) 91949 1ad ABiau3g

Benchmark

Cortex-A15 at 1500MHz: Real VS Model Prediction EPC

Figure 9.36

ion from the actual energy consumption

1at

Our model shows an average dev
the order of 8.5% for Cortex-A7 cores and 14% for Cortex-Al5 cores.

The

d average error for Cortex-A7 cores are shown in figure

9.37, and for Cortex-A15 in figure 9.38.

m

minimum, maximuin an

73

Technical Report FORTH-ICS/TR-450

Chapter 9. Evaluation

30 T :
Min —%—
Max —X¥—
25 | Average —H—
20
X
g 157 W
w
o o s =
= = = = —F]
°| T
0 — e ‘ ‘ ‘ ‘
500 600 700 800 900 1000 1100 1200
Frequency
Figure 9.37: Cortex-A15: Model Prediction Error %
30 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Min —%—
Max —X¥—
25 + AVW
20 r
X
5 15}
i
10
5 L
0 N i L L L L
800 900 1000 1100 1200 1300 1400 1500

Frequency

Figure 9.38: Cortex-A15: Model Prediction Error %

9.3.1 Discussion
Energy Contributions

Our model is based on a simple approach that separates the energy consumption in
two basic factors. The first is the number of cycles a sequence of instructions takes
to run, and the second is the energy contribution of every instruction executed
within that number of cycles. Although our model can have a percentage of mis-
prediction, it is important that we analyze the contribution of each of these two
factors (cycles and instructions) to see if any one of these dominates the energy
consumption and also to examine if the error rate is correlated with any one of
them.

74 Technical Report FORTH-ICS/TR-450

9.3. Evaluation Results

Error

Cycles ===

Instructions E

T T T T

abejuadiad

Benchmark

Cortex-A7 1000MHz: Energy contribution from cycles and instructions %

Figure 9.39

Cycles ===

Instructions E=

Error

abejuadiad

Benchmark

Cortex-A15 1000MHz: Energy contribution from cycles and instructions %

Figure 9.40

Our analysis shows that at Cortex-A7 processors run cycles can attribute any-
where from 31% to 43% while the instructions contribution can be anywhere from

45% to 62%. At Cortex-A15 cores run cycles can contribute from 36% to 59% and

instructions range from 28% to 56%.

The av-

It is important to note the differences between the two processors.
erage energy contribution of cycles for all benchmarks is 39% for Cortex-A7 and
43% for Cortex-A15 cores. At the same time, the average energy contribution of

instructions according to our model is 52% for Cortex-A7 and 45% for Cortex-A15

cores.

So, in conclusion, energy contribution from instructions is of less significance
at the little than at the big cores. At the same time the importance of instructions

s in relation to the big

contribution to energy is more pronounced at the little core

ones.

Figures 9.39 and 9.40 show the contribution of cycles and instruction to the

75

Technical Report FORTH-ICS/TR-450

Chapter 9. Evaluation

predicted energy along with the error for both core types at the same frequency of
1000 MHz. These are characteristic of the results across the entire frequency range.
We can see from the figures that the error percentage is not correlated with either
of the factors of our model. Bellow we explain some reasons for the mis-predictions
of our model.

Errors

The energy model can mis-predict the energy results for a few reasons, the most
important ones are:

Branch and other instructions:

As we explain in section 6.2 branches are absent from our characterization simply
because there is no straightforward way to model their energy consumption as
with the other instructions we characterized. Furthermore, although our study is
extensive it is not complete as to the myriads of instruction variations there are in
the ARM instruction set and some instructions would have to be left uncategorized.
For branches and other instructions we simply used the average instruction cost of
all other instructions in the energy model. The percentage of branches and other
instructions can vary from 4% to 15%, their percentage for each benchmark can be
shown in figure 9.41.

Instruction flavors: as we describe in section 6.2, although we characterize effi-
ciently most of the basic instruction categories in the ARM instruction set (except
branches), some instruction flavors like shifted arithmetic and multiple load/store
instructions had to be grouped with others for the sake of simplicity.

Datapath control circuits complexity: The processor datapath does not con-
sist only of ALU and other functional units, a great and more complex part of the
datapath is the control circuitry. Our synthetic benchmarks do not stress these
circuits enough since the only execute one type of instruction.

20
Branch ====1
o 15t |
8
& 10} |
o
na_) 5 | % A
0
o 4 - .
e B e o og o o o e e a8 80
Y6100 105500500 00,y Py Py Py Sy Sy A 3k S S, (o)
(2N o 207, JGJGJG‘?Q“?Q\‘?&qO 0.

29 OO0 ; e Q e
% S0 Mg %0 B e S0 P %P %

Benchmark

Figure 9.41: Executed Instructions Breakdown %

76 Technical Report FORTH-ICS/TR-450

Chapter 10

big. LITTLE Comparison

In this chapter we use our model to evaluate and compare the energy character-
istics of the two processors in our study. As we described in 5.2, Cortex-A7 and
Cortex-A15 cores are designed with different goals in mind. Cortex-A7 cores trade
performance with energy efficiency while Cortex-A15 cores do the opposite and
trade energy efficiency for performance. The processors have different datapath
lengths, different numbers of execution units and different scheduling mechanisms.

The differences in energy consumption are obvious when comparing the energy
cost of the same instructions, as we have shown in chapter 7, even when the proces-
sors operate at the same frequency and achieve the same throughput for a specific
instruction, the big cores can consume anywhere between three to five times more
energy per instruction than the little ones. This comparison however is not specific
enough to help us understand when it is better to use one processor and when to
use the other.

The formulation of our model can help with this comparison and guide such
decisions. Since we have separated the total energy cost of a program in two distinct
factors, we can compare these two factors for both processors and draw more solid
and meaningful conclusions.

In 10.1 we show the cost per cycle of our model for both cores at the entire
frequency range along with the average energy contribution for each instruction
executed. it is clear that Cortex-A7 cores are more energy efficient cores than
Cortex-A15 and that Cortex-A15 cores offer better performance. However, if ab-
solute energy savings are not the only concern and other metric like Energy Delay
Product (EDP) or Energy Delay? Product (ED?P) is the optimization target,
things are not so clear. Our energy model can provide a useful insight towards
this dilemma. If we examine the relative costs for every processor type, we can
see that at Cortex-A7 cores, the cost per cycle is lower than the average cost for
every instruction that is executed. In Cortex-A15 however, the opposite happens,
the cost per cycle is bigger than the cost of each additional instruction.

This means that Cortex-A7 cores can afford to be underutilized, since the energy
cost for every cycle that passes is lower than that for every instruction executed.

7

Chapter 10. big.LITTLE Comparison

At Cortex-A15 cores, the opposite happens, the cost of an underutilized datapath
is much greater relative to the additional cost of an instruction.

Energy (pJ)

Energy (pJ)

Energy (pJ)

400
350
300
250
200
150
100
50
0

200

150

100

50

450

400

350
300

250

200
150
100

50

Cortex-A7 cycle —H—

Cortex-A7 instruction —ili—

Cortex-Al5 cycle —6—
Cortex-A15 instruction

= = = = 5—H8—H |
500 600 700 800 900 1000 1100 1200 1300 1400 1500
Frequency
Figure 10.1: Cortex-A7 and Cortex-A15 energy factors comparison
cycle —=
integer —+—
float —%— J
double
load-store —l—
B i]
= 25 t 8 B .
500 600 700 800 900 1000 1100 1200
Frequency
Figure 10.2: Cortex-A7 energy factors comparison
cycle =
integer —+—]
float —%— 1
double §
load-store —l—

1100 1200 1300 1400 1500

Frequency

800 900 1000

Figure 10.3: Cortex-A15 energy factors comparison

The above remarks point to the fact that code with heavy inter-instruction
dependencies (low ILP) and long latencies due to the memory access pattern, is

78

Technical Report FORTH-ICS/TR-450

more efficiently executed at Cortex-A7 cores where the cost of stalling is lower than
the cost of instruction execution.

