'NXP LPC4000: Cortex™-M4/MO Lab [>Z||(E||:

‘," ARM® Keil™ MDK Toolkit featuring Serial Wire Viewer el i

For the NGX Xplorer EVAL board with ULINK-ME™ V 0.7 Robert Boys bob.boys@arm.com

Introduction For the NGX Evaluation Board with the LPC4330 Processor & ULINK-ME

The purpose of this lab is to introduce you to the NXP Cortex™-M4 processor family using the ARM® Keil™ MDK toolkit
featuring the IDE pVision®. We will use the Serial Wire Viewer (SWV) to display various processor events real-time.. At
the end of this tutorial, you will be able to confidently work with NXP processors and MDK. For the latest version of this
document please visit www.keil.com/nxp

Keil MDK comes in an evaluation version that limits code and data size to 32 Kbytes. Nearly all Keil examples will compile

within this 32K limit. The addition of a license number will turn it into the full, unrestricted version. Contact Keil sales for a
temporary full version license if you need to evaluate MDK with programs greater than 32K. MDK includes a full version of

Keil RTX™ RTOS. No royalty payments are required. RTX source code is now included with all versions of Keil MDK™,

Why Use Keil MDK ?

MDK provides these features particularly suited for Cortex-MO,
Cortex-M3 and Cortex-M4 users:

1. pVision IDE with Integrated Debugger, Flash
programmer and the ARM® Compiler, Assembler and
Linker. MDK is a turn-key product with included
examples and is easy to get running. Keil supports
Eclipse and GCC.

2. Serial Wire Viewer and ETM trace capability is
included. A full feature Keil RTOS called RTX is
included with MDK and includes source code with all
versions of MDK. RTX is free with a BSD type license.

3. ARTX Kernel Awareness window is updated in real-
time. Kernel Awareness exists for Keil RTX, CMX,
Quadros and Micrium. MDK can compile all RTOSs.

4. Choice of adapters: ULINK2™, ULINK-ME™,
ULINKpro™ or Segger J-Link (version 6 or later).

5. Keil Technical Support is included for one year and is renewable. This helps you get your project completed faster.
Other significant features shown in this document:

1. Serial Wire Viewer (SWV) with the ULINK2. ETM trace examples with the ULINKpro are shown starting on p 20.

2. Dual Core debugging control for the Cortex-MO0 and the Cortex-M4 cores on the NXP LPC4350 processor.

3. Real-time Read and Write to memory locations for Watch, Memory and RTX Tasks windows. These are non-
intrusive to your program. No CPU cycles are stolen. No instrumentation code is added to your source files.

4. Eight Hardware Breakpoints (can be set/unset on-the-fly) and four Watchpoints (also called Access Breaks).

5. RTX Viewer: a kernel awareness program for the Keil RTX RTOS that updates while the program is running.

Serial Wire Viewer (SWV): Use any ULINK for this debugging feature.

Serial Wire Viewer (SWV) displays PC Samples, Exceptions (including interrupts), data reads and writes, ITM (printf),
CPU counters and a timestamp. This information comes from the ARM CoreSight™ debug module integrated into the
Cortex-M4. SWV is output on the Serial Wire Output (SWO) pin found on the JTAG/SWD adapter connector. SWYV is not
available for the Cortex-MO processor because of its tiny size. SWV is a standard feature on Cortex-M3 and Cortex-M4.

Note: When debugging both the Cortex-MO0 and Cortex-M4 processors, you must use JTAG rather than SWD (Serial Wire
Debug). This means Serial Wire Viewer is not available for the Cortex-M4 processor. The SWO pins shares a pin with
JTAG TDIO. A ULINKQpro avoids this conflict by sending SWV frames out the 4-bit Trace Port instead of the SWO pin.

SWYV does not steal any CPU cycles and is completely non-intrusive except for ITM Debug printf Viewer. SWV is provided
by Keil ULINK2, ULINK-ME, ULINKpro and Segger J-Link and J-Link Ultra. Best results are with any ULINK.

1 Copyright © 2012 ARM Ltd. All rights reserved
NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board www.keil.com


http://www.keil.com/�

1) NGX Evaluation Boards, MDK and Examples Install 3
2) GPIO Example with Blinky: 4
1. GPIO_Blinky Example Program using a ULINK2: 4
2. Hardware Breakpoints: 5
3. Call Stack + Locals Window: 5
4. Watch and Memory Windows and how to use them: 6
5. Configuring the Serial Wire Viewer (SWV): 7
6. Using the Logic Analyzer (LA) with ULINK2: 8
7. Watchpoints: Conditional Breakpoints: 9
3) RTX RTOS Example RTX_Blinky: 10
1. RTX Kernel Awareness using Serial Wire Viewer (SWV): 10
2. RTX Viewer: Configuring Serial Wire Viewer (SWV): 11
3. Logic Analyzer Window: View RTOS variables: 12
4. Trace Records and Exception Windows: 13
4) USB and Interrupt Example: 14
5) Dual Core MBX Example: 16
1. Open and Compile Cortex-MO 16
2. Open and Compile Cortex-M04 16
3. Configuring the ULINK2/ME: 17
4. Running the Program: 18
5. Breakpoints in main(): 19
6. Watch windows: 19
6) What does a ULINKpro and ETM Trace provide you ? 20
1. Instruction Trace: 20
2. Code Coverage: 21
3. Execution Profiling: 21
4. Performance Analysis: 21
7) Keil Products and Contact Information: 22

USB laptop bug:
A few laptops exhibit difficulty processing the large amount of data from Serial Wire Viewer (SWV). It causes pVision to
freeze and disconnecting the ULINK2/ME is the only way to regain control. This problem does not happen if you do not

have SWV enabled. The T1 counter will stop incrementing. e | Desktops and Windows 7 are not affected:
only XP. SOLUTIONS: Add a USB PCMCIA card, turn off SWV, or use a different computer.

2 Copyright © 2012 ARM Ltd. All rights reserved
NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board www.keil.com


http://www.keil.com/�

1) NGX ARM Processor Evaluation Boards:

LPC-4330-Xplorer: NXP dual core Cortex-M4 and Cortex-MO processor. This board connects to a Keil ULINK with a
compact 10 pin JTAG/SWD connector. This processor does not have internal flash. The board has external SPIFI flash.

LPC-1830-Xplorer: NXP Cortex-M3 processor. The instructions in this document should generally work with this board.

Labs similar to this one are available for the NXP Cortex-M3 (LPC1700) with a version with CAN (Controller Area
Network). See www.keil.com/nxp for more information. Keil makes several boards with NXP processors for ARM7TDMI,
ARM9, Cortex-MO0 and Cortex-M3 and the 8051. See www.keil.com/nxp

Software Installation:

This document was written for Keil MDK 4.50 or later which contains pVision 4. The evaluation copy of MDK (MDK-Lite)
is available free on the Keil website. Do not confuse pVision4 with MDK 4.0. The number “4” is a coincidence.

Download

1. MDK: To obtain a copy of MDK go to www.keil.com/arm and select the Download icon:

Please install MDK into the default location of C:\Keil. You can use the evaluation version of MDK and a ULINK2, ULINK-
ME, ULINKQpro or J-Link for this lab. No license number is needed to compile up to 32 Kb.

The addition of a license number converts MDK-L.ite, the evaluation version, into a full, unrestricted copy of MDK.

The ULINKpro adds Cortex-Mx ETM trace support. It also adds faster programming time and better trace display. Most
NXP Cortex-M3/M4 parts are equipped with ETM. All have SWV. The Cortex-MO0 has neither SWV, Watchpoints or ETM.
It does have non-intrusive read/write to memory locations (for Watch and Memory windows) and hardware breakpoints.

The NGX hoard does not have the 20 pin compact connector required for ETM operation with a ULINKpro.

2. NGX Example Programs: LH7A404

This tutorial uses the NGX V 1.2 example files available from http://shop.ngxtechnologies.com. Click on the L7852
picture of the LPC4330 board. The filename is LPC4330_Xplorer_Examples_V1.2.zip. Please unzip these to Sz
the directory C:\KeilARM\Boards\NXP as shown here: — Xplorer4330

1. Flash Programming Algorithms: pVision uses files with an .FLM extension to program Flash memories. These
files must be located in C:\Keil\ARM\Flash from where you select the correct one.
For the NGX examples, they are initially located in:
C:\KeilARM\Boards\NXP\Xplorer4330\CMSISv2p10_LPC43xx_DriverLib\Tools\Flash\Keil_Binaries.

2. These need to be copied to C:\Kei\ARM\Flash. The correct Flash file to use with the NGX LPC4330 board is:
SPIFI_LPC18xx-43xx_140.FLM (Flash starts at 0x1400 0000).

JTAG and SWD Definitions: Itis useful for you to have an understanding of these terms:
e JTAG: Provides access to the CoreSight debugging module located in the Cortex processor. It uses 4 to 5 pins.

e SWND: Serial Wire Debug is a two pin alternative to JTAG and has about the same capabilities except no Boundary
Scan. SWD is referenced as SW in the pVision Cortex-M Target Driver Setup. See page 15, first picture. The SWJ
box must be selected. SWV must use SWD with ULINK2 because of the TDIO conflict described in SWO below.

e SWV: Serial Wire Viewer: A trace capability providing display of reads, writes, exceptions, PC Samples and printf.

e SWO: Serial Wire Output: SWV frames usually come out this one pin output. It shares the JTAG signal TDIO.
Therefore, to use SWV, you must use SWD instead of JTAG. ULINKpro does not have this limitation.

e Trace Port: A 4 bit port ULINKpro uses to output ETM frames and optionally SWV (rather than SWO pin).
e ETM: Embedded Trace Macrocell: Provides all the program counter values. Only the ULINKpro provides ETM.
The NGX boards currently do not have the required 20 pin compact connector needed for ETM operation.
NGX Debug Connectors:
JTAG connector: A compact 10 pin JTAG/SWD connector (J2) is provided. J2 provides JTAG, SWD and SWO access.

Memory: The NGX board contains a serial SPIFI flash memory U6. You can also run programs in internal RAM. pVision
is able to program both the flash and RAM.

3 Copyright © 2012 ARM Ltd. All rights reserved
NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board www.keil.com


http://www.keil.com/�
http://www.keil.com/arm�
http://shop.ngxtechnologies.com/�

2) Gpio_Blinky Example Program:
We will connect a Keil MDK development system to the NGX LPC4330 board using a ULINK-ME. We will be using the
SPIFI flash for this part of the demonstration. A RAM example is available.

1. Connect the ULINK-ME as pictured here to the J2 JTAG connector. Connect the ULINK-ME to your PC with a
USB cable.

KEIL
2. Power the NGX board with a USB cable to either USBO or USB1 and to your 2] Brlily ARM
PC. USBL1 is used in the USB example later on page 14.

