CPU Clock, SCT Clock, and HSADC Clock are all generated from Main PLL with 20MHz external crystal. The rising edges of these 3 clocks are all lined up.

CPU Clock: 160MHz	
SCT Clock: 160MHz	
HSADC Clock: 80MHz	

SCT generates a 10K	(Hz PWM, and this 10KHz PWM is wired to HSADC trigg	ger (rising edge) via GIMA. PWM signal starts by software writing to the SCT control register, so PWM can either start as Scenario 1 or start as Scenario 2.		
Issue: There is alway	ys a half HSADC clock cycle difference of T_PtoA betwe	en Scenario 1 and Scenario 2. For Banner TOF application, we want the T_PtoA to be fixed, i.e., we want all the T_PtoA are in Scenario 1. Or we want all the T_PtoA are in Scenario 2.		
Scenario 1:	ario 1: The dalay between PWM starting point and HSADC trigger point (T_PtoA): half HSADC Clock + An fixed HSADC trigger Latency			
	SCT Clock: 160MHz			
	PWM: 10KHZ			
	HSADC Clock: 80MHz	HSADC Trigger Point		
Scenario 2:	The dalay between PWM starting point and HSADC trigger point (T_PtoA): one HSADC clock + An fixed HSADC trigger Latency			
	SCT Clock: 160MHz			

PWM: 10KHZ

HSADC Clock: 80MHz

F WIVI Startii	