A closer look however reveals more differencies between instructions, in figures
10.2 and 10.3 we can see the relative cost between instruction categories for Cortex-
AT and Cortex-A15. These categories are integer, float, double and load/store
instructions. The general rule is that integer instructions cost less than float, float
cost less than double and loads/stores are more expensive than all. At Cortex-
AT loads/stores cost much more than all arithmetic instructions and almost three
times the basic cost per cycle. At Cortex-A15 the differencies between instructions
are more visible and the differencies are not as wide as in Cortex-A7.

The general conclusion is that if the target code offers high ILP and few stalls
due to memory it is more efficiently executed at Cortex-A15 cores. Figures 10.4
and 10.5 show the relative run-time and energy costs of our evaluation benchmarks
for Cortex-A7 and Cortex-A15 at the same frequency of 1000 MHz.

For runtime, all values are normalized to the Cortex-A15 runtime since at
these cores the benchmarks always achieve higher performance and therefore lower
runtime. For energy, the values are always normalized to the Cortex-A7 cores since
the always consume less energy there.

We see that runtimes at Cortex-A7 can be from 1.2 to 3.2 times the corre-
sponding at Cortex-A15. Energy consumption for Cortex-A15 can be from 2.4 to
4.2 times that of Cortex-AT7.

When examining the two graphs together, it is visible that they complement
each other. In a way, this means that, the lowest the relative gap in performance
between the two cores, the highest the energy difference will be. For example, the
fibonacci benchmark is 1.5 times slower at Cortex-A7 but 3.4 times more energy
hungry in Cortex-A15. Matmul, on the other hand is 3.2 times slower at Cortex-A7
and 2.4 times more energy hungry at Cortex-A15.

This verifies our earlier point that, when considering the energy performance
trade-off and not solely energy or delay (runtime), benchmarks with high ILP
like Matmul are more efficiently run at Cortex-A15 cores while benchmarks like
Fibonacci that achieve low ILP are more efficiently run at Cortex-A7 cores. To
put it simply, when running Fibonacci you can get 1.5 times more performance for
3.4 times more energy if you run at Cortex-A15 instead of Cortex-A7 at the same
frequency. For Matmul one can get 3.2 times the performance for 2.4 times the
energy for the same migration, a clearly better trade-off.

Technical Report FORTH-ICS/TR-450 79

Chapter 10. big.LITTLE Comparison

4r Cortex-A7 time &=]
35+ Cortex-Al5 time i
37 i
o 25f |
E 27]
15 |
1r |
0.5+ 1
° 99,7006, 8,8,,8,,.55,58,59, 22 225 22 225 25 225 o B 5 s 5 25 g,

X% 0,0 s 4 5 5

Q7O Y5 05056, % Q/@oc?’%@f’b@@@f’b@%@%%@%t?6@/%/6\’06"99&9‘99‘\7
Qo 80 80 %,.%, %, 1, ey, ey oy Ry Ho Yo e,
O O O 25, 25, 25,%6, 46, 6, 72 52 52 20 72 78 7,
% xS ’?i%’?i,é’?i\go S0 % xS0 % %0 % S
”
Benchmark

Figure 10.4: Execution time from Cortex-A7 to Cortex-A15 (1000MHz)

5
Cortex-Al5 Real e
4l Cortex-A15 Model estimate === |
Cortex-A7 =——
2]
n
o 3t
P
=
2 27
L
1+
0

Benchmark

Figure 10.5: Energy from Cortex-A7 to Cortex-A15 (1000MHz)

The remarks above apply when comparing the two core types at the same
frequency. Another interesting comparison is between the two extremes in terms of
performance and energy consumption. When comparing Cortex-A7 at the lowest
frequency of 500 MHz (lowest energy consumption) with Cortex-A15 at 1.5 GHz
(highest performance) we can see that the energy consumption to completion is
five to nine times higher at Cortex-A15 whereas the execution time is increased
four to ten times at Cortex-A7. These measurements can be seen at Figures 10.6
and 10.7.

80 Technical Report FORTH-ICS/TR-450

12 + Cortex-A7 (500 MHz) time == J
Cortex-A15 (1.5 GHz) time

10 1
e ‘
67]

4 L 4

2 L 4

0

U s S0, 0,0, 8,8,8,,90,9%,9%0, 25 25 25 25 205 205 B0, B, 1 1 %525 0, P
0@ 2 O 87 8, %6, S o, s s . . 05 05 Yy e k9 0
() (o) 6/0 6/@ 6/0&0(%0/%(}%@(/ 1) /0 <O Yo

Benchmark

Figure 10.6: Execution time from Cortex-A7 (500 MHz) to Cortex-A15 (1500MHz)

10

Cortex-Al5 (1.5GHz) Real E==A
g | Cortex-A15 (1.5 GHz) Model estimate Ez==3
Cortex-A7 (500 MHz) i

XXA

XX
DS

XX

XX

2024
XX

XX

Energy

20
X

2024

St

B2

s
TXXXS
0100
RS

DI@
PRI

5
RREETRE

XXX

IO 19X
2

KOO OOO0

e reeeseeaes)
e =

DT DD

X
R

Benchmark

Figure 10.7: Energy from Cortex-A7 (500 MHz) to Cortex-A15 (1500MHz)

Technical Report FORTH-ICS/TR-450

81

Chapter 11

Conclusions and Future Work

This work has shown an instruction level energy characterization of ARM Cortex-
A7 and Cortex-A15 processors.

For our characterization we studied the ARM instruction set in depth and
separated the instructions into categories of similar semantics. We then developed
two special purpose benchmarks for every instruction type taking into account
the most common variations and operand types. One benchmark studies the CPI
and energy characteristics of instruction when there are dependencies and the other
when there are not. This allows us to study the effects of datapath underutilization
on instruction energy.

We run our benchmarks on an Odroid zu+e development board that features
two different ARM processor in a heterogeneous multiprocessing (big. LITTLE)
configuration. We extrapolated the cost of different instructions in clock cycles
(CPI) and energy per instruction (EPI).

We conducted careful and detailed measurements of the time and energy re-
quirements of our benchmarks for both core types and a total of 16 different fre-
quency settings.

Through this characterization we developed a simple linear energy model that
takes into account two factors for estimating the energy consumption of a program.

The first is a basic cost for every cycle of program execution, and the second is
an additional cost for every instruction that is executed within those cycles.

We tested the validity of our characterization and energy model on real appli-
cations like matmul, linpack ,whetstone and fibonacci benchmarks and achieved an
average mis-estimation of 8.5% for Cortex-A7 and 14% for Cortex-A15 cores.

Through our energy model we shed some light to why underutilized cores are
not energy efficient, as well as some useful insight into heterogeneous architectures
like ARM big. LITTLE and how to allocate computing resources more efficiently
based on workload traits.

Using some of our earlier work on X86 instruction energy, we quantitatively
compare the ARM and Intel processors in terms of energy per instruction and
show some of the differences between the two architectures.

82

Our future plans include optimizing that energy model by incorporating mem-
ory energy consumption and correlating it with processor energy. Furthermore and
interesting outlook would be an even deeper look into the ARM instruction set and
proposing architectural energy and latency optimizations for future processors.

Technical Report FORTH-ICS/TR-450 83

Appendix A

Using Architectural Counters to
Evaluate the Cost of Instructions
1In x86 Architectures

A.1 Introduction

This is some earlier work of the author on X86 architectures. We use the same
methodology to study the energy and performance characteristics of integer arith-
metic and logical instructions, scalar and packed floating point, data movements
between registers, loads and stores to different levels of the cache hierarchy and
more. For this work our measurements are made via the architectural counters pro-
vided by intel processors and not by actual energy measurements through dedicated
sensors. We present the design of those benchmarks along with their results for a
case-study Intel Sandy Bridge architecture CPU. While presenting our findings we
share some characteristics of the CPU that we were able to infer.