LY,
3. Start pVision by clicking on its desktop icon. e

4. Click Project/Open Project in the main pVision menu and select:
LPC4330_Xplorer_Blinky.uvproj in the directory:
C:\KeilARM\Boards\NXP\Xplorer4330\LPC4330_Xplorer_Blinky\Keil

5. Select SPIFI Debug as shown here;  FIFT32ME Debug - &K
This is where you could select RAM operation...but not right now.

6. Select Options for Target &N or ALT-F7 and select the Debug tab and the
window below opens up:
This project is configured by default to use the ULINK2/ME debug adapter.
Delete the .ini file if present in the Initialization File: box. This is not needed by this program.

Click on OK to close this window. i
10. Compile the source files by clicking on the Device | Target | Ouput | Lsting | User | C/C++ | Asm | Linker Debug | Utities |
L i L . " Uss Simulator Settings || ' Use: [ULINK2/ME Cortex Debugger =] | Settings |
Rebuild icon. £ Progress is indicated in ™ Linit Spesdto Real-Time
the BUIId OUtpl‘It WIndOW [~ Load Application at Startup ™| Run ba main(] ¥ Load Application at Startup V¥ Fun to main()
H Inttialization File Intialization File:
11. Select File/Save All. | J Edt | [SPIFI 32ME Debugin J Edt |
12. Program the SPIFI flash by clicking on the et R ————— | e e ——————————
LOAD . .
. . .. . . ¥ Breakpoirts ¥ Toolbax [+ Breakpoirts ¥ Toolbox
Load 1con: 5‘ Progress IS IndlcatEd In the V¥ Watch Windows & Peformance Analyzer ¥ Watch Windows
Build Output window. ¥ Memory Dispiay ¥ Memory Dispiay
13. Enter Debug mode by clicking on the
CPUDLL: Parameter: Driver DLL. Parameter:
Debug icon. @ Select OK if the ISAHMCMS.DLL I-MPU ISARMCMS.DLL I-MPU
Evaluation Mode box appears.
Diglog DLL: Parameter: Diglog DLL: Parameter:
14. Click on the RUN icon. |DCM'DLL |“’CM‘1 |TCM'DLL |1’CM‘1
oK | Cancel | Defaults | Help

The yellow and green LEDs (D2 and D3) beside the LPC4330 processor will now blink:

Super TIP: If you get an error message when attempting to program the Flash or when entering debug mode, press the
RESET button on the board twice and try again. Sometimes you have to press it only once or maybe three times. You may
have to cycle the power to the board and/or ULINK.

1. You stop the program with the STOP icon. D]

. L o I
2. You can single-step the program by clicking on its icon: & orF11.
Bring the disassembly window into focus if single step does not start.

il . . . . .
3. Use Step Out £ and then Step to single step in other functions. Step Over & is used to bypass a function.

Now you know how to compile a program, program it into the SPIFI flash and start the program,
stop it and single-step it !

Note: This program is running on the Cortex-M4 processor in the LPC4330. If you remove the ULINK2/ME, this program
will run standalone in the LPC4330 as you have programmed it in the SPIFI Flash. This is the complete development cycle.

4 Copyright © 2012 ARM Ltd. All rights reserved
NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board www.keil.com


http://www.keil.com/�

2) Hardware Breakpoints:

1. With Blinky running, click in the left margin on a darker gray block somewhere appropriate between Lines 072
through 080 in the source file Gpio_LedBlinky.c as shown below: Click on its tab if not visible.

A red circle is created and soon the program will stop at this point.

The yellow arrow is where the program counter is pointing to in both the disassembly and source windows.

4. The cyan arrow is a mouse selected pointer and is associated with the yellow band in the disassembly window.
Click on a line in one window and this place will be indicated in the other window.

5. Note you can set and unset hardware breakpoints while the program is running. ARM CoreSight debugging
technology does this. There is no need to stop the program for many other CoreSight features.

6. The LPC4350 has 8 hardware breakpoints. A breakpoint does not execute the instruction it is set to.

TIP: If you get multiple cyan arrows or can’t understand
the relationship between the C source and assembly, try
lowering the compiler optimization to Level 0 and
rebuilding your project.

The level is set in Options for Target &N under the
C/C++ tab when not in Debug mode.

TIP: Earlier versions of pVision use a double-click to
set/unset breakpoints and create a red square box.

3) Call Stack + Locals Window:

Local Variables:

The Call Stack and Local windows are incorporated into
one integrated window. Whenever the program is
stopped, the Call Stack + Locals window will display call
stack contents as well as any local variables belonging to
the active function.

If possible, the values of the local variables will be
displayed and if not the message <not in scope> will be
displayed. The Call + Stack window presence or visibility
can be toggled by selecting View/Call Stack window.

1. Click on the Call Stack + Locals tab.

Disassembly
73z GPIO ClearValue (LED1_PORT, (1<<LED1_BIT)): -
0x14001510 F44F6100 MOV rl, #0x800
0x14001514 2001 MCWVS ro, #0x01
0x14001516 F7FFFAEB BL.W GPIC_ClearValue (0x14000RFO)
T4z timer delay ms(50);
Ox1400151R 2032 MOVS r0, ¥0x32
0x1400151C F7FFFF9C BL.W timer_delay ms (0x140014358)
75: GPIO_ClearValue (LED2_PORT, (1<<LED2_BIT)):
erlQOOJSEO F44F5180 MOV rl, #0x1000
0x14001524 2001 MCWVS ro, #0x01
0x14001526 F7FFFAE3 BL.W

B
@Dlsassembly S Logic Analyzer |

GPIC_ClearValue (0x14000RFO) ,I
— e P .

Ipcazior_timer.c | [#] startup_LPC43aes ’[£] Gpio_LedBlinky.c | [£] Ipedzaoutise | ¥ X
69 -]
70 while (1)
71 [ { / Loop forever
T2 timer delay ms(50):
o> 73 GPIC_ClearValue (LED1_PORT, (1<<LED1_BIT));
T4 timer delay ms(50);
(= GPIO_ClearValue (LEDZ_PORT, (1<<LEDZ_BIT)):
T6 GPIC_SetValue (LED1_PORT, (1<<LED1_EIT)):
77 timer delay ms(50); J
78 GPIO SetValue (LED2 PORT, (1<<LED2 BIT)):
739 msec++;
80 if (msec»0x40) msec=0;
81
D of
A »

Shown is the Locals window obtained after Step from the hardware breakpoint active from the previous page.

2
3. The contents of the local variables portNum and bitValue are displayed as well as the function name(s).
4

Using RUN, Step, Step Over and Step Out to enter and exit various functions, this window will update as

appropriate.

TIP: This is standard “Stop and Go” debugging. ARM CoreSight debugging technology can do much better than this. You
can display global or static variables updated in real-time while the program is running. No additions or changes to your
code are required. Update while the program is running is not possible with local variables. They must be converted to

global or static variables so they always remain in scope.
Call Stack:

Call Stack + Locals

The list of stacked functions is displayed Name

when the program is stopped. This is when
you need to know which functions have
been called and are stored on the stack.

5. Remove the hardware
breakpoint by clicking on its
red circle !

E| W GPIO_ClearValue
[ porthum
- bitValue

iz1Call Stack + Locals

Location/Value Type
021 40004F0 void flunsigned char,unsigned int)
Ox01 " param - unsigned char
000001000 param - unsigned int
0x14001524 int f[}

Watch 1 Memory 1

NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board

Copyright © 2012 ARM Ltd. All rights reserved

www.keil.com


http://www.keil.com/�

4) Watch and Memory Windows and how to use them:

The Watch and memory windows will display updated variable values in real-time. It does this through the ARM CoreSight
debugging technology. It is also possible to “put” or insert values into these memory locations in real-time. It is possible to
“drag and drop” variables or enter physical addresses or variables manually into windows while the program is running.

Watch window:
1. We will display in real time the global variable msec in the Watch window.
2. The global variable msec is in Gpio_LedBlinky.c. msec has been optimized out by the compiler as it is not used.

We will give it something to do. Stop the processor and exit debug mode @ .

3. In GPIO_BIlinky.c, just after the last line (78) in the while loop, enter these two lines:
msec++;

if (msec > 0x40) msec=0;

LOAD
5. Program the SPIFI flash by clicking on the Load icon: ¥# Progress is indicated in the Build Output window.
Enter Debug mode by clicking on the Debug icon.@ Select OK if the Evaluation Mode box appears.
Start the processor. You can select Watch and Memory window variables while the program is running.
Open the Watch 1 window by clicking on the Watch 1 tab as shown or select View/Watch Windows/Watch 1.
In Gpio_LedBlinky.c, block msec, click and hold and drag it into Watch 1.

Release it and it will be displayed updating as shown here: ===
10. Msec will update in real-time.

11. You can also enter a variable manually by double-clicking and
using copy and paste or typing the address or name manually.
You can also right click on msec and select its destination. Ecall Stack - Locals | Watch1

© ©® N o

unsigned int

Memory 1 |
TIP: To Drag ‘n Drop into a tab that is not active, pick up the variable and hold it over the tab you want to open; when it
opens, move your mouse into the window and release the variable.

6. Block the value for msec in the Watch window. Enter the value 0 and press Enter. 0 will be inserted into memory
in real-time. It will quickly change as the variable is updated often by the program so you probably will not see this
happen. You can also do this in the Memory window with a right-click and select Modify Memory.

Note: This will be optimized so values are easier to enter in a future release of pVision.

Memory window:
1. Drag ‘n Drop msec into the Memory 1 window or enter it manually while the program is running.

2. Note the changing value of msec is displaying its address in Memory 1 as if it is a pointer. This is useful to see
what address a pointer is pointing to: but this not what we want to see at this time.
Note: right click in Memory 1 and select Unsigned Long to see the addresses as 32-bit numbers.

3. Add an ampersand “&” in front of the variable name and press Enter. Now the physical address is shown
(0x1008_0048) in this case. This physical address could change with different compilation optimizations.

The data contents of msec is displayed as shown here: E==——=p>

5. Right click on the memory value and select Modify Memory. Adress:[amsec D:’
Enter a vlue and this wil be pushed into msec paseseest oo s 20ng et
TIP: You are able to configure the Watch and Memory windows and Sx00z0ncE: o0000000 ouoonotn noooonog ooonoone
change their values while the program is running in real-time without 0x10080088: 00000000 00000000 00000000 00000000
Steallng any CPU CyCIeS | 0x10080098: 00000000 00000000 00000000 Q0000000 LI

-&'JCaII Stack = Locals | Watch1 Memory 1

1. The global variable msec is now updated in real-time. This is
ARM CoreSight technology working.

2. Stop the CPU and exit debug mode for the next step. Q and @
TIP: View/Periodic Window Update must be selected. Otherwise variables update only when the program is stopped.

