
EXTERNAL USE

SCT
STATE CONFIGURABLE TIMER

EXTERNAL USE1

Agenda

Timer/State machine basics

SCT introduction

SCT availability

SCT tools & resources

SCT application analysis

EXTERNAL USE2

TIMER/STATE
MACHINE BASICS

EXTERNAL USE3

Basics of Timers – match (compare) function

PRESCALER

COUNTER MATCH

Interrupt, DMA

Input Clock

EXTERNAL USE4

Basics of Timers – capture function

COUNTER

CAPTURE REGISTER

Interrupt, DMA

GPIO

EXTERNAL USE5

Timer basics – typical features

• Up, Down, Up-Down counting

− Generate an interrupt or DMA request on events

• Operations on match event:

− Continue counting or stop the counter

− Reset (limit) counter

− Set or clear an assigned GPIO signal

• Operations on capture event:

− Take a counter „snapshot“

− Reset (limit) the timer

EXTERNAL USE6

Timer basics – PWM function

• Pulse-Width-Modulated signals can be generated by the standard timer block,
enhanced by a few additional gates

• Transitions of the output signals are caused by periodic matching events

Clock

PWM1

PWM2

PWM3

PWM cycle 1 PWM cycle 2 PWM cycle 3

EXTERNAL USE7

What is state machine

• A state machine is made of:

- States

- Inputs

- Outputs

- Transitions

• Can be represented in a flow graph

• Defines the behavior model for a system

EXTERNAL USE8

Example of a State Machine Diagram

State A

State B
“Transition x”

The attributes of “Transition x” are defined as:

- while the system is in State A
- when condition Y is true

- drive output Z low
- jump to State B

Y == true
Z = 0

TRIGGERED ACTIONS

REQUIRED CONDITIONS

EXTERNAL USE9

SCT
INTRODUCTION

EXTERNAL USE10

What is the SCT ?

• Timer only or H/W FSM engine or Both

• As a timer:

− UP, UPDN, Reload, MAT, CMP, IRQ, DMA

• As a Hardware Finite State Machine (FSM) engine

− defines the behavior of counter, outputs, interrupts, dma in a flexible way

• As both

− (Cowork) A lot of interconnections between all these

− Timer&I/O generate events, events control timer

10

+

EXTERNAL USE11

SCT Building blocks

• Timer

− Can be partitioned as two 16-bit or one 32-bit timer

• Events

− Can trigger a transition on outputs, change the state, change counter status

• States

− Define the context in which the defined events are evaluated

• Inputs

− Signals which get evaluated by SCT and might contribute to the generation of events

• Outputs

− Signals generated by the SCT, which can also contribute to generation of events

11

EXTERNAL USE12

SCT Block Diagram

Standard Timer State/Event Logic

EXTERNAL USE13

Input
IO condition
time

Eventstate
new
state

Action
Output
Capture
Interrupt
Counter control

Always keep this order in mind:

EXTERNAL USE14

SCT - Events

• Source of an event can be:

− Time based value (timer match)

− Signal level (high / low) or rising / falling edge (for both inputs and outputs)

− Time based value [AND | OR] [signal level | signal edge]

• Any event can:

− Drive an output signal

− Make the timer state machine jump to another state

− Start / Stop / Halt / Limit the timer (also the other timer half!)

− Capture the current counter value

− Generate an interrupt or DMA request

14

EXTERNAL USE15

SCT - States

• Usage of states is optional, but of course this is exactly for what the SCT is
designed for 

• Each 16-bit timer half has its own dedicated state machine (32 states each)

• You can specify (mask) in which states a specific event is considered

• States allow for easy visual association between the behavior of the application
and the SCT configuration

Event
Generation

State

EXTERNAL USE16

SCT - Inputs and outputs

• Inputs:

− Up to 8

− Source can be outside or inside of the chip (physical IO pins
or output signals coming from other on-chip peripherals, i.e. comparators, GPIOs, serial interfaces
etc.)

− Synchronized to the input clock

• Outputs:

− Up to 16

− Can also be evaluated like “inputs” and generate events (after the next counter clock cycle)

− Can be routed to other IP blocks, like ADCs as trigger signals

EXTERNAL USE17

State Machine vs. SCT - in a nutshell

Element SCT implementation

States - tracked in STATE register
- updated according to EVENT CONTROL register

Inputs - specified in EVENT CONTROL register

Outputs - driven by events specified in SET and CLEAR registers
- can also be associated with transitions in the EVENT CONTROL
register

Transitions - called “events”
- defined in EVENT CONTROL register
- enabled in EVENT STATE MASK register

EXTERNAL USE18

• Improve average PWM output resolution(16 times)

• The dither engine delays the assertion of a match by one counter clock every n (0
to 15) out of 16 counter cycles

• n is specified in the 4-bit FRACMAT register

− Eg, 15 counter period: duty cycle = 1/16,

1 counter period: duty cycle = 2/16,

16 counter period: average duty cycle 17/256, resolution from 16 to 256

Dithering functionality

Normal PWM

PWM w/ Dithering Delayed cycle

EXTERNAL USE19

Dithering table

EXTERNAL USE20

SCT AVAILABILITY

EXTERNAL USE21

SCT implementation summary table

NXP Part INPUT OUTPUT States Event
MAT/

CAP
SCTIPU Dither PLL

LPC81x 4 4 2 6 5 No No No

LPC82x 4 6 8 8 8 No No No

LPC11U6x/E6x – SCT0/1 4 4 8 6 5 No No No

LPC15xx – SCT0/1 (Largest) 8 10 16 16 16 Yes Yes Yes

LPC15xx – SCT2/3 3 6 10 10 8 No No No

LPC18/43xx/LPC18S/43Sxx(flashless) 8 16 32 16 16 No No No

LPC18/43xx/LPC18S/43Sxx (flash) 8 16 32 16 16 No Yes No

LPC5410x 8 8 13 13 13 No No No

LPC5411x 8 8 10 10 10 No No No

LPC5460x/54S60x 8 10 10 10 10 No No No

EXTERNAL USE22

SCT TOOLS &
RESOURCES

EXTERNAL USE23

RedState in LPCXPresso IDE

• Integrated into Eclipse based LPCXpresso IDE

• Supports both SCT and generic state machines
programming

 More information about the products on:

− http://www.nxp.com/products/software-and-tools/software-
development-tools/software-tools/lpc-microcontroller-
utilities/lpcxpresso-ide-v8.2.2:LPCXPRESSO

− https://community.nxp.com/community/lpcxpresso-ide

• See also:

 AN11161 - Using the SCT in LPCXpresso, Keil, and IAR (with
software)

EXTERNAL USE24

Example of state machine configuration

EXTERNAL USE25

SCT-Tools

• Free of charge

• Standalone, graphic editor is a Java based tool

• Generates C code register initializations and header file

• Package includes

– Program installer for Windows

– Installation guide and user manual

– Programming examples, tutorial

• Example projects are based on Keil mVision but can be
easily adapted for any other IDE. They include the SM
definition file and call the C code generator from the IDE
as a “custom build” step

• Mainly used for LPC18/43xx, no further update

EXTERNAL USE26

SCT Cookbook

• AN11538: SCTimer/PWM Cookbook

• Collection of code examples (Keil, IAR and LPCXpresso)

• Each code example summarized in Cookbook document

• Available so far (and more to follow):

EXTERNAL USE27

SCT APPLICATION
ANALYSIS

EXTERNAL USE28

Blinky Match

Input
Match0
Input
Match0

Event 0Event 0
State

0
State

0
State

1
State

1

Action
Set output
Clear Counter

Action
Set output
Clear Counter

Input
Match0
Input
Match0Event 1Event 1

Action
Clear output
Clear counter

Action
Clear output
Clear counter

Input
IO condition
time

Eventstate
new
state

Action
Output
Capture
Interrupt
Counter control

EXTERNAL USE29

void SCT_Init(void)
{

LPC_SCT->CONFIG |= 0x1; // unified timer

LPC_SCT->MATCH[0].U = SystemCoreClock/10; // match 0 @ 100 msec
LPC_SCT->MATCHREL[0].U = SystemCoreClock/10;

LPC_SCT->EV[0].STATE = 0x00000001; // ev 0 happens in state 0
LPC_SCT->EV[0].CTRL = (0 << 0) | // related to match 0

(1 << 12) | // match condition only
(1 << 14) | // STATEV is new state
(1 << 15); // STATEV[15] = 1

LPC_SCT->EV[1].STATE = 0x00000002; // ev 1 happens in state 1
LPC_SCT->EV[1].CTRL = (0 << 0) | // related to match 0

(1 << 12) | // match condition only
(1 << 14) | // STATEV is new state
(0 << 15); // STATEV[15] = 0

LPC_SCT->OUT[0].SET = (1 << 0); // event 0 sets SCT_OUT_0
LPC_SCT->OUT[0].CLR = (1 << 1); // event 1 clears SCT_OUT_0
LPC_SCT->LIMIT_L = 0x0003; // event 0 and 1 are limits

LPC_SCT->CTRL_L &= ~(1 << 2); // unhalt the timer}
}

Source code implementation

EXTERNAL USE30

Configuration Analysis

• Blinky Match Configuration

− Match register：match0@100ms

− Output：SCT_OUT0，SCTx_OUT0 connected to an LED that is illuminated when the
output is low (during state 0)

− Event: Event 0 and Event 1, Event0 sets SCT_OUT0, Event1 clear SCT_OUT0

− State: State0 and State 1, Event0 enabled in State0, Event1 enabled in State1

EXTERNAL USE31

Traffic Light
Red

Green

Yellow

Input
Red light period:
Match0

Input
Red light period:
Match0

Event 0Event 0
Red
state
Red
state

Yellow
state

Yellow
state

Action
Clear red light
Set yellow light
Clear counter

Action
Clear red light
Set yellow light
Clear counter

Input
Yellow light
period: Match1

Input
Yellow light
period: Match1

Event 1Event 1

Action
Clear yellow light
Set green light
Clear counter

Action
Clear yellow light
Set green light
Clear counter

Input
Green light
period: Match2

Input
Green light
period: Match2

Event 2Event 2
Green
state

Green
state

Red
state
Red
state

Action
Clear green light
Set red light
Clear counter

Action
Clear green light
Set red light
Clear counter

Input
IO condition
time

Eventstate
new
state

Action
Output
Capture
Interrupt
Counter control

EXTERNAL USE32

Application use cases

• Motor Control

− Generation of PWM outputs, triggering of ADC sample points

• Lighting

− Modulated PWM outputs, reaction to lamp sensor feedback

• Generation of custom control signals in hardware, like:

− Clock or signal gating

− Complex modulation of outputs

− Pulse sequences

• Custom sampling of input signals for

− Frequency detection

− Pulse width detection

− Phase detection

• And others

EXTERNAL USE33

Motor control

SCT is used to handle signals like:

• Hall sensor feedback, i.e. for a Brushless DC motor

− Problem is to determine the motor position during rotation

− The 3 Hall sensors provide positional information

− a total of 6 different combination of the signals provide a 60° resolution

• ADC triggering

− Used for sampling the currents on the motor windings, i.e on Brushless AC motor

− Sampled values flow back in the control algorithms like field oriented control (FOC)

• PWM signals

− Depending on the type of motor, and the power stage configuration, up to 6 PWM
signals (phases) need to be generated