A.2 Methodology

Processors consume energy to execute instructions, but they also do so when idle.
Our work relies on the energy readings provided by the Machine Specific Registers
(MSRs) provided by the latest generations of Intel processors [55]. The provided
measurements however, do not distinguish between static and dynamic energy. We
overcome this by reporting on the mixed static and dynamic energy consumption
and by running our benchmarks on all cores at the same time. That way, the static
power is the lowest possible compared to dynamic power.

The registers/counters used are the Power Plane 0 (PP0) counter, which in-
cludes the energy of the processing cores and the caches, and the package energy
counter which provides the energy of the entire processor chip package. The find-
ings that we report are based on the PP0 counter, but we also measured the package
energy mainly to see how they are correlated. Also available in Intel processors

84

ot

A.2. Methodology

is a Time Stamp Counter (T'SC) that we can use to measure time in clock cycle
granularity.

We have used the above mentioned energy and time counters in order to develop
an energy model for the basic instructions and operations of the x86-64 instruction
set.

A.2.1 Benchmark Specification

We have designed a series of benchmarks that target specific instructions and mea-
sure their time and energy cost. We do that by running a number of instructions
written in assembly, in a highly unrolled loop also written in assembly. The body
of the loop consists of 1000 instructions for arithmetic benchmarks and 1024 in-
structions for memory and cache benchmarks in order to keep memory footprints a
power of 2. The code for the loop itself is merely 2 instructions per iteration. This
is small enough to attribute the energy and time cost entirely to the instructions
in the loop body. Listing A.1 shows the loop code with the body of the loop and
rcr register initialization omitted. In all iterations of the loop except the last, only
one decrement “dec %rcz” and one jump “jz .LOOP_END” are executed, this is
0.2% of the executed instructions.

.LOOP_START:
g jz .LOOP_END

\\loop body

1001: dec %hrecx
1002: jmp .LOOP_START
.LOOP_END :

Listing A.1: Loop code

The measurements of the energy and time counters are taken after all initial-
izations are finished and as close as possible to before the start and after the end
of the loop. After the measurements are taken, we calculate an energy and time
cost for a single type of instruction. This is possible, since the measured quanti-
ties are attributable to a certain number of instructions with little pollution from
other parts of the benchmark. Running similar benchmarks for different types of
instructions allows us to compare the energy and time cost of different instructions.

We also study the same instruction types under different conditions, e.g. mem-
ory loads from different parts of the memory hierarchy, series of instruction with
no dependencies between them or with dependencies purposefully introduced. In-
structions with no dependencies allow us to study the maximum throughput of the
processor in terms of instructions per cycle, while dependent series of instructions
show us the relative latency of instructions and the subsequent effect on energy.
Furthermore, both of these scenarios are encountered in applications, as there are
parts where instructions form a sequence where the results of the previous instruc-
tion are needed by the next, and there are scenarios where many instructions are

Technical Report FORTH-ICS/TR-450 85

Appendix A. Using Architectural Counters to Evaluate the Cost of Instructions
in x86 Architectures

independent of each other. In listing A.2 we can see an example of dependent
instructions: The addq instruction in line 1 writes to register 79 and the following
instruction reads it and writes to register 710 from which the next addq reads and
so on. Listing A.3 shows an example of independent instructions; as we can see
there is no register shared between them.

il g addq %hr8, %r9
3 addq %r9, %r10
3: addq %10, %ril

Listing A.2: Dependent instructions

il g addq %hr8, %r9
: addq %rl0, %ril
3H addq %12, %r1l3

Listing A.3: Inependent instructions

There is no direct interaction between the benchmarks on different cores for
arithmetic benchmarks. For the memory related benchmarks there is some in-
teraction at the shared L3 cache and memory controller whenever the memory
footprint of the benchmarks exceeds the local L1 and L2 cache capacity.

The metrics we use are Energy per Instruction (EPI), Energy Per Cycle (EPC),
Cycles per Instruction (CPI) and its reverse Instructions per Cycle (IPC) to facil-
itate understanding for the reader.

A.2.2 Experimental Setup

All the benchmarks are run on a Intel® Core™i5-2500 Sandy Bridge CPU running
at 3.30 GHz. The processor has 4 cores, 32 KB of private L1 Cache, 256 KB of
private L2 cache and 6 MB of shared L3 cache. The clock rate has been fixed
through the BIOS to 3.30 GHz to prevent any interference from dynamic frequency
scaling.

The benchmarks are run in 1 to 4 cores each time, all threads are pinned to a
specific core at creation and are not allowed to migrate.

A.3 Benchmark Description and Results

The X86-64 Instruction set consists of hundreds of instructions, each of which can
have a varying number and types of arguments. Trying to figure out a time and
energy cost for all instructions would require a great deal of effort. In this work we
have grouped instructions with similar semantics and characteristics.

In most programs some instruction types dominate the execution, in this work
we have separated instructions into what we think are the dominant categories and
have developed benchmarks to study their time and energy cost. These categories
are integer arithmetic and logical instructions which are present in all programs,
floating point arithmetic instructions both scalar and packed as they are dominant

86 Technical Report FORTH-ICS/TR-450

A.3. Benchmark Description and Results

Instruction | CPI | IPC | EPI (nJ) | EPC (nJ)
addq 0.349 2.81 1.115 3.192
subq 0.332 | 3.01 1.063 3.200
imulq 1.039 | 0.96 2.782 2.667
divq 29.607 | 0.034 93.223 3.149
idivq 39.309 | 0.025 132.244 3.364
andq 0.349 2.86 1.112 3.185

orq 0.355 | 2.814 1.120 3.151

Table A.1: Integer arithmetic and logic instruction results with no dependencies

in some types of programs. Furthermore we have studied data movement instruc-
tions, both between registers in each core as well as between the cache and memory
hierarchy and the processor cores. We have also studied the energy behaviour of
nops as we think they can provide valuable insight on the CPU characteristics. Ad-
ditionally we have tried to evaluate the cost of false sharing between cores. False
sharing happens when different cores write different variables located on the same
cache line.

Integer Arithmetic and Logic

Integer arithmetic and logic instructions are in the heart of every program, a good
estimate of their cost cannot be omitted from this study. We have evaluated
the cost of 64 bit addition, subtraction, multiplication, division and logical and
and or instructions between registers. We have designed benchmarks where the
instruction operands are randomly chosen from the set of general purpose x86-64
registers. We have been careful in order to eliminate all dependencies between
neighbouring instructions as much as possible.

Table A.1 shows the cost of the different arithmetic instructions. The first
column shows the opcode of the instructions, the second is the cycles per instruction
metric (CPI), next is the energy per instruction in nJoules EPI (nJ) and on the
last column the energy per cycle of one core is shown when executing only that
kind of instructions. The fourth column of table A.1 shows that the energy cost of
arithmetic and logical instructions varies from approximately 1.1 nJ for additions,
subtractions, and logic operations to 132 nJ for signed divisions.