6 Copyright © 2012 ARM Ltd. All rights reserved
NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board www.keil.com


http://www.keil.com/�

5) Configuring the Serial Wire Viewer (SWV) with the ULINK2 or ULINK-ME:
Serial Wire Viewer provides program information in real-time and is extremely useful in debugging programs.

Configure SWV:

1. uVision must be stopped and in edit mode (not debug mode).

2. Select Options for Target &N or ALT-F7 and select the Debug tab.
3. Click on Settings: beside the name of your adapter (ULINK Cortex Debugger) on the right side of the window.
4. Select the SWJ box and select SW in the Port: pulldown menu.
5. Inthe area SW Device this must be displayed: ARM CoreSight SW-DP. SWV will not work with JTAG.
6. Click on the Trace tab. The window below is displayed.
7. In Core Clock: enter 72 and select the Trace Enable box.
8. Select Periodic and leave everything else at =
default. Periodic activates PC Samples. Debug  Trace | Fash Donnoad |
9. Click on OK twice to return to the main pVision Core Clock: | 72.000000 Mz ¥ Trace Enble
menu. SWV is now configured. - Trace Por T Traze Events
; Senal Wire Output - UART/NRZ = ’7|7 Enable Presca\er.|1 - [ CPI: Cycles per Instruction
10. Select File/Save All. e[ ] . ™ EXC. Exception cverhead
— FEETE I~ SLEEP: Sleep Cycles
(o e Prescaler 1026716 =] | || [ L Lownd Store Ui Cyeles
. — WO Clock: [ 1167290 Mz | | [ pedc penod: [ 2Daabieds | | I~ FOLD: Feded betructions
To Display Trace Records: =R R ™ on Data FAW Sample ¥ EXCTRC: Exception Tracing
@ V] Recoras [T Semslos Pors 31 Fi 24 23 P 16 15 Py 8 7 P 0
ort ort ort 'ort
1. Enter DEbUQ mode. Exceptiv: Eniable: |xFFFFFFFF [ IeTeRelelelele [eleleleivleliele Weieleleleleliele [eheheleielvlvle
Counters Privilege: | 200000008 Port 31.24 | Port 23.16 ™ Port 15.8 [~ Pot 7.0 [C
Click on the RUN icon. .
Open Trace Records window by clicking on the Felp
small arrow beside the Trace icon shown above:
You can also select View/Trace/Records.
4. The Trace Records window will open and display PC Samples as shown below:
TIP: If you do not see PC x|
Samples as shown and Type [ovi [Num [ Addess | Data | PC_ o[  Cyes [ Timefs] Iil
instead either nothing or PC Sampls 1400113CH 421355122 585215447
; PC Sample 140011404 421371506 5 85238203
frames W!th strange_data, PC Sample 14001138H 421387850 5 85260858
the trace is not configured PC Sample 14001132H 471404274 585283714
PC Sample 1400112EH 421420658 585306469
correctly. The most PC Sample 1400112CH 421437042 5.85329225
probable cause is the Core PC Sample 1400149CH 421453426 585351981
Clock: frequency is wrong. PC Sample 140014%8H 421489810 585374736
PC Sample 1400113CH 421486194 5,85397452
ITM frames 0 and 31 are PC Sample 1400113CH 421502578 585420247
. PC Sample 1400113EH 421518962 5 85443003
the only valid ones. Type PC Sample 140011286H 421535346 5.95465758
1 through 30 are not used PC Sample 1400112EH 421551730 5 85488514
; i ; PC Sample 1400112EH 421568114 585511269
in uVision and if appear PC Sample 14001128H 421584438 5 85534025
are spurious and not valid. FC Sample 1400143AH 421600882 585556781
PC Sample 140014A2H 421617258 5 85579536
All frames have a FC Sample 1400113CH 421633650 5.85602292
i i i PC Sample 140011404 421650034 5 85625047
timestamp displayed in PC Sample 14001138H 421666418 5.85647803 o

CPU cycles and

accumulated time.
Double-click this window to clear it.

If you right-click inside this window you can see how to filter various types of frames out. Unselect PC Samples and you

will see nothing displayed as there are no other frames.

This is an excellent way to see various events such as interrupts are occurring and when. This is a very useful tool for
displaying how many times an exception or other events are firing and when. We shall see more on this shortly.

TIP: SWV is easily overloaded as indicated by an “x” in the OVF or DIy column. Select only that information needed to
reduce overloading. There are more useful features of Serial Wire Viewer as we shall soon discover.

NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board

7

Copyright © 2012 ARM Ltd. All rights reserved

www.keil.com



http://www.keil.com/�

6) Using the Logic Analyzer (LA) with the ULINK2 or ULINK-ME:

This example will use the ULINK-ME with the Blinky example. It is assumed a ULINK-ME is connected to your NGX
board and configured for SWV trace as described on the previous page.

MVision has a graphical Logic Analyzer (LA) window. Up to four variables can be displayed in real-time using the Serial
Wire Viewer. The Serial Wire Output pin is easily overloaded with many data reads and/or writes and data can be lost.

The project Gpio_LedBlinky should still be open and is still in Debug mode and running.

Note: You can configure the LA while the program is running or stopped.

1
2
3. Select Debug/Debug Settings and select the Trace tab.
4

Unselect Periodic and EXCTRC. This is to prevent overload on the SWO pin. Click OK twice.

5. Clickon RUN to start the program again.

Open View/Analysis Windows and select Logic Analyzer or select the LA window on the toolbar. =

Locate the variable msec in Gpio_LedBlinky.c.

Block msec and drag it into the LA window and release it. Or click on Setup in the LA and enter it manually. You

can also right-click on msec and select Add ‘msec” and then select Logic Analyzer.

9. Click on Setup and set Max: in Display Range to 0x80. Click on Close. The LA is completely configured now.
10. msec should still be visible in Watch 1. If not, enter it into the Watch 1 window.

|LogicAnaIyzer o x |
ISeftup I Load ... Min Time Max Time Grid Zoom Code Trace Setup Min/Max Update Screen| Transition [/ Sigusa lnfe | Armiaades
Save ... | Os |T3-53D‘%5 | 2s EI | Show | | Show | | Auto || Undo | | Stop | ™ Show Cycles ™ Cursor
128 ; ; : ; ; ; ; ; : i i ; ; ;
; o I
: e I s e
2326286 s 4526286 s : 61.26286 s
il I+

@Disasseml:l}' | Q Logic Analyzer

11. Adjust the Zoom OUT or the All icon in the LA window to provide a suitable scale of about 2 sec:
12. Would you have guessed msec is a sawtooth wave from looking at its value changing in the watch window ?

TIP: The Logic Analyzer can display static and global variables, structures and arrays. It can’t see locals: make them static
or global. To see peripheral registers, enter their physical addresses into the Logic Analyzer and read or write to them.
Physical addresses can be entered as:  *((unsigned long *)0x20000000).

When you enter a variable in the Logic Analyzer window, it will also be displayed in the Trace Records window.
1. Select Debug/Debug Settings and select the Trace tab.

2. Select on Data R/W Sample. Click OK twice. Run the program. .

Open the Trace Records window and clear it

5I
by dOUble'CIICkmg init. Type Ovi | Num Address | Data | PC [Oy[ Cycles [ Timels) ﬁl
. A Data Wite 10020048H  OODDOOTAH  14000ETCH 20891367778 290.15788581
The window similar below opens up: Data Wiite 10080048H DODDODISH  14D00E7CH 20891439778  290.15888581
Data Wite 10020042H  OODDOOTEH  14000ETCH 20891511778 290.15988521
- : . Data Wite 10020048H  O0DDOOT7H  14000E7CH 20891583778 290.16088521
5. The first line says: Data Wite 10080048H  OODDOOTEH  14000E7CH 20891655778 290.16188581
i R Data Wite 10020042H  OODDOOTSH  14000ETCH 20891727778 290.15288521
The instruction at 0x1400_OE7C caused a Data Wite 10020048H  O0DDOOTAH  14000E7CH 20891799778 290.16388521
i Data Wi 10080048H  ODDDDOT3H  14000E7CH 20891871778 29016488581
write of data 0X001A to address Dii w:nt: 10020048H  O0DDODT2ZH  14000ETCH 20891943778 290.15588521
P ; ; Data Wite 10020048H  OODDOOTIH  14000E7CH 20892015778 290.16688521
0x1008_0048 at the listed time in CPU Data Wite 10080048H  ODDDODTOH  14000E7CH 20892067778 29016788581
i P Data Wite 10020042H  OODDOOOFH  14000ETCH 20892159778 290.15888521
CyCIeS or accumulated Time in seconds. Data Wite 10020048H  OODDODOEH  14000E7CH 20892231778 290.16988521
. . Data Wite 10080048H  OOODOOODH  14000E7CH 20897303778 29017088581
TIP: The PC column is activated when you selected Data Wite 10080048H  0DOOOOOCH  1400DE7CH 20892375778 250.17188581
; _ Data Wite 10020048H  OODDODOBH  14000E7CH 20892447778 29017288521
On Data R/W Sample in Step 2. You can leave this Data Wite 10080048+  0ODODDOAH  1400DETCH 20892519778 29017388581
X o Data Wits 10020048H  O0DDODOSH  14000ETCH 20897591778 290.17488581
unselected to save bandwidth on the SWO pin if there Data Wite 100800434  0ODOOOOSH  1400DETCH 20352663778 290.17588581
.. i Data Wite 10080048H  ODDDOOOTH  14000E7CH 20092735778 29017688581 o |
are too many overruns. pVision and CoreSight
recover gracefully from trace overruns.
8 Copyright © 2012 ARM Ltd. All rights reserved

NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board

www.keil.com



http://www.keil.com/�

7) Watchpoints: Conditional Breakpoints

Most NXP Cortex-M3 and M4 processors have four Watchpoints. Watchpoints can be thought of as conditional breakpoints.
The Logic Analyzer uses watchpoints in its operations. This means in pVision you must have two variables free in the Logic
Analyzer to use Watchpoints. The Cortex-MO does not have any watchpoints because of its small size.

17.

© o N g~ wbdh PR

e
[N =

12.

13.

14,

15.

16.

Using the example from the previous page, stop the program. Stay in Debug mode.

Enter the global variable msec into the Watch 1 window if it is not already there.

Click on Debug and select Breakpoints or press Ctrl-B.

The SWV Trace does not need to be configured to use Watchpoints. However, we will use it in this exercise.