There is also a clear correlation between the energy cost of an instruction and
the clock cycles it takes. This trend is visible when contrasting the second and
fourth column (CPI and EPI) of table A.1. However, we can also see that the
energy per cycle (EPC) metric fluctuates from 2.667 nJ for multiply instructions
to 3.364 nJ for unsigned division. This means that the cost of an instruction is
not always a constant function of the clock cycles it takes. For example, a signed

Technical Report FORTH-ICS/TR-450 87

Appendix A. Using Architectural Counters to Evaluate the Cost of Instructions
in x86 Architectures

Arithmetic and logic instructions

Log graph

1000

oo P! 93203 132244
= ®EPI
5
£
B 10
2 2.782
©
T l 115 1. 063 1.03 1.112
o 1

0.1

addq Subq imulq divq idivq andq

Instruction

Figure A.1: Arithmetic and logic Instruction results

Instruction | CPI | IPC | EPI (nJ) | EPC (nJ)
addq 0.336 | 2.98 1.075 3.205
subq 0.34 | 2.943 1.082 3.184
imulq 1.024 | 0.976 2.762 2.697
andq 0.336 | 2.978 1.072 3.194

orq 0.336 | 2.976 1.078 3.209

Table A.2: Integer arithmetic and logic instruction results with no dependencies and a
constant operand

multiplication takes 3 times the time of a subtraction, but it consumes only 2.5
times the energy.

The relative cost between the different arithmetic and logical instructions can
be visualized in the logarithmic graph A.1. On the X axis we have the different
types of instructions, the left column for each instruction represents the time in
cycles per instruction (CPI) and the right column the energy per instruction (EPI)
in nano Joules.

In addition to the arithmetic instructions between registers, we have carried
out some experiments with a constant value as one of the operands. The results
are shown in table A.2 and visually in graph A.2. From these we can see that the
fact that one operand is a constant value instead of a register plays no role in the
energy consumption of an instruction.

Furthermore, we have created benchmarks where the instructions are depen-

88 Technical Report FORTH-ICS/TR-450

A.3. Benchmark Description and Results

Arithmetic and logic instructions

one constant operand

3 2.762
,5 WCPI
HEPI (nJ)

= 2
S
5 15
“éu 1.075 1.082 1.072 1.078
T 1
O

0.5 0.336 d

0

addq subq imulq andq orq

Instruction

Figure A.2: Arithmetic and logic Instruction results with one constant operand

Instruction | CPI | IPC | EPI (nJ) | EPC (nJ)
addq 1.001 | 0.999 2.725 2.723
subq 1.000 | 1.000 2.719 2.719
imulq 3.001 | 0.333 7.611 2.536
andq 1.005 | 0.995 2.718 2.705

orq 1.032 | 0.969 2.750 2.665

Table A.3: Integer arithmetic and logic instruction results with dependencies

dent, this means that each instruction depends on the outcome of the previous.
This scenario, although far fetched, is not very unrealistic as it is common to have
pieces of code where each instruction computes on the results of the previous.

Table A.3 shows that due to the dependencies between the instructions, the
CPI triples for all benchmarks, increasing to 1 cycle per instruction for additions,
subtraction and logical instructions and to 3 cycles per instruction for multiplica-
tions. This is because, when instructions are dependent the next instruction cannot
reach the execution stage unless the previous has produced its result. In dependent
instructions the energy per instruction is once again correlated positively, but sub
linearly, with execution time. In additions, for example, the energy per instruction
(EPI) is 2.725 nJ for dependent instructions where only 1 is executed per cycle and
1.115 nJ for independent instructions where 3 are executed per cycle.

From this we can see that underutilization of the CPU is not energy efficient.
The difference between executing 3 instructions and executing only 1 is less that

Technical Report FORTH-ICS/TR-450 89

Appendix A. Using Architectural Counters to Evaluate the Cost of Instructions
in x86 Architectures

20%, Ideally, the energy would be proportional to the IPC metric if we assume no
static energy consumption.

Floating Point Arithmetic

We have implemented our floating point computation benchmarks using the SSE
extensions of the x86 architecture, we have studied both scalar and packed arith-
metic instructions on the XMM registers for addition, subtraction and multiplica-
tion operations. All XMM registers are 128 bits wide and can be used either for
scalar operations of 32 or 64 bits (the rest of the bits are just propagated along
with the computation result to the destination register) or as packed instructions
of 4 x 32 bits single precision floating point values or 2 x 64 bits double precision
floating point values.

Similarly to the integer benchmarks, we have studied floating point instructions
independent of each other and instructions dependent on the result of their previous
instruction.

Table A.4 shows the results for all four different cases of independent scalar and
packed instructions for single and double precision operands. They are separated
into four distinct categories shown one bellow the other. The first is single precision
(32 bit) scalar instructions, this means that only one 32 bit floating point operation
takes place between the two 128 bit registers. Double precision scalar instructions
are the same as single precision but for 64 bits. The last two categories involve
packed operations on all 128 bits of the registers, either as 4 x 32 bits (single
precision) or 2 x 64 bits (double precision). The columns of the table follow the
same pattern as in previous tables, the first column is the instruction type the next
two are cycles per instruction (CPI) and its reverse instructions per cycle (IPC),
while the last two are energy per instruction (EPI) and energy per cycle (EPC) in
nano Joules.

Observe that there is no difference in the energy consumption between single or
double precision operands or even between packed and scalar operations. Further-
more, we can see that the floating point instructions cost approximately 3 times
as much as their integer counterparts for additions and subtractions in both time
and energy. !

The correlation between the IPC and EPI metrics is still visible in floating point
as it is for integer arithmetic instructions. The energy per cycle (EPC) metric for
floating point is generally about 20% lower than that of integer instructions.

In par with the methodology for integer instructions, we studied the behaviour
of floating point instructions with dependencies introduced. Table A.5 shows the
same measurements for instructions with dependencies.

For dependent, as well as independent instructions, there is no difference in
energy or time between single and double precision or between packed and scalar
variants of the instructions.

We cannot directly compare multiplications because the floating point instruction is unsigned
while the integer multiplication we studied is signed.

90 Technical Report FORTH-ICS/TR-450

A.3. Benchmark Description and Results

Instruction CPI IPC | EPI (nJ) | EPC (nJ)
Single precision scalar
addss 1.113 0.898 3.190 2.865
subss 1.113 0.898 3.193 2.869
mulss 1.664 0.601 4.523 2.718
Double precision scalar
addsd 1.125 0.889 3.205 2.849
subsd 1.113 0.899 3.192 2.868
mulsd 1.652 0.605 4.499 2.723
Single precision packed
addps 1.109 0.902 3.185 2.873
subps 1.114 0.897 3.197 2.869
mulps 1.644 0.608 4.496 2.734
Double precision packed
addpd 1.110 0.901 3.190 2.875
subpd 1.107 0.903 3.186 2.877
mulpd 1.664 0.601 4.511 2.712

Table A.4: FP arithmetic instructions with no dependencies

The second column of table A.5 shows that for additions and subtractions the
CPI almost triples from approximately 1.1 instruction per cycle when the instruc-
tions are independent, to slightly over 3 instructions per cycle when there are
dependencies. The same applies to multiplications where it increases from 1.6 to
5.1 instructions per cycle. This reveals the issue width for independent SSE float-
ing point instructions and also the latency cycles for a floating point instruction
execution, both of which seem to be 3.

Data Movement Between Registers

Data movement between registers is also very important, both for integer and
floating point registers. In our benchmarks we have designed and measured five
different data movement schemes between registers. These come from moving
either 64 bit general purpose registers or 128 bit XMM registers with or without
dependencies between the instructions. Each move instruction has a source and
destination register, when executed the source is copied to the destination register.
The dependencies come in a similar way as in the computation instructions but
now the destination register is treated as the result register. The fifth configuration

Technical Report FORTH-ICS/TR-450 91

Appendix A. Using Architectural Counters to Evaluate the Cost of Instructions
in x86 Architectures

Instruction CPI IPC | EPI (nJ) | EPC (nJ)
Single precision scalar
addss 3.055 0.327 7.912 2.589
subss 3.047 0.328 7.903 2.593
mulss 5.024 0.199 12.752 2.538
Double precision scalar
addsd 3.037 0.329 7.867 2.591
subsd 3.014 0.332 7.829 2.597
mulsd 5.022 0.199 12.748 2.538
Single precision packed
addps 3.038 0.329 7.868 2.590
subps 3.068 0.326 7.885 2.570
mulps 5.028 0.199 12.733 2.532
Double precision packed
addpd 3.032 0.330 7.848 2.588
subpd 3.064 0.326 7.878 2.571
mulpd 5.102 0.196 12.836 2.516

Table A.5: FP arithmetic instructions with dependencies

Instruction | CPI | IPC | EPI (nJ) | EPC (nJ)
movq 0.336 | 2.978 1.076 3.206
movq (const) | 0.336 | 2.978 1.073 3.196
movq (dep) | 0.998 | 1.002 2.704 2.710

comes from moving constants to general purpose register, this is not possible for
XMM registers which can only be loaded from memory.

Table A.7 and table A.6 show the results from the measurements for general
purpose registers and XMM registers accordingly. The columns from left to right
show the type of instruction, cycles per instruction (CPI), instructions per cycle
(IPC), energy per instruction (EPI) and energy per cycle (EPC). There is a series
of remarks that needs to be made on the results of moving data between registers.

First, from the first 2 rows of table A.7 we see that there is no significant
difference in time or energy cost when moving constant values to general purpose
registers and moving data between registers, this is to be expected from the same
behaviour we noticed at arithmetic instructions.

92 Technical Report FORTH-ICS/TR-450

A.3. Benchmark Description and Results

Table A.6: 128 bit register movements

Instruction CPI | IPC | EPI (nJ) | EPC (nJ)

movdqu 0.346 | 2.889 1.108 3.200

movdqu (dep) | 1.019 | 0.981 2.739 2.687
Table A.7: 64 bit register movements

Second, when comparing the first 2 rows of table A.7 with the third we can see
that dependencies have the same effect on energy as well as on time as they do in
arithmetic instructions. This applies to both 64 bit and 128 bit registers the same.

Third, and this is also to be expected, moving 64 bit registers takes almost the
same time as moving 128 bit registers. Apparently, there is no reason why this
would differ because data movements are usually done in parallel.

Fourth and final remark on these results, and probably the most surprising one,
is that the energy cost of 64 and 128 bit data movements is hardly distinguishable.
According to the measurements, it costs 1.076 nJ to move data between two 64 bit
registers and 1.108 nJ to move data between two 128 bit registers. This can be
seen by contrasting the EPI columns of the first rows of table A.7 and table A.6.

Loads/Stores

Loads and stores are used to bring data back and forth from the processor to
the cache hierarchy and main memory; understanding and estimating their cost is
vital to evaluating any program. The cost of any load or store operation cannot be
determined on its own, how many clock cycles a load instruction will take depends
on where the data is in the cache and memory hierarchy. A store also depends on
many factors like cache policies, write buffer configurations and more.

To study these types of instructions we have designed a series of benchmarks
that intend to show how the time and energy metrics for these instructions can
vary, depending on the data locality.

These benchmarks are designed to have a fixed memory footprint, in each iter-
ation of the main loop, as also described in the methodology section, 1024 instruc-
tions are executed that are either loads or stores of 8-byte words. These 8 KBytes
of data can be read either sequentially or randomly in a statically set sequence.
When the iteration finishes, the base address is incremented by 8 KBytes and the
next loop iteration reads or writes the same amount of data. This continues until
the maximum memory footprint is reached for the benchmark and then the base
address is reset to its first value. The loop continues for a statically set number of
iterations that is the same for all benchmarks.

The memory footprints we have measured are exponentially growing from 8 KB
to 16 KB to 32 KB and so on until 16MB are reached. It is important to remind
the characteristics of the cache hierarchy of our experimental setup. Each core has

Technical Report FORTH-ICS/TR-450 93

Appendix A. Using Architectural Counters to Evaluate the Cost of Instructions
in x86 Architectures

CPI for loads

7.000

6.000 = | 0ad Sequential
Load Random

5.000
4.000

CPI

3.000
2.000

1.000

0.000
8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 16MB

Memory Footprint

Figure A.3: Random and Sequential load Instructions CPI

32 KB of private L1 cache, 256 KB of private L2 and 6 MB of shared L3 cache.

All the load instructions write data to random general purpose registers, the
store instructions can, depending on the benchmark, either write the value of a
register to memory, or write a constant.

Graph A.3 shows the difference between loading sequentially and randomly and
the overall behaviour of load instructions’ execution time as the memory footprint
increases. On the X axis are the different memory footprints starting from 8 KB
and doubling at each step until 16 MB. On the Y axis are the cycles per instruction.
We can see that, as the memory footprint increases, so does the CPI as we have
to travel deeper into the cache hierarchy and the main memory. However, for
memory footprints of 64 KB to 256 KB loading random addresses is up to 35%
faster compared to sequential loads. We speculate that this could be attributed to
some cache policy optimized for random requests.

Another point to be made is that the performance starts to deteriorate after the
footprint surpasses the size of the L1 cache (32 KB). However, there is no similar
behaviour at 256 KB, which is the L.2 capacity, instead there is a dramatic increase
after the memory footprint reaches 1 MB up until 3 MB where it flat-lines. This
could be attributed to effective prefetching to the L2 from the L3 cache.

Graph A.4 shows the same behaviour for energy per instruction. As the memory
footprint increases in the X axis, EPI is around 1.8 nJ up to 32 KB and then doubles
at 64KB slowly reaching 5 nJ per instruction at 1 MB. Then it drastically increases
to 20 nJ per instruction at a memory footprint of 3MB. The same performance
benefit for random loads between footprints of 64 KB to 256 KB is evident in
energy per instruction shown in graph A.3, as in cycles per instruction shown in

94 Technical Report FORTH-ICS/TR-450

A.3. Benchmark Description and Results

Energy Per Instruction for loads

25.000

20.000 Load Sequential
= ' = | 0ad Random
=
T 15.000
o
S 10.000
>
[
@
] 5.000

0.000

8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 16MB
Memory Footprint
Figure A.4: Random and Sequential load Instructions EPI
graph A 4.

When studying the store instruction benchmark results, we see a reverse pattern
from what we saw for loads. When executing stores, randomness has a noticeable
impact on performance. The same is observed whether storing constants or data
from registers. The differences are more pronounced when the memory footprint
is between 64KB and 1 MB. Graph A.5 shows that randomness can even double
the cycles per instruction (CPI) from 1.139 to 2.460 and from 1.409 to 2.852 cycles
per instruction for 256 KB and 512 KB footprints respectively.

The same behaviour is observed for the energy per instruction (EPI) metric in
graph A.6. Sequential stores cost less energy per instruction than random ones
when dealing with memory footprint between 64KB and 1MB. This shows that the
same strong correlation between CPI and EPI holds in load and store instructions
as in the arithmetic ones.

In general, store instructions cost both in cycles and energy, two times more
than the corresponding loads. Table A.8 gives a summary of the best and worst
costs of each instruction. Each row shows the best and the worst CPI and EPI
for loads in the first row, and stores in the second. Another remark on the cost
of load and store instructions is their higher energy cost per cycle than arithmetic
instructions. Load instructions can cost anywhere from 3 to 4 nJ per instruction,
when integer instructions could hardly reach 3.2 nJ. This can of course be attributed
to the energy consumption of the cache hierarchy.