In the Expression box enter: “msec == 0x12” without the quotes. Select both the Read and Write Access.
Click on Define and it will be accepted as shown here: == EE

Curmrent Breakpoints:

Click on Close.

Double-click in the Trace Records window to clear it.

Msec should still be entered in the Logic Analyzer window.
. Click on RUN.
. When msec equals 0x12, the program will stop. This is how

a Watchpoint works.

You will see msec displayed as 0x12 in the Logic Analyzer

as well as in the Watch window.

Note the data write of 0x12 in the Trace Records window
shown below in the Data column. The address the data

Access
Expression: IW'SEC“B"12 ¥ Read [V Wite
Court: |1 _|::' Size:

Command: I

Define | KilSelected | wim |

l1—__, I™ Bytes
% Objeats
Close I Help

|

written to and the PC of the write instruction are displayed as well as the timestamps.

Click on RUN (maybe a couple of times) to start this again. You can modify the value of msec in the Watch or

Memory window to get to the trigger value of 0x12 faster.

There are other types of expressions you

x|

can enter and they are detailed in the Help
button in the Breakpoints window.

When finished, click on STOP if the
program is running and delete this
Watchpoint by selecting Debug and
select Breakpoints and select Kill All.
Select Close.

Note: Selecting Debug and Kill all
Breakpoints will not delete
Watchpoints.

Leave Debug mode. @

Type

Data Write
Data Write
Data Wite
Data Write:
Data Write:
Data Write
Data Write
Data Write
Data Write
Data Wite
Data Write:
Data Write:
Data Write
Data Write
Data Write
Data Write
Data Wite
Data Write:
Data Write:
Data Write

Address | Data | PC [Dy ] Cyoes |
10080048H  0DOOODZ5H  14000E7CH 680202895
10080048H  DDOOOD24H  14000E7CH 680274895
100B004BH  DDODOOZ3H  14000E7CH 6BO346895
10080048H  DDODOOZZH  14000E/CH 680418895
10080048H  DDODOO2TH  14000E/CH 680490895
10080048H  DDODOD20H  14000E7CH 680562895
10080048H  DDOOODTFH  14000E7CH 680634395
10080048H  DDODODTEH  14000E7CH 680706395
10080048H  OODDODIDH  14000E7CH 680778395
100B004BH  DDODODICH  14000E7CH 6B0B50895
10080048H  DDODODTBH  14000E/CH 680922895
10080048H  DDODODTAH  14000E/CH 680994895
10080048H  DDODODTSH  14000E7CH 681066395
14000E7CH
14000E7CH
14000E7CH
14000E7CH
14000E7CH
14000E7CH
14000E7CH

9.44726243
§.44826243
944926243
9.45026243
9.45126243
9.45226243
9.45326243
9.45426243
§.45526243
945626243
9.45726243
9.45826243
9.45926243
9.46026243
9.46126243
546226243
946326243
9.46426243
9.46526243
9.46626243

10080048H
10080048H
10080048H
10080048H
10080048H
10080048H
10080048H

00000018H
00000017H
000000 16H
00000015H
000000714H
000000713H
00000012H

681133835
681210835
681282835
681354895
681426895
681498895
681570895

Time[s ;I

TIP: You cannot set Watchpoints on-the-fly while the program is running like you can with hardware breakpoints.

TIP: To edit a Watchpoint, double-click on it in the Breakpoints window and its information will be dropped down into the
configuration area. Clicking on Define will create another Watchpoint. You should delete the old one by highlighting it and
click on Kill Selected or try the next TIP:

TIP: The checkbox beside the expression in Current Breakpoints as shown above allows you to temporarily unselect or
disable a Watchpoint without deleting it.

NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board

Copyright © 2012 ARM Ltd. All rights reserved

www.keil.com



http://www.keil.com/�

3) RTX RTOS Example RTX_Blinky:

1) RTX Kernel Awareness using Serial Wire Viewer (SWV):

Users often want to know the current operating task number and the status of the other tasks. This information is usually
stored in a structure or memory area by the RTOS. Keil provides two Task Aware windows for RTX by accessing this
information. Other RTOS companies also provide awareness plug-ins for pVision. Any RTOS ported to a Cortex-M or R
processor will compile with MDK.

RTX is a Keil produced RTOS that is provided with MDK. Source code is provided with all versions of MDK.

RTX now comes with a BSD type license. There are no licensing or product fees or royalties payable with RTX. RTXis
easy to implement and is a full feature RTOS. It is not crippled or limited in any way. Source code is provided with RTX.
See www.keil.com/rl-arm/kernel.asp.

Software:
1. Obtain the RTX example program files for Blinky.uvproj created for the NGX board. Check www.keil.com/nxp
2. Copy it to or look for it in C:\KeilARM\Boards\NXP\Xplorer4330\RTX_Blinky

Compile and RUN Blinky:
3. Open the project C:\Kei\ARM\Boards\NXP\Xplorer4330\RTX_Blinky\Blinky.uvproj.

hind

4. Compile the source files: Click on the Rebuild icon.
LoAD
5. Program the Flash by clicking on the Load icon. ## Progress will be indicated at the lower left of your screen.

RTXTasksandSyslcm x
6. Enter Debug mode. @ = -
= System m
Click on the Run icon. et e
i Round Robin Timeout: 50.000 mSec
The blue LED blinks with the clock task (ID 6) Steck i 20
and the yellow when phaseA task (ID 2) runs. EZEEU"STL‘”SZ?JZZE"m “ —
9. Open Debug/OS Support and select RTX Tasks UserTimes Avalb: 0, Usec:
and System and the window on the right opens up. =
You might have to grab the window and move it 5 dock i vt AHD T T
into the center of the screen. +Tohmet ; Wt 215 Hﬂﬁﬁﬁ oo o
These values are updated in real-time using the e : iy son0 oo [
same read write technology as used in the Watch

and Memory windows.

Note Blinky.c has four tasks phaseA through phaseD plus
the clock task as shown in the screen. These tasks are
visible in Blinky.c tab. Task 1 phaseA starts near line 64.

Each task toggles its own global variable. These are named phasea through phased and they are declared starting near line
29. We will enter these into the Watch 1 and Logic Analyzer.

Important TIP: View/Periodic Window Update must be selected for real-time updates, otherwise data values will not be
changed until the program is stopped !

10. Open Debug/OS Support and select Event Viewer. There is probably no data displayed in this window because
SWV is not yet configured. The Event Viewer needs SWV operational. We will do this on the next page.

Using the Watch Window to display global variables phasea through phased:
11. With Blinky running, enter the four variables phasea through phased plus LedStatus into Watch 1.
12. These will start to update in real time as shown here:

Mame Value Type

¥ phasea 0x00000000 unsigned int

phasec 0x00000001 unsigned int

phased 000000000 unsigned int

LedStatus 0x00000007 unsigned int

Enter expression=

Note that it appears that LedStatus is always the value of 7 but examining
the source code will show that this is not so: the numbers 1, 2, 3 and 4 are
also displayed (see #define LED_A through LED_D at line 21 in
Blinky.c). LedStatus is changed in the LED_on and LED_off functions.

You will learn how to find out how to determine the timing relations of the = :
values of LedStatus later using the Logic Analyzer. waten [Evenen s

10 Copyright © 2012 ARM Ltd. All rights reserved
NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board www.keil.com



http://www.keil.com/�

4) RTX Viewer:

Configuring Serial Wire Viewer (SWV):

We must activate Serial Wire Viewer to get the Event Viewer working (and also the Logic Analyzer)..

1. Stop the CPU Q and exit debug mode. @

Click on the Target Options icon ER next to the target box.
Select the Debug tab. Click the Settings box next to ULINK2/ME Cortex Debugger.
In the Debug window as shown here, make sure SWJ is checked and Port: is set to SW and not JTAG.

TIP: Make sure the RESET: box is set to VECTRESET as shown. If you experience strange problems, check this setting.

Click on the Trace tab to open the Trace window.

Set Core Clock: to 120 MHz and select Trace

Enable.

7. Unselect the Periodic and EXCTRC boxes as
shown here:

8. ITM Stimulus Port 31 must be checked. This is
the method the RTX Viewer gets the kernel
awareness information out to be displayed in the
Event Viewer. It is slightly intrusive.

9. Click on OK twice to return to pVision.

10. Select File/Save All.

The Serial Wire Viewer is now configured.

11. Enter Debug mode and click on RUN.

12. Select “RTX Tasks and System” tab: note the
display is being updated.

13. Click on the Event Viewer tab.

14. This window displays task events in a graphical

format as shown in the RTX Kernel window
below. You probably have to change the Range
to about 0.2 second by clicking on the ALL, and
then the In and Out icons.

TIP: If Event Viewer doesn’t work, open up the Trace
Records window and confirm there are good ITM 31
frames present. Is the Core Clock frequency correct ?

TIP: There is an enormous amount of SWV information
coming out the SWO pin. If you have trouble getting the
Event Viewer to work and the Trace Records window
contains ITM frames other than 31, this could be from
overloading. Remove all or some of the variables in the
LA window and/or unneeded features in the Trace config
window to lessen the pressure on the SWO pin.

Cortex-Mx Alert: pVision will update all RTX
information in real-time on a target board due to its
read/write capabilities as already described. The Event
Viewer uses ITM and is slightly intrusive.

The data is updated while the program is running. No
instrumentation code needs to be inserted into your
source. You will find this feature very useful !
Remember, RTX with source code is included with all
versions of MDK.