Another interesting perspective, is the effect of the number of cores that operate
on the cache hierarchy and memory through load and store instructions. The above
mentioned measurements come from running our benchmarks on all 4 cores of the

Technical Report FORTH-ICS/TR-450 95

Appendix A. Using Architectural Counters to Evaluate the Cost of Instructions
in x86 Architectures

Store CPI

Random and sequential with registers and constants
14.000

- Store Sequential
== Store Random

10.000 Store Sequential constants
== Store Random Constants

12.000

8.000
o
O 6.000
4.000
2.000
0.000
8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 16MB
Memory Footprint
Figure A.5: Random and Sequential store Instructions CPI
Store Energy per Instruction (EPI)
Random and sequential stores with registers and constants
45.000 _
40.000 Store Sequential
== Store Random
35.000 Store Sequential constants
30.000 Store Random Constants
";? 25.000
= 20.000
L

15.000
10.000
5.000

0.000
8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 3MB 4MB 16MB

Memory Footprint

Figure A.6: Random and Sequential store Instructions EPI

system at the same time, Although each benchmark touches a different part of the
address space, the shared L3 cache and memory controller have an effect on the
performance all cores when there is contention for them. This contention affects
only the worst cases, when the operations involve the highest levels of the cache
and the memory.

Summarized in table A.9 is the effect of contention on the worst time per load

96 Technical Report FORTH-ICS/TR-450

A.3. Benchmark Description and Results

Instruction | Best CPI | Best EPI (nJ) | Worst CPI | Worst EPI(nJ)

Load 0.502 1.993 6.636 20.319

Store 1.014 3.075 13.222 38.639

Table A.8: Best and worst performance for load and store instructions

Instruction | CPI 1 core | CPI 2 cores | CPI 3 cores | CPI 4 cores

Load 2.765 3.880 5.140 6.636
Store 4.601 6.907 9.870 13.222

Table A.9: Load and store performance under different contention

and store. Each column shows the CPI for a number of cores, the first row is for
loads and the second for stores. We can see that under no contention (1 core), the
worst case average load time is 2.765 cycles which escalates to 6.636 cycles under
full contention (4 cores). The same is observed for store instructions, from 4.601
at 1 core to 13.222 cycles per instruction at 4 cores.

Nops

The study of the energy and time cost of nops has no intrinsic benefit because they
perform no usefull computation or data transfer. However, their results can be
important when correlated with other instructions and also to reveal some charac-
teristics of the CPU.

When running a benchmark consisted entirely of nops, we notice that the CPI
is 0.257, or a corresponding 3.887 instructions per cycle, we can easily conclude
that is the issue width of the processor is 4. Although the integer instructions
were independent and theoretically could be issued with no dependencies an IPC
count of more that 3 was never encountered in any benchmark. This is perhaps a
clue for the number of integer ALUs in each core. Additionally, when the integer
instruction were dependent we saw a CPI of 1. This confirms that the integer
ALUs can produce a result in a single cycle and that there are 3 of them.

Similarly, from our results for integer multiplication, we can see that the integer
multiply unit takes at most 3 pipeline stages to compute and that there is only one
used. Similar conclusions can be reached about the floating point (SSE) datapath
when studying the performance of the same type of instructions with or without
dependencies.

False Sharing

At an attempt to quantify the effects of false sharing on energy and time per in-
strucion we have developed corresponding benchmarks. In these benchmarks, we

Technical Report FORTH-ICS/TR-450 97

Appendix A. Using Architectural Counters to Evaluate the Cost of Instructions
in x86 Architectures

have all threads incrementing a private variable from 0 to a statically set number.
In the false sharing case, the variables for the four threads are located in the same
cache line. In the second case, the variables are loacated in different cache lines.
The time and energy measurements of these two benchmarks are not comparable
with those we studied before because they do not measure a specific primary in-
struction. However, comparing their results can give a good estimate on the cost
of false sharing.

The false sharing benchmark, was aproximately 30% slower and 35% more
energy consuming that the other. The increments were not done in lockstep, so it
is not safe to say that the difference of incrementing a variable residing in a local
cache against fetching it from another cache with the subsequent invalidations is
only 30%, but it is worth noting.

Static Energy

All the measurements mentioned in the previous section include the static and
dynamic energy that is consumed by the processor cores and caches. In order to
estimate the static energy from the mixed measurement, we ran our benchmark
suite on 1 to 4 cores. We did this to measure the difference in energy consumption
when a core is idle against the same when it is executing a benchmark.

However, this approach does not allow us to measure the energy with all cores
beeing idle. Nevertheless, we chose this because there is no elegant way to wait
for some time between measurements without actually executing something, even
if that is nops, that we showed have a great impact on energy.

In graph A.7 we show the average over all the benchmarks of the sum of the
energy per cycle for 1 to 4 running cores. Also we show a projection to no cores
running benchmarks, which also is the estimated static power consumption of all
the cores combined. We can see that there is an average 2.7 nJ of increase in power
as we add another running core. If we subtract this from the energy per cycle we
get when only one core runs, which is is 4.2 nJ, we get the total static power of
all 4 cores which is approximately 1.5 nJ per cycle. Equivalently, about 0.37 nJ of
static energy per cycle per core.

A.4 Conclusion

In this work we have shown a method for extrapolating the time and energy cost
of instructions in the x86-64 instruction set. We have done so by utilizing the
provided energy and time counters of the latest generation Intel processors with
the use of specialized benchmarks that focus on specific instructions.

We have shown the results from running those benchmarks on a Intel i5 pro-
cessor and have presented our findings about the cost of basic instructions under
different conditions. This has also allowed us to infer a few internal characteristics
of that processor and make an estimation on the static energy consumption.

98 Technical Report FORTH-ICS/TR-450

Average Energy per cycle for all cores

Projection of static energy for 0 working cores

b 549

Energy per Cycle (nJ)

4 3 2 1 0

Number of Working cores

Figure A.7: Random and Sequential store Instructions EPI and CPI

We believe that our work can be generalized to target other processor archi-
tectures and instructions sets as long as a way to measure energy is provided,

either through architectural counters, or via physical measurements with adequate
granulariy.

99

Bibliography

[1] “Jonathan g. koomey: Estimating total power consumption by servers in the us
and the world,” http://www-sop.inria.fr/mascotte/Contrats/ DIMAGREEN/
wiki/uploads/Main/svrpwrusecompletefinal.pdf.

[2] “In the data center, power and cooling costs more than the it
equipment it supports,” http://www.electronics-cooling.com/2007/02/
in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/ .

[3] “Mandy patts: Microprocessor power impacts,” https://tbach.web.cern.ch/
tbach/thesis/literature/power density Pant-DASS.pdf.

[4] “Cisco visual networking index: Global mobile data traffic forecast up-

date, 20142019,” http://www.cisco.com/c/en/us/solutions/collateral /
service-provider /visual-networking-index-vni/white paper c¢11-520862.
html.

[5] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined
dynamic voltage scaling and adaptive body biasing for lower power
microprocessors under dynamic workloads,” in Proceedings of the 2002
IEEE/ACM International Conference on Computer-aided Design, ser. ICCAD
'02. New York, NY, USA: ACM, 2002, pp. 721-725. [Online|. Available:
http://doi.acm.org/10.1145/774572.774678

[6] J. Kin, M. Gupta, and W. Mangione-Smith, “The filter cache: an energy
efficient memory structure,” in Microarchitecture, 1997. Proceedings., Thirtieth
Annual IEEE/ACM International Symposium on, 1997, pp. 184-193.