B
Debug |T|Hce | Flash Duwnluadl
- ULINK USB - JTAG/SW Adapter SW Device
Serial No: [TIENE] =l |DCODE | Device Name | oy
SWDIO | @) :x2BADT477  ARM CoreSight SW-DP
ULINK Version: [ILINK2 @ L il
Device Family: [Cortex-M Down
e | AR & Automatic D etection I CODE
 swl Pnﬂ.lﬂ ) Manual Corfiguration DeviceName l—
Mz Clock: (10MHz ‘I Add | De\etel Updatel IR e
r Debug
Connect & Reset Options—————————— ~Cache Options Download Options
Cornect: [Nomal | Reset:|[VECTRESET x| | | ¥ Cache Cade I Verify Code Download
I | React after Connect ¥ Cache Memory | | [~ Download to Flash
B
Debug Trace I Flash Download |
Core Clock: | 100.000000 MHz [V Trace Enable
r Trace Port Ti Trace Events
[Seral Wire Outpt - UART/NRZ ~ | ’VF Ensble  Prescaler:[1 | [~ CPI: Cydles per Instruction
SWO Clock Prescaler: |20 PCSomplng——————— W (B Emmrrrrmias
[~ SLEEP: Slesp Cycles
v Autodetect Prescaler |1uz4'15 vl i
[~ LSU: Load Store Unit Cycles
WO Cod [ 1250000 MHe | | = puogic Parod [ <Dissbled> | | ™ FOLD: Folded Instructions
[ on Data RAW Sample [~ EXCTRC: Exception Tracing
r ITM Stimulus Ports
Pot 2423 Pot 1615 Pot & 7 Pot 0
Enable: [O<FFFFFFFF |v|v|«|v|v|«|v|v VMV VVVVVVIYY MV IZIZ
Privilege II}(I}DDI}DDI}S Port 31.24 [V Port 23.16 [~ Pot 15.8 [~ Pot 7.0 [~
Corel | oo
Load... Min Time Max Time Zoom Code Update Screen | Transition I Cursor
159106 ms | 55.08057 5  [odouda] shwl stop | Clar | pre rShowCydes
4
2 ; h ] ] ; ] ] ] ]
o [ T T T I I |||| %
S N A N . ||||
vmlliiillilli |||| | |||
wee | || | NN . |||| m
et | || I || I || I || I || Il || I || I || || || I || I ||
4293057 s I 4893057 s : 55.93057 s

NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board

11

www.keil.com

Copyright © 2012 ARM Ltd. All rights reserved


http://www.keil.com/�

3) Logic Analyzer Window: View variables real-time in a graphical format:

pVision has a graphical Logic Analyzer window. Up to four variables can be displayed in real-time using the Serial Wire
Viewer. RTX_Blinky uses four tasks to create the waveforms. We will graph these four waveforms.

1. The RTX_BIlinky program can be running for these steps.

Open the Logic Analyzer (LA) window if not already open.
If there are any variables present in the LA, click on Setup and use Kill All to remove them.

TIP: The Logic Analyzer can display static and global variables, structures and arrays. It can’t see locals: just make them
static. To see peripheral registers merely read or write to their addresses and enter them into the Logic Analyzer. You can
enter physical addresses into the LA. Here is an example: *((unsigned long *)0x20000000)

Enter the Variables into the Logic Analyzer:
4. Click on the Blinky.c tab. Block phasea, click, hold and drag up to the Logic Analyzer tab (don’t let go yet!)
5. When it opens, bring the mouse down anywhere into the Logic Analyzer window and release.

6. Repeat for phaseb, phasec and phased. These variables will be listed on the left side of the LA window as
shown. Note, you could have right clicked on a variable and add it to the LA. Now we have to adjust the scaling.

Click on the Setup icon and click on each of the four variables and set Max. in the Display Range: to 0x3.
Click on Close to go back to the LA window.
Using the All, OUT and In buttons set the range to 1second or so. Move the scrolling bar to the far right if needed.

10. Select Signal Info and Show Cycles. Click to mark a place move the cursor to get timings. Place the cursor on one
of the waveforms and get timing and other information as shown in the inserted box labeled phasec:
It is easier to do this when the program is stopped.

|LugicAnaIyzer a3 x |

Setup ... |[ Load ... Min Time Max Time Grid Zoom Code Setup Min/Max Update Screen| Transition ¥ Signal Info
e[ 05 [t [ 5 [w]oalA] R S s I~ oo

- N T D B

= o] L— T L 0 e T e R

B E I S R

& i i i H H H H H H H i i H

S e N I s SN s NN I | s e (N N B i

Y 3 i i i i i i i i i i i i i

8 i i i i i i i i i i i i i

& o 3 ] : : ; : ; : : ] 3 : L

P I T T T S N AN S K SN S R

= i |phasec

E ' Mouse Pos Reference Point Delta

= L | Time: 2765625 5 0s 2765625 5 = 0.036153 HZJ

V| Value: (1] 1 1
2 41675 5 ' pcs: /A 04385 ks
1203593192 1596993192 2046593192

E | Bl

@t Disassembly | j Logic Analyzer

TIP: You can view signals that exist mathematically in a variable and not available for measuring in the outside world.

LedStatus:

LedStatus is a global variable declared around line 27. Its value changes in the functions LED_on and LED_off according to
which task calls these two functions. We will also show this in the Logic Analyzer.

1. Click on Setup in the LA and delete phased to make room for the variable LedStatus. Note: you might not have to
delete phasea, LPC4300 might be able to handle five variables in the LA.

2. Enter the variable LedStatus and set its Max to 0x9.

3. Click on Close. 9 |
4. RUN the program and adjust Zoom to display LedStatus as shown here: LedStatus i ‘| | | | | | | !
5. Note most of the time LedStatus equals 7 and the spikes represent the 1239 368 5 ' '

other values of 1, 2, 3 and 4. This is why it does not change in Watch 1.
This demonstrates the ability of CoreSight to deliver very useful debugging tools.

12 Copyright © 2012 ARM Ltd. All rights reserved
NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board www.keil.com


http://www.keil.com/�

4) Trace Records and Exception Windows:
MVision offers real-time viewing of various data tracing including listing of interrupts.

i i i i ; : ERL EFSR
1. With Blinky still running from the previous page: select Debug/Debug Settings and |/ r.cor
select the Trace tab. Select EXCTRC: Exception Tracing and select OK twice. Exceptions
2. Start the program again by clicking on RUN. Countes
3. Open the Trace Records window:
; : x|
4. The following window opens: o
5. Displayed are ITM, Data Write and EEE
Exception frames. =T e
. . . Exception Exit 15 307357650113 1707.54250063
6. Exception 15 is the SYSTICK timer and Excestion Retun 0 07ISTEEOTS] 170754250417
11 is SVCall exception S 3l osH Asesi2ET 1707 407526
' Exception Exdt 15 3D:’3SSEEW D1é 1:’D§:54511’ET3
. H i H Exc R 0 307358661541 1707.54811967
7' Entry' When the exceptlon or Interrupt IS Daiae?.t“‘a'oritne =m 10000008H 00000007H 307358663360  1707.54812378
Exception Ents " 307358667251  1707.54815135
ente red' ITM 8 v K1l FFH 307358679699  1707.54822055
. . . . * | Exception Exit " 307358687427  1707.54826348
8. EXxit: when the exception or interrupt exits. i |Ewestion Retun 0 3073585886572 170754827040
¢ | Exception Enjlry 15 307359631968  1707.55351093
9. Return: when all exceptions or interrupts 22555, © sz 170755362858
exit. This indicates no tail chaining is ) il I ey 1y teareas j

occurring.

TIP: If you do not see PC Samples and Exceptions as shown and instead either nothing or frames with strange data, the trace
is not configured correctly. The most probable cause is the Core Clock: frequency is wrong.

10. Right-click in the Trace Records and unselect Exceptions. This is to filter out selections you don’t want to see.
Double-click anywhere in the window to clear it.

11. Unselect ITM frames in the same fashion.

12. Open Debug/Debug Settings, unselect EXCTRC and select On Data R/W Samples (to turn on instruction address).

13. Click on OK twice and click on RUN to start the program.
14. The Data Write shows the address the data value was written to by the (optional) instruction’s address. Data Write
frames are placed here when they are entered in the Logic Analyzer.
TIP: This data comes out a one pin port x|
(SWO) and is easily overloaded. Itis betterto  [Tpe OVi[Nom| Addess |  Date | PC  [Dy| Cos |  Tme |-l
H Data Writ 10000008H 00000007H 14000C46H 1300755522 7.22641957
SeleC'!: Onl_y thOSB fram.eS yOU want in the Trace Dat: ‘.‘\«'ril: 10000008H 00000007H 14000C4CH 1308663665 7.27035369
Data Writ 10000008H 00000001TH 14000C4CH 1350709855 7.50394364
_Conflg WIndOW than fll_ter them out aﬁerWﬁrdS Dat: ‘.‘\«'ril: 1000000CH 00000000H 14000CC2H X 1350712724 7.50395958
In the Trace ReCOI‘dS WIndOW, Data Write 10000008H 00000007H 14000C46H 1350736900 7.50409389
Data Write 10000008H 00000007H 14000C4CH 1358663662 7.54813146
i H . Data Writ 10000008H 00D00D03H 14000C46H 1400708807 778171555
15 Open the Exceptlons WlndOW. The Dat: ‘.‘\«'rﬂ: 10000014H 00D00D01H 14000D12H X 1400711684 778173158
window below opens: Data Write 0000008H  0DODDODFH  14000CAGH 1400754819 7.78197122
Data Write 10000008H 00000007H 14000CACH 7.82550531

Data Write

10000008H

00000002H

14000C4ACH

805945938

16. Each exception is listed with an Data Wit 10000008H  0ODOOOO7H  14000CA6H B.05965420
i Data Wit 100D000SH ~ OODOODO7H  14DDOCACH 1458663658 8.10368639
O_CC_urrence count and various Data Wit 100D000SH ~ OODOODO4H  14000C46H 1500708792 833727107
timings. Data Wit 1000000SH ~ OODOODO7H ~ 14000C46H 1500755515 8.33753064
Data Write 1000000SH ~ OODOODO7H  14D0OCACH 1508663667 B.38146482
‘s Data Write 1000000SH ~ OODOODO3H  14DDOCACH 1550709848 B.61505471
17. When you are finished, please stop Data Write 10000014H  OOODODOOH  14000D26H X 1550712632 8.61507051
i Data Write 10000008H  OODDODO7H  14000C46H 1550737456 8.61520809
the program and exit debuQ mode. Data Write 100D000SH  OODOODO7H ~ 14DDOCACH 1558663685 BESI24263 |
x
. MNum | Name | Courtt | Total Time | Min Time In | Max Time In | Min Time Out | Max Time Out First Time [s Last Time [s -
TIP: Data Read frames are currently > ] 0
: : i : 3 HardFaut 0 0
disabled in uVision. Data Write frames are T e 0 0
H 5 BusFault 1] 0s
avallable' & UsageFault 0 0s
11 SWCall 34066 3543 17.061us  401.583us 9.850us 233.225ms 0.00331873 1719.77037344
12 DbgMon 1] 0s
14 PendSV 1] Os
15 SysTick 309564 L7025 102.144us  182.739us 5.377ms 5.454 ms 0.00306652 1719.80350658
|18 EdiRD 0 0s
|17 EdiRQ1 0 0s
18 EdIR02 0 0s
19 EdIRQ3 0 0s
20 BdIRQ 4 0 0s
2 BdIRQ 5 0 0s
22 BdIRQ 6 0 0s
23 BdIRQ7 0 0s =l

Copyright © 2012 ARM Ltd. All rights reserved

NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board www.keil.com


http://www.keil.com/�

4) USB and Interrupt Example: LPC4330_Xplorer_Extint.uvproj

This example demonstrates USB and interrupts. Pressing the button SW2 create an interrupt at one of the general purpose
inputs (GP100 pin 7) and sends a message out the USB 1 port. This message can be displayed on a serial terminal program
on your PC. The firing of the interrupts will be displayed using SWV.

Configure pVision and prepare the program:
1. Start pVision if not already running. Connect the board as shown. Use J3 USB1 to power the board.

2. Open the project LPC4330_Xplorer_ExtInt.uvproj found here:
C:\KeilARM\Boards\NXP\Xplorer4330\LPC4330_Xplorer_ExtInt\Keil

3. Click on the Target Options icon e and select the Debug tab. Delete the .ini file as shown: Click on OK.
[ Load Application at Startup ¥ Run to main()
4. Compile the source files: Click on the Rebuild icon. Initializztion File:

LOAD . I."-—.SPIFI 32MB Debug ini J Edit... |

5. Program the Flash by clicking on the Load icon. ¥# Progress will be
indicated at the lower left of your screen.

6. At this time, Windows will detect the LPC4330 USB port and if the driver had not previously been installed, it will
try to install a USB driver on your PC. A standard USB double tone will probably sound.

Configure USB on your PC:

7. If the USB driver install is not automatically done, you must do it manually. This will depend on the version of
Windows you are using on your PC. If the USB drivers have been installed in a previous run of this exercise, jump
to the next page.

8. If a notification appears that the USB driver was successfully installed, jump to the next page.
9. Ifanotification says the Device driver software was not successfully installed: you must now manually install it.

Install USB on your PC: Locate hardware in Windows Device Manager: [ et =t e

1. Open Windows Control Panel appropriate for your version of Windows. N

2. Select Device Manager. The exact steps will depend on your version of Windows.

3. When the NXP hardware has been detected but the USB driver is not installed, it will show under Other Devices:

4. If the driver is installed, it will appear under Ports (COM & LPT)

5. Right click on NXP LPC18xx VCOM and select Update Driver Software...

6. Select Browse My Computer... and select the Browse icon and locate:
C:\KeilARM\Boards\NXP\Xplorer4330\LPC4330_Xplorer_UsbVcomLib

7. Select Next: to complete this task. — imix

8. If awindow opens and says Windows cannot verify this driver, select Fle Acton View Help
install it anyway. & E:> | H R

9. When the driver has successfully been installed, this fact will be S R R e
displayed. Click on Close. : f:“;’,(ﬂejfjfsmw

10. The LPC4330 will now be displayed under Ports (COM & LPT) as 3 e o ol ortv2 COM12 |
shown here: Note the COM port number — you will need to input this for ;___jgz_m Vsl Serl Bt 2 (COME) vy 3l
your terminal program. Close this window. T

TIP: Some terminal programs are unable to handle high COM port numbers. To =T

change this, right click on the NXP driver in Device Manager and select s Dovice FERE

File Action View Help
e=»m0HF HE %S
COM Port Number: ICOMAD vl =- ‘? Ports (COM & LPT) ]

- LPC18xx USB VCom Port (COM40)
120 RIM Virtual Serial Port v2 (COM12)
-T2 RIM Virtual Serial Port v2 (COM3)
15" Sierra Wireless Application Interface 1 (COMS)
T3 Sierra Wireless Application Interface 2 (COMS)
121 Sierra Wireless Application Interface 3 (COM7) J

Properties. Select Port Settings and then the Advanced icon. In the COM port
select a new COM port that is not used.

The program is actually running on the LPC4330. The blue and red led should be
on. Press SW2 and the blue led will cycle. This shows everything is normal.
Press RESETSW1 once or twice to get to this state. T Sierra Wireless Disgnostics Interface (COMB)

D Processors x|

Cycle the power to the NGX board for the next steps. | = | |

14 Copyright © 2012 ARM Ltd. All rights reserved
NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board www.keil.com


http://www.keil.com/�

Run the program and configure a Terminal program on your PC:
1. If you have a terminal program running for this tutorial — please exit it now to ensure a clean start.

2. Enter Debug mode. @ This stops the program running on the NGX board.

3. Start the program by clicking on the Run icon. The USB double tone will sound indicating a connection.
TIP: USB is only active when the program is running. At this point, the LPC4330 is ready to communicate with
your PC over USB1. The blue and red LEDs will be on.

4. Open your terminal program: speed is 115200 baud using the COM port for your particular setup. 1 used PuTTY
but any common terminal program will work. See Step 10 on the previous page if you do not know the COM port.

Press SW2 once and the blue LED will go out and some text will appear on the screen as shown below.
Press it several more times and the blue LED will cycle and more text will appear as shown here:

Trouble ?: Cycle the power to the NGX board and
ULINK and start over. Remember to exit the terminal
every time you RESET the board or exit/enter debug
mode in pVision. Terminal programs are usually not
able to track such events. Getting a Connect Error when
starting the terminal ? Cycle the NGX board power.
The blue LED must be on after a repower.

Try running the program without the ULINK attached.
Everything will still work as the program is programmed
in Flash and is configured to start from RESET.

What is happening: When you press SW2 which is connected to
GPIO Port 0 pin 7, an interrupt is generated. A message is sent
out the USB1 port to the PC where it is displayed on a terminal.

Serial Wire Viewer:
1. STOP the programe. Exit the terminal. Exit Debug mode. @

Click on the Target Options icon AN and select the Debug tab. Select Settings: and confirm Port: is set to SW.
Select the Trace tab and set Core Clock: to 60 MHz and select the Trace Enable box.
Unselect Periodic and select EXCTRC. Click OK twice to return to the main menu. The SWV is now configured.

Cycle the power to the NGX board and enter Debug mode. @
Open both the Trace Records and Exceptions windows. Double-click in each to clear them. j :mr:s
Ceptions
7. Click on RUN . Open your terminal program. Counters

8. Each time you press SW2, two interrupt sequences occur and are displayed in the trace windows as shown below:

ExtIRQ 32(48) is the GP10Q0 interrupt P— | | o | :’
H Type Ovf | Num Address Data PC Dhy Cycles Timefs] -
and s created when you press SW2. Exception Ertry 43 4393321817 73.22203028
; i Exception Exit 48 4393326423 73.22210705
EX“RQ_ 9(25) is USB_]' mterru_pt and Exception Retum 0 4393326561 73.22210935
occurs in the USB write functions. Exception Entry 2 4393407895 7322346492
Exception Exit 25 4393429023 7322381705
: i Exception Retum 0 4393429799 73.22382998
Entry: when the exception or
: i
interrupt is entered. e —-
. R . Num I Name | Court | Total Time | Min Time In I Max Time In | Min Time Out | Max Time Out | First Time [s] Last Time [s] I AI
Exit: when the exception or interrupt 21 BdRQ5 D Ds
- 2 ExtIRQ & 0 Os
exits. 73 BilRG7 0 0s
2 s
Return: when all exceptions or ig g:gg ?D 1DD 3.5§1gms 352133us  352133us  752511ms 82355 56.38444247 7322346492
interrupts exit. This indicates no tail 7 Ewen n n-

chaining is occurring. SWV makes it easy to see when interrupts are happening and at what times.

15 Copyright © 2012 ARM Ltd. All rights reserved
NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board www.keil.com


http://www.keil.com/�

5) Dual Core MBX Example:

Running and controlling the Cortex-M4 and Cortex-MO cores in LPC4300:

NXP provides two methods of Inter Processor Communication (IPC) between the two cores of the LPC4300 series. The
Cortex-M4 is the “master” and the Cortx-MO the “slave”. Example projects are provided for both techniques, but we will
examine only the mailbox system in this document.

1) Message Queue: Two areas of shared memory are defined. The Command buffer is used exclusively by the master
(M4) to send commands to the slave (M0). The Message buffer is used exclusively by the slave to send data to the
master. An interrupt mechanism is used to signal to the core a message or command is available.

2) Mailbox: Anareain RAM is used by the sending processor to place a message for the receiving processor. The
master uses an interrupt to signal to the slave that data has been placed in the mailbox(s).

MDK controls both processors by using two instances of pVision running: one controlling the M4 and the other the MO.
Either the ULINK2 or the ULINKpro can be used. This exercise will use the ULINK2 or ULINK-ME. Serial Wire Viewer
will not work because we must use JTAG and not SWD in order to access each core separately. A ULINKpro can send the
Cortex-M4 SWV data out the 4 bit trace port. SWV frames will then be available for the Cortex-M4 but not the Cortex-M0.

This exercise will store the programs in the processor RAM. We will not use the SPIFI Flash this time.

1) Open and compile the Cortex-MO project: (you must compile the Cortex-MO project first)

1) Connect ULINK2 or ULINK-ME to the NGX board and start pVision if it is not already running.

2) Select the project by opening LPC4330_Xplorer CMO.uvproj found in:
C:\KeilARM\Boards\NXP\Xplorer4330\LPC4330_Xplorer_DualCore\LPC4330_Xplorer_CMO
~5"\}
3) Click on the Rebuild icon. ** It will compile with no errors or warnings.

This project provides the file CM0_image.c to the M4 project.

2) Open and compile the Cortex-M4 project:

1) Open a second instance of pVision. === This instance will operate the Cortex-M4 and the first one the Cortex-MO.

2) Select the project by opening LPC4330_Xplorer_CM4.uvproj found in:
C:\KeilARM\Boards\NXP\Xplorer4330\LPC4330_Xplorer_DualCore\LPC4330_Xplorer CM4

3) Click on the Rebuild icon. ===
3) You have successfully compiled both the M4 and MO source files.

4) Position the two instances of pVision conveniently on your screen. If you have double screen setup: pVision
allows you to have one instance on each screen.

TIP: Remember when you make changes to your dual core projects, you must compile the Cortex-MO project first. This is
because the output of the MO project is used as an input to the M4 project.

TIP: If you have the file CMO_image.c or its tab visible in the editing window when you compile the MO source files, you
will get this notice:

pVision has updated this file and it will not allow an old version to be displayed without warning you.
Please click on the Yes box if you see this window
|
@™% C:\Keil\ARM\Boards \Hitex' | PC4350'Examples IPCYIPC\m4_m0_ipc
'.e-' _mbx_techcon\M4\M0_image\CMO_image.c

File has been changed outside the editor, reload ?

Yes No |

16 Copyright © 2012 ARM Ltd. All rights reserved
NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board www.keil.com


http://www.keil.com/�

3) Configuring the ULINK2/ME:
Cortex-M4 core:

1) Select the M4 instance of pVision by bringing it into focus by clicking inside it and therefore making it active.