[7] L. H. Lee, B. Moyer, and J. Arends, “Instruction fetch energy reduction using
"in Low Power
Electronics and Design, 1999. Proceedings. 1999 International Symposium on,

1999, pp. 267-269.

loop caches for embedded applications with small tight loops,’

[8] O. Ergin, D. Balkan, K. Ghose, and D. Ponomarev, “Register packing:
Exploiting narrow-width operands for reducing register file pressure,”
in Proceedings of the 37th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 37. Washington, DC, USA: IEEE Computer

100

http://www-sop.inria.fr/mascotte/Contrats/DIMAGREEN/wiki/uploads/Main/svrpwrusecompletefinal.pdf
http://www-sop.inria.fr/mascotte/Contrats/DIMAGREEN/wiki/uploads/Main/svrpwrusecompletefinal.pdf
http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/
http://www.electronics-cooling.com/2007/02/in-the-data-center-power-and-cooling-costs-more-than-the-it-equipment-it-supports/
https://tbach.web.cern.ch/tbach/thesis/literature/power_density_Pant-DASS.pdf
https://tbach.web.cern.ch/tbach/thesis/literature/power_density_Pant-DASS.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://doi.acm.org/10.1145/774572.774678

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Society, 2004, pp. 304-315. [Online|. Available: http://dx.doi.org/10.1109/
MICRO.2004.29

R. Canal, A. Gonzalez, and J. E. Smith, “Very low power pipelines using
significance compression,” in Proceedings of the 33rd Annual ACM/IEEE
International Symposium on Microarchitecture, ser. MICRO 33. New
York, NY, USA: ACM, 2000, pp. 181-190. [Online|]. Available: http:
//doi.acm.org/10.1145/360128.360147

P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate
memory system simulator,” Computer Architecture Letters, vol. 10, no. 1, pp.
16-19, Jan 2011.

S. Wilton and N. Jouppi, “Cacti: an enhanced cache access and cycle time
model,” Solid-State Circuits, IEEE Journal of, vol. 31, no. 5, pp. 677688,
May 1996.

A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: A fast
and accurate noc power and area model for early-stage design space
exploration,” in Proceedings of the Conference on Design, Automation and
Test in Europe, ser. DATE ’09. 3001 Leuven, Belgium, Belgium: European
Design and Automation Association, 2009, pp. 423-428. |Online|. Available:
http://dl.acm.org/citation.cfm?id=1874620.1874721

D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in Computer Architec-
ture, 2000. Proceedings of the 27th International Symposium on, June 2000,
pp- 83-94.

S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi, “Mcpat:
An integrated power, area, and timing modeling framework for multicore and
manycore architectures,” in Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on, Dec 2009, pp. 469-480.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1-7, Aug. 2011. [Online].
Available: http://doi.acm.org/10.1145/2024716.2024718

S. Lee, A. FErmedahl, S. L. Min, and N. Chang, “An accurate
instruction-level energy consumption model for embedded risc processors,”
SIGPLAN Not., vol. 36, no. 8, pp. 1-10, Aug. 2001. [Online|. Available:
http://doi.acm.org/10.1145/384196.384201

N. Chang, K. Kim, and H. G. Lee, “Cycle-accurate energy measurement and
characterization with a case study of the arm7tdmi [microprocessors|,” Very

101

http://dx.doi.org/10.1109/MICRO.2004.29
http://dx.doi.org/10.1109/MICRO.2004.29
http://doi.acm.org/10.1145/360128.360147
http://doi.acm.org/10.1145/360128.360147
http://dl.acm.org/citation.cfm?id=1874620.1874721
http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/384196.384201

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 10, no. 2,
pp- 146-154, April 2002.

——, “Cycle-accurate energy measurement and characterization with a case
study of the arm7tdmi [microprocessors|,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 10, no. 2, pp. 146-154, April 2002.

W. Wang and M. Zwolinski, “An improved instruction-level energy model for
risc microprocessors,” in Ph.D. Research in Microelectronics and Electronics
(PRIME), 2013 9th Conference on, June 2013, pp. 349-352.

“Wang, wei and zwolinski, mark (2014) an improved instruction-level power
model for arm11 microprocessor. in, high performance energy efficient embed-
ded systems,” Systems(HIP3ES),Berlin,DE,23Jan2013.7pp..

Y. Wang and N. Ranganathan, “An instruction-level energy estimation and
optimization methodology for gpu,” in Computer and Information Technology
(CIT), 2011 IEEFE 11th International Conference on, Aug 2011, pp. 621-628.

C. Luo and R. Suda, “A performance and energy consumption analytical model
for gpu,” in Dependable, Autonomic and Secure Computing (DASC), 2011
IEEE Ninth International Conference on, Dec 2011, pp. 658-665.

D. Molka, D. Hackenberg, R. Schone, and M. Muller, “Characterizing the
energy consumption of data transfers and arithmetic operations on x86-64

processors,” in Green Computing Conference, 2010 International, Aug 2010,
pp- 123-133.

Y. S. Shao and D. Brooks, “Energy characterization and instruction-level
energy model of intel’s xeon phi processor,” in Proceedings of the 2013
International Symposium on Low Power Electronics and Design, ser. ISLPED
'13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 389-394. [Online|.
Available: http://dl.acm.org/citation.cfm?id=2648668.2648758

J. Peddersen and S. Parameswaran, “Clipper: Counter-based low impact pro-
cessor power estimation at run-time,” in Design Automation Conference, 2007.

ASP-DAC ’07. Asia and South Pacific, Jan 2007, pp. 890-895.

R. Jordans, R. Corvino, L. Jozwiak, and H. Corporaal, “An efficient method for
energy estimation of application specific instruction-set processors,” in Digital
System Design (DSD), 2013 Euromicro Conference on, Sept 2013, pp. 471
474.

M. Sami, D. Sciuto, C. Silvano, and V. Zaccaria, “An instruction-level energy
model for embedded vliw architectures,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 21, no. 9, pp. 998-1010, Sep
2002.

102

Systems (HIP3ES), Berlin, DE, 23 Jan 2013. 7pp.
http://dl.acm.org/citation.cfm?id=2648668.2648758

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

137]

P. Gschwandtner, M. Knobloch, B. Mohr, D. Pleiter, and T. Fahringer, “Mod-
eling cpu energy consumption of hpc applications on the ibm power7,” in Par-
allel, Distributed and Network-Based Processing (PDP), 2014 22nd Euromicro
International Conference on, Feb 2014, pp. 536-543.

G. Contreras and M. Martonosi, “Power prediction for intel xscale reg; proces-
sors using performance monitoring unit events,” in Low Power Electronics and
Design, 2005. ISLPED ’05. Proceedings of the 2005 International Symposium
on, Aug 2005, pp. 221-226.

R. Joseph and M. Martonosi, “Run-time power estimation in high
performance microprocessors,” in Proceedings of the 2001 International
Symposium on Low Power FElectronics and Design, ser. ISLPED ’01. New
York, NY, USA: ACM, 2001, pp. 135-140. [Online|. Available: http:
//doi.acm.org/10.1145/383082.383119

C. Isci and M. Martonosi, “Runtime power monitoring in high-end proces-
sors: methodology and empirical data,” in Microarchitecture, 2003. MICRO-
36. Proceedings. 36th Annual IEEE/ACM International Symposium on, Dec
2003, pp. 93-104.

K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estimation
and thread scheduling via performance counters,” SIGARCH Comput.
Archit. News, vol. 37, no. 2, pp. 46-55, Jul. 2009. [Online|. Available:
http://doi.acm.org/10.1145/1577129.1577137

X. Zhou, B. Guo, Y. Shen, and Q. Li, “Design and implementation of an
improved ¢ source-code level program energy model,” in Embedded Software
and Systems, 2009. ICESS °09. International Conference on, May 2009, pp.
490-495.

S. Penolazzi, L. Bolognino, and A. Hemani, “Energy and performance model of
a sparc leond processor,” in Digital System Design, Architectures, Methods and
Tools, 2009. DSD ’09. 12th Euromicro Conference on, Aug 2009, pp. 651-656.

K. Natarajan, H. Hanson, S. Keckler, C. Moore, and D. Burger, “Micropro-
cessor pipeline energy analysis,” in Low Power Electronics and Design, 2003.
ISLPED ’03. Proceedings of the 2003 International Symposium on, Aug 2003,
pp. 282-287.

E. Blem, J. Menon, and K. Sankaralingam, “Power struggles: Revisiting the
risc vs. cisc debate on contemporary arm and x86 architectures,” in High Per-
formance Computer Architecture (HPCA2013), 2013 IEEE 19th International
Symposium on, Feb 2013, pp. 1-12.

R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen, “Single-isa heterogeneous multi-core architectures: The potential for

103

http://doi.acm.org/10.1145/383082.383119
http://doi.acm.org/10.1145/383082.383119
http://doi.acm.org/10.1145/1577129.1577137

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

147]

48]

[49]

[50]

processor power reduction,” in Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 36. Washington,
DC, USA: IEEE Computer Society, 2003, pp. 81— [Online|. Available:
http://dl.acm.org/citation.cfm?id=956417.956569

J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH Comput.
Archit. News, vol. 34, no. 4, pp. 1-17, Sep. 2006. |Online|. Available:
http://doi.acm.org/10.1145/1186736.1186737

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
splash-2 programs: Characterization and methodological considerations,”
in Proceedings of the 22Nd Annual International Symposium on Computer
Architecture, ser. ISCA ’95. New York, NY, USA: ACM, 1995, pp. 24-36.
[Online|. Available: http://doi.acm.org/10.1145/223982.223990

R. P. Weicker, “Dhrystone: A synthetic systems programming benchmark,”
Commun. ACM, vol. 27, no. 10, pp. 1013-1030, Oct. 1984. [Online|. Available:
http://doi.acm.org/10.1145/358274.358283

“Simulation program with integrated circuit emphasis,” http://bwrcs.eecs.
berkeley.edu/Classes/IcBook/SPICE/.

“Odroid xu+e,” http://www.hardkernel.com/main/products/prdt_info.php?
g code=G137463363079.

“Samsung application processor packaging: Package on package,”
http://www.samsung.com/global /business/semiconductor /support /
package-info/package-datasheet /application-processor#none.

“Dfi ddr protocol,” http://ddr-phy.org/.

“Exynos 5 octa,” http://www.samsung.com/global /business/semiconductor/
file/media/Exynos 5 Octa.pdf.

“Arm cortex a7 processor,” http://www.arm.com/products/processors,/
cortex-a/cortex-a7.php.

“Arm cortex alb processor,” http://www.arm.com/products/processors,/
cortex-a/cortex-alb.php.

“Arm Dbig.little technology,” http://www.arm.com/files/downloads/big
LITTLE Final Final.pdf.

“Samsung high-k metal gate (hkmg),” http://www.samsung.com/us/business/
oem-solutions/pdfs/Foundry 32-28nm_Final 0311.pdf.

“Arm cci 400,” http://www.arm.com/products/system-ip/interconnect/
corelink-cci-400.php.

104

http://dl.acm.org/citation.cfm?id=956417.956569
http://doi.acm.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/223982.223990
http://doi.acm.org/10.1145/358274.358283
http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/
http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137463363079
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137463363079
http://www.samsung.com/global/business/semiconductor/support/package-info/package-datasheet/application-processor#none
http://www.samsung.com/global/business/semiconductor/support/package-info/package-datasheet/application-processor#none
http://ddr-phy.org/
http://www.samsung.com/global/business/semiconductor/file/media/Exynos_5_Octa.pdf
http://www.samsung.com/global/business/semiconductor/file/media/Exynos_5_Octa.pdf
http://www.arm.com/products/processors/cortex-a/cortex-a7.php
http://www.arm.com/products/processors/cortex-a/cortex-a7.php
http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf
http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf
http://www.samsung.com/us/business/oem-solutions/pdfs/Foundry_32-28nm_Final_0311.pdf
http://www.samsung.com/us/business/oem-solutions/pdfs/Foundry_32-28nm_Final_0311.pdf
http://www.arm.com/products/system-ip/interconnect/corelink-cci-400.php
http://www.arm.com/products/system-ip/interconnect/corelink-cci-400.php

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

“Arm big.little: The future of mobile,” http://www.arm.com/files/pdf/big
LITTLE Technology the Futue of Mobile.pdf.

“Arm architecture reference manual armv7-a and armv7-r edition,”
http://infocenter.arm.com /help/index.jsp?topic=/com.arm.doc.subset.
architecture.reference/index.html.

“The arm neon general-purpose simd engine,” http://www.arm.com/
products/processors/technologies /neon.php.

K. DeVogeleer, G. Memmi, P. Jouvelot, and F. Coelho, “Modeling the tem-
perature bias of power consumption for nanometer-scale cpus in application
processors,” in Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS XIV), 2014 International Conference on, July 2014, pp.
172-180.

“Intel 64 and 1ia-32 architectures software developer manuals,”
http://www.intel.com/content /dam /www /public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-manual-325462.pdf.

D. A. Patterson and J. L. Hennessy, Computer Organization and Design,
Fourth Edition, Fourth Edition: The Hardware/Software Interface (The Mor-
gan Kaufmann Series in Computer Architecture and Design), 4th ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008.

J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth Edition:
A Quantitative Approach. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2006.

H.-J. Cheng, Y.-S. Hwang, R.-G. Chang, and C.-W. Chen, “Trading condi-
tional execution for more registers on arm processors,” in Embedded and Ubiq-
uitous Computing (EUC), 2010 IEEE/IFIP 8th International Conference on,
Dec 2010, pp. 53-59.

H.-H. Chiang, H.-J. Cheng, and Y.-S. Hwang, “Doubling the number of reg-
isters on arm processors,” in Interaction between Compilers and Computer
Architectures (INTERACT), 2012 16th Workshop on, Feb 2012, pp. 1-8.

“Armv8-a architecture,” http://www.arm.com/products/processors/
armv8-architecture.php.

J. Dongarra, “The linpack benchmark: An explanation,” in Proceedings
of the 1st International Conference on Supercomputing. London, UK, UK:
Springer-Verlag, 1988, pp. 456-474. |Online|. Available: http://dl.acm.org/
citation.cfm?id=647970.742568

105

http://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
http://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
http://www.arm.com/products/processors/technologies/neon.php
http://www.arm.com/products/processors/technologies/neon.php
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.arm.com/products/processors/armv8-architecture.php
http://www.arm.com/products/processors/armv8-architecture.php
http://dl.acm.org/citation.cfm?id=647970.742568
http://dl.acm.org/citation.cfm?id=647970.742568

	Introduction
	Contributions

	Motivation - Related Work
	Related Work
	Motivation

	Background
	Processor Energy Consumption
	Processor Performance and Energy Efficiency Metrics

	Methodology
	Special Purpose Benchmark Design

	Experimental Setup
	ARM big.LITTLE
	ARM Cortex-A7 and Cortex-A15 cores
	Power Sensors
	Migration Policies and Frequencies

	ARM Instruction Set
	ARM Instruction Categories
	Branch Instructions
	Integer Arithmetic and Logic Instructions
	Floating Point Arithmetic Instructions
	Register Movement Instructions
	Compare and Test Instructions
	Load and Store Instructions

	Other Instructions and Assembler Mnemonics

	Measurement Results - Energy per Instruction
	Results Summary
	Integer Arithmetic and Logic Instructions
	Float Arithmetic Instructions
	Double Arithmetic Instructions
	Integer Move Instructions
	Float Move Instructions
	Double Move Instructions
	Integer Compare and Test Instructions
	Float Compare Instructions
	Double Compare Instructions
	Integer Load and Store Instructions
	Float and Double Load and Store Instructions
	Energy per Cycle

	ARM versus x86
	Evaluation
	Evaluation Benchmarks
	Energy Model
	Evaluation Results
	Discussion

	big.LITTLE Comparison
	Conclusions and Future Work
	Using Architectural Counters to Evaluate the Cost of Instructions in x86 Architectures
	Introduction
	Methodology
	Benchmark Specification
	Experimental Setup

	Benchmark Description and Results
	Conclusion