2) Select Options for Target &N or ALT-F7 and select the Debug tab and this window opens up:

3) Select ULINK2/ME Cortex Debugger:

4) Click on the Settings: box on the right side. This window opens up:

5) Inthe RESET: box, select VECTRESET. S -

. Thi PR ; =
TIP: This VECTRESET setting is very important. Ifthe & Bb [ Terget Drver selop =
program ends up in the hard fault vector when you run it, 49 | T | o Do |

heCk that thlS bOX |S Set COrreCtI  ULINK USB - JTAG/SW Adapter — ~JTAG Device Chain
c y. Senial No: [M0414EUUE =l IDCODE | Device Name | IRlen [ fHove
6) Select SWJ. e N e
7) Inthe Port: box, select JTAG. e I_I:T;M e
mware Version. JV1- & Automatic Detection B/ CODE
8) Note two entries in the JTAG Device Chain ¥ 5wy Por [N~ € Vanual Confiuaton ~ Devee fare [
box: Max Clock: [10MHz =] gdd | [Delei= | | pde | 1Rlen [T
0x4BA00477 is the Cortex-M4 “Debug
OXOBA01477 is the Cortex_MO "Ccnned&ﬂesei Options —————————————————— "Ca:he Opﬁons—‘ "Downlo.ad Opﬁons—‘
Connect: [Nomal x| Reset:[VECTRESET x| | | ¥ Cache Code I Verify Code Download

9) Select the Cortex-M4 as shown. IV ResetafterComnect s

10) Click on OK twice to return to the main menu.

11) Select File/Save All. G| L
At this point, you have successfully connected to the Cortex-M4 and compiled the source files for both cores.

Cortex-MO core:

1) Select the MO instance of pVision by bringing it into focus by clicking inside it.

2) Select Options for Target &N or ALT-F7 and select the Debug tab and this window opens up:

3) Select ULINK2/ME Cortex Debugger:

4) Click on the Settings: box on the right side. This window opens up:

5) Inthe RESET: box, select VECTRESET.

TIP: This VECTRESET setting is very important. If the x|
program ends up in the hard fault vector when you run it, Debug | Trace | Flssh Dowrload |
check that this box is set correctly. ~ULINK USE - JTAG/SW Adapter— -JTAG Devioe Chain

6) Select SWA. || Qoo e |

ey [E T O BCBATIATT  ARM CoreSlght JTAGDP 4 [

7) Inthe Port: box select JTAG. Device Faniy: [Cotax oI 5o

8) Note two entries in the JTAG Device Chain P;:‘?:JVH:”::I__II‘;::: orrniiay D cop: |

boxl ort: =2 anual igurstion Device Mame: I—
0x4BA00477 is the Cortex-M4 vncociowe =] || e | toe| e ]
OXOBA01477 is the COTIEX-MO _Deczi%ediﬂeset Optons —— [ Cache Options Download Options

9) Select the Cortex-MO as shown. ﬁ";;“al:ﬂ;";edj i [,’; Coce ﬁ";;‘ [F Dowiond o o

10) Click on OK twice to return to the main menu.

11) Select File/Save All. ok | cace | Hep

Next you will run the program.

NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board

17

Copyright © 2012 ARM Ltd. All rights reserved

www.keil.com


http://www.keil.com/�

4) Running the Program:
The Cortex-M4 blinks the blue LED and the Cortex-MO blinks the yellow LED.
Cortex-M4 core:

1) Inthe M4 instance, enter Debug mode by clicking on the debug icon @

TIP: You do not program the RAM the same way as with the Flash. The file Dbg_CM4_RAM.ini initializes the initial stack
and PC and some other items and loads the program and runs to main(). You do not use the Load icon for RAM.

2) Click on the RUN icon.
3) Note two LEDs will now be blinking.

The yellow LED is controlled by the M0 and the blue LED by the M4.
4) ClickonsTOP @

5) Note the blue LED stops blinking. The yellow one of the right continues to blink.
This means the M4 is stopped but the MO is still running. When you started the M4, you also started the MO but you
are unable to stop the M0 with the M4 instance of pVision. The MO instance of pVision is not doing anything at
this time because to do so it must be in debug mode.and it is not.

6) Click on the RUN icon.

7) Inthe MO instance, enter Debug mode by clicking on the debug icon @

8) Note the yellow LED stops blinking. This is because the MO instance of pVision is now in debug mode and has
halted the Cortex-MO processor.

9) Click on the RUN icon. Note both LEDs are blinking.

10) Click on STOP on the MO instance and the yellow LED stops blinking.

11) Click on STOP on the M4 instance and the blue LED stops blinking.

12) Click on RUN on the MO instance and the yellow LED starts blinking.

13) Try various combinations of the two instances and note you are now able to independently control both processors.

14) This screen is how | arranged the two instances of pVision. The MO is on the left. Two screens would be much
more convenient. pVision does have a dual screen capability.

%) ke AR M | Boards OO | Kplorerd 330/ Dwal-Core\LPCA330_Xplorer_DusiCone\LPCA38 Kok P =] | | ) s LA o s L plorer 4330 LLPCA.530_Kpkorer_DualCore\LICA50_Kalorer_CHAILIG =100 x|

Fbe Ec Veew Froject Flash  Debug  Penpherals  Took  SVCS Window  Help Foe faf View Projed  Flash Debug  Pengherali Tool  SVC3  Window  Help
= e L EE B vier S Jdd & s i 39 EE & e a4
FEBO PP : BEHO e » [OREERED]3-a-0-8- % |
||| Registess @ X | Dusiembly 8 x|
= E e ez = 250; =]

| = [~
I = _'j
H2 ED 0 =
"

(2] sunky.e | (] omg o i | [ 0 ecanace | v %|
(1} Tond_CMD_Tmage (0n! . LRO, mizeof [LRO}}: =

8 % || Watchi
21 e ul
¥ LEDGn |
- # LD
Bl | <tnter expressions
> !
ASSIGH BreakDizable BreskEnable Breakiill | aCall Sack « Lo

18 Copyright © 2012 ARM Ltd. All rights reserved
NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board www.keil.com


http://www.keil.com/�

5) Breakpoints in main():
1) Start both processors by clicking on RUN in each instance. Confirm both LEDs are blinking.
In the M4 instance in the file Blinky.c, click in the left margin where there is a gray block (signifies there is

2)

3)
4)

assembly language at this C source line) to set a hardware breakpoint. Select lines LEDOn = 0; (line 96) and

LEDOff = 0; (line 101). A red circle will appear and presently the program will stop. This is shown in the screen

on the previous page in the M4 instance.

Note the M4 LED has stopped blinking while the MO is still blinking.

In the MO instance, in the the file CMO Blinky.c, similarly create a hardware breakpoint at the these source lines.
Select lines LEDON = 0; (line 76) and LEDOff = 0; (line 81). A red circle will appear and presently the program

will stop. This is shown in the screen on the previous page in the M4 instance.

TIP: Itis possible your line numbers will be different due to differing compilation settings.
TIP: Remember, you can set/unset hardware breakpoints in puVision while the program is running. A breakpoint does not

execute the instruction it is set to. These are “no-skid” hardware breakpoints.

5)  Start the program with the RUN icon in each instance and see you can enter each breakpoint in order.
Depending on where you are in the program, LEDs will be on or off appropriately.

6) Watch Windowv:

In each instance of uVision, open a Watch window by selecting View/Watch Windows/Watch 1. Click on <Enter
Expression> and enter the global variables LEDOff and LEDOnN. These variables are displayed and are updated in

1)

2)
3)

4)
5)
6)

7)
8)

stopped.

real time as shown below.

You can also enter a variable by finding each variable in
the source window Blinky.c and right-click it and select
“Add “LEDOff” to and then select Watch 1 in each
instance. Repeat for LEDON.

Each instance should have this window:  p——>

Select View/Periodic Window Update and make sure this
is enabled.

|watch 1 3 x|
Mame |‘u"a|ue |Type
¢ @ LEDOn 000000000 unsigned int
- ¥ LEDOFF unsigned int
P <Enter expression>
<] | ©

@ Call Stack + Locals | Wateh 1

Memory 1 |

As you run each program in each instance, you will see LEDOff and LEDOn updated with different numbers. You
will be able to confirm, with different number patterns, that indeed there are two cores running independently in this

example as they cycle through the breakpoints.

You can also enter these variables into a memory window.

You can also set a Watchpoint on it.
You cannot use the Logic Analyzer. See (SWV) below.

When you are done, stop both instances of pVision, leave debug mode and close the MO instance of pVision.
TIP: Make sure View/Periodic Window Update is selected. Otherwise variables will be updated only when the program is

TIP: If you have trouble entering counter into the Watch window while the program is running, try selecting it from
View/Symbol Table. Sometimes static variables must be fully qualified.

19

NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board

Copyright © 2012 ARM Ltd. All rights reserved

www.keil.com



http://www.keil.com/�

6) What does a ULINKpro offer you ?

We have seen what features the Serial Wire Viewer provides with the LPC4330. The LPC4330, like many NXP Cortex-M3
and M4 processors, also has Embedded Trace Macrocell (ETM). ETM provides all the program counter (PC) values.

Note the Xplorer board does not have the required 20 pin compact connector for ETM. Many other boards do.

Once we have all the PC values, we can easily determine the following four functions and display them in pVision:

1. Instruction Trace:

This enables program flow debugging such as the infamous “in the weeds” problem since a complete record of the
program flow is recorded for later examination. The PC values are tied to the appropriate C source and assembly

instructions as shown in the first window shown below:
Problems that normally would take extensive debugging time can be found very quickly with ETM trace. Double
click on a line in this window and you will be taken to that location in the Disassembly and Source windows.

Display: Al - E) - in Al - =
Time Address / Port Instruction / Data Src Code / Trigger Addr
¥ 000000754 EQRS  md,r5,ré if [ad_val * ad_val_) { /* AD walue changed i ;I
¥ Ox000007SE BEQ  0x000007AD
¥ : Ox000007AD LDR  0,[pc,#56] ; @0%000007DC if [clock_15) {
¥ : Ox000007AZ LDRE 1D, [rD,#0x00]
¥ 1 0x000007 A4 CBZ D, 0x000007B6
4,587 500 340 s | X : 0x000007E6 B 0x00000762 while (1] { /* Loop forever *
¥ 0w00000762 LDR ), [pc#96] ; @0x000007C4 if (AD_doneg) { S*If conversion has finished  */
¥ : 0x00000764 LDRB 10, [r0,£0x00]
¥ 1 000000766 CBZ D, 0x0000073A
¥ : 0x00000T5A EQRS rd,r5,16 if (ad_wal ~ ad_val_] { /* AD walue changed *f j
@L Disassembly | E Performance Analyzer | [ | Logic Analyzer | (4] Trace Data
|Tlate Data X
Serial Wire Viewer frames are stored " Display: Al = + in Al
along with ETM frames. Shown here in Time Address / Port Instruction / Data Src Code / Trigger Addr
red is a data write interleaved with X: 0x000002E4 DM 0L{r3; ]
assembly instructions. D 0.000 109 540 s | W : 0x10000022 000000000 ¥ : Dx000002ES
. . . 0.000 109 700 s | ¥ : 0x000002E6 SUBS 212,54
Filtering displays only those types you . 000000255 TR
want to see. ¥ : 0x000002EA CMP  12,£0x00 L
0000 109 720 s | ¥ : 0x000002EC *BNE  OwD0000ZE4
0.000 109 740 s | ¥ : 0x000002EE BX I

4
@Disassembly | E Performance Analyzer | ﬂ Logic Analyzer | @Tlace Data

NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board

20

Copyright © 2012 ARM Ltd. All rights reserved

www.keil.com



http://www.keil.com/�

Disassembly
hence tested ? Unexecuted instructions are a hazard. Code Coverage OROO00CRSE FFE  SUBS xT,xld
- - - e - r ree oX:
is often required for certain certifications such as the US FDA. Each ox00000ACC 2281 CMB x1,r0
instruction is colour coded as shown here and a report can be created. [ oo ooacs soes Ton co. 1v0.som0)
1 i i 1 1 1 [0x00000ACE 4284 CME rz,rl
This colour coding is also displayed in the C/C++ source windows. Ox00000ACE 220a o T ace
O0x00000ACA 2001 MOVS r0, #0x01
0x00000ACC 4770 BX ir
. . . 0x00000ACE F3EF8210 MRS r2, PRIMASEK
. 1. Green: this assembly instruction was executed. 0x00000aD2 FO120F01 TST 2, 40x01
[0x00000ADE BET2 CPSID I
. H H H 0x00000ADE 6803 LDR r3, [0, #0x00]
2. Gray: this assembly instruction was not executed. e oos sy I iom)
. [0x00000ADC 6001 STR rl, [z0, #0x00]
. range: a brancn IS always not taken. 0x00000ADE D100 BNE 0X00000REZ
3. Orange: a Branch is always not tak
A [0x00000REQ B&G&2 CPSIE I
4. Cyan: a Branch is always taken. 0x00000222 2000 MOVS  x0,§0x00
[0x00000RE4 4770 BX 1ir
5. Light Gray: there is no assembly instruction here. oxoooocaze 2601 M e1eo
) ) [0x00000AES 6840 LDR r0, [x0,#0x04] =
I 6. RED: Breakpoint is set here. e e fttans 4»|j
. - @Disassembl ﬂ[nsh'ud\an Trace
@ 7. Yellow arrow: Next instruction to be executed. Doty |
3. Execution Profiling: How long did it take for this function or set of assembly instructions to execute ? How many

Code Coverage: Were all the instructions in your program executed

times did they execute ? With a configurable resolution from many C source lines down to individual instructions,
Instruction profiling gives you an accurate indication of program timings.

How many times an instruction or a
section of code was executed is also
available.

This screen shows how much time each
source line has executed. Number of
times a line or section of code was
executed can also be shown instead.
Hover your mouse over an instruction or
section and the statistics are displayed as
shown in this window:.

Abstracttt” [£] Blinky.c | [ PC7o TPV | [o] corecm3h | [#] ADC.c | v x
s 0100 us uintlé_t ad val = 0, ad val_ = OxFFFE; -
38
39 0.050us LED Init(): /*

40 0.040us SER_Init(): /*
41 0100 us ADC_Init(): .
42
43 0580 us SysTick Config(SystemCoreClock/100); /% Generate 1.
44
45 0100 us while (1) { /* Loop forew
46
47 /* AD converter input
C 348 601,265 ms if (AD done) { /* IFf convers
43 TA410us AD done = 0;
50
g1 741 0us ad_avg += AD last << &; /* Add AD wval
52 2470us ad_avg ++;
53 Erm if ({ad awun AxFEV == 0Ox10) { e o
Time: Calls: Average: . fE an o
:g g}:g 2470 us EUEE oozus | > /it e as
55 =
i o

Performance Analysis (PA): Where is my program spending all of its time ? PA tells you in a graphical format

how long it takes for each function to execute. You can compare this to how long you expected them to run and to
find areas where the program is outside of your expectations and design. This information and more is presented in
the Performance Analysis window shown below:

Performance Analyzer

| Reset | Show: IModuleg j
Module/Function Calls Time(Sec) Time (%) | o
45865 100% [ —
45845 100% B
1 450845 100% [ .
’ EES E oA | .........................................................
ADC_Init 1 3150 us [ A |
ADC_StatCnv 458 3H3180us [ A |
ADC_StopCriv 0 Dus [ A |
ADC_GetCrv 0 us 0|
ADC_IRGQHandler 458 316.080 us 0|
IRG.c 414 220 us S|
- LED.c 138200 us [ | -
@l Disassembly E Performance Analyzer | ﬂ Logic Analyzer | j Trace Data |

21

NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board

Copyright © 2012 ARM Ltd. All rights reserved

www.keil.com



http://www.keil.com/�

7) Keil Products:
Keil Microcontroller Development Kit (MDK-ARM™)
= MDK-Professional (Includes Flash File, TCP/IP, CAN and USB driver libraries) $9,995
= MDK-Standard (unlimited compile and debug code and data size) - $4,895
= MDK-Basic (256K Compiler Limit, No debug Limit) - $2,695
= MDK-Lite (Evaluation version) $0
= For special promotional pricing and offers, please contact Keil Sales for details.

All versions, including MDK-Lite, includes Keil RTX RTOS with source code !
Call Keil Sales for more details on current pricing. All products are available.
All products include Technical Support for 1 year. This can easily be renewed.
Call Keil Sales for special university pricing.

For the ARM University program: go to www.arm.com and search for university.

USB-JTAG adapter (for Flash programming too)
= ULINK2 - $395 (ULINK2 and ME - SWV only — no ETM)
= ULINK-ME — sold only with a board by Keil or OEM.
. ULINKpro - $1,395 — Cortex-Mx SWV & ETM trace

PIKEIL
Dzl !(PE[!: Development Tools
.

Getting Sm-.(etf

Note: USA prices. Contact sales.intl@keil.com for pricing in other
countries.

Prices are for reference only and are subject to change without notice.

For the entire Keil catalog see www.keil.com or contact Keil or your local
distributor.

For more information:

Keil products can be purchased directly from ARM or through various distributors.

Keil Distributors: See www.keil.com/distis/ or www.embeddedsoftwarestore.com

Keil Direct Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com

Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.inti@keil.com.
For comments or corrections please email bob.boys@arm.com.

For the latest version of this document, see www.keil.com/nxp

CMSIS ..
Mz Cortex I
Software Interface Standard K E I ™

Intelligent Processors by ARM®
Tools by ARM

22 Copyright © 2012 ARM Ltd. All rights reserved
NXP Cortex-M0/M4 Lab with the NGX Xplorer LPC4330 board www.keil.com



http://www.keil.com/�
http://www.arm.com/�
mailto:sales.intl@keil.com�
http://www.keil.com/�
http://www.keil.com/distis/�
mailto:sales.us@keil.com�
mailto:sales.intl@keil.com�
mailto:support.us@keil.com�
mailto:support.intl@keil.com�
mailto:bob.boys@arm.com�

	Introduction
	Why Use Keil MDK ?
	Serial Wire Viewer (SWV):  Use any ULINK for this debugging feature.
	1)  NGX Evaluation Boards, MDK and Examples Install  3
	2)  GPIO Example with Blinky:       4
	1. GPIO_Blinky Example Program using a ULINK2:    4
	2. Hardware Breakpoints:        5
	3. Call Stack + Locals Window:        5
	4. Watch and Memory Windows and how to use them:     6
	5. Configuring the Serial Wire Viewer (SWV):      7
	6. Using the Logic Analyzer (LA) with ULINK2:      8
	7. Watchpoints: Conditional Breakpoints:      9
	3)  RTX RTOS Example RTX_Blinky:      10
	2. RTX Viewer:  Configuring Serial Wire Viewer (SWV):    11
	4)  USB and Interrupt Example:       14
	5)  Dual Core MBX Example:       16
	1. Open and Compile Cortex-M0        16
	2. Open and Compile Cortex-M04       16
	3. Configuring the ULINK2/ME:        17
	4. Running the Program:         18
	5. Breakpoints in main():         19
	6. Watch windows:         19
	6)  What does a ULINKpro and ETM Trace provide you ?  20
	7) Keil Products and Contact Information:     22
	1)  NGX ARM Processor Evaluation Boards:
	Software Installation:
	JTAG and SWD Definitions:   It is useful for you to have an understanding of these terms:
	NGX Debug Connectors:
	2)  Gpio_Blinky Example Program:
	The yellow and green LEDs (D2 and D3) beside the LPC4330 processor will now blink:
	2)  Hardware Breakpoints:
	3)  Call Stack + Locals Window:
	4)  Watch and Memory Windows and how to use them:
	5)  Configuring the Serial Wire Viewer (SWV) with the ULINK2 or ULINK-ME:
	6)  Using the Logic Analyzer (LA) with the ULINK2 or ULINK-ME:
	7) Watchpoints: Conditional Breakpoints
	3) RTX RTOS Example RTX_Blinky:
	4)  RTX Viewer:  Configuring Serial Wire Viewer (SWV):
	3) Logic Analyzer Window: View variables real-time in a graphical format:
	Enter the Variables into the Logic Analyzer:
	LedStatus:
	4) Trace Records and Exception Windows:
	TIP:  Data Read frames are currently disabled in µVision.  Data Write frames are available. 4) USB and Interrupt Example:   LPC4330_Xplorer_ExtInt.uvproj
	TIP: Some terminal programs are unable to handle high COM port numbers.  To change this, right click on the NXP driver in Device Manager and select Properties.  Select Port Settings and then the Advanced icon.  In the COM port select a new COM port t...
	5) Dual Core MBX Example:
	Running and controlling the Cortex-M4 and Cortex-M0 cores in LPC4300:
	6) What does a ULINKpro offer you ?
	7) Keil Products:
	Keil Microcontroller Development Kit (MDK-ARM™)
	All versions, including MDK-Lite, includes Keil RTX RTOS with source code !
	Call Keil Sales for more details on current pricing.  All products are available.
	All products include Technical Support for 1 year.  This can easily be renewed.
	Call Keil Sales for special university pricing.
	For the ARM University program: go to Uwww.arm.comU and search for university.
	USB-JTAG adapter  (for Flash programming too)
	 ULINK2 - $395  (ULINK2 and ME - SWV only – no ETM)
	 ULINK-ME – sold only with a board by Keil or OEM.
	 ULINKpro - $1,395 – Cortex-Mx SWV & ETM trace
	For more information:

